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R E V I E W A R T I C L E

Looking to the future: key points for sustainable
management of northern Great Plains grasslands
Lora B. Perkins1,2 , Marissa Ahlering3, Diane L. Larson4

The grasslands of the northern Great Plains (NGP) region of North America are considered endangered ecosystems and
priority conservation areas yet have great ecological and economic importance. Grasslands in the NGP are no longer
self-regulating adaptive systems. The challenges to these grasslands are widespread and serious (e.g. climate change, invasive
species, fragmentation, altered disturbance regimes, and anthropogenic chemical loads). Because the challenges facing the
region are dynamic, complex, and persistent, a paradigm shift in how we approach restoration and management of the
grasslands in the NGP is imperative. The goal of this article is to highlight four key points for land managers and restoration
practitioners to consider when planning management or restoration actions. First, we discuss the appropriateness of using
historical fidelity as a restoration or management target because of changing climate, widespread pervasiveness of invasive
species, the high level of fragmentation, and altered disturbance regimes. Second, we highlight ecosystem resilience and
long-term population persistence as alternative targets. Third, because the NGP is so heavily impacted with anthropogenic
chemical loading, we discuss the risks of ecological traps and extinction debt. Finally, we highlight the importance of using
adaptive management and having patience during restoration and management. Consideration of these four points will help
management and restoration of grasslands move toward a more successful and sustainable future. Although we specifically
focus on the NGP of North America, these same issues and considerations apply to grasslands and many other ecosystems
globally.
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Implications for Practice

• Like grasslands and other ecosystems around the world,
the current and future conditions of the grasslands in the
northern Great Plains (NGP) are very different from past
conditions.

• Getting satisfactory results from the same old manage-
ment or restoration techniques is happening less often.

• Because of changing climate, invasive species, fragmen-
tation, altered disturbance regimes, and anthropogenic
chemical loading, management and restoration targets and
methods need to change.

• Land managers and restoration practitioners need to be
aware of the potential to created ecological traps and of
extinction debt.

• Adaptive management and patience are essential for sus-
tainable restoration and management in the NGP.

Introduction

Mention the northern Great Plains (NGP) and the mind’s eye
conjures a bucolic “sea of grass.” However, the reality of
this large, complex, and ecologically and economically impor-
tant region of North America is more complicated. The NGP
encompasses areas of Nebraska, South Dakota, North Dakota,
Wyoming, and Montana in the United States, and Saskatchewan
and Alberta in Canada. This approximately 13 million ha

(50,000 mile2) region contains over 1,600 species of native
plants, 220 butterfly species, and 95 mammal species including
some of the most iconic North American mammals, the Amer-
ican bison (Bison bison) and pronghorn (Antilocapra ameri-
cana). The NGP provides critical habitat for migrating birds
and breeding waterfowl (Zimpfer et al. 2013). The NGP com-
prises the majority of the Missouri River Basin and therefore is
important for the vitality of the Missouri River, the Mississippi
River, and ultimately the Gulf of Mexico. The region contains
22% of the U.S. beef cow and 19% of the sheep populations,
houses 37% of the honey bee colonies, and produces 46% of the
honey in the United States (USDA-NASS 2017). Unfortunately,
the NGP is also an endangered ecosystem (Samson et al. 2004)
because of the extent of conversion of grasslands to crop produc-
tion (e.g. Lark et al. 2015; Comer et al. 2018). This heightened
vulnerability makes it a priority conservation area for the World
Wildlife Fund (www.worldwildlife.org), the National Fish and
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Future Great Plains grasslands

Wildlife Foundation (www.nfwf.org), and The Nature Conser-
vancy (www.nature.org). Grasslands with similar precipitation
and temperature to the NGP occur in eastern Europe and Asia as
well as in the South American Pampas (Woodward et al. 2004).

This ecologically and economically important region is fac-
ing an uncertain future due to complex and widespread chal-
lenges such as climate change, invasive species, fragmentation,
altered disturbance regimes, and anthropogenic chemical load-
ing. To help move restoration and management into this uncer-
tain future, we discuss four key points for land managers and
restoration practitioners in the NGP to consider.

Use “Historical Fidelity” as a Target Sparingly, If at All

Historically, climate and disturbance regimes (fire and grazing)
created and were the dominant forces maintaining the grass-
lands; we acknowledge that it is instructive to examine how
these functioned in the past. However, the future of the NGP
grasslands will be fundamentally different from the past due to
changing climate, invasive species, fragmentation, and altered
disturbance regimes. Managing for historical fidelity, or as if
historical conditions and processes still are the dominant forces
on the landscape (or could be replicated), is ill-considered and
not likely to be successful. Yet, managing in ignorance of his-
torical conditions is also unwise. We propose that understand-
ing historical conditions alongside current and future conditions
will provide insight that will improve restoration and manage-
ment outcomes.

The NGP is historically and currently a climatically variable
system in regard to both temperature and precipitation; however,
models predict a departure from the historical range of vari-
ability by 2080 (Dobrowski et al. 2013; IPCC 2014). Models
for the NGP consistently predict an increase in average annual
temperature by 2–3∘C by 2050 and maximum temperatures
are expected to increase 4–6∘C by 2085 (Derner et al. 2018).
In general, warming is expected to be greater in winter and
spring than during summer and fall, and the frost-free period
is projected to increase by 30–40 days by 2100 (Wienhold et al.
2018). Predictions about precipitation are less consistent. Unlike
more southern grasslands, precipitation in the NGP is predicted
to increase slightly, but frequency and intensity of precipitation
events are expected to change more significantly (Derner et al.
2018). These changes have the potential to increase productiv-
ity but change the species composition and disturbance regimes
of grasslands (Jonas et al. 2015). Furthermore, changing cli-
mate has the potential to shift species phenologies so that key
interactions (e.g. plant–pollinator relationships or grazer-forage
availability) may be lost (Dunnell & Travers 2011).

Invasive species’ arrival in the NGP coincided with Euro-
pean settlement. NGP grasslands are among the most severely
invaded areas in the Great Plains. The first published report
of invasive species occurred in 1893 when 30,000 acres
(12,140 ha) in South Dakota were infested with Salsola kali
(Dewey 1893). Poa pratensis was reported in the vegetation
of the region in 1908 (Harvey) and in 1930 (Steiger). Invasive
plants in the region include trees (e.g. Elaeagnus angustifolia,

Espeland et al. 2017), forbs (e.g. Euphorbia esula, Cirsium
arvensis, and Melilotus spp., Larson et al. 2001), and grasses.
Cool-season grasses (e.g. P. pratensis and both perennial and
annual Bromus spp.) are among the most threatening invasive
plants in the region, accounting for more than 80% of the annual
production in some areas (DeKeyser et al. 2015; Ashton et al.
2016). The implications of these invasions vary from trivial to
severe in NGP grasslands. Invasive species have the potential
to decrease native species diversity (Bennett et al. 2014), alter
pollinator networks (Larson et al. 2016), and impact wildlife
habitat (reviewed in Ellis-Felege et al. 2013). Although inva-
sive species often increase with disturbance and fragmentation
(Perkins & Nowak 2013), they also are present in undisturbed
and relatively unfragmented areas in the NGP (reviewed in
DeKeyser et al. 2013).

Fragmentation, including grassland loss and loss of connec-
tivity between grassland patches, is severe in the NGP. By 2004,
the NGP had experienced at least a 40% loss of grassland (Sam-
son et al. 2004), and the losses have only continued as the U.S.
Corn Belt expands west into the NGP with annual rates ranging
from 1 to 5.4% (Wright & Wimberly 2013; Gage et al. 2016).
Recent estimates of loss suggest at least another 10% of the
grasslands in the NGP have been converted to crop produc-
tion (Comer et al. 2018). This expansion often occurs in rem-
nant (previously unplowed) grasslands and other areas previ-
ously thought to have marginal value for crop production (Lark
et al. 2015). Approximately 283,280 ha (700,000 acres) of NGP
grassland were converted to row-crop agriculture in 2016 alone
(Gage et al. 2016; World Wildlife Fund 2017). The extent and
rate of conversion of grassland to cropland is an ongoing and
longstanding issue (Weaver & Fitzpatrick 1934).

Dominant disturbance regimes (fire and grazing) across the
entire Great Plains and specifically in the NGP are funda-
mentally different now than at any time in the past. Histori-
cally, wildfire was widespread but did not have a predictable
return interval, instead being much more prevalent in wetter
periods that supported more plant biomass production (Brown
et al. 2005) and less prevalent during drier periods (Clark et al.
2002). Additionally, anthropogenic fire occurred on the land-
scape long before European settlement (Higgins 1986). Today,
wildfire has essentially been eliminated from the landscape and
anthropogenic fire occurs in the system mainly through pre-
scribed burning during the spring season. Historically, the key-
stone grazers impacting vegetation of the NGP were Ameri-
can bison and prairie dogs (Knapp et al. 1999; Antolin et al.
2002; Knowles et al. 2002; Augustine & Baker 2013). Graz-
ing by American bison created a detectable impact on vegeta-
tion in the NGP only within the last 1,000 years (Grimm et al.
2011). During European settlement, perceived competition with
domestic livestock resulted in widespread eradication of prairie
dog colonies and a shift in the grazing regime from free-ranging
bison to managed and fenced cattle (Bos taurus) herds. Bison,
at equal stocking rates, may be ecologically equivalent to cat-
tle (reviewed by Knapp et al. 1999 but see Allred et al. 2011).
Even if the change in the species of grazing animals did not
alter the effects of grazing on vegetation, the change in graz-
ing regimes (free-roaming to managed and fenced) would. Both
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fire and grazing have been removed from much of the landscape
entirely and where they still occur, the scale is much smaller.
Grazing cattle on an allotment or using prescribed burning on
a management unit is a much smaller-scale disturbance than
the free-ranging bison or uncontrolled wildfires that occurred
in the past.

Using prescribed fire and managed grazing to create a site
with historical fidelity have often been the default methods for
managing and restoring grasslands in the NGP. However, dra-
matic changes in the scale of how disturbances are able to be
used and potential interactions with invasive species and shift-
ing climate may make achieving historical targets challenging.
For example, conducting prescribed fire in the spring is already
getting more challenging due to changing climate (Yurkonis
et al. 2019), and although forage quantity may increase as cli-
mate changes, changing temporal availability and quality of for-
age along with increasing prevalence of invasive species may
change how grazing can occur across the landscape (Derner
et al. 2018). Therefore, instead of implementing traditional or
historic disturbance regimes, land managers and restoration
practitioners must decide if applying prescribed fire or man-
aged grazing as tools are going to achieve their desired goals.
For example, if prescribed fire or managed grazing creates con-
ditions favorable for invasive species, are we working at cross
purposes when we use these tools to manage or restore grass-
lands? If this is the case, and if lack of management will still lead
to woody dominance (Ratajczak et al. 2016), prescribed fire or
managed grazing applied as tools must be accompanied by addi-
tional actions to minimize their negative effects (i.e. to thwart
invasive species that benefit from these disturbances) or perhaps
the timing or intensity of these tools needs to be adjusted to
favor native diversity. Restoration practitioners and land man-
agers will need to use the knowledge of how historical distur-
bance processes worked on the landscape in the past coupled
with current conditions and processes to develop new strategies
that address contemporary realities in the NGP.

Embrace Resilience as a Target and Aim
for Long-Term Persistence of Populations

Because historical fidelity may be an unrealistic or unattain-
able target, land managers and restoration practitioners may
want to focus on ecosystem resilience and the long-term per-
sistence of populations as alternative targets. A resilient system
has the capacity to retain essentially the same function, struc-
ture, and feedbacks during and after perturbation (reviewed in
Bestelmeyer & Briske 2012). Resilience is an emergent prop-
erty of an ecosystem (Falk 2017) and arises from biodiversity
and heterogeneity. Restoration and management for resilience
should emphasize the creation or conservation of a range of site
characteristics (i.e. niches or heterogeneity) that support high
biodiversity at the landscape scale.

It is important to realize that biodiversity, not necessarily
species identity, plays a critical role in ecosystem resilience
(Folke et al. 2004). The identity and dominance of plant species
at any given site in the NGP shift over time. At times over the

last 1,000 years, and specifically in the last 100 years, forbs were
more prominent on the landscape (and in the pollen record)
than grasses (Weaver & Albertson 1936; Grimm et al. 2011).
Even when grasses were the most prominent vegetation on the
landscape, shifts between C3 and C4 grass dominance have
occurred (Clark et al. 2002). In this context, moving attention
from the presence or absence of specific species to nontarget
effects of management that might reduce overall native species
richness and diversity is especially important.

When we can model the potential range of variability in the
NGP, we can then identify refugia that provide heterogeneity
on the landscape and allow persistence of unique or specialized
populations and communities that can later expand during cli-
mate fluctuations. For example, wet areas formed by seeps or
springs that can persist during a prolonged drought would pro-
vide a reservoir of species that can expand and provide resilience
during wetter times. These refugia could be targets for pro-
tection (e.g. Anderson et al. 2014) as they preserve the raw
ingredients for adaptation in the larger ecosystem. An effort is
underway by The Nature Conservancy to map site resilience
across the continental United States using geophysical charac-
teristics and local connectivity (Anderson et al. 2014). The goal
of this work is to identify representative sites across the different
types of geophysical characteristics in each ecoregion that have
the potential to support biodiversity long-term because of high
niche diversity (e.g. high variability in topography or moisture
gradients) and local connectivity that will allow species to move
as climate and conditions change. This approach can inspire
land managers to identify and protect areas that still have high
biodiversity and resilience (Anderson et al. 2015).

Long-term persistence of populations requires genetic vari-
ability. Genetic variability can be promoted by maintaining or
reestablishing connectivity among grassland patches to allow
gene flow or if this is not possible, by augmenting gene flow.
Connectivity among patches is important for populations to
maintain the genetic variability that will allow them to adapt to
changing conditions, shift geographic distributions (Frankham
1996; Booy et al. 2000), and adapt in natural systems (Heller
& Zavaleta 2009). The extreme fragmentation of the NGP (dis-
cussed above) has decreased connectivity for numerous species
of mammals and birds (Beckmann et al. 2012; Thompson et al.
2015). For species with short dispersal distances, such as many
pollinators, even small decreases in connectivity may have dra-
matic impacts (e.g. Wimberly et al. 2018). We acknowledge that
improving connectivity, as with all management actions, can
have negative consequences (e.g. when corridors increase pre-
dation or invasion; Åström & Pärt 2013, Haddad et al. 2014), but
in the context of the level of fragmentation in the NGP, benefits
almost certainly outweigh risks.

In highly fragmented landscapes where creating connectivity
may no longer be possible, augmenting gene flow may be
necessary to maintain or recover genetic variability. Populations
in small, isolated grassland patches are likely to experience
drift and a decrease in genetic variability over time (Frankham
1995), and augmenting gene flow could help increase fitness
and evolutionary potential. Restoration and management efforts
augment gene flow by adding individuals to either extant, but
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depauperate, populations or to areas where a species has been
extirpated. In the case of vegetation, augmentation is most often
achieved by adding seed. Often land managers and restoration
practitioners try to use locally sourced seed assuming these will
be locally adapted (e.g. Wilkinson 2001), but this assumption
is not always valid (Galloway & Fenster 2000). Furthermore,
given the already changing climate (discussed above), local
adaptation to current conditions may not be optimal in the near
future (Dunnell & Travers 2011; Mckenna et al. 2017). Current
literature recommends the use of seed mixes from multiple
sources in restorations, and some suggest climate matching of
seed sources or increasing the size of seed zones as a strategy
for restoration (McKay et al. 2005; Galatowitsch et al. 2009).
Caution must be taken and managers or restorationists should
seek to understand the system before automatically adding seed
from diverse sources. However, increasing the pool of genetic
diversity for native species used in restorations by mixing source
populations provides a wider gene pool for natural selection
(e.g. Carter & Blair 2013) and enhances the potential for climate
adaptation (Etterson 2004).

Beware of Ecological Traps and Extinction Debt

Ecological traps, areas which are attractive to wildlife but can-
not sustain populations (Battin 2004), may inadvertently be
created during management or restoration of NGP grasslands.
Restoration and management actions often fail to produce satis-
factory results for wildlife, not only by failing to attract desired
animals but more seriously, by attracting wildlife they can-
not support (Hale & Swearer 2017). Ecological traps are espe-
cially problematic for wildlife with low population sizes and can
cause rapid local extirpation or even extinction (Schlaepfer et al.
2002). A restored or managed fragment of grassland in a land-
scape otherwise dominated by agriculture may be an ecological
trap due to anthropogenic chemicals, increased rates of preda-
tion (Phillips et al. 2003), and high levels of invasive species
(reviewed by Ellis-Felege et al. 2013, discussed above).

Anthropogenic chemicals (including herbicides, insecticides,
fungicides, and fertilizers) are abundant and diverse in the NGP.
Although these chemicals are applied to crop fields, their pres-
ence in streams and windblown particles suggest that they are
being transported outside crop fields and can move into grass-
lands, wetlands, aquifers, and, ultimately, the food chain (Mazak
et al. 1997; Clay et al. 2000; Hallmann et al. 2014; Mahler
et al. 2017). Sampling of streams in the Midwest United States
detected 94 different pesticides (Van Metre et al. 2016; Now-
ell et al. 2018). Between 2013 and 2015, grasslands in the NGP
received as much as 10–15 kg/ha annual total nitrogen deposi-
tion (wet and dry, National Atmospheric Deposition Program
2019). The western portions of the NGP generally receive less
nitrogen deposition than the eastern portions; however, areas
immediately adjacent to fertilized crops may receive substan-
tially more nitrogen through soil erosion and water run-off from
fields (DeSutter et al. 1998). Although these amounts of N are
less than the recommended application rate for growing corn
(Clark 2019), it is equivalent to an unwanted annual fertiliza-
tion regime that is sufficient to elicit a response from grasslands.

The effects of this nitrogen deposition include: changes in plant
community composition (Smart et al. 2013) favoring invasive
species (Mattingly & Reynolds 2014); alteration of the struc-
ture and function of the soil microbial community (Ramirez
et al. 2012) with a decrease in species that serve as mutualists
to native plants (Van Diepen et al. 2010); and decreased root
growth, which makes vegetation more vulnerable to drought
(Valliere et al. 2017). Further, these anthropogenic chemicals
are nearly always found in mixtures (e.g. 1,196 of 1,197 stream
samples contained more than one pesticide; Nowell et al. 2018).
Unfortunately, most ecotoxicity research is done with single
chemicals, even though combinations of chemicals can produce
synergistic effects on target organisms (Rizzati et al. 2016).
Therefore, it may be wise for land managers and restoration
practitioners in the NGP to monitor anthropogenic chemicals
to ensure that lands they manage are truly providing benefit and
not creating ecological traps.

Given the significant challenges in the NGP, grasslands are
almost certainly accruing extinction debts (Kuussaari et al.
2009; Jackson & Sax 2010). Extinction debt refers to the time
lag for a species to go locally extinct after conditions are no
longer suitable to sustain the population (Tilman et al. 1994).
Evidence for a large extinction debt in the NGP is mount-
ing. Grassland songbirds as a guild have been declining for
decades (Sauer & Link 2011), and the number of grassland
species listed under the Endangered Species Act is increasing
(e.g. Poweshiek skipperling [Oarisma poweshiek], Dakota skip-
per [Hesperia dacotae], and rusty patched bumble bee [Bombus
affinis]). The longer-lived a species is, the less likely managers
will be able to discern population shifts that signal extinction
debt because individuals are still observed. Even harder to detect
is the increased tendency for populations in grassland fragments
to have low genetic diversity which will contribute to eventual
extinction debt (Takkis et al. 2013). Therefore, managers and
restoration practitioners need to constantly be mindful of the
potential for extinction debt.

Employ Active Adaptive Management and Have
Patience

Active adaptive management is seen by many as the gold stan-
dard for learning from restoration and management actions
(Allison 2012). Adaptive management encourages land man-
agers and restoration practitioners to change their focus from
simply repeating the “tried-and-true” methods that are increas-
ingly producing unsatisfactory results to analyzing the root
cause of ecosystem changes and addressing them with carefully
considered actions. Active adaptive management (Williams
2011) in the NGP requires models that test hypothesized mecha-
nisms that create desired ecosystem changes. Ultimately, adap-
tive management sets up the potential for a thoughtful discus-
sion about the balance among social, economic, and environ-
mental values, the three pillars of sustainability. The vegetative
community, in this context, is no longer simply an environmen-
tal component of sustainability, but rather a desired social norm
that may be difficult to abandon, but that ultimately becomes
economically impractical to sustain.
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In the current dynamic system with no expectation of
equilibrium, a further challenge is to impose conditions, via
well-considered restoration and management actions, that allow
a well-adapted, resilient native plant community to thrive and
out-compete invasive species. Importantly, this community may
not necessarily mimic historical communities at the site. There-
fore, adaptive management is especially relevant and is, in fact,
beginning to yield promising results (Moore et al. 2019). When
many system parameters are changing simultaneously, begin-
ning decision analysis with equally weighted models allows
evidence to dictate model weights over time. This process,
although slow, will begin to illuminate patterns of success that
may be impossible to detect without a systematic monitoring
and modeling approach. The process can be accelerated by
simultaneously applying the models in many locations, as is
being done in the Native Prairie Adaptive Management pro-
gram in the Dakotas (Moore et al. 2013) and by the Grassland
Monitoring Team in Minnesota (Ahlering et al. unpublished
data).

Identifying the mechanistic models necessary for the practice
of active adaptive management will be difficult, especially when
mechanisms are in flux. A model that gains support initially
may lose out to an alternative model several years hence, only
to subsequently regain support, thus requiring a more dynamic
form of adaptive management than most resource managers
may be comfortable with (Williams & Brown 2016). Monitor-
ing, always important for adaptive management, is even more
crucial in this dynamic future. The goal is not only to learn
how the target resource responds to management, but how that
response changes with environmental variation which may be
largely unpredictable. Appropriate management actions need to
be taken at appropriate times: learning what not to do may be as
important as learning what to do (Middleton et al. 2017).

Restoration and management efforts take time to produce
results so patience is required. Recovery debt is the reduction of
biodiversity and biogeochemical functions during the course of
restoration (Moreno-Mateos et al. 2017). Grassland ecosystem
components recover at vastly different rates: after 15 years,
restored grasslands may only contain approximately 50% of
the plant species abundance of reference sites (Moreno-Mateos
et al. 2017) but carbon sequestration potentially requires more
than 200 years to approach values found in native grasslands
(Rosenzweig et al. 2016). Duck productivity may increase for
12 years after habitat restoration (Haffele et al. 2013) and native
wild bee abundance and richness can reach levels comparable
to remnant grasslands within 3 years after restoration (Griffin
et al. 2017). New definitions of what full “recovery” looks like
in the NGP will be important, both because the rate of recovery
is slow and because the impacts of challenges are ongoing. A
realistic assessment of the recovery of a grassland is needed
to avoid overestimating status: restoration does not imply an
immediate return to 100% function. Methods for assessing
recovery over relevant spatial and temporal scales are key to
informed management of the NGP.

Commitment to the long-term nature of the adaptive man-
agement process takes patience and persistence (Gannon et al.
2011). With long-lived perennial species and often 3–6-year

prescribed fire return intervals, there are no quick fixes. The
results of adaptive management may take many years to real-
ize their potential. This can be challenging in the world of
short-term budget cycles and frequent policy changes. With so
little grassland left, land managers and restoration practition-
ers need to stay focused on long-term success by protecting the
capacity for resilience where it still exists and using other strate-
gies to help the system adapt where necessary.

Conclusion

Globally and specifically in the NGP, anthropogenic influence
is ubiquitous and it is imperative that a paradigm shift in how
we approach restoration and management occurs. Current alter-
ations of ecosystems are immense and continuing at an unprece-
dented pace. The NGP, like many other ecosystems, is no
longer a self-regulating adaptive system; it has been replaced
by management units where we attempt to create the condi-
tions and functions originally inherent in the ecosystem (Defries
& Nagendra 2017). Alone any one of the challenges described
above could cause the NGP to diverge from past ecological con-
ditions, but we emphasize that the additive and likely synergistic
effects from the numerous challenges facing the NGP will cre-
ate a very different and dynamic future. To move confidently
into this new future, we suggest land managers and restoration
practitioners use historical conditions heuristically and embrace
the goals of resilience and long-term population persistence. By
adopting a broad perspective, managers and restoration prac-
titioners can better achieve resilience with less likelihood of
inadvertently constructing ecological traps or incurring extinc-
tion debts. Adaptive management that includes multiple stake-
holders from the outset increases the likelihood of long-term
sustainability. For the NGP to thrive into the future, all stake-
holders need to embrace a philosophy of resilience, variability,
and adaptive capacity. The focus needs to be on maintaining
native diversity and function and its adaptive capacity at all
scales. To maximize return on investment, the landscape must
be the unit of consideration even if the management unit is
much smaller and the goal must be to improve ecosystem func-
tion, native diversity, and connectivity. To achieve this result
will require unprecedented cooperation among all stakeholders
(e.g. Cong et al. 2014) and commitment to long-term vision and
investments. Despite the numerous challenges facing the NGP,
the naturally dynamic nature of this system will work in its
favor as stakeholders strive to maintain the system’s diversity
and resilience.
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