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ABSTRACT

One of the most pressing environmental problems that waterbodies currently 
face is eutrophication. When eutrophication occurs in lakes, phytoplankton 
dominance increases and macrophyte (aquatic plant) populations decrease. Mac-
rophyte population fluctuation can be used to detect eutrophication and indicate 
lake health. Despite this novel use of macrophytes, the state of South Dakota has 
few, if any, baseline public records of its macrophyte species. In an effort to estab-
lish a record and work towards the use of macrophytes as potential eutrophication 
indicators in South Dakota, this study seeks to provide a better understanding 
of the macrophytes that occur in the southeastern portion of the state and their 
relationships with lake habitats. The objectives of this study were to 1) survey the 
macrophytes of a small sample of lakes in southeastern South Dakota, 2) evaluate 
the relationships between existing macrophytes and the physical characteristics 
of their lakes, and 3) determine if there are any predictable habitat preferences. 
The survey was conducted at a total of 78 sample sites among two lakes during 
mid-summer 2020. Macrophyte samples were taken using a weighted sampling 
rake and substrates were visually estimated. Overall, ten different macrophytes 
types, including emergent, submerged, and free-floating species and genera, were 
recorded among sample sites. West 81 Lake had the highest species richness, with 
nine species present and a significantly higher (P < 0.05) average species richness 
than Island Lake. Additionally, West 81 Lake showed a significantly higher (P 
< 0.05) presence frequency of silt/muck substrates than Island Lake and a sig-
nificant positive (P < 0.05) relationship between percent silt/muck and species 
richness. Both lakes demonstrated a significant negative (P < 0.05) relationship 
between percent clay and species richness. As the results suggest, both percent 
silt/muck and percent clay play important roles in determining the types of mac-
rophytes in southeastern South Dakota lakes, and silt/muck dominated habitat 
systems appear to be preferred by a diverse array of macrophytes. 
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INTRODUCTION

Since the Industrial Revolution, increases in human populations and activity 
have dramatically altered the structure and function of environments across the 
globe (Smith et al. 1999; Gilbert et al. 2005). Humans are changing the compo-
sition of many naturally occurring biological communities by way of common 
practices such as urbanization, deforestation, agriculture, and hydrological cycle 
alterations (Smith et al. 1999). Specifically in lakes, anthropogenic activities can 
lead to unnaturally accelerated eutrophication rates (Bhagowati and Ahamad 
2019), and in today’s world, eutrophication is one of the most pressing envi-
ronmental problems that waterbodies face (Gilbert et al. 2005; Bhagowati and 
Ahamad 2019). 

In simple terms, eutrophication is a process by which bodies of water become 
increasingly enriched with nutrients like nitrogen (N) and phosphorus (P) 
(Bhagowati and Ahamad 2019). Through increased land use and fertilizer ap-
plication, humans catalyze eutrophication and raise aquatic primary production 
rates (Bhagowati and Ahamad 2019). Once eutrophication begins, algal blooms, 
health risks, pH levels, and probabilities of fish kills increase; while water clarity, 
dissolved oxygen (DO), and aquatic plant population levels decrease (Smith et 
al. 1999; Gilbert et al. 2005; Phillips et al. 2016). Observing noticeable degra-
dations in these characteristics, however, can serve as indicators of eutrophica-
tion events, especially in regard to changes in macrophyte species composition. 
Currently, there is a lack of information about South Dakota macrophytes, but 
developing knowledge and records of these species could provide lake managers 
with a useful tool for monitoring and detecting eutrophication in local lakes. 

Macrophytes, also known as submersed aquatic vegetation or simply aquatic 
plants, are organisms that specialize their growth in and around bodies of water 
or wet habitats (Freedman and Lacoul 2006; Wersal et al. 2006; O’Hare et al. 
2018b; Li et al. 2020). However, the exact definition of these terms can be vague, 
as some authors refer only to hydrophytes in descriptions, and others include am-
phibious, marshland, or even wet meadow species in definitions (Francová et al. 
2019). For simplification in this paper, the term macrophyte was used to describe 
species of filamentous algae and other species that fit the description provided 
by Freedman and Lacoul (2006) that places aquatic plants into four functional 
groups: emergent species, floating-leaved hydrophytes, submerged hydrophytes, 
and free-floating hydrophytes.

In shallow, freshwater ecosystems, macrophytes are important because they 
have a large influence on the abiotic and biotic characteristics that surround 
them (Zimmer et al. 2003), playing key roles in the structure and function of 
their environments (Larson 1993; Bakker et al. 2013). A standing crop of any 
macrophyte species can impact nutrient cycling, habitat creation, predator-prey 
relationships, species assemblages, and the chemical and physical characteristics 
of a waterbody (Zimmer et al. 2003; Madsen et al. 2006). Macrophytes are pri-
mary producers and create complex aquatic food webs by providing food to many 
other organisms, including migratory waterfowl, aquatic invertebrates, and even 
large mammals like moose (Zimmer et al. 2003; Madsen et al. 2006; Bakker et al. 
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2013; Tischler et al. 2019; Li et al. 2020). The strength of these relationships be-
tween macrophytes and their environments, however, can fluctuate with changes 
in species abundance and community composition (Zimmer et al. 2003).

Despite the significance of aquatic macrophytes to the structures, functions, 
and services of freshwater ecosystems, researchers have only recently recognized 
their benefits (O’Hare et al. 2018b). A century ago, limnologists and other re-
searchers largely regarded aquatic plants as unimportant to the ecosystems they 
resided in, some even arguing that the removal of larger aquatic plants and the 
subsequent substitution of similarly shaped glass structures would not affect food 
relations (O’Hare et al. 2018b). However, over the past one hundred years and 
especially into the beginnings of the 21st century, the study of macrophytes has 
expanded immensely, as nowadays there is an increased recognition of the impor-
tance in fully comprehending and supporting basic aquatic ecosystem functions 
(O’Hare et al. 2018b).

Regarding the effects of eutrophication on lake macrophytes, researchers have 
clearly linked nutrient enrichment with aquatic plant loss (Phillips et al. 2016), 
noting that nutrient oversaturation can cause increased phytoplankton domi-
nance and algal blooms (Smith et al. 1999). With increased levels of N and P, all 
aquatic plants increase their growth (Smith et al. 1999), prompting intraspecific 
competition between macrophytes and interspecific competition between differ-
ent categories of aquatic vegetation for light (O’Hare et al. 2018a). Eventually, 
algae will outcompete larger macrophytes for light and dominate ecosystems 
(O’Hare et al. 2018a). This eutrophication fueled competition causes only tem-
porary plant species loss; however, continued eutrophication events can lower the 
overall global macrophyte population (Phillips et al. 2016). 

Despite the negative consequences of eutrophication, biologists have learned 
that long-term differences in macrophyte abundance and composition can act 
as observable signals of water quality and nutrient alterations, therefore making 
macrophytes potentially useful in future detection of eutrophication, organic 
pollution, and hydrological changes in waterbodies (Phillips et al. 2016; O’Hare 
et al. 2018b). As Melzer (1999) explains, macrophytes react slowly and steadily 
to nutrient fluctuations in a waterbody. With slow changes, macrophytes are 
then able to display the health status of lakes over time, which is an indicator 
that can be of great significance when working to maintain clear waters (Li et al. 
2020). Before macrophytes can be used to detect eutrophication events, however, 
researchers need to establish records of the abundance and distribution of the 
different plants of their regions and understand the factors that naturally drive 
those metrics.

Historically, research into macrophyte habitat requirements focused on light, as 
the growth and survival of macrophytes often depends on underwater light avail-
ability (Shields and Moore 2016; Gillard et al. 2020). However, as past research 
has collectively proven, there is no single environmental factor that influences 
the abundance of underwater plants (Madsen and Adams 1989). Rather, patterns 
of aquatic plant accumulation and distribution in certain areas are complex and 
regulated by multiple abiotic factors, including light penetration, water chemis-
try, water depth, water flow velocity, salinity, turbidity, disturbance by wave ac-
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tion, sediment abrasion, substrate type, substrate redox potentials, and nutrient 
availability (Madsen and Adams 1989; Madsen et al. 2006; Wersal et al. 2006; 
Engloner et al. 2013; Shields and Moore 2016; Gillard et al. 2020).

Looking into the preferences of various forms of macrophytes, researchers have 
discovered differences in habitat between free-floating and rooted macrophytes, 
noting that rooted vegetation is often influenced by characteristics of the substrate 
that surrounds it (Madsen and Adams 1989). Free-floating macrophytes depend 
on nutrient availability only in the water column, but rooted macrophytes may 
be limited by nutrients available in the surrounding sediment (Madsen and Ad-
ams 1989). Overall, substrate type can influence rooted species through organic 
content, redox potentials, and water flow velocity (Engloner et al. 2013), as well 
as through impacts on their rates of nutrient uptake (Shields and Moore 2016). 

When it comes to substrate preferences, researchers often hypothesize that sand 
is least preferred by macrophytes. In a 1989 study, Madsen and Adams explored 
the importance of substrate characteristics in riverine systems, theorizing that 
sand sediments in eutrophic streams are too unstable for proper rooting and 
claiming that areas without sand provide macrophytes with a better grip. At the 
study’s conclusion, Madsen and Adams (1989) found that lotic macrophytes can 
become depressed in areas that contain purely sand sediments. In lakes, wave 
action works to wash away fine substrates, leaving behind rough and less fertile 
substrates like sand and gravel (Madsen et al. 2006). Once the fine substrates are 
gone, continued wave action threatens sand-growing macrophytes with abrasion 
or uprooting (Madsen and Adams 1989).

Although sediment preference research exists for many different locations, the 
relationships between environmental variables and macrophyte abundance is 
poorly understood in the prairie pothole region (Zimmer et al. 2003). Occupying 
the center of the North American continent and parts of both Canada and the 
United States, the prairie pothole region includes the wetlands of southeastern 
South Dakota and is one of the most productive freshwater regions in the world 
(Madsen et al. 2006; Millett et al. 2009). Here, common native vascular mac-
rophytes were recorded in 1993 to include submergent types (Potamogeton spp. 
, Elodea spp., Myriophyllum spp., and Ruppia maritima), emergent types (Typha 
spp., Scirpus spp., Sagittaria spp., and Phragmites australis), free-floating types 
(Lemna spp., Utricularia vulgaris, and Ceratophyllum demersum), and amphibious 
species (Ranunculus flabellaris, R. gmelinii, Polygonum amphibium, and Marsilea 
vestita) (Larson 1993). However, there seems to be few, if any, current public re-
cords that document the exact macrophyte species of southeastern South Dakota 
or any population changes that have occurred over the past two decades. 

To provide a better understanding of macrophytes and their potential use as 
indicator species in southeastern South Dakota, we sought to 1) survey the lake 
macrophytes of a small sample of lakes in this region, 2) evaluate the relationships 
between existing macrophytes and the physical characteristics of their lakes, and 
3) determine if existing macrophytes have any predictable habitat preferences. 
Based on existing literature and field observations, we hypothesized that the lakes 
in southeastern South Dakota contain some of the common macrophyte species 



Proceedings of the South Dakota Academy of Science, Vol. 100 (2021) 41

and genera listed above and that sand has the highest negative correlation with 
macrophyte species richness.

METHODS

Study Area—This study focused on two lakes in the southeastern portion of 
the state, West 81 and Island. These lakes, east of the Missouri River, exist in an 
area of high corn, soybean, wheat, and livestock production (Paul et al. 2017). 
Annual mean precipitation is around 550 mm, 76% of which falls from April to 
September, and mean daily temperature fluctuates from a minimum of -13°C in 
January to a maximum of 29°C in July (Paul et al. 2017). The two lakes are about 
56.5 kilometers apart (Figure 1).  
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Figure 1. Geographic location of the two sampled lakes in southeastern South Dakota. 
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prairie pothole, and during floods, it can overflow into and mix with Lake Sinai (Squillace et al. 
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Site Descriptions—Island Lake (43.79416°N, -97.1292°W) has an area of 
roughly 151 ha, a maximum depth of 5.2 meters, and is located in northern Min-
nehaha county (Squillace et al. 2019). Only the northern portion of the lake was 
used for this study, bordered on the south side by 248th street and surrounded by 
a mosaic of agricultural land that includes pasturelands, croplands, game produc-
tion area grasslands, and federal waterfowl production areas (South Dakota Game 
Fish and Parks Department 2021). Categorized as a true prairie pothole and a 
lake that is capable of changing size over time, Island Lake has complex surface 
and groundwater interactions and can often overflow into and mix with nearby 
Buffalo Lake and Creek when flooded (Squillace et al. 2019).

West 81 Lake (44.30216°N, -97.14536°W) has an area of about 500 ha, a 
maximum depth of 5.5 meters, and is located in Kingsbury County (Squillace et 
al. 2019). Belonging to an area that is comprised of flooded farmlands (Squillace 
et al. 2019), this lake is surrounded by farmsteads, croplands, and pasturelands; 
however, two waterfowl production areas border its east side (South Dakota 
Game Fish and Parks Department 2021). Like Island Lake, West 81 is a true 
prairie pothole, and during floods, it can overflow into and mix with Lake Sinai 
(Squillace et al. 2019). In 2015, West 81 had at least three different macrophyte 
species: Coontail (Ceratophyllum demersum), Sago Pondweed (Stuckenia pecti-
nata), and Clasping Leaf Pondweed (Potamogeton perfoliatus) (Blackwell et al. 
2015).

Data Collection—In accordance with differences in area, Island Lake had 30 
random sample points and West 81 Lake had 48 random sample points (Figure 
2). All random sample points were located on main shores or the shores of each 
lake’s islands. Island Lake was surveyed on August 10th, 2020, and West 81 Lake 
was surveyed on August 11th and August 12th. At each site, information was 
gathered on macrophyte types, substrate types, and the physical characteristics 
of the water. 

Macrophyte Survey—The presence and identity of macrophyte species or 
genera was determined by conducting point intercept surveys at each sampling 
site (Madsen et al. 2006). At each point, three samples were taken by throwing 
a weighted garden rake attached to a long rope. The rake was thrown at three 
different angles off the back of a boat and dragged in along the lake bottom, spe-
cies were identified and recorded with each throw. Macrophytes that were overly 
time consuming or difficult to identify to a species level (i.e., filamentous algae, 
bulrushes, and cattails) were classified by genus and placed into one category.  

Macrophyte Habitat Survey—Macrophyte habitat preferences were deter-
mined through ocular estimates of substrate percentages at each sample point on 
both lakes. Substrate types were classified using a simpler version of the Went-
worth (1922) scale, and categories included boulders, cobble, gravel, sand, silt/
muck, and clay. 

Data Analysis—The diversity and commonness of macrophytes was described 
by species richness and species frequency for each lake. Species richness was 
determined by counting the different species and genera that occurred at each 
sample site. Species frequency was calculated using the number of sample points 
with the target species category present divided by the total number of points 
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surveyed. Substrate frequency was calculated with the same formula to quantify 
variation in substrate type. A simple linear regression was used to identify po-
tential habitat preferences and provide Pearson correlation coefficients between 
species richness and six other variables: percent boulder, percent cobble, percent 
gravel, percent sand, percent silk/muck, and percent clay. Simple linear regres-
sions were conducted using RStudio (version 1.3.1093) and Microsoft Excel. The 
differences of species richness and substrate frequency between the two lakes were 
tested through a Chi-square analysis, and species richness between the two lakes 
was analyzed using ANOVA. All significant difference levels were set at α = 0.05.

RESULTS

Macrophytes of Island and West 81 Lakes—Combining the two lakes yielded 
a total of 10 macrophyte categories. West 81 had the highest species richness 
with nine different categories of macrophytes present, including clasping leaf 
pondweed (Potamogeton perfoliatus), sago pondweed (Stuckenia pectinata), coon-
tail (Ceratophyllum demersum), northern (shortspike) watermilfoil (Myriophyllum 
sibiricum), filamentous algae (Cladophora spp., Spirogyra spp., Anabaena spp., 
Oscillatoria spp., Lyngbya spp., and Pithophora spp.), duckweed (Lemna spp.), 
flatstem pondweed (Potamogeton zosteriformis), horned pondweed (Zannichellia 
palustris), and cattails (Typha spp.). 

By contrast, Island Lake had a species richness of three macrophyte catego-
ries, with two of the three macrophytes also occurring in West 81 Lake. The 
shared genera between the lakes were cattails (Typha spp.) and filamentous algae 
(Cladophora spp., Spirogyra spp., Anabaena spp., Oscillatoria spp., Lyngbya spp., 
and Pithophora spp.), while bulrushes (Bolboschoenus spp., Schoenoplectus spp., 
and Scirpus spp.) were only present in Island Lake. 

 As shown in Figure 3, the presence frequency of clasping leaf pondweed 
(Poamogeton perfoliatus), sago pondweed (Stuckenia pectinata), coontail (Cera-
tophyllum demersum), filamentous algae (Filamentous algae), duckweed (Lemna 
spp.), and flatstem pondweed (Potamogeton zosteriformis), was significantly higher 
(P < 0.05) in West 81 Lake than in Island Lake. The presence frequency of bul-
rush species was significantly higher (P < 0.05) in Island Lake than in West 81 
lake; however, there were no bulrush species found in West 81 Lake. The average 
species richness for each sample point in West 81 Lake was 3.2 ± 0.18 macro-
phyte categories, which was significantly higher (P < 0.05) than the 0.87 ± 0.23 
(se) average species richness for each sample point in Island Lake (Figure 4).

Patterns in Habitat Preferences of Southeastern South Dakota Macro-
phytes—As shown in Figure 5, there were no significant differences (P > 0.05) 
in the frequencies of the boulder, cobble, sand, and clay categories between the 
lakes. However, the frequency of silt/muck was significantly higher (P < 0.05) in 
West 81 Lake than in Island Lake, and the frequency of gravel was significantly 
higher (P < 0.05) in Island Lake than in West 81 Lake.

In opposition to the literature reviewed above, there was a significant (P < 0.05) 
negative relationship between species richness and percent clay for Island (r = 
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Figure 3. Presence frequencies of ten different types of macrophytes found between 
West 81 Lake and Island Lake. A different letter within the same macrophyte species 
or category indicates a significant difference (P < 0.05) between the two lakes based 
on Chi-sq analysis. Potper = Potamogeton perfoliatus, Stupec = Stuckenia pectinata, 
Cerdem = Ceratophyllum demersum, Myrsib = Myriophyllum sibiricum, FA = Filamentous 
algae (genera were grouped together), Lemna spp., Potzos = Potamogeton zosterifor-
mis, Zanpal = Zannichellia palustris, Typha spp., BR = Bulrush (genera were grouped 
together).

Figure 4. Average species richness for sample sites at West 81 and Island lakes. A dif-
ferent letter indicates a significant difference (P < 0.05) in average species richness 
between the two lakes. Error bars are standard error of the mean.

 
 
 

8 
 
 

categories, which was significantly higher (P < 0.05) than the 0.87 ± 0.23 (se) average species 
richness for each sample point in Island Lake (Figure 4). 
 

 
 
Figure 3. Presence frequencies of ten different types of macrophytes found between West 81 Lake 
and Island Lake. A different letter within the same macrophyte species or category indicates a 
significant difference (P < 0.05) between the two lakes based on Chi-sq analysis. Potper = 
Potamogeton perfoliatus, Stupec = Stuckenia pectinata, Cerdem = Ceratophyllum demersum, 
Myrsib = Myriophyllum sibiricum, FA = Filamentous algae (genera were grouped together), Lemna 
spp., Potzos = Potamogeton zosteriformis, Zanpal = Zannichellia palustris, Typha spp., BR = 
Bulrush (genera were grouped together). 
 

 
Figure 4. Average species richness for sample sites at West 81 and Island lakes. A different letter 
indicates a significant difference (P < 0.05) in average species richness between the two lakes. 
Error bars are standard error of the mean. 

a

a

a
a

a

a
a

a
a

ab b b a

b

b b a

b b

0

20

40

60

80

100

Potper

Stu
pec

Cerdem
Myrs

ib FA

Le
mna s

pp.
Potzo

s

Za
npal

Ty
pha s

pp. BR

Fr
eq

ue
nc

y 
(%

)

Species

West 81 Island

Commented [RT1]: If you indicate the measure of 
dispersion (St. Dev. or Std. Error Mean) in the text portion of 
your Results, you can eliminate Figure 5. 

Commented [LX2R1]: We agreed. We thought that 
visualization would be helpful some audience.   

 
 
 

8 
 
 

categories, which was significantly higher (P < 0.05) than the 0.87 ± 0.23 (se) average species 
richness for each sample point in Island Lake (Figure 4). 
 

 
 
Figure 3. Presence frequencies of ten different types of macrophytes found between West 81 Lake 
and Island Lake. A different letter within the same macrophyte species or category indicates a 
significant difference (P < 0.05) between the two lakes based on Chi-sq analysis. Potper = 
Potamogeton perfoliatus, Stupec = Stuckenia pectinata, Cerdem = Ceratophyllum demersum, 
Myrsib = Myriophyllum sibiricum, FA = Filamentous algae (genera were grouped together), Lemna 
spp., Potzos = Potamogeton zosteriformis, Zanpal = Zannichellia palustris, Typha spp., BR = 
Bulrush (genera were grouped together). 
 

 
Figure 4. Average species richness for sample sites at West 81 and Island lakes. A different letter 
indicates a significant difference (P < 0.05) in average species richness between the two lakes. 
Error bars are standard error of the mean. 

a

a

a
a

a

a
a

a
a

ab b b a

b

b b a

b b

0

20

40

60

80

100

Potper

Stu
pec

Cerdem
Myrs

ib FA

Le
mna s

pp.
Potzo

s

Za
npal

Ty
pha s

pp. BR

Fr
eq

ue
nc

y 
(%

)
Species

West 81 Island

Commented [RT1]: If you indicate the measure of 
dispersion (St. Dev. or Std. Error Mean) in the text portion of 
your Results, you can eliminate Figure 5. 

Commented [LX2R1]: We agreed. We thought that 
visualization would be helpful some audience.   



46 Proceedings of the South Dakota Academy of Science, Vol. 100 (2021)

-0.37, P = 0.0424) and West 81 lakes (r = -0.5, P = 0.0002) (Figure 6A). Surpris-
ingly, species richness and percent silt/muck had a positive relationship in Island 
and West 81 lakes, with correlation coefficients of 0.21 and 0.46, respectively. 
However, only the correlation at West 81 Lake was found to be significant (P < 
0.05) (Figure 6B). All other variables had no significant relationships with species 
richness (P > 0.05). 

DISCUSSION

Macrophytes of Southeastern of South Dakota—Overall, a total of 78 points 
were sampled in two different southeastern South Dakota waterbodies to deter-
mine the types of macrophytes that grow within the lakes of this pothole region. 
Out of these points, 10 types of macrophytes were found, including some from 
Larson’s (1993) expected submergent genera: clasping leaf pondweed (Pota-
mogeton perfoliatus), sago pondweed (Stuckenia pectinata), flatstem pondweed 
(Potamogeton zosteriformis) and northern (shortspike) watermilfoil (Myriophyllum 
sibiricum), some from his expected free-floating genera: coontail (Ceratophyllum 
demersum) and duckweed (Lemna spp.), and some from his expected emergent 
genera: cattails (Typha spp.) and bulrushes (Bolboschoenus, Schoenoplectus, and 
Scirpus spp.). All three species from Blackwell et al. (2015) were re-confirmed in 
West 81 Lake, and other species or genera found during sampling were horned 
pondweed (Zannichellia palustris) and filamentous algae (Cladophora spp., Spiro-
gyra spp., Anabaena spp., Oscillatoria spp., Lyngbya spp., and Pithophora spp.). 

According to the results, West 81 Lake had significantly more macrophyte 
types at any given shore location than Island Lake, and the macrophyte composi-

Figure 5. Frequencies of six different substrate types occurring in West 81 Lake and Is-
land Lake. A different letter within the same substrate category indicates a significant 
difference in frequency (P < 0.05) between the two lakes.
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In opposition to the literature reviewed above, there was a significant (P < 0.05) negative 
relationship between species richness and percent clay for Island (r = -0.37, P = 0.0424) and 
West 81 lakes (r = -0.5, P = 0.0002) (Figure 6A). Surprisingly, species richness and percent 
silt/muck had a positive relationship in Island and West 81 lakes, with correlation coefficients of  
0.21 and 0.46, respectively. However, only the correlation at West 81 Lake was found to be 
significant (P < 0.05) (Figure 6B). All other variables had no significant relationships with 
species richness (P > 0.05).   
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tion of West 81 Lake comprised mostly submerged species types, as defined by 
Freedman and Lacoul (2006). On the other hand, the macrophyte composition 
of Island Lake comprised mostly emergent species types. At Island Lake, there 
was a significantly higher frequency presence of cattails (Typha spp.) and bul-
rushes (Bolboschoenus spp., Schoenoplectus spp., and Scirpus spp.) than at West 81 
Lake (Figure 3). 

As past research suggests, fish grazing, phytoplankton shading, highly organic 
sediments, and increased growth of epiphytes and filamentous algae are all pos-
sible contributors to the absence of submerged macrophyte growth forms (Weis-
ner et al. 1997; Short et al. 2016). However, it is unlikely that filamentous algae 
are the major cause of difference in lake growth form in this study, as West 81 
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richness for West 81 Lake and a non-significant relationship (P > 0.05) between percent 
silt/muck and species richness for Island Lake.  
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Figure 6. Correlations between percent substrate and species richness for West 81 and 
Island lakes. A = significant relationships (P < 0.05) between percent clay and species 
richness for both lakes. B = a significant relationship (P < 0.05) between percent silt/
muck and species richness for West 81 Lake and a non-significant relationship (P > 0.05) 
between percent silt/muck and species richness for Island Lake. 
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Lake had a higher species richness and a significantly higher presence frequency 
of filamentous algae than Island Lake. It is possible, though, that the higher 
presence of filamentous algae at West 81 Lake is due to the leaves of some fine-
branched macrophytes acting as habitats and biotic surfaces for algae attachment 
and growth (Zhang et al. 2020). 

Potential Habitat Preferences of Southeastern South Dakota Macrophyte—
Sample sites at both lakes displayed very similar substrate conditions with respect 
to the frequencies of the boulder, cobble, sand, and clay categories. What stood 
out, however, was the significant differences between the silt/muck and gravel 
categories of each lake (Figure 6). The percentage of the silt/muck substrate was 
significantly and positively correlated with the species richness in West 81 Lake, 
meaning that as silt/muck substrates increased, so did the amount of macrophyte 
categories for that area. As Figure 5 shows, West 81 lake had a significantly higher 
frequency of the silt/muck category than Island Lake, and likewise, it also had 
the highest species richness. It is reasonable to conclude that silt/muck substrates 
might be a preferred habitat for southeastern South Dakota macrophytes.

As some research suggests, fertile or organic sediments (in this case, the silt/
muck category) should have little to no effect on the presence or growth of 
macrophytes, as macrophytes can utilize both their roots and shoots for nutrient 
uptake (Madsen and Cedergreen 2002). Conversely, researchers have also found 
that high availability of nutrients in substrates can increase macrophyte presence 
or growth (Jiang et al. 2008). In the Lauridsen et al. (1993) study, both nutrients 
and macrophytes were greater in organic “mud” substrates than in non-organic 
sand substrates. Likely, the relative importance of macrophyte nutrient absorp-
tion from substrates is determined by the ratio of nutrients between substrates 
and water (Jiang et al. 2008). 

In addition to promoting growth directly through nutrient content, organic 
matter in the substrate changes sediment density, indirectly altering plant growth 
(Lauridsen et al. 1993). In their study, Lauridsen et al. (1993) found that low 
density sediments with organic matter, categorized as “mud,” promoted more 
growth than high density sediments without organic matter, like sand. The au-
thors concluded that multiple sediment parameters likely contribute to increased 
plant growth, including an example of how their “mud,” with high silt content 
and low density, binds phosphate and grows biomass better than sand does. For 
this study, it is possible that the nutrient content and density of the silt/muck 
substrates in both lakes support more macrophytes than other substrate types 
or the water column, but further, more in-depth investigations need to be con-
ducted to support this assumption.

Substrate cohesive strength can also influence macrophyte recruitment and 
growth (Bornette et al. 2011). If the cohesive strength of a substrate is low, mac-
rophyte seeds can sink down too far into the soft sediment and never germinate 
due to a lack of light (Bornette et al. 2011). However, if the cohesive strength 
of a substrate is high, like in the strong clay and peat sediments of healthy lakes 
(Schutten et al. 2005), it can be hard for some plants to grow roots (Bornette 
et al. 2011). In the lakes of this study, percent clay had a significant negative 
relationship with species richness, which does not agree with many studies that 
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found increasing percent sand to be associated with decreases in macrophyte 
abundance and also studies that claim clay to be rich in nutrients (Madsen and 
Adams 1989; Madsen et al. 2006; Silveira et al. 2009). Knowing that clay sub-
strates can cause high turbidity (Silveira et al. 2009) and that clay can also have a 
high cohesive strength, it is likely that the macrophytes of South Dakota do not 
prefer to grow in substrates with high clay content.

 

CONCLUSIONS

In an effort to establish a record and work towards the use of macrophytes as 
potential eutrophication indicators in South Dakota, this study has 1) surveyed 
the lake macrophytes of a small sample of lakes in this region , 2) evaluated the 
relationships between existing macrophytes and the physical characteristics of 
their lakes, and 3) determined if existing macrophytes had any predictable habitat 
preferences. Overall, this study has demonstrated some of the macrophyte spe-
cies or genera that are likely to be found in southeastern South Dakota while 
also depicting the variation that can occur between the region’s lakes. Ten species 
of macrophytes were found during sampling, and although some species were 
shared between lakes, a majority of the species compositions of each lake occurred 
in different growth forms. As the results of this study also suggest, both percent 
silt/muck and percent clay may play important roles in determining the types of 
macrophytes that occur in this region. Additionally, silt/muck dominated habitat 
systems appear to be the preference for a diverse array of macrophytes. However, 
the factors driving macrophyte variation and the differences in substrate prefer-
ences are unknown, despite speculation. It is likely that substrate texture, nutrient 
content, density, cohesive strength, and vulnerability to dislodgement all play a 
role in the distribution and abundance of macrophyte species, but more research 
needs to be conducted to document changes in macrophyte populations and 
pinpoint exact habitat preference mechanisms before these unique plants can be 
used as indicators for eutrophication in southeastern South Dakota.
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