South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Electronic Theses and Dissertations

2022

Genistein-Enriched Pig Gut Microbiota Library as a Potential Probiotic Consortium

Theresah Amponsah South Dakota State University, aamponsahtheresah@gmail.com

Follow this and additional works at: https://openprairie.sdstate.edu/etd2

Part of the Bacteriology Commons, and the Veterinary Microbiology and Immunobiology Commons

Recommended Citation

Amponsah, Theresah, "Genistein-Enriched Pig Gut Microbiota Library as a Potential Probiotic Consortium" (2022). *Electronic Theses and Dissertations*. 436. https://openprairie.sdstate.edu/etd2/436

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

GENISTEIN-ENRICHED PIG GUT MICROBIOTA LIBRARY AS A POTENTIAL PROBIOTIC CONSORTIUM

BY

THERESAH AMPONSAH

A thesis submitted in partial fulfillment of the requirements for the

Master of Science

Major in Biological Sciences

Specialization in Microbiology

South Dakota State University

2022

THESIS ACCEPTANCE PAGE

Theresah Amponsah

This thesis is approved as a creditable and independent investigation by a candidate for the master's degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department.

> Xiuqing Wang Advisor

Date

Radhey Kaushik Department Head

Date

Nicole Lounsbery, PhD Director, Graduate School

Date

I dedicate this research to my dad, Mr. Stephen Amponsah and my late mom, Madam

Lydia Effah-Crentsil.

ACKNOWLEDGEMENTS

First and foremost, I thank the Lord God Almighty for his sustenance, protection and guidance.

Next, I would like to express my profound gratitude to Dr. Joy Scaria for the opportunity to conduct my research in his lab and for his mentorship and funding.

My major advisor, Dr. Xiuqing Wang has been an amazing mentor and I appreciate her great counsel throughout my study duration.

I am thankful to Dr. Benoit St.-Pierre and Dr. Marzano Shin-Yi for their helpful comments during my annual evaluations.

No man is an island and so we rely on one another to achieve great feats. My former and current lab mates; Seidu Adams, Shamiq Aftab, Prabhjot Sekhon-Kaur, Achuthan Ambat and Postdoctoral scholars, Dr. Samara Mattiello and Dr. Abhijit Maji offered immense support to my research.

I am grateful to my lecturers from University of Cape Coast, especially Dr. Patrick Adu for his assistance in my preparation to come to SDSU.

Dr. Volker Brozel has been amazing, he made time out of his busy schedule to assist me when I was in a dark place and I am filled with gratitude.

Finally, I appreciate my dad, Mr. Stephen Amponsah, my Brookings family, Dr. and Mrs. Acheampong, Daniel and Philip Sam, Patrick Glavee, Dr. Obed Adu-Gyamfi, Dr. Samuel Adjei, Frederick Kumi-Ansah, The Adekpui family, Mr. and Mrs.Amoo, Kenneth Annan, Seth Arhin-Donkor, Mrs. Elizabeth Paddy, Eunice Ahemfoah Bassaw, Stephen Ferguson Quansah, David Bennin and Brookings First United Methodist Church for their prayers and support.

TABLE OF CONTENTS

ABBREVIATIONS viii
LIST OF TABLESx
LIST OF FIGURES xi
ABSTRACT xiii
Chapter 1: Literature Review1
1 General overview of flavonoids1
2 Isoflavones
2.1 History of isoflavones7
2.2 Mechanisms of action of isoflavones7
2.2.1 Cardiovascular Effects
2.2.2 Estrogenic Action
2.2.3 Anti-inflammatory Action
2.2.4 Antiproliferative Action
2.2.5 Antibacterial Action
2.2.6 Antifungal Action9
2.2.7 Antiviral Action9
2.4 Dietary intake of isoflavones10
2.5 Bioavailability of isoflavones10
2.6 Absorption of isoflavones11
3 Isoflavone use in the pig industry11
3.1 Pig diet composition12

3.2 T	he microbiome of a healthy pig	13
3.3 M	letabolism of isoflavones by the gut microbiome	15
Chapter 2	2: Genistein enriched pig gut microbiota library preparation us	ing an in
vitro mini	i bioreactor model	17
Abstrac	t	17
1 Introd	uction	18
2 Mater	ials and methods	20
2.1 P	ig fecal sample collection and preparation	20
2.2	Mini bioreactor	20
2.3	Microbial DNA extraction and sequencing	22
2.4	16S rRNA data analysis	22
2.5	Estimation of Short-chain fatty acids	23
3 Result	ts	23
3.1	Identification and diversity indices of isolates	23
3.2	Genistein supplementation resulted in no butyrate production	28
4 Discu	ssion	31
Chapter 3	3: A preliminary screen to identify potential probiotic bacteria	from the
enriched]	pig gut microbiota library	34
Abstrac	t	34
1 Introd	uction	35
2 Mater	ials and methods	36
2.1 Is	solation and identification of genistein-metabolizing bacteria	36

2.2	DPH assay	36
2.3	Hemolysis screening	37
2.4	Invasion assay	37
3 Results	s	38
3.1 Ide	entification of genistein-enriched pig microbiome	38
3.2 He	emolysis screening revealed one species as completely hemolytic	44
3.3 Ge	enistein metabolism by isolates	46
3.4 61	% of species were non-invasive and could qualify as potential prob	iotics47
4 Discus	sion	49
Chapter 4:	: Conclusions and future directions	52
APPENDI	X	54
References	S	84

ABBREVIATIONS

UV	Ultraviolet	
СоА	Coenzyme A	
CDC	Centers for Disease Control and Prevention	
Er- β	Estrogen receptor beta	
G2/M	Second growth/Mitotic phase	
ROS	Reactive oxygen species	
TGF-β	Transforming growth factor-beta	
DNA	Deoxyribonucleic acid	
RNA	Ribonucleic acid	
Vpu	Viral Protein U	
HIV	Human immunodeficiency virus	
PBS	Phosphate buffered saline	
BHI	Brain heart infusion	
MES	4-morpholinoethanesulfonic acid hydrate	
QIIME 2	Quantitative Insights into Microbial Ecology Framework	
(version 2)		
SCFA	Short chain fatty acids	
MACs	Microbiota-accessible carbohydrates	
DPH	1,6-Diphenyl-1,3,5-hexatriene	
FBS	Fetal Bovine Serum	
MALDI-TOF MS	Matrix-Assisted Laser Desorption/Ionization-Time of	
	Flight Mass Spectometry	

MOI	Multiplicity of infection
NGS	Next-generation sequencing

LIST OF TABLES

Table 1: The flavonoid classes, their chemical structure, major source, common and
chemical aglycone names6
Table 2: Diet composition for starter and finisher pigs 13
Table 3 : Effect of genistein on short chain fatty acids production in minibioreactors
(mean+/-standard deviation of concentrations)
Table 4: Species isolation using a micro cultivation array (GALT)
Table 5 : Species identification with EzBioCloud41
Table 6: Species isolation using routine culture methods
Supplementary Table 1: Isolates retrieved from genistein enriched microbiome
library54

LIST OF FIGURES

Figure 1: The basic structure of flavonoids. Adapted from Aukje Steensma (2006)2
Figure 2: Flavonoid biosynthesis. Adapted from Kazuki Saito KY-S et al. (2013)4
Figure 3: Biotransformation of genistein. Adapted from Rossi et al. (2010)16
Figure 4: Overview of the study design
Figure 5: Actual abundances for Phyla for genistein treated and control groups on days 7,
14 and 2125
Figure 6: Actual abundances for Genus for genistein treated and control groups on days 7,
14 and 21
Figure 7: Alpha and beta diversities of microbiota in genistein and control groups27
Figure 8: Effect of genistein on short-chain fatty acids production in mini bioreactors29
Figure 9: Species isolation using a micro cultivation array (GALT)40
Figure 10: A pie chart representing the species isolated with modified BHI supplemented
with antibiotics and identified with MALDI-TOF MS43
Figure 11: Hemolysis screening of isolated species45
Figure 12: Genistein degradation ability of isolated species46
Figure 13: Invasion screening of selected species using in vitro Caco-2 cells
Supplementary figure 1: Relative abundances of Phyla for genistein treated and control
groups on days 7, 14 and
21
Supplementary figure 2: Relative abundances of genera for genistein treated and control
groups on days 7, 14 and
21

Supplementary figure 3: Antimicrobial susceptibility testing to determine the suitable antibiotics to inhibit *Streptococcus sp*.

|--|

ABSTRACT

GENISTEIN-ENRICHED PIG GUT MICROBIOTA LIBRARY AS A POTENTIAL PROBIOTIC CONSORTIUM

THERESAH AMPONSAH

2022

Plant-based diets contain numerous flavonoid compounds that produce antibacterial effects and gut health improvement. Genistein is among the most abundant isoflavones present in a plant-based diet and can be found in high amounts in soy products (up to 1 g Kg^{-1}). We describe here a robust method to identify genistein tolerant and metabolizing bacteria in swine gut microbiota and to screen the strains that have antibacterial and immunestimulatory properties. Such strains could be developed as non-antibiotic alternatives to prevent enteric infections in pigs and improve gut immunity. To this end, a mini bioreactorbased system was used to enrich genistein metabolizing bacteria in swine microbiota from pooled pig fecal samples. Pooled pig fecal samples were supplemented with 0.5mg/mL genistein and run in a mini bioreactor model in six replicates for 21 days. At the end of the run, the six replicates were pooled together and were used for isolating genisteinmetabolizing bacteria. Bacterial species were isolated by micro cultivation array and routine anaerobic culture using modified BHI media and were identified by MALDI-TOF MS and 16S rRNA analysis. The genistein biotransformation capacity of the strains was determined using the DPH assay. We also determined their hemolytic and invasive capabilities. Our culture method was able to isolate a large number of strains belonging to 19 species. These include Streptococcus lutetiensis, Streptococcus equinus, Enterococcus faecalis, Streptococcus alactolyticus, Streptococcus gallolyticus, Acidaminococcus

fermentans, Lactobacillus salivarius, Peptostreptococcus russellii, Mitsuokella jalaludinii, Faecalicoccus pleomorphus, Lactobacillus agilis, Bacteroides vulgatus, Bacteroides uniformis, Bacteroides fluxus, Enterococcus avium, Sharpea azabuensis, Collinsella phocaeensis, Selenomonas montiformis and Syntrophococcus sucromutans. Of the 19 species isolated, Lactobacillus salivarius is the only species that was completely hemolytic (β hemolysis). Eleven species namely *Streptococcus gallolyticus*, *Acidaminococcus* fermentans, Streptococcus equinus, Streptococcus alactolyticus, Bacteroides vulgatus, Bacteroides fluxus, Mitsuokella jalaludinii, Bacteroides uniformis, Sharpea azabuensis, Selenomonas montiformis and Syntrophococcus sucromutans were non-invasive. Mitsuokella jalaludinii and Peptostreptococcus russellii were negative for the DPH assay. 16S rRNA analysis revealed the abundance of six phyla namely Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Synergistota and Euryarcheota and several genera belonging to Firmicutes. All the genera identified with culturomics were present in the taxa data from the 16S analysis, however, 16S analysis revealed other genera that could not be captured with culturomics. Hence, combining culturomics with 16S analysis is the best shot at trying to cover as much diversity as possible. We have been able to isolate ten nonhemolytic, non-invasive genistein-metabolizing species, which are potential antibiotic alternatives. Future studies will be focused on the species' properties regarding their in vitro adhesion and pathogen exclusion, in vivo colonization and pathogen exclusion and acid and bile tolerance.

Chapter 1: Literature Review

1 General overview of flavonoids

Flavonoids are polyphenols abundant in generally all organs of plants. They give them color, fragrance and flavor characteristics. Flavonoids are involved in regulating plant cell growth, attracting pollinating insects and protecting plants against biotic and abiotic stresses like herbivores, UV irradiation, drought, cold, heat and salinity (1-4). They are also involved in sex determination, regulation of photosynthesis, morphogenesis, regulation of growth factors and energy transfers (5). Plants synthesize these polyphenols in response to microbial infection; they have been reported to be potent antimicrobials against pathogens (6). Flavonoids serve as phytoalexins, which means they protect plants against pathogens (7) as well as allelochemicals that inhibit microorganisms growth around plants(8, 9).

Epidemiological studies indicate that a high dietary intake of flavonoids reduces the risk of chronic diseases including cancers (10-13). Flavonoids have shown anti-inflammatory, anticancer, antidiabetic, antimicrobial, cardio-protective, anti-oxidative, immunostimulatory and neuroprotective properties in humans (14-16). Deficiencies in polyphenol intake do not result in any known deficiency disease (16, 17). It has been estimated that the average daily intake in humans is a few hundred milligrams (18). Prolong intake of flavonoids in the diet barely have side effects as a result of their relatively low bioavailability, lesser intestinal permeability and a higher rate of metabolism by the gut microbes (19). They are non-toxic to humans and animals because of their poor absorption coefficient (20, 21). There is a growing list of different naturally occurring flavonoids, the number exceeding 6000 (22, 23).

Flavonoids are polyphenolic substances with a low molecular weight based on a flavan moiety (2-phenyl-benzo- λ -pyran). The basic structure comprises two benzene rings A and B connected via a heterocyclic oxygen-containing pyran ring C (24). The carbon atoms in rings A and C are numbered from 1 to 8 and those in ring B are numbered from 1' to 6' (Figure 1). Flavonoids are derived from two biosynthetic pathways namely the phenylpropanoid, which synthesizes phenylpropanoid skeleton (C6-C3) and polyketide, which synthesizes blocks for C2 polymer units (25). Chalcone synthase catalyzes 2'-hydroxychalcone scaffold formation from ρ -coumaroyl CoA and malonyl CoA (Figure 2). These are used in a series of enzymatic steps to synthesize other flavonoids (26).

Figure 1: The basic structure of flavonoids. Adapted from Aukje Steensma (2006)

The major classes of flavonoids are flavonols, flavones, flavanones, isoflavones, catechins, anthocyanins and chalcones (Table 1). Flavonoids are classified based on the chemical modifications of the heterocyclic C ring, which could undergo hydrogenation, hydroxylation, methoxylation, malonylation, sulfation and glucuronidation. Flavonoids

naturally exist as glycosylated to sugar moieties and are called glycosides. The cleavage of the sugar results in the formation of aglycones.

Plant extracts were the major means of fighting infections before antibiotics were discovered in the 1930s (27-29). In the last 60 years, antibiotics have been used to treat infections. The common use of antibiotics in agriculture, medicine, and veterinary has resulted in the emergence of antibiotic-resistant bacteria over the years (6). The number of drug-resistant bacteria is on the rise (30, 31) leading to a post-antibiotic era (32). The CDC has estimated that one in five pathogens from nosocomial infections represents a multidrug-resistant strain (33). Hence, there is a need to find antibiotic alternatives to use in these industries.

Figure 2: Flavonoid biosynthesis. Adapted from Kazuki Saito KY-S et al. (2013)

2 Isoflavones

Isoflavones are a subclass of flavonoids that have the phenyl ring (B ring) linked at the 3rather than the 2-position of the heterocyclic ring as shown in table 1.1. They are made from a rearrangement of flavanones resulting in 2,3-aryl migration and dehydrogenation. They are found in the subfamily of Faboideae of the family Fabaceae or Leguminosae and are predominant in soybeans and red clover (34). Soy contains approximately 1 g of genistein/Kg of dry beans (35). They are found in smaller quantities in other food sources which include lupin, fava beans, chicken peas, common beans, kudzu roots and peanuts (36). The main subtypes of isoflavones are genistein, daidzein and glycitein. Their naturally occurring forms are genistin, daidzin and glycitin respectively.

In plants, isoflavones are involved in stress responses and their concentrations depend on the plant and stress type. For instance, some studies have reported that UV-A and UV-B light increase isoflavone concentrations (37, 38). In another study by Swigonska et al. (2014), weather fluctuations and osmotic stress increased isoflavones in the roots of soybean seedlings (39).

Table 1: The flavonoid classes, their chemical structure, major source, common and

Flavonoids	Basic chemical structure	Major source	Predominant aglycones	Chemical name
	ОН			
Flavonols		tea, onions.	quercetin	3,5,7,3',4'-pentahydroxy flavone
		apples	kaempferol	3,5,7,4'-tetrahydroxy flavone
			myricetin	3,5,7,3',4',5'-hexahydroxy flavone
	$\sim\sim\sim$			
Flavones		herbal, celery	apigenin	5,2',5'-trihydroxy flavone
		green pepper	luteolin	5,7,3',4'-tetrahydroxy flavone
		and camille tea		
	\sim			
Flavanones		citrus fruits	hesperetin	5,7,3'-trihydroxy-4'-methoxyflavanone
			naringenin	5,7,4'-trihydroxyisoflavanone
Isoflavones	Ϋ́́	legumes	genistein	5,7,4'-trihydroxy isoflavone
		(soybeans)	daidzein	7,4'-dihydroxy isoflavone
			glycitein	7,4'-dihydroxy-6-methoxyl isoflavone
	OH OH			
Catechins	HO	tea, chocolate	catechin	3,5,7,3'4'-pentahydroxyflavan
(Flavane)			epicatechin	3,5,7,3',4'-pentahydroxyflavan
			gallocatechin	3,5,7,3',4',5'-hexahydroflavan
			epigallocatechin	3,5,7,3',4',5'-hexahydroflavan
	үн			
	HOLOGIC			
Anthocyanins	но	berries, cherries	cyanidin	3,5,7,3',4'-pentahydroxy anthocyanin
		wine		
		_		
Chalcones	ö	apples	phloretin	5,7,9,4'-tetrahydroxy chalcone

chemical aglycone names

2.1 History of isoflavones

In the 1940s, isoflavones were discovered in *Trifolium subterraneum* (subterranean clover) being grazed by horses in Australia. The horses manifested dystocia, uterine prolapse and infertility (40). The major isoflavone in clover is the 4'-methoxy derivate of daidzein, formononetin, which can be metabolized eventually to equol (41). Isoflavones and their metabolites exert estrogenic activity. These discoveries set the premise for studies on the estrogenic activity and metabolism of isoflavones in animals (40, 42, 43). In 1984, the interest in isoflavones was rekindled after their discovery in human urine samples (44, 45). The concentrations of isoflavones recorded in human blood and urine samples, upon ingestion of soy-based foods far exceeded concentrations of endogenous estrogens in humans. Diets rich in soybeans have been reported to be associated with reduced incidences of cancers in Asian countries (10, 11). The average daily intake of soybeans by Asians is about 50 mg, whereas less than 1 mg is consumed by people from Western countries per day (46, 47). It appears the quantity of isoflavones in soy products consumed by Asian women does not affect their reproductive capacity as was observed for the sheep in the previous study in Australia (48).

2.2 Mechanisms of action of isoflavones

2.2.1 Cardiovascular Effects

Outcomes of some studies have proved that isoflavones have health-promoting activities including cardiovascular effects (49, 50). This could be due to their antioxidant activity whereby lipoprotein is inhibited, serum cholesterol levels are reduced, tyrosine kinase is inhibited and vascular activity is improved (51, 52).

2.2.2 Estrogenic Action

Isoflavones are structurally similar to 17β -estradiol and are able to bind to the estrogen receptors, mainly ER- β with an 87% affinity (53, 54), decreasing the risk of developing hormonally dependent cancers (55, 56). Hence, isoflavones are termed phytoestrogens as they have estrogenic activity. Genistein has been studied for its ability to reduce hormone-sensitive cancers such as breast, ovarian, and prostate. In the breast cancer cell cycle, genistein halts the G2/M phase and causes a ROS-dependent apoptosis(57).

2.2.3 Anti-inflammatory Action

Isoflavones exert their anti-inflammatory activities by inhibiting angiogenesis (58) and inducing apoptosis in breast cancer (59). Genistein, when combined with exercise, abolishes inflammation associated with high fat diet (60). Availability of genistein was enhanced when delivered with a nanoparticle to exert its anti-inflammatory action on colitis (61).

2.2.4 Antiproliferative Action

Another mechanism of action of isoflavones is inhibition of steroid biosynthesis enzymes which include aromatase (62) and 17 β -hydroxysteroid oxidoreductase (63) probably resulting in a reduction or modification in production and bioavailability of estrogens (64). Kim et al. (1998) reported that genistein interferes with the TGF- β signaling pathway (65) which regulates cell proliferation, hence genistein is antiproliferative.

2.2.5 Antibacterial Action

Isoflavones exert antibacterial properties by interfering with the biofilm formation (6, 14). Bacterial biofilm-associated infections contribute to a significant amount of all microbial and chronic infections in humans and animals (66, 67). Bacteria that grow as biofilms are about 10 to 1000 times more resistant to antimicrobials than their planktonic cells (68). A study by Lee et al. (2011) reported that isoflavones such as genistein inhibit biofilm formation in *Escherichia coli* O157:H7 (69).

Another antibacterial mechanism of action is the stabilization of the topoisomerase II-DNA cleavage complex. This results in an impairment of cell division and ultimately inhibits the growth of bacteria (70). Ulanowska et al. (2016) showed the inhibitory effects of genistein on *Vibrio harveyi*, *Bacillus subtilis* and *Escherichia coli* as a result of this mechanism (71). Finally, genistein has the ability to inhibit exotoxins from *Staphylococcus aureus* (72) as well as to potentiate the antibacterial activities of norfloxacin and berberine in wild type *Staphylococcus aureus* and *Mycobacterium smegmatis*, respectively (73, 74).

2.2.6 Antifungal Action

Antifungal mechanisms of isoflavones include plasma membrane disruption, induction of mitochondrial dysfunctions, inhibition of cell wall formation, cell division, RNA and protein synthesis (75). Genistein inhibits DNA, RNA and protein synthesis in *Cochliobolus lunatus* (76). Studies by Lee et al. (2010) and Bitencourt et al. (2013) reported antifungal activities of isoflavones against *Candida albicans* and *Trichophyton rubrum*, respectively (77, 78).

2.2.7 Antiviral Action

Isoflavones can block any of the stages of viruses' life cycle be it attachment, penetration into host cells, replication, translation, assembly or release to inhibit viral growth (79). A study by Sauter et al. (2014) showed that genistein inhibited Vpu protein formation of ion channels in HIV-infected cells and thus inhibiting the assembly and release of HIV (80).

Soy isoflavones inhibit the infectivity of human rotavirus in cultured macrophages (81) and cytopathic effects in herpes simplex virus types-1 and -2 (82).

2.4 Dietary intake of isoflavones

Isoflavones are found in soybeans and soy-based products such as soy milk, isolated soy protein, soy flour, tofu, natto, miso, tempeh, soy supplements and soy hot dog (83-85), where they exist as glycosides (86). Crop variety, geographic location, soil type, crop year and environmental factors affect isoflavone content (87, 88). Processed soy products have different isoflavone contents than unprocessed ones (89). When soy is fermented into products such as tofu and bean paste, the isoflavone content is reduced by a factor of 2 to 3, aglycone forms are increased (89, 90). Boiling also reduces isoflavone content (91). Other means of cooking such as baking and frying do not seem to affect the isoflavone contents of soy products (90). Averagely, cooked soybeans and soymilk powder contain >95% of the total isoflavones as glycosidic forms whereas soybeans in fermented products contain about 20 to 40% of aglycones (92). In the Asian adult population, about 39 to 47 mg of isoflavones are ingested per day (46, 85, 93) whereas less than 1 mg is ingested by the general American population (94, 95). The estimated average daily intake of isoflavones in men and women in Finland is 0.9 and 0.7 mg/day respectively (96). The average Western population and vegetarians consume about 1-2 mg/day and 3-12 mg/day of isoflavones respectively (97, 98).

2.5 Bioavailability of isoflavones

Bioavailability is the proportion of a substance that enters the circulation when introduced into the body and can have an active effect. Isoflavones reach minute concentrations in the blood upon consumption of soy products (95). A single dose of 50 mg of isoflavone results

in a maximum concentration of about 2 μ M of total aglycones in the plasma (99). The intestinal microflora determines isoflavone bioavailability, hence, there are differences in concentrations among individuals and species.

2.6 Absorption of isoflavones

The natural states of isoflavones have sugar moieties attached to them, making them hydrophilic (100) while their aglycone forms are lipophilic molecules having octanol/water partition coefficient between 0 and 4 (101). Lipophilic molecules can interact with the proteins in the intestinal cell membrane and are able to passively diffuse through the lipid bilayers. Hence, the cleavage of the glycosidic linkage by glycosidases is a necessary step for isoflavones metabolism to occur in the intestines. Isoflavones have been reported as the most abundant flavonoid absorbed and available in the intestine (16, 102, 103). A proportion of aglycones are absorbed in the small intestine and a significant amount is broken down by colonic microbiota into readily absorbable forms (104). Upon absorption, isoflavones undergo glucuronidation and sulfation and are released into circulation or in the liver (105). Once in circulation, they can either be transported to other tissues or excreted in the urine (106).

3 Isoflavone use in the pig industry

Isoflavone use in the pig industry has conferred some health benefits on pigs. A new study from the University of Illinois shows that pigs that eat soybeans as part of their diet are better protected against porcine reproductive and respiratory syndrome virus as a result of the antiviral and anti-inflammatory properties of the isoflavone present (107). Hongzhi et al. (2021) investigated the effects of soybean isoflavone together with astragalus polysaccharide on hormone levels, colostrum components, immune functions and serum antioxidant activities in lactating sows. There was an increased yield in lactation as well as improved antioxidant, immune and hormone levels (108). Isoflavones enhance growth performance, protect intestinal morphology and improve antioxidation in pigs (109). Supplementing Chinese boars' diets with about 250 mg/kg of soy isoflavones increased reproductive parameters such as testis index and viable germ cells (110) whereas female Bama miniature pigs fed with 1250 mg/kg experienced delayed onset of puberty (111).

3.1 Pig diet composition

The primary dietary protein source for pigs in the United States is the soybean meal (112). It is produced globally in high quantities and contains about 38% of protein, making them the preferred protein component for the pig diet (113). It provides biologically active components, protein, phosphorus and amino acids (Table 2).

Ingredients (%)	Starter	Finisher
Corn	52.09	57.43
Soybean meal (CP 44%)	39.4	33.97
Soybean oil	4.8	5.6
Dicalcium phosphate	1.6	1.21
Oyster shell	1.08	0.92
Salt	0.4	0.32
Vitamin premix ¹	0.25	0.25
Vitamin premix ²	0.25	0.25
DL-methionine	0.13	0.06

Table 2: Diet composition for starter and finisher pigs

3.2 The microbiome of a healthy pig

The gut microbiota plays a significant role in maintaining host health and metabolism. Holman et al. (2017) reported that the core genera of commercial swine worldwide are *Prevotella, Clostridium, Alloprevotella, Rumicococcus* and the RC9 (114).

The abundance of microorganisms differs among the various locations. *Ecsherichia-Shigella, Terrisporobacter, Romboutsia* and *Clostridium sensustricto* are more abundant in the ileum while *Alloprevotella, Lactobacillus* and Prevotellaceae NK3B31 group are most prevalent in the cecum. In the colon, *Clostridium, Streptococcus* and *Lactobacillus* are predominant (115). Firmicutes and Actinobacteria are predominant in cecum and jejunum, respectively (116).

Gender is a factor in shaping the gut microbiota of pigs. In boars, Veillonecallaceae, *Roseburia, Bulleidia* and *Escherichia* are abundant whereas *Treponema* and *Bacteroides* are highly abundant in gilts (117).

In a study by Mach et al. (2015), the composition of the fecal microbiomes for 31 healthy piglets across five age strata revealed that the phyla Firmicutes and Bacteroidetes were predominant at each age (118). Wylensek et al. (2020) isolated 110 bacterial species from 19 pigs from Germany, USA and Canada. They belonged to the phyla Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, Fibrobacteres, Synergistetes, Fusobacteria, Lentisphaerae and Spirochaetes (119). In another study, 287 fecal samples were collected from pigs from France, Denmark and China. Half of the non-redundant genes identified could be classified taxonomically, 28.73% and 9.28% belonged to Firmicutes and Bacteroidetes, respectively (120). Two breeds of pigs namely Tamworth and Feral showed some variations in their microbiome abundance. Tamworth pigs were highly dominated by Bacteroidetes whereas Feral pigs had about the same proportions of Firmicutes and Bacteroidetes (121).

There is a fecal microbial shift during weaning transition in healthy piglets. Firmicutes and Bacteroidetes are dominant during pre-weaning and post-weaning, respectively (122).

Low-fat pigs have increased abundance of *Bacteroides*, increasing their *Bacteroides*-*Prevotella* ratio as compared to high-fat pigs. These pigs are able to produce short chain fatty acids and lessen lipid accumulation (123).

It can be inferred from these studies that the gut microbiome of healthy pigs are modulated by various factors which include gender, breed, fat content and geographic locations. Generally, the phyla Firmicutes and Bacteroidetes seem to be the most dominant.

3.3 Metabolism of isoflavones by the gut microbiome

Studies on isoflavone metabolism in different human and animal subjects have been reported. The gastrointestinal tract is the site for the metabolism of isoflavones (124), where their sugar moieties are acted on by β -glucosidases and intestinal bacteria. The transformation of genistein starts with a hydrogenation reaction to generate dihydrogenistein by gut microbiota. Dihydrogenistein is further reduced to yield 5-hydroxy equol and 6'-hydroxy-O-desmethylangolensin. Selective hydrolysis of 6'-hydroxy-Odesmethylangolensin between carbon atoms 1' and 1 yields 4-hydroxyphenyl-2-propionic acid (Figure 3)(125). Daidzein, another isoflavone is degraded by gut bacteria into dihydrodaidzein and further to equol. All ruminants are equol producers because their gut microbiota favors the biosynthesis of this metabolite (126). Bacterial strains SNU NiuO16 from the bovine rumen, SNU Julong732 from the human intestine, *Slackia equolifaciens*, Slackia isoflavoniconvertens, Eggerthella sp, D-G6, Eubacterium strains D1 and D2 from swine, Hugonella massiliensis and Senegalimassilia faecalis from humans, MT1B8 from mouse, Lactobacillus delbrueckii-like strain MF-07 from chicken, Escherichia coli HGH21 and strain HGH6 from humans have been reported to convert daidzein and genistein to dihydrodaidzein and dihydrogenistein, respectively. Their individual metabolic conversion was lower than that of a complex community of feces with different bacteria, suggesting the involvement of other species (127-133).

Figure 3: Biotransformation of genistein. Adapted from Rossi et al. (2010).

Chapter 2: Genistein enriched pig gut microbiota library preparation using an in vitro mini bioreactor model

Abstract

Genistein is an isoflavone predominant in soybean (up to 1 g/kg). They have been studied for mainly their estrogenic and some antibacterial properties. Limited studies have explored their metabolism by gut bacteria in swine. We supplemented fecal samples from finisher pigs with 500 mg/L of genistein and cultured them in a mini bioreactor for a period of 21 days. Samples were taken every week (days 7, 14 and 21) for short-chain fatty acids (SCFAs) estimation and 16S rRNA sequencing. 16S data analysis revealed the abundance of the phylum Firmicutes comprising mainly of the genera Streptococcus, Megasphaera, Acidaminococcus, Mitsuokella, Lactobacillus and Eubacterium. Other phyla include Bacteroidota. Actinobacteria. Proteobacteria, Synergistota and Euryarcheota. Streptococcus was the most abundant genus. Shannon diversity index showed a significant decrease in community richness by day 21 when genistein was supplemented (p =0.013806) and the Bray-Curtis distance calculation showed dissimilarities between the groups (p < 0.001). Acetate and propionate were produced as a result of the fermentation of microbiota accessible carbohydrates (MACs) by gut microbes while there was no butyrate production in the genistein-treated group. We have been able to develop a genistein-enriched library from which species identification and characterization can be performed in subsequent experiments.

1 Introduction

Diet is one of the key modulators of gut microbiota composition which influences host homeostasis and biological processes (134). The mutualism relationship between the host and its gut bacterial symbionts can be altered through dietary habits. Recent research has been inclined toward knowing the effects of dietary components on gut microbiota and how their interaction with the gut microbiome impacts human health (134). Fruits and vegetables contain a variety of phenolic compounds that are known to produce beneficial health effects by modulating gut microbiota. Flavonoids are a well-known polyphenol present in almost all fruits and vegetables and certain beverages. Flavonoids are associated with a broad spectrum of health-promoting effects and are an important component of nutraceutical, pharmaceutical, medicinal and cosmetic applications. They play a major role in the prevention of a variety of gastrointestinal diseases like CRC, IBD and Crohn's disease because of their antioxidative, anti-inflammatory, anti-mutagenic and anticarcinogenic properties coupled with their capacity to modulate key cellular enzyme functions. There are six significant groups of flavonoids, including anthocyanins, flavanols, flavones, flavonols, flavonones and isoflavones.

Genistein is one of the most abundant isoflavones in the diet and can be found in high amounts in soy foods (up to 1g Kg⁻¹) (125, 135, 136). Genistein is not freely present in food sources, but it is usually conjugated to a sugar moiety (forming glucosides) that ensures its stability (136). Genistein glucosides are poorly absorbed from the intestine, and hence these linkages are cleaved by enzymes either present in the small intestine or the colon to facilitate absorption. As the enzymes produced by the human body is sometimes incapable of cleaving the glycosidic linkages, microbial enzymes produced have been implicated in these deconjugation reactions. Studies have highlighted the role of the gut microbiota in the metabolism of isoflavones in the human body, thereby changing their bioavailability or generating metabolites that affect human health in metabolizing the isoflavones in human health are now emerging. There are reports suggesting that genistein supplementation resulted in an altered composition of gut microbiota at different taxonomic levels, including a decrease in relative amounts of *Lactobacillus* spp., *Ruminococcus flavefaciens*, Bacteroidales and Clostridiales in female mice while Rikenaceae, Ruminococcaceae, Lachnospiraceae and *Lactococcus* spp. were elevated. In males, Genistein decreased the relative abundance of *Flexispira* spp., Clostridiales, Bacteroidales, *Odoribacter* spp. and Desulfovibrionaceae but increased the relative abundance of Lachnospiraceae and *Allobaculum* spp (137).

Despite the advances in our knowledge of the physiological importance of these microbe– host interactions, relatively little is known about the specific microbial strains, genes, and enzymes responsible for these activities. Fully understanding the molecular mechanism involved in metabolizing isoflavones and their effects on host health and disease remains a great challenge.

Here in this study, we developed a genistein metabolizing/tolerant gut microbiome library using the mini bioreactor model which replicates the hindgut environment.

2 Materials and methods

2.1 Pig fecal sample collection and preparation

Fecal samples were collected from five healthy finisher pigs with no antibiotic use from the Swine Education and Research Facility, South Dakota State University. The samples were transferred to an anaerobic chamber within 10 minutes of collection, and we performed a 10-fold dilution with phosphate-buffered saline (PBS) (Lot number: SLCJ0944, Sigma). The fecal samples were pooled together in equal ratios for use in the mini bioreactor.

2.2 Mini bioreactor

The modified brain heart infusion (BHI) medium (138) was used as a control medium and it was prepared as follows: 37 g/L brain-heart extract, 5.0 g/L yeast extract, 10.0 g/L inulin, 0.3 g/L L-cysteine, 0.25 mg/L resazurin and 1.0 mg/L menadione were dissolved in 900 ml of milliQ water, pre-reduced and sterilized by autoclaving at 121 O C for 30 min. Upon autoclaving and cooling, 100 ml of filter-sterilized 1M MES hydrate was added as a buffer and 1.7 ml of acetate (30 mM), 2 ml of propionate (8 mM), 2 ml of butyrate (4 mM), 100 µl of isovalerate (1 mM), 1 ml hemin (0.5 mg/ml), 10 ml of ATCC vitamin and mineral mixtures were added as supplements. Commercially available genistein (LC Laboratories, MA) was dissolved in a modified BHI medium at a concentration of 0.5mg/ml.

Mini bioreactors were sterilized and assembled, and the experiment was performed as described previously (139) with minor modifications (140) in an anaerobic chamber (Coy Lab Products, Grass Lake MI) containing 5% CO₂, 10% H₂ and 85% N₂ maintained at 37 °C. Briefly, the input and output on Watson Marlow pumps were set at 1 rpm and 2 rpm

respectively. The rotating magnetic stirrer was set at 130 rpm. The media were allowed to flow continuously for 24 hours

each in 6 replicates. Three hundred microliters of the inoculum were introduced into all wells with a retention time of 16 hours. The bioreactor was allowed to run continuously for 21 days (Figure 4). Samples were collected from each reactor well into microcentrifuge tubes and directly frozen at -80°C for later analysis.

Figure 4: Overview of the study design

A schematic diagram showing the media conditions used in the study. Genistein was used at a final concentration of 500 mg/L in the modified BHI, the control group consisted of modified BHI and fecal samples only. Each condition was run in 6 replicates and inoculated with the same inoculum. **B** Outline of the bioreactor experiment demonstrating the time points for fecal inoculation and sample collection.
2.3 Microbial DNA extraction and sequencing

DNA isolation was performed on 36 samples. The DNA was extracted from 500 µl of the sample using a Powersoil DNA isolation kit (MoBio Laboratories Inc, CA) following the manufacturer's instructions. After extraction, the quality of DNA was measured using NanoDropTM one (Thermo Fisher Scientific, DE) and quantified using Qubit Fluorometer 3.0 (Invitrogen, CA). The DNA samples were stored at -20°C until further use. To analyze the variation of the microbial composition over time, all samples were amplicon sequenced using an Illumina MiSeq platform with paired-end V3 chemistry. The library was prepared using an Illumina Nextera XT library preparation kit (Illumina Inc, CA) targeting V3-V4 regions of the 16S rRNA. The libraries were bead normalized and multiplexed before loading into the sequencer (Miseq, SY-410-1003, Illumina Inc, CA).

2.4 16S rRNA data analysis

The time-series changes in the microbial communities were analyzed using 16S rRNA community analysis in QIIME, Version 2.0 (141). Briefly, the demultiplexed reads obtained were quality filtered using the q2-demux plugin and denoised applying DADA2. The outputs were then imported into Microbiome Analyst (142) for visualizations. Shannon diversity and Bray Curtis dissimilarity indices were calculated as alpha and beta diversity metrics. The reads were normalized by rarefying to 25,000 and the taxonomy was assigned to amplicon sequence variants using the q2-feature-classifier (143) using Silva as the reference (144).

2.5 Estimation of Short-chain fatty acids

For the estimation of short-chain fatty acids (SCFAs), 800 μ l of samples were collected from each mini bioreactor, mixed with 160 μ l of 25% m-phosphoric acid (Lot: 188565, Fisher Chemical) and frozen at -80°C until further analysis. Later, the frozen samples were thawed and centrifuged (>15,000 × g) (LEGEND XFR centrifuge, Thermo Scientific) for 20 min. Five hundred microliters of clean supernatant were collected into a 2 ml screw vial kit (Lot: 887040385834, ThermoScientific) before loading into the gas chromatograph (Agilent Technologies, USA) for analysis (138). The SCFA concentrations were compared between the groups using the Two-way ANOVA and visualized using GraphPad Prism 6.0.

3 Results

3.1 Identification and diversity indices of isolates

Fecal samples of pigs cultured in a mini bioreactor and supplemented with or without genistein were collected on days 7, 14 and 21. DNA extraction was performed on these samples and the extracts were sent for 16S rRNA sequencing. QIIME2 analysis and Microbiome Analyst visualization revealed six phyla namely Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Synergistota and Euryarcheota. The actual abundances revealed Firmicutes to be abundant in both groups and appeared to be almost the same on day 7. On day 14, genistein supplementation appeared to have increased Firmicutes abundance and decreased by day 21. However, the relative abundances showed that Firmicutes abundance remained stable from day 7 to day 21(Supplementary figure 1). Bacteroidota was the second most abundant phylum which showed a gradual decrease from day 7 to day 21 in both groups. Proteobacteria was increased in the control group and appeared to be highly reduced in the genistein-treated group by day 21. Synergistota

appeared to be present only on day 21 (Figure 5). At the genus level, the large increase in the Firmicutes is a result of the presence of several genera such as *Streptococcus, Megasphaera, Acidaminococcus, Mitsuokella, Lactobacillus* and *Eubacterium* (Figure 6, Supplementary figure 2) all belonging to this phylum.

Genistein supplementation appears to have slightly increased the community richness on day 7 and reduced the community richness by day 21 (Figure 7) (p = 0.013806). The PCoA plot shows that each group is dissimilar from the other, and this dissimilarity is seen even in the same group with different days (p < 0.001) (Figure 7).

Figure 5: Actual abundances for Phyla for genistein treated and control groups on days 7,

14 and 21

Figure 6: Actual abundances for Genus for genistein treated and control groups on days

7, 14 and 21

Figure 7: Alpha and beta diversities of microbiota in genistein and control groups.

A and **B** Alpha diversity measure (Shannon diversity) of genistein supplemented and control groups on days 7, 14 and 21. Statistically, ANOVA was calculated on the alpha diversity with p = 0.013806, F = 3.4591. **C Bray**-Curtis distance calculation to visualize differences between groups. PERMANOVA was calculated with p < 0.001, F = 3.2103 and R-squared = 0.34856.

3.2 Genistein supplementation resulted in no butyrate production

The gut microbiota mediates the impact of diet on the metabolic status of the host. Hosts who ingest meals low in microbiota-associated carbohydrates produce less SCFAs (145). In order to elucidate how genistein has altered the fermentation capacity of the pig microbiota, we measured SCFAs from each mini bioreactor on days 7, 14 and 21. We observed an increase in acetate production from day 7 to 21 in the genistein-treated group although not significantly different compared to the control (Figure 8A) while isobutyrate and propionate levels decreased from day 7 to 21 in the genistein-treated group (Figure 8B and C). There was a significant difference (p<0.05) in propionate production between days 7 and 14, where we observe a decrease in the genistein-treated group as compared to the control. There appears to be no butyrate production in the genistein group (Figure 8D).

Figure 8: Effect of genistein on short-chain fatty acids production in mini bioreactors.

A to **D** represent the comparison of concentrations of acetate, Isobutyrate, propionate and butyrate respectively from genistein treated (GEN) and control (CON) groups on days 7, 14 and 21. A two-way ANOVA test was performed between the days and groups to identify the different significant groups. '*' represents significance at p< 0.05 in propionate production on days 7 and 14 in the genistein-treated group. Error bars represent the standard error of the mean of data obtained from six different bioreactors.

Table 3 : Effect of genistein on short chain fatty acids production in mini bioreactors (mean+/-standard deviation of concentrations)

	Summary	ns	ns	*	ns
	P-value	> 0.05	> 0.05	< 0.05	> 0.05
	Mean of CON group day 21	58.29±30.30	12.69±2.54	110.80±16.86	0.00
	Mean of CON group day 14	58.42 ±27.64	14.01 ±3.28	152.40±26.99	0.00
	Mean of CON group day 7	63.09±20.37	17.30±2.43	158.80±32.64	0.36 ±0.69
	Mean of GEN group day 21	75.15±33.69	10.91±3.65	103.30±20.81	00.0
	Mean of GEN group day 14	59.83±13.19	12.84±4.74	115.60±15.17	0.00
	Mean of GEN group day 7	49.03±11.40	15.46土3.05	126.50±10.93	0.00
	SCFAs	Acetate	Isobutyrate	Propionate	Butyrate

4 Discussion

In vivo, *in vitro*, and clinical studies have shown changes in microbial communities because of genistein treatment and their different mechanisms of action which include antibacterial and anti-inflammatory (6, 14, 59, 66-69, 146). Host factors probably contributed to the variations in microbiota composition in these studies as most of these experiments were carried out in rodents, cattle, and a few pigs. The metabolism of genistein by pig microbiota is underexplored. In this project, we aimed at exploring the impact of genistein on pig microbiota using an in vitro mini bioreactor model (139). The mini bioreactor model eliminates host factors while studying microbial communities in the gut. 16S rRNA sequencing was performed on DNA extracted from mini bioreactor samples.

Our report on the increased abundance of Firmicutes in the gut microbiota of pigs with and without genistein is consistent with other swine studies carried out in Germany, USA, Canada, Denmark and China (119, 120). A study by Quan et al. (2018) which revealed the predominance of *Streptococcus* and *Lactobacillus* in the colon of pigs (115) agrees with our findings. *Eubacterium sp.* are capable of isoflavone conversion to equol and 5-hydroxy equol (147) hence their presence in the taxonomy output. Proteobacteria comprise of several pathogens causing conditions characterized by inflammation (148). The decrease in taxa abundance by day 21 in the genistein-treated group is possible due to the antibacterial and anti-inflammatory actions of genistein exerted on these pathogens.

Genistein, an isoflavone has been reported to have antibacterial effects on pathogens such as *Staphylococcus sp.* by inhibiting their exotoxins (72) and preventing biofilm formation in *Escherichia coli* (69). It is also predominant in soybean, a major component of bovine and pigs' diet. *Streptococcus sp* comprise a group known as *Streptococcus bovis/equine* complex which are used as probiotics for young calves to establish their anaerobic microbiota (149). However, studies on genistein-enriched microbiota from pigs and their potential use as probiotics are limited. The abundance of *Streptococcus sp* from the genistein-enriched pig microbiota makes it promising to supply these species together with genistein as probiotics to piglets to provide beneficial effects.

Microbiota-accessible carbohydrates (MACs) are carbohydrates that are resistant to host digestion and can only be acted on by gut microbes to produce SCFAs. They can be found in fruits, vegetables, and legumes. One would expect that since genistein is predominant in legumes, their supplementation would result in SCFAs production (145). Also, inulin, a starchy substance that can only be acted on by gut microbes formed part of our modified BHI. SCFAs are important metabolites in maintaining intestinal homeostasis (150). Our study shows the production of acetate, isobutyrate and propionate but no butyrate production in the genistein-treated group. Firmicutes are butyrate producers (151), and our study reports an increase in the abundance of this phylum. However, the common species responsible for producing butyrate which include *Faecalibacterium prausnitzii, Eubacterium nectale, Roseburia spp., Clostridium butyricum, Clostridium Beijerinkii, Eubacterium hallii, Anaerostipes spp.* and *Butyricicoccus pullicaecorum* are missing. The absence of these butyrate producers explains why we recorded no butyrate production (152-154).

In conclusion, we report an increase in abundance of the of six genera *including Streptococcus, Eubacterium* and *Lactobacillus* resulting in the abundance of the phylum Firmicutes. Absence of butyrate producing-bacteria yielded no butyrate production. This study was conducted using fecal samples from five pigs from the same facility. A larger sample size from different facilities could have contributed to a more diverse pig gut microbiota library. In our next study, the cultures from the mini bioreactor would be screened for identification of potential probiotic bacteria.

Chapter 3: A preliminary screen to identify potential probiotic bacteria from the enriched pig gut microbiota library

Abstract

The emergence of multidrug-resistant pathogenic strains has made it necessary to explore other alternatives that are safe and efficient. We identified ~540 isolates and 19 species from our genistein-enriched library using MALDI-TOF MS and 16S Sanger sequencing. We confirmed the ability of representative species to metabolize genistein and conducted hemolysis and invasion assays to rule out potential pathogens. *Lactobacillus salivarius* was completely hemolytic, *Mitsuokella jalaludinii* and *Peptostreptococcus russellii* could not completely metabolize genistein and about 61 % of our species were non-invasive. In conclusion, we have developed a library of potential probiotics that include *Streptococcus gallolyticus*, *Acidaminococcus fermentans*, *Streptococcus equinus*, *Streptococcus alactolyticus*, *Bacteroides vulgatus*, *Bacteroides fluxus*, *Bacteroides uniformis*, *Sharpea azabuensis*, *Selenomonas montiformis* and *Syntrophococcus sucromutans*. Experiments would be conducted on these species to assess their in vitro adhesion and pathogen exclusion, in vivo colonization and pathogen exclusion and acid and bile tolerance abilities.

1 Introduction

In our quest to find antibiotic alternatives for use in medicine, agriculture and veterinary, there is the need to ensure that these alternatives are non-pathogenic, capable of exerting a beneficial effect on the host, and are anti-inflammatory and immunostimulatory. Isoflavones such as genistein have been studied for their antibacterial properties in *Vibrio harveyi*, *Bacillus subtilis* and *Escherichia coli* (71). Other microorganisms thrive in the presence of isoflavones and are able to metabolize them.

Bacterial strains SNU NiuO16, SNU Julong732, *Slackia equolifaciens, Slackia isoflavoniconvertens, Eggerthella sp,* D-G6, *Eubacterium* strains D1 and D2, *Hugonella massiliensis, Senegalimassilia faecalis,* MT1B8, *Lactobacillus delbrueckii-like* strain MF-07 and *Escherichia coli* HGH21 and strain HGH6 have been reported to convert daidzein and genistein to equol and 5-hydroxy-equol, respectively. Their individual metabolic conversion was lower than that of a complex community of feces with different bacteria, suggesting the involvement of other species (127-133, 155). It is therefore imperative to isolate and identify other potential metabolizers of isoflavones, especially genistein and study their possible use as alternatives to antibiotics in the pig industry. In the pig industry, the transition to the post-weaning stage results in manifestations of diarrhea, dehydration, significant mortality and loss of body weight in surviving pigs. In order to reduce financial losses, antibiotics are included in their diets to help alleviate these symptoms (156). Probiotics isolated from pig gut microbiota would be ideal alternatives.

We identified over 500 isolates from the fecal samples of finisher pigs supplemented with 500 mg/L of genistein using automated systems and manual anaerobic routine culture.

Nineteen of these isolates were distinct species that were tested for their potential as probiotics.

2 Materials and methods

2.1 Isolation and identification of genistein-metabolizing bacteria

Isolation of species was done using a micro cultivation array (General Automation Lab Technologies Inc) and routine anaerobic culture using modified BHI media supplemented with a combination of ampicillin sodium salt (Lot: 194962, Fisher Scientific) and clindamycin hydrochloride monohydrate (Lot: WHPMD-NQ, Tokyo Chemical Industry) at a concentration of 1 mg/L. MALDI-TOF MS (BRUKER Microflex) was used in species identification after smearing bacterial colonies on the MALDI-TOF target plate and covering with 1 µl of the matrix solution. Bacteria test standard was used as a control.

Species that could not be identified with MALDI-TOF MS were identified with 16S Sanger sequencing. For this, DNA was extracted using a Powersoil DNA isolation kit (MoBio Laboratories Inc, CA) following the manufacturer's instructions. After extraction, the quality of DNA was measured using NanoDropTM one (Thermo Fisher Scientific, DE) and quantified using Qubit Fluorometer 3.0 (Invitrogen, CA). The DNA samples were stored at -20° C until they were ready to be sent for Sanger Sequencing. FASTA sequences sent to us were identified using EzBioCloud (157).

2.2 DPH assay

The ability of the species to degrade genistein was determined using DPH (Lot: A366360, ACROS Organics) assay following a protocol by Lilian Schoefer et al. (2001)(158). DPH and genistein were dissolved in DMSO at concentrations of 0.5mM and 10mM

respectively. A circular nylon membrane was soaked in a mixture of 350 μ l 0.5 mM DPH and 350 μ l 10 mM Genistein and transferred onto a modified BHI agar plate. Bacteria colonies were smeared on the membrane and incubated under anaerobic conditions at 37°C for 24 to 48 h. For detection of fluorescence, the plate was kept under a UV lamp (Crystal BioGrow, BG-32-AA) at a wavelength of 365 nm.

2.3 Hemolysis screening

Isolates were grown separately in 3 mL of anaerobic modified BHI broth and incubated at 37°C overnight. Commercially available sheep blood agar plates (Carolina biological supply company, Burlington, North Carolina) were purchased and pre-reduced under anaerobic conditions for 48h. The isolates were streaked on pre-reduced sheep blood agar plates and incubated for 48h at 37°C under anaerobic conditions.

2.4 Invasion assay

Dulbecco's Modified Eagle Medium (Lot: RNBK0461, Sigma Aldrich) supplemented with 10% (v/v) FBS (Lot: 2405706RP, gibco) and 1% Penicillin/ Streptomycin (Lot: 30002345, Corning) was used to maintain and passage Caco-2 cells (#55-65). Non-hemolytic isolates were cultured in 5 mL of modified BHI broth and incubated overnight at 37° C under anaerobic conditions. Gentamicin protection protocol described by Lee et al. was used with slight modifications (159) Bacteria cultures were adjusted to an OD₆₀₀ of 1 and used to infect Caco-2 cells at an MOI of 10 in 24 well plates (Cyto One). The plates were incubated at 37° C in 5% CO₂ for 2 h in an Isotemp Co₂ Incubator (Fisherbrand). Gentamicin (Lot: 3682558, EMD Millipore Corp.), at a concentration of 100 µg/ml was used to kill extracellular non-invading bacteria. The plate was incubated again for 1 h at 37° C in 5% CO₂. Cells were then lysed with 1% Triton X-100 (Sigma) for 10 minutes to release

intracellular bacteria. 100 µl of lysed cell suspension from each well was serially diluted using PBS and plated on modified BHI agar plates. Plate count was taken after 48h.

3 Results

3.1 Identification of genistein-enriched pig microbiome

We identified ~540 isolates from the pig gut across 12 genera using MALDI-TOF MS and EzBioCloud (Supplementary Table 1). Modified BHI was used to culture the isolates received from GALT and MALDI-TOF MS revealed that over 80 % belonged to the genus Streptococcus and a total of 10 species were isolated. The species are Streptococcus lutetiensis, Streptococcus equinus, Streptococcus alactolyticus, Streptococcus gallolyticus, Acidaminococcus fermentans, Enterococcus faecalis, Lactobacillus salivarius, Faecalicoccus pleomorphus, Peptostreptococcus russellii and Mitsuokella jalaludinii (Table 4, Figure 9). DNA was extracted from isolates that could not be identified with MALDI-TOF MS (7.5 %) and sent out for 16S Sanger sequencing. EzBioCloud identification showed four new genera namely Sharpea azabuensis, Selenomonas montiformis, Syntrophococcus sucromutans and Collinsella phocaeensis (Table 5). An antimicrobial susceptibility test showed that the genus *Streptococcus* was susceptible to either clindamycin or ampicillin at a concentration of 1 mg/L (Supplementary figure 3). Hence, we supplemented the modified BHI with a combination of these two antibiotics at this concentration and manually isolated 5 other species namely Bacteroides vulgatus, Bacteroides uniformis, Bacteroides fluxus, Lactobacillus agilis and Enterococcus avium (Table 6, Figure 10). In total, 19 distinct species were isolated and identified.

Name of strain	Frequency (%)
Streptococcus lutetiensis	45.3
Streptococcus equinus	26
Streptococcus alactolyticus	5
Streptococcus gallolyticus	7.1
Enterococcus faecalis	3.4
Acidaminococcus fermentans	1.1
Lactobacillus salivarius	0.4
Faecalicoccus pleomorphus	0.4
Peptostreptococcus russellii	0.2
Mitsuokella jalaludinii	0.2
No identification	7.5
No growth	3.6

Table 4: Species isolation using a micro cultivation array (GALT)

Figure 9: Species isolation using a micro cultivation array (GALT)

A bar plot representing the individual isolates from micro cultivation array (GALT) identified with MALDI-TOF MS.

Frequency (%)
2.2
6.7
2.2
2.2
2.2
6.7
77.8

Table 5 : Species identification with EzBioCloud

Name of species	Frequency
Enterococcus faecalis	20
Bacteroides vulgatus	5
Lactobacillus salivarius	8
Bacteroides uniformis	6
Bacteroides fluxus	1
Lactobacillus agilis	1
Enterococcus avium	3
No growth	3
No identification	1

Table 6: Species isolation using routine culture methods

Figure 10: A pie chart representing the species isolated with modified BHI supplemented with antibiotics and identified with MALDI-TOF MS

3.2 Hemolysis screening revealed one species as completely hemolytic

Hemolysis screening is one of a battery of tests recommended by the FAO/WHO in establishing safety guidelines for probiotic species. In this assay, screening is performed on blood agar plates, which are complex media containing 5% sheep red blood cells and tests the ability of an organism to produce hemolysins. These hemolysins damage red blood cells. The blood agar plate is read for complete (β), partial (α) or no (γ) hemolysis. Of the 19 species cultured, *Lactobacillus salivarius GEN 087* was completely hemolytic and the remaining species were non-hemolytic (Figure 11).

Figure 11: Hemolysis screening of isolated species

A to I represent the growth of selected species from the genistein-enriched library on sheep blood agar plates

3.3 Genistein metabolism by isolates

The DPH assay is a qualitative, easy and fast method for the detection of microorganisms with the ability to transform genistein based on the interaction of these compounds with the fluorescent dye 1,6-diphenyl-1,3,5-hexatriene (DPH). The underlying principle of DPH assay is genistein attached to DPH quenches its ability to fluorescence (158). If the bacteria of interest can transform genistein, it will cleave the DPH from genistein and there would be fluorescence (observed as a white spot), otherwise, there is no fluorescence (observed as a brown spot). *E. coli* and *B. glycinifermentans* served as negative and positive controls, respectively. Ideally, all species are expected to metabolize genistein since they were isolated from genistein-enriched samples. However, it appears *M. jalaludinii* and *P. russellii* have light brown spots (Figure 12).

Figure 12: Genistein degradation ability of isolated species

A to C represent fluorescence of DPH after cleavage of genistein by selected species from the genistein-enriched library on nylon membranes lined on modified BHI plates.

3.4 61% of species were non-invasive and could qualify as potential probiotics

A good probiotic should be able to attach and colonize the host to exert its function. Any species that is invasive is outrightly ruled out as a possible probiotic. In fact, invasion is a characteristic of pathogenic microorganisms. Eighteen out of the 19 species that were nonhemolytic were investigated for their ability or inability to invade Caco-2 cells at an MOI of 10. Salmonella enterica and Bifidobacterium longum were positive and negative controls, respectively. Eleven species Streptococcus gallolyticus, namely Acidaminococcus fermentans, Streptococcus equinus, Streptococcus alactolyticus, Bacteroides vulgatus, Bacteroides fluxus, Mitsuokella jalaludinii, Bacteroides uniformis, Sharpea azabuensis, Selenomonas montiformis and Syntrophococcus sucromutans were non-invasive (Figure 13).

Figure 13: Invasion screening of selected species using in vitro Caco-2 cells

4 Discussion

Routine anaerobic culture methods are fast, easy and relatively cheaper ways to isolate species. However, advances in research have proven that combining culturomics with nextgeneration sequencing (NGS) ensures that enough diversity is covered (121). Species that are not cultivable could be identified with NGS and vice versa. In this study, we identified 19 distinct species from over 540 isolates that were cultured with modified BHI supplemented with or without 1 mg/L of clindamycin and ampicillin. Identification was done for most of the isolates using MALDI-TOF MS and the unidentified ones with 16S Sanger sequencing. The most abundant of these species belong to the *Streptococcus* genera (83.4%) which is consistent with our 16S rRNA sequencing data. Eight genera were identified with the anaerobic routine culture method (culturomics) namely *Streptococcus*, Enterococcus, Acidaminococcus, Lactobacillus, Faecalicoccus, Peptostreptococcus, Mitsuokella and Bacteroides. A study by Wylensek et al. (2020) cultured a collection of bacteria from the gut of 19 pigs and reported about 16 genera (119). Our study reports 7 out of these 16 genera; *Mitsuokella* was not identified. The difference in the diversity is because this group used 26 different enriched and selective culture media which included BHI to isolate bacteria from a larger number of pigs. The four genera identified using 16S Sanger sequencing are Sharpea, Selenomonas, Collinsella, and Syntrophococcus. All the genera identified with culturomics were present in the taxa data from the 16S analysis, however, the 16S analysis revealed other genera that could not be captured with culturomics.

Hemolysis screening showed that *Lactobacillus salivarius 087* was completely hemolytic and was ruled out as a potential probiotic. Although probiotics are made mainly from lactic

acid-producing bacteria from the genera *Bifidobacterium* and *Lactobacillus* (160-162), some species and strains of *Lactobacillus* are pathogens. For instance, a study by Salminen et al. (2006) isolated some *Lactobacillus sp.* including *Lactobacillus salivarius* from bacteremia patients (163). Our report contradicts a study by Li et al. (2020) which showed that *Lactobacillus salivarius* isolated from wild boar was not hemolytic (161). The differences in habitats of wild boar and finisher pigs as well as the differences in strains of *Lactobacillus salivarius* could contribute to this discrepancy.

The fluorescence quenching test allows quick and easy identification of isoflavonedegrading bacteria circumventing time-consuming analysis to detect degradation (158). Schoefer et al. (2001) tested the ability of *Eubacterium ramulus* to degrade flavonoids using the fluorescent quenching test. Isoflavones such as genistein could strongly quench DPH fluorescent, suggesting that the species metabolized genistein (158). We expected that the species isolated from the genistein-enriched library should degrade genistein. However, two of them namely *M. jalaludinii GEN265* and *P. russellii GEN 200* could not degrade genistein. A possible reason is that they probably partially degrade genistein and hence, a concentration of genistein is still attached to a part of DPH, preventing it from completely fluorescing.

Invasive pathogens are disease-causing microorganisms that disseminate to new locations to pose the risk of disease. Invasive bacterial infections are usually caused by *S. aureus*, *S. pneumoniae*, *S. agalactiae*, *Salmonella sp.*, *H. influenzae*, *N. meningitidis*, and *L. monocytogenes*(164). Our study reports new species that were invasive in an in vitro Caco-2 cell model. They are *Faecalicoccus pleomorphus GEN385*, *Peptostreptococcus russellii GEN200*, *Streptococcus lutetiensis GEN 001*, *Enterococcus faecalis GEN 021*,

Lactobacillus agilis CA 048 and *Enterococcus avium CA 035*. In vivo experiments need to be conducted to verify the pathogenicity of these species.

To sum it all up, we have isolated 19 species from which one is hemolytic, two partially degrade genistein, and six are invasive. The remaining 10 species namely *Streptococcus gallolyticus, Acidaminococcus fermentans, Streptococcus equinus, Streptococcus alactolyticus, Bacteroides vulgatus, Bacteroides fluxus, Bacteroides uniformis, Sharpea azabuensis, Selenomonas montiformis* and *Syntrophococcus sucromutans* are safe at this juncture to consider as potential probiotics. They have not been reported in any study yet. Previously reported swine gut microbiota strains capable of genistein metabolism are *Eubacterium* strains D1 and D2(129). Other strains from other hosts are strains SNU NiuO16 from bovine rumen, SNU Julong732 from human intestine, *Slackia equolifaciens, Slackia isoflavoniconvertens, Eggerthella sp,* D-G6, *Hugonella massiliensis* and *Senegalimassilia faecalis* from humans, MT1B8 from mouse, *Lactobacillus delbrueckii-like* strain MF-07 from chicken, *Escherichia coli* HGH21 and strain HGH6 (127, 128, 130-133).

In this study, modified BHI supplemented with or without ampicillin and clindamycin was the growth media used. This growth media is enriched and can be used to culture a variety of bacteria. However, the inclusion of other enriched and selective media could have helped isolate many other unisolated species.

Chapter 4: Conclusions and future directions

The transition to the post-weaning stage is faced with diarrhea among other symptoms which are of economic significance in the pig industry. Pig farmers incur financial losses when these pigs lose body weight and others eventually die. To minimize these losses, antibiotics are included in the diets and drinking water of pigs. The emergence of multidrug-resistant pathogenic strains is shifting our focus to other alternatives that are effective. Genistein is an isoflavone that has been reported to have antimicrobial properties. It is metabolized by the gut microbiota into metabolites that have beneficial impacts on the host. We have developed a genistein-metabolizing library from pig gut microbiota using culturomics and next-generation sequencing. We identified ~540 bacterium isolates and 19 species. We screened these species for safety properties to rule out hemolytic and invasive ones and to confirm their ability to degrade genistein. Lactobacillus salivarius GEN 087 was the only completely hemolytic species. All except two species (*Mitsuokella jalaludinii* GEN 265 and Peptostreptococcus russellii GEN 200) could completely degrade genistein and eleven species were non-invasive. We isolated and identified 10 non-pathogenic species that can completely metabolize genistein, which could be potentially used as probiotics to replace antibiotics. We are the first to report these 10 species isolated from pigs as non-pathogenic genistein-metabolizers which could be used as food supplements in post-weaning pigs to alleviate diarrhea. The limitations of our study are the smaller sample size from the same facility and the use of one growth medium (modified BHI), resulting in less diversity of isolates.

The World Health Organization has established basic selection criteria for probiotics which include epithelium adhesion ability, antimicrobial activity and acid and bile tolerance.

Hence, in vitro adhesion and pathogen exclusion assays, in vivo colonization and pathogen exclusion assays and acid and bile tolerance assays should be considered in the future.

APPENDIX

Supplementary Table 1: Isolates retrieved from genistein enriched microbiome library

		Identification		Score
I.D.	Species	method	Isolation media	value
	Streptococcus			
GEN001	lutetiensis	MALDI	Modified BHI	2.03
	Streptococcus			
GEN002	equinus	MALDI	Modified BHI	1.90
	Streptococcus			
GEN003	lutetiensis	MALDI	Modified BHI	1.74
	Streptococcus			
GEN004	equinus	MALDI	Modified BHI	1.98
	Streptococcus			
GEN005	equinus	MALDI	Modified BHI	2.00
	Streptococcus			
GEN006	lutetiensis	MALDI	Modified BHI	1.89
	Streptococcus			
GEN007	lutetiensis	MALDI	Modified BHI	1.96
	Streptococcus			
GEN008	lutetiensis	MALDI	Modified BHI	1.82
	Streptococcus			
GEN009	lutetiensis	MALDI	Modified BHI	1.89
	Streptococcus			
GEN010	equinus	MALDI	Modified BHI	2.01
	Streptococcus			
GEN011	equinus	MALDI	Modified BHI	1.89
	Streptococcus			
GEN012	infantarius	MALDI	Modified BHI	1.80
	Streptococcus			
GEN013	lutetiensis	MALDI	Modified BHI	1.81
	Streptococcus			
GEN014	equinus	MALDI	Modified BHI	1.72
	Streptococcus			
GEN015	lutetiensis	MALDI	Modified BHI	1.81
	Streptococcus			
GEN016	lutetiensis	MALDI	Modified BHI	1.96
	Streptococcus			
GEN017	equinus	MALDI	Modified BHI	2.02
	Streptococcus			
GEN018	equinus	MALDI	Modified BHI	2.02
	Streptococcus			
GEN019	equinus	MALDI	Modified BHI	1.70

	Streptococcus			
GEN020	eauinus	MALDI	Modified BHI	1.89
GEN021	Enterococcus faecalis	MALDI	Modified BHI	2.29
0211021	Streptococcus			>
GEN022	lutetiensis	MALDI	Modified BHI	1.92
GEN023	Enterococcus faecalis	MALDI	Modified BHI	2.43
	Streptococcus			
GEN024	equinus	MALDI	Modified BHI	1.94
	Streptococcus			
GEN025	alactolyticus	MALDI	Modified BHI	1.91
	Streptococcus			
GEN026	equinus	MALDI	Modified BHI	1.88
	Streptococcus			
GEN027	infantarius	MALDI	Modified BHI	1.90
	Streptococcus			
GEN028	lutetiensis	MALDI	Modified BHI	1.88
	Streptococcus			
GEN029	lutetiensis	MALDI	Modified BHI	2.07
	Streptococcus			
GEN030	lutetiensis	MALDI	Modified BHI	1.73
	Streptococcus			
GEN031	gallolyticus	MALDI	Modified BHI	1.72
	Streptococcus			
GEN032	gallolyticus	MALDI	Modified BHI	1.74
GEN 10 00	Streptococcus			1.04
GEN033	equinus	MALDI	Modified BHI	1.84
CEN024	Shamoa azabuonsis	168 acquancing	Modified DUI	NI/A
UEN034	Straptococcus	Tos sequencing		IN/A
GEN035	allobticus	ΜΑΙ DI	Modified BHI	1 77
GLIN035	Streptococcus			1.//
GEN036	equinus	MALDI	Modified BHI	1.94
0211020	Streptococcus			
GEN037	lutetiensis	MALDI	Modified BHI	2.06
	Streptococcus			
GEN038	alactolyticus	MALDI	Modified BHI	1.70
	Streptococcus			
GEN039	lutetiensis	MALDI	Modified BHI	1.82
GEN040	Enterococcus faecalis	MALDI	Modified BHI	2.43
	Streptococcus			
GEN041	equinus	MALDI	Modified BHI	2.00
	Streptococcus			
GEN042	alactolyticus	MALDI	Modified BHI	1.79

r				
CENI042	Streptococcus	MALDI		1.02
GEN043	equinus	MALDI	Modified BHI	1.92
	Streptococcus	MALDI		1 70
GEN044	gallolyticus	MALDI	Modified BHI	1.70
	Streptococcus			1.00
GEN045	alactolyticus	MALDI	Modified BHI	1.92
	Streptococcus			1.00
GEN046	equinus	MALDI	Modified BHI	1.98
	Streptococcus			1.01
GEN047	equinus	MALDI	Modified BHI	1.91
	Streptococcus			
GEN048	equinus	MALDI	Modified BHI	2.02
	Streptococcus			
GEN049	equinus	MALDI	Modified BHI	1.82
	Streptococcus			/ .
GEN050	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN051	lutetiensis	MALDI	Modified BHI	1.85
	Streptococcus			
GEN052	equinus	MALDI	Modified BHI	1.91
	Streptococcus			
GEN053	equinus	MALDI	Modified BHI	2.03
	Streptococcus			
GEN054	equinus	MALDI	Modified BHI	1.97
	Streptococcus			
GEN055	lutetiensis	MALDI	Modified BHI	1.86
	Streptococcus			
GEN056	lutetiensis	MALDI	Modified BHI	1.81
	Streptococcus			
GEN057	equinus	MALDI	Modified BHI	1.93
	Streptococcus			
GEN058	lutetiensis	MALDI	Modified BHI	1.77
	Streptococcus			
GEN059	equinus	MALDI	Modified BHI	2.04
	Streptococcus			
GEN060	gallolyticus	MALDI	Modified BHI	1.72
	Streptococcus			
GEN061	equinus	MALDI	Modified BHI	1.79
	Streptococcus			
GEN062	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN063	gallolyticus	MALDI	Modified BHI	1.73
	Streptococcus			
GEN064	equinus	MALDI	Modified BHI	1.87

	-			
CEN065	Streptococcus	MALDI	Modified DUI	1.92
GEN005	<i>equinus</i>	WIALDI	Modified Bill	1.05
CENOCC	Sirepiococcus		Modified DIII	1 07
GENU00	equinus	MALDI		1.87
CENO(7	Streptococcus			1.00
GEN067	equinus	MALDI	Modified BHI	1.96
CENIO CO	Streptococcus	MALDI		1.07
GEN068	equinus	MALDI	Modified BHI	1.97
	Streptococcus			
GEN069	equinus	MALDI	Modified BHI	2.05
	Acidaminococcus			
GEN070	fermentans	MALDI	Modified BHI	2.50
	Streptococcus			
GEN071	equinus	MALDI	Modified BHI	1.96
	Streptococcus			
GEN072	lutetiensis	MALDI	Modified BHI	1.94
	Streptococcus			
GEN073	alactolyticus	MALDI	Modified BHI	1.84
	Streptococcus			
GEN074	equinus	MALDI	Modified BHI	1.92
	Streptococcus			
GEN075	equinus	MALDI	Modified BHI	1.83
	Streptococcus			
GEN076	lutetiensis	MALDI	Modified BHI	1.92
	Streptococcus			
GEN077	lutetiensis	MALDI	Modified BHI	1.87
	Streptococcus			
GEN078	lutetiensis	MALDI	Modified BHI	1.98
	Streptococcus			
GEN079	gallolyticus	MALDI	Modified BHI	1.73
	Streptococcus			
GEN080	lutetiensis	MALDI	Modified BHI	1.82
	Streptococcus			
GEN081	lutetiensis	MALDI	Modified BHI	1.80
	Streptococcus			
GEN082	alactolyticus	MALDI	Modified BHI	1.81
	Streptococcus			
GEN083	lutetiensis	MALDI	Modified BHI	1 88
	Streptococcus			1.00
GEN084	gallolyticus	MALDI	Modified BHI	1 76
	Strentococcus			1.70
GEN085	alactolyticus	MALDI	Modified BHI	1 96
OLIN00J	Strantococcus			1.70
GEN086	Interiorsis	MALDI	Modified PUI	1 00
ULINU00	interierists			1.90
	Lactobacillus			
-----------------------	---------------	----------------	--------------	------
GEN087	salivarius	MALDI	Modified BHI	2.05
	Streptococcus			
GEN088	equinus	MALDI	Modified BHI	1.84
	Mitsuokella			
GEN089	jalaludinii	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN090	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN091	alactolyticus	MALDI	Modified BHI	1.92
	Streptococcus			
GEN092	alactolyticus	MALDI	Modified BHI	1.80
	Streptococcus			
GEN093	lutetiensis	MALDI	Modified BHI	1.83
	Streptococcus			
GEN094	alactolyticus	MALDI	Modified BHI	1.73
	Streptococcus			
GEN095	gallolyticus	MALDI	Modified BHI	1.70
	Streptococcus			
GEN096	alactolyticus	MALDI	Modified BHI	1.94
	Streptococcus			
GEN097	equinus	MALDI	Modified BHI	1.94
	Streptococcus			
GEN098	equinus	MALDI	Modified BHI	1.92
	Streptococcus			
GEN099	equinus	MALDI	Modified BHI	1.86
	Streptococcus			
GEN100	lutetiensis	MALDI	Modified BHI	1.96
	Streptococcus			
GEN101	equinus	MALDI	Modified BHI	1.90
	Streptococcus			
GEN102	lutetiensis	MALDI	Modified BHI	1.92
	Streptococcus			
GEN103	lutetiensis	MALDI	Modified BHI	1.74
	Streptococcus			
GEN104	equinus	MALDI	Modified BHI	1.94
	Streptococcus			
GEN105	lutetiensis	MALDI	Modified BHI	1.78
GENTIO	Streptococcus			
GEN106	lutetiensis	MALDI	Modified BHI	1.77
	Streptococcus			
GEN107	lutetiensis	MALDI	Modified BHI	1.75
ATTTTTTTTTTTTT	Streptococcus			
GEN108	alactolyticus	MALDI	Modified BHI	1.74

CEN100	Streptococcus			1.77
GEN109	lutetiensis	MALDI	Modified BHI	1.//
CEN110	Streptococcus			1.02
GENIIU	lutetiensis	MALDI	Modified BHI	1.85
CEN111	Streptococcus		Modified PHI	1.92
GENIII	Streptococcus	MALDI		1.05
GEN112	alactolyticus	MALDI	Modified BHI	1 77
OLIVI12	Strentococcus			1.//
GEN113	lutetiensis	MALDI	Modified BHI	1 73
GLIVIIS	Streptococcus			1.75
GEN114	equinus	MALDI	Modified BHI	2.05
	Lactobacillus			
GEN115	salivarius	MALDI	Modified BHI	2.21
	Streptococcus			
GEN116	lutetiensis	MALDI	Modified BHI	1.94
	Acidaminococcus			
GEN117	fermentans	MALDI	Modified BHI	2.13
	Streptococcus			
GEN118	lutetiensis	MALDI	Modified BHI	1.75
	Streptococcus			
GEN119	equinus	MALDI	Modified BHI	1.82
	Streptococcus			
GEN120	lutetiensis	MALDI	Modified BHI	1.7
	Streptococcus			
GEN121	alactolyticus	MALDI	Modified BHI	1.84
	Streptococcus			
GEN122	lutetiensis	MALDI	Modified BHI	1.79
OFN102	Streptococcus			1 7 1
GEN123	alactolyticus	MALDI	Modified BHI	1./1
CEN124	Streptococcus	MALDI	Modified DIU	2.00
GEN124	interiensis Streptococcura	MALDI	Modified BH1	2.00
GEN125	Sirepiococcus	MALDI	Modified BHI	1 07
OLIVI23	Streptococcus			1.7/
GEN126	Interiorsis	MALDI	Modified BHI	1 75
ULIN120	Strantococcus			1.75
GEN127	lutetiensis	MALDI	Modified BHI	1 90
	Strentococcus			1.70
GEN128	lutetiensis	MALDI	Modified BHI	2.03
5211120	Streptococcus			2.05
GEN129	lutetiensis	MALDI	Modified BHI	1.78
	Streptococcus			
GEN130	equinus	MALDI	Modified BHI	1.73

				1
CEN121	<i>Streptococcus</i>		Modified DIH	1.01
GEN131	lutetiensis	MALDI	Modified BHI	1.91
CEN122	Streptococcus	MALDI	Modified DIII	1.02
GEN152	equinus	MALDI		1.95
CENI22	Streptococcus			1 72
GEN133	gallolyticus	MALDI	Modified BHI	1./3
CEN124	Streptococcus		M. J.C. J DIH	1.00
GEN134	lutetiensis	MALDI	Modified BHI	1.82
CEN125	Streptococcus		M. J.C. J DIH	1 07
GEN135	lutetiensis	MALDI	Modified BHI	1.87
CEN126	Streptococcus		Madified DIII	1.00
GEN130	equinus	MALDI	Modified BHI	1.82
CEN127	Streptococcus			1.00
GEN137	equinus	MALDI	Modified BHI	1.89
CEN129	Streptococcus			1 70
GEN138	equinus	MALDI	Modified BHI	1.70
CEN120	Streptococcus	MALDI	Madified DIII	1 70
GEN139	lutetiensis	MALDI	Modified BHI	1.79
CEN140	Streptococcus			1.07
GEN140	lutetiensis	MALDI	Modified BHI	1.97
CEN141	Streptococcus			1 72
GEN141	lutetiensis	MALDI	Modified BHI	1.75
CEN142	Streptococcus		Madified DIII	2.02
GEN142		MALDI		2.02
CEN142	Streptococcus	MAIDI	Modified DIII	1 05
GEN145	<i>Iutettensis</i>	MALDI		1.65
CEN144	Sirepiococcus	MALDI	Modified PUI	1 77
GEN144	equinus Stuanta accord	MALDI		1.//
CEN145	Streptococcus	MALDI	Modified PUI	1.86
OEN143		MALDI		1.00
GEN146	Enterococcus faecalis	MALDI	NIOdified BHI	2.37
CEN147	Streptococcus	MALDI		1.0.4
GEN147	lutetiensis	MALDI	Modified BHI	1.84
CEN140	Streptococcus	MALDI	Modified DIII	1.02
GEN148	lutetiensis	MALDI	Modified BHI	1.83
CEN140	Streptococcus			1.00
GEN149	iutetiensis	MALDI	wiodified BHI	1.98
CEN150	Streptococcus	MALDI		1.0.4
GEN150	iutetiensis	MALDI	NIOdified BHI	1.84
CEN151	Streptococcus		Madified DIII	1 77
GENISI	iutetiensis	MALDI	wiodified BHI	1.//
OFN1 52	Streptococcus	MALDI		1.02
GEN153	lutetiensis	MALDI	Modified BHI	1.83

r				
	Streptococcus			
GEN154	lutetiensis	MALDI	Modified BHI	1.89
	Selemonas			
GEN155	montiformis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN157	equinus	MALDI	Modified BHI	2.01
	Streptococcus			/ .
GEN158	infantarius	16S sequencing	Modified BHI	<u>N/A</u>
07714.50	Streptococcus			1.0.1
GEN159	lutetiensis	MALDI	Modified BHI	1.94
OFN1 (1	Streptococcus	MALDI	M PC IDIN	1.00
GEN161	lutetiensis	MALDI	Modified BHI	1.80
OFN1(2)	Streptococcus	MALDI		1 70
GEN163	gallolyticus	MALDI	Modified BHI	1./8
CENICA	Streptococcus	MALDI	M. J.C. J DIH	1.00
GEN164	lutetiensis	MALDI	Modified BHI	1.99
CEN165	Streptococcus		Madified DIH	176
GEN105	equinus	MALDI		1.70
CENIC	Streptococcus	168 acquancing	Modified DIII	NI/A
GEN100	<i>lulellensis</i>	165 sequencing		IN/A
CEN167	streptococcus		Modified DUI	2.00
GEN107	Acidaminococcus	MALDI		2.00
GEN168	formontans	MALDI	Modified BHI	1.87
ULIVIUO	Acidaminococcus	MALDI		1.07
GEN169	formontans	ΜΑΙ DI	Modified BHI	1 74
CEN170	Enternance fragelia		Modified DIII	2.29
GEN1/0	Enterococcus jaecalis	MALDI		2.38
CEN171	streptococcus		Modified DUI	1 72
GEN1/I	Streptopopul	MALDI		1.72
GEN172	lutationsis	16S sequencing	Modified BHI	N/A
JEN172	Strentococcus			11/71
GEN173	lutationsis	ΜΑΙ DI	Modified BHI	1 89
OLIVI75	Strentococcus			1.07
GEN174	lutetiensis	MALDI	Modified BHI	1 94
GLITT	Streptococcus			1.91
GEN175	lutetiensis	MALDI	Modified BHI	2.00
5211175	Streptococcus			2.00
GEN176	lutetiensis	MALDI	Modified BHI	2.05
	Streptococcus			2.00
GEN177	alactolyticus	MALDI	Modified BHI	1.80
	Streptococcus			
GEN178	lutetiensis	MALDI	Modified BHI	1.97

GEN 14 50	Streptococcus			1.0.4
GEN179	infantarius	MALDI	Modified BHI	1.94
GENILOO	Streptococcus	MALDI		2.04
GEN180	equinus	MALDI	Modified BHI	2.06
GENTION	Streptococcus	MALDI		1.07
GEN182	lutetiensis	MALDI	Modified BHI	1.87
GENIAL	Streptococcus	MALDI		1.07
GEN184	lutetiensis	MALDI	Modified BHI	1.87
GENILOS	Streptococcus	MALDI		2 00
GEN185	lutetiensis	MALDI	Modified BHI	2.00
CEN106	Streptococcus	MALDI		1.07
GEN180		MALDI	Modified BHI	1.8/
CEN197	Actaaminococcus	MALDI	Madified DIU	1.02
GEN18/	fermentans	MALDI	Modified BHI	1.95
CEN100	Collinsella	168 anguancing	Modified DIU	NI/A
GEN188	pnocaeensis	165 sequencing	Modified BHI	IN/A
GEN189	Enterococcus faecalis	MALDI	Modified BHI	2.41
GEN190	Enterococcus faecalis	MALDI	Modified BHI	2.18
	Syntrophococcus			
GEN192	sucromutans	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN193	lutetiensis	MALDI	Modified BHI	1.92
	Streptococcus			
GEN194	lutetiensis	MALDI	Modified BHI	1.82
	Streptococcus			
GEN195	lutetiensis	MALDI	Modified BHI	1.82
	Streptococcus			1.0-
GEN196	lutetiensis	MALDI	Modified BHI	1.87
	Streptococcus	MADE		1.55
GEN197	alactolyticus	MALDI	Modified BHI	1.75
CEN100	Streptococcus	MALDI		1.00
GEN198	lutetiensis	MALDI	Modified BHI	1.86
CEN100	Streptococcus	MALDI		1 70
GEN199	lutetiensis	MALDI	Modified BHI	1.70
CENI200	Peptostreptococcus	MALDI		2.22
GEN200	russellii	MALDI	Modified BHI	2.32
CENDOI	Streptococcus	MALDI	Madified DIU	1 0 1
GEN201	stuanta a a a sur	MALDI		1.81
CENI202	Sireptococcus	MAIDI	Modified DIU	1 05
GEN202		MALDI		1.85
CEND02	Sireptococcus	MALDI	Modified DIU	1 02
GEN203		MALDI		1.83
CEN204	Actaaminococcus		Modified DIU	2.20
GEN204	jermentans	WIALDI	Moumea BHI	2.39

	Streptococcus			
GEN205	lutetiensis	MALDI	Modified BHI	1.96
	Streptococcus			
GEN206	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN207	gallolyticus	MALDI	Modified BHI	1.83
	Streptococcus			
GEN208	lutetiensis	MALDI	Modified BHI	1.87
	Streptococcus			
GEN209	equinus	MALDI	Modified BHI	1.84
	Streptococcus			
GEN210	alactolyticus	MALDI	Modified BHI	1.73
	Streptococcus			
GEN211	lutetiensis	MALDI	Modified BHI	1.84
	Streptococcus			
GEN212	lutetiensis	MALDI	Modified BHI	1.95
	Streptococcus			
GEN213	alactolyticus	MALDI	Modified BHI	1.84
	Streptococcus			
GEN214	equinus	MALDI	Modified BHI	1.85
	Streptococcus			
GEN215	equinus	MALDI	Modified BHI	1.92
	Streptococcus			
GEN216	lutetiensis	MALDI	Modified BHI	1.95
GEN217	Enterococcus faecalis	MALDI	Modified BHI	2.33
	Streptococcus			
GEN218	alactolyticus	MALDI	Modified BHI	1.76
	Streptococcus			
GEN219	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN220	equinus	MALDI	Modified BHI	1.92
	Streptococcus			
GEN221	lutetiensis	MALDI	Modified BHI	1.77
	Streptococcus			
GEN222	lutetiensis	MALDI	Modified BHI	1.87
	Streptococcus			
GEN223	equinus	MALDI	Modified BHI	1.82
	Streptococcus			
GEN224	lutetiensis	MALDI	Modified BHI	1.85
GEN225	Enterococcus faecalis	MALDI	Modified BHI	2.37
	Streptococcus			
GEN226	alactolyticus	MALDI	Modified BHI	1.71
	Streptococcus			
GEN228	equinus	MALDI	Modified BHI	1.90

GEN229	Enterococcus faecalis	MALDI	Modified BHI	2.28
	Streptococcus			
GEN230	lutetiensis	MALDI	Modified BHI	1.72
	Streptococcus			
GEN231	lutetiensis	MALDI	Modified BHI	1.94
	Streptococcus			
GEN232	lutetiensis	MALDI	Modified BHI	1.92
	Streptococcus			
GEN233	lutetiensis	MALDI	Modified BHI	1.88
GEN234	Enterococcus faecalis	MALDI	Modified BHI	2.40
	Streptococcus			
GEN238	alactolyticus	MALDI	Modified BHI	1.70
	Streptococcus			
GEN239	lutetiensis	MALDI	Modified BHI	1.98
	Streptococcus			
GEN241	lutetiensis	MALDI	Modified BHI	2.02
	Streptococcus			
GEN242	lutetiensis	MALDI	Modified BHI	1.84
	Streptococcus			
GEN243	lutetiensis	MALDI	Modified BHI	1.88
	Mitsuokella			
GEN246	jalaludinii	16S sequencing	Modified BHI	N/A
	Mitsuokella			
GEN247	jalaludinii	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN248	equinus	MALDI	Modified BHI	1.76
	Streptococcus			
GEN249	lutetiensis	MALDI	Modified BHI	1.78
	Streptococcus			
GEN250	lutetiensis	MALDI	Modified BHI	1.96
	Streptococcus			
GEN251	equinus	MALDI	Modified BHI	1.87
	Streptococcus			
GEN253	equinus	MALDI	Modified BHI	1.84
	Streptococcus			
GEN254	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN256	lutetiensis	MALDI	Modified BHI	1.94
0001055	Streptococcus			2 00
GEN257	lutetiensis	MALDI	Modified BHI	2.00
OFNIA	Streptococcus	MALDI		1.0.1
GEN258	lutetiensis	MALDI	Modified BHI	1.91
	Streptococcus			1.00
GEN259	lutetiensis	MALDI	Modified BHI	1.90

CENI2CO	Streptococcus	MALDI		1.00
GEN260	equinus	MALDI	Modified BHI	1.98
CEN261	Streptococcus		Madified DIH	1.02
GEN201	<i>equinus</i>	MALDI	Modified BHI	1.95
CEN262	Streptococcus	MALDI	Modified PHI	1.90
GEN202	Streptococcus	MALDI		1.09
CEN262	Streptococcus		Modified PHI	1 07
GEN205	Streptococcus	MALDI		1.07
CEN264	sirepiococcus	MALDI	Modified PUI	2.03
UEN204	Mitsuokella	MALDI		2.03
GEN265	jalaludinii	ΜΔΙ DI	Modified BHI	2 21
OLIV205	Streptococcus			2.21
GEN266	lutetiensis	MALDI	Modified BHI	2.01
OLIV200	Streptococcus			2.01
GEN267	lutetiensis	MALDI	Modified BHI	1 88
OLI (207	Streptococcus			1.00
GEN268	equinus	MALDI	Modified BHI	1.91
OLI (200	Streptococcus			
GEN269	gallolyticus	MALDI	Modified BHI	1.77
021(20)	Streptococcus			
GEN270	equinus	MALDI	Modified BHI	1.97
	Streptococcus			
GEN271	lutetiensis	MALDI	Modified BHI	1.84
	Streptococcus			
GEN272	lutetiensis	MALDI	Modified BHI	1.84
	Streptococcus			
GEN273	gallolyticus	MALDI	Modified BHI	1.71
	Streptococcus			
GEN274	lutetiensis	MALDI	Modified BHI	1.75
	Streptococcus			
GEN275	lutetiensis	MALDI	Modified BHI	1.91
	Streptococcus			
GEN276	alactolyticus	MALDI	Modified BHI	1.78
	Streptococcus			
GEN277	lutetiensis	MALDI	Modified BHI	1.94
	Streptococcus			
GEN278	equinus	MALDI	Modified BHI	1.91
	Streptococcus			
GEN279	equinus	MALDI	Modified BHI	1.84
	Streptococcus			
GEN280	lutetiensis	MALDI	Modified BHI	1.95
	Streptococcus			
GEN281	gallolyticus	MALDI	Modified BHI	1.78

	Streptococcus			
GEN282	lutetiensis	MALDI	Modified BHI	1.78
GEN283	Enterococcus faecalis	MALDI	Modified BHI	2.46
	Streptococcus			
GEN284	lutetiensis	MALDI	Modified BHI	1.83
GEN285	Enterococcus faecalis	MALDI	Modified BHI	2.31
GEN286	Enterococcus faecalis	MALDI	Modified BHI	2.44
GEN287	Enterococcus faecalis	MALDI	Modified BHI	2.32
	Streptococcus			
GEN288	lutetiensis	MALDI	Modified BHI	2.05
	Streptococcus			
GEN289	equinus	MALDI	Modified BHI	2.01
	Streptococcus			
GEN290	equinus	MALDI	Modified BHI	2.07
	Streptococcus			
GEN291	equinus	MALDI	Modified BHI	2.07
	Streptococcus			
GEN292	equinus	MALDI	Modified BHI	2.10
	Streptococcus			• • •
GEN293	equinus	MALDI	Modified BHI	2.03
GENIAGA	Streptococcus	MAIDI		1.00
GEN294	equinus	MALDI	Modified BHI	1.98
GENIQOS	Streptococcus	MALDI		1.00
GEN295	lutetiensis	MALDI	Modified BHI	1.92
CEN206	Streptococcus	MALDI	Modified PUI	2 1 1
UEIN290	Streptococcus			2.11
GEN297	lutetiensis	MALDI	Modified BHI	2.08
GLI(2)/	Streptococcus			2.00
GEN298	lutetiensis	MALDI	Modified BHI	1.92
	Streptococcus			
GEN299	equinus	MALDI	Modified BHI	1.99
	Streptococcus			
GEN300	lutetiensis	MALDI	Modified BHI	1.99
	Streptococcus			
GEN301	lutetiensis	MALDI	Modified BHI	1.91
	Streptococcus			
GEN302	lutetiensis	MALDI	Modified BHI	1.82
	Streptococcus			
GEN303	lutetiensis	MALDI	Modified BHI	2.02
	Streptococcus			
GEN304	lutetiensis	MALDI	Modified BHI	1.94
GENTROF	Streptococcus			1
GEN305	lutetiensis	MALDI	Modified BHI	1.87

	Streptococcus			
GEN306	lutetiensis	MALDI	Modified BHI	1.99
	Streptococcus			
GEN307	lutetiensis	MALDI	Modified BHI	2.00
	Streptococcus			
GEN308	gallolyticus	MALDI	Modified BHI	1.73
	Streptococcus			
GEN309	lutetiensis	MALDI	Modified BHI	1.96
	Streptococcus			
GEN310	lutetiensis	MALDI	Modified BHI	1.91
	Streptococcus			
GEN311	lutetiensis	MALDI	Modified BHI	1.96
	Streptococcus			
GEN312	lutetiensis	MALDI	Modified BHI	2.00
	Streptococcus			
GEN313	lutetiensis	MALDI	Modified BHI	1.89
GEN314	Enterococcus faecalis	MALDI	Modified BHI	2.29
	Streptococcus			
GEN315	lutetiensis	MALDI	Modified BHI	1.98
	Streptococcus			
GEN316	lutetiensis	16S sequencing	Modified BHI	N/A
0211010	Streptococcus	100 sequencing		1.011
GEN317	lutetiensis	MALDI	Modified BHI	2.02
0211011	Streptococcus			
GEN318	lutetiensis	MALDI	Modified BHI	1.95
0211010	Streptococcus			1.70
GEN319	gallolyticus	MALDI	Modified BHI	1.91
	Streptococcus			
GEN320	lutetiensis	MALDI	Modified BHI	1.90
	Streptococcus			1.70
GEN321	gallolyticus	MALDI	Modified BHI	1.83
	Streptococcus			
GEN322	lutetiensis	MALDI	Modified BHI	1.96
	Streptococcus			
GEN323	lutetiensis	MALDI	Modified BHI	2.05
	Streptococcus			
GEN324	eauinus	MALDI	Modified BHI	2.00
	Streptococcus			2.00
GEN325	lutetiensis	MALDI	Modified BHI	1.95
	Streptococcus			1.75
GEN326	equinus	MALDI	Modified BHI	2.04
	Streptococcus			2.01
GEN327		MALDI	Modified BHI	1 87
501321	c quinnus		mouning Din	1.07

CENI229	Streptococcus		Modified DIU	1.07
GEN320	equinus	MALDI		1.97
CENI220	Streptococcus			2.02
GEN330	equinus	MALDI	Modified BHI	2.02
GENIAAA	Streptococcus			• • • •
GEN331	lutetiensis	MALDI	Modified BHI	2.09
~~~~	Streptococcus			
GEN332	lutetiensis	MALDI	Modified BHI	1.91
	Streptococcus			
GEN333	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN334	lutetiensis	MALDI	Modified BHI	2.05
	Streptococcus			
GEN335	equinus	MALDI	Modified BHI	2.09
	Streptococcus			
GEN337	lutetiensis	MALDI	Modified BHI	1.88
	Streptococcus			
GEN338	lutetiensis	MALDI	Modified BHI	1.88
	Streptococcus			
GEN339	equinus	MALDI	Modified BHI	2.13
	Streptococcus			
GEN340	lutetiensis	MALDI	Modified BHI	2.00
	Streptococcus			
GEN341	equinus	MALDI	Modified BHI	1.77
	Streptococcus			
GEN343	equinus	MALDI	Modified BHI	1.93
	Streptococcus			
GEN344	lutetiensis	MALDI	Modified BHI	1 95
GLIGTI	Strentococcus			1.55
GEN345	lutetiensis	MALDI	Modified BHI	2 04
GERGIS	Streptococcus			2.01
GEN346	Interiorsis	MALDI	Modified RHI	1 8
0111040	Strantococcus			1.0
GEN347	Interiorsis	MALDI	Modified BHI	1.81
ULN347	Straptococcus		Modified Bill	1.01
CEN1249	sirepiococcus	MAIDI	Modified DIII	2.02
JEN348	<i>equinus</i>			2.02
CEN240	Streptococcus			1.02
GEN349	iutetiensis		Mouthed BHI	1.83
CENI2CO	Streptococcus	MALDI	M. I.C. IDIII	1.04
GEN350	iutetiensis	MALDI	Modified BHI	1.94
ODV251	Streptococcus	MALDI		1.0.1
GEN351	lutetiensis	MALDI	Modified BHI	1.94
	Streptococcus			
GEN352	lutetiensis	MALDI	Modified BHI	2.08

GEN 10.50	Streptococcus			0.11
GEN353	lutetiensis	MALDI	Modified BHI	2.11
CEN255	Streptococcus		Modified DIH	2.07
GEN355	lutetiensis	MALDI	Modified BHI	2.07
GEN256	Streptococcus		Modified BUI	2.08
GEN330	Streptococcus	MALDI		2.08
GEN357	aquinus	ΜΔΙ DI	Modified BHI	1 92
ULI USI	Streptococcus			1.72
GEN358	lutetiensis	MALDI	Modified BHI	1 91
GLI(550	Streptococcus			1.71
GEN359	equinus	MALDI	Modified BHI	2.08
	Streptococcus			
GEN360	lutetiensis	MALDI	Modified BHI	2.09
	Streptococcus			
GEN361	lutetiensis	MALDI	Modified BHI	2.09
	Streptococcus			
GEN362	lutetiensis	MALDI	Modified BHI	1.97
	Streptococcus			
GEN363	lutetiensis	MALDI	Modified BHI	1.85
	Streptococcus			
GEN364	gallolyticus	MALDI	Modified BHI	1.79
	Streptococcus			
GEN365	lutetiensis	MALDI	Modified BHI	1.89
ODVACC	Streptococcus			1.00
GEN366	equinus	MALDI	Modified BHI	1.90
CEN267	Streptococcus		Modified DIH	1.06
GEN30/	lutetiensis	MALDI	Modified BHI	1.96
CEN268	Streptococcus		Modified BUI	1.02
ULINJUO	Straptococcus	MALDI		1.92
GEN360	lutetionsis		Modified RHI	1 05
ULIN307	Streptococcus			1.75
GEN370	lutetiensis	MALDI	Modified BHI	1.98
0211070	Streptococcus			1.20
GEN371	lutetiensis	MALDI	Modified BHI	2.04
C LI (C / I	Streptococcus			
GEN372	lutetiensis	MALDI	Modified BHI	1.90
	Streptococcus			
GEN373	equinus	MALDI	Modified BHI	1.83
	Streptococcus			
GEN374	lutetiensis	MALDI	Modified BHI	1.90
	Streptococcus			
GEN375	lutetiensis	MALDI	Modified BHI	1.92

	Streptococcus			
GEN376	lutetiensis	MALDI	Modified BHI	1.81
	Streptococcus			
GEN377	equinus	MALDI	Modified BHI	1.94
	Streptococcus			
GEN378	lutetiensis	MALDI	Modified BHI	1.92
	Streptococcus			
GEN379	lutetiensis	MALDI	Modified BHI	2.04
	Streptococcus			
GEN380	equinus	MALDI	Modified BHI	1.79
GEN381	Enterococcus faecalis	MALDI	Modified BHI	2.24
	Streptococcus			
GEN382	lutetiensis	MALDI	Modified BHI	1.83
	Streptococcus			
GEN383	lutetiensis	MALDI	Modified BHI	1.83
	Streptococcus			
GEN384	gallolyticus	MALDI	Modified BHI	1.71
	Faecalicoccus			
GEN385	pleomorphus	MALDI	Modified BHI	2.11
	Streptococcus			
GEN386	equinus	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN387	equinus	MALDI	Modified BHI	1.97
	Streptococcus			
GEN388	equinus	MALDI	Modified BHI	1.85
	Streptococcus			
GEN389	equinus	MALDI	Modified BHI	2.02
	Streptococcus			
GEN390	equinus	MALDI	Modified BHI	1.97
	Streptococcus			
GEN391	lutetiensis	MALDI	Modified BHI	1.83
	Streptococcus			
GEN392	lutetiensis	MALDI	Modified BHI	1.70
	Streptococcus			
GEN393	equinus	MALDI	Modified BHI	1.99
	Streptococcus			
GEN394	gallolyticus	MALDI	Modified BHI	1.75
	Streptococcus			
GEN395	equinus	MALDI	Modified BHI	1.91
	Streptococcus			
GEN396	lutetiensis	MALDI	Modified BHI	1.89
	Streptococcus			
GEN397	gallolyticus	MALDI	Modified BHI	1.77

r				
CENI200	Streptococcus	MALDI	M I'C IDIII	1 70
GEN398	gallolyticus	MALDI	Modified BHI	1./8
CEN200	Streptococcus	MALDI	Modified DIU	1.00
GEN399	equinus	MALDI	Modified BHI	1.82
CEN400	Streptococcus	MALDI	Modified PUI	1.84
UEIN400	Straptococcus			1.04
GEN401	Interiorsis	ΜΔΙ DI	Modified BHI	1.81
OLIVIOI	Strentococcus			1.01
GEN402	lutetiensis	MALDI	Modified BHI	1 96
GERTICZ	Streptococcus			1.50
GEN403	lutetiensis	MALDI	Modified BHI	1.70
	Streptococcus			
GEN404	gallolyticus	MALDI	Modified BHI	1.72
	Streptococcus			
GEN405	equinus	MALDI	Modified BHI	1.92
	Streptococcus			
GEN406	equinus	MALDI	Modified BHI	1.81
	Streptococcus			
GEN407	lutetiensis	MALDI	Modified BHI	1.98
	Streptococcus			
GEN408	equinus	MALDI	Modified BHI	1.92
	Streptococcus			
GEN409	lutetiensis	MALDI	Modified BHI	1.74
	Streptococcus			
GEN410	lutetiensis	16S sequencing	Modified BHI	N/A
0771444	Streptococcus			
GEN411	gallolyticus	MALDI	Modified BHI	1.75
OFN1410	Streptococcus	MALDI		1.01
GEN412	equinus	MALDI	Modified BHI	1.81
CEN412	Streptococcus			1.00
GEN413	equinus	MALDI	Modified BHI	1.89
GEN/11	Streptococcus	MALDI	Modified PUI	1 79
UEIN414	Straptococcus			1.70
GEN/15	allobicus	ΜΑΙ ΠΙ	Modified RHI	1 74
ULIN415	Straptococcus			1./4
GEN416	gallolyticus	MALDI	Modified RHI	1 84
011110	Strentococcus			1.07
GEN417	lutetiensis	MALDI	Modified BHI	1.75
~/	Streptococcus			1.10
GEN418	gallolyticus	MALDI	Modified BHI	1.72
	Streptococcus			
GEN419	lutetiensis	MALDI	Modified BHI	1.85

CEN1420	Streptococcus			1.01
GEN420	gallolyticus	MALDI	Modified BHI	1.81
OFN401	Streptococcus	MALDI		1 75
GEN421	equinus	MALDI	Modified BHI	1.75
CEN400	Streptococcus	MALDI		1.0.4
GEN422	equinus	MALDI	Modified BHI	1.94
CEN 400	Streptococcus	MALDI		1.0.4
GEN423	gallolyticus	MALDI	Modified BHI	1.84
GENTADA	Streptococcus	MADI		1.01
GEN424	lutetiensis	MALDI	Modified BHI	1.81
GENTAR	Streptococcus	MADI		• • • •
GEN425	lutetiensis	MALDI	Modified BHI	2.08
	Streptococcus			
GEN426	equinus	MALDI	Modified BHI	2.1
	Streptococcus	1.69		
GEN427	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN428	lutetiensis	MALDI	Modified BHI	1.78
GEN429	Enterococcus faecalis	MALDI	Modified BHI	2.42
	Streptococcus			
GEN430	lutetiensis	MALDI	Modified BHI	1.78
	Streptococcus			
GEN431	equinus	MALDI	Modified BHI	2.00
	Streptococcus			
GEN432	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN433	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN434	equinus	MALDI	Modified BHI	1.93
	Streptococcus			
GEN435	equinus	MALDI	Modified BHI	2.05
	Streptococcus			
GEN436	alactolyticus	MALDI	Modified BHI	1.84
	Streptococcus			
GEN437	lutetiensis	MALDI	Modified BHI	1.82
	Streptococcus			
GEN438	lutetiensis	MALDI	Modified BHI	1.79
	Streptococcus			
GEN439	gallolyticus	MALDI	Modified BHI	1.78
	Streptococcus			
GEN440	lutetiensis	MALDI	Modified BHI	1.71
	Streptococcus			
GEN441	lutetiensis	MALDI	Modified BHI	1.88

	Streptococcus			
GEN442	equinus	MALDI	Modified BHI	2.06
	Streptococcus			
GEN443	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN444	lutetiensis	MALDI	Modified BHI	1.85
	Streptococcus			
GEN445	lutetiensis	MALDI	Modified BHI	1.91
	Streptococcus			
GEN446	lutetiensis	MALDI	Modified BHI	1.79
	Streptococcus			
GEN447	lutetiensis	MALDI	Modified BHI	1.99
	Streptococcus			
GEN448	lutetiensis	MALDI	Modified BHI	1.88
	Streptococcus			
GEN449	equinus	MALDI	Modified BHI	2.01
	Streptococcus			
GEN450	lutetiensis	MALDI	Modified BHI	1.73
	Streptococcus			
GEN451	equinus	MALDI	Modified BHI	1.76
	Streptococcus			
GEN452	equinus	MALDI	Modified BHI	1.93
	Streptococcus			
GEN453	lutetiensis	MALDI	Modified BHI	1.76
07334 <i>5</i> 4	Streptococcus			1.01
GEN454	lutetiensis	MALDI	Modified BHI	1.81
GENIAEE	Streptococcus			1.54
GEN455	equinus	MALDI	Modified BHI	1.74
OFN1456	Streptococcus	MALDI		1.00
GEN456	gallolyticus	MALDI	Modified BHI	1.86
CEN457	Streptococcus			2.00
GEN45/	lutetiensis	MALDI	Modified BHI	2.00
GEN459	sirepiococcus	MALDI	Modified PUI	1 74
UEIN430	Streptococcus			1./4
GEN/450		ΜΑΙ DI	Modified RUI	1 99
0111439	Strantococcus			1.00
GEN460	lutetionsis	16S sequencing	Modified RHI	$N/\Delta$
0111400	Strentococcus			11/71
GEN461	equinus	MALDI	Modified BHI	1 77
JLI 1TUI	Strentococcus			1.//
GEN462	lutetiensis	MALDI	Modified RHI	1 78
5111102	Streptococcus			1.70
GEN463	infantarius	MALDI	Modified BHI	1.82

r				
	Streptococcus			
GEN464	lutetiensis	MALDI	Modified BHI	1.76
	Streptococcus			
GEN465	lutetiensis	MALDI	Modified BHI	1.86
	Streptococcus			
GEN466	lutetiensis	MALDI	Modified BHI	1.88
	Streptococcus			
GEN467	lutetiensis	MALDI	Modified BHI	1.78
	Streptococcus			
GEN468	lutetiensis	MALDI	Modified BHI	1.98
	Streptococcus			
GEN469	equinus	MALDI	Modified BHI	1.98
	Streptococcus			
GEN470	equinus	MALDI	Modified BHI	1.96
	Streptococcus			
GEN471	infantarius	MALDI	Modified BHI	1.98
	Streptococcus			
GEN472	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN473	lutetiensis	MALDI	Modified BHI	1.86
	Streptococcus			
GEN474	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN475	infantarius	MALDI	Modified BHI	1.93
	Streptococcus			
GEN476	infantarius	MALDI	Modified BHI	1.99
	Streptococcus			
GEN477	lutetiensis	MALDI	Modified BHI	1.86
	Streptococcus			
GEN478	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN479	lutetiensis	MALDI	Modified BHI	1.96
	Streptococcus			
GEN480	equinus	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN481	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN482	equinus	MALDI	Modified BHI	1.84
	Streptococcus			
GEN483	infantarius	MALDI	Modified BHI	1.76
	Streptococcus			
GEN484	equinus	MALDI	Modified BHI	1.88
	Streptococcus			
GEN485	lutetiensis	MALDI	Modified BHI	1.89

Streptococcus      MALDI      Modified BHI      2.10        GEN487      gallolyticus      MALDI      Modified BHI      1.82        GEN487      gallolyticus      MALDI      Modified BHI      1.82        GEN488      luteriensis      16S sequencing      Modified BHI      N/A        GEN488      luteriensis      MALDI      Modified BHI      1.92        GEN489      equinus      MALDI      Modified BHI      1.93        GEN490      luteriensis      MALDI      Modified BHI      1.73        GEN491      infantarius      MALDI      Modified BHI      1.73        Streptococcus      matchine      matchine      1.73        GEN492      equinus      MALDI      Modified BHI      1.73        Streptococcus      matchine      matchine      1.73        GEN492      gallolyticus      MALDI      Modified BHI      1.78        Streptococcus      matchine      matchine      1.79        GEN494      gallolyticus      MALDI      Modified BHI      1.79        Streptococcus      matchinesis	[				
OEN480  equinus  MALDI  Modified BHI  2.10    GEN487  gallolyticus  MALDI  Modified BHI  1.82    Streptococcus  Interiensis  16S sequencing  Modified BHI  N/A    GEN488  lutetiensis  16S sequencing  Modified BHI  1.92    GEN489  equinus  MALDI  Modified BHI  1.92    Streptococcus  mathematical  MALDI  Modified BHI  1.93    GEN490  lutetiensis  MALDI  Modified BHI  1.93    Streptococcus  mathematical  MALDI  Modified BHI  1.93    GEN491  infantarius  MALDI  Modified BHI  1.73    Streptococcus  mathematical  Mathematical  1.87    GEN492  equinus  MALDI  Modified BHI  1.78    Streptococcus  mathematical  Mathematical  1.78    GEN493  gallolyticus  MALDI  Modified BHI  1.79    Streptococcus  mathematical  mathematical  1.79    GEN495  gallolyticus  MALDI  Modified BHI  N/A    Streptococcus  mathematical  16S sequencing  Modified BHI  N/A    GEN497  lutetiensis  16S	CENI496	Streptococcus	MALDI	Modified DIII	2.10
Streptococcus      MALDI      Modified BHI      1.82        GEN488      lutetiensis      16S sequencing      Modified BHI      N/A        GEN488      lutetiensis      16S sequencing      Modified BHI      N/A        GEN488      lutetiensis      16S sequencing      Modified BHI      1.92        GEN490      lutetiensis      MALDI      Modified BHI      1.93        GEN490      lutetiensis      MALDI      Modified BHI      1.93        Streptococcus            GEN491      infantarius      MALDI      Modified BHI      1.73        Streptococcus             GEN492      equinus      MALDI      Modified BHI      1.73        Streptococcus             GEN494      gallolyticus      MALDI      Modified BHI      1.78         GEN495      gallolyticus      MALDI      Modified BHI      1.79         GEN495      gallolyticus      MALDI      Modified BHI      N/A <td>GEN480</td> <td>equinus</td> <td>MALDI</td> <td></td> <td>2.10</td>	GEN480	equinus	MALDI		2.10
GEN487  gallolyticus  MALDI  Modified BHI  1.82    Streptococcus  Modified BHI  N/A    GEN488  lutetiensis  16S sequencing  Modified BHI  N/A    GEN489  equinus  MALDI  Modified BHI  1.92    GEN490  Streptococcus  MALDI  Modified BHI  1.93    GEN490  lutetiensis  MALDI  Modified BHI  1.93    GEN491  infantarius  MALDI  Modified BHI  1.73    GEN492  equinus  MALDI  Modified BHI  1.73    GEN492  equinus  MALDI  Modified BHI  1.78    GEN493  streptococcus  MALDI  Modified BHI  1.78    GEN493  equinus  MALDI  Modified BHI  1.78    GEN493  gallolyticus  MALDI  Modified BHI  1.78    GEN494  gallolyticus  MALDI  Modified BHI  1.79    Streptococcus  MALDI  Modified BHI  1.79    GEN495  gallolyticus  MALDI  Modified BHI  N/A    GEN495  gallolyticus  MALDI  Modified BHI  N/A    GEN494  lutetiensis  16S sequencing  Modified BHI  N/A	CEN407	Streptococcus			1.00
Streptococcus  Modified BHI  N/A    GEN489  equinus  MALDI  Modified BHI  1.92    GEN489  equinus  MALDI  Modified BHI  1.92    GEN490  lutetiensis  MALDI  Modified BHI  1.93    GEN490  lutetiensis  MALDI  Modified BHI  1.73    GEN491  infantarius  MALDI  Modified BHI  1.73    GEN492  equinus  MALDI  Modified BHI  1.73    GEN492  equinus  MALDI  Modified BHI  1.73    GEN493  streptococcus  mathematical and	GEN487	gallolyticus	MALDI	Modified BHI	1.82
GEN488    Interensis    IOS sequencing    Modified BHI    N/A      GEN489    Streptococcus    MALDI    Modified BHI    1.92      GEN490    Interiensis    MALDI    Modified BHI    1.93      Streptococcus    GEN490    Infantarius    MALDI    Modified BHI    1.93      GEN491    infantarius    MALDI    Modified BHI    1.73      Streptococcus    GEN492    equinus    MALDI    Modified BHI    1.73      GEN492    equinus    MALDI    Modified BHI    1.73      Streptococcus    GEN493    gallolyticus    MALDI    Modified BHI    1.78      Streptococcus    GEN494    gallolyticus    MALDI    Modified BHI    1.78      Streptococcus    GEN495    gallolyticus    MALDI    Modified BHI    N/A      Streptococcus    GEN496    Interiensis    16S sequencing    Modified BHI    N/A      GEN496    Interiensis    16S sequencing    Modified BHI    N/A      Streptococcus    GEN499    Interiensis    16S sequencing    Modified BHI    1.70      GEN	CEN1400	Streptococcus	1.00		
StreptococcusMALDIModified BHI1.92GEN490lutetiensisMALDIModified BHI1.93GEN490iutetiensisMALDIModified BHI1.73GEN491infantariusMALDIModified BHI1.73GEN492equinusMALDIModified BHI1.73GEN493equinusMALDIModified BHI1.78Streptococcus </td <td>GEN488</td> <td>lutetiensis</td> <td>16S sequencing</td> <td>Modified BHI</td> <td>N/A</td>	GEN488	lutetiensis	16S sequencing	Modified BHI	N/A
GEN489  equinus  MALDI  Modified BHI  1.92    Streptococcus  MALDI  Modified BHI  1.93    GEN490  Interiensis  MALDI  Modified BHI  1.93    GEN491  infantarius  MALDI  Modified BHI  1.73    GEN492  equinus  MALDI  Modified BHI  1.73    GEN492  equinus  MALDI  Modified BHI  1.73    GEN493  equinus  MALDI  Modified BHI  1.78    Streptococcus  MALDI  Modified BHI  1.78    GEN494  gallolyticus  MALDI  Modified BHI  1.78    Streptococcus  MALDI  Modified BHI  1.78    GEN495  gallolyticus  MALDI  Modified BHI  1.79    GEN495  gallolyticus  MALDI  Modified BHI  1.79    GEN496  lutetiensis  16S sequencing  Modified BHI  N/A    GEN497  lutetiensis  16S sequencing  Modified BHI  N/A    Streptococcus  MALDI  Modified BHI  1.70    GEN497  lutetiensis  16S sequencing  Modified BHI  N/A    Streptococcus  MALDI  Modified BHI  1.70    GEN500  <	GENIAGO	Streptococcus	MADE		1.00
StreptococcusMALDIModified BHI1.93GEN490lutetiensisMALDIModified BHI1.73GEN491infantariusMALDIModified BHI1.73GEN492equinusMALDIModified BHI1.87GEN492equinusMALDIModified BHI1.78StreptococcusGEN493equinusMALDIModified BHI1.78Streptococcus </td <td>GEN489</td> <td>equinus</td> <td>MALDI</td> <td>Modified BHI</td> <td>1.92</td>	GEN489	equinus	MALDI	Modified BHI	1.92
GEN490  Interiensis  MALDI  Modified BHI  1.93    Streptococcus  MALDI  Modified BHI  1.73    GEN491  Streptococcus  MALDI  Modified BHI  1.73    GEN492  equinus  MALDI  Modified BHI  1.87    GEN493  equinus  MALDI  Modified BHI  1.78    GEN493  equinus  MALDI  Modified BHI  1.78    GEN493  equinus  MALDI  Modified BHI  1.78    GEN494  gallolyticus  MALDI  Modified BHI  1.78    GEN495  gallolyticus  MALDI  Modified BHI  1.79    GEN496  lutetiensis  16S sequencing  Modified BHI  N/A    Streptococcus  Interiensis  16S sequencing  Modified BHI  N/A    GEN496  lutetiensis  16S sequencing  Modified BHI  N/A    Streptococcus  Interiensis  16S sequencing  Modified BHI  N/A    GEN496  lutetiensis  16S sequencing  Modified BHI  N/A    Streptococcus  Interiensis  16S sequencing  Modified BHI  N/A    GEN499  lutetiensis  16S sequencing  Modified BHI  N/A    GEN500		Streptococcus			
StreptococcusMALDIModified BHI1.73GEN491infantariusMALDIModified BHI1.73GEN492equinusMALDIModified BHI1.87GEN493equinusMALDIModified BHI1.78GEN493equinusMALDIModified BHI1.78GEN494gallolyticusMALDIModified BHI1.78GEN495gallolyticusMALDIModified BHI1.79GEN495gallolyticusMALDIModified BHI1.79GEN496lutetiensis16S sequencingModified BHIN/AStreptococcusInstreptococcusInstreptococcusInstreptococcusGEN496lutetiensis16S sequencingModified BHIN/AStreptococcusInstreptococcusInstreptococcusInstreptococcusGEN497lutetiensis16S sequencingModified BHIN/AStreptococcusInstreptococcusInstreptococcusInstreptococcusGEN498lutetiensis16S sequencingModified BHIN/AStreptococcusInstreptococcusInstreptococcusInstreptococcusGEN500alactolyticusMALDIModified BHI1.73GEN501equinusMALDIModified BHI1.74GEN502InteriensisMALDIModified BHI1.91StreptococcusInteriensisInstreptococcusInstreptococcusGEN503equinusMALDIModified BHI1.74GEN504equinusMALDI <t< td=""><td>GEN490</td><td>lutetiensis</td><td>MALDI</td><td>Modified BHI</td><td>1.93</td></t<>	GEN490	lutetiensis	MALDI	Modified BHI	1.93
GEN491intantariusMALDIModified BHI1.73StreptococcusMALDIModified BHI1.87GEN492equinusMALDIModified BHI1.87GEN493equinusMALDIModified BHI1.78GEN494gallolyticusMALDIModified BHI1.78GEN495gallolyticusMALDIModified BHI1.79GEN496gallolyticusMALDIModified BHI1.79GEN497gallolyticusMALDIModified BHI1.79GEN496lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensis16S sequencingModified BHIN/AGEN498lutetiensis16S sequencingModified BHI1.70GEN499lutetiensis16S sequencingModified BHIN/AGEN500alactolyticusMALDIModified BHI1.74GEN501equinusMALDIModified BHI1.74GEN502InteriensisMALDIModified BHI1.74GEN503equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.75GEN505lutetiensisMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91 <td></td> <td>Streptococcus</td> <td></td> <td></td> <td>1 = 0</td>		Streptococcus			1 = 0
StreptococcusMALDIModified BHI1.87GEN492equinusMALDIModified BHI1.78GEN493equinusMALDIModified BHI1.78GEN494gallolyticusMALDIModified BHI1.78GEN495gallolyticusMALDIModified BHI1.79GEN496lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensis16S sequencingModified BHIN/AGEN498lutetiensis16S sequencingModified BHIN/AGEN498lutetiensis16S sequencingModified BHIN/AGEN500alactolyticusMALDIModified BHIN/AGEN500alactolyticusMALDIModified BHI1.70GEN501equinusMALDIModified BHI1.74GEN502IutetiensisMALDIModified BHI1.75GEN503equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI	GEN491	infantarius	MALDI	Modified BHI	1.73
GEN492equinusMALDIModified BHI1.87StreptococcusMALDIModified BHI1.78GEN493equinusMALDIModified BHI1.78GEN494gallolyticusMALDIModified BHI1.79GEN495gallolyticusMALDIModified BHI1.79GEN496lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHI1.70GEN498lutetiensis16S sequencingModified BHI1.70GEN498lutetiensis16S sequencingModified BHI1.70GEN499lutetiensis16S sequencingModified BHI1.71GEN500alactolyticusMALDIModified BHI1.74GEN501equinusMALDIModified BHI1.74GEN502InteriensisMALDIModified BHI1.74GEN503equinusMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.61<		Streptococcus			
StreptococcusMALDIModified BHI1.78GEN493equinusMALDIModified BHI1.78GEN494gallolyticusMALDIModified BHI1.78GEN495gallolyticusMALDIModified BHI1.79GEN496lutetiensisMALDIModified BHI1.79GEN496lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensisMALDIModified BHI1.70GEN498lutetiensis16S sequencingModified BHI1.70GEN499lutetiensis16S sequencingModified BHI1.70GEN499lutetiensis16S sequencingModified BHI1.70GEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN505lutetiensisMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91 </td <td>GEN492</td> <td>equinus</td> <td>MALDI</td> <td>Modified BHI</td> <td>1.87</td>	GEN492	equinus	MALDI	Modified BHI	1.87
GEN493equinusMALDIModified BHI1.78StreptococcusMALDIModified BHI1.78GEN494gallolyticusMALDIModified BHI1.78GEN495gallolyticusMALDIModified BHI1.79GEN495gallolyticusMALDIModified BHI1.79GEN496lutetiensis16S sequencingModified BHIN/AGEN496lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensis16S sequencingModified BHI1.70GEN498lutetiensis16S sequencingModified BHI1.70GEN499lutetiensis16S sequencingModified BHI1.70GEN500alactolyticusMALDIModified BHI1.74GEN501equinusMALDIModified BHI1.74GEN502galuiusMALDIModified BHI1.74GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN505equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.91GEN505interiensisMALDIModified BHI1.91GEN505interiensisMALDIModified BHI1.91GEN505interiensisMALDIModified BHI1.91GEN505interiensisMALDIModified BHI1.91 <td></td> <td>Streptococcus</td> <td></td> <td></td> <td></td>		Streptococcus			
StreptococcusMALDIModified BHI1.78GEN494gallolyticusMALDIModified BHI1.79GEN495gallolyticusMALDIModified BHI1.79GEN496lutetiensis16S sequencingModified BHIN/AGEN496lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensis16S sequencingModified BHI1.70GEN498lutetiensis16S sequencingModified BHI1.70GEN498lutetiensis16S sequencingModified BHI1.70GEN499lutetiensis16S sequencingModified BHI1.70GEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN505streptococcusImage: mage:	GEN493	equinus	MALDI	Modified BHI	1.78
GEN494gallolyticusMALDIModified BHI1.78StreptococcusMALDIModified BHI1.79geN495gallolyticusMALDIModified BHI1.79GEN496lutetiensis16S sequencingModified BHIN/AGEN496lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensisMALDIModified BHI1.70GEN498lutetiensis16S sequencingModified BHI1.70GEN499lutetiensis16S sequencingModified BHI1.70GEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.91StreptococcusMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91 <t< td=""><td></td><td>Streptococcus</td><td></td><td></td><td></td></t<>		Streptococcus			
Streptococcus gallolyticusMALDIModified BHI1.79GEN495Streptococcus16S sequencingModified BHIN/AGEN496lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensisMALDIModified BHI1.70GEN498lutetiensisMALDIModified BHIN/AGEN499lutetiensis16S sequencingModified BHIN/AGEN500StreptococcusMALDIModified BHIN/AGEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502IutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.75GEN505iutetiensisMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91GEN505iutetiensisMALDIModified BHI1.91GEN505iutetiensisMALDIModified BHI1.91GEN505iutetiensisMALDIModified BHI1.91GEN505iutetiensisMALDIModified BHI1.81GEN505iutetiensisMALDIModified BHI1.81GEN505iutetiensisMALDIModified BHI	GEN494	gallolyticus	MALDI	Modified BHI	1.78
GEN495gallolyticusMALDIModified BHI1.79Streptococcus16S sequencingModified BHIN/AGEN496lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensisMALDIModified BHI1.70GEN498lutetiensis16S sequencingModified BHI1.70GEN499lutetiensis16S sequencingModified BHIN/AGEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN505equinusMALDIModified BHI1.91Streptococcusmatchmatch1.91GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505<		Streptococcus			
Streptococcus16S sequencingModified BHIN/AGEN496lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensisMALDIModified BHI1.70GEN499lutetiensis16S sequencingModified BHIN/AGEN499lutetiensis16S sequencingModified BHIN/AGEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN505equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.91GEN505iutetiensisMALDIModified BHI1.91GEN505iutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91	GEN495	gallolyticus	MALDI	Modified BHI	1.79
GEN496lutetiensis16S sequencingModified BHIN/AStreptococcusIdentified SequencingModified BHIN/AGEN497lutetiensis16S sequencingModified BHIN/AGEN498lutetiensisMALDIModified BHI1.70GEN499lutetiensis16S sequencingModified BHIN/AGEN499lutetiensis16S sequencingModified BHIN/AGEN499lutetiensis16S sequencingModified BHIN/AGEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN505lutetiensisMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.83GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.81		Streptococcus			
StreptococcusInformationModified BHIN/AGEN497Iutetiensis16S sequencingModified BHIN/AGEN498IutetiensisMALDIModified BHI1.70GEN499Iutetiensis16S sequencingModified BHIN/AGEN500Iutetiensis16S sequencingModified BHIN/AGEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502IutetiensisMALDIModified BHI1.74GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.91StreptococcusMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91GEN505IutetiensisMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91GEN505IutetiensisMALDIModified BHI1.81GEN505IutetiensisMALDIModified BHI1.81GEN505IutetiensisMALDIModified BHI1.81GEN505IutetiensisMALDIModified BHI1.81GEN505IutetiensisMALDIModified BHI1.81GEN505IutetiensisMALDIModified BHI1.81	GEN496	lutetiensis	16S sequencing	Modified BHI	N/A
GEN497lutetiensis16S sequencingModified BHIN/AStreptococcusMALDIModified BHI1.70GEN498lutetiensisMALDIModified BHI1.70GEN499lutetiensis16S sequencingModified BHIN/AGEN500alactolyticusMALDIModified BHI1.83GEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN505lutetiensisMALDIModified BHI1.91StreptococcusmatchmatchmatchGEN504equinusMALDIModified BHI1.91StreptococcusmatchmatchmatchGEN505lutetiensisMALDIModified BHI1.91StreptococcusmatchmatchmatchGEN505matchmatchmatchGEN505lutetiensisMatchMatchGEN505lutetiensisMatchMatchGEN505lutetiensisMatchMatchGEN505lutetiensisMatchMatchGEN505lutetiensisMatchMatchGEN505lutetiensisMatchMatchGEN505lutetiensisMatchMatchGEN505lutetiensisMatchMatch		Streptococcus			
StreptococcusMALDIModified BHI1.70GEN498IutetiensisMALDIModified BHI1.70Streptococcus16S sequencingModified BHIN/AGEN499Iutetiensis16S sequencingModified BHIN/AGEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502terptococcusGEN502lutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.91GEN505IutetiensisMALDIModified BHI1.91GEN505IutetiensisMALDIModified BHI1.91GEN505IutetiensisMALDIModified BHI1.81GEN505IutetiensisMALDIModified BHI1.81	GEN497	lutetiensis	16S sequencing	Modified BHI	N/A
GEN498lutetiensisMALDIModified BHI1.70Streptococcus16S sequencingModified BHIN/AGEN499lutetiensis16S sequencingModified BHIN/AGEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.74GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN505equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.81GEN505lutetiensisMALDIModified BHI1.81GEN505lutetiensisMALDIModified BHI1.81GEN505lutetiensisMALDIModified BHI1.81		Streptococcus			
Streptococcus16S sequencingModified BHIN/AGEN499lutetiensis16S sequencingModified BHIN/AStreptococcusMALDIModified BHI1.83GEN500alactolyticusMALDIModified BHI1.83GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.92GEN503lutetiensisMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.81	GEN498	lutetiensis	MALDI	Modified BHI	1.70
GEN499lutetiensis16S sequencingModified BHIN/AStreptococcus </td <td></td> <td>Streptococcus</td> <td></td> <td></td> <td></td>		Streptococcus			
StreptococcusMALDIModified BHI1.83GEN500alactolyticusMALDIModified BHI1.83StreptococcusMALDIModified BHI1.74GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.81GEN505lutetiensisMALDIModified BHI1.81	GEN499	lutetiensis	16S sequencing	Modified BHI	N/A
GEN500alactolyticusMALDIModified BHI1.83Streptococcus </td <td></td> <td>Streptococcus</td> <td></td> <td></td> <td></td>		Streptococcus			
StreptococcusMALDIModified BHI1.74GEN501equinusMALDIModified BHI1.74GEN502lutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.92GEN504equinusMALDIModified BHI1.75GEN505lutetiensisMALDIModified BHI1.91GEN505kequinusMALDIModified BHI1.91GEN505lutetiensisMALDIModified BHI1.81GEN505lutetiensisMALDIModified BHI1.81	GEN500	alactolyticus	MALDI	Modified BHI	1.83
GEN501equinusMALDIModified BHI1.74Streptococcus </td <td></td> <td>Streptococcus</td> <td></td> <td></td> <td></td>		Streptococcus			
StreptococcusMALDIModified BHI1.92GEN502IutetiensisMALDIModified BHI1.92GEN503equinusMALDIModified BHI1.75GEN504equinusMALDIModified BHI1.91GEN505iteptococcusImage: Comparison of the second secon	GEN501	equinus	MALDI	Modified BHI	1.74
GEN502lutetiensisMALDIModified BHI1.92Streptococcus </td <td></td> <td>Streptococcus</td> <td></td> <td></td> <td></td>		Streptococcus			
StreptococcusMALDIModified BHI1.75GEN503equinusMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91StreptococcusInterformed StreptococcusInterformed StreptococcusInterformed StreptococcusGEN505lutetiensisMALDIModified BHI1.81	GEN502	lutetiensis	MALDI	Modified BHI	1.92
GEN503equinusMALDIModified BHI1.75Streptococcus </td <td></td> <td>Streptococcus</td> <td></td> <td></td> <td></td>		Streptococcus			
StreptococcusMALDIModified BHI1.91GEN504equinusMALDIModified BHI1.91StreptococcusIntetiensisMALDIModified BHI1.81GEN505IntetiensisMALDIModified BHI1.81	GEN503	equinus	MALDI	Modified BHI	1.75
GEN504equinusMALDIModified BHI1.91Streptococcus </td <td></td> <td>Streptococcus</td> <td></td> <td></td> <td></td>		Streptococcus			
StreptococcusMALDIModified BHI1.81GEN505IutetiensisMALDIModified DHI2.4	GEN504	equinus	MALDI	Modified BHI	1.91
GEN505 <i>lutetiensis</i> MALDI  Modified BHI  1.81		Streptococcus			
	GEN505	lutetiensis	MALDI	Modified BHI	1.81
GEN506   Enterococcus faecalis   MALDI   Modified BHI   2.4	GEN506	Enterococcus faecalis	MALDI	Modified BHI	2.4
Streptococcus		Streptococcus			2.1
GEN507 Jutetiensis MALDI Modified BHI 1.82	GEN507	lutetiensis	MALDI	Modified BHI	1 82

	Streptococcus			
GEN508	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN509	equinus	MALDI	Modified BHI	1.90
	Streptococcus			
GEN510	lutetiensis	MALDI	Modified BHI	1.74
	Streptococcus			
GEN511	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN512	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN513	infantarius	MALDI	Modified BHI	1.76
	Streptococcus			
GEN514	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN516	lutetiensis	16S sequencing	Modified BHI	N/A
	Faecalicoccus			
GEN517	pleomorphus	MALDI	Modified BHI	1.98
	Streptococcus			
GEN518	equinus	MALDI	Modified BHI	1.93
	Streptococcus			
GEN519	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN520	gallolyticus	MALDI	Modified BHI	1.79
	Streptococcus			
GEN521	lutetiensis	MALDI	Modified BHI	1.88
	Streptococcus			
GEN522	lutetiensis	16S sequencing	Modified BHI	N/A
	Streptococcus			
GEN523	equinus	MALDI	Modified BHI	2.04
	Streptococcus			
GEN524	lutetiensis	16S sequencing	Modified BHI	N/A
0000000	Streptococcus			
GEN525	equinus	MALDÍ	Modified BHI	1.88
	Streptococcus			
GEN526	gallolyticus	MALDI	Modified BHI	1.71
000-000	Streptococcus			
GEN527	lutetiensis	MALDI	Modified BHI	1.85
GENTERS	Streptococcus	1.69		
GEN528	lutetiensis	16S sequencing	Modified BHI	N/A
000-000	Streptococcus			
GEN529	equinus	MALDÍ	Modified BHI	1.91
	Streptococcus			
GEN530	infantarius	MALDI	Modified BHI	1.97

OFNIS 1	Streptococcus	MATE		1.00
GEN531	lutetiensis	MALDI	Modified BHI	1.92
CENE22	Streptococcus			1.04
GEN532	equinus	MALDI	Modified BHI	1.94
CEN522	Streptococcus	MALDI	Modified DIH	1.04
GEN333	Streptococcus	MALDI		1.94
GEN534	Interiorsis	MALDI	Modified BHI	1.87
ULN334	Streptococcus	MALDI		1.07
GEN535	equinus	MALDI	Modified BHI	1 89
OLN333	Streptococcus			1.07
GEN536	equinus	MALDI	Modified BHI	1.80
021.000	Streptococcus			
GEN537	lutetiensis	MALDI	Modified BHI	1.91
	Streptococcus			
GEN538	equinus	MALDI	Modified BHI	1.94
	Streptococcus			
GEN539	equinus	MALDI	Modified BHI	1.93
	Streptococcus			
GEN540	equinus	MALDI	Modified BHI	1.73
	Streptococcus			
GEN541	equinus	MALDI	Modified BHI	1.84
	Streptococcus			
GEN542	lutetiensis	MALDI	Modified BHI	1.87
	Streptococcus			
GEN543	infantarius	MALDI	Modified BHI	1.76
(T) I = 1.1	Streptococcus	1.60		27/4
GEN544	lutetiensis	16S sequencing	Modified BHI	N/A
OTNE 45	Streptococcus	MALDI		1 77
GEN343	gallolyticus	MALDI	Modified BHI	1.//
CENEAC	Streptococcus		Modified DIH	1.00
GEN540	<i>Infantarius</i>	MALDI		1.90
GEN547	Sirepiococcus	MALDI	Modified BHI	1 79
UENJ47	Streptococcus	MALDI		1.70
GEN548	Interiorsis	16S sequencing	Modified RHI	N/A
ULINJ40	Streptococcus			
GEN549	lutetiensis	MALDI	Modified <b>RHI</b>	1 97
	Strentococcus			1.77
GEN550	equinus	MALDI	Modified BHI	1.98
	Streptococcus			
GEN551	lutetiensis	MALDI	Modified BHI	1.85
	Streptococcus			
GEN552	alactolyticus	MALDI	Modified BHI	1.76

				1
	Streptococcus			
GEN553	alactolyticus	MALDI	Modified BHI	1.75
	Streptococcus			
GEN554	lutetiensis	MALDI	Modified BHI	1.97
	Streptococcus			
GEN555	lutetiensis	MALDI	Modified BHI	1.98
	Streptococcus			
GEN556	lutetiensis	MALDI	Modified BHI	2.01
	Streptococcus			
GEN557	equinus	MALDI	Modified BHI	1.74
	Streptococcus			
GEN558	equinus	MALDI	Modified BHI	1.94
	Streptococcus			
GEN559	lutetiensis	MALDI	Modified BHI	2.01
	Streptococcus			
GEN560	gallolyticus	MALDI	Modified BHI	1.81
	Streptococcus			
GEN561	equinus	MALDI	Modified BHI	1.89
	Streptococcus			
GEN562	lutetiensis	MALDI	Modified BHI	1.99
			Modified BHI (amp+	
CA002	Enterococcus faecalis	MALDI	clin, 1mg/L)	1.92
			Modified BHI (amp+	
CA003	Bacteroides vulgatus	MALDI	clin, 1mg/L)	2.33
			Modified BHI (amp+	
CA004	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.21
			Modified BHI (amp+	
CA005	Bacteroides vulgatus	MALDI	clin, 1mg/L)	2.56
			Modified BHI (amp+	
CA006	Bacteroides vulgatus	MALDI	clin, 1mg/L)	2.59
	Lactobacillus		Modified BHI (amp+	
CA007	salivarius	MALDI	clin, 1mg/L)	2.28
			Modified BHI (amp+	
CA008	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.35
	Bacteroides		Modified BHI (amp+	
CA009	uniformis	MALDI	clin, 1mg/L)	2.47
	Lactobacillus		Modified BHI (amp+	
CA010	salivarius	MALDI	clin, 1mg/L)	2.13
	Bacteroides		Modified BHI (amp+	
CA011	uniformis	MALDI	clin, 1mg/L)	2.49
			Modified BHI (amp+	
CA012	Bacteroides fluxus	MALDI	clin, 1mg/L)	2.53
			Modified BHI (amp+	
CA013	Bacteroides vulgatus	MALDI	clin, 1mg/L)	2.43

	Lactobacillus		Modified BHI (amp+	
CA014	salivarius	MALDI	clin 1mg/L)	2.21
			Modified BHI (amp+	2.21
CA015	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.45
011010			Modified BHI (amp+	2.10
CA016	Enterococcus faecalis	MALDI	clin 1mg/L)	2.26
	Lactobacillus		Modified BHI (amp+	2.20
CA017	salivarius	MALDI	clin 1mg/L)	1 89
	Lactobacillus		Modified BHI (amp+	1.07
CA018	salivarius	ΜΔΙ DI	clin 1mg/L)	2 13
CAUIO	Lactobacillus	MALDI	Modified BHI (amp+	2.13
CA019	salivarius	MALDI	$din_1 mg/I$	1 00
CAULY	suivarias	MALDI	Modified BHI (amp)	1.77
CA020	Enterococcus faecalis	MALDI	$din_1 mg/I$	2 23
CA020	Basteroides	MALDI	Modified PHI (amp)	2.23
CA021	uniformis	MALDI	$\frac{1}{1}$	2 13
CA021	unijormis	MALDI	Modified PHI (amp)	2.43
CA022	Enterococcus faecalis	MALDI	$din_1 mg/I$	2 10
CA022		MALDI	Modified PHI (amp)	2.19
CA022	Ractoroides vulgatus	MALDI	alin 1mg/L)	2 55
CA025	Bacteroides	MALDI	Modified PHI (amp)	2.33
CA024	uniformis	MALDI	$din_1 mg/L$	2 30
CA024	L actobacillus	MALDI	Modified PHI (amp)	2.39
CA027		MALDI	alin 1mg/L)	2 10
CA027	sauvarius	IVIALDI	Modified PHI (amp)	2.10
CA028	Entences agus facadis	MALDI	$\lim_{n \to \infty} 1 \max(I_n)$	2 17
CA020	Enterococcus juecuns	IVIALDI	Modified PHI (amp)	2.17
C A 020	Bacterolaes	MALDI	alin 1mg/L)	2.40
CA029		MALDI	Madified DIII (amp)	2.40
C A 020		MALDI	alin 1mg/L)	2 10
CA050	sauvarius	WIALDI	Madified DIII (amp)	2.10
CA021	E	MALDI	violine BHI (amp+	2.24
CA051	Enterococcus faecalis	MALDI		2.34
CA022		MALDI	violine BHI (amp+	2.02
CA052	Enterococcus faecalis	MALDI		2.02
G A 022		MALDI	Modified BHI (amp+	0.41
CA033	Enterococcus faecalis	MALDI		2.41
G 4 02 4		MALDI	Modified BHI (amp+	2.24
CA034	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.24
G 4 025		MALDI	Modified BHI (amp+	1.00
CA035	Enterococcus avium	MALDI	clin, 1mg/L)	1.86
a Logi		MALDI	Modified BHI (amp+	1.05
CA036	Enterococcus faecalis	MALDI	clin, Img/L)	1.95
G + 63-			Modified BHI (amp+	
CA037	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.31

			Modified BHI (amp+	
CA038	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.41
			Modified BHI (amp+	
CA039	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.27
			Modified BHI (amp+	
CA040	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.35
	Bacteroides		Modified BHI (amp+	
CA041	uniformis	MALDI	clin, 1mg/L)	2.22
			Modified BHI (amp+	
CA043	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.05
			Modified BHI (amp+	
CA044	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.13
			Modified BHI (amp+	
CA045	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.15
			Modified BHI (amp+	
CA046	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.17
			Modified BHI (amp+	
CA047	Enterococcus faecalis	MALDI	clin, 1mg/L)	2.33
			Modified BHI (amp+	
CA048	Lactobacillus agilis	MALDI	clin, 1mg/L)	1.92



Supplementary figure 1: Relative abundances of Phyla for genistein treated and control

groups on days 7, 14 and 21



Supplementary figure 2: Relative abundances of genera for genistein treated and control

groups on days 7, 14 and 21





**A** and **B** are modified BHI agar plates supplemented with 1 mg/L ampicillin and streaked with bacteria. **C** and **D** are modified BHI plates supplemented with 1 mg/L clindamycin and streaked with bacteria.

## References

- 1. Rodriguez De Luna SL, Ramirez-Garza RE, Serna Saldivar SO. 2020. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. ScientificWorldJournal 2020:6792069.
- 2. Dias MC, Pinto D, Silva AMS. 2021. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 26.
- 3. Falcone Ferreyra ML RS, Casati P. . 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. . Front Plant Sci 3.
- 4. Shashank Kumar AKP. 2013. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal doi:https://doi.org/10.1155/2013/162750.
- 5. Harborne HBaJB. 1999. The Handbook of Natural Flavonoids. John Wiley and Sons 2.
- 6. Górniak I, Bartoszewski R, Króliczewski J. 2018. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews 18:241-272.
- 7. Cowan M. 1999. Plant products as antimicrobial agents. Clin Microbiol Rev 12:564-82.
- 8. Beck S SJ. 2016. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L. Phytochemistry 130:201-6.
- 9. Iwashina T. 2003. Flavonoid function and activity to plants and other organisms. Biol Sci Space 17:24-44.
- 10. Barnes S SJ, Coward L, Kirk M. . . 1996. Soy isoflavonoids and cancer prevention. Underlying biochemical and pharmacological issues. . Adv Exp Med Biol.
- 11. Adlercreutz H, Mazur W. 1997. Phyto-oestrogens and Western diseases. Ann Med 29:95-120.
- 12. Setchell KD CA. 1999. Dietary isoflavones: biological effects and relevance to human health. J Nutr.
- 13. TB. C. 2000. Soy phytoestrogens: what will be their role in postmenopausal hormone replacement therapy? Menopause.
- 14. Mércia Marques Jucá FMSCF, Jamily Cunha de Almeida, Dara da Silva Mesquita, Jéssica Rodrigues de Moraes Barriga, Kátia Cilene Ferreira Dias, Talita Matias Barbosa, Luna Costa Vasconcelos, Luzia Kalyne Almeida Moreira Leal, José Eduardo Ribeiro (Honório Júnior) & Silvânia Maria Mendes Vasconcelos. 2020. Flavonoids: biological activities and therapeutic potential. Natural Product Research 5:692-705.
- 15. Saini N, Gahlawat, S.K., Lather, V. 2017. Flavonoids: A Nutraceutical and Its Role as Anti-inflammatory and Anticancer Agent. In: Gahlawat, S, Salar, R, Siwach, P, Duhan, J, Kumar, S, Kaur, P (eds)Plant Biotechnology: Recent Advancements and Developments Springer, Singapore doi:<u>https://doi.org/10.1007/978-981-10-4732-9_13</u>

- 16. Fraga CG, Croft KD, Kennedy DO, Tomas-Barberan FA. 2019. The effects of polyphenols and other bioactives on human health. Food Funct 10:514-528.
- J. R. Lupton SAA, N. Chang, C. G. Fraga, J. Levy, M. Messina, D. P. Richardson, B. van Ommen, Y. Yang, J. C. Griffiths and J. Hathcock. 2014. Exploring the benefits and challenges of establishing a DRI-like process for bioac- tives. Eur J Nutr 53:1-9.
- 18. Hollman PC, Katan MB. 1999. Health effects and bioavailability of dietary flavonols. Free Radic Res 31 Suppl:S75-80.
- Lovro Ziberna SF, Jovana Čvorović, Federica Tramer, Sabina Passamonti. 2014. Bioavailability of Flavonoids: The Role of Cell Membrane Transporters. Polyphenols in Human Health and Disease doi:<u>https://doi.org/10.1016/B978-0-12-398456-2.00037-2.:489-511</u>.
- G. Kumar GSB, A.G. Murugesan & M. Rajasekara Pandian 2007. Effect of Helicteres isora. Bark Extracts on Brain Antioxidant Status and Lipid Peroxidation in Streptozotocin Diabetic Rats. Pharmaceutical Biology 45:753-759.
- 21. Kumar G SBG, Ganesan Murugesan A. 2008. Effect of Helicteres isora bark extracts on heart antioxidant status and lipid peroxidation in streptozotocin diabetic rats. J Appl Biomed 6:89-95.
- 22. Jeffrey B. Harborne CAW. 2000. Advances in flavonoid research since 1992. Phytochemistry 55.
- 23. Samec D, Karalija E, Sola I, Vujcic Bok V, Salopek-Sondi B. 2021. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants (Basel) 10.
- 24. Kühnau J. 1976. The flavonoids. A class of semi-essential food components: their role in human nutrition. World Review Nutrition Diet 24:117-191.
- 25. Seyed Mohammad Nabavi DŠ, Michał Tomczyk, Luigi Milella, Daniela Russo, Solomon Habtemariam, Ipek Suntar, Luca Rastrelli, Maria Daglia, Jianbo Xiao, Francesca Giampieri, Maurizio Battino, Eduardo Sobarzo-Sanchez, Seyed Fazel Nabavi, Bahman Yousefi, Philippe Jeandet, Suowen Xu, Samira Shirooie. 2020. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances 38.
- 26. Kazuki Saito KY-S, Ryo Nakabayashi, Yasuhiro Higashi, Mami Yamazaki, Takayuki Tohge, Alisdair R. Fernie. 2013. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiology and Biochemistry 72:21-34.
- 27. Dar Kb BA, Amin S et al. 2016. Efficacy of Aqueous and Methanolic Extracts of Rheum spiciformis against Pathogenic and Fungal Strains. Journal of Clinical and Diagnostic Research doi:DOI:10.7860/jcdr/2016/18036.8486.
- 28. Saleem M NM, Ali MS et al. 2010. Antimicrobial natural products: an update on future antibiotic drug candidates. Natural Product Reports doi:DOI:10.1039/b916096e.:238-254.
- 29. AS vM. 1994. The sulfonamide-diaminopuyrimidine story. J Vet Pharmacol Ther 4:309-16.

- 30. Emamat H, Ghalandari H, Tangestani H, Abdollahi A, Hekmatdoost A. 2020. Artificial sweeteners are related to non-alcoholic fatty liver disease: Microbiota dysbiosis as a novel potential mechanism. EXCLI J 19:620-626.
- 31. Croft AC DAA, Terzulli, SL. 2007. Update on the antibacterial resistance crisis. Med Sci Monit 6.
- 32. Appelbaum PC. 2012. 2012 and beyond: potential for the start of a second preantibiotic era? Journal of Antimicrobial Chemotherapy 67:2062-2068.
- 33. Weiner LM WA, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM. 2016. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect Control Hosp Epidemiol 37:1288-1301.
- 34. Wong E. 1975. The Isoflavonoids. In: Harborne, JB, Mabry, TJ, Mabry, H (eds) The Flavonoids Springer, Boston, MA doi:<u>https://doi.org/10.1007/978-1-4899-2909-9_14</u>.
- 35. Reinli K BG. 1996. Phytoestrogen content of foods--a compendium of literature values. Nutr Cancer.
- Sharma V. RKG. 2013. Isoflavonoids. In: Ramawat K, Mérillon JM (eds) Natural Products Springer, Berlin, Heidelberg doi:<u>https://doi.org/10.1007/978-3-642-22144-6_61</u>.
- 37. Swinny EER, K.G. 2005. Red Clover Trifolium pratense L. Phytoestrogens: UV-B Radiation Increases Isoflavone Yield, and
- Postharvest Drying Methods Change the Glucoside Conjugate Profiles. J Agric Food Chem 53:8273–8278.
- Liu YL, J.; Wang, Y.; Abozeid, A.; Tian, D.-M.; Zhang, X.-N.; Tang, Z.-H. 2017. The different resistance of two Astragalus PLANTS to UV-B Stress is tightly associated with the organ-specific isoflavone metabolism. Photochem Photobiol 94: 115–125.
- 39. Swigonska SA, R.; Król, A.; Mostek, A.; Badowiec, A.; Weidner, S. 2014. Influence of abiotic stress during soybean germination followed by recovery on the phenolic compounds of radicles and their antioxidant capacity. Acta Soc Bot Pol 83:209–218.
- 40. Bennetts HW UE, Shier FL. 1946. A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust Vet J.
- 41. Batterman TJ, Hart, N.K., Lamberton, J.A. and Braden, A.W.H. 1965. Metabolism of oestrogenic isoflavones in sheep. Nature 206.
- 42. Braden A.W.H. NKHaJAL. 1967. Oestrogenic activity and metabolism of certain isoflavones in sheep. Crop \& Pasture Science 18:335-348.
- 43. Schutt DA, Weston, R.H and Hogan, J.P. 1970. Quantitative aspects of phytooestrogen metabolism in sheep fed on subterranean clover (Trifolium subterranean cultivar clare) or red clover (Trifolium pratense). Journal of Agriculture Research 21.
- 44. Axelson M, Sjovall, J., Gustafsson, B. and Setchell, K.D.R. 1984. Soya—a dietary source of the non-steroidal oestrogen equol in man and animals. Journal of Endocrinology 102:49-56.

- 45. Setchell K.D.R. B, S.P., Kirk, D.N. and Axelson, M. 1984. Non-steroidal oestrogens of dietary origin:possible roles in hormone-dependent disease. American Journal of Clinical Nutrition 40.
- 46. Chen Z, Zheng, W., Cluster, L.J., Dai, Q., Shu, X.O., Jin, F. and Franke, A.A. 1999. Usual dietary consumption of soy foods and its correlation with the excretion rate of isoflavonoids in overnight urine samples among Chinese women in Shanghai. Nutr Cancer 33.
- 47. Kimira M, Arai, Y.. Shimoi, K. and Watanabe, S. 1998. Japanese intake of flavonoids and isoflavonoids from foods. Journal of Epidemiology 8:168-175.
- 48. Nagasawa H. 1980. Nutrition and breast cancer: A survey of experimental and epidemiological evidence. IRCS J Med Sci 8:317-325.
- 49. Agency FS. 2003. Phytoestrogens and Health, Committee on Toxicology of Chemicals in Food, Consumer Products and the Environment
- 50. Kurzer MS. 2003. Phytoestrogen Supplement Use by Women. American Society for Nutritional Sciences 133.
- 51. Fotsis TP, M., Adlercreutz, H. Fleischmann, G., Hase, T., Montesano, R. and Schweigerer, L. . 1993. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proceedings National Academic Science USA 90.
- 52. Potter SM. 1995. Overview of proposed mechanisms for the hypocholesteromic effect of soy. Journal of Nutrition 125.
- 53. Hargreaves DF, Potten, C.S., Hrding, C., shaw, L.E., Morton, M.S., Roberts, S.A., Howell, A. and Bundred, N.J. 1999. Two-week dietary soy supplementation has an estrogenic effect on normal premenopausal breast . Journal of Clinical Endocrinology Metabolism 4.
- 54. Willard STaF, L.S. 1998. Phytoestrogens have agonistic and combinatorial effects on estrogen-responsive gene expression in MCF-7 human breast cancer cells. . Endocrine 8.
- 55. Bingham SA, Atkinson, C, Liggins, J., Bluck, L. and Coward, A. 1998. Phytoestrogens : where are we now? British Journal of Nutrition 79.
- 56. Branca FaL, S. 2005. Health effects of phytoestrogens. Forum Nutrition 57.
- 57. Shweta Kaushik HS, Satish Agarwal, Ramesh Sharma, Tapas C. Nag, Anil K. Dwivedi, Anil K. Balapure. 2019. Genistein potentiates Centchroman induced antineoplasticity in breast cancer via PI3/Akt deactivation and ROS dependent induction Life Sciences 239.
- 58. Terahara N. 2015. Flavonoids in Foods: A review. Natural Product Communications doi:https://doi.org/10.1177/1934578X1501000334.
- 59. S. Jin QYZ, X.M. Kang, J.X. Wang, W.H. Zhao. 2010. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Annals of Oncology 21:263-268.
- 60. Ortega-Santos CP, Al-Nakkash L, Whisner CM. 2020. Exercise and/or Genistein Treatment Impact Gut Microbiota and Inflammation after 12 Weeks on a High-Fat, High-Sugar Diet in C57BL/6 Mice. Nutrients 12.
- Fan W, Zhang S, Wu Y, Lu T, Liu J, Cao X, Liu S, Yan L, Shi X, Liu G, Huang C, Song S. 2021. Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis. ACS Appl Mater Interfaces 13:40249-40266.

- 62. Kao YC, Sherman, M., Laughton, C.A. and Chen, S. 1998. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environmental Health Perspective 106:85-92.
- 63. Mäkelä SP, M., Lehtimaki, J., Kostian, M.L., Santti, R. and Vihko, R. 1995. Estrogen-specific 17 beta-hydroxysteroid oxireductase type 1 (E.C.1.1.1.62) as a possible target for the action of phytoestrogens. Proceedings of the Society for Experimental Biology and Medicine 208:51-59.
- 64. Mazur WaA, H. 1998. Naturally occurring oestrogens in food. Pure and Applied Chemistry 70:1759-1776.
- 65. Kim H, Peterson, T.G. and Barnes, S. 1998. Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor beta signaling pathways. *American Journal of Clinical Nutrition* 68.
- 66. Abdullahi UF, Igwenagu, E., Mu'azu, A., Aliyu, S., & Umar, M. I. 2016. Intrigues of biofilm: A perspective in veterinary medicine. Veterinary world 9:12-18.
- 67. Jamal M AW, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. 2018. Bacterial biofilm and associated infections. J Chin Med Assoc 81:7-11.
- 68. Kon KaR, M. 2016. Antibiotic resistance: mechanisms and new antimicrobial approaches. Academic Press, USA.
- 69. Lee J, Regmi SC, Kim JA, Cho MH, Yun H, Lee CS, Lee J. 2011. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect Immun 79:4819-4827.
- 70. Verdrengh M CL, Bergin P, Tarkowski A. 2004. Phytoestrogen genistein as an antistaphylococcal agent. Microbes Infect 6:86-92.
- 71. Ulanowska K TA, Konopa G, Wegrzyn G. 2006. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch Microbiol 184:271-8.
- 72. Sawamura S SI, Satoh E, Ishii T, Shimizu Y, Nishimura M, Umehara K. 2002. Isolation and determination of an antidote for botulinum neurotoxin from black tea extract. Nihon Yakurigaku Zasshi 120:116-118.
- 73. Lechner D GS, Bucar F. 2008. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J Antimicrob Chemother 62:345-8.
- 74. Wang SY SZ, Liu T, Gibbons S, Zhang WJ, Qing M. 2014. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother Res 28:1071-6.
- 75. Aboody MSA, Mickymaray S. 2020. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics (Basel) 9.
- 76. Cassetta A, Stojan J, Krastanova I, Kristan K, Brunskole Svegelj M, Lamba D, Lanisnik Rizner T. 2017. Structural basis for inhibition of 17beta-hydroxysteroid dehydrogenases by phytoestrogens: The case of fungal 17beta-HSDcl. J Steroid Biochem Mol Biol 171:80-93.
- 77. Lee JA CH. 2010. In Vitro Antifungal Activity of Equol against Candida albicans. Mycobiology 38:328-30.

- 78. Bitencourt TA, Komoto, T.T., Massaroto, B.G. et al. 2013. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum BMC Complement Altern Med 13.
- 79. Lalani S, Poh CL. 2020. Flavonoids as Antiviral Agents for Enterovirus A71 (EV-A71). Viruses 12.
- 80. Sauter D SS, Wang K, Zhang R, Sun B, Schwarz W. 2014. Genistein as antiviral drug against HIV ion channel. Planta Med 80:682-7.
- 81. Andres A, S.M. Donovan, T.B. Kuhlenschmidt, and M.S. Kuhlenschmidt. 2007. Isoflavones at concentrations present in soy infant formula inhibit rotavirus infection in vitro. J Nutr 137:2068–2073.
- 82. Lyu S-Y, J.-Y. Rhim, and W.-B. Park. 2005. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch Pharm Res 28:1293–1301.
- 83. Reinli KaB, G. 1996. Phytoestrogen content of foods-A compendium of literature values. Nutr Cancer 26:123-148.
- 84. U.S. Department of Agriculture ARS. 2002. USDA-Iowa State University Database on the Isoflavone Content of Foods, Release 1.3 2002. Nutrient Data Laboratory.
- Wakai K, Egami, I., Kato, K., Kawamura, T., Tamakoshi, A., Lin, Y., Nakayama, T., Wada, M. and Ohno, Y. 1999. Dietary intake and sources of isoflavones among Japanese. Nutrition and Cancer 33:139-145.
- 86. Song T, Barua, K., Buseman, G. and Murphy, P.A. 1998. soy isoflavone analysis: quality control and a new internal standard. American Journal of Clinical Nutrition 68.
- 87. Hoeck JA, Fehr, W.R., Murphy, P.A. and Welke, G.A. 2000. Influence of genotype and environmental on isoflavone contents of soybean. Crop Science 40:48-51.
- 88. Wang HJaM, P.A. 1994a. Isoflavone composition of American and Japanese Soybeans in Iowa: Effects of variety, crop year and location. Journal of Agricultural and Food Chemistry 42.
- 89. Wang HJaM, P.A. 1996. Mass balance study of Isoflavones during soybean processing. Journal of Agricultural and Food Chemistry 44.
- 90. Coward L, Smith, M., Kirk, M. and Barnes, S. 1998. Chemical modification of isoflavones in soyfoods during cooking and processing. American Journal of Clinical Nutrition 68.
- 91. Coward L, Barnes, N.C., Setchell, K.D.R. and Barnes, S. 1993a. Genistein and daidzein and their β-glucoside conjugates: antitumour isoflavones in soybean foods of American and Asian diets. Journal of Agricultural and Food Chemistry 41.
- 92. Wang HJaM, P.A. 1994b. Isoflavone Content in Commercial Soybean Foods. Journal of Agricultural and Food Chemistry 42.
- 93. Arai Y, Uehara, M., Sato, Y., Kimira, M., Eboshida, A., Adlercreutz, H. and Watanabe, S. 2000. Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. Journal of Epidemiology 10:127-135.

- 94. De Kleijn MJ, Van der Schouw, Y.T., Wilson, P.W., Adlercreutz, H., Mazur, W., Grobbee, D.E., Jacques, P.F. 2001. Intake of dietary phytoestrogens is low in postmenopausal women in the United States: the Framingham study(1-4). Journal of Nutrition 131.
- 95. Setchell KDR, Brown, N.M., Desai, P., Zimmet-Nechemias, L., Wolfe, B., Jakate A.S., Creutzinger, V. and Heubi, J.E. 2003a. Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by health women at physiologically typical dietary intakes. Journal of Nutrition 133.
- 96. Valsta LM, Kilkkinen, A., Mazur, W., Nurmi, T., Lampi, A.M., Ovaskainen, M.L., Korhonen, T., Adlercreutz, H. and Pietinen, P. 2003. Phyto-oestrogen database of foods and average intake in Finland. British Journal of Nutrition 89.
- 97. Van Erp-Baart MA, Brants, H.A., Kiely, M., Mulligan, A., Turrini, A., Sermoneta, C., Kilkkinen, A. and Valsta, L.M. 2003. Isoflavone intake in four different European countries: the VENUS approach. British Journal of Nutrition 89.
- 98. Bakker MI. 2004. Dietary intake of phytoestrogens. RIVM rapport 320103002:36p.
- 99. Manach C, Williamson, G., Morand, C., Scalbert, A. and Rémésy, C. 2005. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. American Journal of Clinical Nutrition 81.
- 100. Brown JE, Khodr, H.K., Hider, R.C. and Rice-Evans, C.A. 1998. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochemical Journal 330.
- 101. Joseph A. Rothwell AJDaMRAM. 2005. Experimental Determination of Octanol–Water Partition Coefficients of Quercetin and Related Flavonoids. Journal of Agricultural and Food Chemistry 53.
- 102. Gerard Bryan Gonzales GS, Charlotte Grootaert, Moises Zotti, Katleen Raes & John Van Camp. 2015. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metabolism Reviews 2:175-190.
- 103. Ciumărnean L, Mircea V. Milaciu, Octavia Runcan, Ștefan C. Vesa, Andreea L. Răchişan, Vasile Negrean, Mirela-Georgiana Perné, Valer I. Donca, Teodora-Gabriela Alexescu, Ioana Para, and Gabriela Dogaru. 2020. "The Effects of Flavonoids in Cardiovascular Diseases" Molecules 25.
- 104. M. V. Selma JCEaFAT-B. 2009. Interaction between phenolics and gut microbiota: role in human health, J Agric Food Chem 57:6485-6501.
- 105. Sfakianos J, L. Coward, M. Kirk, and S. Barnes. 1997. Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J Nutr 127:1260-1268.
- Lundh TJO. 1995. Metabolism of estrogenic isoflavones in domestic animals. . Soc Experimental Biol Med 208:33-39.
- 107. Brooke N Smith MLO, Muhammed Shameer Abdul Rasheed, Ryan N Dilger. 2020. Dietary soy isoflavones reduce pathogen-related mortality in growing pigs under porcine reproductive and respiratory syndrome viral challenge,. Journal of Animal Science 98.
- 108. Wu H, Yang J, Wang S, Zhang X, Hou J, Xu F, Wang Z, Xu L, Diao X. 2021. Effects of Soybean Isoflavone and Astragalus Polysaccharide Mixture on

Colostrum Components, Serum Antioxidant, Immune and Hormone Levels of Lactating Sows. Animals (Basel) 11.

- 109. Li YP, Jiang XR, Wei ZX, Cai L, Yin JD, Li XL. 2020. Effects of soybean isoflavones on the growth performance, intestinal morphology and antioxidative properties in pigs. Animal 14:2262-2270.
- 110. Xiao-xue Yuan BZ, Li-li Li, Chao-wu Xiao, Jue-xin Fan, Mei-mei Geng and Yulong Yin. 2012. Effects of soybean isoflavones on reproductive parameters in Chinese mini-pig boars. Journal of Animal Science and Biotechnology 3.
- 111. Fan JZ, B.; Li, L.; Xiao, C.; Oladele, O.A.; Jiang, G.; Ding, H.; Wang, S.; Xing, Y.; Xiao, D.; et al. 2015. Effect of soyabean isoflavones exposure on onset of puberty, serum hormone concentration and gene expression in hypothalamus, pituitary gland and ovary of female bama miniature pigs. Asian-Australas J Anim Sci 28:1573–1582.
- 112. Thomas LL, Tokach MD, Woodworth JC, Goodband RD, Dritz SS, DeRouchey JM. 2018. Effects of Added Soybean Isoflavones in Low Crude Protein Diets on Growth and Carcass Performance of Finishing Pigs from 260 to 320 lb. Kansas Agricultural Experiment Station Research Reports 4.
- 113. Goldsmith PD. 2008. Economics of Soybean Production, Marketing, and Utilization. In Soybeans-Chemistry, Production, Processing, and Utilization; Johnson, LA, White, PJ, Galloway, R, Eds; Elsevier Inc: Amsterdam, The Netherlands, doi:<u>https://doi.org/10.1016/B978-1-893997-64-6.50008-1.:117-150</u>.
- 114. Holman DB BB, Trachsel J, Allen HK. 2017. Meta-analysis to define a core microbiota in the swine gut. mSystems 2.
- 115. Quan J CG, Ye J, Yang M, Ding R, Wang X, et al. 2018. A global comparison of the

microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. . Sci Rep 8.

- 116. Yang G, Shi C, Zhang S, Liu Y, Li Z, Gao F, Cui Y, Yan Y, Li M. 2020. Characterization of the bacterial microbiota composition and evolution at different intestinal tract in wild pigs (Sus scrofa ussuricus). PeerJ 8:e9124.
- He M GJ, Wu J, Zhou Y, Fu H, Ke S, et al. 2019. Host gender and androgen levels regulate gut bacterial taxa in pigs leading to sex-biased serum metabolite profiles.
  Front Microbiol 10:1359.
- 118. Mach N, Berri M, Estelle J, Levenez F, Lemonnier G, Denis C, Leplat JJ, Chevaleyre C, Billon Y, Dore J, Rogel-Gaillard C, Lepage P. 2015. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep 7:554-69.
- 119. Wylensek D, Hitch TCA, Riedel T, Afrizal A, Kumar N, Wortmann E, Liu T, Devendran S, Lesker TR, Hernandez SB, Heine V, Buhl EM, P MDA, Cumbo F, Fischoder T, Wyschkon M, Looft T, Parreira VR, Abt B, Doden HL, Ly L, Alves JMP, Reichlin M, Flisikowski K, Suarez LN, Neumann AP, Suen G, de Wouters T, Rohn S, Lagkouvardos I, Allen-Vercoe E, Sproer C, Bunk B, Taverne-Thiele AJ, Giesbers M, Wells JM, Neuhaus K, Schnieke A, Cava F, Segata N, Elling L, Strowig T, Ridlon JM, Gulder TAM, Overmann J, Clavel T. 2020. A collection of

bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat Commun 11:6389.

- 120. Xiao L, Estelle J, Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q, Liang S, Pedersen AO, Kjeldsen NJ, Liu C, Maguin E, Dore J, Pons N, Le Chatelier E, Prifti E, Li J, Jia H, Liu X, Xu X, Ehrlich SD, Madsen L, Kristiansen K, Rogel-Gaillard C, Wang J. 2016. A reference gene catalogue of the pig gut microbiome. Nat Microbiol 1:16161.
- 121. Fenske GJ, Ghimire S, Antony L, Christopher-Hennings J, Scaria J. 2020. Integration of culture-dependent and independent methods provides a more coherent picture of the pig gut microbiome. FEMS Microbiol Ecol 96.
- 122. Alain BPE, Chae JP, Balolong MP, Bum Kim H, Kang DK. 2014. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J Gen Appl Microbiol 60:140-6.
- 123. Guangmin Zhao YX, Xiaoli Wang, Bing Dai, Xiaojun Zhang, Lingyan Ma, Hua Yang, and Wentao Lyu 2022. Exploring the Possible Link between the Gut Microbiome and Fat Deposition in Pigs. Oxidative Medicine and Cellular Longevity 2022:13.
- 124. K.D.R. S. 1998. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. American Journal of Clinical Nutrition 68.
- 125. Maddalena Rossi AA, Lucia Roncaglia, Alan Leonardi and Stefano Raimondi. 2010. Dietary Isoflavones and Intestinal Microbiota: Metabolism and Transfromation into Bioactive Compounds. Nova Science Publishers:137-161.
- 126. Mustonen EA, Jokela, T., Saastamoinen, I. et al. 2006. High serum S-equol content in red clover fed ewes: the classical endocrine disruptor is a single enantiomer. Environ Chem Lett doi:<u>https://doi.org/10.1007/s10311-005-0023-0</u>
- :154-159.
- 127. Wang XLS, K.H.; Hur, H.G.; Kim, S. Il 2005. Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated

bovine rumen anaerobic bacterium. . J Biotechnol 115:261-269.

- 128. Gao XM, P.; Zhu, X.; Chen, X.; Tang, S.; Wu, Y.; Miao, X.; Wang, X.; Wen, J.; Deng, Y. . 2020. Dual function of a novel bacterium, slackia
- sp. D-G6: Detoxifying deoxynivalenol and producing the Natural Estrogen Analogue, Equol. . Toxins 12.
- 129. Yu ZT, Yao W, Zhu WY. 2008. Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiol Lett 282:73-80.
- Soukup ST, Stoll DA, Danylec N, Schoepf A, Kulling SE, Huch M. 2021. Metabolism of Daidzein and Genistein by Gut Bacteria of the Class Coriobacteriia. Foods 10.
- 131. Matthies A, Clavel T, Gutschow M, Engst W, Haller D, Blaut M, Braune A. 2008. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol 74:4847-52.
- 132. Iqbal MF, Zhu WY. 2009. Characterization of newly isolated Lactobacillus delbrueckii-like strain MF-07 isolated from chicken and its role in isoflavone biotransformation. FEMS Microbiol Lett 291:180-7.

- 133. Hur HG, Lay JO, Jr., Beger RD, Freeman JP, Rafii F. 2000. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol 174:422-8.
- 134. Rinninella E CM, Raoul P, Lopetuso LR, Scaldaferri F, Pulcini G, Miggiano GA, Gasbarrini A, Mele MC. 2019. Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients 11.
- 135. Maddalena R, Alberto, A., Lucia R., Alan L. and Stefano, R. 2010. Dietary Isoflavones and Intestinal Microbiota: Metabolism and Trsnsformation into Bioactive compounds.
- 136. Marin L, Miguelez EM, Villar CJ, Lombo F. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215.
- 137. Marshall BL, Liu Y, Farrington MJ, Mao J, Helferich WG, Schenk AK, Bivens NJ, Sarma SJ, Lei Z, Sumner LW, Joshi T, Rosenfeld CS. 2019. Early genistein exposure of California mice and effects on the gut microbiota-brain axis. J Endocrinol 242:139-157.
- Ghimire S, Roy C, Wongkuna S, Antony L, Maji A, Keena MC, Foley A, Scaria J.
  2020. Identification of Clostridioides difficile-Inhibiting Gut Commensals Using Culturomics, Phenotyping, and Combinatorial Community Assembly. mSystems 5.
- 139. Auchtung JM RC, Farrell K, Britton RA. . 2016. MiniBioReactor Arrays (MBRAs) as a Tool for Studying C. difficile Physiology in the Presence of a Complex Community.
- 140. Ghimire S, Wongkuna S, Sankaranarayanan R, Ryan EP, Bhat GJ, Scaria J. 2020. Rice Bran and Quercetin Produce a Positive Synergistic Effect on Human Gut Microbiota, Elevate the Level of Propionate, and Reduce the Population of Enterobacteriaceae family when Determined using a Bioreactor Model. doi:10.1101/2020.02.13.947515.
- 141. Bolyen E RJ, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37:852-857.
- 142. Chong J, Liu, P., Zhou, G., and Xia. J. 2020. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols 15:799-821.
- 143. Bokulich NA KB, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. . 2018. Optimizing taxonomic classification of marker- gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6.
- 144. Quast C PE, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
- 145. Sonnenburg ED, Sonnenburg JL. 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 20:779-786.
- 146. Chang YJ, Pukall R, Saunders E, Lapidus A, Copeland A, Nolan M, Glavina Del Rio T, Lucas S, Chen F, Tice H, Cheng JF, Han C, Detter JC, Bruce D, Goodwin L, Pitluck S, Mikhailova N, Liolios K, Pati A, Ivanova N, Mavromatis K, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Brettin T, Rohde M, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. 2010. Complete genome sequence of Acidaminococcus fermentans type strain (VR4). Stand Genomic Sci 3:1-14.
- 147. Yu ZTY, W.; Zhu, W.Y. 2008. Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiol Lett 282:73–80.
- 148. Rizzatti G, Lopetuso, L. R., Gibiino, G., Binda, C., & Gasbarrini, A. 2017. Proteobacteria: A Common Factor in Human Diseases. BioMed research international doi: <u>https://doi.org/10.1155/2017/9351507</u>.
- 149. Kumar K, Chaudhary, L. C., Agarwal, N., and Kamra, D. N. 2016. Effect of supplementing Streptococcus gallolyticus strain TDGB 406 on rumen fermentation and microbial profile of goats fed on oak leaves. Anim Nutr Feed Technol 16:495.
- 150. Parada Venegas Daniela DIFMK, Landskron Glauben, González María Julieta, Quera Rodrigo, Dijkstra Gerard, Harmsen Hermie J. M., Faber Klaas Nico, Hermoso Marcela A. 2019. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases Frontiers in Immunology 10.
- 151. Louis P FH. 2009. Diversity, metabolism and microbial ecology of butyrateproducing bacteria from the human large intestine. FEMS Microbiol Lett 294:1-8.
- 152. Liu Hea. 2018. Butyrate: A Double-Edged Sword for Health?. dvances in nutrition (Bethesda, Md) 9:21-29.
- 153. Fu X, et al. 2018. Nondigestible Carbohydrates, Butyrate, and Butyrate-Producing Bacteria. Critical Reviews in Food Science and Nutrition 59.
- 154. Seo S-O, et al. 2016. Characterization of A Clostridium Beijerinckii spo0Amutant and Its Application for Butyl Butyrate Production. Biotechnology and Bioengineering 114:106-112.
- 155. Matthies A, Blaut M, Braune A. 2009. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Appl Environ Microbiol 75:1740-4.
- 156. Rhouma M, Fairbrother, J.M., Beaudry, F. et al. 2017. Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Vet Scand 59.
- 157. Yoon SH, Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613-1617.
- 158. Schoefer Lilian BA, l Blaut Michae. 2001. A fluorescence quenching test for the detection of flavonoid transformation. FEMS Microbiol Letters.

- 159. Falklow CALaS. 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. ProcNatlAcad Sci.
- Ljungh A WT. 2006. Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol 7:73-89.
- 161. Li Miao WY, Cui Hongyu, Li Yongfeng, Sun Yuan, Qiu Hua-Ji. 2020. Characterization of Lactic Acid Bacteria Isolated From the Gastrointestinal Tract of a Wild Boar as Potential Probiotics Frontiers in Veterinary Science 7.
- 162. Sirichokchatchawan W, Pupa P, Praechansri P, Am-In N, Tanasupawat S, Sonthayanon P, Prapasarakul N. 2018. Autochthonous lactic acid bacteria isolated from pig faeces in Thailand show probiotic properties and antibacterial activity against enteric pathogenic bacteria. Microb Pathog 119:208-215.
- 163. M. K. Salminen HR, S. Tynkkynen, T. Poussa, M. Saxelin, V. Valtonen, and A. Ja¨rvinen. 2006. Lactobacillus Bacteremia, Species Identification, and Antimicrobial Susceptibility of 85 Blood Isolates. Clinical Infectious Diseases 42:35-44.
- 164. Lee JH, Cho, H. K., Kim, K. H., Kim, C. H., Kim, D. S., Kim, K. N., Cha, S. H., Oh, S. H., Hur, J. K., Kang, J. H., Kim, J. H., Kim, Y. K., Hong, Y. J., Chung, E. H., Park, S. E., Choi, Y. Y., Kim, J. S., Kim, H. M., Choi, E. H., & Lee, H. J. . 2011. Etiology of invasive bacterial infections in immunocompetent children in Korea (1996-2005): a retrospective multicenter study. Journal of Korean medical science 26:174–183.