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ABSTRACT 

A COMPARISON OF CORN YIELD FORECASTING MODELS 

NICHOLAS JORGENSEN 

2014 

 The purpose of this research is to compare and analyze several different yield 

forecasting methods. The study analyzes corn yields in Ohio and South Dakota for the 

years 1986 through 2012. A base model, with a trend and state dummy variable is 

developed. Two competing models, one with objective variables and one with subjective 

variables, are then developed as additions to the base model. The competing objective 

model is developed by adding accumulated growing degree days (GDD) and accumulated 

rainfall variables. The competing subjective model is developed by adding a USDA crop 

conditions index (CCI) variable. The models are estimated weekly between weeks 24 and 

36 of the calendar year. 

 The three models are compared using several different criteria. Examinations of 

adjusted R2 values, F-test values, and root Mean Squared Error (MSE) values are 

conducted, as well as statistical tests of the competing model forecast errors. 

 The results show that the competing subjective (CCI) model performs the best at 

forecasting corn yield during the growing season. It outperforms the base and objective 

models for the entire study period. With a minimum MSE of 8 bushels per acre, it is over 

7 bushels per acre more accurate at forecasting yield than its competitors.
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Chapter 1: INTRODUCTION 

1.1 Introduction 

Crop yield forecasts are an important piece of information to many members of 

the agricultural industry. These forecasts help industry members make decisions about 

production, influence futures market prices, and can even affect international trade. Given 

the importance of information like this, many researchers have set out to determine 

effective processes to model yield. Members of the fields of economics and agronomy 

have developed effective models for aggregate crop yields. The models produced by 

these fields are typically built differently and also used for different purposes.   

The economic side of the literature tends to focus on developing models to study 

yield forecasts as a tool to estimate price changes. For example, Bain and Fortenbery 

(2013) develop a yield model to estimate how crop conditions reports affect the futures 

prices of wheat.  Another example of economic corn yield forecasting is developing a 

model that forecasts yield with a time trend variable. Isengildina, Irwin, and Good (2013) 

use this type of trend model to compare corn yields over several years. Fackler and 

Norwood (1999) also use this process as part of their larger yield model.  This type of 

model is used to quickly, and fairly accurately, obtain a yield forecast over time. 

The agronomic body of literature that focuses on forecasting crop yields is much 

larger and broader in its purposes. For the most part, though, crop yield models are 

formulated to test the effectiveness of a new way to model yield, or to test a new variable 

that may have a significant effect on yield. Thompson (1963) studied how weather and 

technology affect corn and soybean yields. Tannura, Irwin, and Good (2008) set out to 

test and improve Thompson’s model by simplifying it and adding technology variables. 
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 Economic and agronomic models typically differ not only in the purposes for 

which they are used, but also in the factors that make up the yield estimation and 

forecasting models. Agronomic models often contain many weather, production, and 

geographic variables.  A common theme with most variables in agronomic models is that 

they are objective. They use measureable facts and data with little to no subjective 

adjustments. Economic models, on the other hand, are often parsimonious and are 

comprised of variables that are either dependent on subjective decision making or are 

subjectively adjusted.  

For example, Kruse and Smith (1994) show that state level yield can be 

effectively forecasted using indices of crop conditions. Crop conditions reports are issued 

by the USDA and are based on subjective assessments made by evaluators in the field. 

Despite using less concrete data, these economic models still work well at explaining 

yield.  Fackler and Norwood (1999) conduct a similar study, using crop conditions 

indices to forecast corn yield throughout the growing season. Models that use crop 

conditions data as an explanatory variable for corn yield have not been studied heavily in 

prior research because of difficulties with the amount of data available. Crop conditions 

data has only been available since 1986, meaning that when Kruse and Smith conducted 

their 1994 study, they only had 7 years of state level crop conditions data (1986 through 

1993). This limited amount of data forced them to focus on all states that have available 

crop conditions data to get the necessary degrees of freedom for a valid statistical study. 

Fackler and Norwood (1999) faced a similar problem with their 1999 study, studying 

only 13 years of crop conditions data. 
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Conducting a study of forecasting corn yield with crop conditions indices with the 

amount of data available today is more feasible. Over 25 years of crop conditions data 

exists as of 2012, and while this amount of data may limit the ability to study just one 

state, pooling only two states worth of crop conditions data will provide substantial 

degrees of freedom. 

1.2 Crop Conditions and Crop Progress Report 

 During the growing season the USDA releases weekly reports outlining crop 

progress and crop conditions on a statewide level across the nation. Released each week 

from late April through November, the report is compiled from a sample of more than 

5000 surveys that outlines the crop conditions in 18 major crop producing states for corn 

(USDA-NASS, 2010). There are also crop conditions reports produced for other crops 

such as soybeans and cotton. The surveys used in the report are based on the subjective 

analysis of county level surveyors that make visual observations and discuss the 

conditions of the crop as well as stages of planting and growth with local farmers. As 

stated above, this data is subjective and the USDA provides no exact formula to the 

public explaining how surveyors determine their estimates. This eliminates the ability to 

test for consistency in their estimates. The USDA does review the consistency of the 

reports with reports from prior weeks and from the surrounding areas. This review helps 

ensure a more confidents in their reports (USDA-NASS, 2010). 

 When surveyors rate the crop conditions, they use a 5 level scale. Below is the 

description of each of the 5 levels, sourced from the USDA (USDA-NASS, 2009). 
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 Very Poor - Extreme degree of loss to yield potential, complete or near crop 

failure. 

 Poor - Heavy degree of loss to yield potential which can be caused by excess soil 

moisture, drought, disease, etc.  

 Fair - Less than normal crop condition. Yield loss is a possibility but the extent is 

unknown. 

 Good - Yield prospects are normal. Moisture levels are adequate and disease, 

insect damage, and weed pressures are minor.  

 Excellent - Yield prospects are above normal. Crops are experiencing little or no 

stress. Disease, insect damage, and weed pressures are insignificant.  

 

Several factors go into deciding what condition a crop in a certain area is in. 

Weather factors, agronomic conditions, pest and disease factors, and local farmers’ 

opinions are all considered before the surveyor makes the final crop conditions 

assessment. The fact that this array of factors is considered makes it plausible to assume 

that crop conditions data would be a good candidate for a variable in a model that 

forecasts statewide yield during the growing season. This is because crop conditions data 

implicitly contain much of the information that has been subjectively combined together 

into one value. Assuming the surveyors and processes used to generate this data are valid, 

crop conditions data contain the effects of many variables that make up agronomic yield 

forecasting models. Therefore, using the crop conditions data in a yield forecasting model 

may possibly allow for a model much less complex than most yield forecasting models.  

One common approach to using crop conditions data in a yield forecasting model 

is to build a crop conditions index (CCI). CCI’s, as they have been used in prior research, 

are a summation of the individual percentages in each of the five conditions classes. Each 

of these five percentages is weighted by a certain factor and summed together to form an 

index. This version of this approach has been used by Kruse and Smith (1994), Fackler 

and Norwood (1999), and Bain and Fortenbery (2013). Lehecka (2013) studied both crop 
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progress and crop conditions reports, in an attempt to see if the release of these reports 

had any major effect on futures prices around the time of the report release. 

 

Crop progress data outlines the progress of planting or the physiological stage the 

corn plant is in during the growing season. This information is released in tandem with 

crop conditions data, once available, during the growing season.  The reports published 

up until planting is completed contain planting progress information. Planting progress is 

expressed as the percent of the anticipated crop that is planted at the end of the week. 

After planting is completed, the percent of the corn crop in each of five physiological 

subsequent stages of growth (emergence, silking, dough, dent, and mature) is contained 

in the crop progress report (USDA-NASS, 2009).  

1.3 Problem Statement and Objectives 

While both economic (mostly subjective) and agronomic (mostly objective) 

models have been shown to be effective, no formal comparison of these methods has 

been done. Formally comparing these models would help determine strengths and 

weaknesses of both types of models, and could also help determine the proper situations 

to use either type of model. This research intends to use subjective and objective 

modeling processes to answer several questions. 

The first hypothesis this research will examine is how effective both objective and 

subjective models are at forecasting yield throughout the growing season. Because the 

models used in this research do not have much prior research to provide expected results, 

it is difficult to estimate how they will perform. While most models that use objective 

data are complex and contain many variables, an objective model that uses only 
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accumulated growing degree days and accumulated rainfall is tested.  This type of model 

will be similar to that of the one used by Schlenker and Roberts (2006). The goal is to test 

if a simplified objective model or a crop conditions based model is useful at forecasting 

yield and for determining if one type of model is superior to the other. Previous research 

has shown that models based on crop conditions indices can effectively explain corn 

yield (Fackler and Norwood, 1999). A comparison between these two types of models is 

helpful in guiding researchers on what type of model would fit their objectives best. It 

also helps determine if one type of model is statistically superior to the other, or if there 

exists no major difference between the two types. Developing more intuitive models that 

are effective at forecasting yield gives the opportunity to forecast yield using relatively 

simple calculations.  

The second hypothesis to examine is comparing how well these models perform 

against a basic trend-line yield model. Trend yield models are often used for yearly yield 

comparison and analysis, and pitting models against this benchmark type of model will 

indicate their overall usefulness. Once again, the small amount of prior research on 

concise yield models like the ones used in this research limits the ability to anticipate 

results. If a yield model using objective or subjective variables cannot explain yield as 

well as a trend model, it may not be very useful. This comparison will be made to show 

the effectiveness of objective or subjective variables compared to a baseline trend model. 

Many objective and subjective variables can take substantial time and effort to introduce 

properly into a model, while trend models are generally easy to formulate. If adding 

subjective or objective variables makes the baseline trend model only slightly better, the 
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model builder may not be entirely better off, having spent an inordinate amount of time 

and effort in adding variables with little value as a result. 

The third, and possibly most important, hypothesis is to test how well these 

models forecast yield within the growing season. Most other models that have been 

formally tested are not useful for forecasting yield during the growing season, and are 

only useful towards the end of or after the growing season. The models tested in this 

research are expected to be effective at forecasting yield from near the very beginning of 

the growing season, and continue to work even better as the growing season progresses. 

A formal affirmation of this hypothesis will provide yield forecasters justification to use 

models that are useful during a major part of the growing season instead of only the end 

of the growing season. 

1.4 Qualifications 

There are several benefits and drawbacks to conducting a study like this. There 

are gaps in this subject left by prior research, and while all of them cannot be filled by 

one study, several can be investigated. The usefulness of crop conditions data, the 

effectiveness of less complex models, and the possible ability to forecast yield during the 

growing season are all questions investigated in this research. 

The first benefit of this research is that the models used are quite straightforward, 

and contain noticeably fewer variables than other yield models. For example, Thompson 

(1963) develops a yield model with over 20 variables. Other researchers have done work 

to show that using fewer variables is still effective, but their processes of variable 

elimination can still be complex. For example, Martinez, Baigorria, and Jones (2009) 

developed climate indices using principal component analysis (PCA) to model corn yield 
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in the southeast United States. These indices are made up of only relevant variables, but 

the PCA process is statistically complex. The models proposed in this research contain a 

maximum of five variables, developed by accumulating temperature and rainfall data and 

indexing crop conditions data. Because many people in industry use some sort of yield 

model, justifying the effectiveness of less complex yield models will open up the 

opportunity for others to forecast yield on their own. For those that use complex models 

on a regular basis, this research may save them time and effort by justifying the use of 

simpler models. 

A further analysis of the usefulness of crop conditions data would be beneficial to 

those interested in yield forecasting. Many market analysts utilize crop conditions data, 

yet few formal studies have been conducted on the topic (Lehecka, 2013). The studies 

that have been done have had to deal with several issues because of few degrees of 

freedom. Conducting a crop conditions study today will be much simpler because enough 

data has been generated to study fewer states at a time. Using crop conditions data from 

two corn producing states, like South Dakota and Ohio, will be sufficient. Studying two 

states that are in different parts of the cornbelt in the United States, like South Dakota and 

Ohio, will allow for large weather events and regional bias to be eliminated. The benefits 

of testing the usefulness of crop conditions data to forecast yield will be to affirm that 

market analysts are in fact conducting reliable analysis. 

 Finally, the models used in this research are available for forecasting use 

throughout nearly all of the growing season. Rainfall and temperature data can be 

gathered from the day of planting until harvest, and crop conditions data can be analyzed 

weekly from around the time of general emergence in a given state. Trend models, which 
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are also examined in this research, can be used to forecast yield before the crop has been 

planted. Typical yield forecasting models use variables that are not available until near 

the end of the growing season, rendering the models useless until that point. For example, 

Tannura, Irwin, and Good (2008) build a model that contains variables like the average 

temperature in August and total rainfall in August. Including this type of variable makes 

that model difficult to use until August has passed. Average or expected values can be 

entered into models like this, but doing this undoubtedly harms the accuracy of the 

model. Bypassing this problem, like this research does, allows the yield forecaster to 

generate reliable estimates during the growing season. 

Despite potential benefits of this research, several drawbacks exist as well. The 

models studied are less complex and contain fewer variables than many other yield 

forecasting models. While this makes them easier to use, it may harm the overall 

effectiveness at explaining yield. That is not to say the models will not explain yield well, 

but explanatory power may be lost when a less complex model is developed. Also, while 

this research is plagued with fewer data availability issues than prior research on crop 

conditions data as a corn yield forecasting tool, a few problems still exist. There still is 

not yet enough crop conditions data available to study an individual state without concern 

over using too few degrees of freedom. This is the reason that South Dakota and Ohio are 

pooled together in this research. While this is a minor issue to overcome, studying an 

individual state is preferable if possible. Crop conditions data are also limited by not 

being reported any finer than at the state level. While it is collected at the county level, it 

is pooled together and issued at the state level. County level studies simply cannot be 

conducted with this type of data. The accumulated rainfall and growing degree data could 



10 
 

  

be collected and studied at farm or county levels, but to allow comparison between the 

different models in this research, it is not. 

1.5 Justification 

 Yield models play an important role in the agricultural industry. They are used to 

help estimate supply and demand for agricultural commodities, estimate prices, and 

determine agricultural productivity. Many different types of models are used to explain 

and forecast yield. Some models are only useable close to harvest, which limits their 

overall contribution to agricultural markets. Some models, though, are useable 

throughout the entire growing season. These models can be updated weekly or even 

daily, which can create major advantages for those who use them. Early season forecasts 

can help agribusinesses estimate crop volumes they may deal with during the coming 

growing season. Estimating crop volume can help these businesses make pricing 

decisions, guide decisions on when and where to build new storage locations, and help 

them determine input demands. Farmers and agricultural marketers can use the forecasts 

to make pricing decisions as well.  

This research intends to test several yield forecasting models that can be used 

during the growing season. These models will be evaluated for accuracy and overall 

forecasting ability. By comparing these forecasting models directly against one another, 

the relative accuracy of these models can be determined. This information would be 

helpful for determining which type of model provides the best yield forecasts, helping 

avoid several potential problems. Take corn production in South Dakota for example. If 

this research finds that one type of in-season forecasting model is consistently 5 bushels 

per acre more accurate than another model currently used, major efficiencies can be 
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gained from using the more accurate model.  With nearly 6 million acres of corn in the 

state, a 5 bushels per acre accuracy improvement is equivalent to 30 million bushels of 

corn. This improvement in total estimated production can lead to better flow estimates, 

better pricing decisions, and better storage decisions that would have previously been 

guided by incorrect estimates. Ultimately, more efficient and beneficial decisions can be 

made by all members of the agricultural industry with more accurate yield forecasts. 
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Chapter 2: LITERATURE REVIEW 

 This section evaluates yield forecasting approaches used in prior research to 

determine possible shortfalls or issues that new research can investigate. An overview of 

both objective and subjective modeling approaches provides examples of each type of 

model, which helps identify possible improvements this research can investigate. 

2.1 Objective Models 

 

Agronomic models can contain a vast array of variables, such as many types of 

weather variables, crop production variables (amount of fertilizer applied, planting date, 

etc.) and geographic variables. Nearly all variables included in these models are 

objective, built out of gathered facts about weather, production practices, and location. 

Occasionally variables are added that are derived from a subjective process, such as the 

Normalized Difference Vegetation Index (Teal, et al., 2006). Nonetheless, most variables 

in these models are objective. Boyer et al. (2013) model corn yield in several different 

cropping situations. They utilize a quadratic response plateau as their model for yield, 

where the crops response to nitrogen application is the variable used to explain yield in 

different rotations. 

Most objective models are based mostly on weather related variables (Cai et al., 

2013; Schlenker and Roberts, 2006; Tannura, Irwin, and Good, 2008). Some objective 

models can become very complex and can easily contain over 20 variables (e.g., 

Thompson, 1963). Often these terms are temperature and rainfall variables, plus squared 

values and interaction terms. Many of these models explain yield very well, depending on 

how they are specified. This is most likely because the model specifications are tested 

heavily to determine the best model formulation. 
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Thompson’s model was based solely on weather related variables. The model 

included accumulated pre-season rainfall and monthly rainfall and temperature data from 

June to August. The monthly temperature and rainfall data are also squared, and several 

interaction variables between temperature and rainfall are included. 

Previous research notes that models that contain quadratic specifications of 

temperature and rainfall often exhibit collinearity issues (Kaufmann and Snell, 1997). In 

2008 several researchers set out to re-specify Thompson’s model to eliminate any 

possible collinearity issues. The model was effective at explaining yield, most likely 

because so many variables are used in the equation. Tannura, Irwin, and Good (2008) 

reexamine and reformulate Thompson’s model in their study and eliminate six of the 

variables. They ultimately develop a model similar to Thompson’s model, eliminating the 

squared temperature and rainfall data, and the interaction terms. 

Tannura, Irwin, and Good (2008) simplify an originally complex objective model 

by reducing the number of variables. This approach is similar to goals of other recent 

research. Cai et al. (2013) set out to model corn yield using climate indices. Using an 

index as a variable for explaining yield helps eliminate problems with degrees of freedom 

and over-specification. The approach they use is to take many commonly used weather 

variables and use Principal Component Analysis (PCA) to construct climate indices. 

Using PCA allows many weather variables to be used, while eliminating issues with 

multicollinearity, a problem that typically plagues weather models (Cai et al., 2013). 

While this approach is justified from the model building standpoint, eliminating 

multicollinearity and over-specification problems benefits the models from an economic 

standpoint as well. Eliminating these issues ultimately makes the models more intuitive, 
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powerful and accurate. More accurate models lead to better yield estimates, which means 

better price and market condition estimates from an economic perspective. 

The models discussed above are complex, either in the amount of variables 

included or the statistical processes used, but they explain corn yield well. However, 

these models only explain yield and do not forecast it. Given the nature of their 

specifications, they are used to explain the factors that affect yield, and are not always 

useful for forecasting yield. Nevertheless these models are useful for determining the 

time periods that rainfall and temperature have the greatest effect on corn yield, which 

can help guide the specification of other models. Therefore the objective models used in 

this research may lack similarity to these models, because they will be intended to be 

forecasting models. 

Despite the amount of variables used in these models, factors like production 

practices are not included. This assumption implies that production practices do not have 

a major effect on yield. Several studies exist, though, that show production factors have a 

significant effect on yield. 

For example, Westcott and Jewison (2013) develop a model for corn yield based 

on weather factors, as well as a planting date variable and a trend variable. This model is 

similar to Thompson (1963) and Tannura, Irwin, and Good (2008), but it includes a 

production practice variable. This model explained the variation in corn yield in the 

United States from 1988-2012 very well, with an 𝑅2 of 0.964 (Westcott and Jewison, 

2013). The performance of these models shows that very accurate yield estimates can be 

made by simply using the correct weather related variables and a few production practice 

variables.  
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 Another example of a corn yield modeling process that is slightly less common 

than the processes above is a model using weather data and objective economic factors. 

Kaufmann and Snell (1997) develop a corn yield model based on several weather 

variables and economic and technological factors such as a measure of the CCC loan rate 

and the value of farm machinery. They argue, much like Tannura, Irwin, and Good 

(2008), that weather measured in calendar time periods is often ineffective. Alternatively, 

they measure rainfall amounts and temperatures during each of the physiological growth 

stages of the corn plant (Kaufmann and Snell, 1997). They add economic variables to 

account for the rationale that, depending on the economic climate, farmers may apply 

more or less inputs to their crop. They also proxy for the level of technology by including 

the value of farm machinery per acre to test the common assumption that technology has 

a major effect on corn yield (Kaufmann and Snell, 1997). 

The models above use objective data to estimate yields. These models are 

generally very effective at explaining the variation in yield. Even though they are 

effective, these models are typically complex and can end up being rather un-intuitive. 

Often so many variables are added that the model becomes abstract and difficult to 

understand.  

Another drawback of models that use objective data is that many of the variables 

used cannot be obtained until late in the growing season. For example, Westcott and 

Jewison (2012) use variables such as July temperature. By including this variable, the 

model itself simply is not useful until August, which is late into the growing season. The 

Tannura, Irwin, and Good (2008) model is not fully useable until even later in the season, 

because variables for August temperature and precipitation are included, rendering the 
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model less effective until September. Climate averages could be used to get results from 

these models earlier in the growing season. However, using averages eliminates the 

unique variation in rainfall or temperatures that occur in a given month or year. These 

variations from average are most often the factors that drive major deviations from 

average yield, and eliminating them will reduce the effectiveness of the model. For 

example, using average rainfall during the summer months for a model to estimate corn 

yield in the drought year of 2012 would have greatly overestimated the amount of rainfall 

received in many states, and yield would have been overestimated. This type of possible 

error makes using these models for forecasting difficult. 

Tannura, Irwin, and Good (2008) also note another shortfall of their model. When 

modeling weather on a monthly basis, events can be missed or the true effect of weather 

can be mis-represented (Tannura, Irwin, and Good, 2008). For example, the amount of 

rainfall in July can appear to be a sufficient amount that would be beneficial to corn 

yields. What can be missed by specifying it this way is that it is very possible that all of 

the rain fell in one event, and the rest of the month was dry. In this case, the amount of 

rainfall in July was not as beneficial to the crop as if it would have fallen in several 

events, and the true effect has been masked. This situation can also occur with 

temperatures. 

2.2 Using Accumulated Growing Degree Days and Rainfall 

 

One way to avoid the issues of not being able to use the models until late in the 

season and the misrepresentation of weather effects is to use accumulated growing degree 

days and accumulated rainfall as variables. Accumulated growing degree days and 

rainfall can be calculated on a daily basis, so a model can be estimated at any time during 
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the growing season. This daily availability also eliminates the change of ignoring harmful 

or beneficial weather situations that do not occur on a monthly basis. 

Teal et al. (2006) design a yield model that is related to mostly crop production or 

objective factors. Complex agronomic calculations such as Normalized Difference 

Vegetation Index (NDVI) were used to estimate yield potential. Their model initially 

contained no weather variables, but the researchers chose to normalize NDVI with 

growing degree days (GDD). GDD are calculated following Barger (1969): 

𝐺𝐷𝐷 =
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
− 10℃ , 

where 𝑇𝑚𝑎𝑥 denotes the maximum temperature during the day and 𝑇𝑚𝑖𝑛 denotes the 

minimum temperature during the day. Accumulated GDD can be calculated by adding 

together every GDD from every day during the period being tested. Adding this variable 

essentially added the effects of weather into the model they used. 

 GDD is a variable that could be effectively used to proxy for weather in a yield 

model. GDD has not been utilized often in yield models. This is probably because other 

models developed by researchers use variables that show the same data as growing 

degree days. Temperature variables are similar to a GDD variable, and including both 

could result in collinearity problems. An exception is Schlenker and Roberts (2006), who 

develop a yield model based on a modified version of GDD, as well as a fixed location 

effect variable. They showed that corn yields show a strong, non-linear relationship to 

GDD.  
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2.3 Subjective Models 

Subjective models for estimating yield are less common. Most subjective yield 

studies that have been done model yield to answer some economic question such as how 

yield changes may result in price changes, or how changes in prices or programs 

eventually affect yield. For example, Lehecka (2013) studies how the releases of crop 

progress and crop conditions reports affect the futures prices of corn and soybeans.  

Lehecka uses the work of Kruse and Smith (1994) and Fackler and Norwood (1999) as 

justification for assuming that changes in reported crop conditions change expected crop 

yields, and will therefore cause changes in crop prices. Kaufmann and Snell (1997) use a 

yield model that does contain economic variables, and some that are arguably developed 

by subjective processes. For example, they include a variable that measures the change in 

purchased inputs in their regression model. This variable is derived from marginal 

product theory, and is not directly measured. Unlike the Kaufman and Snell model, most 

economic models that have been developed typically use different variables than 

objective models.  

Some economic models, though, estimate yield with objective variables to model 

price changes. Kantanantha et al. (2010) develop a model with a climate index formed 

using PCA, and use this index to model corn yield. They also include a GDP variable, 

and use this model to see how yield forecast changes affect futures prices. 

One common trait among yield models is the use of de-trended yield data or the 

inclusion of a trend variable (Schlenker and Roberts, 2006). Despite this common theme, 

the approach of choosing when and how to de-trend the yield data or even whether or not 

to include a trend variable is an empirical and subjective decision. Some yield models 
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used for analysis for historical yield are simply in-sample trend models. Isengildina, 

Irwin, and Good (2013) analyze corn yields by comparing actual corn yields to an in-

sample trend model.  This type of model is used very commonly by market analysts, as 

this type of model is easy to formulate and is useful for comparison.  

Another example of an economic, subjective, yield model is a model that uses 

crop conditions data. Several studies have used the USDA’s crop conditions reports to 

forecast corn yield such as Kruse and Smith (1994), Fackler and Norwood (1999), and 

Bain and Fortenbery (2013). While none of these studies have been published in 

academic journals, researchers such as Lehecka (2013) use their findings that crop 

conditions data can forecast yield to justify studying futures price changes after USDA 

report releases. 

Economic models that utilize only a CCI and maybe a few more variables have 

obvious drawbacks as well. A model with only one variable or few variables can seem 

overly simplistic, especially when some models that exist for similar purposes can 

contain up to 20 variables. Also, crop conditions data are subjective, and therefore cannot 

be verified or tested for accuracy. Positively, though, using a CCI model is intuitive. It is 

easy to access the necessary data, and the model can be built in less time than may be 

necessary to build a more complex model.  Kruse and Smith (1994) and Fackler and 

Norwood (1999) found that this method of estimation can produce statistically valid and 

effective forecasts of corn yield. 

2.4 Controlling for Trend Yield 

 As mentioned in the introduction, a way to forecast corn yield is to estimate a 

trend yield over time (Isengildina, Irwin, and Good, 2013). This process is used in almost 
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all research that models yield, although trend yield is not estimated specifically. Nearly 

all corn yield forecasting models, either subjective or objective, contain a control variable 

for time. This is because corn yields typically face a very strong upward trend over time 

(Zhu, Goodwin, and Ghosh, 2011). For example, the objective models above contain 

yearly control variables. Similarly, the CCI models also control for yearly changes in 

corn yield by estimating “deviations from trend yield” instead of simply estimating yield 

(Fackler and Norwood, 1999; Kruse and Smith, 1994). Deviations from trend yield are 

calculated by first estimating a trend yield model, and then using the difference from 

trend yield and actual yield as the dependent variable in their final model.  

 Controlling for time trends in corn yield models is necessary because over time 

general changes in the practices and technology used in corn production have caused a 

strong annual increasing trend in yield (Tannura, Irwin, and Good, 2008). The failure to 

control for this trend will render the results of most models incorrect.  

2.5 Accelerated Technological Change 

 A consideration that has appeared in recent research is that since the mid-1990’s 

the trend of corn yield growth has accelerated. Previous research seems to provide 

evidence of this phenomenon (Troyer, 2006). This is commonly attributed to 

technological improvements and vastly improved practices over the last several decades 

that have been adopted and driven faster growth in yield. For example, new corn varieties 

introduced since this time period, such as “Triple-Stack” hybrids, have shown increased 

yields (Below et al., 2007). This increase in the trend yield of corn over time has led 

researchers to accept that changes since the mid-1990’s may need to be accounted for. 
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 Tannura, Irwin, and Good (2008) test this common assumption in their research. 

They test for structural changes in the corn yield trend in the mid-1990’s in Illinois, 

Indiana, and Iowa. They find no significant evidence that a clear change occurs during 

this time period. While this change may well have occurred over the course of several 

years, they find that no need exists to control for a specific technological change during 

this time (Tannura, Irwin, & Good, 2008). 

2.6 CCI Formulation and Use 

 The studies that use crop conditions information to forecast crop yields convert 

the crop conditions numbers into a CCI. Crop conditions reports contain five levels of 

data, percentages of the crop that is in each of the five categories, and can easily be 

converted into an index that consists of just one number. Kruse and Smith (1994) sought 

to determine an average yield value associated with each of the five categories of crop 

conditions. They associate yield values with the conditions, and weight each state with a 

different time trend constant to account for spatial differences in yield. Because the study 

was done in 1994 and only 8 years of crop conditions reports existed, there were not 

enough observations to study only one or two states. Because such a limited sample 

existed then, they had to analyze crop conditions in every state. This added a degree of 

complexity that studies using crop conditions data today can avoid, because only one or 

two states need to be analyzed to get a significant amount of observations. Their results 

showed that a CCI can be used to accurately forecast yield during the corn growing 

season, and that the explanatory power of the model increases as the CCI used gets closer 

to harvest. 
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 Fackler and Norwood (1999) utilize a similar process in their study of corn yield 

forecasting, with slight additions to the Kruse and Smith model. Notably, in addition to 

the variables Kruse and Smith use, they adjust for abandoned acres. Their rationale is that 

a larger fraction of corn in “very poor” condition leads to more acres that are likely to be 

abandoned. If this abandonment is not accounted for, the final yield can possibly be 

understated (Fackler & Norwood, 1999).  

 Bain and Fortenbery (2012) develop a CCI to model yield that is similar to the 

work done in prior research on the subject of CCI models. In prior research, average 

yields for each conditions category are determined and used as weights in the CCI model. 

Instead of determining average yields in each condition category, they simply weight 

each condition category by a scalar. This forms a CCI from which the final value is not 

equivalent to a yield, but rather the overall condition percentage of the crop. 

The weights on each category decrease by increments of 0.25 as the quality 

decreases, from the weight on excellent at 1. Setting the weight on corn in very poor 

condition to zero eliminates any bias that could come from abandoned acres, assuming 

only corn in very poor condition is abandoned (Fackler and Norwood, 1999). This type of 

index is easier to formulate than that of the other CCI’s noted in the literature. The 

models of Kruse and Smith (1994) and Fackler and Norwood (1999) are quite different 

from the model of Bain and Fortenbery (2012). The earlier models generate CCI’s that 

are essentially overall condition of the corn crop in the states studied. The CCI used by 

Bain and Fortenbery is essentially the overall condition of the corn crop.  
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Chapter 3: RESEARCH DESIGN 

A research problem with respect to yield forecasting models has been identified 

and prior research on the subject has been evaluated. In this chapter, sources of the 

appropriate data to continue research on yield forecasting models are discussed, and data 

sources utilized in the research are outlined. Model specifications are developed. Possible 

specification issues are investigated. Finally, a framework for analyzing the results of the 

models is discussed. 

3.1 Crop Conditions Data 

 The USDA has released crop conditions data for 18 states since 1986 for several 

crops, including corn. Therefore, 27 years (1986 through 2012) of useable data exist. 

Since there are slightly too few years to use crop conditions from one state, two states or 

several states can be combined to produce statistically robust analysis. The two states 

used in this research are South Dakota and Ohio. The reason for choosing states that are 

not in the same region is to eliminate any regional overlap and to show the effect of crop 

conditions reports on yield. For example, if two states such as South Dakota and North 

Dakota were used, it is highly possible that the same weather event could affect both 

states, and since weather variables are not specifically included in the analysis, their 

effect could bias the true effect of corn conditions reports on yield. Choosing two states 

that are far apart decreases the likelihood that the same weather events affect yields, 

therefore eliminating any bias that common events could cause. 

 Crop conditions reports are generally released between week 19 of the calendar 

year, which typically ends on May 16th, and week 46, which typically ends on November 

15th. The earliest week that both South Dakota and Ohio have reports for every year is 



24 
 

  

week 24, which typically ends around June 15th. The latest week that both South Dakota 

and Ohio have reports for every year is week 36, which typically ends around September 

10th. Therefore, only the weeks 24 through 36 are analyzed in this research. Crop 

conditions data are available for every week for weeks 24 through 36 and every year 

from 1986 to 2012 for both South Dakota and Ohio. 

3.2 Weather Data 

 Weather data for South Dakota and Ohio is available from the National Climatic 

Data Center (NCDC) website on a daily basis for the entire time period from 1986 to 

2012 (NOAA, 2013). Maximum and minimum temperatures are available, which are the 

only two pieces of information needed to formulate growing degree days. Daily rainfall is 

also available.  

 To get a measure of state-level growing degree days and rainfall for South Dakota 

and Ohio, weather data from 3 locations in each state are used. The locations were chosen 

based on their location within the major corn producing regions of each state, which 

gives a representative sample of the weather that affects the corn crop in each state. In 

South Dakota, these three locations are Aberdeen, Brookings, and Yankton. Aberdeen is 

located on the northern end of the major corn producing region of South Dakota. 

Brookings is located on the east central end and Yankton is located at the southern end of 

the corn producing region of South Dakota. In Ohio, the three locations used are 

Columbus, Sidney, and Bowling Green. Columbus is located on the south-eastern edge of 

the major corn producing region in Ohio. Sidney is located on the west central edge of 

the major corn producing region and Bowling Green is located on the northern edge of 

the major corn producing region in Ohio. 
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 From 1986 to 2012, all three locations in South Dakota have complete weather 

data for each year. However, several years in Ohio are missing data from the weather 

stations in Sidney and Bowling Green. In 1992, the weather data from Bowling Green is 

missing many days during the growing season, and is unusable. Therefore, in 1992 only 

weather data from Sidney and Columbus are analyzed. In 2008, data from both Bowling 

Green and Sidney are unusable. To get a more representative sample of weather data in 

2008, weather data from Findlay is added into the analysis. Findlay is located between 

Bowling Green and Sidney, and is analyzed with Columbus for 2008. 

 The minimum and maximum temperature data for each location from the NCDC 

is denoted in tenths of degrees Celsius, which is converted to degrees Fahrenheit. This 

conversion will make model results easier to interpret. The rainfall data for each location 

from the NCDC is denoted in tenths of millimeters. The data are converted to inches for 

easier model interpretation for those familiar with the US standard measurement system. 

 Accumulated GDD and accumulated rainfall data are calculated for each location 

in both states and then aggregated together by state. The average of all three locations in 

each state is taken for both GDD and rainfall to get state-level measures of GDD and 

rainfall. 

3.3 Calculation of a CCI 

 The method used for computing the CCI for a given week is: 

𝐶𝐶𝐼 = (%𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡) ∗ 1 + (%𝐺𝑜𝑜𝑑) ∗ 0.75 + (%𝐹𝑎𝑖𝑟) ∗ 0.5 + (%𝑃𝑜𝑜𝑟) ∗ 0.25

+ (%𝑉𝑒𝑟𝑦 𝑃𝑜𝑜𝑟) ∗ 0 

 This CCI is the one proposed and used by Bain and Fortenbery (2013). This CCI 

ranges in value from 0 to 100, where a CCI of 100 indicates that 100% of the crop is in 
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excellent condition and a CCI of 0 indicates that 100% of the crop is in very poor 

condition (Bain and Fortenbery, 2013). The CCI is calculated on a weekly basis between 

weeks 24 and 36 for South Dakota and Ohio.  

3.4 Calculation of Accumulated Growing Degree Days and Rainfall 

The formula used for calculating growing degree days is: 

𝐺𝐷𝐷 =
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
− 𝑇𝐵𝑎𝑠𝑒 , 

from McMaster and Wilhelm (1997). This formula is a more general calculation of 

growing degree days than the one used by Teal et al. (2006), and can be used with 

temperatures in either Celsius or Fahrenheit. This formula, while including base 

temperature, leaves out a temperature threshold, which is a key factor in GDD for corn. 

Typically, corn GDD are bounded by a maximum temperature threshold, 𝑈𝑇. Adding this 

maximum threshold changes the equation to: 

𝐺𝐷𝐷 =
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
− 𝑇𝐵𝑎𝑠𝑒 𝑖𝑓 𝑇𝑚𝑎𝑥 <   𝑈𝑇  𝑜𝑟 𝐺𝐷𝐷 =

𝑈𝑇+𝑇𝑚𝑖𝑛

2
− 𝑇𝐵𝑎𝑠𝑒 𝑖𝑓 𝑇𝑚𝑎𝑥 ≥   𝑈𝑇. 

 Similarly, GDD are also typically bounded by a minimum temperature threshold, 

𝐿𝑇. 𝐿𝑇 and   𝑇𝐵𝑎𝑠𝑒 are equivalent. Adding this minimum threshold changes the equation 

to: 

𝐺𝐷𝐷 =
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
− 𝑇𝐵𝑎𝑠𝑒 𝑖𝑓 𝑇𝑚𝑖𝑛 >   𝐿𝑇 𝑜𝑟 𝐺𝐷𝐷 =

𝑇𝑚𝑎𝑥+𝐿𝑇

2
− 𝑇𝐵𝑎𝑠𝑒 𝑖𝑓 𝑇𝑚𝑎𝑥 ≤   𝐿𝑇. 

The minimum and maximum temperatures are typically 50°F and 86°F 

respectively (NDAWN, 2013). This temperature threshold varies for crops, but 50-86°F 

is the commonly used threshold for corn. Outside of this range temperatures become 
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stressful on the corn plant. Schlenker and Roberts (2006) affirm the fact that temperatures 

above 86°F are stressful on a corn plant. 

After growing degree days are calculated, they are accumulated for each year at 

each location. They are accumulated daily after the approximate date that 50% of the 

corn crop has been planted. Once each location has been accumulated for the growing 

season, they are averaged with the other locations in each state. 

Accumulated rainfall at each location is calculated similarly. Starting at the 

approximate date that planting is 50% completed, each rainfall event is added together 

throughout the growing season. Once the entire growing season is accumulated at each 

location, all locations in each state are averaged together. 

3.5 Calculating the Approximate Mid-planting Date 

 Crop progress and conditions reports are released on a weekly basis. Despite this, 

planting takes place on a daily basis. This makes it highly likely that the date on which 

50% of the corn crop has been planted in a state will not fall on a report release date. In 

these cases, the mid-planting date falls between two consecutive reports. Therefore, the 

date at which 50% of the corn crop is planted has to be approximated.  

 The reports surrounding the mid-point were identified for each year by state. It 

was assumed that planting progress was constant during those weeks. Daily planting 

progress was then added to the starting week’s date until 50% planting progress was 

achieved. Then the day in the week closest to the interpolated midpoint, a calendar date, 

was used as a starting point to record accumulated weather variables. 
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3.6 Specification of a Trend Model 

The first step in the modeling process in this research is to develop a trend yield 

forecasting regression model:  

𝑌𝑖𝑒𝑙𝑑𝑠𝑖 = 𝛼0 + 𝛼1 ∗ 𝑇𝑟𝑒𝑛𝑑𝑖 + 𝛼2 ∗ 𝑆𝐷𝑠 + 𝑒0𝑡 , 

where 𝑌𝑖𝑒𝑙𝑑𝑠𝑖 is the final corn yield for state s in year i, specified as a function of an 

intercept term, the trend value in year i, 𝑇𝑟𝑒𝑛𝑑𝑖, and the dummy variable for state s, 𝑆𝐷𝑠. 

SD equals zero for South Dakota and one for Ohio. Year i takes on a value of 1 in 1986. 

The USDA has collected state-level yield data for a much longer period than crop 

conditions data, but for direct comparison with the other models in this research, the same 

time period is used. Therefore, 26 years of data is used for the trend model. A comparison 

between the trend model and the CCI will still show the relative usefulness of each 

model. The coefficients are the effects each variable has on yield. A model specification 

very similar to this will be used for the CCI and weather models in the rest of the 

research. Note that the CCI and climate models specified below are variations on this 

trend model. The CCI and climate models are designed to estimate how CCI and climate 

variables can explain corn yield deviations from trend.  

3.7 Specification of the CCI Model 

 Prior research has shown that a CCI can explain the variation in final corn yields 

(Kruse and Smith, 1994; Fackler and Norwood, 1999; Bain and Fortenbery, 2013), and 

this result is quite intuitive. A crop that is evaluated to be in mostly “very good” 

condition is expected to have a higher final yield than a crop that is in mostly “poor” 

condition. Given the intuition that crop conditions should have an effect on yield, the year 

to year variation in crop conditions should add explanatory power to a trend yield 
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forecasting model.  Therefore, adding a CCI variable to a corn yield trend model will be 

tested to examine how much explanatory power is added to the model. The CCI 

regression model is specified as 

𝑌𝑖𝑒𝑙𝑑𝑠𝑖 = 𝛼0 + 𝛼1 ∗ 𝑇𝑟𝑒𝑛𝑑𝑖 + 𝛼2 ∗ 𝑆𝐷𝑠 + 𝛽1 ∗ 𝐶𝐶𝐼𝑠𝑖𝑗 + 𝑒1𝑡 

where 𝑌𝑖𝑒𝑙𝑑𝑠𝑖,  𝑇𝑟𝑒𝑛𝑑𝑖, and 𝑆𝐷𝑠  are specified as they were in the initial trend model. 

𝐶𝐶𝐼𝑠𝑖𝑗 is the crop conditions index for state s in week j of year i. Week j ranges from 24-

36, which is the set of weeks that has available crop conditions reports for each state in 

each year. A regression will be estimated for each week between weeks 24 and 36, with 

only the CCI in the week of estimation being used. The effect of the CCI on corn 

yield, 𝛽1, will be the effect of concern in this model. This value will show whether the 

overall effect of the CCI used in this model significantly explains part of the variation in 

corn yield. The expected sign on the CCI coefficient is positive, as a higher CCI should 

indicate a higher final yield.  

3.8 Specification of the Climate Model 

The work of Schlenker and Roberts (2006) shows GDDs have an effect on overall 

corn yield. Prior research that uses objective models to explain corn yield utilizes 

temperature related variables (Cai et al., 2013; Schlenker and Roberts, 2006). Therefore, 

accumulated GDDs can be added to a trend yield model to test how it improves 

explanatory power. Rainfall is another variable that can be justified for use in a corn yield 

forecasting model. As with temperature related variables, many prior objective models 

use rainfall data as a variable to explain corn yield (Martinez, Baigorria, and Jones, 2009; 

Tannura, Irwin, and Good, 2008). Therefore, accumulated rainfall is also added to the 

trend yield model. This leads to a regression model specification: 
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𝑌𝑖𝑒𝑙𝑑𝑠𝑖 = 𝛼0 + 𝛼1 ∗ 𝑇𝑟𝑒𝑛𝑑𝑖 + 𝛼2 ∗ 𝑆𝐷𝑠 + 𝛽2 ∗ 𝐺𝐷𝐷𝑠𝑖𝑗 + 𝛽3 ∗ 𝑅𝑎𝑖𝑛𝑠𝑖𝑗 + 𝑒2𝑡, 

where 𝑌𝑖𝑒𝑙𝑑𝑠𝑖, 𝑇𝑟𝑒𝑛𝑑𝑖, and 𝑆𝐷𝑠 are specified as in the first equation. 𝐺𝐷𝐷𝑠𝑖𝑗  is the 

accumulated growing degree days for state s as of week j of year i. 𝑅𝑎𝑖𝑛𝑠𝑖𝑗 is the 

accumulated rainfall for state s as of week j of year i. The coefficients, once again, are the 

effects that each variable has on final corn yield.  𝛽2 and 𝛽3 are the effects of concern in 

this model, to determine if growing degree days and rainfall have a significant effect on 

corn yield.  

The expected sign of the coefficients is difficult to estimate, as little previous 

research is available for direct guidance. Schlenker and Roberts (2006) find that 

temperature has a non-linear effect on corn yield, with yield increasing as temperature 

increases until the threshold of 30°C (86°F) is reached. Once this temperature is 

surpassed, they find that the heat becomes harmful to the corn plant and its yield 

(Schlenker and Roberts, 2006). Because the GDD formula used is structured to omit 

temperatures above 86°F, the sign on 𝛽2 is expected to be positive. This is because only 

temperatures that are beneficial to the corn plant are measured. The expected sign of 𝛽3 is 

positive, as more rain over the course of the growing season should increase final corn 

yield. Schlenker and Roberts (2006) determined that any rainfall above 26 inches during 

the growing season can become harmful. Nonetheless, rainfall amounts during the season 

larger than this are uncommon, and therefore the positive effect of rainfall should be 

shown in the model. 
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3.9 Comparison of Forecasting Models 

The trend model is estimated for each year from 1986 through 2012. The CCI and 

climate models are estimated for weeks 24 through 36 for both South Dakota and Ohio 

from 1986 to 2012. Both models in each week have a total of 54 observations, or 27 years 

for both states. Given that both the CCI model and weather model are estimated over the 

same time period and using the same dependent variable, it is relatively easy to compare 

the two. The models for each week can be compared to see if one model is better at 

explaining yield throughout the entire growing season. Time periods over which both 

models are effective at explaining yield will also be determined. This analysis may show 

which type of model is superior for a given forecasting horizon. Given that the CCI and 

climate models do not exist outside of weeks 24 to 36 of the growing season, the trend 

model is expected to be the best option for forecasting yield before that time period. Once 

in the week 24 to 36 time period, model explanatory power will guide which model will 

be the most appropriate for forecasting yield during the growing season. 

Several methods of comparison will be used to evaluate the three models tested in 

the study. The first will be a comparison of adjusted R2. The model with the highest 

adjusted R2 explains the most variation in state level corn yield of the models. The other 

test that will be conducted is an examination of the mean squared error (MSE) of the 

regression models. The MSE determines by how many bushels per acre each model is 

incorrect on average.  The MSE can be interpreted in the same units as the dependent 

variable, which is corn yield, so the MSE from each of the models can be compared 

directly. A stronger or more accurate model will have a smaller MSE.  
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A method of comparing the MSE of the three models will be to graph them 

through time. Given that the trend model is only estimated once for the growing season 

and the CCI and weather models are estimated weekly, a depiction of the models 

throughout the growing season will be helpful to show the performance across models. 

Figure 1 depicts a representation of what this test will be assumed to look like 

graphically.   

 

The constant model represents a model like the trend yield estimation model used 

in this research (Figure 1). The expected constant shape for the trend model across the 

time period is because no additional information is added to the model and it is only 

estimated once, meaning the results will not change. Alternatives 1 and 2 represent 

models like the CCI and weather models. The general downward slope of the alternative 

models’ MSE is based on assumptions about the behavior of the models as time 
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progresses (Figure 1). As the growing season progresses, new data are produced that 

should allow the alternative models to improve in their forecasting accuracy.  

A lot of information can be gleaned about the dominance of one model over the 

others through time. Whichever model has the lowest MSE on the graph at any given 

point in time indicates it is the most accurate. Depicting this through time makes it 

possible to evaluate which model is the best at a certain point throughout the growing 

season, and the degree to which it is better can also be determined.   

In Figure 1, the MSE lines from each model type never cross. This makes 

observations about which model is the best at any given point in time easy to determine, 

because alternative 2 is always superior to alternative 1, which is always superior to the 

constant model. Problems could arise, though, when making assumptions of model 

dominance based on a graph if the MSE appears differently than in Figure 1. In Figure 2, 

for instance, there are several points in time when one model crosses another.  There is a 

lack of clear dominance in this setting. This possible situation makes it nearly impossible 

to definitively say which model is better than another only by examining a graph. In 
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essence, the MSE is inconclusive about the superiority of the three models, and additional 

statistical testing must be conducted. 

3.10 The DM and MDM statistic 

 One statistical method that can answer the question of forecast dominance is the 

use of the DM or MDM statistic. The DM statistic was designed by Diebold and Mariano 

(1995) as a statistic that can be evaluated by a t-test. The approach uses an error 

differential, 𝑑𝑡, defined as: 

𝑑𝑡 = (𝑒1𝑡 − 𝑒2𝑡) ∗ 𝑒1𝑡, 

using the residuals from two competing models, 𝑒1𝑡and 𝑒2𝑡. 𝑑𝑡 is calculated for each 

forecasted period. The next step is to take the average of 𝑑𝑡 across all forecasted periods 

and divide it by its standard error. This gives the DM statistic. The statistic is useful for 

forecasting models that only forecast one period, or horizon, ahead.  

For models that exceed one forecasting horizon, adjustments need to be made. 

Harvey, Leybourne, and Newbold (1997) proposed a modification to the DM statistic that 

adjusts for multiple forecasting horizons, creating the MDM statistic. The MDM is 

calculated as: 

𝑀𝐷𝑀 = 𝑛−1/2[𝑛 + 1 − 2ℎ + 𝑛−1ℎ(ℎ − 1)]1/2 ∗ 𝐷𝑀 , 

where n is the number of observations, h is the number of forecasting horizons, and DM 

is the Diebold-Mariano statistic. This statistic can be compared to a critical value on the 

𝑡𝑛−1 distribution. If the MDM statistic exceeds the critical value, then there is a 

statistically significant difference between the forecasting errors of the two competing 

models. Colino and Irwin (2007) use this statistic to evaluate the forecast error 
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differentials between hog and cattle outlooks and futures prices. This research will use 

the MDM statistic to compare the forecast errors from the CCI and weather models. 

3.11 Encompassing Forecast Testing 

 Another statistical method that compares forecasting models is the encompassing 

forecast test. Developed by Harvey, Leybourne, and Newbold (1998), the encompassing 

forecast test is a regression based test formulated as: 

𝑒1𝑡=𝛼3+𝜆(𝑒1𝑡−𝑒2𝑡)+𝜀𝑡
, 

where, similar to the DM and MDM statistics, 𝑒1𝑡 and 𝑒2𝑡 are the out-of-sample 

forecasting errors from two competing forecasting models. After estimating the 

regression, the coefficient of concern is λ. The null hypothesis of this test is that λ=0, 

meaning that model 2 adds no additional information to the forecasting model and model 

1 encompasses it. Therefore, if λ is not statistically significant, then forecasting model 2 

is encompassed by forecasting model 1. However if λ is statistically significant, it is 

implied that forecasting model 2 contains information that forecasting model 1 does not, 

and is not encompassed by it. Manfredo and Sanders (2004) use this encompassing 

forecast test to compare the forecasting ability of futures markets forecasts made with 

implied volatility and other types of models. This research will use the forecast 

encompassing test developed by Harvey, Leybourne, and Newbold (1998) to evaluate the 

forecasting ability of the CCI and weather models. 

 Another less complex method of seeing if one type of forecasting model 

encompasses another is to combine the two models together, making a composite model. 

In the case of this research, the composite model would be formulated as 
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𝑌𝑖𝑒𝑙𝑑𝑠𝑖 = 𝛼0 + 𝛼1 ∗ 𝑇𝑟𝑒𝑛𝑑𝑖 + 𝛼2 ∗ 𝑆𝐷𝑠 + 𝛽1 ∗ 𝐶𝐶𝐼𝑠𝑖𝑗 + 𝛽2 ∗ 𝐺𝐷𝐷𝑠𝑖𝑗 + 𝛽3 ∗ 𝑅𝑎𝑖𝑛𝑠𝑖𝑗 

 This composite model contains all of the variables being investigated. Estimating 

this regression model at selected weeks during the study period and examining changes in 

model fit and accuracy, and coefficient signs and significances can lend insight as to 

whether the variables from one model contain the information of the variables from 

another. This composite model will only be estimated for select weeks, the beginning and 

end of the study period, assuming that results in between will follow a pattern between 

the terminal points. 
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Chapter 4: RESULTS 

4.1 Yield Data 

Yield data was accessed from USDA/NASS. State level yield data from 1986 to 

2012 was obtained for both South Dakota and Ohio. Descriptive statistics of this yield 

data show a large increase in the average corn yield over the 26 year time period in both 

states. Figure 3 shows the yield data from both states over the studied time period.  

 

It is immediately obvious that the year to year variation in yield in both states 

follows a very similar pattern. South Dakota and Ohio where chosen to be evaluated 

because of the assumption that their distance apart would lead to small similarities in 

weather and production related effects, leading to variations in yield that were as different 

as possible. It seems, though, that weather or production related effects that take place are 

often on a large scale that affects both areas, despite their distance apart. For example, 

predominate weather patterns may very well impact both states. Major changes in 

production practices may also occur in both states simultaneously. 
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The low yield for South Dakota during the time period was 55 bushels per acre in 

1988. The low yield for Ohio during the time period was 85 bushels per acre in 1988. The 

high yield in South Dakota and Ohio both occurred in 2009, with the yield in South 

Dakota being 151 bushels per acre and the yield in Ohio being 174 bushels per acre.  On 

average, yields in Ohio have been increasing at about 2.5% per year, while yields in 

South Dakota have been increasing at about 3.5% per year during the time period. 

 

 Table 1 outlines several other descriptive statistics of the yield data. Another 

interesting statistic is the standard deviation of yield in both states. The standard 

deviation of yield in South Dakota is higher, suggesting that yield is more variable in 

South Dakota than in Ohio. 

4.2 Crop Conditions Data 

Crop conditions data were accessed from the USDA/NASS. Data from 1986 to 

2012 were studied.  Weeks 24 through 36 were studied for each state, as weeks outside of 

this range had missing observations from one or both states. As noted in the research 

design, the crop conditions data were transformed into an index. The index was a 

combination of each of the five crop conditions ratings, each of which was multiplied by 

a scalar.  

 

Table 1. Ohio and South Dakota Corn Yield Statistics. 

Bushels per Acre Ohio  South Dakota  

Mean 132.78 102 

St. Dev. 22.67 24.22 

Min 85 55 

Median 135 101 

Max 174 151 
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Figure 4 shows the average level of the CCI throughout the studied weeks for 

both states. There is a clear downward trend in the CCI values throughout the growing 

season. This is mostly likely because crop condition initial estimates of the corn crop are 

optimistic and fade throughout the season. This is also justifiable, as it is difficult to 

estimate crop conditions while the corn plant is in its early physiological stages. As the 

growing season progresses and the crop becomes more mature, surveyors can more 

accurately gauge the condition of the corn crop, which becomes worse off than they 

initially estimate. Another interesting point to recognize is the marked difference between 

the average CCI in South Dakota and Ohio. South Dakota’s crop ratings are on average 

higher than in Ohio. Despite this, yields in Ohio are almost always higher. This 

observation leads to an interesting conclusion about crop conditions surveyors in 

different states. While a crop condition rating may be higher in South Dakota than in 

Ohio, that does not necessarily mean a higher yielding corn crop in South Dakota than in 

Ohio. This finding is similar to the findings of Kruse and Smith (1994) and Fackler and 

Norwood (1999).  
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4.3 Weather Data 

Weather data for each location chosen in South Dakota and Ohio was obtained 

from the National Climatic Data Center (NCDC) website. Temperature and rainfall data 

from 1986 to 2012 were examined. Similar to the crop conditions data, only weeks 24 

through 36 were studied. The temperature data was converted into average accumulated 

GDDs in both South Dakota and Ohio. The rainfall data was converted into average 

accumulated rainfall (in inches) in both states as well.  

 

Table 2 outlines the averages of the accumulated GDD data in both states. On 

average, Ohio has more accumulated GDDs than South Dakota by week 24. Similarly, 

Ohio also has more accumulated GDDs by week 36 than South Dakota. These differences 

in GDD patterns between the two states may be able to explain the yield differences. 

 

Table 3 outlines averages of the accumulated rainfall data in both states. On 

average, accumulated rainfall at week 24 is higher in Ohio than it is in South Dakota. 

Similarly, accumulated rainfall is typically higher at week 36 in Ohio than in South 

Dakota. Once again, these differences in rainfall amounts may be able to explain the 

differences in yield. 

Table 2. Ohio and South Dakota Accumulated GDD. 

 
Ohio  South Dakota  

Average Week 24 596.45 473.76 

Average Week 36 2446.12 2176.19 

Table 3. Ohio and South Dakota Accumulated Rainfall. 

Inches Ohio Rainfall South Dakota Rainfall 

Average Week 24 5.07 4.06 

Average Week 36 15.75 12.65 
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4.4 Trend Model Results 

  A regression model to explain yield using trend information was estimated for the 

years 1986 through 2012 in South Dakota and Ohio. The results of this model are 

outlined in Table 4. 

 

All variables in the trend yield model were significant at the 99% confidence 

level. The intercept in this case is the corn yield in South Dakota at the beginning of the 

study period. The coefficient on the state dummy variable of 30.78 indicates that corn 

yields in Ohio are typically 31 bushels per acre higher than corn yields in South Dakota. 

This is a significant difference, and indicates that the more favorable weather conditions 

in Ohio have a beneficial effect on yield in the state. The coefficient on the trend variable 

of 2.11 suggests that both states have seen a yield increase of about 2 bushels per acre per 

year since 1986. This indicates a relatively strong upward trend in yields during the time 

period.  

The model has an adjusted R2 of 0.65, indicating that this trend model explains 

nearly 65% of the variation in corn yield in South Dakota and Ohio. This result shows 

that although the model only utilizes three variables as regressors, it still explains much 

of the variation in South Dakota and Ohio corn yields. The F-test of this model is 49.78, 

Table 4. Trend Model Results. 

  
 

Intercept SD Trend 

Coefficient 
 

72.46 30.78 2.11 

S.E. 
 

5.16 4.51 0.29 

T-Test 
 

14.04 6.82 7.28 

Prob(t)   0.00 0.00 0.00 

Model adjusted 𝑅2 

 
0.65 

 
  

Model F-Test 
 

49.78 
 

  

Model MSE   16.58     
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which indicates that overall the model is significant, and its estimations of yields are 

statistically different from zero. While a high adjusted R2 value and a high F-test value 

are positive signs for this model, a very important test is still to examine the MSE. The 

MSE of this model is 16.58, meaning that this model typically estimates yield within 17 

bushels per acre. While that may seem like quite a large error, considering that this model 

can be estimated months or even years before a corn crop in a given year is harvested 

reveals that this model is quite useful. 

4.5 CCI Model Results 

A regression model developed to forecast corn yields in South Dakota and Ohio 

using a CCI is estimated. The model is estimated for the years 1986 through 2012, 

weekly from week 24 through week 36. While 13 regression models are estimated, Table 

5 only displays the results from week 24 and week 36. 

 

Table 5. CCI Regression Model Results for Selected Weeks. 

 Weeks 24 Intercept Trend SD CCI 

Coefficient 2.13 2.06 35.82 1.02 

S.E. 24.56 0.27 4.55 0.35 

T-Test 0.087 7.59 7.87 2.92 

Prob(t) 0.93 0.00 0.00 0.00 

Model adjusted R2 0.69  
 

  

Model F-Test 40.93  
 

  

Model MSE 15.48      

     

Week 36 Intercept Trend SD CCI 

Coefficient -8.37 2.42 34.34 1.2 

S.E. 6.60 0.14 2.17 0.09 

T-Test -1.27 13.19 17.28 15.83 

Prob(t) 0.21 0.00 0.00 0.00 

Model adjusted R2 0.92     

Model F-Test 203.78     

Model MSE 7.91      
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The intercept term in both selected weeks is not significant even at the 90% 

confidence level, and therefore is not considered statistically different from zero. The 

coefficient on the trend variable is significant at the 99% confidence level in both weeks. 

The coefficients are between 2 and 3 bushels per acre, similar to the coefficient in the 

trend model of 1.9 bushels per acre. The state dummy variable in both regressions was 

also significant at the 99% confidence level, with values in the 34 to 36 bushels per acre 

range. This finding is also consistent with the trend model. The coefficient on the CCI 

variable is significant at the 99% confidence level, indicating that a CCI is a useful 

variable for forecasting yield. The coefficients were 1 to 1.2, indicating at a one unit 

increase in the CCI in South Dakota and Ohio typically leads to over a 1 bushel per acre 

increase in corn yield.  

Table 6 shows the regression coefficients and their significance for all thirteen 

weeks. All coefficients in the CCI regression model are significant at the 95% confidence 

level for all thirteen weeks, except for the intercept term. The intercept term is never 

statistically significant.  

Table 6. CCI Model Coefficients Weeks 24-36. 

  Intercept Trend SD CCI 

Week 24 2.13 2.06* 35.82* 1.02* 

Week 25 -4.69 2.07* 37.84* 1.10* 

Week 26 -14.78 2.16* 38.64* 1.22* 

Week 27 -4.22 2.14* 38.04* 1.08* 

Week 28 -4.89 2.29* 37.75* 1.08* 

Week 29 -2.06 2.37* 36.98* 1.03* 

Week 30 1.07 2.33* 35.05* 1.02* 

Week 31 0.17 2.34* 35.41* 1.04* 

Week 32 0.001 2.30* 35.34* 1.06* 

Week 33 -2.88 2.29* 35.10* 1.11* 

Week 34 -6.91 2.40* 34.91* 1.16* 

Week 35 -5.48 2.31* 34.26* 1.17* 

Week 36 -8.37 2.42* 34.34* 1.20* 

* Significant at the 95% level 
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MSE is used to show how the model’s accuracy changes through the growing 

season. Figure 5 displays the MSE of the CCI model for all 13 regressions as it 

progresses throughout the study period. As the growing season progresses, the overall 

model accuracy increases. The MSE of the model decreases from above 15 bushels per 

acre at week 24 to below 8 bushels per acre at week 36. This is a forecasting accuracy 

increase of 7 bushels per acre. A similar increase is also noticeable in the adjusted R2 of 

the CCI model. The model not only becomes more accurate, but gains more explanatory 

power as the growing season progresses. 

 

The results of the CCI model suggest that crop conditions data can be used to 

develop powerful and accurate yield forecasting models. The accuracy and explanatory 

power of the model increases throughout the growing season. This is a vast improvement 

over many yield forecasting models, which are typically not useful until near the end of 

the growing season. While the CCI model does produce its best results near the end of the 

growing season, it is already useful for forecasting yield in week 24. 
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4.6 Weather Model Results 

A regression model developed to forecast corn yields in South Dakota and Ohio 

using weather variables is estimated. The model is estimated for weeks 24 through 36 for 

each year from 1986 through 2012. As with the CCI yield model, 13 regressions are 

estimated for the weather model.  Table 7 summarizes the results of the weather yield 

model for weeks 24 and 36. 

 

The intercept term for both selected weeks is significant at the 99% confidence 

level, and it increases significantly from week 24 to week 36. The coefficients on the 

trend variable are significant for both weeks at the 99% confidence level, and vary from 

2.08 to 2.25 bushels per acre. This is similar to the trend coefficient in the base model.  

The state dummy variable coefficients are significant at the 99% confidence level for 

both weeks, and vary slightly around 31 bushels per acre. This is also similar to the state 

dummy variable coefficient in the trend model.  

Table 7. Weather Regression Model Results for Selected Weeks. 

 Week 24 Intercept Trend SD GDD Rain 

Coefficient 75.17 2.08 31.46 -0.02 1.94 

S.E. 8.4 0.29 4.79 0.02 0.10 

T-Test 8.95 7.25 6.57 -1.39 1.94 

Prob(t) 0.00 0.00 0.00 0.17 0.06 

Model adjusted R2 0.67  

  

  

Model F-Test 27.30  

  

  

Model MSE 16.18        

  

Week 36 Intercept Trend SD GDD Rain 

Coefficient 98.87 2.25 31.98 -0.02 1.51 

S.E. 20.83 0.27 5.07 0.01 0.54 

T-Test 4.75 8.33 6.31 -2.4 2.83 

Prob(t) 0.00 0.00 0.00 0.02 0.01 

Model adjusted R2 0.72      

Model F-Test 34.76      

Model MSE 14.84        
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The statistical significance of the GDD variable varies throughout the growing 

season. Table 8 shows the weather regression model coefficients and their significance 

for all 13 weeks. 

 

The GDD coefficient ranges from not significant at the 90% confidence level at 

week 24 to significant at the 95% confidence level at week 36. This indicates that 

temperature effects have a less significant effect on corn yield early in the growing 

season, and become more significant as the growing season progresses. The coefficient 

on the GDD variable remains relatively similar throughout the growing season at around 

-0.02. This coefficient means that a one unit increase in GDD leads to a 0.02 bushels per 

acre decrease in yield in South Dakota and Ohio. This is a curious result, as one would 

expect that more favorable temperatures, would lead to higher corn yields.  

There are several explanations as to why the result is opposite of what was 

initially expected. The first is that the true effect of GDD on corn yield is being 

misrepresented by the model. The second is that while GDD are meant to value weather 

Table 8. Weather Model Coefficients Weeks 24-36. 

  Intercept Trend SD GDD Rain 

Week 24 75.17* 2.08* 31.46* -0.02 1.94 

Week 25 74.41* 2.05* 32.16* -0.02 2.5* 

Week 26 79.04* 2.08* 32.7* -0.02 1.99* 

Week 27 83.21* 2.13* 32.96* -0.03* 2.08* 

Week 28 82.68* 2.17* 32.81* -0.02* 1.96* 

Week 29 80.40* 2.23* 31.81* -0.02 2.14* 

Week 30 81.37* 2.22* 30.89* -0.02 2.02* 

Week 31 82.81* 2.21* 30.50* -0.02 1.95* 

Week 32 86.45* 2.22* 31.29* -0.02 1.77* 

Week 33 90.14* 2.24* 31.98* -0.02* 1.70* 

Week 34 94.77* 2.24* 32.13* -0.02* 1.66* 

Week 35 97.83* 2.26* 31.94* -0.02* 1.64* 

Week 36 98.87 2.25* 31.98* -0.02* 1.51* 

* Significant at the 95% level 
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favorable for corn growth, it does not mean that temperatures always are favorable. The 

GDD formula used in this research is maximized at 86°F, therefore temperatures higher 

than that are simply counted as 86°F. No GDD discount for unfavorable weather is 

included in the GDD formula. Therefore, the negative effect of unfavorable weather for 

corn growth may be showing up in the GDD term. 

The statistical significance of the rainfall variable throughout the growing season 

also changes, similar to the GDD variable. At week 24 it is statistically significant only at 

the 90% confidence level, and by week 36 is significant at the 99% confidence level. This 

is most likely because weather has an increasingly more important effect on corn yield as 

the growing season progresses. The coefficient on the rainfall variable also varies 

throughout the growing season, but always remains positive. This positive effect was 

expected, showing that more cumulative rainfall has a positive effect on corn yield. The 

coefficient varies from 1.9 bushels per acre at week 24, to 2.1 bushels per acre at week 

29, to 1.5 bushels per acre at week 36.  

Figure 6 shows the MSE of the weather model from weeks 24 through 36. 
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As with the CCI model, there is a general downward trend in the MSE of the 

weather model. The MSE of the model at week 24 is above 16 bushels per acre, and it 

decreases to below 15 bushels per acre at week 36. From week 24 to week 29, the MSE 

of the model decreases at a fast rate, similar to the pattern of the MSE of the CCI model. 

Once week 29 is reached though, the MSE of the model holds steady and actually 

increases slightly at a few times. This is unlike the pattern of the MSE of the CCI model, 

which continued to decrease through week 36. 

4.7 Model Comparisons 

 Several methods can be used to compare the usefulness of the different 

regression models. Comparisons of adjusted R2, F-tests, and MSE of the models can aid 

in determining which model is the most effective at forecasting corn yields. Table 9 

summarizes the adjusted R2 statistics, F-test statistics, and MSE values of the three 

models for three selected weeks. 

 

Analysis of the adjusted R2 shows that at week 24, the first week that the CCI and 

weather models are estimated, all of the models have relatively comparable explanatory 

power. At week 30, the CCI model becomes superior in terms of explanatory power. 

From week 30 on, the CCI model is superior to all other models in terms of explanatory 

Table 9. Comparison of Model Results. 

  Trend  CCI Weather 

    Week 24 Week 30 Week 36 Week 24 Week 30 Week 36 

Adj. R2 0.65 0.69 0.88 0.92 0.67 0.72 0.72 

F-Test 49.78 40.93 126.06 203.78 27.30 34.64 34.76 

MSE 16.58 15.48 9.83 7.91 16.18 14.86 14.84 
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power. The trend model has the lowest adjusted R2 of all three models in all weeks during 

the study period. 

The MSE, as noted before, is reported in the same units as the dependent variable, 

meaning in this case in bushels per acre. It reveals how many bushels per acre each 

model is off on its in-sample forecasts, on average. Analysis of the MSEs provided in 

Table 9 shows that the CCI model has the lowest MSE for the entire study period, and is 

therefore more accurate at forecasting yield throughout the growing season. By week 36, 

the MSE of the CCI model is below 8 bushels per acre, meaning that the model estimates 

yield within 8 bushels per acre of actual yield. This is significantly better than the trend 

and weather models at week 36.  

While analyzing selected weeks throughout the growing season gives a picture 

about which models are the most effective, an examination of all the weeks estimated in 

this research will help determine when changes occur in the accuracy of the models 

throughout the growing season. In a format similar to that depicted in Figure 1, the MSEs 

of the three models are shown in Figure 7. 
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Upon examination of Figure 7, it is immediately clear that the CCI model is 

superior to the trend and weather models in terms of model accuracy throughout almost 

the entire growing season. In the early weeks, though, all three models have MSEs within 

about 1 bushel per acre of each other. So while the CCI model is superior to the other two 

models, it is difficult to say by looking at the graph if there is a statistical difference 

between them. 

4.8 Composite Model Test 

 As noted in the research design, an examination of the MSEs of the yield 

forecasting models is useful, but in cases where models are comparable or cross one 

another in accuracy over time, further analysis is needed. Using the MDM statistic, 

encompassing forecast test, and composite model test, deeper insight into the true 

superiority of one model may be determined. 

 The first test completed was the composite model test. The CCI and weather 

regression models were combined, and the composite model was estimated at weeks 24 

and 36. Table 10 outlines the adjusted R2, MSE, and model coefficients. 

 

 The results at week 24 are not as easy to evaluate as the results at week 36. At 

week 24 the CCI and accumulated GDD variables are statistically significant, but 

accumulated rainfall is not. The intercept behaves similarly to the intercept of the CCI 

model, in that it is statistically insignificant. The main purpose of estimating a composite 

Table 10. Composite Model Results. 

Week Adj. R2 MSE Intercept Trend SD GDD Rain CCI 

24 0.71 15.04 7.77 2.0* 38.3* -0.03* 1.27 1.06* 

36 0.92 8.07 -9.62 2.4* 34.09* 0.00 0.04 1.20* 

* Significant at the 95% level 
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model is to see whether or not more information is gained from a composite model than 

in the individual models. At week 24 the adjusted R2 of the composite model is 0.71, 

which is slightly higher than the adjusted R2 of the individual CCI and weather models at 

week 24, 0.69 and 0.67 respectively. Essentially, combining these models created a better 

model than the individual models, with 2 to 4 percent more variation in yield explained.  

 At week 36 the results of the composite model clearly show that the CCI model is 

superior to the weather model. The weather model coefficients are statistically 

insignificant, and the coefficients on the remaining variables are nearly the same as the 

coefficients for the CCI model at week 36. The composite model adjusted R2 value of 

0.92 is also exactly the same as the CCI model adjusted R2 value at week 36. No 

information is added by using weather model variables, and the composite model 

essentially becomes the CCI model at week 36.  

4.9 Encompassing Forecast Test 

 While using a composite model to make general conclusions about the 

information contained in the CCI and weather models during certain periods of time is 

useful, a more formal statistical test helps lend more assurance to the conclusions. The 

use of the encompassing forecast test developed by Harvey, Leybourne, and Newbold 

(1998) will formally test whether one forecasting model encompasses the other. To 

estimate the regression model necessary execute this test, true forecast information must 

be available. While the main goal of this research is not to conduct out-of-sample 

forecasting, some was done to evaluate the models. 

The CCI and weather models were estimated from 1986 to 2002, and the model 

coefficients were used to generate out-of-sample forecasts for 2003. The process was 
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repeated for each year through 2012, where the models were estimated from 1986 

through 2011 and the coefficients were used to forecast 2012.  The result was 10 years 

(2003 through 2012) of out-of-sample forecasts. Forecast errors one horizon out can be 

determined and used to run the encompassing forecast and MDM tests. The results of the 

encompassing forecast test are outlined in Table 11 for three selected weeks during the 

growing season. 

 

The encompassing forecast test was estimated for both the weather model and the 

CCI model. The weather model regression specification is: 

𝑒𝑊𝑡=𝛼3+𝜆(𝑒𝑊𝑡−𝑒𝐶𝐶𝐼𝑡)+𝜀𝑡
, 

where 𝑒𝑊𝑡 are the out-of-sample forecast errors for the weather model and 𝑒𝐶𝐶𝐼𝑡 are the 

out-of-sample forecast errors for the CCI model. The CCI model regression specification 

is: 

𝑒𝐶𝐶𝐼𝑡=𝛼3+𝜆(𝑒𝐶𝐶𝐼𝑡−𝑒𝑊𝑡)+𝜀𝑡 , 

where the out-of-sample forecast errors for each model are specified as above.  The CCI 

model encompasses the weather model at the 90 to 95% confidence level. The null 

hypothesis of this test is that λ=0, meaning the competing model adds no additional 

information to the other models forecast. Therefore, the statistical insignificance of the 

Table 11. Encompassing Forecast Test. 

Week CCI λ Weather λ 

24 -0.027 1.03* 

30 -0.20 1.20** 

36 -0.16 1.16** 
* Significant at the 90% level 

** Significant at the 95% level 
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CCI model’s λ means that the competing (weather) model adds no additional information 

to the CCI forecast at any of the three weeks examined. Alternatively, the statistical 

significance of the weather model’s λ means that the competing (CCI) model does add 

additional information to the weather model forecasts at all three weeks examined. The 

two tests convey the same results: the CCI model encompasses the weather model at 

every week in the study period. 

4.10 The MDM Test 

 The MDM test will help to further affirm the superiority of one forecasting model 

over the other. As with the encompassing forecast test, out-of-sample forecast data was 

needed. Out-of-sample forecast data for 2003-2012 was used to calculate the MDM 

statistic and evaluate its significance. Table 12 shows the MDM statistic for three weeks 

in the growing season. 

 

 As table 12 shows, the results of the MDM test show that, at all three weeks 

examined, there is no statistical difference in the forecast errors of the CCI and weather 

models. This is a perplexing result for several reasons. All model statistics point to the 

CCI model as being superior to the weather model. It consistently has higher in-sample 

statistics, such as adjusted R2 and MSE. The out-of-sample tests, the encompassing 

forecast test and the composite model test, both show that the weather model adds no 

additional information that the CCI model does not already contain. The fact that there is 

Table 12. MDM Test. 

Week MDM statistic 

24 0.34 

30 0.66 

36 0.45 

* Significant at the 95% level 
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no statistical difference in the forecast errors of these two models is perplexing. It is most 

likely related to the fact that both models over-predict and under-predict yield, and 

ultimately the average of the errors is the same. Figure 8 shows a graphical representation 

of this in the forecast errors for week 36. 

 

 Upon examination of figure 8, it becomes obvious why the MDM tests fail to find 

any statistical difference between the two models. The errors often cross one another, 

with the CCI model sometimes being more accurate, and the weather model sometimes 

being more accurate. The errors for neither model are consistently positive or negative, 

meaning both average somewhere near zero. 

4.11 Model Specification Tests 

 Certain specifications in the models used in this research have competing 

justifications in the literature that warrants examination. Tannura, Irwin, and Good (2008) 

evaluate the need to account for the possibility of accelerated technological change in the 

last 20 years. Kaufmann and Snell (1997) maintain that models that are estimated on a 
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calendar basis, like the ones used in this research, are less effective than models that are 

based on the physiological progress of the corn plant. Both of these points are examined 

in the following section. 

4.11.1 Accelerated Technological Change 

Tannura, Irwin, and Good (2008) find literature that exist to support controlling 

for accelerated technological change, e.g. Troyer (2006). Therefore, testing a variable to 

control for this possible change in the trend of corn yields in the mid-1990s will lend 

further insight into the differing conclusions in previous research. Empirical results will 

need to be evaluated to see if it is appropriate to control for this factor in this research. 

The variable, 1996 𝐷𝑢𝑚𝑚𝑦𝑖, is a dummy variable that equals zero in years before 1996 

and equals one in the years from 1996 on.  The year 1996 is chosen to follow the work 

done by Tannura, Irwin, and Good (2008), who tested whether or not a true change 

occurred in the corn yield trend. To estimate its effect over time, this variable will be 

interacted with the time trend variable. This variable, 1996 𝐷𝑢𝑚𝑚𝑦𝑖 ∗ 𝑇𝑟𝑒𝑛𝑑𝑖, equals 

zero before 1996 and equals the value of the trend variable in years 1996 on. The 

significance of the accelerated technological change control variable in the models in this 

research will determine if it truly has a significant effect on yields. While Tannura, Irwin, 

and Good (2008) found no significant trend change, several more years of data related to 

this subject exist and more data alone could result in different findings. The model will be 

specified as: 

𝑌𝑖𝑒𝑙𝑑𝑠𝑖 = 𝛼 + 𝛽1 ∗ 𝑇𝑟𝑒𝑛𝑑𝑖 + 𝛽2 ∗ 1996 𝐷𝑢𝑚𝑚𝑦𝑖 ∗ 𝑇𝑟𝑒𝑛𝑑𝑖 + 𝛽3 ∗ 𝑆𝐷𝑠 

After running the trend model specified above, initial results show that when 

trend yield is forecasted for South Dakota alone, this variable is significant and should be 
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included. South Dakota shows a significant change (increase) in the yield trend in 1996. 

However, when the model forecasts trend yield for Ohio alone, the accelerated 

technological change has no significant effect. In Ohio it is apparent that no significant 

change in trend corn yield occurred in 1996. Finally, when the initial model is used to 

forecast yield for Ohio and South Dakota together, the accelerated technological change 

control variable is statistically insignificant. 

These mixed results show that in some cases it may be necessary to control for the 

recent acceleration in technological change, such as when forecasting trend yield for 

South Dakota. It appears, though, that when forecasting yield over a larger area, such as 

across multiple states, the acceleration in trend-line corn yields no longer takes place in 

1996. This could be due to several reasons. First, the change could have occurred in Ohio 

at a different time than in South Dakota. It is reasonable to assume that this is possible. 

Because the states are in different regions, technologies may have been adopted sooner in 

Ohio than in South Dakota. Second, the change could have occurred over the course of 

several years in Ohio and not in one year like in South Dakota. Another plausible option 

is corn yields in Ohio have always historically been higher than in South Dakota, and the 

increase in yields gained from better technology in the mid-1990s did not increase yield 

as much in Ohio as it did in South Dakota. 

Statistical evidence does not show any proof of existence of accelerated 

technological change in the combined South Dakota and Ohio model.  Therefore, an 

accelerated technological change variable is not included in yield forecasting regressions 

that are similar to the ones used in this research. 
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4.11.2 Calendar versus Physiological Stage Estimation 

The models in this research are estimated on a calendar year basis. Previous 

research has made the point that this may not be the most ideal model specification. 

Kaufmann and Snell (1997) argue that this type of specification is a failure of typical 

regression models that estimate or forecast corn yields. They argue that the plants growth 

is not governed by the chronology of the human calendar, and that its physiological 

stages do not occur on a consistent calendar basis. Therefore, they believe models that 

estimate or forecast corn yield should be estimated at peak times during corn plant stages 

of growth instead of on a calendar basis. 

 Testing this type of physiological specification can be done using data from the 

USDA’s Crop Progress reports. Casual observation shows that the CCI model’s 

explanatory power increases faster before silking occurs, and then increases more slowly 

after silking occurs. Using this casual observation as a starting point, obtaining a CCI for 

the weeks that silking is 50% completed, or closest to 50% completed, in both South 

Dakota and Ohio and estimating yield with this data will create a model based not on a 

calendar basis, but on a physiological basis. 

 This model will be specified as: 

𝑌𝑖𝑒𝑙𝑑𝑠𝑖 = 𝛼 + 𝛽1 ∗ 𝑇𝑟𝑒𝑛𝑑𝑖 + 𝛽2 ∗ 𝑆𝐷𝑠 + 𝛽3 ∗ 𝐶𝐶𝐼𝑠𝑖𝑗, 

the same as the initial CCI model, except that week j is now specified as the week that 

silking is 50% complete in state s of year i. So, instead of the model being ran week to 

week as it is with the CCI data, it is now ran at selected weeks during the growing season 

when physiological changes in the corn plant occur. 
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 Running both the calendar based and physiological based CCI models and 

comparing their explanatory power shows either type of specification works equally well. 

There is no significant difference in the explanatory power or the variable coefficients or 

significance in either type of model, with the explanatory power of the physiologically 

based model being slightly lower. This is determined by taking the average of the weeks 

that silking is 50% complete in South Dakota and Ohio, which is week 30, and 

comparing the adjusted R2 of the calendar based CCI model at week 30 to the 50% 

silking model. 

 Given that either type of model specification is effective, several reasons can be 

given for using a calendar based model. First is that the calendar based model is slightly 

more effective. Second is that there are 13 weeks of data to run the calendar based CCI 

model, while only 5 points exist to estimate the physiologically based model. These 

points are emergence, silking, doughing, denting, and mature. To obtain useful 

parameters for a physiologically based model, 50% dates for each of the growth stages 

must be estimated. At 50% emergence, crop conditions reports are not typically reported. 

Therefore, only four reliable model estimation points, silking, doughing, denting, and 

maturity will be available each year. 

Much like the CCI model, the argument Kaufmann and Snell (1997) make for 

modeling according to physiological stage and not by the calendar applies to the climate 

model as well. For reasons and justifications very similar to the CCI model, the climate 

model is estimated on a calendar basis. While all 5 points in the physiological growth 

stage can be estimated in the weather model, because the data is daily and not weekly, a 
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calendar year specification is still used. This is to maintain consistency between the CCI 

and climate models, so they can be compared directly against each other. 
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Chapter 5: SUMMARY AND CONCLUSIONS 

 The purpose of this research was to examine and compare different methods of 

yield forecasting. To do this effectively, three objectives were set to be tested. The first 

was to empirically test objective (weather) and subjective (CCI) yield forecasting models. 

The second was to compare their effectiveness. The third was to examine how well these 

models forecasted yield within the growing season. 

 The first goal was to test the two competing types of yield forecasting models. 

This was done using the USDA’s crop conditions information to create a subjective yield 

forecasting model and using climate data to construct an objective yield forecasting 

model. South Dakota and Ohio corn yields were examined between the years 1986 to 

2012. Both model formulations effectively explained yield within both states during the 

time period. Each model was based on a trend-line model formulation, with either the 

objective or subjective variable added to the model specifications. This process leads to 

model formulations that contain relatively few variables. Previous objective, or weather 

based, models typically contain upwards of 20 variables. Models here both contained less 

than 5 variables. Despite this simplification, the models still forecasted yield well, with a 

maximum MSE of 16 bushels per acre, and a minimum of 8 bushels per acre. This 

verifies that less complex model formulations can still lead to accurate yield forecasts. 

 The second goal of the research was to compare the competing models against 

one another, and also against a trend-line yield model. When compared against the trend-

line yield model, both the weather and the CCI model performed at least slightly better 

than the trend-line model. Overall, the trend-line and weather models performances are 

very similar, with MSE’s that are very similar. The CCI model performs better than both 
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of the other models. It has a lower MSE and a higher adjusted R2 than the other models. 

At its best, the CCI model has a MSE of only 8 bushels per acre, compared to the lowest 

MSE of the weather model of around 15 bushels per acre. Therefore, the CCI model is 

typically 7 bushels per acre more accurate than the weather or trend models. While 7 

bushels per acre may not seem like a very large difference, apply it to corn production in 

South Dakota.  Assuming around 5.5 million acres of corn are planted in the state in a 

given year, this implies that the CCI model will account for 38.5 million bushels of 

production that the weather or trend models will either over-account or under-account 

for. This is a large discrepancy, and shows that using CCI information to forecast yield is 

much more accurate and useful than a trend model or weather model formulated as in this 

research.  

 The third goal of this research was to see how both the weather and CCI models 

performed throughout the growing season.  A major benefit of formulating the models as 

they were in this research was to be able to estimate them for 13 weeks during the 

growing season. Many yield forecasting models in the literature do not have this ability, 

and are not useful until late in the growing season. Both the weather and CCI models 

perform rather poorly early in the growing season, with MSEs of around 15-16 bushels 

per acre. The weather model’s MSE hovers around 15 bushels per acre throughout the 

entire growing season, with variation of typically less than 1 bushel per acre between 

weeks. As stated before, this is marginally, if at all, better than the trend-line. The CCI 

model, though, increases drastically in its yield forecasting accuracy, with an MSE of 

around 10 bushels per acre by mid-July and an MSE of 8 bushels per acre by mid-

September.  This shows that while the CCI model is more useful at forecasting yield 
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during the growing season than the trend or weather models, it still performs its best at 

the end of the growing season. By mid-July, though, the forecaster has the ability to use 

the CCI model to forecast yield fairly accurately. 

 This work builds on the works of Kruse and Smith (1994) and Fackler and 

Norwood (1999) and shows that the method of forecasting yield with crop conditions 

data is a valid and accurate option for the yield forecaster. The weather model, which was 

formulated based on the findings of Schlenker and Roberts (2006), does not perform as 

well. Forecast encompassing tests show that the addition of accumulated GDD and 

accumulated rainfall data does not add any additional information to a yield forecasting 

model that crop conditions data does not already contain. This is not to say that using 

GDD and rainfall data is not effective, but rather that the way these variables were 

formulated did not work as well as was anticipated. 

 Further extensions of this research could do several things. Further research can 

approach building a better weather model with GDD and rainfall data formulated in a 

similar manner, which would be beneficial to the forecaster in that weather data could 

possibly be used during the growing season to forecast yield, giving the forecaster more 

options than just crop conditions data or a trend model. A further investigation into the 

second order dominance (MDM and forecast encompassing tests) could lend more insight 

into the statistical dominance of an in-season weather or CCI yield forecasting model. 

MDM and forecasting encompassing tests could be run at more points during the growing 

season to get a better sense of when one model becomes dominant over the other. An 

investigation into the problematic results of the MDM test could also be conducted, to 

help determine if there is a statistical difference between the out-of-sample forecast errors 
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of the models used in this research. A deeper examination into the concept of accelerated 

technological change may be prudent, as new methods of modeling may need to be 

developed if the phenomenon has truly occurred.  Deeper investigation into estimating 

these in-season forecasting models at periods related to the physiological development of 

the crop may lend insight into findings like that of Kaufmann and Snell (1997). 

 In conclusion, this research developed several in-season yield forecasting models 

that vary in their usefulness. It was shown that crop conditions information is very useful 

as a variable for forecasting yield, with model MSEs below 10 bushels per acre. This is 

more accurate than a trend or weather based model, and this increased accuracy may lead 

to better pricing and storage decision for producers and agribusiness firms.  
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