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ABSTRACT 

USING LONG SHORT-TERM MEMORY NETWORKS TO MAKE AND TRAIN 

NEURAL NETWORK BASED PSEUDO RANDOM NUMBER GENERATOR 

Aditya Harshvardhan 

2022 

     Neural Networks have been used in many decision-making models and been employed 

in computer vision, and natural language processing. Several works have also used Neural 

Networks for developing Pseudo-Random Number Generators [2, 4, 5, 7, 8]. However, 

despite great performance in the National Institute of Standards and Technology (NIST) 

statistical test suite for randomness, they fail to discuss how the complexity of a neural 

network affects such statistical results. This work introduces: 1) a series of new Long Short-

Term Memory Network (LSTM) based and Fully Connected Neural Network (FCNN – 

baseline [2] + variations) Pseudo Random Number Generators (PRNG) and 2) an LSTM-

based predictor. The thesis also performs adversarial training to determine two things: 1) 

How the use of sequence models such as LSTMs after adversarial training affects the 

performance on NIST tests. 2) To study how the complexity of the fully connected 

network-based generator in [2] and the LSTM-based generator affects NIST results. 

Experiments were done on four different sets of generators and predictors, i) Fully 

Connected Neural Network Generator (FC NN Gen) – Convolutional Neural Network 

Predictor (CNN Pred), ii) FC NN Gen - LSTM Pred, iii) LSTM-based Gen – CNN. Pred, 

iv) LSTM-based Gen – LSTM Pred, where FC NN Gen and CNN Pred were taken as the 

baseline from [2] while LSTM-based Gen and LSTM Pred were proposed. Based on the 

experiments, LSTM Predictor overall gave much consistent and even better results on the 
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NIST test suite than the CNN Predictor from [2]. It was observed that using LSTM 

generator showed a higher pass rate for NIST test on average when paired with LSTM 

Predictor but a very low fluctuating trend. On the other hand, an increasing trend was 

observed for the average NIST test passing rate when the same generator was trained with 

CNN Predictor in an adversarial environment. The baseline [2] and its variations however 

only displayed a fluctuating trend, but with better results with the adversarial training with 

the LSTM-based Predictor than the CNN Predictor.  
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1. INTRODUCTION 

1.1 BACKGROUND 

Random Numbers are used in many fields like information theory, probability 

theory, statistics, computer simulation, cryptography, pattern recognition, etc. [15]. Such 

numbers are generated by Random Number Generators (RNGs). These RNGs are of two 

types: 1) True Random Number Generator (or Random Number Generator [3]), 2) Pseudo 

Random Number Generator.[3] 

A True Random Number Generator (TRNG) is a method of generating random 

numbers through physical process like thermal noise, phase jitter of oscillating signals and 

chaos [17]. This use of the physical sources results in greater randomness and 

unpredictability, meaning that these are almost impossible to predict since the source of 

randomness cannot be traced digitally through any cryptanalytic attacks. However, such 

TRNGs require dedicated hardware which are most often not available in a lot of 

computing systems [16].  

On the other hand, a Pseudo Random Number Generator (PRNG) is an algorithm 

that outputs a sequence of values that exhibit randomness [9 pg. 112:3] by using a “seed” 

(initial machine state). Since these types of RNGs do not use any physical source, they are 

deterministic in nature, i.e., they have an inherent pattern to come up these potentially 

“random” numbers [9]. Despite that they are still used since they can be used to create 

random numbers in limited resource devices like IoT (Internet of Things) devices [9]. They 

are also used in making computer games [11]. 

  In application security aspect of the PRNGs, operating systems like Windows [13] 

use PRNGs to create pseudo-randomness for ensuring security in any running processes 
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and applications. On the other hand, in communication, it is necessary for any low-end 

computing devices like the Internet of Things (IoT) devices [9]. Some use cases of pseudo 

randomness are transmitting low-level packets (pieces of information that travel over wired 

or wireless networks) and performing Artificial Intelligent (AI) algorithms [9]. To ensure 

safety and security during these operations, PRNGs are used to provide a starting random 

source for the communication encryption. 

When it comes to game development, PRNGs are mostly used to create an 

environment or a game mechanic (level design, world rendering) through procedural 

generation [11]. Procedural generation is a technique where game developers make use of 

curated algorithms to make any aspect of game design (e.g., map generation, character 

generation, story, etc.) lwith ease, without having to spend hours working to handcraft such 

experiences for gamers [19]. 

Most of the existing PRNGs are hand-crafted [7, 13, 18] which have specific state-

space in the algorithm or how the values are calculated (multiplication, modulo, etc.). The 

“seed” provides a starting point for the algorithm which then goes through a 

developer/researcher curated algorithm to produce 1 to n (where n is an integer) values as 

output. 

 

 

Fig. 1: PRNG I/O Flow  
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 While proposing PRNGs, one must also make sure that it passes statistical tests for 

randomness [3]. There are a lot of statistical test suite namely, NIST [3], TestU01 [20], and 

many more. Although TestU01 [20] is a very robust test for PRNG (introduced in 2007), 

however the newly updated (in 2010) NIST test [3] is the used in this thesis for testing 

randomness to allow a relevant comparison with previous works. 

 

1.2 MOTIVATION AND OBJECTIVE 

As seen in the previous section, the idea of so many things possible by Pseudo 

Random Number Generator is intriguing. Extensive work on this has been done using 

complex hand-crafted methods [18, 21]. However, recent works [2, 4, 5, 7, 8] have also 

shown the potential of developing new PRNGs without the need to completely handcraft 

it. These works make use of Neural Networks either partially or entirely in their PRNG 

algorithm. If these new works can be investigated upon carefully, one can also measure 

which Neural Network model parameters are responsible for being able to create such state-

of-the art PRNGs. 

 The Long Short-Term Memory Networks (LSTM) have shown a good pattern 

recognizing ability [10]. These LSTMs were utilized in [7] where the authors used it as a 

part of a complex hand crafted PRNG algorithm. So, it will be interesting to see how 

LSTM-based networks would affect randomness (based on NIST test) both in value 

generation (PRNG) and prediction (Predictor) (used in adversarial training - pg 10 2.1.5 

Generative Adversarial Network). However, in order to test the generators for 

cryptographic applications, it must not only pass statistical tests, but also perform multiple 

cryptanalytic tests to verify the model’s robustness. This, however, is not in the scope of 



4 

this paper and the focus is on comparing the NIST statistical test results since these tests 

themselves can show the quality of randomness for most use cases. This thesis focuses on 

understanding how network complexity (number of layers in the network) affect the NIST 

results. This thesis takes the Fully Connected (FC) Neural Network Generator (for 

proposing baseline [2] variations) and Convolutional Neural Network (CNN) Predictor 

proposed in [2] as reference models. 

 In summary, main objectives of this research are to find out: 1) How the sequence 

models (e.g., LSTMs) affect the results from the NIST test suite for randomness. 2) How 

network complexity, especially the number of layers of the neural network generator 

affects the NIST results after going through adversarial training process (See Sections 2.1.5 

and 3.1) [1, 2]. 

 

1.3 CONTRIBUTIONS 

 This research contributes in two ways. First, with the introduction of the new 

LSTM-based generator and predictor, the work introduces how involving the LSTM units 

in an adversarial training can result in a PRNG with great NIST results. In case of the 

LSTM-based Generator, the LSTM layer adds a degree of complexity to the network. On 

the other hand, the LSTM Predictor is introduced to exploit the LSTM’s strength in solving 

cognitive tasks (here, sequence data) [10 pg. 33] to see if the generated number show any 

signs of repetition or pattern. 

 Second, the training is done with four combinations of the generator and predictor. 

Two of which are from [2] and two are proposed. Also, the experiments dissect the 
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generators in these experiments to determine how the increase or decrease in the number 

of layers in the network affects the NIST results. 

1.4  THESIS ORGANIZATION 

 This thesis after chapter 1, consists of the following chapters. Chapter 2 is the 

‘Literature Review’ which includes ‘Concept Review’ of important concepts and 'Related 

Work’ on Neural Network based PRNGs. Chapter 3 introduces the ‘Design and 

Implementation’ of the generators (PRNGs), both proposed and baseline [2] variations, the 

proposed and baseline [2] predictors, the activation functions, adversarial training setup to 

train the generators. Chapter 4 discusses the experiments done using the different 

generator-predictor combinations after which Chapter 5 discusses the results and makes a 

conclusion. Finally, in Chapter 6, I discuss the limitations and future work 

 

 

 

 

 

 

 

 

 

 

 

 



6 

2. LITERATURE REVIEW 

 

2.1 CONCEPT REVIEW 

2.1.1 Perceptron: Introduced in 1958 [24], the “perceptron” focused on creating a 

probabilistic model of how visual information is organized and stored in higher order 

organism’s brain like humans. In other words, the author proposed an analogous model 

that can take learn from the visual data to classify the said visual stimulus just like the 

human vision and neural system. The diagram below (Fig. 2) shows the organization of a 

photo perceptron (one that takes in visual input). The inputs (light or no light) (S-points) 

from the cells of retina goes to the ‘Projection Area’ (AI) of the Association Cells (A-units). 

These inputs may either ‘excite’ or ‘inhibit’ the A-unit. If the sum of ‘excite’ and ‘inhibit’ 

states becomes more than the threshold, then A-unit fires with all-or-nothing value (0 or 

1). The connection between the ‘Projection Area’ (AI) and ‘Association Area’ (AII) is 

random (only forward connection). The responses from A-unit are then received by the 

Responses (R-unit) cells R1, R2, ...., Rn. The connection from the A-units to the R-units are 

also random (bi-directional connection). 

 

Fig 2: Organization of a photo-perceptron (Courtesy: [24]) 
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The perceptron is in fact an enhanced Threshold Logic Unit (TLU) [25 pg. 70]. The 

idea is that inputs to the neuron are multiplied by the weight values which are then added. 

This weighted sum then goes through an activation function, f(s) to give an output. 

 

Fig 3: A Perceptron (Neuron) [25] 

 

2.1.2 Fully Connected Neural Network (FC NN): The Fully Connected Neural 

Network is a class of Feed Forward Network using multiple neurons in multiple layers 

(Multi-Layer Perceptron) [25 pg. 159]. Below are the Single Layer Perceptron (Fig. 4) and 

Multi-Layer Perceptron or MLP (Fig. 5). In Fig 4, each neuron is fed 3 inputs which then 

get multiplied with the weight values (the w-values in Fig 4) and pass through the activation 

(part of the circle representing neuron + activation) to produce same number of outputs as 

the number of neurons. On the other hand, Fig 5, each neuron (perceptron) is connected to 

the other neuron in the next layer. An MLP having more than two layers has three types of 

layers: Input layer (takes the input values ‘x1’, ‘x2’, ‘x3’), output layer (gives out one (here 
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it is 'y’) or multiple outputs based on number of neurons in the layer), and hidden layer 

(layers in between input and output layer). 

 

Fig 4 A Single Layer Perceptron [25] 

 

 

Fig 5 A Multi-Layer Perceptron [25] 
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2.1.3 Feed Forward and Back Propagation: In a Feed Forward Network like 

MLP, the direction of the neuron connections is only one way, from layer 1 to n. To train 

the neural network, the difference between real and predicted value should be propagated 

back as ‘loss’ or ‘gradient’ to update the weight values for a better prediction in the next 

run. The algorithm to calculate the error gradients is called ‘Back Propagation’ [25 pg. 98]. 

2.1.4 Convolutional Neural Network (CNN): While the Fully Connected Neural 

Network had great performance on numerical dataset, complicated datasets like images 

caused a huge increase in number of parameters needed, slowing convergence [26]. So, 

Convolutional Neural Networks (CNNs) were introduced to solve these problems [27]. 

Each neuron in a CNN is connected to a small number of neurons from the previous layer 

(local connections) [26, 27]. The CNN also allow same weights to be shared among the 

connected groups of neurons [27]. Also, the introduction of a pooling layer causes the 

decrease in the image size (down sampling) [27]. All these factors result in much less 

parameter and faster convergence when dealing with complex data like images. The figure 

below shows the first CNN architecture (LeNet-5) used for object detection [27]. 

 

Fig 6: LeNet-5 Architecture (Courtesy [27]) 

In Fig 6, the CNN is used for digit recognition. The image (32 x 32) features are 

extracted through the local neuron units (filters) which only know about the region they 
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scan. The extracted features are numeric values between 0-255 (grey scaled image) in 

stacked 2-dimensional matrices called feature maps (6 maps each of size 28 x 28). After 

that only the high-level features are taken from the said feature maps through sub sampling, 

which reduce the spatial resolution or size of the matrices (6 maps each of size 14 x 14) 

containing the feature information. This process repeats again after which the feature maps 

are converted into a Fully Connected Convolution Layer which then goes to the Fully 

Connected Neural Network (MLP) hidden layer and finally a neural network output layer 

with 10 neurons. The last layer neurons contain different probability values for each of the 

10 classes indicating what the input image is closer to. 

 

2.1.5 Generative Adversarial Network (GAN): Generative Adversarial Networks 

are class of generative models which were first introduced to create realistic sample images 

by training the ‘generator’ against a ‘discriminator’ [1]. The generator G tries to create a 

sample from random noise. After that the output to the generator is fed to the discriminator 

D, which classifies the output from G being from the real distribution or the from the noise. 

The job for G is to ensure that the loss for G is minimum but D wants the loss of G to be 

maximum. Eventually the generator outsmarts the discriminator, and the discriminator 

cannot distinguish between the real data from the generated data.  



11 

 

 

Fig 7: Original GAN [1] (Image Courtesy [31]) 

 

2.1.6 Long Short-Term Memory Network (LSTM): The Recurrent Neural 

Networks (RNNs) were introduced to add the concept of memory [28] to the regular Fully 

Connected Neural Network to store any context information when going through the 

sentence to predict the next word. These RNNs had a “vanishing gradient problem” (error 

too close to 0) or the blown-up (very high) error values when theses RNNs were long. To 

solve this long-term dependency issue, Long Short-Term Memory Networks (LSTM) was 

introduced [10, 28]. The figure below (Fig 7) shows a typical LSTM Cell. These individual 

cells are connected in different ways to create a LSTM. 
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Fig 8: An LSTM Cell [28] 

In the above diagram (Fig 7), the LSTM Cell takes output from previous LSTM 

Cell or hidden state (ht-1), memory from previous cell, Ct-1, and current input Xt as inputs. 

The ht-1 and Xt together through three gates, forget (ft), input (it) and output (ot) gates. The 

forget gate decides which information should be forgotten. The input gate ensures the 

information to remember and output gate is used to decide what should be the output. All 

these gates also include sigmoid function that output value between 0 to 1 to denoted 

percentage of each of the operations. The Tanh is used together with sigmoid for updating 

cell state Ct as well as for the changing the cell output ht. 

 

2.1.7 Rectified Linear Unit (ReLU): This activation function converts an input x 

to an output ranging between [0, inf). The equation for ReLU is [29]: 

y = max (0, x) 
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Fig 9: Rectified Linear Unit (ReLU) [29] 

2.1.8 Leaky Rectified Linear Unit (Leaky ReLU): Using ReLU in some cases 

causes “Dying ReLU” issue, where any negative values are lost due to ReLU returning 0 

for x < 0. This increases learning time for the model. A variation of this, Leaky ReLU 

does not completely zero out any negative values. Leaky ReLU allows negative values to 

pass through after being multiplied by a factor ‘alpha’ (𝛼). The equation for Leaky ReLU 

is [29]: 

𝑦 = {
𝛼 ∗  𝑥  𝑖𝑓 𝑥 ≤ 0
𝑥        𝑖𝑓 𝑥 > 0

 

where 𝛼=0.01 in most cases but can be adjusted 

 

Fig 10: Leaky ReLU (Image Courtesy [29]) 



14 

2.1.9 Hyperbolic Tangent (Tanh): This activation function converts an input x to 

an output ranging between (-1, 1). The equation for Tanh is [29]: 

tanh(x) = 
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 

 

Fig 11: Hyperbolic Tangent (Tanh) [29] 

2.1.10 Sigmoid (σ): This activation function converts an input x to an output 

ranging between (0, 1). The equation for sigmoid is [29]: 

σ(x) = 
1

1+𝑒−𝑥 

 

Fig 12: Sigmoid Function [29] 

2.1.11 NIST Statistical Test Suite: This test suite was compiled by the National 

Institute of Standards and Technology (NIST) which consists of 15 tests to check the 

randomness of the sequences generated by the Pseudo Random Number Generator (PRNG) 

[3]. These tests were designed to determine many types of patterns or non-randomness 
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properties present in the generated sequence. The input sequence is taken by these tests in 

two forms: a Binary file or an ASCII file (.txt) having sequence numbers as a series of 0s 

and 1s. Below are the tests explained with their purpose [3]: 

The Frequency (Monobit) Test: This is a preliminary test done to determine whether 

the generated sequence is fit for any subsequent tests since a failure would mean that there 

is no randomness in the produced sequence [3]. This test does this by checking the 

proportion of 0s and 1s in the sequence. Since a random sequence would have about same 

number of 1s and 0s, so the test checks if the number of 1s is close to ½ and number of 

zeroes to be approximately equal. 

Frequency Test within a Block: This test checks how many 1s are present in the M-

bit blocks. If there are equal number of 1s and 0s within the M-bit block from the entire 

sequence, the sequence passes this test. If M=1, then it is the same as Monobit test 

(Frequency) [3]. 

The Runs Test: This test is done to how often the 0s and 1s are oscillating [3]. If the 

oscillations are too fast or too slow, then the sequence may have a pattern (non-

randomness) and hence fail the test. 

Tests for the Longest-Run-of-Ones in a Block: This determine whether an 

irregularity in the longest run of 1s in the sequence in an M-bit block. [3] 

The Binary Matrix Rank Test: This test checks if there is a linear dependence in the 

substrings of fixed length from the entire output sequence [3]. 

The Discrete Fourier Transform (Spectral) Test: The test determines if there are 

similar patterns near each other. If that is the case, then the assumption of the sequence 

being random is incorrect and test fails [3]. 
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The Non-overlapping Template Matching Test: This test detects if the provided non-

random patterns are found multiple times in the m-bit (m number of bits from the entire 

sequence) sequence. If the pattern is not found, the m-bit window slides one bit from its 

current position. The test fails if there are multiple occurrences of this aperiodic pattern [3] 

The Overlapping Template Matching Test: This test detects if the provided given 

patterns occurring multiple times in the m-bit (m-bit from the entire sequence) sequence. 

If the pattern is found, the m-bit window slides one bit from its current position. The test 

fails if there are multiple occurrences of this pre-specified pattern. [3] 

Maurer's "Universal Statistical" Test: This test determines whether the sequence 

can be compressed down to smaller size without losing any sequence information. If the 

sequence can be compressed considerably, then the sequence is not random. [3] 

The Linear Complexity Test: This test determines the length of Linear Feedback Shift 

Register. If the length of the LFSR is too short, then it is a non-random sequence. [3] 

The Serial Test: This test checks if the number of 2m m-bit overlapping patterns are 

about the same in the entire sequence. If there is any non-uniformity or unequal chance of 

one m-bit pattern over the other, then it is not a random sequence [3]. With m = 1, it is the 

same as Frequency test. 

The Approximate Entropy Test: The test is done to determine the frequency of the 

2m m-bit overlapping patterns. This is different that Serial test since it compares the 

overlapping block of consecutive lengths like m and m+1 bits and see if the patterns are 

equally likely just like a random sequence [3]. 

The Cumulative Sums (Cusums) Test: This test conducts a random walk test from 

the 0. 1 is considered as “forward” or +1 and 0 is considered “backward” or -1. This test 
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then determines if the cumulative sum of the partial sequences performing random walk is 

0 or close to 0 [3]. 

The Random Excursions Test: This test checks if the within a cycle (unit length steps 

taken from origin and back to it), number of visits deviates from the expected random 

sequence. This can be divided into 8 different tests with states as -4, -3, -2, 1, +1, +2, +3, 

+4, each having a test and conclusion [3]. 

The Random Excursions Variant Test: The test determines if total number of 

visits on the specific state in a Cusum walk [3]. This can be broken into 18 tests along with 

conclusions for states: -9, -8, ..., -1, +1, ..., +8, +9. 

 

2.2 RELATED WORK 

 Multiple works have shown that using Neural Networks to create practical PRNGs 

is possible [2, 5, 7, 8, 23]. The work from Marcello et al. [2] was the first one to attempt in 

creating a cryptographically secure PRNGs using Fully Connected Neural Network 

through an “end-to-end” adversarial training [1], like Generative Adversarial Networks [2]. 

The work makes use of two different types of approaches: Adversarial and Predictive. In 

the Adversarial approach, the Generator and Discriminator compete where the 

Discriminator would classify the sequence of the 8 generated values [x1, …x8] into 0 or 1 

(0 – generated and 1 – real). The Mean Square Error [30] losses are calculated for both 

generator and discriminator. On the other hand, in the Predictive approach, the setup is the 

same. The main difference is that instead of feeding the Predictor the entire generator 

output, only 7 out of 8 values are given as input. The Predictor then goes through the 

sequence as it goes through each Convolution, Max Pool and finally through the Fully 



18 

Connected layers to finally output the predicted value next in the sequence. The loss for 

the generator would be higher if Predictor gives a value very close or equal to the actual 

value in the generator output (last value in sequence). Inverse is the case for Predictor loss, 

being more as predicted value is further away from the actual value. The NIST results based 

on the training setup (200,000 epochs, 2048 mini-batch) is 95% overall pass rate compared 

to other general purpose PRNGs.  

Another work from [7], makes use of a Long Short-Term Memory (LSTM) to copy 

the behavior of irrational numbers (ex. pi). But it does not use LSTMs completely as a 

solution, rather a part of the complex algorithm to generate sequence in an iterative manner. 

The curated algorithm ensures that no repetition is present in the generated sequence by 

taking seed, buffer and input sequence as input. This input then goes to the Iterative 

Generator containing an LSTM trainable module which learns the nature of irrational 

numbers. Rest of the generator consists of “seed shift”, “Buffer sequence update” and 

“Input Sequence”. The output (random number) is added to the output sequence prn which 

then goes to the Secure Hash Algorithm 2 (SHA-2). This SHA-2 is what creates binary 

sequence as output which is then fed to the NIST test suite program to test the quality of 

the output sequence. The results from the NIST test suite indicate that the algorithm can be 

useful in parameter approximation in machine learning. 

 Other work [5] has a different take type of neural network training. The paper 

models the PRNG as agent present in a Markovian Decision Process (MDP) [22] in a 

Reinforcement Learning environment (USiennaRL) containing: i) A set of states, S and 

distribution of starting states p(s0), ii) A set of actions A, iii) Transition dynamics to map 

state-action at time t, iv) Instant Reward Function, R, v) A Discount factor (lower values 
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means more focus on instant reward).  A bit length is chosen for sequence (state space B). 

So, the MDP is |S| = 2B, |A| = 2B. The reward function R, the NIST test suite result is used 

as reward after each step for MDP. As for the model architecture [5], two LSTM layer are 

employed to avoid an exponential increase in the state-space while the RL-training. The 

model network then splits into a policy function and value function subnetworks, each with 

FC layers of 256, 512, 256 neurons in order (ReLU activation). The work has shown great 

NIST results for long sequences. 

 Taking all these works as reference, especially the works from [2] and [7], this 

thesis proposes a series of LSTM-based generators due to the network complexity (Number 

of layers) experiments. As for the LSTM predictor, the pattern finding nature of the LSTM 

[10] is an inspiration for proposing a predictor for the experiments conduct in this research 

both for the series of dissected Fully Connect Neural Network PRNG from [2] and the 

proposed LSTM-based generator. 
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3. DESIGN AND IMPLEMENTATION  

3.1 ADVERSARIAL SETUP 

The training process aims to minimize the possibility of predictor successfully 

predicting a value same as or close to the real value. The training idea is taken from [1, 2], 

where the generator initially generates easily predictable values. However, as the training 

goes for a given pair of seed and offset through more epochs/steps, the generator becomes 

cleverer and starts producing diverse values. Eventually, the predictor is not able to exactly 

guess the value and the generator “wins” this tug-of-war between itself and the predictor 

[1, 2]. 

The Fig 11 below shows the Adversarial training flow in one epoch (step). During each 

epoch, one (seed, offset) vector is taken from in the input evaluation dataset is fed to the 

generator (either one of the proposed LSTM-based or baseline [2] + variation Generators). 

The generator outputs 8 values ({n1, ..., n8} for each {seed, offset} from the input dataset) 

which then goes through split method (function) in a 7-1 split. The training aims at updating 

the weights for generator and predictor. With each generated 7-1 split output, the vector 

with 7 values ({n1, ..., n7} for each {seed, offset} from the input dataset) is fed to the 

predictor (LSTM or baseline [2] CNN Predictor) which then comes out as 1 “predicted” 

output. Then the real value n8 (last value from 7-1 split of the generator output) is compared 

with the Predictor output p0 through Predictor Loss (See Section 3.4) 3 times each epoch. 

Then the second part is when generator weight is updated. Predictor once again is used 

to generate a few predicted values (one value p0 for each {seed, offset} from the input 

dataset). Then generator loss is calculated once every epoch. Finally, one epoch is 

completed, and the entire process is repeated till the last epoch. 
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Fig 13: Adversarial Training Flowchart (in 1 step) 
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3.2 GENERATORS 

The generators use the same input and output configuration as mentioned in [2]. The 

experiments on the generators are done with 16-bit unsigned integers. The inputs to the 

generators are the seed s and offset o. After going through different layers of these 

generators, the output is a Tensor of 8 unsigned 16-bit integers. Below are the two types of 

generators used in this paper: 

3.2.1 LSTM-based generator: The LSTM-based generator is a modification of the 

fully connected generator seen in [2]. The first difference is the change in the default 

activation function of the forget (ft), input (it) and output (ot) gates from sigmoid (σ) to 

Leaky ReLU to avoid the LSTM cell to completely ignore any negative values.  

 

 

Fig 14: Modified LSTM Cell of the proposed LSTM-based Generator 
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The proposed generator starts with an LSTM layer, which accepts seed and offset 

values and outputs 32 values (through 32 identical LSTM units one of which is shown in 

Fig 12). Here, each output value is obtained from an individual LSTM Cell. After the 

LSTM layer, these 32 values through the Fully Connected layers. The fully connected (FC) 

layer in this class of the generator is also modified to have 32 neurons instead of 30 as in 

[2]. In all the variations of the LSTM-based generator (except the generator with LSTM + 

1 FC Layer), the hidden layer has a Leaky ReLU activation to avoid the vanishing gradient 

problem [2, 10]. The last Fully Connected layer uses the Modulo activation which is the 

same as [2] to ensure that values are within the expected range of 0 – 65535. All the LSTM-

based generators used in the experiments are highlighted in Fig 12a – Fig 12d. 

 

Fig 15a: LSTM-based Generator (LSTM Layer + 1 FC Layer) 

Model unit Parameters 

Input (seed, offset) 

LSTM Layer  32 LSTM Cells (Fig 12) 

FC Layer  32 neurons 

Output Vector of 8 values for every (seed, offset) pair 

 

Table 1a: LSTM-based Generator (LSTM Layer + 1 FC Layer) Parameters 
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Fig 15b: LSTM-based Generator (LSTM Layer + 2 FC Layer) 

Model unit Parameters 

Input (seed, offset) 

LSTM Layer  32 LSTM Cells (Fig 12) 

FC Layer  32 neurons 

Output Vector of 8 values for every (seed, offset) pair 

Table 1b: LSTM-based Generator (LSTM Layer + 2 FC Layer) Parameters 

 

 

Fig 15c: LSTM-based Generator (LSTM Layer + 3 FC Layer) 
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Model unit Parameters 

Input (seed, offset) 

LSTM Layer  32 LSTM Cells (Fig 12) 

FC Layer  32 neurons 

Output Vector of 8 values for every (seed, offset) pair 

Table 1c: LSTM-based Generator (LSTM Layer + 3 FC Layer) Parameters 

 

 

Fig 15d: LSTM-based Generator (LSTM Layer + 4 FC Layer) 

Model unit Parameters 

Input (seed, offset) 

LSTM Layer  32 LSTM Cells (Fig 12) 

FC Layer  32 neurons 

Output Vector of 8 values for every (seed, offset) pair 

Table 1d: LSTM-based Generator (LSTM Layer + 4 FC Layer) Parameters 
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3.2.2 Fully connected Neural Network generator (baseline + variations): All 

the fully connected (FC) generators take seed and offset values as input which then goes to 

the hidden layers. Each FC layer consists of 30 neurons where every layer except the last 

layer has a Leaky ReLU activation. The last layer has Modulo activation to ensure that 

values are within the range of 0 – 65535. Below are all the FC generators (Fig 13a – 13g), 

out of which generator depicted in Fig 13d is the baseline taken from [2]. The rest of the 

generators are variations of the baseline, each having different number of the layers for 

conducting the experiments to see how the network complexity (number of layers) and its 

effect on the NIST test results. 

* Note: Due to non-availability of the updated source code for the generator and predictor proposed in 

[2], best effort was made to reproduce the model (Fig 13d) from [2] in this paper 

 

 

Fig 16a: Fully Connected Generator (2 layers) 

Model unit Parameters 

Input (seed, offset) 

FC Layer  30 neurons 

Output Vector of 8 values for every (seed, offset) pair 

Table 2a: Fully Connected Generator (2 Layers) Parameters 
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Fig 16b: Fully Connected Generator (3 layers) 

Model unit Parameters 

Input (seed, offset) 

FC Layer  30 neurons 

Output Vector of 8 values for every (seed, offset) pair 

Table 2b: Fully Connected Generator (3 Layers) Parameters 

 

 

Fig 16c: Fully Connected Generator (4 layers) 
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Model unit Parameters 

Input (seed, offset) 

FC Layer  30 neurons 

Output Vector of 8 values for every (seed, offset) pair 

Table 2c: Fully Connected Generator (4 Layers) Parameters 

 

Fig 16d: Fully Connected Generator (5 layers) – baseline [2] 

 

Model unit Parameters 

Input (seed, offset) 

FC Layer  30 neurons 

Output Vector of 8 values for every (seed, offset) pair 

Table 2d: Fully Connected Generator (5 Layers) – baseline [2] Parameters 
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Fig 16e: Fully Connected Generator (6 layers) 

Model unit Parameters 

Input (seed, offset) 

FC Layer  30 neurons 

Output Vector of 8 values for every (seed, offset) pair 

Table 2e: Fully Connected Generator (6 Layers) Parameters 

 

 

Fig 16f: Fully Connected Generator (7 layers) 

 



30 

Model unit Parameters 

Input (seed, offset) 

FC Layer  30 neurons 

Output Vector of 8 values for every (seed, offset) pair 

Table 2f: Fully Connected Generator (7 Layers) Parameters 

 

Fig 16g: Fully Connected Generator (8 layers) 

Model unit Parameters 

Input (seed, offset) 

FC Layer  30 neurons 

Output Vector of 8 values for every (seed, offset) pair 

Table 2g: Fully Connected Generator (8 Layers) Parameters 

3.3 PREDICTORS 

The input and output configuration for both baseline Convolutional Neural 

Network (CNN) predictor and proposed LSTM predictor is same as in [2]. The predictors 

take n-1 values (in this case n = 8) from generator output and attempts to output an unsigned 

16-bit integer value as close to the actual (last) value from the generated sequence 

(generator output). 
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3.3.1 LSTM Predictor: The LSTM predictor consists of LSTM layers with 

different modification of the LSTM Cell than the LSTM-based generator. The LSTM Cell 

in the LSTM Predictor is modified to have LReLU activation instead of the Tanh activation 

which is usually employed in the LSTM based networks.  

 

Fig 17: Modified LSTM Cell of the LSTM Predictor 

The LSTM Predictor takes the n-1 values (here n = 8) from the generator output. 

These values then go through an LSTM layer of 8 units (8 identical LSTM Cells, one of 

which is shown in Fig 14) which produces 8 values, after which the values are reshaped 

and fed to the last LSTM layer with 1 unit. This layer outputs the predicted value during 

adversarial training. 
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Fig 18: Proposed LSTM Predictor 

3.3.2 Convolutional Neural Network Predictor: The Convolutional Neural 

Network (CNN) Predictor was introduced in [2]. It takes the output (n – 1 value, n = 8) 

from the previously discussed Pseudo Random Number Generators (both LSTM-based and 

FC Generators) as input. After going through several Convolutional and FC layers, it 

outputs a predicted output. The network consists of four 1-dimensional Convolutional 

layers, followed by a 1-dimensional Max Pool and finally two FC layers. Each convolution 

layer has 4 filters, kernel size = 2 and stride = 1. The FC layers are of two types one with 

4 units and one with 1 unit. In all the layers except Max pooling layer, Leaky ReLU is used 

as activation. 

3.4 LOSS FUNCTIONS AND OPTIMIZER 

The loss function used during the training of the previously mentioned generators 

is absolute difference of the generator and predictor output [2].  As for the optimizer, the 

Adam optimizer is used for keeping track of gradients [2, 14] during the adversarial training 

of the generators. 
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4. EXPERIMENTS 

 

The measure of how good the GAN/Adversarial training process help the 

generators is done by running NIST statistical test of randomness to test their output 

sequence. The generators are tested through the evaluation dataset (large dataset of 

100,000,000 binary bits) once before training and then thrice after going through the 

training process. 

 

4.1 PROCEDURE 

The training procedure takes a lot of influence from [2] to keep things comparable 

during training of the generators, both proposed and baseline [2] (and its variations). The 

evaluation dataset is initialized, where input includes (seed, offset) vectors with seed being 

a fixed value in the entire dataset and offset value increasing by one as we go through these 

input vectors. The total number of elements/pairs in the dataset is determined by the 

following formula [2]: 

  

Number of elements = total_bits/(output_size * num_output_bits) 

 

Since there is a NIST test performed before training process, the generators are fed 

the evaluation dataset. To this the generators produce a corresponding output (output size 

= 8) sequence. These sequences are always in the range of uint16 (unsigned 16-bit integer) 

during the testing and can be changed based on the max value provided during the 
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initialization of the generators. The values generated are stored as ASCII value which is 

the same format used in [2] and a format supported by the NIST test suite software [3]. 

Once the training is done, the trained generator is fed the evaluation dataset and 

then NIST is run again. Now the generator is expected to improve the quality of the output 

sequence by increase in the pass percentage of the NIST tests when compared to before 

adversarial training. 

 

4.2 TRAINING PARAMETERS 

The PRNGs are trained like the Generative Adversarial Networks (GAN). So 

anytime ‘GANs’ show up in the rest of the paper, it is the PRNGs generators combined 

with the predictors to create this training model (see Section 3.1). The GANs are trained 

for 10,000 epochs with a batch size of 1, where the predictor gradient is updated 3 times 

and generator gradient is updated 1 time. The learning rate for the training process for all 

generators is 0.01. Output from the generator is a sequence of unsigned 16-bit integers 

ranging from 0 – 65535. This is obtained from passing the single precision (32-bit) floating-

point values through the modulo activation in the last FC layer in all the generators like the 

generator in [2]. Evaluation dataset contains total of 100,000,000 bits (as an ASCII text file 

of 0s and 1s) per experiment for each type of the generator variations, totaling at about 

781,250 input samples. The longer sequences and larger batches batch sizes were not 

considered for the experiments due to Google Colab’s limited computing resources 

availability in a session. 
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4.3 NIST TESTING METHOD 

The NIST statistical test suite is used to measure output sequence quality from the 

generators. Default settings for block lengths for the following tests: 

• Block Frequency (Block length) = 128 

• Nonoverlapping Template Test (Block Length) = 9 

• Overlapping Template Test (Block Length) = 9 

• Approximate Entropy Test (Block Length) = 10 

• Serial Test (Block Length) = 16 

• Linear Complexity Test (Block Length) = 500 

Moreover, the test suite also takes in 10 bitstream inputs, indicating that each sequence is 

1 bit stream of 1,000,000 bits and hence there are 10 sequences tested within a total of 

100,000,000 total input bits to the NIST test. As seen from the below screenshot (Fig. 7) 

of the final analysis of all the individual test results of one experiment done on the trained 

generators. The result includes, the p-value of each test, number of bitstreams (output 

sequence) out of the total passing the tests and name of test type. The Asterisk (*) in the 

test result means that the p-values is below critic value = 0.01 (default) and hence a test 

failure. The overall test fails if the number of individual test success is less than the 

minimum required number of passing tests (varies and is calculated by the test suite) or 

the p-value of each individual test run is less than the critical value.   
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Fig 19: Example NIST final analysis output for a trained generator 

 

 



37 

5. RESULTS AND CONCLUSION 

5.1 RESULTS 

The below tables depict the average pass percentage of the output sequence generated by 

both the proposed LSTM-based and FC generators (baseline from [2] + variations) with 

varying number of Fully Connected Neural Network layers. Table 1 shows the NIST 

performance of untrained LSTM generators, where none of the tests passed. Tables 2 and 

3 show the NIST performance of the LSTM-based generators with both proposed LSTM 

Predictor and CNN Predictor from [2]. On the other hand, Table 4 depicts the NIST results 

for untrained FC generator (baseline from [2] + variations – all tests fail) the Tables 5 and 

6 show the performance of FC generators (baseline from [2] + variations) when trained 

with both types of Predictors. 

 

LSTM Generator: 

 

LSTM + 1 FC 

layer 

 

LSTM + 2 FC 

layers 

 

LSTM + 3 FC 

layers 

 

LSTM + 4 FC 

layers 

 

0.0% 

 

0.0% 

 

0.0% 

 

0.0% 

Table 3. NIST test result (overall tests passing) for untrained LSTM generators 
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Predictor 

 

LSTM + 1 FC 

layer 

 

LSTM + 2 FC 

layers 

 

LSTM + 3 FC 

layers 

 

LSTM + 4 FC 

layers 

LSTM Pred 57.5% 96.76% 98.7% 97.13% 

Table 4. Average NIST result (out of 3 experiments) LSTM-based Gen + LSTM Pred 

 

 

Predictor 

 

LSTM + 1 FC 

layer 

 

LSTM + 2 FC 

layers 

 

LSTM + 3 FC 

layers 

 

LSTM + 4 FC 

layers 

 

CNN Pred 

 

58.06% 

 

78.3% 

 

88.53% 

 

97.8% 

Table 5. Average NIST result (out of 3 experiments) LSTM-based Gen + CNN Pred 

 

FC Generator: 

 

FC Gen 2 

layers 

 

FC Gen 3 

layers 

 

FC Gen 4 

layers 

 

FC Gen 5 

layers 

 

FC Gen 6 

layers 

 

FC Gen 7 

layers 

 

FC Gen 8 

layers 

 

0.0% 

 

0.0% 

 

0.0% 

 

0.0% 

 

0.0% 

 

0.0% 

 

0.0% 

Table 6. NIST test result (overall tests passing) for untrained FC generators 
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Predictor 

 

FC Gen 

2 layers 

 

FC Gen 

3 layers 

 

FC Gen 

4 layers 

 

FC Gen 

5 layers 

 

FC Gen 

6 layers 

 

FC Gen 

7 layers 

 

FC Gen 

8 layers 

 

LSTM Pred 

 

64.5% 

 

96.08% 

 

97.8% 

 

94.2% 

 

97.4% 

 

94.6% 

 

97.4% 

Table 7. Average NIST result (out of 3 experiments) FC Gen + LSTM Pred 

 

 

 

Predictor 

 

FC Gen 

2 layers 

 

FC Gen 

3 layers 

 

FC Gen 

4 layers 

 

FC Gen 

5 layers 

 

FC Gen 

6 layers 

 

FC Gen 

7 layers 

 

FC Gen 

8 layers 

 

CNN Pred 

 

0.52% 

 

65.2% 

 

97.6% 

 

97.6% 

 

96.1% 

 

95.7% 

 

97.2% 

Table 8. Average NIST result (out of 3 experiments) FC Gen + CNN Pred 

 

5.2 EVALUATION OF THE RESULTS 

The generators fail all the NIST test cases before training, indicating that just increasing or 

changing the number of layers and initial weights in the FC layers of the generator is very 

much predictable, hance the test failures. Once the training procedure was done with 

generators, the pass rate in most cases was much higher, a lot of times touching the 94%-

98% pass rates with so less number of epochs when compared to the massive 200,000 

epochs with a mini-batch size of 2048 in [2].  These experiments show a better or an on 
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par performace when compared to the baseline. This however is pretty close to the work 

[23] where the pass rate was 98% in best case. 

 The generator and predictor loss plots are very chaotic and do not converge 

elegantly as they did during GAN training in the baseline [2]. The Fig. 18 below shows an 

example loss plot of Experiment 1 with LSTM-based generator- LSTM Predictor 

adversaries, possibly due the objective of both generator and predictor to stay away from 

one another as much as possible. Both generator loss (orange plot) and predictor loss (blue 

plot) are overlapping except around 100 to 200 epochs (steps). 

 

Fig 20: Loss plot during Experiment 1 for LSTM Gen 4 FC Layers - LSTM Pred 
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5.3 CONCLUSION 

This thesis proposed a series of generators: LSTM-based and Fully Connected 

Neural Network (FCNN Gen) baseline [2] variations (including baseline [2] for 

experiments). These generators were then experimented with the proposed LSTM 

Predictor (LSTM Pred) and CNN Predictor (baseline predictor from [2]) to determine 

how the use of LSTM in adversarial training (Generative Adversarial Network training) 

affects NIST test results. The experiments were also done to find how different number 

of layers (neural network complexity) affect the NIST pass rate. 

With the experimental setup, NIST performance is greater and more consistent 

when the generators were paired with LSTM Predictors compared to utilizing the 

Convolutional Neural Network Predictor from [2]. Out of the four pairs of generator-

predictor in adversarial training, the FC Generator – LSTM Predictor gave the best NIST 

perform which was also very consistent. This was followed by the LSTM-based 

Generator – LSTM Predictor, then by FC Generator - CNN Predictor and finally the 

LSTM-based Generator – CNN Predictor giving the worst NIST performance.  Hence the 

LSTMs can be very useful in creating Neural Network Based Generators (PRNGs) as 

well as the Predictors to help better train the generators.  

Next, we look at relation of increasing network complexity (number of NN 

layers) with respect to the NIST randomness test performance. The increase in number of 

layers in the generators did not have an expected increasing trend, rather the NIST results 

almost plateaued after 4 FC layers for FC Generator (variation of the baseline [2]) and 

after LSTM layer + 3 FC layers configuration for LSTM-based Generator (proposed). So, 
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it can be summarized that just by adding a greater number of layers to the FC NN PRNG 

or LSTM-based PRNG does not guarantee a huge increase in the NIST performance, 

provided the greater increase in training time. 
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6. LIMITATIONS AND FUTURE WORK 

This experiment was done to determine how the NIST test results are affected by 

different number of neural network layers in a series of proposed (LSTM-based) generators 

and the baseline [2] (FC NN) generator variations. The experiment also showed how the 

LSTM Predictor resulted in improved and a more consistent result. All this, however, is 

not without shortcomings. Something that was not explored is how different complexity 

Predictor (different number of layers) and different loss functions could affect the 

adversarial training of the generators, in the end potentially affecting NIST test suite in a 

whole different way. 

 Another aspect that was missing which could be explored is how increasing the 

batch size from a mere 1 (due to limited resources on Google Colab) to something larger 

like 2048 in the adversarial as done in [2] could affect the NIST test results, with the 

same configuration of the generators. Also, to make the PRNGs developed in this paper 

to be more secure, one can also look as to how to secure the neural network architecture 

from any manipulation from any external sources. 
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