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Core Ideas   

 The rye cover crop decreased N2O-N emission during early growth and increased 

emission during decomposition.  

 The rye cover crop reduced the partial CO2e from 496 to -1,061.  

 In 2019 and 2020, decomposing cover crop emitted 27 and 69% of fixed C 

respectively. 

 The random forest model outperformed by accounting 73% of the variation in the 

N2O-N daily emissions.    

 Daily CO2-C emissions was also best predicted by random forest model with 85% of 

variation explained.  

Abstract 

Cover crops improve soil health and reduce the risk of soil erosion.  However, their 

impact on the carbon dioxide equivalence (CO2e) is unknown.  Therefore, objective of 

this two-year study was to quantify the effect of cover crop-induced differences in soil 

moisture, temperature, organic C, and microorganisms on CO2e and to develop machine 

learning algorithms that predict daily N2O-N and CO2-C emissions. The prediction 

models tested were multiple linear regression (MLR), partial least square regression 

(PLSR), support vector machine (SVM), random forest (RF), and artificial neural network 

(ANN).  Models’ performance was accessed using R
2
, RMSE and MAE.  Rye (secale 

cereale) was dormant seeded in mid-October and in the following spring it was 

terminated at corn’s (Zea mays) V4 growth stage. Soil temperature, moisture, and N2O-N 
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and CO2-C emissions were measured near continuously from soil thaw to harvest in 2019 

and 2020.  Prior to termination, the cover crop decreased N2O-N emissions by 34% 

(p=0.05) and over the entire season, N2O-N emissions from cover crop and no cover crop 

treatments were similar (p=0.71). Based on N2O-N and CO2-C emissions over the entire 

season and the estimated fixed cover crop carbon remaining in the soil, the partial CO2e 

were -1,061 and 496 kg CO2e ha
-1

 in the cover crop and no cover crop treatments, 

respectively.  The RF algorithm explained more of the daily N2O-N (73%) and CO2-C 

(85%) emissions variability during validation than the other models.  Across models, the 

most important variables were temperature and the amount of cover crop-C added to the 

soil.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 14350645, ja, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21185 by South D

akota State U
niversity, W

iley O
nline L

ibrary on [13/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 

 

 
This article is protected by copyright. All rights reserved. 

3 
 

 

1.0 Introduction  

 Techniques to reduce agricultural greenhouse gas (GHG) emissions are needed to 

lower unknown future climate risks (Joshi et al., 2021; Shrestha et.al., 2019; Skinner et al., 

2019). Of the numerous techniques proposed, planting a cover crop is a technique that can be 

rapidly adopted by many farmers (McClelland et al., 2021a).  Despite many studies, there is 

not conclusive evidence that cover crops reduce the CO2e (Basche et al., 2014; Behnke and 

Villamil, 2019; Thies et al., 2020;  Reicks et al., 2021). 

 A growing cover crop can reduce soil moisture, inorganic N, and temperatures which 

in turn can reduce N2O emissions (Cayuela et al., 2009; Thapa et al., 2018; Reicks et al., 

2021).  However, after cover crop termination the effect of the decomposing cover crops on 

GHG emissions is unclear (Antosh et al., 2020; Basche et al., 2016; Basche et al., 2014; 

Çerçioğlu et al., 2019).  During cover crop decomposition, the release of  inorganic N and 

organic substrates may increase and N2O-N and CO2--C emissions. To quantify the effect of 

cover crops on the carbon footprint, the CO2e for the entire season must be determined. The 

CO2e equivalence combines all GHG into a single value.  However, due to the high cost of 

intensive trace gas measurements few studies measure emissions for the entire life cycle of 

both the cover and cash crops.   

            Aside from the difficulty of measuring N2O-N and CO2-C emissions, accurate and 

precise models are needed to provide guidance on how climate and management changes 

impact sustainability and GHG emissions. However, many process-based models are difficult 

to use, may not provide the desired accuracy (Sozanska et al., 2002; Roelandt et al., 2005; 

Zhang et al., 2016; Jiang et al., 2019), may require long-term field histories, and may not 

accurately predict management responses in real systems (Hamrani et al., 2020; Del Grosso 

et al., 2000, 2001; Jiang et al., 2019). In addition, following calibration process-based models 
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often have a mixed ability to predict N2O emissions.  For example, McClelland et al. (2021b) 

used the DAYCENT model to predict the effect of cover crops on N2O emissions. This work 

showed that the predicted and observed N2O emissions were not correlated.  In Colorado, Del 

Grosso et al. (2008) reported that DAYCENT overestimated N2O emissions, whereas in Iowa, 

Jarecki et al. (2006) reported that DAYCENT over predicted emissions when the actual 

emissions were low and underestimated emissions when emissions were high.  The mixed 

results of the model’s ability to predict N2O-N emissions may be attributed to many factors 

including field experiments that do not accurately measure N2O-N emissions, process-based 

models that were not accurately parametrized, and/or mathematics that do not accurately 

describe the complexity of the system.   

 An alternative approach is to use the machine learning (ML) algorithms to predict 

GHG emissions.  These models may be easier to use because they can be based on easy to 

measure values, may require fewer input variables than process-based models, and can be 

modified to account for different spatial and temporal resolutions. Therefore, the objectives 

were to quantify the effect of cover crop-induced differences in soil moisture, temperature, 

organic C, and microorganisms on CO2e and to develop machine learning algorithms that can 

predict daily N2O-N and CO2-C emission. 

2.0 Materials and Methods  

2.1 Study Site, Experimental design, and treatments 

 The two-year study was conducted at the South Dakota State University Aurora 

Research Farm located at 44
o
18′20.57′′N and 96

o
40′14.04′′W in 2019 and 2020. The site was 

in the Dfb (humid continental climate) Köppen climatic subtype. The soil at the experimental 

site was a Brandt silty clay loam (fine-silty, mixed, superactive cold Calcic Hapludoll). The 

soil organic carbon content was 36 Mg ha
-1

 (1.8% SOC), and the surface 15 cm contained 28 

 14350645, ja, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21185 by South D

akota State U
niversity, W

iley O
nline L

ibrary on [13/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 

 

 
This article is protected by copyright. All rights reserved. 

5 
 

g clay kg
-1

 and 650 g silt kg
-1

 (Reicks et. al., 2021). The production practices were a corn- 

corn rotation, no tillage, and N fertilizer was not applied.    

 The experimental design was completely randomized with two treatments: cover crop 

and no-cover crop. Each treatment was replicated 4 times. The dimensions for each 

experimental unit was 9.1 × 3.1 m. Winter cereal rye (Secale cereale) was drilled in two rows 

at a rate of 56 kg ha
-1

 at a depth of 2.5 cm in October in the fall of 2018 and 2019. The two 

cover crop rows were separated by 17.5 cm, and they were positioned in the center between 2 

corn rows.  The cover crop occupied about 25% of the area between the corn rows.  

 In the following spring, a 97-day relative maturity corn (Zea mays) cultivar was 

planted at the rate of 79,000 seeds ha
-1

 at a depth of 5 cm close to the rows of the previous 

corn crop. The row spacing was 76 cm. At V4 growth stage of corn and boot stage of rye, rye 

was terminated using glyphosate [N-(phosphonomethyl) glycine); Roundup Power Max] at 

the rate of 2.34-liter ha
-1

. A non-ionic surfactant was added at 0.25% of the spray 

solution.  Ammonium sulfate was also added to the spray solution at 10.2 g L
-1

. Corn was 

harvested on 26 September 2019 and 8 October 2020. More details about field activities are 

provided in Table 1.  

 

 

2.2 GHG emission measurements 

 Nitrous oxide-N and CO2-C emissions were measured from cover crop termination to 

harvest using techniques described in Reicks et al. (2021). Glyphosate was used to kill the 

cover crops, but because the rye at termination was taller (approximately 45 cm) than the 

rings (6cm above soil surface), the plants were bent and twisted such that the cover crop fit 

inside the rings. At the corn V4 growth stage, PVC pipe rings 12-cm tall having a diameter of 

20-cm and a surface area of 317 cm
2
 were randomly placed in the production plots with and 
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without cover crops. In plots with cover crops, the PVC rings were centered on the cover crop 

rows, whereas in plots without cover crops, the rings were centered between the corn rows.  

For GHG measurement, eight PVC rings (4 per treatment) were pushed 6 cm into the soil 

with 6 cm remaining above the soil surface. Directly before termination, similar rings were 

placed adjacent to the GHG microplots in the cover crop treatment.  The cover crop within 

the ring was clipped near the soil surface, dried, weighed and analyzed for C and N in the 

laboratory.   

 To collect GHG from the microplots, the PVC rings were covered with LI-COR long-

term opaque chambers (8100-104 LI-COR) six times daily for 15 minutes at four-hour 

intervals (between 0000 and 0230 h, 0400 and 0630 h, 0800 and 1030 h, 1200 and 1430 h, 

1600 and 1830 h, and 2000 and 2230 h) (Reicks et al. 2021). Using a Picarro Cavity 

Ringdown Spectrometer (model G2508, Picarro Inc, Santa Clara, CA), gases extracted from 

the chambers were analyzed for N2O-N and CO2–C concentrations. Emissions were 

calculated using the LI-COR SoilFluxPro 4.01 software (v. 4.01; LI-COR). Standard N2O, 

and CO2 gases were used at the beginning and end of the experiment to ensure Picarro gas 

analyzer accuracy.  Soil moisture and temperatures for the surface 0 to 5 cm were measured 

using LI-COR LI-8150-205 Soil Moisture Probes and LI-COR LI-8150-203 Soil 

Temperature Probes (LI-COR), respectively. 

2.3 Soil sampling  

 Soil samples were collected from the 0 to 15 and 15 to 30 cm depth at cover crop 

termination in area adjacent to the PVC rings to avoid soil disturbance within the ring on June 

24 (cover crop termination) and from inside the ring at the termination of the experiment on 

October 21 (each year) following corn harvest. Soil samples from the 0 to 15 cm depth was 

analyzed for bulk density, gravimetric soil moisture, inorganic N, soil organic carbon and the 

soil microbial community (Table 1). Samples from the 15 to 30 cm depth were analyzed for 
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bulk density, gravimetric soil water, inorganic N, and soil organic carbon. Gravimetric soil 

moisture content and bulk densities were determined by drying the soil at 105 
o
C for 24 

hours.  Air dried subsamples were ground and analyzed for total C and N, NH4 
+
–N and NO3

-

–N (Clay et al., 2015).  

2.4   Soil microbial biomass and composition  

 Soil samples were collected from 0 to 15 cm soil depth at the same timings as above 

for microbial biomass and composition following procedures outlined in Veum et al. (2019). 

Microbial community composition was determined using PLFA (Phospholipid Fatty Acid) 

protocols described by Buyer and Sasser (2012), Thies et al. (2019), and Fiedler et al. (2021). 

In this analysis, 19:0 phosphatidylcholine was used as an internal standard for PLFA and a 

19:0 trinonadecanoin glyceride was used as an internal standard for NLFA (neutral lipid fatty 

acids).   

 A Shimadzu GC-2010 Plus gas chromatograph (Shimadzu Corporation, Japan) with a 

flame ionization detector was used to analyze the extracts. The PLFAD2 method was used to 

calibrate the gas chromatograph using a standard provided by MIDI Sherlock (No. 1208, 

MIDI, Inc., Newark, DE). Using the MICSOILV2 approach from the MIDI Sherlock 

Software system (MIDI, Inc., Newark, DE) fatty acids were assigned to distinct functional 

groups associated with each community type to determine the number and types of 

microorganisms within the microbial population (Veum et al., 2019). Terminally branched 

chain fatty acids were used to identify gram-positive bacteria, while monounsaturated and 

hydroxy substituted fatty acids were used to identify gram-negative bacteria. Methyl 

branched chain fatty acids were used to identify actinomycetes (Zhang et al., 2016). Total 

microbial biomass was the summation of all fatty acids (Quideau et al., 2016). 

2.5 Statistical Analysis  

2.5.1 Carbon dioxide equivalence 
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 The experiment used a completely randomized design where each treatment was 

replicated 4 times per treatment. Total N2O-N and CO2-C emissions were determined by 

integrating the emissions over the study period.  The experiment was repeated in 2019 and 

2020. The analysis of variance was conducted to compare the total N2O-N and CO2-C 

emissions, inorganic nitrogen, total carbon, and microbial population from each treatment 

using “agricolae” package in Rstudio (R core Team 2017). Tukey HSD test was conducted 

after ANOVA analysis to determine significant differences between treatment means at p-

value 0.05.  

             Based on the cover crop occupying 25% of the area between the corn rows the N2O-

N and CO2-C emission data were area weighted. For this correction, the emissions from the 

cover crop were multiplied by 0.25 which was added to product of 0.75 times the emissions 

from the no-cover crop.  The CO2e was determined by converting N2O-N kg ha
-1

 values to 

N2O kg ha
-1 

and CO2-C kg ha
-1 

to CO2 kg ha
-1

. The N2O was then converted to CO2e 

determined by multiplying N2O by 298. The partial CO2e value was the summation of CO2e 

N2O and CO2 which was then subtracted from the amount of CO2 that was fixed by the cover 

crop during the growth phase.  This analysis did not consider the effect of the cover crop on 

methane emissions or any factors other than those directly involved in the production of N2O-

N and CO2-C during the cover and cash crop growing seasons. 

2.5.2 Machine learning models  

“Hmisc” package and “rcorr” function in Rstudio was used to determine the Pearson’s 

correlation (r) between all the variables. Following correlation analysis of all the variables, 

CO2-C and N2O-N emissions were predicted using five models. Those five models tested 

were multiple linear regression (MLR), partial least square regression (PLSR), support vector 

machine (SVM), random forest (RF) and artificial neural network (ANN). MLR model was 

considered the traditional linear regression model whereas rest of the models were machine 
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learning models.  The PLSR method is well-known for its ease of use when dealing with 

highly correlated variables. It was selected because it generalizes and combines features from 

principal component analysis and multiple linear regression (Abdi, 2003). The SVM 

algorithm creates a line or a hyperplane which separates the data into different classes. The 

line or hyperplanes are considered as the decision boundary, and they are utilized to predict 

continuous outputs. It was selected due to its ability to solve non-linear regression prediction 

problem (Ahmad et al. 2014). The non-linear "svmRadial" algorithm from the R “caret” 

package was utilized to implement SVM in our analysis. The RF is a machine learning (ML) 

algorithm for classification and regression which is based on the recursive partitioning 

principle, and specific information about the relationships between the response and predictor 

variables is not required (Breiman, 2001; Hamrani et al., 2020; Sharma et al., 2022). It 

creates a forest with several decision trees.  With the RF approach, the accuracy and 

robustness of model is directly correlated with the number of trees in the forest (Breiman, 

2001). The ANN adapts to the computing environment by adjusting neuron weights and 

thresholds repeatedly. When the network's output error approaches the expected value, the 

network training is complete. This model is gaining in popularity because of its ability to 

develop predictive relationships even when there is not a coherent theoretical framework 

(Maind and Wankar, 2014). The model predicted daily emissions, that were calculated by 

integrating the hourly measurements (every 4 hours = 6 samples/ day). The whole dataset was 

randomly divided into training (75%) and validation (25%) datasets.  On the training data set, 

k-fold cross-validation (CV) was carried out for resampling procedures using “caret” 

package. The CV technique splits the data into different folds, estimates the error rate based 

on machine learnings algorithms, and then generates the final model with the lowest error 

rate (Yang et al., 2011). In this work, 10 folds with three replications of the repeated k-fold 

CV were used. The model performance was assessed by comparing the coefficients of 
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determination (R
2
), root mean square errors (RMSE), and mean of absolute value of error 

(MAE) that were determined with the equations,  

 R
2 

= 1 -   

∑ (     )
  

   

∑ (    ̅ )
  

   

                                 [Eq 1] 

RMSE =  √
 

 
∑ (     )

  

   
                                                      [Eq 2]  

MAE =  
|(     )|

 
                                                                  [Eq 3] 

where     and    were measured and predicted values (N2O-N or CO2-C) respectively, and   ̅ 

was the mean of all measured values and   was the number of samples. All the models were 

built using “caret” package (Version 6.0-88) in Rstudio. In the model, N2O-N and CO2-C 

were used as dependent variables whereas soil temperature, air temperature, soil moisture, 

amount of cover crop-C remaining, and rainfall were used as predictor variables. The best 

performing models has high R
2
 (closer to 1)

 
and low RMSE and MAE values.   

The total daily cover crop-C was calculated using equations 4 and 5 as shown below,   

 CO2-CCC emitted = [CO2-CCC+soil emitted] – [CO2-Csoil emitted]    [Eq 

4] 

where CO2-CCC emitted was the daily amount of CO2-C that was mineralized from the cover 

crop over a 24-hour period, CO2-CCC + soil emitted was the total amount of CO2-C that was 

emitted over a 24-hour period in cover crop treatment, and CO2-CSoil emitted was the total 

amount of CO2-C that was emitted over a 24-hour period in the no-cover crop treatment.  The 

amount of cover crop-C remaining in the soil was calculated with the equation,   

 Cover crop-Cremaining = [Cover crop-Cinitial] – [CO2-CCC emitted]          [Eq 5] 
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where, Cover crop-Cremaining was the amount of cover crop-C remaining in the chambers, 

[Cover crop-Cinitial] was the amount of cover crop-C in the soil when the cover crops were 

termination, and CO2-CCC emitted was defined in equation 4. 

The importance of the variables was determined following validation. Variable 

importance was determined using the "varImp" function from the “caret” package. The 

function used scaled important score between 0 to 100. The higher the score the more 

important. 

   

3.0 Results and Discussion 

3.1 Weather and climatic conditions  

 At the study area, the 30-year (1989 to 2019) average annual rainfall was 640 mm, the 

average growing season rainfall (May to September) was 452 mm, the average growing 

degree days (10 
o
C base and 30 

o
C maximum temperature) from April to October was 1256 

GDD’s, the average annual temperature was 6.3 
o
C, and the growing season average 

temperature was 17.9 
o
C (NOAA, 2022). At the study site, the average annual and growing 

season temperature in 2019 were 5.37 and 17.9 
o
C, whereas in 2020 it was 7.15 and 18.9 

o
C 

respectively (Figure 1). Total annual rainfall in 2019 was 825 mm of which 607 mm occurred 

during the growing season. In 2020, total rainfall was 441 mm of which 324 mm occurred 

during the growing season. In 2019 and 2020 the numbers of accumulated growing degree 

days based on corn were 1266 and 1436, respectively. Additionally, from 1 October 2018 to 

31 March 2019 and from 1 October 2019 to 31 March 2020 the average snow depth was 8.7 

cm and 12 cm, respectively. The temperature of the snow-covered soil at 0 to 5 cm depth, 

ranged from -5.12 to 13.17 
o
C in 2019 and from -0.93 to 13.99 

o
C in 2020. Between cover 

crop termination and harvest, the soil moisture content of the cover crop treatment in the 0 to 

5-cm soil depth was greater (0.32 cm
3
 cm

-3
) than the no-cover crop treatment (0.26 cm

3
 cm

-3
) 
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(Table 2). On average across years, the average soil temperature for the surface 0 to 5cm was 

3.1 
o
C cooler in the cover crop (14.2 

O
C) than the no-cover crop (17.3 

o
C) treatment.   

 

   

3.2 Cover crop biomass and corn grain yield  

 The amount of dried above-ground rye biomass contained within the microplot was 

4156±576 and 3166±353 kg biomass ha
-1

 in 2019 and 2020, respectively. Based on 

previously reported value of 0.497 g root (g shoot)
-1

 for the root to shoot ratio (Sawyer et al., 

2017), the amount of rye roots was calculated.  Rye roots were then multiplied by 2 to 

estimate the root exudates (Kuzyakov and Domanski, 2000; Kuzyakov and Larionova, 2006). 

Finally, to determine total rye biomass the shoot + root + root exudates were summed which 

was then multiplied by the amount of carbon in the above ground biomass samples [0.42 g 

carbon (g biomass)
-1

]. The amount of cover crop-C added to each chamber was 4,349 and 

3,312 kg C ha
-1

 in 2019 and 2020, respectively. The measured C to N ratio of the above 

ground cover crop biomass was 31:1 and 25:1 in 2019 and 2020, respectively. Based on these 

values, the amount of N contained in the above ground cover crop biomass was 56 and 43 kg 

N ha
-1

 in 2019 and 2020, respectively. This calculation does not consider N contained in root 

biomass.  

 The above cover crop C and N values represent the additions to area between the corn 

rows that were seeded with cover crops.  The area seeded with cover crops represented about 

25% of the area between corn rows.  Based on this percentage, the amount of cover crop 

biomass in the production plot was 1120 and 702 kg biomass ha
-1

 in 2019 and 2020, 

respectively. 

The effects of the cover crop on corn growth and yield have been reported by Miller 

et al. (2021). Across years, corn grain yields at 15.5% moisture ranged from 7.7 to 12.8 Mg 
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ha
-1

.  The no cover crop treatment had 40% greater yield than treatment with cover crop that 

was terminated at corn’s V4 growth stage.     

3.3 N2O and CO2 emissions 

 N2O-N and CO2-C emissions in 2019 and 2020 were separated into two periods when 

the cover crops were growing and when they were decomposing. Reicks et al. (2021) 

reported on emissions between soil thaw and cover crop termination at V4. To summarize, 

this growth period N2O-N emissions were 90 and 192 g ha
-1

 in the cover crop and no-cover 

crop treatments in 2019, respectively. In 2020, similar results were observed, and N2O-N 

emissions were 168 and 209 g N2O-N ha
-1

 in the cover crop and no-cover treatments, 

respectively.  Lower N2O-N emissions in the cover crop compared with the no-cover crop 

treatment was attributed to the cover crop reducing soil moisture and inorganic N (Reicks et 

al. 2021). Due to higher soil temperatures, N2O-N was slightly higher in 2020 than 2019. 

Based on these values, the cover crop-induced decrease (cover crop - no-cover crop) in N2O-

N emissions was 0.11 in 2019 and 0.04 kg ha
-1

 in 2020.  These decreases were equivalent to 

0.42 and 0.78% of the N contained in the above ground cover crop biomass.  Higher 

emissions in 2020 than 2019, were attributed to higher temperatures and nitrous oxide being 

produced during nitrification and denitrification.    

 Greater N2O-N emissions were observed during cover crop decomposition than the 

growth phase.  In 2019, N2O-N emissions in the cover crop and no-cover crop treatments 

were 537 and 301 g N2O-N ha
-1

 and in 2020 N2O-N emissions in the cover crop and no-cover 

crop treatments were 953 and 537 g N2O ha
-1

, respectively (Figure 2, Table 2). Differences in 

N2O-N emissions during the growth and decomposition cover crop phases were attributed to 

the decomposing cover crop biomass releasing NH4
+
 into the soil.  The NH4

+
 was 

subsequently nitrified of which 0.03 to 1% of the N can be emitted as N2O-N (Farquharson, 

2016).   
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 The amounts of CO2-C that was emitted in 2019 prior to corn’s V4 growth stage were 

1379 and 882 kg CO2-C ha
-1

 in the cover crop and no-cover crop treatment, respectively 

(Reicks et al. 2021). During decomposition, CO2-C emissions within the chambers were 5093 

and 3935 kg CO2-C ha
_1

 in the cover crop and no-cover crop treatment, respectively. The 

cover-crop induced increase in CO2-C emissions represented 27% of the estimated amount of 

carbon contained within the above and below ground cover crop biomass. 

     

 In 2020, CO2-C emissions during the growth phase were similar in the cover crop and 

no cover crop treatments and averaged 1500 kg CO2-C ha
-1

 (Reicks et al. 2021). However, 

during decomposition, CO2-C emissions in the cover crop and no-cover crop treatments were 

7970 and 5690 kg CO2-C ha
-1

. The difference between CO2-C emitted in the cover crop and 

no-cover crop treatment was equivalent to 69% of the estimated amount of above and below 

ground cover crop biomass-C. The increased CO2-C emissions were attributed to the cover 

crop providing organic C to the soil which was subsequently mineralized (Poeplau and Don, 

2015; Rosecrance et al., 2000; Aulakh et al., 2001; Smith et al., 2011). Lower emissions in 

2019 than 2020 were attributed to cooler temperatures.   

 In 2019, CO2-C emissions tended to decrease as the season progressed, whereas in 

2020 CO2-C increased or remained relatively constant and then decreased after September 15 

(Figure 2). In both years, the ratio between CO2-C and N2O-N varied across the seasons. 

Since the CO2-C is a function of the aerobic respiration and N2O-N emission is a function of 

both nitrification and anaerobic respiration, a higher CO2-C/ N2O-N ratio suggests that there 

was an increased importance of aerobic respiration or a change in the soil microbial 

community structure. For example, from June 24 to September 10, 2019, the ratio between 

CO2-C and N2O-N in the cover crop and no-cover crop treatments were 10,500 and 16,500 
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(kg CO2-C h
-1

) (kg N2O-C ha
-1

)
-1

, respectively (p=0.006). This apparent cover-crop induced 

decrease in the CO2-C and N2O-N ratio suggests that the biota in cover-crop treatment has a 

higher reliance on anerobic respiration than the no-cover crop treatment.  This apparent 

increased reliance on anaerobic respiration was associated with increased CO2 emissions, 

which most likely reduced soil O2 concentrations.  

 Between September 11 and October 20, 2019, similar results were observed and the 

CO2-C to N2O-N ratios in the cover crop and no-cover crop were 3940 and 5905 (kg CO2-C 

h
-1

) (kg N2O-C ha
-1

)
-1

 (p=0.08), respectively. Again, these results suggest that the cover crop 

treatment had a higher reliance on anaerobic respiration than the no-cover crop treatment.  

 In 2020, between June 24 and September 10 the CO2-C to N2O-N ratio in the cover 

crop and no-cover crop treatment were 7,720 and 15,970 kg CO2-C h
-1

) (kg N2O-C ha
-1

)
-1

, 

respectively (p=0.004). Later in the season (September 11 to October 20) the CO2-C to N2O-

N emissions ratios were similar in the cover crop and no-cover crop treatment and had a ratio 

of 14,980 (kg CO2-C h
-1

) (kg N2O-C ha
-1

)
-1

. Temporal changes in the CO2-C to N2O-N ratio 

for this same soil were also observed by Thies et al. (2020), where the impact of different 

fertilizer application dates on N2O-N and CO2-C emissions were investigated. It was 

observed that fertilizer applied on 20 September 2017 had a CO2-C to N2O-N ratio of 1360 

whereas fertilizer applied on 1 October 2017 had a ratio of 24,000. These values suggest that 

the relative amount of N2O-N that is emitted per unit or respired CO2-C can vary widely. 

3.4 Change in soil total inorganic nitrogen and carbon during decomposition 

 In the linked experiment, Reicks et al. (2021) reported that the cover crop reduced soil 

inorganic N and soil moisture during the cover crop growth phase compared to no cover crop 

treatment. However, when the chambers were moved to a new location slightly different 

results were observed. At the new location, the amount of NO3 + NH4-N contained in the 

surface 30 cm at cover crop termination was not affected by the cover crop. However, at 
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harvest the cover crop increased the amount of inorganic N in the soil (Table 3). These results 

suggest that N mineralization of the cover crop biomass may provide N to corn. However, the 

timing of the mineralization is critical to assess if it will reduce the N requirement in the 

current or future crop. In this example, an increase of 14 kg N ha
-1

 was observed following 

harvest.   

 An increase in N at harvest would not reduce the N requirement in the harvested crop, 

however it might influence the N requirement in the upcoming crop if the N remains in the 

soil profile. In the past, fertilizer replacement values for cover crops in corn have been mixed. 

According to Mahama et al. (2016), the N fertilizer requirement in the cash crop can be 

reduced by introducing legume cover crops. However, different results have been reported for 

non-legume cover crops. Sawyer et al. (2017) reported that the rye cover crop reduced corn 

yield by 5% in Iowa and that the economic optimum N rate for corn were similar in the rye 

cover crop and no-cover crop treatments. Pantoja et al. (2016) extended this discussion and 

reported that the rye cover crop does not provide a meaningful amount of N to the growing 

corn plant in the year of termination. However, neither study considers what happens in 

following years.   

 The amount of soil organic C contained in the surface 30 cm at V4 growth stage of 

corn (cover crop termination) was not affected by cover crop in either 2019 or 2020. 

However, when the experiment was terminated in October the cover crop increased the 

amount of soil organic carbon 3,031 kg SOC-C ha
-1

. This increase in SOC indicates that a 

relatively large portion of the cover crop biomass remained in the soil after 117 to 119 days 

of decomposition.   

 

 

3.5 Change in the soil microbial biomass due to cover crop decomposition  
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 Microbial biomass was higher when the cover crop was termination than following 

harvest and it was higher in the cover crop than the no-cover crop (Table 4). These temporal 

differences were consistent with Kaiser et al. (1995) where it was reported that microbial 

biomass was generally lowest during the winter and highest in the summer. Across years, the 

fungi concentration was lower than the bacteria concentration. In 2019, the fungi to bacteria 

ratio was higher in the cover crop than the no-cover crop treatment at both sampling dates. 

For example, at cover crop termination the ratio was 0.44 in the cover crop and 0.24 in no 

cover (p=0.01). Similarly, following harvest the fungi to bacteria ratio was 0.29 for the cover 

crop treatment and 0.18 for the no-cover crop treatments (p=0.06). Apparent relative cover 

crop induced increases in fungi may be associated with the composition of the cover crop 

biomass, cooler soil temperatures, and higher soil moisture contents. Our observations were 

consistent with Malik et al. (2016), where it was reported that following litter addition there 

was an increase in fungal phyla. 

 

 Associated with the higher fungus to bacteria ratio in the cover crop than the no-cover 

crop treatment was higher CO2-C to N2O-N emission ratios. Changes in the microbial 

community structure are important because there are fundamental differences between fungi 

and bacteria.  These differences include that: 1) fungi decompose more complex organic 

molecules than bacteria, 2) fungi have slower growth rates than bacteria, and 3) fungi may 

store more carbon in the soil than bacteria (Helfrich et al., 2015).   

 In 2020 slightly different results were observed and the fungi to bacteria ratios were 

similar in cover crop and no cover crop treatment. In addition, the fungi to bacteria ratios 

were similar (p=0.18) at both sampling dates (Table 4). These finding suggest that cover 

crops in addition to reducing soil temperature and increasing soil moistures, have the 
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potential to change the microbial community structure, which in turn can affect the relative 

amount of N2O-N and CO2-C that is emitted.  

3.6 Partial Carbon Dioxide Equivalence (CO2e)  

 Rye cover crops have mixed results on N2O-N and CO2-C emission over the entire 

year. Our investigation found that during the cover crop growing phase, rye lowered soil 

moisture and inorganic nitrogen, and reduced N2O-N emissions by 66% relative to no-cover 

crop.  Different results were observed during the decomposition phase, when the cover crop 

increased N2O-N and CO2-C emissions.  The increase in emissions during decomposition 

may be related to the cover crop providing organic carbon as well as lowering the soil 

temperature and increasing the soil moisture. When combing both phases, the rye cover crop 

did not influence (p=0.71) N2O-N emissions and were 565 g N2O-N ha
-1

 in the rye cover crop 

and 530 g N2O-N ha
-1

 in the no-cover crop treatment. This finding suggests that reduced 

N2O-N emission during cover crop growing phase offsets the increased emission during 

decomposition. However, the cover crop had greater (p-value= 0.001) CO2-C emission (6750 

kg CO2-C ha
-1

) than the no cover crop treatment (5951 kg CO2-C ha
-1

).  This increase does 

not account for the large amount of CO2 removed from the atmosphere by the cover crop. 

The partial CO2e was determined by considering CO2-C and N2O-N emissions and the 

amount of CO2-C that was removed from the atmosphere during photosynthesis.   In the 

cover crop and no cover crop treatment the average CO2e across years and the entire cover 

and cash crop growth cycles were -1,061 and 496 kg CO2e ha
-1

, respectively.  These values 

suggest that cover crops have the potential to reduce the agricultural carbon footprint.    

3.7 N2O-N and CO2-C emission prediction using a machine learning algorithm  

 Correlation analysis across years and treatments showed that the daily N2O-N 

emissions were positively correlated to CO2-C, air temperature, soil moisture, soil 

temperature, cover crop-C remaining in the soil, and rainfall (Figure 3).   Similarity, analysis 
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showed that daily CO2-C emissions were positively correlated to N2O, air temperature, soil 

moisture, soil temperature and cover crop-C remaining in the soil.  However, CO2-C 

emissions and rainfall were not correlated.   

 After determining which input parameters were statistically related to the N2O-N and 

CO2-C emissions, models based on soil temperature, air temperature, soil moisture, amount 

of cover crop-C remaining, and rainfall were developed.  The RF model that predicted daily 

N2O-N and CO2-C emissions over two years outperformed all models and had with highest 

R
2
, lowest RMSE and MAE during training and validation (Table 5). These findings were 

consistent with Philibert et al. (2013), Hamrani et al. (2020), and Saha et al. (2021).   

 

 

 

 During training, the RF model explained 95% of the N2O-N emissions variability in 

the cover crop and no-cover crop treatments over two years. The RMSE and MAE for this 

model was 1.85 g N2O-N ha
-1 

and 0.92 g N2O-N ha
-1

. For the validation data set, the R
2
, 

RMSE and MAE values were 0.73, 3.7 g N2O-N ha
-1 

and 2.1 g N2O-N ha
-1 

respectively.  The 

MLR, PLSR, SVM, and ANN models did not perform as well as the RF model (Figure 4).    

 The importance of the variables was determined for each model (Figure 5). In this 

analysis, variables were assigned scaled score between 0 to 100, with 100 being most 

important and 0 being least important.  Variable importance differed among models and 

between the two emission gasses. For the N2O-N RF model, cover crop carbon was most 

important variable followed by air temperature, soil temperature, soil moisture and lastly 

rainfall. For the CO2-C RF model, soil temperature was the most important variable, and 

rainfall was the least important.   
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 Models such as these can be used to improve our understanding of the factors 

affecting emissions and provide insights into how to minimize CO2-C and N2O-N emissions.  

For example, decreasing the soil temperature 1
o
 C reduced RF N2O emissions predictions by 

0.52%.  Similar analysis can be conducted to predict how changes in soil moisture or cover 

crop biomass would affect emissions. This analysis suggests that additional research is 

needed to extend the use of the N2O-N and CO2-C machine learning algorithms to assess 

different climate and management scenarios (McLennon et al., 2021). 

 

4.0 Conclusion 

 The decomposing rye cover crop stimulated microbial activity and changed the 

microbial community structure, which in turn increased N2O-N and CO2-C emissions. During 

cover crop decomposition, the amount of N2O-N that that was emitted was equivalent to 0.24 

and 0.42% of the N contained in the above ground cover crop biomass in 2019 and 2020 and 

an amount that was equivalent to 39% and 76 % of cover crop-C was released as CO2-C in 

2019 and 2020, respectively.  Furthermore, the cover crop increased soil total carbon, total 

inorganic nitrogen, and moisture, all of which promote soil metabolic activity and respiration. 

During the rye cover crop growing phase, it reduced the N2O-N emission which was 

attributed to nutrient and moisture uptake by the rye. This means that the cover crops had 

opposite effects on GHG emissions during growth and decomposition. For this reason, 

measuring cover crop emissions over the whole growing season is essential to fully 

understand their emission pattern.  

 Analysis suggests that only a relatively small portion of the N contained in the cover 

crop was contained in the soil at harvest or emitted into the atmosphere as N2O-N. Although 

the cover crop increased N2O-N and CO2-C emissions, it also released inorganic nitrogen into 

the soil. This increased N contained in the soil at harvest has the potential to reduce the crop 
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plants nutrient requirement in subsequent years. These results suggest that the mineralization 

of N from the rye biomass and N uptake by the growing corn plant were not synchronized. 

This question will be considered in subsequent papers.  In the cover crop and no cover crop 

treatments the average CO2e across years was -1,061 and 496 kg CO2e ha
-1

, respectively.  

These values suggest that cover crops have the potential to reduce the agricultural carbon 

footprint. 

 Additionally, our results demonstrate that ML based algorithm may can be useful for 

predicting N2O-N and CO2-C emission.  Of the models tested, the Random Forest explained 

the most amount of variability over two seasons.  Additionally, our results suggest that we 

may be able to improve GHG predictions by merging machine learning and process-based 

models into a common analysis.  Models such as these, can be used to predict the effects of 

different management systems and climatic conditions on N2O and CO2 emissions.     
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Table 1. Summary of activities and dates of operations performed during the two-year 

experiment.  

 

     Field activities and operations 2019 2020 

Rye cover crop dormant seeded 

 
16-Oct-18 23-Oct-19 

GHG measured in growing cover crop  April 26 to June 24 April 8 to June 24  

Corn planted  16-May 14-May 

Rye cover crop termination at boot stage (corn 

V4). Soil samples and rye tissue samples collected.   
24-Jun 24-Jun 

GHG measurements started at rye cover crop 

termination.  
24-Jun 24-Jun 

Corn harvest 26-Sep 8-Oct 

Termination of GHG measurements.  Soil samples 

collected.   
21-Oct 21-Oct 
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Table 2. Cumulative N2O-N and CO2-C emissions, soil temperature and moisture in 2019 and 

2020 during cover crop decomposition.  

 

Cover crop Year N2O-N  CO2-C  Soil Temp  Soil Moist  

  g ha
-1 

kg ha
-1 o

C cm
3
 cm

-3
 

No-cover crop 2019 301 3935 17.19 0.32 

Cover crop 2019 537 5093 13.02 0.33 

No-cover crop 2020 359 5691 17.93 0.22 

Cover crop 2020 955 7969 15.89 0.3 

p-value 

 

0.1 0.41 0.41 0.07 

2019 

 

419 4518 12.4 0.34 

2020 

 

657 6829 16.95 0.27 

p-value 

 

0.003 0.001 0.03 <0.001 

No-cover crop 

 

330 4813 17.32 0.26 

Cover crop 

 

746 6531 14.21 0.32 

p-value   <0.001 0.004 0.05 <0.001 
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Table 3. Cover crop impact on soil inorganic nitrogen (NO3 + NH4) and organic C contained 

in the surfaced 30 cm at cover crop termination and following harvest in 2019 and 2020. 

Difference in lowercase letters indicate significant different in mean at p = 0.05. 

 

  

Total inorganic N Total organic C 

Treatment Year 
Cover Crop 

Termination 

Following 

Harvest 

Cover Crop 

Termination 

Following 

Harvest 

  
-------------------kg ha

-1
--------------- 

No-cover crop 2019 48 36 a 79,910 81,290 

Cover crop 2019 42 42 a 81,280 84,870 

No-cover crop 2020 38 50 a 74,790 75,280 

Cover crop 2020 48 73 b 71,340 77,760 

p-value 

 

0.1 0.05 0.24  0.58  

2019 

 

45 39 80,600 83,080 

2020 

 

40 46 73,060 76,520 

p-value 

 

0.9 <0.001  0.01 0.001  

No-cover crop 

 

43 43 77,350 78,290 

Cover crop 

 

45 58 77,810 81,320 

p-value   0.7 0.004  0.8 0.05  
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Table 4. The impact of the cover crop on total biomass, bacteria, and fungi at cover crop 

termination and following harvest in 2019 and 2020. Difference in lowercase letters indicate 

significant different at p = 0.05. 

 

    Total biomass Total Bacteria Total Fungi 

Treatment Year 
Cover Crop 

Termination 

Following 

Harvest 

Cover Crop 

Termination 

Following 

Harvest 

Cover Crop 

Termination 

Following 

Harvest 

  
-------------------------------mg C (kg soil)

-1 
---------------------------------- 

No-cover crop 2019 4.7 a 1.4 2.3 0.8 0.5 a 0.1 

Cover crop 2019 8.5 b 2.5 2.9 1.2 1.3 b 0.4 

No-cover crop 2020 3.2 a 1.7 1.4 1.0 0.3 a 0.2 

Cover crop 2020 4.6 a 2.7 2.1 1.3 0.4 a 0.4 

p-value 

 

0.03 0.9 0.98 0.56 0.01 0.8 

2019 

 

6.5 1.95 2.6 1.05 0.9 0.25 

2020 

 

3.9 2.2 1.75 1.15 0.35 0.3 

p-value 

 

<0.001 0.25 0.001 0.09 <0.001 0.4 

No-cover crop 

 

3.95 1.55 1.85 0.9 0.4 0.15 

Cover crop 

 

6.55 2.6 2.5 1.25 0.85 0.4 

p-value   <0.001 0.004 0.005 0.001 0.001 0.030 
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Table 5. Performance comparisons during training and validation for a traditional regression-

based model (MLR) and machine learning (PLSR, SVM, RF and ANN) models for 

predictingN2O-N and CO2-C emission. 

 

N2O-N  Training dataset 

 

Validation dataset 

Models R
2
 RMSE MAE 

 

R
2
 RMSE MAE 

MLR 0.26 6.41 3.61  0.30 5.94 3.72 

PLSR 0.23 6.52 3.78  0.28 6.03 3.97 

SVM 0.69 4.61 0.95  0.60 4.69 2.24 

RF 0.95 1.85 0.92  0.73 3.71 2.08 

ANN 0.56 5.56 2.87  0.61 4.67 2.27 

CO2-C  
       Training dataset 

 

Validation dataset 

Models R
2
 RMSE MAE 

 

R
2
 RMSE MAE 

MLR 0.60 17.86 13.96  0.57 19.28 14.67 

PLSR 0.56 18.8 14.68  0.55 19.91 15.06 

SVM 0.81 12.6 8.51  0.73 15.47 10.05 

RF 0.96 5.71 4.05  0.85 11.92 8.55 

ANN 0.69 16.07 12.44  0.68 16.18 10.65 
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Figure 1. Daily distribution of snow depth, rainfall, air temperature, soil moisture, and soil 

temperature during first (Oct 2018- Oct 2019) (a) and second (Oct 2019- Oct 2020) (b) year 

of experiment. Data source: South Dakota Mesonet (2022). 
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Figure 2. The impact of the rye cover crop on daily average N2O-N (a and b) and CO2-C (c 

and d) emissions in 2019 and 2020. Error bars represent standard error (SE) (n=4).  
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Figure 3. Correlation matrix between the different daily measurements in 2019 and 2020 

(n=480). All correlation values (either negative or positive) equal or above 0.25 are 

statistically significant at p<0.001, between 0.13 to 0.17 are statistically significant at p=0.05 

and values below 0.13 are not statistically significant. Positive values indicate positive 

relation whereas negative is just reverse.  
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Figure 4. Validation of the actual vs. predicted N2O-N and CO2-C emissions using MLR, 

PLSR, SVM, RF and ANN models.  
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Figure 5. Relative importance of each variable used to model N2O-N (a) and CO2-C (b) 

emissions. Scaled importance score (0 to 100) was generated and higher scores indicate that 

the variable is of greater importance in the model.   
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