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ABSTRACT

EFFICIENT NUMERICAL OPTIMIZATION FOR PARALLEL DYNAMIC OPTIMAL

POWER FLOW SIMULATION USING NETWORK GEOMETRY

Rylee Sundermann

2022

In this work, we present a parallel method for accelerating the multi-period

dynamic optimal power flow (DOPF). Our approach involves a distributed-memory

parallelization of DOPF time-steps, use of a newly developed parallel primal-dual interior

point method, and an iterative Krylov subspace linear solver with a block-Jacobi

preconditioning scheme. The parallel primal-dual interior point method has been

implemented and distributed in the open-source PETSc library and is currently available.

We present the formulation of the DOPF problem, the developed primal dual interior point

method solver, the parallel implementation, and results on various multi-core machines.

We demonstrate the effectiveness our proposed block-Jacobi preconditioner and various

Krylov subspace methods at improving parallel performance.
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1 INTRODUCTION

While maintaining a reliable power grid there is an innate goal to reduce cost. Towards

this goal several models to optimize the power distribution across the power grid have

been developed.

The optimization on the power grid with a set load is called AC-Optimal Power

Flow or (ACOPF). This method can be expanded to consider multiple moments of

different loads, resulting in the dynamic optimal power flow (DOPF), alternatively

referred to as the multi-period ACOPF (MPOPF) problem. This allows the DOPF to find

the optimal operation across a set time horizon while subject to the network constraints.

The DOPF problem over a discretized time horizon is essentially a series of ACOPF

problems with an inter-temporal connection (Figure 1). The complexity of the DOPF

Figure 1: Visualization of DOPF as a series of ACOPF problems along a time horizon.

problem lies with the computation and memory demands as the time horizon expands.

Memory limitations are a significant limiting factor for a single processor on most time

horizons of the Texas 2000-bus power grid, a visualization of which is presented in Fig. 2.

To address these limiting factors, we built both a parallel DOPF solver and a generalized

parallel primal dual interior point method optimization solver. The parallel DOPF solver

is built upon the the Exascale Grid Optimization toolkit (ExaGO) [2] from Pacific

Northwest National Laboratory due to its hierarchical structure and foundation utilizing

the Portable, Extensible Toolkit for Scientific Computation (PETSc) [9] data management
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Figure 2: ACTIVSg2000 network for a single time-step.
Source: [10]

object DMNetwork [1] which will be discussed in section 4. The structure of ExaGO

allows the DOPF solver to build upon the the already implemented ACOPF solver, and the

utilization of the PETSc library allows parallel vector and matrix creation and hosts a suite

of parallel solvers designed to facilitate parallel implementation. These PETSc objects

allow for a direct link to PETSc’s sublibrary Toolkit for Advanced Optimization (TAO)

which hosts our parallel primal dual interior point method (PDIPM).

Within numerical optimization, primal dual interior point methods are a subset of

interior point methods that find optimal solutions to linear/nonlinear convex optimization

problems by traversing the feasible region. The method minimizes the function f(x) that

is subject to equality G(x) and inequality H(x) constraints. To create a Lagrangian

function we rewrite the inequality constraints as equality constraints by introducing a

barrier function. Thus, we minimize f(x)− µ
∑NH

i=1 ln(zi) subject to the equality
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constraints G(x) and H(x)− z where NH = dim(H(x)). Thus the Lagrangian function

Lµ(X) = f(x) + λT
GG(x)− λT

H(H(x)− z)− µ
NH∑
i=1

ln(zi)

can be minimized using a Newtons method solver.

1.1 LITERATURE REVIEW

With the DOPF problem being comprised of a series of ACOPF problems the complexity

in terms of memory and computation grows almost linearly with time steps. Due to this,

the greatest challenge for the solution of over long time horizons is memory and

computational efficiency. There are several different methods to combat these challenges

and they can all be separated into sequential and parallel methods.

1.1.1 SEQUENTIAL DOPF

Within DOPF solvers, the sequential solvers primarily run into memory bottlenecks and

thus tend to solve smaller network problems. An example of this is BATTPOWER [20], a

DOPF solver built upon the commonly used ACOPF and power flow (PF) solver

MATPOWER. This work presented a memory efficient approach to solving the DOPF

problem by refactoring the system to take advantage of the sparse nature of the problem.

While this does improve memory usage, the process of applying a block-Jacobi

preconditioner to the parallel PDIPM accomplishes the same result while obtaining

super-linear scalability on the Hessian and gradient evaluations. These evaluations are the

most computationally expensive aspect of their simulation.

In [21], it was demonstrated on the 3-bus cases that utilizing analytical derivatives

one can achieve a reduced computation time as compared to numerical differentiation.

This result was achieved by comparing a commercial solver that utilized numerical

differentiation to a designed PDIPM solver However, as with BATTPOWER, these
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analytical derivatives are the most computationally expensive aspect of their simulation.

This is a contrast from our research, in which these analytical Hessian and gradient

evaluations compose only 5% of total computation time.

Within ExaGO [3], the library this work is built upon, IPOPT [18] is utilized to

solve the DOPF problem. In Section 5, we will directly compare our parallel results to the

results obtained by this work and show the benefits of our work in building a parallel

PDIPM and DOPF simulation.

1.1.2 PARALLEL DOPF

There are a few groups working on a parallel DOPF solver, including a parallel

multi-period contingency constrained solver. The work presented in [15] consisted of a

parallel solver built in Julia and utilized the parallel interior point method solver PIPS

[13]. The limitation of this approach comes when trying to solve large network systems.

The LDLT factorization PIPS uses is expensive due to communication and memory

requirements. While our work utilizes the same factorization, we take advantage of the

structure of the DOPF problem and implement a block-Jacobi preconditioner. This allows

for the application of the LDLT factorization to be applied on each processor

independently reducing both memory and communication. Additionally, our work

expands on this process with the introduction of a general parallel primal dual interior

point method solver as PIPS requires the optimization problem to be of a specific

structure.

In the results of [12], they describe a parallel approach to the DOPF problem that

is constructed on a single processor then distributed using Middleware Software to a

parallel machine. Their proposed Genetic Algorithm based DOPF appears to be

unscalable for large scale HPC simulations as it failed to converge in their tests in their

case of 200 generators.

Within the tech report [16], this group utilized PETSc for their parallel solve of the
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KKT problem. However, the formulation of the problem starts initially in MATLAB using

MATPOWER then the solve calls their C++ code which then distributes the matrix across

processors before solving the system. The limitations of this process are the memory of a

single processor and the communication bandwidth between processors. Additionally this

only parallelizes the solve of the KKT system and not the construction leading to a

sequential construction of each time step. These limitations of only parallelizing the

solution step also occur in [12] previously described. Finally the proposed Additive

Schwarz method (ASM) preconditions the KKT matrix using the data of two time steps

that is not stored on that processor, adding to the required communication. Additionally as

the underlying network expands the memory required for this will increase. For this

reason we believe that our block-Jacobi approach which does not require overlap yet takes

advantage of the sparse inter-temporal connections is a more desirable preconditioning

method for this application.

In [14] the same algorithm is used as in [15]. Within this paper, the largest network

solved was the 1354-bus, however they presented solution times of the linear system for

the 9241-bus system. Thought the 9241-bus system had both memory and convergence

issues. This highlights the benefits of our block-Jacobi preconditioner, as they apply more

processors per time-step allowing for a greater amount of total memory as compared to

our approach, however, due to the memory and communication bandwidth the LDLT

factorization it is inefficient. We demonstrate this limitation of the LDLT factorization in

Section 5.

1.2 ORGANIZATION OF THE WORK

This work begins with the mathematical formulation of the Dynamic Optimal Power Flow

(DOPF) problem followed by a description of numerical optimization focused on Primal

Dual Interior Point Methods (PDIPM) in sections 2 and 3 respectively. Then in section 4

an introduction to parallel programming, packages used and the parallel implementation.
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Culminating in a description of numerical results on multiple parallel computers in section

5.
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2 DYNAMIC OPTIMAL POWER FLOW

The dynamic optimal power flow (DOPF) problem aims to optimize the power production

by minimizing the cost of production over a time horizon. Toward this end, we discretize

the time horizon creating what are essentially, snapshots of the power grid. Directly

solving the alternating current optimal power flow (ACOPF) problem for each of the

snapshots independently, however, can lead to physically impossible shifts in the network

distribution. To counter this we impose linking conditions between the snapshots to

maintain physically meaningful results. Adding this link requires the network to remain

within physically feasible bounds but requires all systems to be solved simultaneously,

significantly increasing the size of the optimization problem. In the subsequent sections

we will discuss the mathematical formulation of the ACOPF problem, the inter-temporal

linking constraints, and the DOPF problem.

2.1 FOMULATION OF ACOPF

Alternating Current Optimal Power Flow (ACOPF) aims to find the most cost effective

production and distribution across the power grid at a set instance. The mathematical

foundation of ACOPF is a minimization problem where the cost of power production

varies across generators. For any generator Gk, there are scalars α, β, γ that form a

quadratic cost function dependent on the power produced. Thus, the total cost function,

f(x) =

Ng∑
k=1

(
αkP

2
Gk

+ βkPGk
+ γk

)
(1)

is a sum of these costs over the number of generators Ng and the x vector is comprised of

x =

[
Pg Qg VR VI

]T
(2)
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for each bus. VR and VI exist on every bus while Pg and Qg correlate to the generators on

any given bus with the following constraints:

[
Pg− Qg− V −

R V −
I

]T
≤

[
Pg Qg VR VI

]T
≤

[
Pg+ Qg+ VR+ VI+

]T
(3)

where Pg+/− and Qg+/− are generator dependent while V
+/−
R and V

+/−
i are unbounded

and are treated as +∞ and −∞ respectively. Furthermore, the feasibility region of this

problem is restricted by physical constraints on the power network. The equality

constraints:

∆Pf =
∑

Abr(f,t)=1

(Gff (V
2
Rf + V 2

If ) + VRf (GftVRt −BftVIt) + VIf (BftVRt +GftVIt))

−
∑

AG(f,k)=1

PGk +
∑

AL(f,j)̸=0

(PDj)

= 0, (4)

∆Qf =
∑

Abr(f,t)=1

(−Bff (V
2
Rf + V 2

If ) + VIf (GftVRt −BftVIt)− VRf (BftVRt +GftVIt))

−
∑

AG(f,k)̸=0

QGk +
∑

AL(f,j)=1

(QDj)

= 0, (5)

∆θref = VIref − VRref tan(θref ) = 0. (6)

where (4) and (5) are the real and reactive power balance equations and (6) holds the

reference angle constant. The inequality constraints consisting of voltage magnitude:

(Vmin)
2 ≤ V 2

Ri + V 2
Ii ≤ (Vmax)

2 , (7)
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and power flow between each bus:

0 ≤
(
P 2
ft +Q2

ft

)
≤ (S+

ft)
2,

0 ≤
(
P 2
tf +Q2

tf

)
≤ (S+

ft)
2. (8)

where Vmin and Vmax are given physical limits, and Sft/Stf are a variable max for each

line labeled RATE A, RATE B, RATE C for normal, short-term, and emergency

operations.

2.2 FORMULATION OF DOPF

With expanding ACOPF to the DOPF problem we expand the system over time. Solving

the DOPF of a time frame T requires assessing the ACOPF problem Nt times at ∆t

intervals. Therefore, the DOPF problem is also a minimization problem with the objective

function

f(x) =
Nt∑
t=1

Ng∑
k=1

(
αkP

2
Gk

+ βkPGk
+ γk

)
(9)

and the new x vector

x =

[
x1 x2 ... xt ... xNt

]T
(10)

is comprised of the sub-vectors xt from each ACOPF problem.

Then, the constraints for DOPF consist of the same equality and inequality

constraints for each sub-vector as the ACOPF. Thus, at time step t the xt sub-vector is

subject to the constraints listed in (3) – (8). The additional time dependent constraint is an

inequality constraint that handles generator ramping. These ramping constraint equations

are

PG(t−∆t)− PG(t) ≤ rGk
∆t (11)
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and

PG(t)− PG(t−∆t) ≤ rGk
∆t. (12)

These constraints require consecutive time-steps to be within a threshold of generator

output allowing for the generators to increase production to meet the new demand. Due to

the ramping constraints there is a link in time between current and neighboring time-steps.

The impact of the temporal link in the parallel solution will be discussed in a later section.
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3 PRIMAL DUAL INTERIOR POINT METHOD

Within numerical optimization primal dual interior point methods is a subset of the

interior point methods that are widely implemented for finding the optimal solution to

linear and nonlinear convex optimization problems. The significant difference between

interior point method and the more common simplex method for linear optimization lies

in how they traverse the feasible region. The simplex method finds optimal solutions by

traversing the boundaries of the feasible region while interior point methods traverse the

interior of the constraint bounds.

3.1 FORMULATION OF PDIPM

In this section, we construct a PDIPM for solving constrained nonlinear optimization

problems and implement the PDIPM in the PETSc library as an open-source parallel

solver. Consider the described optimization problem for DOPF, with the objective function

f(x), equality constraints g(x), inequality constraints h(x), and upper and lower bounds

x− and x+ on x. Then the optimization problem can be written in a compact form as

min
x

f(x)

s.t. g(x) = 0,

h(x) ≥ 0,

x− ≤ x ≤ x+.

(13)

From (13), we combine the constraints and the bounds to obtain

G(x) =

 g(x)

x− xeq

 and H(x) =


h(x)

x+ − x

x− x−

,

where xeq represents the set of x variables where x− = x+. We introduce a set of slack

variables z and a logarithmic barrier function to the original objective function to ensure
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the positivity of z. Then (13) is formulated as the new optimization problem:

min
x

f(x)− µ

NH∑
i=1

ln(zi)

s.t. G(x) = 0,

H(x)− z = 0,

(14)

where NH denotes the number of inequality constraints in H . Note that µ is driven to zero

during the optimization.

Define X =

[
x, λG, λH , z

]T
. Then the final transformation of (14) is the single

Lagrangian function:

Lµ(X) = f(x) + λT
GG(x)− λT

H(H(x)− z)− µ

NH∑
i=1

ln zi, (15)

where λG and λH are Lagrangian multipliers for the equality and inequality constraints,

respectively. Additionally, the solution to (14) will result in a saddle point in (15).

Applying Newton’s method with (15) as the target function, we aim to find a critical point

x∗ that will minimize our original function (13).

The minimizer X∗ of (15) must satisfy KKT conditions [11], which allow an

extension of Lagrangian multipliers to inequality constraints. We apply a Newton’s

method to refine an initial guess X0 by

Xn+1 = Xn + α∆X, (16)

in which the search direction ∆X is calculated by solving

K∆X = −F. (17)
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The symmetric KKT matrix K = ∇2Lµ is



Wxx ∇G(x)T −∇H(x)T 0

∇G(x) 0 0 0

−∇H(x) 0 0 I

0 0 I ΛH ∗ Z−1


. (18)

The right-hand side vector is

F =



Wx

G(x)

z −H(x)

ΛHe− µ ∗ Z−1e


, (19)

where

Wx = ∇f(x)T +∇G(x)TλG −∇H(x)TλH , (20)

Wxx = ∇2f(x) +∇2G(x)TλG −∇2H(x)TλH , (21)

e is a vector of ones, I is the identity matrix, and Z and ΛH are square matrices with z and

λH along their diagonals, respectively.

At the end of each iteration, we test the convergence of the Newton’s solver by

testing the norm of F which is separated between prime and dual components described as

the residual norm

r =
√

W T
x Wx + (ZΛHe− µe)T (ZΛHe− µe) (22)

and constraint norm (c-norm)

τ =
√

G(x)TG(x) + (z −H(x))T (z −H(x)). (23)



14

These norms are then used as convergence criteria. In our implementation, convergence is

reached when the absolute c-norm and either absolute or relative residual tolerances are

met.

Figure 3: Software structure of PDIPM in PETSc
KSP: Krylov Subspace and Preconditioner methods.
SNES: Scalable Nonlinear Equation Solvers.

The PDIPM is implemented as a general constrained optimization solver in

PETSc. Figure 3 illustrates the software structure of the PDIPM in PETSc. In this solver,

we iteratively solve the KKT systems (17) using a preconditioned Krylov subspace

method. PDIPM updates only the elements of G(x), H(x), ∇G(x), ∇H(x), and Wxx that

directly depend on Xn.

The parallel implementation of the PDIPM method is achieved by distributing all

involved vectors and matrices across multiple processors and utilizing PETSc scalable

linear equation solvers (KSP) and Scalable Nonlinear Equation Solvers (SNES) [8].
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4 PARALLEL PROGRAMMING

In this section we will discuss the various aspects of the parallel implementation of our

code, including libraries used and the parallel distribution of the application. We will

begin with a description of the PETSc library used for its vast array of parallel data

structures and solvers, then describe its sub-library TAO where our PDIPM solver is

implemented. Finally, we will conclude with a discussion of the parallelization of the

ExaGO library from Pacific Northwest National Laboratory that is the foundation of our

parallel DOPF solver.

4.1 PETSC LIBRARY

The Portable Extensible Toolkit for Scientific Computation (PETSc) library is an

open-source repository comprised of data structures and routines built to facilitate parallel

programming. The PETSc library is used internationally as the foundation of many

parallel software packages, including ExaGO that our DOPF simulation is built on.

4.1.1 DATA STRUCTURES

ExaGO simulations utilize PETSc’s DMNetwork data management object to contain the

power grid connections and node data. For each time-step we create a DMNetwork object

using the data from each instance to construct a snapshot of the grid at that moment, and

use this to define the size of the full system. Additionally, they are used in parallel as each

ACOPF calculation used DMNetwork’s connection data to calculate (4), (5), and (8). This

is accomplished by creating local work vectors for each network see Figure 4 for

visualization. Finally, DMNetwork facilitates the local Vec to Array object

transformations utilized within ExaGO’s ACOPF to reduce calculation time (Fig. 4).



16

Figure 4: Global X vector to local x vector for 6 processors

4.1.2 SOLVERS

In our PDIPM solver within PETSc, we utilized two forms of parallel solvers: Scalable

Nonliner Equation Solvers (SNES) and Krylov Subspace and Preconditioner (KSP)

methods. We utilize the SNES solver to solve the nonlinear ∇Lµ(X) = 0 problem. We

accomplish this by using the default Newton method solver with a line search. This

non-linear Newton method has a linear sub-problem of the form

∇2Lµ(X) ∗∆X = −∇Lµ(X). (24)

This linear sub-problem is solved utilizing a Krylov subpace method and a preconditioner.

For scaling data on both the 200bus and the 2000bus power girds (section 5), we

utilized the default KSP Generalized minimal residual method with a sequential LDLT , a

parallel LDLT and a block Jacobi preconditioner with LDLT applied to inner diagonal

sub-blocks. Additionally, we demonstrated performance of four additional Krylov
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subspace methods that can be applied to our symmetric indefinite matrix. These four

methods are a biconjugate gradient stabilized method (BCGS), a flexible biconjugate

gradient stabilized method (FBCGS), a pipelined biconjugate gradient method

(PIPEBCGS), and a generalized conjugate residual method (GCR).

4.2 TAO PDIPM

The toolkit of advanced optimization (TAO) is a software library built for large scale

optimization problems. Built as a companion library to PETSc, TAO offers access to the

full suite of parallel data structures and scalable linear solvers.In this section, we will

describe the methodology of how the PDIPM method, which was described in section 3, is

parallelized, improved with an inertia shift, and linked to our DOPF application.

4.2.1 PARALLEL IMPLEMENTATION

For the parallelization of PDIPM, there is an important distinction between global

variables, which are labeled Nx,Nh, etc., and the local variables, which are labeled

nx, nh, etc. This classification allows the algorithm to independently update and solve its

part of the system. For example, when updating after an iteration each processor owns a

portion of the global X vector, and it is more efficient to have it update the corresponding

parts of KKT system than to communicate its information to another processor.

From the PDIPM solvers perspective, the user declares the sizes of all objects. For

example, the variables Nx and Nh are based on the vectors passed in when the functions

TaoSetInitialVector and TaoSetInequalityConstraintsRoutine are called. With these

vectors, the local sizes for the system are defined based their distribution across

processors. Thus, the partitions for vectors should match the row partitions of their

matrices.

The local variables then define the distribution of the KKT system and its

updating. For the following standard sequential KKT matrix,
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K =

Nx

Ng

Nh

Nh



Wxx ∇G(x)T −∇H(x)T 0

∇G(x) 0 0 0

−∇H(x) 0 0 I

0 0 I ΛH ∗ Z−1


, (25)

Nx Ng Nh Nh

the data exists with all objects on a single processor with global variable-defined offsets.

However, with multiple processors it is more complicated. Consider x to be split onto two

processors with nx elements on each. Also, let nh and ng represent the number of

element on each processor for the split H(x) and G(x). Then for Wxx, ∇G(x), ∇H(x)

let the subscripts 11, 12, 21, 22 represent which set the row/column is in. Finally, we will

let W = Wxx. Then, the KKT matrix on two processors is

This method requires communication only within the calculation of the 12 and 21

subscript portion of each matrix. Thus, the more sparse those portions are, the better

performance TAO can achieve. With our DOPF application, the only non-zero 12 or 21

matrix subscript is ∇H(x)T , where the only entries are based on ramping constraints.

Therefore, those sections are extremely sparse (Fig. 5).
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Figure 5: The nonzero distribution of the KKT matrix on two processors.

4.2.2 CONDITION NUMBER AND INERTIA

The KKT matrix (18) will become more indefinite and ill-conditioned for large-scale

problems. The sequential PDIPM software packages (e.g., IPOPT and MIPS) use a

reduced KKT matrix to improve computational efficiency. However, evaluation of the

reduced KKT matrix requires parallel matrix-by-matrix products that incur significant

data movement between processors and lead to a denser submatrix Wxx. Thus, we use the

uncompressed KKT matrix (18) in our current PDIPM/PETSc implementation.

In the algorithm, the search direction ∆X will be guaranteed to be a descent

direction (reduce f(x)), if the Hessian matrix Wxx is positive definite. To this end, we add

shifts to the matrix K as necessary to guarantee it is positive definite at each linear

iteration. We apply an LDLT matrix factorization preconditioner, provided by the

MUltifrontal Massively Parallel sparse direct Solver (MUMPS) library [7], to K and

evaluate its inertia. To ensure a descent direction, we expect no zero inertia indices and the
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number of primal and dual variables to match the number of positive and negative inertia

indices, respectively. Should there be a different distribution of the matrix inertia, we

introduce a shift, δw, to balance positive and negative inertia indices and add a shift, δc, to

remove zero indices. This formulation can be represented as



Wxx + δw ∗ I ∇G(x)T −∇H(x)T 0

∇G(x) −δc ∗ I 0 0

−∇H(x) 0 −δc ∗ I I

0 0 I ΛH ∗ Z−1


. (26)

In our DOPF problem, we found that the introduced shift reduced overall run time

significantly, though when a shift is applied a new factorization is required before each

solve.

4.2.3 LINKING TO TAO: PDIPM

PDIPM requires the user to define several functions. These functions are: the upper and

lower bounds on x, equality functions, inequality functions, the Jacobian of both equality

and inequality functions, the Hessian of the objective function, and the Hessian of the

equality and inequality functions. These are all defined in our DOPF code and registered

with TAO using the following commands:

/* Objective and gradient */

ierr = TaoSetObjectiveAndGradientRoutine(tao->nlp,

TCOPFLOWObjectiveandGradientFunction_TAO,(void*)tcopflow);

/* Equality Constraints */

ierr = TaoSetEqualityConstraintsRoutine(tao->nlp,tcopflow->Ge,

TCOPFLOWEqualityConstraintsFunction_TAO,(void*)tcopflow);

/* Inequality Constraints */

ierr = TaoSetInequalityConstraintsRoutine(tao->nlp,tcopflow->Gi,
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TCOPFLOWInequalityConstraintsFunction_TAO,(void*)tcopflow);

/* Equality Jacobian */

ierr = TaoSetJacobianEqualityRoutine(tao->nlp,tcopflow->Jac_Ge,

tcopflow->Jac_Ge,TCOPFLOWEqualityConstraintsJacobian_TAO,

(void*)tcopflow);

/* Inequality Jacobian */

ierr = TaoSetJacobianInequalityRoutine(tao->nlp,tcopflow->Jac_Gi,

tcopflow->Jac_Gi,TCOPFLOWInequalityConstraintsJacobian_TAO,

(void*)tcopflow);

/* Set Hessian routine */

ierr = TaoSetHessianRoutine(tao->nlp,tcopflow->Hes,tcopflow->Hes,

TCOPFLOWHessian_TAO,(void*)tcopflow).

These functions all require slightly different input parameters for TAO and can be easily

located in the PETSc/TAO manual. Within TAO, these functions are called and updated

each iteration as X updates. The only PDIPM specific difference in these routines

involves the Hessian routine. For example, our Hessian routine is defined using the normal

TAO format.

TCOPFLOWHessian_TAO(Tao nlp,Vec X, Mat H, Mat H_pre, void *ctx)

The void ctx variable is the type-cast tcopflow object indicated when TAO routine was set.

The unique aspect comes from the Wxx term in the KKT matrix. The Hessian routine that

PDIPM requires needs the input to be the sum of the Hessian matrices of the objective,

equality, and inequality functions, which is

Wxx = ∇2f(x) +∇2G(x)TλG −∇2H(x)TλH . (27)
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Thus, to get the dual variables the TAO function,

TaoGetDualVariables(Tao tao, Vec *DE, Vec *DI),

should be called within the Hessian routine and the vectors DE and DI are updated within

TAO each iteration.

4.3 BUILDING UPON EXAGO

The Exascale Grid Optimization toolkit (ExaGO) [2] from Pacific Northwest National

Laboratory is a parallel repository specifically designed to solve large-scale power grid

optimisation problems. Within ExaGO there are routines for solving the power balance

equations (4)-(5) tied to their pflow object, the ACOPF problem (Sec. 2.1) within opflow,

and a serial DOPF problem within tcopflow solved with IPOPT. This work expanded the

ExaGO project by linking it to the PDIPM solver for both solving the ACOPF problem

and DOPF problem. Furthermore, the IPOPT solver the current version ExaGO uses is a

serial optimization solver, therefore applying PDIPM allowed for the parallelization of

this system. A comparison between these solvers is given in Sec. 5.

The ExaGO library is hierarchical similar to the previously mentioned PETSc,

thus allowing the assimilaiton of a new parallel solver. Within the DOPF application, one

of ExaGO’s tcopflow objects are created and this object contains all the information for

the system. In the tcopflow object is data for local and global vector sizes, all Vectors and

Matrices used, an array of all opflow contexts, and other information not pertinent to

changes made for parallelization. Within a sequential solve, the tcopflow object creates an

array of opflow objects with dimension equal to Nt then, each opflow object creates an

underlying pflow object that reads in the network data and builds a DMNetwork object to

organize the data into a usable format. A visualization of the hierarchical structure can be

seen in Fig. 6. From here, the opflow object calculates nx = dim(xt), ng = dim(g(xt)),

and nh = dim(h(xt)) for that instance, and setting the underlying model for optimization.
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Afterwards, the tcopflow object will calculate the total systems size using the sizes from

each underlying opflow objects. Additionally, arrays for the starting points for each

system are created, for example nxi[1] is the starting location of the second time-step

within the x vector i.e. x2.

Figure 6: A visualization of the structure of ExaGO.

In parallel programming, indexing is one of the most important aspects to consider

as all processors read the same instructions. The number of processors that can be utilized

in the DOPF simulation must divide the total time steps Nt, creating an upper bound. This

constraint allows for an easy calculation of the number of time-steps each processor

contains nt = Nt/np where np is the number of processors. From here, each processor

builds the tcopflow object, as already described. The main distinction is that global

dimensions are no longer equal to the local sizes (Nx ̸= nx). Therefore, to create the

vectors and matrices we utilize basic MPI commands MPI Allgather and MPI Allreduce

to calculate the starting indices and global sizes.

Once the tcopflow object is populated with data, the optimization model set data is

read in to set the load profiles of the network for each time-step. The load data is

separated into the real and reactive load demanded at each node. Additionally, as many

power grid utilize various forms of wind and solar power ExaGO supports adjusting the
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Figure 7: A visualization of parallel distribution.

power generated at these generators. For a sequential solve this data is read in for each

time step and the corresponding pflow object is adjusted. When in parallel, however, each

processor reads in and edits only the data for its time-steps. With each time-step updated

with the desired load profiles, the optimization problem is initialized with x0 by solving

the underlying pflow system.
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5 NUMERICAL RESULTS

Two standard power systems from the Texas A&M Synthetic Test Case Repository,

200-bus and 2000-bus systems [10] [19], were used to evaluate our PDIPM

implementation. For DOPF results, we utilized load profiles from Jan. 2017 on the

200-bus system to demonstrate viability on real-world data [2] and two manually defined

load profiles on the 2000-bus system for scope and scalability. The two load profiles for

the 2000-bus system are used to demonstrate the impact of load profiles have on solution

when they are within (load profile 1) or near/exceeding (load profile 2) ramping

constraints on a large power network. We load data every 5 minutes for the 200-bus

system and every one hour for the 2000-bus system. Thus, the number of time-steps

Nt = Duration(min)/T imeInterval(min).

For parallel computation, we set the number of processor cores Np = Nt; in other

words, each core holds an independent power network subsystem at a single time-step. As

discussed in Section 4, our DOPF is built on the ExaGO framework [4], which consists of

ACOPF and PFLOW objects and utilizes the DMNetwork class [1] in PETSc to handle

the construction and parallel distribution of the underlying power network, as shown in

Fig. 6. Our DOPF code first reads network data for a single time-step as shown in Fig. 8

and 2. Using DMNetwork/PETSc API functions, we created the power network;

registered network components, such as transmission lines as edges, buses and generators

as vertices; added these components to the network; and then had DMNetwork assemble

and distribute the resulting network to all processor cores [5]. The linear, nonlinear, and

optimization solvers were built on the top of this network via standard PDIPM/PETSc API

functions.

We conducted experiments on two computer systems: a Linux server and Theta, an

Intel-Cray XC40 system in the Argonne Leadership Computing Facility [6]. The Linux

server has dual Intel Xeon Gold 6130 CPUs at 2.1GHz with 32 cores (64 threads) and 192
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Figure 8: ACTIVSg200 network for a single time-step.
Source: [10]

GiB of RAM. Theta has 4,392 nodes, each with 64 1.3GHz Intel Xeon Phi 7230 cores

with 16 GiB of MCDRAM per node.

Table 1: Total Time of 200-bus System on Theta (seconds)

Duration Nt NVar LDLT b-Jacobi Speedup
Np=1 Np=Nt Np=Nt

0.5 hr 6 25,726 216 150 56 3.9
1 hr 12 51,604 658 608 88 7.5
2 hr 24 103,360 2043 972 135 15.1
4 hr 48 206,872 6767 2704 476 14.2

NVar: Number of variables in X.
Np: Number of cores.
Speedup: Column4/Column6.

Tables 1 and 2 show the total execution time of a 200-bus system on the Theta

supercomputer and on the Linux server. Tables 3 and 4 present experimental results of the

2000-Bus system utilizing the first load profile. More than 90% of the computation is

spent on solving the KKT linear systems (17), for which we compare three
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Table 2: Total Time of 200-bus System on the Linux Server (seconds)

Duration Nt IPOPT LDLT b-Jacobi Speedup
Np=1 Np=1 Np=Nt Np=Nt

0.5 hr 6 13 19 15 6.3 3.0
1 hr 12 35 57 67 14 4.1
2 hr 24 102 187 108 16 11.7
4 hr 48 581 621 520 87 7.1

Np: Number of cores.
Speedup: Column4/Column6.

preconditioners used in the Generalized Minimal Residual (GMRES) Krylov subspace

iterations: sequential LDLT (Np=1), parallel LDLT (Np=Nt), and block-Jacobi using Np

diagonal blocks with sequential LDLT applied to each inner subblock of the KKT matrix

(b-Jacobi).

Table 3: Total Time of 2000-Bus System (First Load Profile) on the Linux Server
(seconds)

Duration Nt NVar LDLT b-Jacobi
Np=1 Np=Nt Np=Nt

2 hr 2 34,554 136 143 163
10 hr 10 172,770 Fail 693 592
20 hr 20 345,540 Fail Fail 3,192

NVar: Number of variables in X.
Np: Number of cores.
Fail: Insufficient memory during matrix factorization.

Table 4: Total Time of 2000-Bus System (First Load Profile) on Theta (seconds)

Duration Nt LDLT b-Jacobi
Np=1 Np=Nt Np=Nt

10 hr 10 10,670 4,301 5,849
20 hr 20 Fail Fail 20,680

Np: Number of cores.
Fail: Insufficient memory during matrix fac-
torization.

The first load profile of the 2000-bus system (Tables: 3,4) has loosely linked

inter-temporal constraints, while the second load profile produces tighter links. For the
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Table 5: Total Time of 2000-Bus System (Second Load Profile)
on Linux server (seconds)

Duration Nt LDLT b-Jacobi
Np=1 Np=Nt Np=Nt

2 hr 2 251 244 1,034
10 hr 10 Out of Mem. Out of Mem. 17,223

Np: Number of cores.
Out of Mem.: Insufficient memory during matrix factor-
ization.

latter, the block-Jacobi preconditioner becomes less efficient, requiring far more inner

linear iterations and longer execution time as shown in Table 5. We conclude that the

block-Jacobi precondtioner improves parallel performance on certain systems. For large

size power systems, the primary benefit is its ability to converge to the optimal solution

with much less memory usage compared to the large memory overhead in LDLT

factorization.

We utilized IPOPT via ExaGO to validate the accuracy of our PDIPM. For all the

test systems, our PDIPM solutions gave the numerically identical optimal values of the

objective function f(x∗(t)) as IPOPT.

As a reference, Table 2 lists the numerical performance of IPOPT that is

comparable with the results of LDLT preconditioner but performs worse than our parallel

PDIPM with the block-Jacobi preconditioner.

A subsystem of the 200-Bus system at a given time-step has approximately 4,287

variables, while the 2000-Bus system consists of 17,277 variables in each subsystem (i.e.,

∼4× larger). These numbers determine the size of the diagonal blocks of the KKT matrix,

as shown in Fig. 10. Although the 200-Bus system with 4-hour duration has more total

numbers of variables in X than does the 2000-Bus system with 10-hour duration, its KKT

matrix consists of 48 small diagonal blocks compared with 10 larger and denser diagonal

blocks for the 2000-Bus system. The latter requires much larger memory for LDLT

matrix factorization.



29

Figure 9: Visualization of the block Jacobi decomposition of the KKT matrix

Figure 10: Speedup of block-Jacobi preconditioner on 200-Bus system on the Linux
server and Theta ALCF machine.
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For small-to-medium size power systems (e.g., 0.5- and 1-hour duration of

200-Bus system), parallel LDLT does not show noticeable advantages over the

sequential runs. As the size of the problems increases (e.g., 10- and 20-hour duration of

2000-Bus system), sequential runs fail due to insufficient memory during LDLT matrix

factorization, while the parallel PDIPM with appropriate preconditioners successfully

computes solutions. In almost all experiments, the block-Jacobi preconditioner

outperforms LDLT and gives speedups over the sequential LDLT ranging from 3.0 to

15.1, as shown in Fig. 9.

In addition to the solutions of the KKT systems, some researchers found the

calculation of gradients and the Hessian matrices to be the next most computationally

expensive aspect [20]. We calculate the analytic derivatives in the sparse gradients and

Hessian matrix at each time-step simultaneously across multiple processors via ExaGO’s

ACOPF framework. Our experiments show that the gradient and Hessian evaluations took

less than 5% of the total computation time and achieved superlinear speedup on almost all

parallel tests. Table 6 presents the total time spent on the Hessian evaluations on Theta

using the LDLT preconditioner. The superlinear speedup likely comes from the cache

performance. The performance of 200-Bus is significant because it would have a high

cache hit ratio [17].

Table 6: Hessian Evaluations on Theta

Test Nt Total Time (seconds) Speedup
System Np=1 Np=Nt
200-Bus 48 118 1.6 73.75
2000-Bus 10 364 16 22.8

Np: Number of cores.
Speedup: Column3/Column4.

Finally, we consider how different KSP met hods applied to the linear solve within

the SNES solver Fig. 3 perform. While the standard conjugate gradient method requires a

symmetric positive definite matrix, the stabilized version of the biconjugate gradient
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method (BCGS) and its variations tested do not share these restrictions. Additionally, the

generalized conjugate residual method (GCR) is also similar to the standard conjugate

gradient method. However, it only requires that the matrix be Hermitian. However, GCR

is limited by memory as it requires twice the memory of the standard GMRES solver.

Table 7: Applications of Different KSP Methods

KSP LDLT b-Jacobi Speedup
Methods Np=1 Np=12 Np=48 Np=12 Np=48
GMRES 325.493 297.793 317.649 151.873 95.026 3.425
BCGS 371.539 306.090 355.492 110.943 65.046 5.710

FBCGSR 315.141 DNC 310.947 146.578 56.126 5.614
PipeBCGS 422.597 357.141 544.311 229.962 69.629 6.069

GCR 276.730 192.497 262.093 117.472 DNC NA

Np: Number of cores.
Speedup: Column2/Column6.
Tests using 200-bus 4hrs. (Nt = 48)
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6 CONCLUSION

This work has presented a parallel method for accelerating the multi-period dynamic

optimal power flow (DOPF). We presented the methodology behind both our parallel

primal dual interior point method solver, our parallel DOPF application, and their parallel

implementation. We demonstrated the effectiveness of our parallel Primal Dual Interior

Point Method and block-Jacobi preconditioner on the DOPF problem via scaling data on

different parallel machines. In addition, this work demonstrated the speedup the parallel

DOPF application achieved on different large scale power grids with varying time

horizons.
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