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ABSTRACT 

EFFICACY OF NANOMATERIALS AND BIORATIONALS ON THE BACTERIAL LEAF 

STREAK MANAGEMENT IN WHEAT 

ABRAHAM HANGAMAISHO 

2022 

Wheat (Triticum aestivum L.) is one of the most important cereal crops in the United 

States. Most wheat varieties are susceptible to bacterial leaf streak (BLS), a major disease 

caused by Xanthomonas translucens pv. undulosa (Xtpvu). BLS is challenging to manage 

since common chemicals do not provide adequate control. Nanomaterials and plant 

extracts have shown potential to provide a sustainable environmentally friendly control of 

animal and plant diseases. However, limited data are available on the efficacy of plant 

extracts and nanomaterials controlling BLS in wheat. The objective of this study was to 

evaluate the antibacterial activity of plant extracts and nanomaterials against Xtpvu. An 

in-vitro study was conducted with five treatments: nano-ZnO, nano-MgO, and nano-CuO 

amended with polyvinylpyrrolidone surfactant, were prepared at 2000 ppm each, with 

sterile water and Agrimycin as control checks. For the in-vitro study, a 100 µL aliquot of 

each treatment was collected at 12, 24, 48, & 72 hours and plated on King’s B agar 

medium, and colony forming units (CFUs)/mL were determined after three days to 
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quantify Xtpvu growth. The experiment was conducted twice. Results showed that; CuO, 

MgO and ZnO nanomaterials had antibacterial properties against Xtpvu. In the 

greenhouse and field, all plots were artificially inoculated with Xtpvu two days before 

treatments (CuO, MgO and ZnO nanomaterials and moringa, spirulina, ginseng, and 

tannic acid; with sterile water and Agrimycin as control checks) were applied. To assess 

BLS, 10 randomly selected plants per plot were rated based on the percentage of leaf area 

with BLS symptoms, and yield was determined by combine harvesting each plot and 

adjusted to bushels per acre at 13.5% moisture content. Nano-CuO, moringa and tannic 

acid had the highest antibacterial effect among all treatments tested. These results show 

that nano-CuO, tannic acid and moringa have potential to control Xtpvu. 
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Chapter 1 

1.0 Literature review 

1.1 Bacterial leaf streak disease in wheat 

Wheat (Triticum aestivum L.) is one of the most important crops grown in the world 

(Calderini et al. 2020; Yamasaki et al. 2017; Singh et al. 2016). It is an important staple 

food crop for many countries including the USA, and grown on ~555 million acres 

worldwide. The world’s largest producers are China, India, and the USA, producing 100, 

70, and 64 million tons annually, respectively. The U.S is the second-largest exporter of 

wheat, behind only Russia (Bond & Liefert 2017). According to Bond & Liefert (2017), 

USA wheat food use was estimated at 949 million bushels and 131.7 pounds per capita 

consumption in 2016/17.  

There are four major classes of wheat grown in the Great Plains, which include: hard red 

spring, durum, hard white, and hard red winter wheat. For states such as Minnesota, 

North Dakota, and South Dakota where spring wheat is the predominant wheat class, the 

production continues to be important because hard red spring wheat has a high protein 

content (Stanton 2019; Bond & Liefert 2017). It is conservatively estimated that 

pathogens and pests interfere with production by destroying between 10% and 30% of 

wheat produced worldwide. 

Wheat production is highly affected by pests and diseases, most especially bacterial 

diseases of which bacterial leaf streak (BLS) is of great concern, since common 

chemicals do not provide effective control, and moreover these are also not eco-friendly 

(Rahman 2014). 
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Bacterial leaf streak is caused by Xanthomonas translucens pv. undulosa (Duveiller and 

Maraite 1995) and has led to economic losses in wheat (Stanton 2019; Liu et al. 2019) 

due to both decreased yield quantity and quality (Rahman et al. 2014; Duveiller and 

Maraite 1993; Pandey and Chatterjee 2022). Xanthomonas translucens pv. undulosa is 

classified under Kingdom Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; 

Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species X. 

translucens; translucens group pathovars: undulosa. Xanthomonas genus is a diverse and 

economically important group of bacterial phytopathogens (Pandey and Chatterjee 2022), 

belonging to the gamma-subdivision of the Proteobacteria (da Silva et al. 2002). BLS 

affects yield and grain quality by reducing photosynthetic leaf area and causing black 

chaff to form on wheat heads (Duveiller and Maraite 1993; Bamberg et al. 1936; Tillman 

1999). 

1.2 BLS symptoms 

BLS first appears as water-soaking due to the multiplication of Xanthomonas translucens 

pv. undulosa (Xtpvu) in the intercellular spaces (Duveiller and Maraite 1995; Adhikari et 

al. 2012; Ramakrishnan et al. 2019), then lesions progressively turn yellow and 

eventually brown and necrotic (Curland et al. 2018; Petrova et al. 2021). These lesions 

can coalesce, forming large blotches that eventually kill the entire leaf. Almost all wheat 

varieties are susceptible to BLS.  

Field infections are observed if the pathogen, present in the seed as a source of primary 

inoculum, is transmitted to the canopy under favorable weather conditions (Duveiller et 

al. 1991; Duveiller and Maraite 1995), by rain splash from soil and residue or by artificial 

inoculation of a highly concentrated bacterial suspension applied onto plants at the 
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tillering stage (Duveiller 1990a) and/or at flag leaf stage. It may take 8-10 days before 

first symptoms appear (Duveiller and Maraite 1995). BLS can occur over a range of very 

different conditions, such as in sprinkler-irrigated fields in temperate climates, high-

rainfall subtropical highlands and warmer environments characterized by cool nights or 

frequent climatic changes and sudden temperature variations (Iqbal et al. 2013). 

BLS is among the diseases which are globally challenging to control after field 

establishment, because of limited effective in-season chemical sprays (Li et al. 2020). 

BLS has been shown to have variable, yet significant, economic impacts on wheat yields 

by impairing grain fill and/or reducing kernel number (Duveiller et al. 1997). However, 

the impact on yield varies with wheat cultivar, pathogen strain, environmental factors, 

and the combination of these factors (Stanton 2019). Cool nights and temperatures below 

15°C are reported to reduce multiplication rate of the pathogen, although a few hours of 

temperatures above 20°C during the day can be enough to produce the critical population 

threshold for symptom expression (Duveiller and Maraite 1995). 

1.3 Description of the causal pathogen in culture 

The bacterium’s colonies on laboratory media are usually yellow due to ‘xanthomonadin’ 

pigment production on King’s B agar medium. When glucose or other sugars are added 

to the culture medium, colonies become very mucoid due to the production of an 

exopolysaccharide slime. A semi-selective medium can be prepared by adding an 

antibiotic to inhibit contaminants but not xanthomonads, and their maximum and 

optimum temperature ranges for growth are up to 39°C, and 28 to 30°C respectively 

(Gottwald, 2000). Xanthomonas translucens bacteria are Gram-negative non-spore 
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forming rods, 0.5–0.8 × 1.0–2.5 µm in size, with a single polar flagellum, and form pale 

yellow colonies on Pseudomonas F/ King’s B agar medium (Li et al. 2020).  

Sapkota et al. (2020) observed (with transmission electron microscopy) that bacterial 

cells were mainly distributed in the mesophyll tissue of five-day post-inoculation 

diseased wheat leaf samples with the Xtpvu strain. Thus, the bacterial pathogen probably 

enters plant tissue through stomata and mainly colonizes mesophyll tissues.  

1.4 Virulence mechanisms 

Xanthomonas translucens utilizes a type II secretion system (T2SS) to secrete plant cell-

degrading enzymes (Kaur et al. 2020), and a type III secretion system (T3SS) to deliver a 

suite of T3SS effectors (T3Es) inside plant cells (Liu et al. 2019; Ruh et al., 2017; 

Gürlebeck et al. 2006) which results in disease symptom development (Sunish and 

Sakthivel 2001; Ghosh, 2004). Lorenz et al. (2008) reported that binding of HpaA to 

HpaB within the bacterial cell favors secretion of extracellular components of the 

secretion apparatus, and thus promotes effector protein secretion after assembly of the 

T3S apparatus. High bacterial cell density increases production of extracellular 

polysaccharide (EPS) and adhesin which catalyzes biofilm formation, important for cell-

cell and cell-plant attachment (Pandey and Chatterjee 2022; Rai et al. 2012, 2015; Legein 

et al. 2020). Xtpvu infects the plant through natural openings and wounds on the leaf 

surface and grows within the parenchyma of the host tissue (Stanton 2019).  

Pandey and Chatterjee (2022) proposed that low cell density enhances diffusible 

signaling factor (DSF) levels which triggers chemotaxis, plus increased secretion of cell-

wall hydrolyzing enzymes to degrade the plant cell walls for bacterial nutrition. In 

addition, quorum sensing helps phytopathogenic bacteria to measure their population size 
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for appropriate apoplast or plant cell entry (Kannan & Bastas 2015; Pfeilmeier et al., 

2016; Legein et al. 2020). There are several methods that have been developed to detect 

the bacteria in seeds, including dilution plating with the use of selective media, seedling 

infection assays, serodiagnostic assays, PCR amplification, and loop-mediated isothermal 

amplification of DNA (Forster and Schaad 1985; Bragard and Verhoyen 1993; Maes et 

al. 1996; Langlois et al. 2017). 

However, virulence differs among strains within a pathovar (Cunfer and Scolari 1982; 

Milus and Chalkly 1994; Adhikari et al. 2011; Sapkota et al. 2018). Using pathogenicity 

tests on several wheat genotypes, Adhikari et al. (2011) also confirmed relative 

divergence in Xtpvu strains collected from North Dakota. 

Previous studies show that several triticale lines have dominant resistance genes to some 

Xtpvu strains, an indication of a gene-for-gene interaction in triticale (Johnson et al. 

1987; Wen et al. 2018), but it remains unconfirmed if the wheat-Xanthomonas 

translucens pathosystem involves a gene-for-gene interaction. The main known virulence 

mechanisms are zinc uptake regulator (Zur) which regulates production of extracellular 

polysaccharides, iron uptake, detoxification, and multidrug resistance (Pandey and 

Chatterjee 2022). 

1.5 Ecological factors influencing disease development 

The populations of pathogenic Xtpvu in wheat plants vary depending on how seeds are 

produced, processed, and stored (Buck et al. 2003). Germinated seedlings with small 

initial population of bacteria can increase to high numbers during the growing season. It 

has been reported that if the number of bacteria is less than 1,000 CFU/g in the seed lots, 

no BLS symptoms can be observed in emerged plants (Klykov 1945; Duveiller et al. 
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1997). Other factors that support rapid bacterial multiplication include high relative 

humidity, optimum temperature, and nutrient-rich root exudates (Buck et al. 2003). 

Taormina and Beuchat (1999) observed that pathogenic bacteria can survive for 

prolonged periods in or on stored dried seed, with long-term survival being higher at 

lower temperatures. 

The environmental optimum conditions of BLS development are not well documented or 

known since BLS has been sporadic and can vary from year to year (Bamberg, 1936; 

Duveiller et al. 1991; Tubajika et al. 1998; Li et al. 2020). However, some information 

show that dry conditions are not a limiting factor for the multiplication of Xtpvu after its 

parenchyma invasion since water’s role in the disease cycle is limited to the release and 

penetration of bacteria in the leaf (Duveiller et al. 1991; Duveiller and Maraite 1995; 

Pandey and Chatterjee 2022). Duveiller and Maraite (1995) observed that bacterial 

multiplication is faster, and the population can increase by more than three logs during 

the first 48 hours, with a maximum population (10^8-10^9 CFU/ leaf) reached after 4 

days at 25°C. 

Thus, BLS is difficult to induce in plants by spraying inoculum onto the leaf under 

controlled conditions (Duveiller and Maraite 1995), because infection process is mainly 

affected by presence of oxygen in the root zone, plant nutrition and inoculation timing 

which influence the size of stomatal opening (Randhawa and Civerolo 1985). 

1.6 Life cycle, mode of infection and impact on yield 

The survival rate of bacteria on seeds and transmission between seedlings are shown to 

be largely dependent on the storage conditions, the length of storage, and the level of 

genotype susceptibility (Boosalis 1951; Forster and Schaad 1990; Milus and Mirlohi 
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1995). Infected seeds have been found to be the major survival mechanism and source of 

transmission of Xtpvu (Milus & Mirlohi 1995), though crop debris and alternative hosts 

may also play a role (Curland et al. 2018; Darrasse et al. 2007). Previous studies show 

that weeds and grasses can be overwintering hosts or green bridges for bacteria to spread 

to the next growing season (Wallin 1946; Fang et al. 1950; Boosalis 1951; Thompson et 

al. 1989), since Xtpvu can survive in soil and crop debris for a short period of time (Milus 

and Mirlohi 1995; Duveiller et al. 1997; Stromberg et al. 2000; Li et al. 2020).  

The pathogen can also survive in extracellular polysaccharide matrices for several weeks, 

and later develop epiphytically on host and non-host plants (Timmer et al., 1987; Beattie 

& Lindow 1999). The yellow exudates formed on the lesions can be spread by rain, wind, 

and insects to the new site of infection on plant parts having micro injuries caused by rain 

and/or wind leading to the penetration of bacteria into leaf blades (Kaur et al. 2020). 

Xanthomonads also infect plants through hydathodes in case there is no wounding on the 

plant (McElhaney et al. 1998). 

The BLS disease cycle is completed when bacteria successfully contaminate the seed of 

their host, or when they survive on a substrate that facilitates subsequent infections of a 

new host (Stanton 2019). 
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Figure 1.1 Disease cycle of bacterial leaf streak (BLS) and proposed routes of spread.  

(Reproduced courtesy of E. Duveiller). 

BLS negatively affects yield and grain quality by reducing photosynthetic leaf area and 

causing black chaff to form on wheat heads, yet it is difficult to manage since common 

chemicals do not provide effective control (Li et al. 2020). Field studies have shown that 

the Xanthomonas translucens pv. undulosa pathogen may cause up to 40% yield loss 

(Dill-Macky 2011).  

1.7 Isolation and identification  

Hauben, et al. (1997) noted that Xanthomonas species exhibited relatively high levels of 

overall genome sequence similarity, with a mean similarity value of 98.2%, which 

corresponded to an average of 14 mutual nucleotide differences. According to Iqbal et al. 

(2013), Xtpvu can be isolated from a diseased portion of leaf of an affected plant and 

cultured on yeast dextrose calcium agar medium, and bacterial colonies can be further 

purified and streaked on nutrient agar plates. Xtpvu may also be characterized through 
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pathogenicity, hypersensitivity, biochemical and molecular assays (Iqbal et al. 2014). 

Bacteria in plant samples can also be isolated on Wilbrink’s Agar (WBA) (Sands et al. 

1986). WBA is important for Xtpvu since Xtpvu can be easily differentiated from many 

saprophytic bacteria by observing yellow mucoid colonial growth of Xanthomonas 

translucens (Kaur et al. 2020). 

Iqbal et al. (2014) noted that the 300 bp product amplified by a C1 and C2 primer pair 

confirmed the presence of Xanthomonas, while specific primers T1 and T2 amplified a 

product of 200 bp, which confirmed the presence of Xtpvu. Furthermore, biochemical 

characterization, Gram staining, KOH test, catalase and Kovac’s oxidase test can be 

performed for characterization of the BLS-causing pathogen (Schaad 1980).  

1.8 Disease management and control 

The first step in managing BLS is starting with pathogen-free seed. Buck et al. (2003) 

noted that finding the optimum storage conditions that promote the desiccation and 

ultimate reduction of bacterial populations without compromising seed quality is a viable 

option for reducing bacterial populations. Seed certification can also be used to minimize 

the disease; thus, seed treatment may serve as a preventive measure (Iqbal et al. 2014; 

Duveiller 1994; Duveiller and Bragard 1992). For field control, Stanton (2019) reported 

that inoculation applied at booting growth stage (Z49) resulted in the highest center score 

(7.0), which was significantly higher than all other treatments examined at p < 0.008. Yet 

early inoculations at the three- leaf, four-leaf, or five-leaf growth stages (Z13, Z14, Z15) 

increased chances of uniform and consistently high levels of BLS in inoculated research 

plots (Stanton 2019). Therefore, spraying with bactericides and pesticides at these stages 

has always been suggested for controlling bacterial diseases. It should be noted that some 
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antibiotics and synthetic pesticides used to control bacterial pathogens in crops are 

restricted in many countries because of their negative impact, due to their high and acute 

toxicity, long degradation periods and accumulation in the food chain (Rahman et al. 

2014). 

Some pathovars of Xanthomonas with resistance to commonly used antibiotics have been 

reported (Rodriguez et al. 1997; Rahman et al. 2014). This has complicated BLS 

management, and hence there is a need to search for non-conventional chemicals for BLS 

management having an eco-friendly nature for sustainable environmental ecosystem 

quality and resilient BLS control mechanisms (Bolkan and Reinert 1994).  

Breeding resistant wheat varieties is among the most cost-effective control options of 

BLS (Stanton 2019; Tillman et al. 1996) although breakthrough of resistance gene for 

BLS is still a major challenge. Classic genetic analysis has shown that BLS resistance can 

be quantitative or qualitative. Duveiller et al. (1992) reported a total of five genes (Bls1, 

Bls2, Bls3, Bls4, and Bls5) conferring BLS resistance in three resistant wheat cultivars, 

with Bls1 present in all three partially resistant wheat cultivars with the largest effect (Li 

et al. 2020). 

1.9 Use of plant extracts in BLS management 

Naturally occurring biologically active plant products such as organic extracts can be 

explored as a source of new environmentally friendly pesticides for controlling plant-

pathogenic microorganisms (Rahman et al. 2014). Plant extracts have always been used 

in traditional medicine as a source of antimicrobial compounds for disease treatment, 

food safety and shelf-life extension (Nabavi et al. 2015). All plant extracts tested are 

believed to have high levels of secondary metabolites which may directly target bacterial 
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pathogens (Blanc & Cock 2021). Among organic extracts, plant extracts from moringa 

(Moringa oleifera), Spirulina, Ginseng and Tannic acid have been explored (Farooq et al. 

2012; El-Mohamedy & Abdalla 2014; Szczuka et al. 2019; Hlima et al. 2019). 

1.9.1 Moringa 

Moringa (Moringa oleifera) leaf extract (MLE) is known as a good source for 

phytohormones, phenolics and minerals (Nasir et al. 2016). MLE has also been reported 

as having antimicrobial, antioxidant, antiurolithiatic, and antihelmintic properties, which 

was supported after the discovery of inhibitory activity against several microorganisms 

(Farooq et al. 2012; El-Mohamedy & Abdalla 2014). It has also been reported that 

carboxymethyl cellulose containing moringa extract can suppress postharvest diseases 

and maintain quality of avocados (Rikhotso et al. 2019; Tesfay & Magwaza 2017). El-

Mohamedy & Abdalla (2014) reported that moringa roots at 15% and 20% were most 

effective in decreasing spore/sclerotia germination (ranging from 53.4% to 81.4% and 

67.0% to 94.2% decrease) of all tested pathogens (Fusarium oxysporum, Fusarium 

solani, Alternaria solani, Alternaria alternata, Rhizoctonia solani, Sclerotium rolfsii or 

Macrophomina phaseolina).  

Nasir et al. (2016), reported an increase in fruit set and decrease in fruit drop as compared 

with control trees after foliar application of moringa leaf extract. While testing of 

moringa against plant fungal pathogens has been done, testing against plant pathogenic 

bacteria has not to our knowledge been done in wheat. 

1.9.2 Spirulina 
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Spirulina (Arthrospira platensis, Arthrospira maxima) is known to have polyphenols and 

polysaccharides which are responsible for its antimicrobial activities (Hlima et al. 2019; 

Bajpai, 2016; Pagnussatt et al. 2016). Hlima et al (2019) demonstrated the capacity of 

Spirulina to inhibit all members of the studied panel of fungal strains (Fusarium 

oxysporum, Fusarium culmorum, Fusarium graminearum, Aspergillus niger and 

Alternaria alternata), particularly the Fusarium genus. Battah et al. (2014) also found 

that Spirulina maxima showed a broad spectrum of antifungal activity, with an average 

activity of 26% against five tested human and plant pathogenic fungi compared to the 

three tested commercial pesticides. 

1.9.3 Ginseng 

Ginseng (Panax quinquefolius) is an important medicinal plant as reported in several 

medical efficacy trials (Kim & Park 2011; Thomson 2010; Kitts & Hu 2000), showing 

antimicrobial activity against different pathogenic strains (Szczuka et al. 2019; Mehta et 

al. 2021). Kim & Yang (2018) stated that ginseng’s effects not only directly kill bacteria 

but also work against the regulation of bacterial adhesion, inflammation, cytotoxicity, and 

hemagglutination. This is mainly due to their major pharmacological component 

(ginsenosides) which are specific secondary metabolites of Panax sp. (Kim & Yang 

2018; Shahrajabianet al. 2019). It is also considered to be a food additive (Gillis 1997) in 

many countries including the USA. 

1.9.4 Antibacterial activity test of individual and combined crude extracts 
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The antibacterial activity of the individual crude extracts and their combination have been 

studied by using agar diffusion methods. Minimum Inhibitory Concentration (MIC) can 

be analyzed using descriptive statistics (Mummed et al. 2018). 

Although plant extracts have been studied extensively in both animal and plant disease 

management, there is not sufficient information on the effectiveness of these extracts on 

bacterial leaf streak of wheat. 

1.10 Use of nanomaterials in BLS management 

Nanotechnology is the science of manipulating matter at the atomic and molecular level, 

that deals with matter at the scale of one-billionth of a meter (Raliya et al. 2013). Size-

related properties of nanoparticles offer innumerable opportunities for their diverse 

applications in the scientific world (Manojkumar et al. 2016). Another proposed 

definition is that nanomaterials exhibit a specific surface area to volume ratio greater than 

or equal to 60 m2/cm2 (Kreyling et al. 2010). This unique property of nanomaterials (high 

ratio of surface area to volume) further enhances their capability to penetrate cell 

membranes and to affect biochemical activities (Singh et al. 2019; Zhang et al. 2008). 

The reduction in size alters the electronic structure of the material, resulting in novel 

quantum effects. Therefore, the concentration of particles determines interparticle 

distance and is an important parameter to determine stability (Shrestha et al. 2020). The 

American Society for Testing and Materials categorizes nanoparticles based on their 

having two or more dimensions at the nanometer scale, and their having distinctive 

improved physical/chemical properties compared with their bulk counterpart (Limongi et 

al. 2019). 
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Recently, nanomaterials have been reported to minimize the number of chemical 

applications needed for plant disease management, which results in decreased toxicity 

and reduced cost of production (Worrall et al. 2018; Liao et al. 2019). They have been 

vigorously studied because they can be used as a novel, green and eco-friendly approach 

for managing diseases in plants very effectively (Singh et al., 2019; El-Argawy et al. 

2017; Fu et al. 2020). For instance, nanoparticles have minimized bacterial leaf spot 

disease in tomatoes (Liao et al. 2019). The timing of nanomaterial application is very 

critical. Worrall et al. (2018) found out that application of nanomaterial after inoculation 

was more effective than application before infection or simultaneous application at the 

time of inoculation. 

However, the main challenge is to achieve well-dispersed nanoparticles to facilitate their 

use both in vitro and in vivo (Limongi et al. 2019). The presence of short inter-particle 

distance between the metal nanoparticles leads to an attraction between them due to the 

influence of van der Waals forces. This usually happens in the absence of repulsive 

forces between the two particles, leading to their aggregation (Manojkumar et al. 2016). 

Among the nanomaterials studied, ZnO nanomaterials are the most unstable in 

suspension, mainly due to the dissolution of particles to form high concentrations of ions, 

resulting in enhanced aggregation of particles (Tso et al. 2010). To address this challenge 

there are several approaches that can be used in the process of treatment preparation, 

including: (i) ultrasound pretreatment with pressure frequency greater than 20 KHz 

(sonication) to improve nanomaterial dispersion in order to minimize chances of 

agglomeration by inertial cavitation, (ii) redispersion of nanoparticles using 50 µm bead 

milling (Sato et al. 2008), and (iii) use of dispersion stabilizers as a chemical 
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modification of the nanoparticles’ surfaces. Such chemical functionalization includes the 

use of organic coatings, comprising various natural and synthetic polymeric layers (Phan 

and Haes 2019; Limongi et al. 2019: Hidehiro and Motoyuki 2010). In addition, Phan and 

Haes (2019) noted that the nanostructures stabilized by the mixed monolayer were 

deemed to exhibit anti-aggregation behavior, due to the interruption of crystalline 

packing of ligands on particle surfaces. However, Zhang et al. (2007) reported that the 

use of ultrasonication does not seem to be effective in breaking down nanoparticle 

agglomerates, and the use of dispersants does not enhance the size reduction. 

Generally, the stability of a nanofluid depends upon various factors such as particle 

concentration, solution chemistry, particle size, surfactant, and ultrasonication (Singh et 

al. 2020).  

1.10.1 Nanomaterial activity 

The detailed mechanisms describing the specific metallic nanostructure actions causing 

harm to bacteria remain uncertain; however, attention has been given to morphological 

alterations (Singh et al. 2019). Metal nanoparticles such as silver, copper, zinc oxide, and 

titanium dioxide have been intensively researched for their antibacterial and antifungal 

properties, and are known for their antiviral properties (Worrall et al. 2018). Much 

research has been carried out on copper nanoparticles; for instance, as reported by Rai et 

al. (2018), they have the ability to control fungal pathogens at 15 mgL⁻¹. They also 

exhibit deleterious effects on E. coli (Deryabin et al. 2013; Jamshidi and Jahangiri-Rad 

2014; Harikumar and Aravind 2016; Chatterjee et al. 2014), Bacillus subtilis (Yoon et al. 

2007), Pseudomonas aeruginosa and Staphylococcus aureus (Azam et al. 2012; Singh et 
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al. 2019) which shows that they can be effective against both Gram-negative and Gram-

positive bacteria.  

Agricultural agronomic nanotechnology research and development is very promising 

(Worrall et al. 2018). Recently, Elmer et al. (2018) noted that nano-copper products 

significantly reduced bacterial spot disease severity caused by Cu – resistant 

Xanthomonas perforans in the greenhouse and field trials compared to copper fungicide 

treatments. It was also reported that the zinc – based nanoproduct - ZinkicideTM 

suppressed citrus scab (Elsinoe fawcetti) and melonase (Diaporthe citri) on grapefruit. 

Zinc oxide nanoparticles have also been observed to provide efficient control of pathogen 

growth (Dimkpa et al. 2013). Dimkpa et al. (2013) stated that zinc oxide nanoparticles 

have better pathogen suppression, lesser toxicity and soil fertility enhancement compared 

to silver nanoparticles, and they are considered as bio-safe material (Liu et al. 2019). 

Nano-zinc oxide’s antibacterial activity varies based on its concentration and surface 

area, and like other nanoparticles, it damages bacterial membranes and walls (Zhang et al. 

2007). ZnO particles are effective in inhibiting both Gram-positive and Gram-negative 

bacteria, and they are also effective against spores that are high-temperature and high-

pressure resistant (Zhang et al. 2008).   

However, the lipopolysaccharides of the outer membrane of Gram-negative Bacteria may 

provide resistance against nanoparticles (Yoon et al. 2007; Baek & An 2011; Suresh et al. 

2013). The use of polyvinylpyrrolidone surfactant can increase nanoparticle activity and 

has been reported to improve nano ZnO suspension stability (Zhang et al. 2007). This is 

due to the surfactant’s physicochemical properties that enables it to be an effective anti-
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biofilm agent by penetrating and disrupting hydrophobic structures (Anestopoulos et al. 

2020). 

The registering of new nano–zinc products for crop disease management shows the 

recognition of nanoparticles as a viable alternative to conventional strategies (Elmer et al. 

2018). This approach is increasingly being adopted into crop production. Nanoparticles 

alone have the potential to be directly applied to seeds, foliage, or roots for protection 

against pests and pathogens, such as insects, bacteria, fungi, and viruses. Elmer et al. 

(2018) also reported that nano CuO increased crop biomass in six of eight experiments, 

and it also increased fruit yield and disease suppression in greenhouse egg plants (Elmer 

et al. 2021; Elmer and White 2016).  

1.10.2 Nanomaterial mode of action against bacterial pathogens. 

Nanoparticles accumulate and dissolve in the bacterial cell membrane that leads to 

alterations in membrane permeability and dissipation of the proton motive force 

(McQuillan 2010; Singh et al. 2019; Rai et al. 2018). Bacteria are known to play 

important roles in ecosystems (Singh et al. 2019). Being present at the bottom of the food 

chain, they become a key point for entry of nanomaterials to interact with organisms 

present at higher trophic levels (Suresh et al. 2013). When nanostructures first interact 

with the cell wall, this results in a disaggregated exopolysaccharide matrix, and separated 

cells, followed by their elongation and re-arrangement of cells into smaller groups. These 

changes allow the physical association of bacteria and nanostructures on available 

surfaces. The completely disrupted cell wall is the predominant step in the second phase 

of interaction between nanostructures and bacteria, resulting in the development of 
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perforated and thickened cell walls (Singh et al. 2019). This is supported by Singh et al. 

(2019), who reported that nanoparticles affected plant–microbe interaction by exposure 

of the plant growth-promoting bacterium, P. chlororaphis O₆, to zinc oxide and copper 

oxide nanoparticles. The nanoparticles are thought to bind with thiol moieties of bacterial 

proteins which disrupts their functioning, and their attachment to the cell membrane 

alters its permeability by changing the cell electrical potential, hence affecting the 

respiration process leading to cell death (Radzig et al. 2013; Singh et al. 2019). 

Nanoparticle properties such as high tensile strength, high conductivity, and other 

physiochemical features make it possible for them to interact with prokaryotic cells, 

which affects cell morphology by cell membrane alterations and cytoplasmic 

accumulation of nanoparticles within the cell (Sinha et al. 2011; Jain et al. 2018). In 

addition, Rai et al. (2018) noted that toxic ions (Ag⁺, Cu²⁺, Cd²⁺, Zn²⁺) bind to sulfhydryl 

groups of sulfur-containing proteins and affect protein functioning which disrupts 

membrane and cell permeability. 

Another suggested mechanism is dissolution of nanoparticles into ions and their ability to 

generate reactive oxygen species (ROS) which also mediate microbial toxicity (Rai et al., 

2018; Choudhury et al. 2013). This is due to the nanomaterials’ physical or chemical 

redox active surfaces, which can react with molecular oxygen to generate ROS leading to 

toxicity in some biological systems (Suresh et al. 2013). The created imbalance in 

downstream pathways triggers DNA damage, altered cellular signaling, and programmed 

cell death (Jain et al. 2018; Rai et al. 2018). In an assessment on the antibacterial effect of 

zinc oxide nanoparticles on E. coli, bactericidal activity increased with a decrease in 

particle size (Zhang et al. 2007; Zhang et al. 2008; Suresh et al. 2013), mainly because of 
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ROS-induced membrane lipid oxidation systems leading to the dose-dependent 

antibacterial action of ZnO nanoparticles against E. coli (Liu et al. 2019; Suresh et al. 

2013; Dutta et al. 2013). 

Unlike prokaryotes, the eukaryotic semipermeable plasma membrane selectively permits 

a few important nano-sized chemical species across the lipid membrane, either by 

specific membrane transport protein channels or by endocytosis (Alberts et al. 1997; 

Conner and Schmid 2003), and this explains the absence of phytotoxicity after 

nanomaterial foliar application. 

1.10.3 Nanomaterial toxicity to bacteria 

Toxicity of nanomaterials is mostly attributed to the small size and large surface area of 

nanomaterials (El-Argawy et al. 2017), but the unique physio-chemical properties like 

size, shape, charge, area, and reactivity of nanoparticles makes the investigation of their 

toxicity complicated (Jain et al. 2018). It is believed that significant physical, chemical, 

and electrical changes could occur when materials are prepared in their ultra-fine 

particulate form (Povey et al. 2008). The molecular mechanism of toxicity normally 

occurs by dissolution of nanoparticles into ions. This has many examples including 

microbial toxicity of zinc, copper, silver, and nickel ions (Suresh et al. 2013), and the 

toxicity rate differs for different ions and target pathogen species. The correlation 

between nanoparticle toxicity and its dissolved ion was observed in studying comparative 

toxicity of nano-crystallites of ZnO, CuO and TiO2 against V. fischeri. The ZnO and CuO 

nanoparticles were found to be toxic with LC50 values of 1.9 and 79 mg L-1, as compared 

to TiO2 nanoparticles which were not toxic even at high concentrations of 20 g L-1 
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(Suresh et al. 2013), and the toxicity was mainly due to the release of soluble ions 

(Suresh et al. 2013). 

According to Rai et al. (2018), zinc oxide nanoparticles have an inhibitory effect on 

hyphal growth of B. cinerea, and conidia germination in P. expansum at an application 

rate of 12 mmol L-1. Suresh et al. (2013) also reported the bactericidal potential of 500–

1000 nm diameter CuO nanoparticles against several disease-causing bacterial strains of 

E. coli, S. typhi, S. aureus and B. subtilis. A few studies show its antibacterial activity 

against all the bacterial strains that were assessed (Pandey et al. 2012; Suresh et al. 2013). 

Factors such as the method of nanomaterial synthesis, dose, the presence or absence of 

additives, and the solubility of the material can also influence the biological impact of the 

nanomaterial (Suresh et al. 2013), and surface charge as dictated by chemical coatings 

has also been found to be important in controlling the toxicity of other nanoparticles 

(Suresh et al. 2013). Nanoparticles of less than 100 nm are more toxic than larger 

particles of identical chemical composition (Jain et al. 2018; Liao et al. 2019). However, 

Brownian motion increases with reduction in particle size and high temperature, which 

influences the stability of nanofluids because surface energy and cohesion may lead to 

nanoparticle aggregation. However, nanoparticle preparation techniques like sonication 

and application of surfactants can minimize aggregation (Singh et al. 2020; Liu et al. 

2019). 

The agricultural adoption of nanotechnology research has not yet reached its full potential 

for commercial applications (Worrall et al. 2018). Moreover, the effect of nanoparticles 

depends upon the species of plant and type of nanoparticle. Nanomaterials can also be 

used as potential carriers, as modulating active ingredients of pesticides so that they can 
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be released at the appropriate time for better disease control (Rai et al. 2018; El-Argawy 

et al. 2017). Application of slow-release fertilizer coated with nanomaterials was reported 

to improve grain yield, with minimal increase in protein content plus decreased soluble 

sugar content in wheat compared to NPK treatment (Qiang et al. 2008; Elmer et al. 2018). 

A number of studies have been conducted to establish the efficacy of metal oxide and 

metal nanoparticle treatments to suppress pathogens and benefit crop yield (Singh et al. 

2019) but no data are available on the efficacy of nanoparticle application controlling 

BLS in wheat. Therefore, this study focused on the influence of nanomaterials on 

bacterial growth and BLS severity, with the goal of developing sustainable eco-friendly 

biopesticides for the management of wheat diseases and increasing scientific information 

availability of this practice for phytopathologists, extensionists and agronomists. 

Researchers have tested several products to combat BLS, but no product is currently 

known to provide effective protection against BLS disease. Therefore, the study’s main 

goal was to determine effectiveness of eco-friendly biopesticides, and nanomaterials as 

part of integrated BLS management. The specific objectives of the study were: 

i) To determine antibacterial activity of nanomaterials on Xtpvu in-vitro. 

ii) To evaluate the efficacy of nanomaterials and plant extracts on BLS 

development in wheat under field conditions. 

iii) To determine the influence of nanomaterials and plant extracts on wheat crop 

yield. 
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Chapter 2 

2.0 Efficacy of nanomaterials on bacterial leaf streak in wheat 

ABSTRACT 

Wheat (Triticum aestivum L.) is one of the most important cereal crops in the United 

States. Most wheat varieties are susceptible to bacterial leaf streak (BLS), a major disease 

caused by Xanthomonas translucens pv. undulosa (Xtpvu). BLS is challenging to manage 

since common chemicals do not provide adequate control. Nanoparticles present a novel 

eco-friendly approach for plant disease management because of their high surface area 

and antibacterial properties. However, no data are available on the efficacy of 

nanoparticles controlling BLS in wheat. The objective of this study was to evaluate the 

antibacterial activity of nanoparticles against Xtpvu growth and BLS severity. In-vitro, 

greenhouse and field studies were conducted with five treatments: nano-ZnO, nano-MgO, 

and nano-CuO amended with polyvinylpyrrolidone surfactant, were prepared at 2000 

ppm, with sterile water and Agrimycin as control checks. For the in-vitro study, a 100 µL 

aliquot of each treatment was collected at 12, 24, 48, & 72 hours and plated on King’s B 

agar medium and colony forming units (CFUs)/mL were determined after three days 

incubation to quantify Xtpvu growth. The experiment was conducted twice. Results 

showed that; CuO, MgO and ZnO nanomaterials had antibacterial properties against 

Xtpvu. In greenhouse and the field, all plots were artificially inoculated with Xtpvu two 

days before treatments were applied. To assess development of BLS, 10 randomly 

selected plants per plot were rated based on the percentage of leaf area with BLS 

symptoms. 
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Treatment with nano CuO had the lowest BLS severity followed by nano ZnO and nano 

MgO and they were statistically significant from the control. These results show that 

nano CuO has potential to control Xtpvu. 

2.1 Introduction 

Wheat is a grass crop mainly grown for its cereal grain worldwide, occupying about 17% 

of all crop area. It plays many roles in nature, which include but are not limited to; 

making leaven flour and flat and steamed breads, providing livestock feed, being, starting 

materials in fermentations to make beer and other alcoholic beverages, and acting as a 

feed-stock to produce bioenergy. Thus, it is considered as a staple food crop globally 

(Mergoum et al. 2009). The rice-wheat (R-W) farming system is a major supplier of 

digestible energy, and it meets about 30 % of the total protein requirements of the world 

(Khanal & Maharjan 2015). In South Dakota, 0.77 million acres of spring wheat, which is 

more than half of 1.4 million acres of total wheat in the state were planted in 2020 

(www.nass.usda.gov). Hard red spring wheat is the second largest class of US wheat 

produced. It is used to blend with other low protein wheat, making yeast breads and hard 

rolls because of its high protein (12.0 to 15.0%), strong gluten and high-water absorption. 

Other major products requiring it include pizza crust, bagels, buns, croissants, ramen 

noodles, and breads. In 2020, South Dakota spring wheat production was >$180m out of 

close to $3B USA total production in 2020 (www.nass.usda.gov).   

Bacterial leaf streak (BLS) generally affects cereal crops, and was first observed on 

barley in 1917 and later in wheat (1919) and rye (1924) and other grass species (Kaur et 

al. 2020). BLS was first reported in the USA as black chaff in 1919 (Smith et al. 1919). It 

affects all classes of wheat, but has a great impact on spring wheat if favorable 
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environmental conditions are present. The most important environmental factors for 

disease development are high relative humidity and optimum temperature for Xtpvu 

growth. Development of BLS under field conditions is very sporadic, and its impact 

becomes more severe following storm occurrence in a particular region.  

BLS of wheat has been reported in almost all six continents, with the exception of 

western Europe because of its relatively low temperatures in most wheat-growing areas 

(Kaur et al. 2020). It affects yield and grain quality in most wheat-growing regions in the 

USA (McMullen & Adhikari 2011). BLS is challenging to manage since there are no 

varieties with complete resistance, and yet common chemicals do not provide adequate 

control. 

Although overall rates of wheat yield loss due to plant diseases in the USA have 

decreased over the last several decades, there have been problems with pesticide 

resistance, environmental safety, and sustainability issues due to high synthetic chemical 

application in commercial farming. 

The use of nanomaterials is novel and has been found effective on horticultural crops 

(Singh et al., 2019; El-Argawy et al. 2017; Liao et al. 2019; Elmer et al. 2018; Elmer et 

al. 2021; Elmer and White 2016; Fu et al. 2020). Using nanomaterials minimizes the 

number of applications, because the nanomaterials directly target the pathogen, which 

results in decreased toxicity and reduced cost of production. They can be applied as a 

novel, green and eco-friendly approach for managing diseases in plants. 

Although there is sufficient evidence for efficacy of nanomaterial application for plant 

disease management in other crops, no data are currently available on the efficacy of 

nanomaterials controlling BLS in wheat. 
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Thus, there is a critical need to develop biopesticides for all major staple food crops to 

reduce chemical toxication, and slow down development of pesticide resistance by 

having many alternatives, and help ensure climate-smart agriculture for environmental 

sustainability. The objectives of this study were:  

i) To determine antibacterial activity of nanomaterials on Xtpvu in-vitro. 

ii) To evaluate the efficacy of nanomaterials on BLS development in wheat 

plants. 

iii) To determine the influence of nanomaterials on wheat grain yield. 

2.2 Materials and Methods 

2.2.1 In-vitro assay 

King’s B (agar and broth) media (Becton, Dickinson and Company Sparks, MD 21152 

USA) was used to culture Xanthomonas translusens pv. undulosa (Xtpvu) which was 

streaked on KB plates from cryovial stocks (isolated from a wheat field in Brookings 

County, South Dakota and stored at -80oC) and then transferred to KB broth for inoculum 

production. Serial dilutions of cells to get viable plate counts were used for establishing a 

Standard Curve in concert with turbidometric measurements at 546 nm wavelength to get 

3x10^6 CFU/mL bacterial cell suspension. 

Three nanomaterials were evaluated: nano-zinc oxide (ZnO, 99.8%, 10-30 nm), nano-

magnesium oxide (MgO, 99.9%, 10-30 nm), and nano copper oxide (CuO, 99+%, 40 nm) 

(SkySpring Nanomaterials, Inc, Houston, TX, USA) at 2000 ppm, amended with 

polyvinylpyrrolidone surfactant (1g/L) in sterile distilled water and sonicated for one 

hour of continuous sonication at 18 kHz (The Virtis Company, inc. Gardiner, NY. 12525 
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USA) before application. Sterile H2O and Agrimycin were control checks. Two mL of 

each treatment were applied to 18 mL of 0.01M MgSO4 solution inoculated with 200 µL 

Xtpvu suspension and incubated at 25℃ on an orbital shaker at 150 rpm. Treatments 

were applied in a completely randomized design with four replicates, and the experiment 

was repeated once. 

A 100 µL aliquot of each treatment was collected at 12, 24, 48, and 72 hours and plated 

on King’s B agar medium and CFUs/mL were determined to quantify Xtpvu growth. 

2.2.2 Greenhouse study 

Hard red spring wheat cultivar “ND Frohberg” was planted in the Plant Science 

greenhouse at South Dakota State University in 2021. Seeds were planted in Coex 

thermoform square pots of a cell diameter of 10.16 cm and a depth of 12.7 cm, filled with 

a soil mix PRO-MIX®. Six seeds per pot were planted and kept at 26oC – 30oC with 12 

hours light/day. 

Xtpvu was streaked on KB plates to get isolated colonies after incubation at 28oC ± 2 for 

72 hours and then transferred to KB broth for inoculum production. Serial dilutions to 

obtain viable plate counts were used for establishing a Standard Curve in concert with 

turbidometric measurements at 546 nm wavelength to obtain a cell suspension of 3x10^9 

CFU/mL. The inoculum was amended with carborundum at a rate of 1 g/L, and then 

applied using a mist blower at flag leaf stage to cause mechanical injury on plants for 

bacterial entry during inoculation, two days before product application. The 

nanomaterials used were nano ZnO (2000 ppm), nano MgO (2000 ppm), and nano CuO 

(1000 ppm) amended with polyvinylpyrrolidone surfactant (1 g/L). These were sonicated 
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for one hour before application. Agrimycin (standard check) and nanomaterial treatments 

were applied using plastic spray atomizers until leaves were wet with continuous shaking 

of the products in the sprayer bottle. 

Treatments were applied to plants in pots in a completely randomized design with four 

replicates, and the experiment was repeated twice. Plants were kept in a plastic chamber 

with a humidifier providing 95% humidity at night for 10 days, and the temperature was 

kept at 26oC – 30oC to enhance disease development. 

To assess BLS, one randomly selected plant per pot/plot was rated based on the 

percentage of leaf area with BLS symptoms (Bock et al. 2021) 14 days after inoculation. 

Xtpvu’s presence was detected from plant samples, using 0.7 cm discs in symptomatic 

leaves (Pothier et al., 2011). 

2.2.3 Field trial 

Hard red spring wheat cultivar “Select” (known for its high susceptibility to BLS in the 

field) was planted at the Volga Research Farm and Northeast Research Farm (NERF) 

near Watertown, SD in the spring of 2020 and 2021. Planting of seeds was done using a 

7-row tractor-mounted small grain planter fitted with cone units at a seeding rate of 323 / 

m2. The plot size was 1.5 m wide and 4.6 m long. All plots were artificially inoculated at 

tillering and flag leaf stage (using a mist blower) with Xtpvu (3x10^8 CFU/mL) and later 

amended with carborundum just before spray application at a rate of 1 g/L to cause 

mechanical injury on plants for bacterial entry during inoculation, two days before 

treatments were applied. The Volga plots had continuous misting during flowering 

growth stage in 2021. 
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Three nanomaterials--nano ZnO (1000 ppm), nano MgO (1000 ppm), and nano CuO 

(1000 ppm), were sonicated for one hour before application for 2020. In 2021, treatments 

of nano ZnO (2000 ppm), nano MgO (2000 ppm), and nano CuO (1000 ppm) amended 

with polyvinylpyrrolidone surfactant and sonicated for one hour before application & 

agrimycin (standard check) were applied with continuous shaking. Non-inoculated plants 

and inoculated but not treated plants were also used as control checks. The experiment 

was conducted as a randomized complete block design with four replications. 

To assess BLS, 10 randomly selected plants per plot were rated based on the percentage 

of leaf area with BLS symptoms, and yield was determined by combine-harvesting each 

plot and adjusted to bushels per acre at 13.5% moisture content. 

2.3 Data analysis 

BLS severity data were subjected to analysis of variance using linear mixed model in R-

program (software Version 4.0.5) to get the P value of treatments, and then Fisher’s Least 

Significant Difference (LSD) procedure was performed for treatment mean comparisons. 

2.4 Results 

2.4.1 In-vitro efficacy of nanoparticles against Xtpvu 

Nano CuO completely inhibited bacterial growth after 24 hours, whereas nano ZnO 

slightly inhibited growth, while nano MgO inhibited growth the least compared to 

agrimycin standard check which also completely inhibited bacterial growth at all time 

intervals. Thus, nano-CuO had the lowest CFUs followed by nano-ZnO and nano-MgO at 

all time intervals (Figure 2.1).  

2.4.2 Efficacy of nanoparticles on BLS in spring wheat greenhouse trial 
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All nanomaterial treatments were significantly different from control, with (P <0.0001) 

for BLS severity in the greenhouse experiments. 

Nano CuO significantly reduced BLS severity (3.00%), followed by nano ZnO (6.25%) 

 and then nano MgO (7.25%) which had the least effect on BLS severity. Agrimycin 

(standard check) had the lowest BLS severity (2.75%), and the untreated check had the 

highest BLS severity (22.50%) (Table 2.1). 

2.4.3 Efficacy of nanoparticles on BLS severity in spring wheat under field 

conditions. 

Overall, nanomaterials reduced BLS severity in all site years, with nano CuO and nano 

ZnO being the most effective. There was an increased BLS severity in 2021 at Volga due 

to addition of misting which provided a favorable environment for BLS development 

(Table 2.3 and Table 2.5).  

There was higher BLS severity at Volga than NERF in both 2020 and 2021. No statistical 

differences were observed among treatments at Volga in 2020. Nano ZnO (11.66%), and 

nano CuO (14.18%) had numerically low BLS severity in 2020. Also, no statistical 

differences were observed at NERF in 2020, with nano CuO (7.6%), having numerically 

lowest BLS severity (Table 2.3). 

In 2021, statistical differences were observed among treatments at Volga, with nano CuO 

(10.03%) being the most effective in reducing BLS severity. Statistical differences were 

also observed at NERF in 2021, with nano MgO (5.7%), and nano CuO (6.78%) being 

the most effective in reducing BLS severity (Table 2.5). 
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Yields were not significantly different among nanomaterial treatments, for both locations 

in 2020 and 2021. However, nano MgO and nano CuO had numerically higher yields at 

Volga, and nano MgO had the highest yield at NERF (Table 2.3 and Table 2.5). 

2.5 Discussion 

This study focused on evaluating the influence of nanomaterials on bacterial growth, and 

their efficacy on bacterial leaf streak severity and impact on yield. 

For the in-vitro assay, nanomaterial treatments caused statistically significant reduction 

of Xtpvu in-vitro growth. Hence, we have sufficient evidence to accept that at least there 

is an interaction among these nanomaterial treatments and Xtpvu. Nano CuO, nano MgO, 

and nano ZnO had antibacterial properties against Xtpvu under greenhouse and field 

conditions, and these results are consistent with previous research (Liao et al. 2019). Zinc 

oxide nanofluids have been reported to have bacteriostatic activity against E. coli (Zhang 

et al. 2007; Povey and York 2008). Pandey et al. (2012) reported that a sonicated CuO 

nanoparticle suspension enhanced bactericidal efficacy against Gram-positive and Gram-

negative waterborne disease-causing bacteria such as Escherichia coli, Salmonella typhi, 

Staphylococcus aureus and Bacillus subtilis. This is consistent with the findings of this 

study. Like our study, Elmer et al. (2021) also reported that CuO nanoparticles treatments 

were associated with an increase in fruit yield and disease severity suppression. Similar 

results were obtained in the study of Elmer et al. (2018) where plants treated with CuO 

nanoparticles yielded 39%, and 53% more fruit in Hamden, CT. It was further shown that 

all nanoparticle treatments (B, CuO, MnO, and ZnO) significantly reduced the disease 

ratings relative to the control, with CuO nanoparticles having significantly lower rank. 
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In the work of Liao et al. (2019), for in-vitro assay of Cu – tolerant Xanthomonas 

perforans strain GEV485, nano CuO was the most effective in limiting bacterial growth. 

Similar results were reported by Baek & An (2011) where nano MgO and nano ZnO 

showed little inhibition. The limited bacterial growth inhibition by nano ZnO and nano 

MgO may be due to differences in the time of exposure to nanomaterials and the bacterial 

sensitivity to copper. This is further confirmed in the same study which showed a similar 

trend to this study’s result with Cu – sensitive Xanthomonas perforans strain 91 - 118.  

Increasing the rate of nano ZnO and nano MgO to 2000 ppm, with addition of 

polyvinylpyrrolidone surfactant improved the efficacy of these treatments in 2021 

compared to 2020 with only nano ZnO and nano MgO at 1000 ppm. This is similar to the 

results of Dutta et al. (2013) who observed that the choice of capping agent, and presence 

of hydroxyl groups were important parameters for synthesizing nano ZnO and their 

consequential antibacterial activity. This is consistent with our study’s results in 2021 

which had improved antibacterial efficacy due to addition of a surfactant. 

Treatments did not significantly impact yield in both years. This most likely was due to 

relatively low BLS pressure in all plots for both our elevated level of BLS inoculum and 

naturally occurring BLS inoculation. 

Our results show that nano CuO has potential to control Xtpvu based on the in-vitro, 

greenhouse, and field results. However, in-vitro conditions had higher antibacterial 

activity for all treatments when compared with their efficacy under field conditions. This 

may be due to the influence of uncontrolled environmental conditions. Addition of a 

misting system increased BLS severity due to the presence of favorable environmental 

conditions. However, more testing on the different application rates and timing may be 
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needed. Also, more studies on the effect of nanomaterials on other epiphytic and 

endophytic microbiomes in wheat are needed. 
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Table 2.1 Mean comparisons for bacterial leaf streak (BLS) severity caused by 
Xanthomonas translucens pv. undulosa in spring wheat ‘ND Frohberg’ under 
greenhouse conditions after application of nanomaterials in 2022. 

Treatment BLS severity (%) a 

Control (untreated) 22.50a 

NanoMgO 7.25b 

NanoZnO 6.25bc 

NanoCuO 3.00cd 

Agrimycin 2.75d 
a For each treatment within a column, means with different letters are significantly 
different, according to Fisher’s Least Significant Difference (LSD) procedure at P 
= 0.05. 
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Table 2.2 Analysis of variance of spring wheat ‘Select’ bacterial leaf streak 
(BLS) severity (percentage) caused by Xanthomonas translucens pv. undulosa 
and yield (bu/acre) after application of nanomaterials at two South Dakota State 
University agricultural research stations in 2020. 

  Volga    Northeast 
research 
farm 

   

 BLS severity 
(%) 

 Yield 
(bu/acre)  

 BLS severity 
(%) 

  Yield 
(bu/acre) 

 

 F value Pr(>F) F value Pr(>F) F value Pr(>F)  F value Pr(>F) 

Treatment 1.369 0.31 1.34 0.30 0.52 0.76  0.75 0.60 

Least significance level of 𝛼 = 0.05. 
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Table 2.3 Mean comparisons of spring wheat ‘Select’ bacterial leaf streak (BLS) 
severity (percentage) caused by Xanthomonas translucens pv. undulosa and 
yield (bu/acre) after application of nanomaterials at two South Dakota State 
University agricultural research stations in 2020. 

 Volga  Northeast 
research farm 

 

Treatment BLS 
severity 
(%) 

Yield (bu/acre) BLS severity 
(%) 

Yield (bu/acre) 

NanoZnO 11.66a 11.62ab 14.20a 50.80a 

Check-Inoculated 16.88a 12.87ab 10.80a 50.40a 

Check-NonInoculated 8.80a 9.80b 10.50a 50.10a 

NanoMgO 14.48a 15.07ab 7.80a 52.20a 

NanoCuO 14.18a 15.50a 7.60a 50.10a 

Agrimycin 9.32a 12.24ab 4.00a 48.80a 
 “Select” as the Cultivar was planted at both locations. For each treatment within a 
column, means with different letters are significantly different, Fisher’s Least 
Significant Difference (LSD) procedure at p = 0.05.  
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Table 2.4 Analysis of variance of spring wheat ‘Select’ bacterial leaf streak 
(BLS) severity (percentage) caused by Xanthomonas translucens pv. undulosa 
and yield (bu/acre) after application of nanomaterials at two South Dakota State 
University agricultural research stations in 2021. 

  Volga    Northeast 
research 
farm 

   

 BLS severity 

(%) 

 Yield (bu/acre)   BLS severity 
(%) 

  Yield (bu/acre)  

 F value Pr(>F) F value Pr(>F) F value Pr(>F)  F value Pr(>F) 

Treatment 1.51 0.244 1.53 0.24 3.14 0.04*  0.30 0.91 

Least significance level of 𝛼 = 0.05. 
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Table 2.5 Mean comparisons of spring wheat ‘Select’ bacterial leaf streak (BLS) 
severity (percentage) caused by Xanthomonas translucens pv. undulosa and 
yield (bu/acre) after application of nanomaterials at two South Dakota State 
University agricultural research stations in 2021. 

 Volga  Northeast 
research farm 

 

Treatment BLS severity 
(%) 

Yield (bu/acre) BLS severity 
(%) 

Yield (bu/acre) 

NanoZnO 11.70ab 15.09a 19.18a 35.23a 

Check-
Inoculated 

23.95a 10.99a 17.58ab 33.73a 

Check-
NonInoculated 

6.45b 19.26a 0.28c 35.06a 

NanoMgO 9.53ab 17.16a 5.70bc 35.01a 

NanoCuO 10.03ab 18.28a 6.78abc 39.11a 

Agrimycin 10.75ab 11.23a 3.79c 35.18a 
“Select” as the Cultivar was planted at both locations. For each treatment within a 
column, means with different letters are significantly different, Fisher’s Least 
Significant Difference (LSD) procedure at p = 0.05.  
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Figure 2.1 Invitro effect of Nanomaterials (copper oxide, zinc oxide, magnesium 
oxide) on Xanthomonas translucens pv. undulosa growth after 12 hours, 24 hours, 48 
hours, and 72 hours. 

CFU = colony forming units, N.CuO = Nano Copper oxide, N.ZnO = Nano Zinc 
oxide, N.MgO = Nano Magnesium oxide, under in-vitro conditions. Error bars 
represent Standard Error of the Mean (SEM). 
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Chapter 3 

3.0 Efficacy of biorationals on bacterial leaf streak in wheat 

ABSTRACT 

Bacterial leaf streak (BLS) is a challenging disease to manage since common chemicals 

do not provide adequate control. Some plant extracts have been shown promise to 

provide a sustainable environmentally friendly control of animal and plant diseases. 

However, limited data are available on the efficacy of plant extracts controlling BLS in 

wheat. The objective of this study was to evaluate the antibacterial activity of selected 

biorationals against Xtpvu. Field studies were conducted with seven treatments: moringa, 

spirulina, ginseng, and tannic acid, with Agrimycin as a standard check, and inoculated 

and non-inoculated controls. All plots were artificially inoculated with Xtpvu two days 

before treatments were applied at flag leaf growth stage. To assess BLS, 10 randomly 

selected plants per plot were rated based on the percentage of leaf area with BLS 

symptoms. Yield for each plot was determined at harvest. 

Moringa and tannic acid had the highest antibacterial effect among all plant extracts 

tested. Although there were no statistical differences between the effect of different 

biorationals on BLS severity and yield, these results show that tannic acid and moringa 

may have potential to control Xtpvu and warrant further research on rates and timing of 

these plant extracts. 
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3.1 Introduction 

Biorational pesticides are natural products and chemical compounds which were 

developed due to the discovery of pathogen molecular mechanisms and biological 

control, and their efficacy can be determined by methods including observing zones of 

growth inhibition in confluent lawns of target microbe grown on an agar medium 

(Gardener & Fravel 2002). 

Ginseng inhibits/controls bacterial diseases through its anti-quorum sensing activity 

(Song et al. 2010). In addition to affecting quorum sensing (QS) and biofilm formation, it 

was reported that American Radix Ginseng inhibited in-vitro growth of Pseudomonas 

aeruginosa (Wu et al. 2014). 

Tannins are polyphenolic secondary plant metabolites with metal-chelating and 

antimicrobial properties which can be applied to control plant pathogens (Lim et al. 

2013). Tannins can be derived from plant leaves, roots, wood, bark, fruits, and buds 

(Kraus et al. 2003), and includes tannic acid. They have strong antimicrobial properties 

through inhibiting biofilm formation, and they also affect the synthesis of cell wall 

(Payne et al. 2013; Dong et al. 2018). Tannins also work by protecting tissues from 

microbial attack, having direct toxicity to microbes, deactivating microbial exoenzymes, 

and by precipitation of essential metal ion micronutrients to starve plant pathogens 

(Kraus et al. 2003; Field & Lettinga 1992; Scalbert 1991; McDonald et al. 1996; Smith et 

al. 2005). 

Funatogawa et al. (2004) reported that plant-derived hydrolysable tannins have 

antibacterial effects against H. pylori, and Kraus et al. (2003) also reported that the tannin 

concentrations required to inhibit microbial populations varied. A range of (0.31– 12 g 
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L−1) inhibited fungi, (0.01–20 g L−1) was effective against bacteria, and concentrations 

required to induce enzyme inhibition ranged from (0.1 to 2 g L−1) and varied by both the 

type of enzyme and tannin. While Wu et al (2010) stated that tannic acid showed the 

strongest inhibition on FabG with a half inhibition concentration of 0.78 mM 

(0.81 mg/mL), tannic acid inhibited Gram-positive bacteria more effectively than Gram-

negative bacteria.  

Moringa (Moringa oleifera) leaf extract (MLE) is a potential antibacterial agent because 

of its high content of phytohormones, phenolics and minerals (Nasir et al. 2016). MLE 

has also been reported as an effective agent against most microbes (Farooq et al. 2012; 

El-Mohamedy & Abdalla 2014; Rikhotso et al. 2019; Tesfay & Magwaza 2017).  

Spirulina (Arthrospira platensis, Arthrospira maxima) contains polyphenols and 

polysaccharides that are responsible for its antimicrobial activities (Hlima et al. 2019; 

Bajpai, 2016; Pagnussatt et al. 2016; Battah et al. 2014). Spirulina’s low toxicity (Ali & 

Saleh 2012) makes it a good candidate for BLS management in wheat.  

Ginseng (Panax quinquefolius) is an important medicinal plant in many aspects, ranging 

from its use as an antimicrobial agent to its health promotion benefits as a food additive 

(Gillis 1997; Kim & Park 2011; Thomson 2010; Kitts & Hu 2000; Kim & Yang 2018; 

Szczuka et al. 2019; Mehta et al. 2021). Ginsenosides are the major secondary 

metabolites of Panax sp. Ginsenosides are known to be involved in all beneficial effects 

of ginseng (Kim & Yang 2018; Shahrajabianet al. 2019).  

However, there is not sufficient information on bacterial leaf streak of wheat 

management using these biorationals. The objectives of this study were:  
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i) To evaluate the efficacy of biorationals on BLS development in wheat plants. 

ii) To determine the influence of biorationals on wheat crop yield. 

3.2 Materials and methods 

3.2.1 Field trial 

Hard red spring wheat cultivar “Select” (known for its high susceptibility to BLS in the 

field) was planted at the Volga Research Farm and Northeast Research Farm (NERF) in 

the spring of 2020 and 2021. Planting of seeds was done using a 7-row tractor-mounted 

small grain planter fitted with cone units at a seeding rate of 323 m-2. The plot size 

measured 1.5 m wide and 4.6 m long. All plots were artificially inoculated at tillering and 

flag leaf stage (using a mist blower) with Xtpvu (3x10^8 CFU/mL), and was later 

amended with carborundum at a rate of 1 g/L to cause mechanical injury on plants for 

bacterial entry during inoculation, which was two days before treatments were applied 

(Volga plots had continuous misting in 2021). 

The efficacy of plant extracts including ginseng, moringa, & spirulina (purchased from 

MAJU super foods, Amazon), and tannic acid (Sigma Aldrich) were evaluated. 

Four plant extracts (ginseng, spirulina, moringa, and tannic acid) and agrimycin (standard 

check) were spray-applied in the field with continuous shaking. Non-inoculated and 

inoculated but not treated were also used as control checks. 

All products were mixed with water in conical flasks at a rate of 1:10 (v/v) product/water, 

except tannic acid which was applied at 285.7 mg/mL, and were then placed on a rotary 

shaker at 150 rpm at 25 o C for 24 hours. The extracts were later filtered through 
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cheesecloth in a chemical fume hood to produce the filtrate for field application. The 

experiment was conducted as a randomized complete block design with four replications. 

To assess BLS, 10 randomly selected plants per plot were rated based on the percentage 

of leaf area with BLS symptoms, and yield was determined by combine-harvesting each 

plot and adjusted to bushels per acre.  

3.3 Data analysis 

BLS severity data were subjected to analysis of variance using linear mixed model in R-

program (software Version 4.0.5) to get the P value of treatments, and then Fisher’s Least 

Significant Difference (LSD) procedure was performed for treatment mean comparisons. 

3.4 Results  

3.4.1 Efficacy of biorationals in spring wheat field experiment 

There was higher BLS severity at Volga than NERF in both 2020 and 2021. Statistical 

differences were observed among treatments at Volga in 2020 (Table 3.2 and Table 3.4). 

Moringa (11.73%), spirulina (8.2%) and tannic acid (14.43%) were the most effective in 

reducing BLS severity in 2020 (Table 3.2).  

However, no statistical differences were observed at NERF in 2020, with moringa 

(8.975%), spirulina (6.2%) and tannic acid (0.75%) having numerically low BLS severity 

(Table 3.2). 

In 2021, statistical differences were observed among treatments at Volga, with moringa 

(16.13%), and tannic acid (16.75%) being the most effective in reducing BLS severity. 

Statistical differences were also observed at NERF in 2021, with moringa (4.1%), 
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spirulina (6.488%) and tannic acid (3.34%) being the most effective in reducing BLS 

severity (Table 3.4). 

Yields were not significantly different among treatments, for both locations in 2020 and 

2021, except higher yield was observed in non-inoculated plots, and the lowest yield in 

inoculated-not treated plots at Volga in 2021 (Table 3.2 and Table 3.4). 

3.5 Discussion 

Plant extracts have been extensively used in traditional medicine globally, although their 

application to control wheat diseases is not yet extensively studied. 

We found statistically significant differences among the treatments, where tannic acid 

was the most effective in reducing disease severity and increasing yield in three out of the 

four site years. Its inefficiency in one of the site years could be due to the BLS 

bacterium’s ability to overcome tannin’s inhibition/bactericidal effect by tannin 

degradation, dissociation of tannin–substrate complexes, tannin inactivation by high-

affinity binders, membrane repair and/or metal ion sequestration (Smith et al. 2005). 

Moringa extract also reduced disease severity and improved yields as compared to the 

control, and this agrees with Rikhotso et al.  (2019) who reported that carboxymethyl 

cellulose (CMC) incorporated with moringa leaf extracts (M) significantly reduced peteca 

spot incidence on ‘Eureka’ lemon. Nasir et al. (2016) also observed that combined 

application of moringa leaf extract, K and Zn in ‘Kinnow’ mandarin trees at the fruit set 

stage resulted in significantly lower fruit drop and higher fruit set, yield, fruit weight, 

juice weight, soluble solid contents, vitamin C, sugars, total antioxidants, and total 

phenolic contents. This could be a result of moringa leaf extract’s enrichment with 

phytohormones, phenolics and minerals. It was further shown that all fungal mycelial 
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growth gradually decreased with an increase in concentration of moringa roots extract 

and moringa leaves extract (El-Mohamedy & Abdalla 2014).   

Spirulina was another plant extract that showed significant effect on disease severity and 

yield. There was reduced Fusarium spp mycelial growth rate in the presence of free 

phenolic extract obtained from Spirulina (3% and 8%) which showed inhibition of 37% 

and 68%, respectively (Pagnussatt et al. 2016). Furthermore, Battah et al. (2014) reported 

that partially purified agent of Spirulina maxima showed a broad spectrum of antifungal 

activity, with an average activity of 26% inhibition against five tested human and plant 

pathogenic fungi compared to the three tested commercial drugs. The most inhibited 

fungus was P. oxalicum (91%) followed by F. solani (65%) and R. solani (20%) 

compared to the tested antifungal drugs. Blanc & Cock (2021) also reported that aqueous 

spirulina extract was a particularly good inhibitor of P. mirabilis, with MIC values as low 

as 220 μg/mL, although it was found ineffective against other bacterial species tested, 

which shows its potential to be selective.  

Therefore, results of our study support similar research where plant extracts have 

antimicrobial potential, especially if applied in combination with other products that can 

boost their efficacy. 
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Table 3.1 Analysis of variance of spring wheat ‘Select’ bacterial leaf streak 
(BLS) severity (percentage) caused by Xanthomonas translucens pv. undulosa 
and yield (bu/acre) after application of plant extracts at two South Dakota State 
University agricultural research stations in 2020. 

  Volga    Northeast 
research 
farm 

   

 BLS severity 
(%) 

 Yield 
(bu/acre)  

 BLS severity 
(%) 

  Yield 
(bu/acre) 

 

 F value Pr(>F) F value Pr(>F) F value Pr(>F)  F value Pr(>F) 

Treatment   2.75 0.06 2.95 0.05 0.86 0.54  0.42 0.86 

 Least significance level of 𝛼 = 0.05. 
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Table 3.2 Mean comparisons of spring wheat ‘Select’ bacterial leaf streak (BLS) 
severity (percentage) caused by Xanthomonas translucens pv. undulosa and 
yield (bu/acre) after application of plant extracts at two South Dakota State 
University agricultural research stations in 2020. 

 Volga  Northeast 
research farm 

 

Treatment BLS 
severity 
(%) 

Yield (bu/acre) BLS severity 
(%) 

Yield (bu/acre) 

Ginseng 15.45ab 11.21b 9.30a 48.27a 

Check-Inoculated 16.88a 15.83ab 10.80a 50.42a 

Check-NonInoculated 8.80c 12.628b 10.48a 50.08a 

Moringa 11.73abc 14.29b 8.98a 48.79a 

Spirulina 8.20c 13.86b 6.20a 49.68a 

Agrimycin 9.32bc 15.44b 4.03a 48.80a 

TannicAcid 14.43abc 21.84a 0.75a 47.02a 
“Select” as the Cultivar was planted at both locations. For each treatment within a 
column, means with different letters are significantly different, Fisher’s Least 
Significant Difference (LSD) procedure at p = 0.05.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

69 

Table 3.3 Analysis of variance of spring wheat ‘Select’ bacterial leaf streak 
(BLS) severity (percentage) caused by Xanthomonas translucens pv. undulosa 
and yield (bu/acre) after application of plant extracts at two South Dakota State 
University agricultural research stations in 2021. 

  Volga    Northeast 
research 
farm 

   

 BLS 
severity 
(%) 

 Yield 
(bu/acre)  

 BLS 
severity 
(%) 

  Yield 
(bu/acre) 

 

 F value Pr(>F) F value Pr(>F) F value Pr(>F)  F value Pr(>F) 

Treatment 1.46 0.25 1.92 0.01 2.05 0.11  0.36 0.89 

Least significance level of 𝛼 = 0.05. 
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Table 3.4 Mean comparisons of spring wheat ‘Select’ bacterial leaf streak (BLS) 
severity (percentage) caused by Xanthomonas translucens pv. undulosa and 
yield (bu/acre) after application of plant extracts at two South Dakota State 
University agricultural research stations in 2021. 

 Volga  Northeast research 
farm 

 

Treatment BLS severity 
(%) 

Yield (bu/acre) BLS severity (%) Yield (bu/acre) 

Ginseng 18.55ab 11.78b 7.63ab 34.38a 

Check-Inoculated 23.95a 10.99b 17.58a 33.73a 

Check-NonInoculated 6.45b 19.26a 0.28b 35.06a 

Moringa 16.13ab 11.81b 4.10b 32.61a 

Spirulina 19.00ab 112.87b 6.49ab 33.58a 

Agrimycin 10.75ab 11.23b 3.79b 35.18a 

TannicAcid 16.75ab 13.07b 3.34b 29.86a 
“Select” as the Cultivar was planted at both locations. For each treatment within a 
column, means with different letters are significantly different, Fisher’s Least 
Significant Difference (LSD) procedure at p = 0.05.  
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Chapter 4 

4.0 Aggressiveness of Xanthomonas translucens pv. undulosa isolates and differential 

reaction among spring wheat varieties in controlled environment. 

ABSTRACT 

Xanthomonas translucens pv. undulosa (Xtpvu) causes bacterial leaf streak (BLS) in 

wheat which has caused up to 40% losses globally. Understanding the aggressiveness of 

isolates from different locations in the state may help in screening for BLS resistance in 

wheat breeding programs. A greenhouse study was conducted to determine 

aggressiveness of isolates collected from South Dakota on spring wheat ‘SY Rockford’ 

and differential reaction of Xtpvu on 21 spring wheat varieties at the SDSU Plant Science 

greenhouse in 2021 and 2022. The 17 isolates were prepared as inocula amended with 

carborundum and inoculated using mist blower at flag leaf growth stage. The experiment 

was conducted as a randomized complete design with four replications. To assess BLS 

severity, one randomly selected plant per pot was rated based on the percentage of leaf 

area with BLS symptoms. 

The results show significant differences among the bacterial isolates, with Xtpvu21OC 

(23.33%) as the most aggressive in causing BLS in wheat. ‘MN Washburn’ (25.0%) and 

‘ND Frohberg’ (22.5%) were the most susceptible wheat varieties. These results show 

differences in aggressiveness among the Xanthomonas translucens pv. undulosa strains, 

and the most aggressive isolate should be used for screening resistance. 
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4.1 Introduction 

Wheat is severely affected by BLS in the USA’s Northern plains. Natural variation in 

aggressiveness of pathogen isolates among different geographic regions could be a reason 

for severe outbreaks in certain areas. Aggressiveness of isolates could have differences 

due to genetic and environmental effects (Finckh & Nelson 1999; Cowger & Mundt 

2002; Pariaud et al. 2009). Bragard et al. (1997) observed that xanthomonads isolated 

from small grains are phylogenetically closely related bacteria, and the pathovar and the 

pathogenicity type groupings still correspond to true biological entities.  

Virulence assay of Xtpvu was assessed by using a leaf-clipping method with scissors 

dipped in bacterial suspension, and using sterile water as a control (Hu et al. 2007; Ray et 

al. 2000), and employing infiltration method and foliar inoculation. However, Shah et al. 

(2021) observed a greater diversity in the virulence determinants and pathogenicity 

repertories among the worldwide population of Xanthomonas translucens than the one 

that had been described before. For example, significant variations were found among the 

14 isolate Xanthomonas translucens dataset in membrane fusion and ABC transporter 

genes, where these genes were lacking in the Xathomonas translucens pv. translucens 

strains (XtKm8 and XtKm34) but present in XtKm9 and the reference strain DSM 

18974T (Shah et al. 2021).  

Xtpvu isolates from different wheat fields were evaluated for their relative pathogenicity 

on spring wheat, and all isolates were pathogenic (Raja et al. 2010). Kaewnum et al. 

(2005) reported the diversity of Xanthomonas axonopodis pv. glycines with regard to 

pathogenicity on soybean and induction of the hypersensitive response (HR) on several 

plant species. A similar study was conducted on rice where all isolates of Xanthomonas 
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oryzae were pathogenic on all tested varieties of rice, with differences in their 

aggressiveness (Jabeen et al. 2011). Stromberg et al. (1999) observed that pathogen 

inoculum density determined the time required for visible BLS symptoms to develop on 

wheat leaves. Various Xanthomonas strains such as Xanthomonas campestris pv. 

graminis, Xanthomonas campestris pv. phleipratensis, and Xanthomonas campestris pv. 

poae are related, but they were also found distinguishable by RFLP patterns, serology, 

and pathogenicity on bread wheat (Bragard et al. 1995).  

The goal of this study was to assess aggressiveness of different isolates of Xanthomonas 

translucens pv undulosa on spring wheat. While the assessment of variation in 

aggressiveness of Xtpvu and wheat variety susceptibility has been studied in other 

regions, no data are available on Xtpvu aggressiveness among local isolates in South 

Dakota. 

4.2 Materials and Methods 

A collection of 17 Xtpvu isolates were obtained within South Dakota as follows: 10 

Xtpvu isolates were collected from winter wheat breeding lines having variation in BLS 

symptom expression at Volga Research Farm, South Dakota State University. Seven 

isolates were collected from spring wheat across the state of South Dakota. Hard red 

spring wheat cultivar “SY Rockford” (standard susceptible variety) was planted in the 

Plant Science greenhouse at South Dakota State University in 2021. 

10 mm leaf discs with BLS symptoms were surface sterilized in 70% ethanol, placed on 

King’s B (KB) agar medium using sterile forceps, and incubated at 28oC for 72 hours to 

obtain Xtpvu growth. Xtpvu was streaked on KB plates to get isolated colonies, and then 
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transferred to KB broth for inoculum production, as described in previous sections of this 

thesis.  

For the variety screening experiment, 21 spring wheat varieties were planted in the Plant 

Science greenhouse at South Dakota State University in 2021 and 2022. Seeds were 

planted in Coex thermoform square pots with a cell diameter of 10.16 cm and a depth of 

12.7 cm, filled with a soil mix PRO-MIX®. Six seeds per pot were planted and kept at 

26oC – 30oC with 12 hours light/day.  

 To prepare bacterial inoculum, serial dilutions were performed to get 3x10^9 CFU/mL 

and were amended with carborundum at a rate of 1 g/L and then used to inoculate plants 

using a mist blower at flag leaf stage.  

Treatments (isolates) were applied to plants in pots in a completely randomized design 

with four replicates, and the experiment was repeated twice. Plants were kept in a plastic 

chamber with a humidifier providing 95% RH at night for 10 days, and the temperature 

was kept at 26oC – 30oC to enhance disease development. 

To assess BLS, three upper leaves of one randomly selected plant per pot were rated 

based on the percentage of leaf area with BLS symptoms (Bock et al. 2021) 14 days after 

inoculation. Xtpvu’s presence was detected from plant samples, using 0.7-cm discs from 

symptomatic leaves (Pothier et al. 2011).  

4.3 Data analysis 

BLS severity data were subjected to analysis of variance using linear mixed model in R-

program (software Version 4.0.5) to get the P value of treatments, and then Fisher’s Least 

Significant Difference (LSD) procedure was performed for treatment mean comparisons. 
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4.4 Results 

All isolates caused symptoms on ‘SY Rockford’ variety. Symptoms were observed 4 to 7 

days after inoculation. Some isolates produced mild symptoms on the standard 

susceptible variety under greenhouse conditions. 

There were significant differences in BLS severity among the isolates (P <0.0001). 

Xtpvu21OC had the highest BLS severity (most aggressive) (Table 4.1 below). ‘MN 

Washburn’ (25.0%) and ‘ND Frohberg’ (22.5%) experienced the highest BLS severity 

(were the most susceptible varieties) (Table 4.2). 

The origin of the isolate did not have an influence on its aggressiveness (Table 4.1). 

4.5 Discussion 

Several bacterial isolates were significantly different in causing BLS in wheat. Our 

results are consistent with those of Curland et al. (2020) who observed that there was a 

significant population variance detected between populations of Xanthomonas 

translucens pv. undulosa collected from different wheat fields. Adhikari et al. (2012) also 

reported that all strains tested were highly aggressive on the susceptible wheat line 

‘ND495’. According to Khojasteh et al. (2020) Xtpvu strains showed severe 

aggressiveness on both barley and wheat plants, and this confirms higher genetic 

diversity of Xtpvu. It has been reported that genetically distinct strains exist within each 

group (Alizadeh et al. 1997; Alizadeh et al. 1995). Like our study, Kaewnum et al. (2005) 

observed that the geographical origin of isolates did not appear to be related to their 

relative pathogenicity. 
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Some isolates produced mild symptoms, which may not significantly affect yields as was 

observed in our field studies reported in Chapter Two and Chapter Three. Mild BLS 

symptoms result in low yield losses (Tillman 1994). 

It was interesting to see bacterial isolates from one location with different breeding lines 

having differences in aggressiveness.  This may be due to the genetics of the host; 

moderately resistant cultivars were reported to select for more aggressive isolates 

(Cowger & Mundt 2002). 

In our study, some varieties were moderately susceptible. This correlates with Adhikari et 

al. (2012) who reported that wheat cultivars showed differential responses to several 

bacterial strains tested. This could be due to partial resistance to Xtpvu. Thus, wheat 

cultivars with partial BLS resistance, if integrated with other control measures, could 

minimize the impact of BLS on wheat. 

Therefore, further molecular studies need to be conducted for detailed characterization of 

Xanthomonas translucens pv. undulosa strains in wheat for better disease control and 

management. 
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Table 4.1 Mean comparisons for aggressiveness of Xanthomonas translucens 
pv. undulosa isolates in causing bacterial leaf streak (BLS) in spring wheat ‘SY-
Rockford’ under greenhouse conditions in 2021. 

Isolate Source BLS severity (%) 

Xtpvu21OC   Brookings 23.33a 

Xtpvu21X9   Volga 20.00ab 

Xtpvu21CS   Brookings 18.33abc 

Xtpvu21X2   Volga 18.33abc 

Xtpvu21N    Watertown 16.67abcd 

Xtpvu21W    Watertown 16.67abcd 

Xtpvu21X7   Volga 15.00bcde 

Xtpvu21PR   Pierre 11.67cdef 

Xtpvu21X4   Volga 10.67def 

Xtpvu21X6   Volga 10.67def 

Xtpvu21X5   Volga 10.00def 

Xtpvu21T     Brookings 8.33ef 

Xtpvu21X1    Volga 8.33ef 

Xtpvu21OCG   Brookings 7.33f 

Xtpvu21X3    Volga 7.33f 

Xtpvu21X10   Volga 6.67f 

Xtpvu21X8    Volga 6.33f 
Treatment means values at South Dakota State University plant science 
greenhouse using “SY-Rockford” as the Cultivar. For each treatment within a 
column, means with different letters are significantly different, same letters are 
not significantly different, multiple letters are not significantly different from 
treatments with those letters according to Fisher’s Least Significant Difference 
(LSD) procedure. 
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Table 4.2 Mean comparisons for bacterial leaf streak (BLS) severity caused by 
Xanthomonas translucens pv. undulosa in spring wheat varieties under 
greenhouse conditions in 2022. 

Varieties BLS severity(%age) a 

MN Washburn 25.00a 

ND Frohberg 22.50a 

ND Vitpro 16.25b 

Lang MN 15.00bc 

Shelly 13.75bcd 

Driver 11.75bcde 

Select 11.75bcde 

Surpass 10.50cde 

Faller 8.75def 

Focus 8.00efg 

Bolles 6.75efgh 

SY-Rockford 6.75efgh 

SD4873 5.00fghi 

Forefront 4.00fghi 

WB9719 3.50ghi 

Boost 3.25ghi 

LSC Trigger 3.00ghi 

Prevail 3.00ghi 

Advance 2.50hi 

MN-Torgy 2.00hi 

SY Valda 1.50i 
a For each treatment within a column, means with different letters are significantly 
different, multiple letters are not significantly different from treatments with those 
letters according to Fisher’s Least Significant Difference (LSD) procedure at P = 
0.05. 
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Chapter 5 

5.0 Conclusions and Recommendations 

Nanomaterials had strong antibacterial activity under in-vitro, greenhouse, and field 

conditions. Nano CuO particles were the most effective. Therefore, nano CuO can be 

applied as a potential antibacterial agent to control BLS in wheat. 

Amendment of nanoparticles with polyvinylpyrrolidone surfactant improved the 

nanoparticle’s efficacy, thus pretreatment of nanoparticles with dispersing agents or 

coatings can reduce agglomeration and improve their efficacy. 

Misting, higher humidity and warm temperatures provided a favorable environment for 

BLS development. Therefore, it’s more appropriate to apply antibacterial sprays at flag 

leaf growth stage when the plants are more susceptible under favorable environmental 

conditions. 

 Addition of carborundum to the Xtpvu inocula increased chances of BLS development. 

This implies that environmental conditions such as storms which cause mechanical 

injuries on plants can increase BLS development in wheat.  

No significant differences were observed in yields among nanomaterial treatments, which 

was likely due to low BLS severity. Therefore, controlling BLS to low disease pressure 

can result in low economic wheat grain yield loss.  

Moringa, spirulina and tannic acid were the most effective in reducing BLS severity. 

Therefore, further research on these products on concentration and frequency of 

application to increase their efficacy should be done.  These have potential for BLS 

management in wheat, especially when used concurrently with other cultural disease 
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control practices or when amended with other antibacterial agents in moderately resistant 

cultivars. 

All pathogen isolates caused BLS symptoms on ‘SY Rockford’ variety, and the origin of 

the isolate did not have an influence on its aggressiveness. 

‘MN Washburn’ and ‘ND Frohberg’ experienced the highest BLS severity (were the most 

susceptible varieties). Therefore, they can be used as control checks while screening for 

resistance to BLS in spring wheat breeding programs. 

Further molecular studies need to be conducted for detailed characterization of 

Xanthomonas translucens pv. undulosa strains that are pathogens of wheat for better 

understanding of aggressiveness differences between strains. This could be due to 

different variants within the same species. 

Additionally, detailed testing of the different nanoparticle materials regarding application 

rates and timing, of nanomaterials and plant extracts in combination with common 

pesticides applied in wheat such as fungicides and insecticides in tank mix is needed. 

This would allow for tank mixing and saving on application costs. 
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Appendix 

 

Figure 5.1 Effects of nanoparticle treatments on bacterial leaf streak (BLS) disease 
severity (percentage) at two locations in 2020 

CheckI = Inoculated & not treated, CheckNonI = Non inoculated and not treated. 
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Figure 5.2 Effects of nanoparticle treatments on bacterial leaf streak (BLS) disease 
severity (percentage) at two locations in 2021 

CheckI = Inoculated & not treated, CheckNonI = Non inoculated and not treated. 
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Figure 5.3 Boxplots of bacterial leaf streak (BLS) disease severity (percentage) at 
two locations in 2020 
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Figure 5.4 Boxplots of bacterial leaf streak (BLS) disease severity (percentage) at 
two locations in 2021 
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Figure 5.5 Effects of plant extracts treatments on bacterial leaf streak (BLS) disease 
severity (percentage) at two locations in 2020 

CheckI = Inoculated & not treated, CheckNonI = Non inoculated and not treated. 
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Figure 5.6 Effects of plant extracts treatments on bacterial leaf streak (BLS) disease 
severity (percentage) at two locations in 2021 

CheckI = Inoculated & not treated, CheckNonI = Non inoculated and not treated. 

 

 


	Efficacy of Nanomaterials and Biorationals on the Bacterial Leaf Streak Management in Wheat
	Recommended Citation

	Microsoft Word - Hangamaisho,Abraham..docx

