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Abstract

Ecological studies often suggest that diverse communities are most resistant to invasion by exotic plants, but relatively few local
species may be available to a rehabilitation practitioner. We examine the ability of monocultures and diverse assemblages to
resist invasion by an exotic annual grass (cheatgrass) and an exotic biennial forb (dyer’s woad) in experimental rehabilitation
plots. We constructed seven assemblages that included three monocultures of grass, forb, or shrub; three four-species mixtures of
grasses, forbs, or shrubs; and a three-species mixture of one species from each growth form in an experimental field setting to
test resistance to invasion. Assemblages were seeded with cheatgrass and dyer’s woad for two consecutive years and quantified
as biomass and density of individuals from each exotic species. Soil NO3

� and leaf-area index were examined as predictors of
invasive plant abundance. Cheatgrass invasion was greatest in forb and shrub assemblages, and least in mixed grass or grass
monoculture; dyer’s woad invasion was greatest into mixed grass or grass monoculture, but least into monoculture or mixed-
species assemblages composed of forbs or shrubs. The community composed of grasses, forbs, and shrubs suppressed invasion
by both species. Consequently, assemblages were most resistant to invasion by species of the same growth form. Moreover, these
monocultures and mixtures were generally similar in conferring resistance to invasion, but a monoculture of big sagebrush was
more resistant than a mixture of shrubs. Soil NO3

�was correlated with invasion by cheatgrass, whereas LAI was correlated with
invasion by dyer’s woad, suggesting these species were more limited by belowground and aboveground resources, respectively.
Overall, increasing diversity with limited species did not necessarily enhance resistance to invasion.
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INTRODUCTION

Seedings and plantings in rangelands throughout western
North America are used to rehabilitate degraded pastures,
provide forage for livestock and wildlife, and secure other
ecosystem services. One such critical service is resistance to
invasion by exotic plant species (Bakker and Wilson 2004;
Pokorny et al. 2005; Funk et al. 2008; Benayas et al. 2009).
Exotic plants are one of the most important threats to
rangelands today, costing land managers in excess of $5 billion
per year in control and lost productivity (Pimental et al. 2005).
Consequently, there is direct value in restoring productivity and
preventing future invasion. An objective of many rehabilitation
efforts is to establish a plant community on degraded land that
will resist future invasion.

Although unassisted recovery of a plant community is
constrained by the regional species pool and dispersal,
rehabilitation following severe degradation is constrained by
availability of species to practitioners (Burton and Burton
2002; Hufford and Mazer 2003; Bakker and Wilson 2004).
High-diversity communities can be more resistant to invasion
than lower-diversity communities because they may fully
exploit above- and belowground resources (Elton 1958; Tilman
1997; Levine and D’Antonio 1999) or be more likely to contain
a native species that preempts the niche (i.e., the sampling
effect, Huston 1997; Fargione and Tilman 2005). These
hypotheses have been supported in several studies (Naeem et
al. 2000; Fargione and Tilman 2005; Pokorny et al. 2005;
Hooper and Dukes 2010) with the specific finding that exotic
species are suppressed by native species of similar growth form
(Fargione et al. 2003). This relationship applies at the small
scale (i.e., plot studies), but not necessarily at larger ones
(Stohlgren et al. 1999; Fargione and Tilman 2005). For
rehabilitation, however, only a subset of local species may be
available for any activity, reducing the potential benefit of a
diverse community. For example, Bakker and Wilson (2004)
used five species in their experimental restoration of a northern
Great Plains grassland, and only 11–12 species were used in an
experimental restoration of a disturbance caused by oil shale
extraction (Hoelzle et al. 2012). Although the US Bureau of
Land Management stocks dozens of species (Shaw et al. 2005),
the agency recommends fewer than 10 species for projects
(Thompson et al. 2006). Rehabilitating a community that is
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resistant to invasion from a limited species pool can be
challenging if invasion resistance is dependent on a nonrandom
selection of species (Zavaleta and Hulvey 2004; Selmants et al.
2012).

Great Basin plant communities in the western United States
are excellent model systems for examining the dependence of
invasion resistance on community composition. Great Basin
communities have experienced one of the most profound plant
invasions in North America (Chambers et al. 2007). Following
over 100 yr of livestock grazing and increased wildfire
frequency, intensity, and scale, millions of hectares of histor-
ically perennial communities have been converted to near
monocultures of exotic annual grasses (Knapp 1996; Pellant et
al. 2004; Mensing et al. 2006), including Bromus tectorum L.
(cheatgrass). More recently, secondary exotic forbs such as
Isatis tinctoria L. (dyer’s woad) and Centaurea maculosa
(spotted knapweed) have invaded (Farah et al. 1988; Prevéy
et al. 2010). Although reestablishing perennial vegetation to
reduce fire frequency and increase forage for wildlife and
domestic livestock is critical in these landscapes (Pellant et al.
2004), the ability of rehabilitated landscapes to resist future
invasion by these or other species is unclear.

Rehabilitations in the Great Basin historically involved
establishing monocultures of exotic perennial grasses, but
multispecies seedings are now more common. For example,
Agropyron cristatum (L.) Gaertner (crested wheatgrass) was
planted on millions of hectares in the western United States,
despite it being an exotic species (Rogler and Lorenz 1983).
Crested wheatgrass is an effective competitor with cheatgrass,
because of its high relative growth rate and rapid uptake of soil
nitrogen (Aguirre and Johnson 1991; Bilbrough and Caldwell
1997; Leffler et al. 2011). Seeding crested wheatgrass has been
extensive (Rogler and Lorenz 1983), but doing so simply
replaces a potential monoculture of cheatgrass with a potential
monoculture of an exotic perennial grass. Stabilizing degraded
sites with additional species might provide resistance to a
broader suite of potential invaders because diverse communi-
ties more completely use above- and belowground resources
(Hooper and Vitousek 1998; Mack et al. 2000; Spehn et al.
2000; Fargione and Tilman 2005). Additionally, diverse
communities may be more suitable to native species establish-
ment and provide greater value to wildlife (Pendery and
Provenza 1987; Cox and Anderson 2004). Recent studies
suggest communities of multiple functional groups, particularly
those with forbs present, promote resistance to spotted
knapweed invasion (Pokorny et al. 2005; Sheley and Carpinelli
2005).

We evaluate resistance to invasion of assembled communities
composed of readily available species representative of the
three dominant perennial growth forms (grasses, forbs, and
shrubs) in shrub–steppe ecosystems. Assemblages were com-
posed of single monoculture and four-species mixes of each
growth form, and a three-species mix of one species from each
of the three growth forms. Seeds of cheatgrass and dyer’s woad
were introduced into plots of species assemblages for 2
consecutive years, and resistance to invasion was determined
by quantifying seedling density and shoot dry mass during two
summers. We tested the following hypotheses: 1) within a
growth form, diverse assemblages will be more resistant to
invasion than a monoculture; 2) resistance to invasion is

proportionally greater in assemblages that contain species of
the same growth form as the invader; and 3) the multiple
growth form assemblage will be equally resistant to both
species. In addition, we hypothesize that 4) aboveground and
belowground resource availability will be positively correlated
with plant invasion. We specifically examine leaf-area index
(LAI) as a proxy for light availability, and soil NO3

� during the
autumn before invasive-species density and dry mass were
sampled.

MATERIALS AND METHODS

Study Site
The experiment was conducted at Millville, Utah, USA
(41839.440N, 111848.880W, 1 402 m). Millville is a typical
Intermountain West cold desert ecosystem (Caldwell 1985).
Approximately 75% of total annual precipitation occurs as
winter snowfall or spring and autumn rains when plants are not
active. Consequently, this winter pulse of water provides
essentially all the soil moisture for the growing season
(Huxman et al. 2004) and plant growth is typically confined
to April through June. During this time, much of the available
soil N is depleted in perennial communities, but invasive
annual-grass–dominated communities typically show higher
soil [NO3

–] because they senesce early in the summer, allowing
NO3

� to accumulate because little leaching can occur (Booth et
al. 2003; Hooker et al. 2008). Soil [NH4

þ] remains low in
Great Basin soils during late summer (Booth et al. 2003;
Hooker et al. 2008). In this system, invasive annual grasses
such as cheatgrass often germinate in the autumn and
overwinter as a seedling, completing their life cycle the
following spring (Knapp 1996). Deeper-rooted invasive plants
such as dyer’s woad germinate in the spring or autumn (Farah
et al. 1988).

The study site was dominated by Artemisia tridentata spp.
Nutt. (big sagebrush) and other native steppe species prior to
settlement in the 1850s (Hull and Hull 1974). Most recently,
the site was used for corn and alfalfa production, but was
fallow from fall 2002 to spring 2003. Soils are a Ricks gravelly
loam (coarse–loamy over sandy or sandy–skeletal, mixed,
superactive, mesic Calcic Haploxerolls). The 30-yr-average
annual precipitation is 457 mm and was 690 mm and 535 mm
in 2005 and 2006, respectively.

Plants for this experiment were initiated from seed in
December 2002 in small containers (22 cm deep, 4-cm
diameter), reared in a greenhouse until plants were ca. 15 cm
in height, and transplanted to 1.531.5 m plots in May 2003.
Each plot consisted of 24 plants in a 535 square arrangement
equally spaced (30 cm apart) with the center plant missing to
accommodate plot access by researchers, and 1-m–wide aisles
separating plots. Seven species assemblages, each replicated 15
times, were randomly assigned to plots (Table 1). These
assemblages consisted of three monocultures (grass [G-Mono],
forb [F-Mono], or shrub [S-Mono]), three four-species mixtures
of three growth forms (i.e., grass [G-Mix], forb [F-Mix], or
shrub [S-Mix]), and a three-species mixed–growth-form as-
semblage composed of one species from each of the three
growth forms (GFS-Mix). Assemblages were constructed with
native and nonnative sagebrush-steppe species (Table 1)
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commonly used for rehabilitation (Richards et al. 1998;
Thompson et al. 2006; Bernstein et al. 2013).

Invasive Species
The experimental plots were seeded with two exotic invasive
species: the annual grass Bromus tectorum L. (cheatgrass) and
the biennial forb Isatis tinctoria L. (dyer’s woad) in mid-
November 2004 and late October 2005, approximately 18 mo
following the initial construction of the plots, and after
individual plants in the assemblages more fully occupied the
available space (Fig. S1, available at http://dx.doi.org/10.2111/
REM-D-13-00140.s1). Seed of both invasive species was
collected within 1 km of the research area. A total of 400
viable seeds of both species were combined and broadcasted
over the central 1 m2 of plots in each year. Seed viability was
87% and 43% in 2004, and 91% and 28% in 2005 for
cheatgrass and dyer’s woad, respectively; we accounted for
fraction of germination to attain the desired viable seeding rate.
Prior to seeding exotic species, the central 1-m2 area of the soil
surface in each plot was lightly scarified with a small garden
rake to a depth of about 1 cm, to improve seed catchment and
decrease movement of seed outside the plots.

Plot Measurements
We quantified invasion by both species by counting and
harvesting seedlings of invasive species in the central 1-m2

area of each plot to determine density and shoot dry mass in
July 2005 and late June 2006. All seedlings were between 2 and
10 cm tall at the time of harvest and harvest caused negligible
disturbance to the plots. Although these seedlings were small,
they were harvested after the majority of growth for that season
had occurred. The removal of seedlings each summer allowed
us to replicate invasive species establishment in 2 consecutive yr
in this experiment.

Aboveground shoot biomass was dried for 48 h at 608C and
weighed to determine dry mass. Leaf-area index (LAI) was
measured in each plot with the use of a ceptometer (Accupar LP-
80, Decagon Devices, Inc., Pullman, WA, USA) to document
vegetation density of the assemblages and to use as a predictor of
invasion. The ceptometer was placed in four regular locations in
the center 1 m2 of each plot, on the ground surface, and
measured the interception of photosynthetically active radiation
(400–700 nm) by the canopy. An above-canopy measurement
was also necessary to calculate LAI integrated over the 80-cm
linear sensor. We made measurements between 1 100 and 1 300
hours on cloudless days in autumn 2004 and 2005.

Soil nitrate was measured in autumn 2004 and 2005 by
taking four 2-cm–diameter by 15-cm–deep soil cores (n¼ 6) in
the center 1 m2 of each plot to obtain soil samples, which were
thoroughly mixed and extracted with 2-M KCl within 2 h of
collection. The KCl solutions were filtered through preleached
filter paper and frozen until analyzed colorimetrically with a
flow injection autoanalyzer (Lachet Instruments, Milwaukee,
WI) to determine combined concentrations of NO2

� and NO3
�.

Soil water content (for accurate NO3
� measurement) was

determined gravimetrically on these soil samples by weighing a
subsample of the freshly collected soils, drying for 48 h at
1058C, and reweighing.

Statistical Analysis
Our first hypothesis, that diverse assemblages will be more
resistant to invasion than monoculture, was tested with
analysis of variance (ANOVA) as a factorial experiment with
a completely randomized design. The statistical model analyzed
the fixed main effects of year, assemblage, and their interaction
on response variables of seedling density and shoot dry mass of
both invasive species. The ANOVA was followed by a Tukey
Honestly Significant Difference (HSD) comparison between

Table 1. Assemblage name/code and nomenclature of species used to construct species assemblages in this study. Nomenclature follows Welsh et al.
(1993), except for crested wheatgrass, which is a release by US Department of Agriculture–Agricultural Research Service, Logan, UT, USA. Status is either
(N) indicating a native species, or (E) indicating an exotic species.

Assemblage Scientific name Common name (status)

Grass monoculture (G-Mono) Agropyron cristatum (L.) Gaertner 3 Agropyron desertorum (Fisch. ex Link) Schultes Crested wheatgrass ‘CD II’ (E)

Forb monoculture (F-Mono) Achillea millefolium ssp. lanulosa (Nutt.) Piper Western yarrow (N)

Shrub monoculture (S-Mono) Artemisia tridentata ssp. tridentata Nutt. Basin big sagebrush (N)

Grass forb shrub (GFS-Mix) Agropyron cristatum (L.) Gaertner 3 A. desertorum (Fisch. ex Link) Schultes Crested wheatgrass ‘CD II’ (E)

Achillea millefolium ssp. lanulosa (Nutt.) Piper Western yarrow (N)

Artemisia tridentata ssp. tridentata Nutt. Basin big sagebrush (N)

Grass mix (G-Mix) Agropyron cristatum (L.) Gaertner 3 A. desertorum (Fisch. ex Link) Schultes Crested wheatgrass ‘CD II’ (E)

Poa secunda Presl. Sandberg bluegrass (N)

Elymus multisetus (J.G. Smith) M.E. Jones Big squirreltail ‘Sand Hollow’ (N)

Elymus spicatus (Pursh) Gould Bluebunch wheatgrass (N)

Forb mix (F-Mix) Achillea millefolium ssp. lanulosa (Nutt.) Piper Western yarrow (N)

Sanquisorba minor Scop. Small burnet (E)

Sphaeralcea munroana (Dougl.) Spach in Gray Munro’s globemallow (N)

Hedysarum boreale Nutt. Utah sweetvetch (N)

Shrub mix (S-Mix) Artemisia tridentata ssp. tridentata Nutt. Big sagebrush (N)

Purshia tridentata (Pursh) DC. Bitterbrush (N)

Kochia prostrata (L.) Schrader Prostrate kochia (E)

Chrysothamnus nauseosus (Pallas) Britt. Rubber rabbitbrush (N)
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monocultures and mixed-species assemblages within each

growth form. The second and third hypotheses regarding

susceptibility of different assemblages to invasion by cheatgrass

or dyer’s woad were examined with an ANOVA on propor-

tional seedling density and shoot dry mass of cheatgrass.

Proportional density and dry mass were calculated as the

density or mass of cheatgrass normalized by the total density or

mass of the sum of cheatgrass and dyer’s woad. Proportional

data were transformed with arcsine square root to normalize

these data prior to analysis with the same ANOVA model as

above. Proportional data are graphically presented as the

median with an asymmetrical 95% confidence interval derived

from a binomial (i.e., bounded 0–1) distribution. We examined

the fourth hypothesis regarding resource availability and

invasion with the use of Spearman rank correlation between

soil NO3
� or LAI and density or biomass of each invasive

species in each of the 2 yr of study. All analyses were conducted

with the use of the LM and TUKEYHSD functions (ANOVA)

or COR.TEST (correlation) within the statistical computing

language R (R Core Team 2013) with a¼0.05.

RESULTS

Plot assemblages of different growth forms and species

composition differed in exotic annual grass and exotic biennial

forb invasion (Fig. 1, Table 2). We observed a significant

year3assemblage interaction for density and biomass of

cheatgrass, and for density of dyer’s woad, indicating unique

responses to assemblage in each year. For biomass of dyer’s

woad, assemblages differed in invasion, but we observed no

significant ‘‘year’’ effect. The pattern was the same for the

proportion of density and biomass represented by cheatgrass;

for density, there was a significant year3assemblage interac-

tion, whereas for biomass, only assemblages differed in

invasion.

Figure 1. Mean (6 95% confidence interval) seedling density (a and b) and biomass (c and d) for cheatgrass and dyer’s woad in 2005 (a and c) and
2006 (b and d) for seven experimental assemblages, n¼15. Species identification as in Table 1: G-Mono indicates grass monoculture; F-Mono, forb
monoculture; S-Mono, shrub monoculture; GFS-Mix, grass forb shrub mixture; G-Mix, grass mix; F-Mix, forb mix; and S-Mix, shrub mix. Some error bars
extend beyond the y-axis to aid visualization. Note different y-axis scales among years.
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The greatest number of invasive individuals of both species

was observed in the western yarrow monoculture (F-Mono)

and the forb and shrub mixtures (F-Mix and S-Mix,

respectively) in 2005 and 2006 (Figs. 1a and 1b). The three

least invaded assemblages, as measured by seedling density,

were the monoculture of crested wheatgrass (G-Mono), the

grass mixture (G-Mix), and the multiple–growth-form mixture

(GFS-Mix). In 2005, the most heavily invaded assemblages had

between 30 and 60 cheatgrass and up to 50 dyer’s woad

seedlings �m�2. In 2006, some assemblages were heavily

invaded, including F-Mono, F-Mix, and S-Mix; e.g., over 200

cheatgrass seedlings �m�2. Fewer dyer’s woad individuals

established in 2006 than in 2005.

A similar pattern emerged for biomass of each invasive

species (Figs. 1c and 1d). The highest biomass was observed in

F-Mix and S-Mix assemblages; the lowest invasive biomass was

found in G-Mono, the grass mixture (G-Mix), and GFS-Mix. In

2005, the heavily invaded F-Mix and S-Mix assemblages had

over 6 g �m�2 of cheatgrass biomass. In 2006, F-Mono had

nearly 35 g �m�2 of cheatgrass biomass. The greatest biomass of

dyer’s woad (ca. 5 g �m�2) was observed in F-Mono and S-Mix

in 2006. However, overall invasive biomass in 2005 was not

different from 2006 for dyer’s woad (Table 2). Regardless of the

measure of invasion or the year, total invasion into the most

susceptible assemblages was 10- to 20-fold greater than into the

least susceptible assemblages.

Invasion into our mixtures was generally not lower than

invasion into our monocultures. Invasion into G-Mono and G-

Mix was similar regardless of metric (density or biomass), year,

or species (Table 3). Invasion into F-Mono and F-Mix was

similar except for biomass of cheatgrass in 2006; here F-Mono

experienced greater invasion by cheatgrass than F-Mix.

Invasion into S-Mix was generally greater than invasion into

S-Mono (Table 3); this result is evident for cheatgrass density in

2006, dyer’s woad density in 2005 and 2006, and dyer’s woad
biomass in 2006.

Assemblages were not susceptible to invasion by the same
growth form. Despite lower total invasion, seedling density and
shoot dry mass indicate that G-Mono and G-Mix were mostly
invaded by dyer’s woad, whereas F-Mono, S-Mono, and S-Mix
were mostly invaded by cheatgrass (Fig. 2). In several cases,
these differences were striking: cheatgrass represented 95% of
the invasive seedlings in F-Mono in 2006 and dyer’s woad
represented 94% of the invasive seedlings in G-Mono across
both years. The GFS-Mix assemblage was more equally
invaded by both species, with cheatgrass representing between
44% and 62% of density and biomass in both years.

Above- and belowground resource availability varied among
assemblages and years (Figs. S2 and S3, available at http://dx.
doi.org/10.2111/REM-D-13-00140.s1). LAI in 2004 varied
between 0.8 and 2.2 for S-Mix and S-Mono plots, respectively.
In 2005, LAI varied between 1.5 for G-Mix and 4.1 for S-
Mono. Soil NO3

�was between 1.3 and 5.9 lg � g�1 for G-Mono
and G-Mix, respectively, in 2004. In 2005, Soil NO3

� varied
between 0.77 and 5.47 lg � g�1 in GFS-Mix and F-Mono,
respectively. These LAI and NO3

� values indicate considerable
production of planted individuals such that little bare ground
was evident in the plots (Fig. S1, available at http://dx.doi.org/
10.2111/REM-D-13-00140.s1). In 2004, soil NO3

� exceeded
22 lg � g�1 in plots with no individuals established.

Measures of resource availability were correlated with
success of both invasive species (Table 4). Light availability in
the assemblages, as measured by LAI, was a modest predictor
of invasion by dyer’s woad, but not by cheatgrass. For dyer’s
woad, high LAI was associated with low density and low
biomass in 2005 and 2006. LAI explained ca. 10% of the
variation in density or biomass of dyer’s woad each year. Soil
NO3

– availability was more strongly correlated with density
and biomass of cheatgrass than dyer’s woad (Table 4). In 2005,

Table 2. F values from type III ANOVA evaluating the effects of year (Y) and assemblage (A) on total invasion (density and shoot dry mass) and
proportional invasion (density and shoot dry mass). Proportional density and dry mass is the fraction of total invasive individuals or biomass attributable to
cheatgrass (or dyer’s woad, because cheatgrass and dyer’s woad sum to unity in this analysis).

Effect df

Cheatgrass Dyer’s woad Proportional invasion

Density Dry mass Density Dry mass Density Dry mass

Y 1 91.22 33.62 23.82 2.70 24.62 2.74

A 6 31.72 24.62 14.32 2.971 46.32 44.02

Y 3 A 6 18.52 18.92 3.911 1.67 3.021 1.28
1P , 0.01.
2P , 0.001.

Table 3. P values for preplanned Tukey Honestly Significant Difference comparisons between monoculture and mixed-species assemblages within each
growth form. Bold values are significant at P , 0.05.

Cheatgrass Dyer’s woad

Density Dry mass Density Dry mass

2005 2006 2005 2006 2005 2006 2005 2006

Grass 0.999 0.999 0.999 0.999 0.224 0.999 0.999 0.999

Forb 0.999 0.149 0.964 , 0.001 0.998 0.999 0.999 0.773

Shrub 0.999 , 0.001 0.626 0.446 , 0.001 0.002 0.960 0.049
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soil NO3
– was only moderately correlated with biomass of

cheatgrass, explaining ca. 8% of the variation among plots. In
2006, soil NO3

– explained 21% of the variation among plots in
cheatgrass density and biomass, and 10% of the variation

among plots in dyer’s woad density and biomass. In all cases,
high NO3

– was associated with either higher density or biomass
of the invasive species.

DISCUSSION

Data collected on seedling density and shoot biomass of two
exotic invasive species from different growth forms indicate: 1)
the mixtures of a single growth form were not more resistant to
invasion than monocultures of crested wheatgrass, western
yarrow, or big sagebrush; 2) mixtures and monocultures were
most resistant to invasion by exotic species of the same growth
form; 3) our assemblage of multiple growth forms (GFS-Mix)
was equally resistant to both invasive species, whereas our
assemblages of a single growth form (G-Mix, F-Mix, S-Mix)
were susceptible to one invasive or the other; and 4) above- and
belowground resource availability was correlated with inva-
sion. These data partly support theory regarding diversity and
resistance to invasion; the most diverse assemblage (GFS-Mix)
was resistant to multiple species, but single–growth-form
assemblages were not necessarily more resistant than the
monocultures examined here.

The first hypothesis, which posited that our single–growth-
form assemblages (G-Mix, F-Mix, S-Mix) would be more
resistant to invasion than our monocultures (G-Mono, F-
Mono, S-Mono), was not supported by these data; some of our
monocultures were more resistant to invasion than mixtures.
G-Mix was just as effective at resisting invasion as G-Mono,
and S-Mono was more effective at conferring resistance then S-
Mix. As predicted by theory, F-Mono was less effective at
conferring resistance than F-Mix, but only against cheatgrass
and only for biomass in 2006.

The pattern we observed suggests choice of species within a
growth form is crucial to conferring resistance. For the forbs, F-
Mono composed of only western yarrow was highly invaded;
the addition of other forbs increased resistance of the
assemblage through complementarities with other species in
the mix (Hooper 1998; Fargione and Tilman 2005). For the
shrubs, big sagebrush effectively resisted invasion, and adding
other shrub species into the assemblage, which reduced the
relative abundance of big sagebrush, reduced resistance. The
enhancement or degradation of resistance by adding additional
species to a monoculture may stem from different patterns of
resource use among species (Spehn et al. 2000; Fargione and
Tilman 2005). Conversely, crested wheatgrass provided strong
resistance in monoculture, which was not reduced by the

Figure 2. Median (6 95% confidence interval) proportion of total invasive
species density (a) and biomass (b) as cheatgrass. A value close to 1
indicates nearly all the invasive individuals or biomass were cheatgrass; a
value close to 0 indicates nearly all the invasive individuals or biomass were
dyer’s woad. The balance of individuals or biomass is dyer’s woad,
because cheatgrass and dyer’s woad sum to unity. Species identification
as in Table 1: G-Mono indicates grass monoculture; F-Mono, forb
monoculture; S-Mono, shrub monoculture; GFS-Mix, grass forb shrub
mixture; G-Mix, grass mix; F-Mix, forb mix; and S-Mix, shrub mix.

Table 4. Spearman (rank) correlations coefficients (r) between dependent invasion variables (species density and shoot dry mass) measured in summer
2005 and 2006 and independent plot variables (leaf area index [LAI], soil NO3

–) measured in autumn 2004 and 2005, respectively.

Year Variable

Cheatgrass Dyer’s woad

Density Shoot dry mass Density Shoot dry mass

2005 LAI –0.056 –0.102 –0.3543 –0.3072

Soil NO3
� 0.189 0.2802 0.140 0.173

2006 LAI 0.055 –0.009 –0.2692 –0.2752

Soil NO3
� 0.4413 0.4773 0.2361 0.3923

1P , 0.05.
2P , 0.01.
3P , 0.001.

662 Rangeland Ecology & Management



presence of other species. Crested wheatgrass is highly
competitive and capable of resisting invasion by exotic annual
grasses through rapid soil resource use (Rogler and Lorenz
1983; Aguirre and Johnson 1991; Bilbrough and Caldwell
1997; Whitson and Koch 1998, Leffler et al. 2011). These
findings are consistent with studies suggesting species compo-
sition influences ecosystem processes such as resistance to
invasion (Hooper and Vitousek 1998; Spehn et al. 2000;
Fargione et al. 2003; Fargione and Tilman 2005), but also
studies suggesting that nonrandom assemblages of species yield
different resistance to invasion than random ones (Zavaleta
and Hulvey 2004; Selmants et al. 2012). Consequently, choice
of species is especially important when few species are used in a
rehabilitation activity.

The second hypothesis was clearly supported because
resistance to invasion was proportionally greater in our
assemblages that contained species of the same growth form
as the invader. The most effective invader into G-Mono and G-
Mix plots was dyer’s woad, and the most effective invader into
our S-Mono, S-Mix, F-Mono, and F-Mix was cheatgrass. In
experimental prairie assemblages, each of four growth forms
(forbs, C3 and C4 grasses, and legumes) was most effective at
resisting invasion by members of the same growth form
(Fargione et al. 2003). In western Montana, spotted knapweed
invasion was high when forbs were removed from the system,
but lower when only grasses or shallow-rooted forbs were
removed (Pokorny et al. 2005); forbs again suppressed an
invasive forb. In California grasslands, early-season native
species were most effective at resisting early-season invasive
species; the same was true for late-season native and invasive
species (Hooper and Dukes 2010). In each of these cases,
resistance to invasion arises from high niche overlap within
growth forms that created complementarity among species in
resource use (Hooper 1998; Fargione et al. 2005). All grasses in
this study, including cheatgrass, are cool season, which have
rapid growth in early spring, early reproductive maturity, and
little growth in late summer (Arredondo et al. 1998). Shrubs
require deep soil water during the summer when precipitation
is largely absent or ineffective (Ryel et al. 2010; Leffler and
Ryel 2012). Biennial invaders such as dyer’s woad access deep
water to persist through summer. If native shrubs effectively use
this water source, it is difficult for other species to invade the
system (Ryel et al. 2010; Leffler and Ryel 2012) because
resource availability is critical for invasion success (Davis et al.
2000; Davis and Pelsor 2001).

Forbs in this study were effective at excluding dyer’s woad,
but not cheatgrass. Consequently, species such as western
yarrow likely were most competitive for deeper soil resources,
consistent with its drought tolerance (Leonard et al. 2008).
Western yarrow stands were resistant to invasion by Centaurea
maculosa (spotted knapweed), another deep-rooted forb
(Maron and Marler 2007). High forb diversity can provide
resistance to invasive species (Pokorny et al. 2005; Sheley and
Carpinelli 2005), but classifying species as ‘‘forb’’ alone can
hide much functional variation. Although the forbs examined
here were effective at excluding dyer’s woad, other species,
specifically winter annual forbs, may be more effective at
suppressing cheatgrass (Forbis 2010) because they are pheno-
logically more similar (Hooper and Dukes 2010) to this
invasive.

The third hypothesis, which suggested that our GFS-Mix
assemblage would be resistant to cheatgrass and dyer’s woad,
was supported. Although the GFS-Mix was not more effective
at reducing overall invasion than G-Mono or G-Mix, it was
equally invaded by cheatgrass and dyer’s woad (Fig. 2). The
combination of growth forms in the GFS-Mix may have
depleted resources in the near-surface soil, which limited the
success of cheatgrass (Beckstead and Augspurger 2004; Perry et
al. 2010; Leffler and Ryel 2012), and depleted deeper soil
water, which reduced the success of deep-rooted invasive forbs
like dyer’s woad (Prevéy et al. 2010; Leffler and Ryel 2012).
Here, we observed an advantage to selecting species of multiple
growth form for conferring resistance to two invaders.

Our fourth hypothesis, regarding the influence of above-
ground and belowground resource availability on invasion, was
also supported, although the influence of resource availability
on invasion was small (Table 4). Soil NO3

� availability in 2005
had a strong influence on cheatgrass invasion and a modest
influence on dyer’s woad invasion in 2006. Cheatgrass has a
high N uptake capacity and responds to increased N
availability to a greater extent than native species (James
2008; Leonard et al. 2008; Leffler et al. 2011). The generally
stronger correlation between belowground resources and
invasion by cheatgrass compared to dyer’s woad further
indicates the importance of shallow soil resources for cheat-
grass. Canopy LAI played a role in invasion by dyer’s woad in
2005 and 2006. Although light availability is not typically
limiting in semiarid systems (Goldberg and Novoplansky
1997), a mature sagebrush canopy can provide considerable
shade and possibly reduce germination or establishment by
species requiring high light. Many of the experimental plots
were considerably shaded (Fig. S2, available at http://dx.doi.
org/10.2111/REM-D-13-00140.s1).

More cheatgrass individuals in forb and shrub plots largely
drive the greater level of invasion in 2006 compared to 2005.
The difference between years is not likely due to differences in
LAI; establishment by cheatgrass was only weakly suppressed
by LAI, which was higher in 2006 than 2005 (Fig. S1, available
at http://dx.doi.org/10.2111/REM-D-13-00140.s1). The differ-
ence may be partly due to higher soil NO3

� in 2006 than 2005
in the F-Mono assemblage (Fig. S3, available at http://dx.doi.
org/10.2111/REM-D-13-00140.s1). Soil NO3

�, however, can-
not explain greater invasion in F-Mix and S-Mix, because
NO3

� was lower in these plots in 2006 compared to 2005.
These year-to-year differences illustrate that resistance to
invasion is dynamic and does not depend on species compo-
sition alone (Heger and Trepl 2003; Daleo et al. 2009). For
example, meteorological factors not examined here, such as
temperature and the timing of precipitation, may influence
germination by cheatgrass (Roundy et al. 2007). Furthermore,
there was the potential for soil–plant feedbacks to influence
invasion success (Kulmatiski et al. 2008) in the second year of
the experiment; these factors would not have played a role in
the first year.

Our study has several important aspects to consider when
drawing broader conclusions from these findings. First, the
study was conducted in a former agricultural field that was
previously tilled and fertilized, thus, altering soils from more
natural settings. However, soil NO3

� data collected in
unplanted plots randomly located within the study area
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(median, 2.39 and 1.21 lg � g�1 in 2004 and 2005, respectively)
were not different from other systems in the Intermountain
West (Booth et al. 2003; Hooker et al. 2008) and many sites
that appear natural were previously tilled (Morris et al. 2011).
Second, our assemblages were established from planted
individuals to ensure that mixtures were not dominated by a
single species and remained equally diverse. Consequently,
variation in diversity has been eliminated as an explanation for
differences in resistance among mixtures, with the tradeoff that
these plots are not representative of any particular natural
system. Third, we removed invasive individuals in early
summer rather than allowing them to establish further;
consequently our findings are limited to the establishment
phase of invasion (Theoharides and Dukes 2007), but we were
able to replicate the initial invasion process in 2 different years.
Finally, we did not examine monocultures of all the species
included in our mixtures; doing so would have necessitated
using fewer species or reducing replication considerably. There
is precedent for nonrandom selection of species and studies
suggest that random and nonrandom assemblages will yield
different resistance to invasion (Zavaleta and Hulvey 2004;
Selmants et al. 2012). Consequently, inference should be
limited to the monocultures and mixtures we report here,
rather than extended to assemblages in general. The general
conclusion, that selection of species matters for resistance to
invasion when few species are used, is robust.

MANAGEMENT IMPLICATIONS

The hypotheses posed here and our results have three
important implications. First, the choice of rehabilitation
species is important because not all assemblages confer the
same level of resistance to invasion (Bakker and Wilson 2004;
Zavaleta and Hulvey 2004; Selmants et al. 2012). Many
rehabilitation efforts simply seed a mix of local species without
considering ecosystem services of the potential assemblage
(e.g., Kaplan and Hoeffner 2010). In an ideal rehabilitation
effort with numerous species available seeding a diverse
mixture may allow the restored community to develop in a
manner akin to succession. Given practical limitations such as
seed availability (Burton and Burton 2002; Hufford and Mazer
2003), however, selection of appropriate species assemblages is
critical. Practitioners should consider growth form and life
history when selecting species to promote invasion resistance to
a known exotic plant (Heger and Trepl 2003; Cleland et al.
2013). Second, diverse assemblages derived from a limited
species pool are not necessarily more resistant to invasion than
the monocultures we examined because species such as crested
wheatgrass are highly resistant to the most widespread invaders
in the region (Rogler and Lorenz 1983; Whitson and Koch
1998; Davies et al. 2010). Encouragingly, a diverse mixture of
grasses (many native) was not less resistant to invasion than a
monoculture of crested wheatgrass. Diverse communities
benefit native ungulates or birds of conservation concern
(Pendery and Provenza 1987; Wilson et al. 2009) in the Great
Basin, USA. We also caution against the use of monocultures,
because restoring with a single species might provide resistance
to one invader, but result in vulnerability to others. Diversifi-
cation of crested wheatgrass monocultures should continue

(Gunnell et al. 2010). Thirdly, invasion did occur, albeit at low
levels, in the most resistant assemblage constructed here; hence,
resistance to exotic plant invasion is not complete (Levine et al.
2004). However, as minor components of communities, exotic
species will likely have minimal impact on ecosystem function-
ing (Corbin and D’Antonio 2011). A general strategy, based on
the tests of ecological theory presented here, should include
selection of plant materials that are functionally unique and
correspond to the growth form of various potential invasive
species (Funk et al. 2008).
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