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ABSTRACT 

METHODS FOR IMPROVING POTASSIUM FERTILIZER RECOMMENDATIONS 

FOR CORN IN SOUTH DAKOTA 

ANDREW J. AHLERSMEYER 

2023 

 Corn (Zea mays L.) is a vital commodity in South Dakota’s agricultural sector. 

Optimal corn production occurs when there are sufficient mineral nutrients in the soil, 

especially potassium (K). Applications of K fertilizer are used when soil test K (STK) 

levels are deficient. Therefore, producers need reliable, thoroughly tested fertilizer 

recommendations to make profitable decisions and maintain environmental stewardship. 

South Dakota K fertilizer recommendations have not been updated in nearly 20 years. 

Simultaneously, changes in corn genetics, management practices, and climate patterns 

suggest that the critical soil test value (CSTV) for STK may have shifted in that same 

time frame. Furthermore, the addition of other variables, notably clay mineralogy, could 

improve the accuracy of K fertilizer recommendations. Therefore, the objectives of this 

study were to 1) evaluate relationships among clay mineralogy, STK, and other common 

soil test parameters, and 2) use those relationships to improve K fertilizer 

recommendations for South Dakota. From 2019 to 2022, soil samples were collected 

from 43 locations, and field trials were conducted at 35 locations throughout central and 

eastern South Dakota. A correlation matrix and nonlinear regressions demonstrated 

significant relationships between STK and the smectite:illite ratio. Linear regressions 

between STK and several other soil parameters were influenced by smectite:illite ratio 

groupings: (illitic [<1], smectitic [>1 but <4.5], and highly smectitic [>4.5]). Soil test K 

and several other soil test variables (water-soluble K, total K, soil organic matter [SOM], 

and clay content) were all positively related regardless of clay mineralogy, but STK was 
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predicted to be lower by all soil test variables in highly smectitic soils as opposed to illitic 

and smectitic soils. Moreover, STK decreased as pH increased in highly smectitic soils. 

Random forest modeling identified STK as the most important variable for predicting the 

smectite:illite ratio. Therefore, the interactions between STK, the smectite:illite ratio, and 

other soil parameters should be further investigated for implementation in K fertilizer 

recommendations. Using soil test correlation techniques, seven nonlinear regression 

models displayed a wide range of CSTVs (111-196 mg kg-1 STK). Using model 

averaging, the optimal CSTV for improved corn yield response predictions was 144 mg 

kg-1, which was lower than the current South Dakota CSTV of 160 mg kg-1. While clay 

mineralogy variables were not identified as important predictors of yield responsiveness 

using random forest modeling, CEC, SOM, and permanganate oxidizable carbon 

(POXC), along with STK (CSTV = 144 mg kg-1) were important. Using these variables 

in a decision tree improved prediction accuracy from 62% to 72% compared to using 

STK alone (CSTV = 160 mg kg-1). Overall, these results demonstrated that there were 

significant relationships among STK, clay mineralogy, and other soil parameters, but clay 

mineralogy could not confidently be incorporated into K fertilizer recommendations. 

Rather, lowering the CSTV from 160 to 144 mg kg-1 STK and inclusion of CEC, SOM, 

and POXC resulted in improved accuracy of corn yield responsiveness to K fertilization. 

These results will help corn producers in South Dakota and abroad to improve farm 

profitability and reduce misapplications of fertilizer.    
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CHAPTER 1. REVIEW OF LITERATURE 

1.1. CORN PRODUCTION IN SOUTH DAKOTA 

Corn (Zea mays L.) is a very important commodity for South Dakota’s 

agricultural sector. In 2017, South Dakota produced more than 9.5 million tonnes of corn, 

higher than the production of soybeans [(Glycine max L.) Merr.] and all classes of wheat 

(Triticum aestivum L.) combined (USDA-NASS, 2022). South Dakota ranked 6th in the 

United States for total corn sales at approximately 2.38 billion USD, trailing behind Iowa, 

Illinois, Nebraska, Minnesota, and Indiana (USDA-NASS, 2022). Corn grown for both 

grain and silage is especially dominant in eastern South Dakota cropping districts 

(Figures 1.1, 1.2, and 1.3). Moreover, the construction of ethanol plants in recent years 

has incentivized producers to devote even more hectares to corn production (Olson et al., 

2007), which has subsequently led to increased production in some central South Dakota 

counties as well. In addition to ethanol production, other factors including improved corn 

hybrids, climate change, reduced tillage practices, and changes in farm management 

structure have led to increased corn production in South Dakota (O’Brien et al., 2020).  

Corn production within South Dakota is principally influenced by the climate and 

geography of the state. The Missouri River naturally divides the state in half, separating 

the semi-arid, rolling landscape of the west from the humid-subcontinental, glacial till 

plain of the east (Westin et al., 1951). Average annual precipitation has been observed to 

decrease from east to west across the state (Ostrem et al., 2016). Average annual 

precipitation ranges from 559-762 mm in eastern South Dakota, 457-610 mm in central 

South Dakota, and less than 508 mm in much of western South Dakota (PRISM Climate 

Group, 2014) (Figure 1.4). Water, by means of rainfall or irrigation, is necessary for corn 

growth and development. Corn water usage is variable and can be affected by multiple 
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factors, including climate, relative maturity (RM) of the corn hybrid, soil fertility, water 

availability, and the interaction between those factors (Kranz et al., 2008). In South 

Dakota, corn requires approximately 6.9 mm of precipitation or irrigation per day from 

V8 to R4, peaking near 8.4 mm day-1 around VT (De Boer et al., 1989). Furthermore, in 

addition to being required for corn growth, water has also been observed to have a 

synergistic relationship with corn yield and nitrogen (N) use efficiency (Kim et al., 2013).  

While far eastern South Dakota generally has enough seasonal rainfall for optimal 

dryland corn production, drought conditions can be detrimental to corn yields. This is 

especially true for central South Dakota. Therefore, to combat this, some producers 

utilize center pivot irrigation, which was dramatically adopted since the 1970’s (Taylor, 

1983). Recent irrigation developments have positively impacted the agricultural economy 

of central South Dakota, especially due to the high quality water supply of the Missouri 

River (De Boer et al., 1989). Conversely, the area west of the Missouri River is less ideal 

for irrigated corn production due to lower precipitation and groundwater quality issues 

(dissolved solids, total salt content, etc.) (Taylor, 1983). Overall, these geological and 

climatic factors contribute to corn production being concentrated primarily east of the 

Missouri River.  

1.2. POTASSIUM 

1.2.1. INFLUENCE OF POTASSIUM ON CORN GROWTH AND DEVELOPMENT 

In South Dakota, highly productive corn requires large amounts of water and 

mineral nutrients, especially N, phosphorus (P), and potassium (K). Potassium is 

considered a macronutrient due to the high amount required by corn for optimal growth. 

Potassium plays a critical role in stomatal regulation, photosynthetic activity, water 
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uptake, enzyme activation, and root development (Johnson et al., 2022; Sustr et al., 

2019). It has also contributed to the survival of plants exposed to various biotic and 

abiotic factors, such as diseases, pests, drought, salinity, cold, frost, and waterlogging 

(Wang et al., 2013).  

Potassium is both taken up by corn plants during the growing season and removed 

with the grain at harvest, while K left in the stover is recycled into the soil. A recent study 

in Illinois found total nutrient uptake to be approximately 202 kg K2O ha-1, while 

approximately 66 kg K2O ha-1 were removed with grain (Bender et al., 2013). Potassium 

uptake by corn occurs throughout the growing season, but it increases rapidly from V10 

to VT (Bender et al, 2013). Therefore, it is especially critical for corn to have adequate K 

during that period, as K deficiencies can negatively impact grain fill and ultimately yield.  

1.2.2. CONVENTIONAL SOIL POTASSIUM FORMS 

Although K is a generally abundant element in the soil, only a small fraction (1-

10 mg kg-1) is readily available for plant uptake (commonly referred to as water-soluble 

K or solution K [KSol]) (Tisdale et al., 1993; Sharpley, 1989). This form is part of a 

conventional four soil-pool model that also includes exchangeable K (KEx), temporarily 

unexchangeable or fixed K (KFixed), and mineral K (KMin) to describe K fluxes and 

reversable transfers in soil pools (Askegaard & Eriksen, 2006; Askegaard et al., 2003; 

Sparks, 1987; Sparks & Huang, 1985). In this conventional model, fluxes are directed to 

and from plant K and KSol, between KSol and KEx, and between KEx and KFixed. Potassium 

fluxes also go from KMin to KFixed, but not from KFixed to KMin (Brouder et al., 2021).  

Exchangeable K, as the name suggests, is exchangeable with other cations in the 

soil. It is electrostatically bound as an outer-sphere complex to the surface of clay 
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minerals and humic substances, while simultaneously held by different bond strengths at 

adsorption sites on clay minerals (Rao & Srinivas, 2017; Sparks, 2000).  

Fixed K, unlike KMin, is not bound within the crystal structures of soil mineral 

particles, but rather it is held between adjacent tetrahedral layers of dioctahedral and 

trioctahedral micas, vermiculites, and intergrade clay minerals (Sparks, 2000; Sparks, 

1987; Martin & Sparks, 1985; Sparks & Huang, 1985). When binding surfaces between 

K and clay surfaces are greater than the hydration forces between individual potassium 

ions (K+), K fixation occurs (Sparks, 2000). Potassium fixation causes a partial collapse 

of the crystal structures, trapping interlayer-K and making K release a slow, diffusion-

controlled process (Sparks, 2000; Sparks, 1987).  

Mineral K, the largest fraction of K found in soils, is predominately found in K-

bearing minerals including feldspar and mica. These minerals are highly resistant to 

weathering and can hold onto K very tightly (Tisdale et al., 1993). Because of this, it has 

been previously thought that KMin is of little significance for plants during the growing 

season. However, there is a slow but continuous transfer of KMin to KFixed and KEx, 

leading to new realizations that KFixed may be more available than previously assumed 

(Wang et al., 2013; Askegaard et al., 2004; Tisdale et al., 1993). 

1.2.3. THE POTASSIUM CYCLE 

The aforementioned conventional four soil-pool model and accompanying 

terminology, although simple and effective, have been known to create confusion in 

understanding the K cycle and its use for fertilizer recommendations (Brouder et al., 

2021). This inconsistency creates challenges in both communication among soil scientists 

and achieving a recommendation that is understandable and credible to the producer 
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(Brouder et al., 2021). Although more complex, a modified six soil-pool K cycle model is 

necessary to convey the explicit sources and sinks of K throughout the growing season 

(Brouder et al., 2021).  

In this model (Figure 1.5), KEx, KFixed, and KMin are replaced with five unique soil 

K pools. These pools include surface adsorbed potassium (KSurf), interlayer potassium in 

secondary silicates (KInter), interlayer potassium in micas and partially weathered micas 

(KMica), structural potassium in feldspars (KFeld), and neoformed potassium minerals 

(KNeo) (Brouder et al., 2021). Bell, Ransom, et al. (2021) define KSurf as the quantity of K 

associated with negatively charged sites on soil organic matter (SOM), planar surfaces of 

phyllosilicate minerals, and surfaces of iron (Fe) and aluminum (Al) oxides. Secondary 

layer silicates, including phyllosilicate minerals (e.g. smectite and vermiculite), are 

weathering products of primary minerals (Bell, Ransom, et al., 2021). Because these 

minerals contain hydrated cations in the interlayer, water can facilitate diffusive 

movement in and out of the interlayer, making cation exchange possible (Bell, Ransom, 

et al., 2021). Both KSurf and KInter have bidirectional fluxes between each other, but only 

KSurf has bidirectional fluxes between it and KSol. Potassium fluxes can go from KInter to 

KSol but not vice versa.  

While the conventional four soil-pool model uses KMin to describe very slowly 

available K from primary mineral weathering, the six soil-pool model from Brouder et al. 

(2021) partitions pools into KMica and KFeld, a necessary distinction. The K found in KMica 

is bound between layers of tetrahedral and octahedral sheets of 2:1 layer silicates (e.g. 

micas), in which the layers are net negatively charged and bound by K+ ions (Bell, 

Ranom, et al., 2021). Feldspars (KFeld) represent the dominant form of structural K found 
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in many soils (Bell, Ransom, et al., 2021; Sparks, 1987). While feldspars and micas are 

both primary minerals that constitute KMin in the conventional four soil-pool model, it is 

important to partition them based on their fluxes. For KMica, there is a bidirectional flux 

with KSol, as well as individual unidirectional fluxes to both KSurf and KInter. For KFeld, 

there is only a unidirectional flux to KSol, and there are no fluxes between it and KMica. 

Although there is only one flux from KFeld to KSol, there is evidence that a significant 

contribution of bioavailable K to plants is from KFeld, possibly originating from sand-

sized fractions (Bell, Ransom, et al., 2021; Rehm & Sorensen, 1985).  

An additional K soil-pool included in the model from Brouder et al. (2021) is 

KNeo, which are newly formed minerals created by the reaction of KSol with other ions 

present in the soil solution. Although rare, these neoformed minerals may form under 

certain conditions. For example, when monocalcium phosphate was applied with KCl on 

an acidic soil, it was hypothesized that added K displaced Al3+ on the exchange sites, 

leading to precipitation of a noncrystalline analog of potassium taranakite (Du et al., 

2006). This suggests that K may not need to be added to the soil, but simply present in 

KSol or easily displaced by the addition of fertilizer (Bell, Ransom, et al., 2021; Du et al., 

2006). Under these presumptions, the fluxes between KNeo and KSol are bidirectional.  

 While soil K exists as six unique pools in the K cycle, K is also present in corn 

plant biomass (KPlant), both above and below ground. This plant-pool has a bidirectional 

flux with KSol, as KSol is taken up by corn plants, and K in corn stover will eventually 

decompose back into KSol. In addition to these K pools, there are both gains and losses to 

the overall K cycle. Gains of K predominantly include applied fertilizers, both organic 

and inorganic, but also include K found in precipitates, irrigation water, seeds, eroded 
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soil, and wind/water transported debris (Brouder et al., 2021). Potassium fluxes from 

these additions move directly to KPlant and KSol. Meanwhile, losses of K can be traced 

back to both KPlant and KSol.  

When corn grain is harvested, K is removed in the grain, while the K remains in 

unharvested stover. From the stover, K can move back into KSol via leaching from dead 

corn tissue, but it can also be lost if stover is moved off the field. Off-site movement of 

corn stover can occur to some extent with wind or rain, but it mainly occurs with human-

induced activities such as burning, livestock grazing, or baling. Baling or grazing corn 

stover in South Dakota is an economical means of providing roughage to beef cattle and 

bedding for other livestock (Guthmiller, 2002). A 2010 survey found that >20% of corn 

residue was utilized in South Dakota, with livestock grazing of corn stover occurring on 

361,000 hectares of land (Schmer et al., 2017). When removing corn stover from the 

field, a significant amount of K is then lost. For example, machine harvesting corn stover 

from 400 sites in central Iowa resulted in a removal rate of approximately 35 kg K ha-1 

(Karlen et al., 2015).  

Losses of K from the soil are present above ground (erosion and runoff) and 

below ground (leaching). When wind or water erode K-bearing soil particles, K is lost 

from the cycle, and thus cannot be taken up by plants. Although losses of K via erosion 

and runoff have not been studied to the extent of nutrient losses via leaching, it can be a 

major mechanism for nutrient loss (Goulding et al., 2021; Meena et al., 2017). 

Furthermore, smaller sized soil particles are much more susceptible to erosion, especially 

via wind, and those particles can contain a significant portion of the total K in the soil 

(Goulding et al., 2021; Yan et al., 2018).  
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Leaching of K occurs when it is displaced below the rooting depth in the soil, and 

thus cannot be utilized by plants. Historically, leached K has not been a major concern, as 

K is not directly involved in water quality issues such as eutrophication. However, 

leaching of K reduces the amount of plant-available K in the soil solution, which can 

subsequently lead to nutrient deficiencies. In a grassland setting, rainfall was the factor 

that most strongly influenced the amount and soil pathway of K leaching (Alfaro et al., 

2004). Irrigating crops with water of poor quality has also been noted to increase K 

leaching activity (Jalali et al., 2008).  

1.2.4. POTASSIUM UPTAKE AND STATUS IN CORN 

Potassium is taken up by corn plants in the K+ ion form. Movement of K+ in the 

soil is predominantly facilitated by diffusion along a soil concentration gradient (Barber, 

1985; Barber et al., 1963). These diffusive activities are relatively slow, as K+ ions move 

with water to plant roots. Because K moves through the soil predominately via diffusion, 

soil moisture is a major factor for K availability – availability of K decreases when soil 

water content decreases (Hu & Schmidhalter, 2005; Zeng & Brown, 2000). Therefore, 

drought conditions that result in minimal soil moisture will restrict K movement in the 

soil, making it less available for plant uptake. Furthermore, interlayer K in 2:1 structured 

clay minerals such as smectite and vermiculite can become temporarily fixed when 

minerals become dehydrated, causing the layers to collapse and trap K+ (Zeng & Brown 

2000; Sparks & Huang, 1985). Potassium plays a major role in leaf water content and 

stomatal regulation. Therefore, rainfall or irrigation are critical to ensure that K is used 

efficiently by corn plants. During drought conditions, when K uptake via diffusion and 

mass flow is reduced, corn is more susceptible to K deficiencies. Furthermore, reduced K 
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content in corn results in the inability to efficiently regulate water usage and stomatal 

activity.  

Uptake of K in corn predominately occurs during the vegetative growth stages, 

with a majority of K concentrated in the vegetative plant portions relative to corn grain 

(Oltmans & Mallarino, 2015). Potassium is highly mobile and readily distributed within 

the plant during the lifecycle. Therefore, the most active tissues in the corn plant will 

have the highest concentration of K, leading to K deficiency symptoms appearing on the 

lower foliage of corn plants. The most common visual symptom of K deficiency in corn 

is chlorosis, followed by necrotic tissue on the outer margins of lower leaves. Corn 

deficient in K has been documented to have poorly developed roots, slow growth, low 

resistance to disease, delayed maturity, small seed production, and lower yields (Rawat et 

al., 2016).  

1.2.5. TESTING FOR SOIL POTASSIUM 

 Collection of soil samples is critical to assess plant-available K and construct an 

accurate K fertilizer recommendation. While soil sampling for K is primarily done at the 

0-15 or 0-30 cm depths, sampling as far down as 120 cm to measure subsoil K is variable 

yet important for measuring total crop uptake (Obrycki et al., 2018). Furthermore, tillage 

systems have been observed to influence stratification of K in the upper layers of the soil, 

which is important to consider when sampling (Deubel et al., 2011; Holanda et al., 1998).  

 Upon collection from the field, soil samples should be properly managed and 

tested to accurately reflect plant-available K. The ammonium (NH4
+) ion has a similar 

size, charge, and hydration energy as K+, and therefore remains the preferred cation to 

replace KSurf (Bell, Thompson et al., 2021). One of the most commonly used ammonium-
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based extractants in the North Central U.S. is ammonium acetate (NH4CH3CO2) 

(Barbagelata & Mallarino, 2013; Burt & Soil Survey Staff, 2014; Haby et al., 1990; 

Warncke & Brown, 1998), although ammonium chloride (NH4Cl) and ammonium 

bicarbonate (NH4HCO3) are also available (Bell, Thompson et al., 2021). Regardless of 

the ammonium-based extractant used, the traditional method is to extract K in oven- or 

air-dried soil. However, some studies suggest that using dried soil may limit the amount 

the amount of K extracted depending on clay mineralogy, as KInter can become fixed 

when the soil is dry. Although extracting K from field-moist soil in Iowa with ammonium 

acetate predicted crop response to K fertilization better than oven-dried soil (Barbagelata 

& Mallarino, 2012), the opposite was observed to be true in North Dakota (Breker et al., 

2019).  

 In addition to ammonium-based soil extractants, other common extractants that 

are commercially available including the Mehlich 3 extract (Mehlich, 1984), sodium 

tetraphenylboron (NaBPh4) (Smith & Scott, 1966), and the Haney H3A-1 extract (Haney 

et al., 2010). Many of these extractants correlate well with each other. For example, in 

Louisiana, Mehlich 3 extractable cations, including K, were highly correlated with those 

extracted by ammonium acetate (Wang et al., 2004). Similar relationships between 

ammonium acetate and Mehlich 3 were also observed in North Dakota (Schmisek et al., 

1998) and Uruguay (Ferrando et al., 2020). In Idaho, Mehlich 3 and Haney H3A-1 

extractants were generally well correlated in primarily alkaline soils (Rogers et al., 2019).  

While these extractants are generally considered to be well correlated with each 

other, variations in K extraction have also been observed depending on various 

physiochemical parameters. For example, in Ohio, Mehlich 3 and ammonium acetate 
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extractants removed similar quantities of K from a silt loam, but significantly different 

quantities from a silty clay soil (Eckert & Watson, 1996). Furthermore, a study 

comparing plant-available K extraction using ammonium acetate and sodium 

tetraphenylboron on various Midwestern soils found that ammonium acetate extractable 

K varied widely among soils depending on illitic K and clay content, but sodium 

tetraphenylboron extractable K was uniform and a superior extraction method (Cox et al., 

1999). Therefore, as research regarding soil parameters and extraction methods 

continues, it is important to match the appropriate extraction procedure with the specific 

properties of the soil sample.  

1.2.6. DEVELOPING POTASSIUM FERTILIZER RECOMMENDATIONS 

Accurate fertilizer recommendations are essential for proper nutrient management 

and sound agronomic practices. Research regarding optimum application rates and 

timings for K have been ongoing for decades, with efforts to continuously refine and 

recalibrate recommendations (Boring et al., 2018). Traditional K fertilizer 

recommendations were constructed on the basis of either a “build and maintain” or 

“sufficiency” approach, where the former attempts to “feed the soil” while the latter 

attempts to “feed the crop” (Zhang et al., 2021). In the “build and maintain” philosophy, 

K fertilizer is applied to build the soil test K (STK) level to critical soil test level (CSTV), 

the point at which no additional corn yield increase is expected, and then maintaining 

STK levels by applying K fertilizer to match the expected crop removal rate (Zhang et 

al., 2021). The more conservative “sufficiency” approach is simply to apply K fertilizer 

to meet crop nutrient demands, not building STK (Zhang et al., 2021).  
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The basis of K fertilizer research involves two main procedures: first, to correlate 

STK with crop yield (soil test correlation), and second, to establish a relationship 

between rates of K fertilizer to maximize crop yield and STK levels (soil test calibration) 

(Dahnke & Olson, 1990). This type of soil fertility research utilizes various linear and 

non-linear regression approaches to relate extractable soil nutrients with crop yield 

response (Dhakal & Lange, 2021). Soil test correlation and calibration procedures are an 

integral part of K fertilizer recommendation development. 

There is a need to standardize soil fertility research so that correlation and 

calibration data is not bound by state boundaries. Singh et al. (2019) discovered that K 

fertilizer rate verification research revealed the need for region-specific optimization of 

recommendations to maximize economic yields and maintain sufficient STK levels, since 

soils within the state of Tennessee differ considerably in yield potential, soil type, and 

nutrient supplying capacity. Because soil properties do not suddenly change between 

state borders, K fertilizer recommendation research can benefit from the inclusion of data 

points from surrounding crop production regions, even outside of the scope of the 

institute performing the research. To aid in broad, multi-state collaborations, soil 

scientists are developing databases to assist in querying regional, site-specific soil data 

(Lyons et al., 2021). Uniformity in soil sampling and testing procedures, methodology, 

and data curation can streamline K fertilizer recommendation development processes and 

improve accuracy.  

 While applications of K fertilizer are necessary to replenish plant-available K and 

improve corn yields, more research is necessary to analyze various soil parameter’s 

influence on the availability of K in the soil to plants. Research in Ohio found that despite 
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Figure 2.7. Soil test K (STK) as a function of pH for three different groups based on the 

smectite:illite ratio: illitic (<1), smectitic (>1 but <4.5), and highly smectitic (>4.5). All 

regressions were significant (α = 0.10).  
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Figure 2.8. Soil test K (STK) as a function of cation exchange capacity (CEC) for three 

different groups based on the smectite:illite ratio: illitic (<1), smectitic (>1 but <4.5), and 

highly smectitic (>4.5). Only illitic and smectitic regressions were significant (α = 0.10).  

  



76 

Figure 2.9. Soil test K (STK) as a function of soil organic matter (SOM) for three 

different groups based on the smectite:illite ratio: illitic (<1), smectitic (>1 but <4.5), and 

highly smectitic (>4.5). All regressions were significant (α = 0.10).  
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Figure 2.10. Soil test K (STK) as a function of clay content for three different groups 

based on the smectite:illite ratio: illitic (<1), smectitic (>1 but <4.5), and highly smectitic 

(>4.5). All regressions were significant (α = 0.10).  
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CHAPTER 3. POTASSIUM FERTILIZER 

RECOMMENDATION IMPROVEMENT VIA REGRESSION 

MODELING AND A MACHINE LEARNING ALGORITHM 

3.1. ABSTRACT 

 Accurately calibrated potassium (K) fertilizer recommendations are crucial to 

optimize corn (Zea mays L.) production and minimize potential negative environmental 

effects from over-fertilization. Including other soil test variables has the potential to 

improve K recommendation accuracy. Therefore, the objectives of this study were to 1) 

compare different nonlinear regression models that estimate the critical soil test value 

(CSTV) and their associated accuracy in predicting K fertilization responsiveness, and 2) 

determine the effects of including clay mineralogy and other soil variables in predicting 

corn yield response to K fertilization. From 2019 to 2022, 35 field trials were conducted 

throughout central and eastern South Dakota. Soil samples were collected to measure soil 

test potassium (STK), along with other chemical, physical, biological, and mineral soil 

properties. Seven regression models displayed a wide range of CSTV values (111-196 

mg kg-1), but all had similar Akaike information criterion (AIC) values, and five of the 

seven similarly predicted K responsiveness (63-64% accurate). Model averaging 

determined that the optimal CSTV was approximately 144 mg kg-1, 16 mg kg-1 less than 

the current CSTV. Random forest modeling identified cation exchange capacity (CEC), 

soil organic matter (SOM), and permanganate-oxidizable carbon (POXC) as important to 

predict yield responses to K. A decision tree using STK, CEC, SOM, and POXC 

improved yield response prediction accuracy from 62-72% compared to using STK alone. 

Therefore, South Dakota K fertilizer recommendations can be improved using a lower 

CSTV (144 mg kg-1), plus consideration of CEC, SOM, and POXC.   
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3.2. INTRODUCTION 

Optimal corn (Zea mays L.) production is achieved with sufficient soil nutrients 

available for plant uptake, notably nitrogen (N), phosphorus (P), and potassium (K). 

Applications of organic and synthetic fertilizers are commonly applied to the soil to 

correct any nutrient deficiencies and optimize yield potential. For K specifically, fertilizer 

applications are widely accepted as beneficial to improve corn yields when soil test 

potassium (STK) levels are suboptimal (Oliver et al., 2022; Drescher et al., 2021; Xu et 

al., 2014; Clover & Mallarino, 2013). However, when STK levels are higher than the 

critical soil test value (CSTV), the probability of observing a yield response is greatly 

reduced (Boring et al., 2018; Fulford & Culman, 2018). While misapplications of K 

fertilizer do not pose as high of an environmental risk relative to N and P, they are still 

costly and unproductive for the producer. Therefore, properly tested and calibrated 

fertilizer recommendations are a necessary tool for efficient corn production.  

 The objective of K fertilizer recommendations is to provide crop producers with 

rapid and inexpensive tests for predicting yield responses to fertilizer applications (Bell et 

al., 2021). Previous research over the last few decades has focused on soil test correlation 

and calibration approaches (Lyons et al., 2021; Dahnke & Olson, 1990; Corey, 1987; 

Evans, 1987). Soil test correlations methods relate K extracted from the soil with crop 

yield, while calibration methods establish a relationship between rates of K fertilizer and 

crop yield at various STK levels (Dahnke & Olson, 1990). Potassium fertilizer 

recommendations and CSTV values vary throughout the U.S. In the western Corn Belt, 

most recommendations are based on a CSTV ranging from 125-160 mg kg-1 (Gerwing & 

Gelderman, 2019; Shapiro et al., 2019; Franzen, 2018; Mallarino et al., 2023; Leikam et 

al., 2003). Above this CSTV, there is little probability of observing a yield response to K 
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fertilization. Although some fertilizer recommendations in South Dakota have undergone 

revision, the K CSTV remains unchanged for over 20 years and is currently 160 mg kg-1 

(Gerwing & Gelderman, 2019). With improvements in corn genetics and changes in 

management practices including reduced tillage, it is very likely that the optimal K CSTV 

may have shifted (Deubel et al., 2011; Vyn & Janovicek, 2001). Therefore, the corn K 

CSTV in South Dakota needs to be reevaluated.   

 While simply correlating STK and crop yield has been the basis for fertilizer 

recommendation development, an integrated approach evaluating multiple variables (site-

specific factors, lab analyses, databases) may allow producers to make more profitable 

decisions (Eckert, 1994). This is especially useful to consider given environmental 

characteristics across different locations. For example, a study in North China observed 

large spatial variations in available and slowly available soil K, thus recognizing the need 

for site-specific K fertilizer management (Tan et al., 2012). On a smaller scale, within 

Kentucky, seasonal fluctuations in STK levels were observed within three different soil 

types, likely influenced by soil clay content and precipitation (Keeney et al., 2020). This 

variation in STK based on environmental and management factors makes improving 

fertilizer recommendations challenging. Moreover, it reinforces the need for site-specific 

or regional recommendations.  

In different regions of the Corn Belt, different soil test parameters are used to 

improve K response prediction accuracy. For example, in North Dakota, including clay 

mineralogy into K fertilizer recommendations was found to be beneficial for 

recommendation improvement (Breker et al., 2019). Current K fertilizer 

recommendations in Indiana, Michigan, and Ohio incorporate cation exchange capacity 
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(CEC) (Culman et al., 2020). On the other hand, a recent study in Missouri reinforced the 

notion that traditional soil fertility parameters, especially STK, remain superior over soil 

health metrics for guiding P and K fertilizer recommendations (Svedin et al., 2022). 

Overall, these results provide evidence that soil mineralogy information as well as CEC 

may also be used in South Dakota to improve K fertilizer recommendations. Therefore, 

the objectives of this study were to 1) compare different nonlinear regression models that 

estimate CSTV and their associated accuracy in predicting K fertilization responsiveness, 

and 2) determine the effect of including clay mineralogy and other soil variables in 

predicting corn yield response to K fertilization.   

3.3. MATERIALS AND METHODS 

3.3.1. SITE DESCRIPTIONS AND EXPERIMENTAL DESIGN 

From 2019 to 2022, 35 field trials were conducted throughout central and eastern 

South Dakota on both commercial operations and university research farms (Table 3.1; 

Figure 3.1). Sites were chosen to encompass a wide range of climates (Table A.1), soil 

types (Table 3.2), and management practices (Tables 3.3 and 3.4) on land that was 

primarily cultivated for corn-soybean rotations. The experimental design used at each site 

was a randomized complete block design with 4 replications. For 20 sites, each 

replication contained 6 plots that had a unique rate of potash fertilizer (0-0-60) broadcast 

applied prior to planting: 0, 34, 67, 101, 134, and 168 kg K2O ha-1. There were 15 

additional sites incorporated into the dataset that each contained 4 replications with 2 

fertilizer treatments: 0 and 112 kg K2O ha-1. All other nutrients were applied according to 

current South Dakota fertilizer recommendations so they were non limiting (Gerwing & 

Gelderman, 2019). Pesticides were applied at the discretion of the cooperating grower or 

university research farm manager to adequately control weeds, diseases, and insects. 
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3.3.2. DATA COLLECTION 

Twenty core composite soil samples (2 cm interior diameter) were collected from 

0-15 cm prior to fertilizer application and planting from each replication. All soil samples 

were kept cool during transport from the field to the lab where they were immediately 

transferred to cold storage until further processing. All moist samples were sieved using 

an 8 mm mesh screen to remove rocks and plant material, and air-dried at room 

temperature (22°C) for 72 hours or until no moisture remained. Once dry, samples were 

mechanically ground to pass through a 2 mm sieve. A subsample from each replication 

was sent to Activation Laboratories Ltd. (Ancaster, ON, Canada) and analyzed for 

mineral identification and clay speciation using the Rietveld method (Rietveld, 1967). All 

other soil samples were sent to Ward Laboratories (Kearney, NE) to be tested for various 

physical, chemical, and biological properties (Table 3.5).  

At physiological maturity, plots were harvested from the center two rows. In 

2020, plots were harvested by hand in a 9.2 m2 area and all ears in this area were 

weighed. A subsample of 8 ears was taken, weighed, dried at 60°C for 72 hours, and then 

weighed again to determine grain moisture. Cob weight was subtracted from the ear 

weight to determine grain weight using a grain to cob ratio of 0.88 (Svedin et al., 2022). 

In 2021 and 2022, plots were harvested the entire length of the plot using a Kincaid 8-XP 

plot combine (Kincaid Equipment Manufacturing, Haven, KS) or a Zürn 150 plot 

combine (Zürn Harvesting GmbH & Co. KG, Schöntal-Westernhausen, Baden-

Württemberg, Germany). Data recorded included grain weight, moisture, and test weight. 

Grain yield was adjusted to 155 g kg-1 moisture.  
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needed to establish or refute any relationships between POXC and STK, so POXC was 

included in this model. The third model added ten mineralogy measurements: smectite, 

illite, kaolinite, chlorite, quartz, amphibole, plagioclase, muscovite, K feldspar, and the 

ratio of smectite to illite. Soil mineralogy has been observed to influence K soil dynamics 

and crop yield response (Breker et al., 2019; Darunsontaya et al., 2012; Manning, 2010; 

Barré et al., 2008; Sharpley, 1989).  

 The package randomForestExplainer (Paluszynska et al., 2020) was used to 

extract important variables from each random forest model. Various plots were 

constructed with the package, displaying various methods including mean decrease in 

accuracy (MDA), mean decrease in Gini index (MDG), and distribution of minimal depth 

and mean (DMDM).  The MDA method measured the decrease of accuracy when the 

values of a given covariate are permutated (Bénard et al., 2022). The MDG, also referred 

to as mean decrease in node impurity, summed the weighted decreases of impurity over 

all nodes that split on a given covariate and averaged it over all the decision trees in the 

forest model (Bénard et al., 2022). The DMDM method displayed both the depth that the 

variable appeared at the root of the decision tree, as well as the number of trees that the 

variable appeared in. Lastly, decision tree plots were constructed using the package 

rpart.plot (Milborrow, 2022) to determine response predictions using the most important 

variables from each random forest model.  

3.4. RESULTS AND DISCUSSION 

3.4.1. COMPARISON OF REGRESSION MODELS 

Across 35 site-years in central and eastern South Dakota, soil properties varied 

considerably (Table 3.6). Soil test potassium ranged from 100 to 960 mg kg-1, with a 
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Another method for modeling RY and STK in a dataset that lacks STK 

observations <100 mg kg-1 is to use linear- and quadratic-plateau models forced to 

intercept the y-axis at 0% RY (Steinfurth et al., 2022). Forcing the linear-plateau model 

through the origin (LinPlat_Origin) resulted in a CSTV of 111 mg kg-1, the lowest of all 

models (Table 3.8; Figure 3.2). Forcing the quadratic-plateau model through the origin 

(QuadPlat_Origin) resulted in a CSTV of 150 mg kg-1, which is the second closest to the 

current CSTV, only 10 mg kg-1 less (Table 3.8; Figure 3.2). Both origin models reduced 

the CSTV from the original plateau models that were not forced through the intercept (by 

46 mg kg-1 with LinPlat_Origin, and by 22 mg kg-1 with QuadPlat_Origin). Regarding 

confidence intervals, the linear-plateau models exhibited mostly narrower 68% and 95% 

intervals compared to the quadratic-plateau models.  

Overall, across all seven regression models fitted to the dataset, CSTVs ranged 

from 111 to 196 mg kg-1 (Table 3.8). This range of CSTVs is quite large (85 mg kg-1), 

and is actually greater than the difference between the current “low” and “high” STK 

categories for South Dakota (Gerwing & Gelderman, 2019). Therefore, it is important to 

determine which model or models produce the CSTV that can be used to help farmers 

best make the decision of whether to apply fertilizer. Evaluating the accuracy of each 

CSTV in determining whether a site was responsive or not and comparing fit statistics 

can help us determine which model(s) should be used.  

3.4.2. CRITICAL SOIL TEST VALUE ACCURACY 

The accuracy of correctly predicting K responsiveness using the current CSTV 

(160 mg kg-1) for South Dakota was 62% (Figure 3.3), while the accuracy of the CSTV 

from the seven models evaluated ranged from 54-64% (Table 3.8). The CSTV from the 
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Cate-Nelson model was most accurate (64%), followed by the LinPlat, LinPlat_Origin, 

QuadPlat_Origin, and QuadPlat_95M models (63%), with the least accurate models 

being the QuadPlat (57%) and the LinPlat_105M (54%) models. These results 

demonstrate that of the seven models evaluated, five could equally be used to decide 

whether to apply K fertilizer (LinPlat, LinPlat_Origin, QuadPlat_Origin, QuadPlat_95M, 

and Cate-Nelson), while the other two (LinPlat_105M and QuadPlat) should not be used. 

This result, along with the similar AIC values (all values within 2), makes it difficult to 

choose one model as the basis for South Dakota K fertilizer recommendations.  

 To avoid potential biases from choosing one model over another, an approach 

suggested by Miguez & Poffenbarger (2022) would be to use model averaging. 

Averaging the CSTV from all models resulted in a CSTV of 146 mg kg-1, which was 

64% accurate. Additionally, if averaging only the most accurate models from each 

category (LinPlat, QuadPlat_Origin, and Cate-Nelson), the mean CSTV was 144 mg kg-1, 

which was also 64% accurate. These results indicate model averaging (using all seven 

models or the top ones from each category) can be used to calculate a CSTV that is as 

accurate as any single model with the benefit of minimizing bias from only using the 

CSTV from a single model. Since both averaging methods had similar accuracy, the 

averaging of the top models from each category (LinPlat, QuadPlat_Origin, and Cate-

Nelson) was chosen for this dataset to minimize the number of models needed to run to 

determine a CSTV. Therefore, the CSTV for K recommendations in South Dakota was 

144 mg kg-1, which was 16 mg kg-1 less than the current CSTV recommended, with 2% 

greater accuracy in predicting K responsiveness. This lower CSTV agrees with other 

states in the Midwestern Corn Belt. For example, the CSTV for K in North Dakota is 150 
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mg kg-1 (not considering clay mineralogy) (Franzen, 2018). Critical soil text value ranges 

are also used in some states. In Nebraska, the range is 125-150 mg kg-1 (Shapiro et al., 

2019), and in Iowa, the range is 101-150 mg kg-1 (Mallarino et al., 2023). In Kansas, 

when STK levels are >130 mg kg-1 only a small rate of a K-containing starter fertilizer is 

recommended (Leikam et al., 2003). 

3.4.3. INCLUSION OF OTHER VARIABLES WITH RANDOM FOREST MODELING 

 In addition to STK, other soil test variables measured in this study such as cation 

exchange capacity (CEC), pH, soil organic matter, and clay mineralogy information 

(smectite, illite, and their ratio) could be used to enhance corn yield response predictions. 

Across all sites there was a large variation in soil parameters and clay mineralogy (Table 

3.6). Smectite ranged from 110 to 940 g kg-1, with a mean value of 510 g kg-1 and a 

standard deviation of 238 g kg-1. Illite ranged from 30 to 740 g kg-1, with a mean of 383 g 

kg-1 and a standard deviation of 206 g kg-1. The ratio of smectite to illite ranged from 

0.15 to 31.33, with a mean of 3.10. A variety of soil textures were observed, but most 

sites were loams, clay loams, or silty clay loams. Only a couple sites were coarser 

textured soils (sandy loam, sandy clay loam), while a few others were clay soils. Soil 

organic matter ranged from 24 to 59 g kg-1. Because of large variations in soil textures 

and organic matter, CEC was also variable, ranging from 12.3 to 42.2 cmolc kg-1, with a 

mean of 23.6 cmolc kg-1. Soil pH ranged from 5.1 to 8.3, with a mean of 6.6, and POXC 

ranged from 328 to 1,533 mg kg-1, with a mean of 1,024 mg kg-1. All soil parameters 

measured in this study correlated poorly with RY (r < ±0.16) (Figure 3.4). The strongest 

positive relationship was with the clay mineralogy component of amphibole (0.16), and 

the strongest negative relationship was with CEC (-0.13). Additionally, several soil 
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variables were highly correlated with each other, including the relationship between STK 

and clay (0.60), CEC and clay (0.76), kaolinite and illite (0.81), and smectite and illite (-

1.00). 

Depending on the variables put into the random forest mode, mean accuracy for 

predicting responsiveness to K fertilization ranged from 55-61% (Table 3.10). 

Interestingly, model accuracy decreased with the inclusion of soil variables beyond 

traditional soil fertility measurements. In fact, soil test potassium alone (using the 

updated CSTV of 144 mg kg-1) was 64% accurate, and the addition of more variables 

decreased response prediction accuracy. The model that considered only basic soil test 

variables (STK, pH, CEC, and SOM) was, on average, 61% accurate, with a standard 

deviation of 10%. This was very close in accuracy to using STK alone. The associated 

Cohen’s kappa (κ) value of this model was 0.11, which indicated poor agreement 

between model raters (on a scale from 0-1) (Landis & Koch, 1977). When adding texture 

and POXC, the mean accuracy remained the same at 61% (standard deviation of 8%), but 

the κ value was reduced to 0.09, indicating even lower agreement among model raters. 

When ten soil mineralogy tests were included in the model, mean accuracy dropped to 

the lowest at 55% (standard deviation of 10%), and the κ value was also reduced to the 

lowest at 0.05. This conflicts with findings from Breker et al. (2019) who found that 

incorporating clay mineralogy into K fertilizer recommendations improved K response 

predictions in North Dakota. Differences in results of these studies may be due to the 

greater abundance of lower STK levels found in their study, as they had four site-years 

with <100 mg kg-1, whereas the lowest in this study was 100 mg kg-1. Further, the 

maximum STK value in North Dakota was 380 mg kg-1, versus 960 mg kg-1 in this study. 



92 

Therefore, these differences in STK ranges (especially <100 mg kg-1) may have 

decreased the ability to find strong relationships between soil mineralogy and yield 

response predictions.  

Among the basic soil test variables, variable importance plots (MDA, MDG, and 

DMDM) depicted CEC as having the most relative importance to the random forest 

model in predicting response to K fertilization (Figures 3.5 and 3.6). Soil organic matter 

was the second most important variable using the MDA and DMDM methods, but third 

using the MDG method. While STK was the least important using the MDA method, it 

was second using the MDG method, and third using the DMDM method. Soil pH ranked 

third in the MDA method, but last in the MDG and DMDM methods. While there was 

some variation in importance between STK, pH, and SOM, CEC was considered most 

important across all methods. The same was true for the second and third models that 

included texture, POXC, and mineralogy (Figures 3.7, 3.8, 3.9, and 3.10). Although 

smectite:illite ratio was considered most important using the MDA method, CEC, POXC, 

and SOM consistently remained the most important variables.  

The identification of these variables as important for yield response prediction 

was consistent with previously conducted research. For example, CEC and soil texture 

play direct roles in exchangeable K dynamics in soil (Rosolem & Steiner, 2017; Rosolem 

et al., 2010; Öborn et al., 2005). While current South Dakota K fertilizer 

recommendations do not incorporate either CEC or soil texture, several recommendations 

throughout the Corn Belt do, including Indiana, Michigan, Ohio (Culman et al., 2020), 

Wisconsin (Laboski & Peters, 2012), and Illinois (Fernández & Hoeft, 2009). In addition 

to STK (the most widely used variable to predict corn yield response to K fertilizer), 
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SOM and CEC were among the top variables identified in random forest models for 

Missouri K fertilizer recommendation evaluations (Svedin et al., 2022). They also noted 

pH as having high importance in their model, but pH appeared relatively low in the 

variable importance plots of this study. Potassium fertilization has also been shown to 

increase POXC levels in soil (Denardin et al., 2022). Given the evidence that these 

variables influenced corn yield response to K, along with adoption by various states 

throughout the Corn Belt, the use of these variables in K fertilizer recommendations 

should be considered in South Dakota recommendations. 

3.4.4. USING DECISION TREES TO IMPROVE YIELD RESPONSE PREDICTIONS 

 While random forest modeling did not improve the ability to predict K 

responsiveness using multiple variables, three variables (CEC, SOM, and POXC) were 

still consistently identified as important for yield response prediction. Incorporation of 

those variables with STK into decision trees provided simple illustrations of these 

relationships. Considering only STK and splitting at the current CSTV of 160 mg kg-1, 

recommendations were 62% accurate. When the updated CSTV of 144 mg kg-1
 was used 

instead, accuracy increased to 64%. When using the updated CSTV of 144 mg kg-1, plus 

CEC (40 cmolc kg-1), SOM (34 g kg-1), and POXC (1,427 mg kg-1), accuracy further 

increased to 72%, with only 28% error (Figure 3.11). This accuracy is 10% greater than 

only using the current CSTV of 160 mg kg-1, and 8% greater than only using the updated 

CSTV of 144 mg kg-1.  

 Below STK levels of 144 mg kg-1, there was a higher chance of a yield response 

(58%), as expected (Figure 3.11). However, above 144 mg kg-1, there was still a 35% 

chance of a yield response to K fertilization. Therefore, reducing the probability of a 
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yield response above the CSTV required consideration of additional soil test variables. 

For observations above 144 mg kg-1 and also above 40 cmolc kg-1 CEC, there was an 83% 

chance of a yield response. When CEC was below 40 cmolc kg-1, the decision tree split at 

34 g kg-1 SOM, where observations below 34 g kg-1 responded 64% of the time. Above 

34 g kg-1 SOM, the decision tree split again at 1,427 mg kg-1 POXC, where observations 

greater than that had an 80% chance of response, while below that there was only a 26% 

chance of a yield response to K fertilization. Overall, lowering the CSTV from 160 to 

144 mg kg-1, along with consideration of CEC, SOM, and POXC in K fertilizer 

recommendations, improved yield response prediction accuracy from 62 to 72%.  

The incorporation of CEC, SOM, and POXC in K fertilizer recommendations is 

common. In Indiana, Michigan, and Ohio, the CSTV for ammonium acetate extractable-

K is 115 mg kg-1 for sandy soils less than 5 cmolc kg-1 CEC, and 150 mg kg-1 for loamy 

and clayey soils (Culman et al., 2020). Also, Cox et al. (1999) observed better prediction 

of extractable K levels when including CEC in multiple regression models. For the other 

variables used in this decision tree (SOM and POXC), research is limited. In Nebraska, 

prediction of soil K supply was improved when including SOM in their recommendations 

(Wortmann et al., 2009). Random forest models identified SOM as an important variable 

in Missouri, but CEC was found to be superior to SOM as a predictor (Svedin et al., 

2022), which is consistent with the results in this study. The same study by Svedin et al. 

(2022) did not use POXC in their model, claiming that STK already adequately estimated 

K availability from the same “active” carbon (C) pool that POXC measures.  

While both POXC and SOM improved prediction accuracy, it is worth noting that 

some proportions of observations meeting the decision tree criteria were relatively small 
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(SOM, n = 11; POXC, n = 5). Overall, 93 observations were predicted to not respond to 

K fertilizer after considering STK, CEC, SOM, and POXC. Yet, 24 of them (26%) still 

responded. The lower number of observations ≤144 mg kg-1 (n = 19) does not provide an 

even split in the dataset. Therefore, more accurate relationships may be observed with the 

inclusion of sites with lower STK levels. Nonetheless, this dataset encompasses a broad 

range of soil types, cropping histories, and geographic locations in South Dakota. 

Therefore, these results indicate that inclusion of CEC, SOM, and POXC into South 

Dakota K fertilizer recommendations can improve K response prediction accuracy.  

3.5. CONCLUSIONS 

  All seven regression models analyzed in this study predicted a relatively broad 

range of CSTVs (111-196 mg kg-1). However, the small range of AIC values among 

regression models (1.54) indicated that all regression models were fitted to the dataset 

similarly. If considering models based on accuracy, then the Cate-Nelson, LinPlat, 

LinPlat_Origin, QuadPlat_Origin, and QuadPlat_95M all correctly predicted 

responsiveness to K fertilization 63-64% of the time. Still, these models’ corresponding 

CSTVs ranged from 111-157 mg kg-1. Since choosing a single model in this wide range 

of CSTVs can result in biases, another practical option was to use a model averaging 

approach, which resulted in a CSTV of 144 mg kg-1. Therefore, the CSTV for South 

Dakota K fertilizer recommendations should be reduced from 160 to 144 mg kg-1. 

 Yield response predictions may also be improved by incorporating additional soil 

test variables into fertilizer recommendations. Including soil mineralogy variables did not 

improve K response predictability as including these variables decreased random forest 

model accuracy from 61% to 55%. However, by including CEC, SOM, and POXC with 
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STK (CSTV = 144 mg kg-1) in decision trees, prediction accuracy increased from 62% to 

72%. Therefore, South Dakota K fertilizer recommendations should include CEC, SOM, 

and POXC in addition to the traditional STK parameter. 
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3.7. TABLES 

Table 3.1. Geographic location of the 35 field trials conducted. 

Site 

Cropping 

District Year 

Treatment 

Rates† County Latitude  Longitude  

1 North Central 2020 6 Potter 44.93694° -100.12278° 

2 North Central 2020 2 Edmunds 45.49005° -99.21564° 

3 North Central 2021 2 Potter 44.94998° -100.08368° 

4 North Central 2021 2 Potter 44.99974° -100.10413° 

5 Northeast 2019 2 Roberts 45.44259° -96.84715° 

6 Northeast 2019 2 Roberts 45.42419° -96.80195° 

7 Northeast 2021 6 Roberts 45.37000° -96.81583° 

8 Northeast 2021 6 Codington 45.10694° -97.09997° 

9 Northeast 2022 6 Codington 45.10771° -97.09994° 

10 East Central 2019 2 Minnehaha 43.63015° -96.83917° 

11 East Central 2019 2 Brookings 44.34800° -96.52468° 

12 East Central 2019 2 Minnehaha 43.66730° -96.85005° 

13 East Central 2020 6 Kingsbury 44.49944° -97.30028° 

14 East Central 2020 6 McCook 43.75944° -97.32028° 

15 East Central 2020 2 Minnehaha 43.64597° -96.49128° 

16 East Central 2021 2 Davison 43.80373° -98.15556° 

17 East Central 2021 6 Minnehaha 43.67444° -96.70222° 

18 East Central 2021 6 Minnehaha 43.73222° -96.51056° 

19 East Central 2021 6 Brookings 44.30152° -96.92609° 

20 East Central 2022 6 Brookings 44.39312° -96.74646° 

21 East Central 2022 6 Brookings 44.43881° -96.72596° 

22 East Central 2022 6 Brookings 44.35404° -96.77504° 

23 East Central 2022 6 Minnehaha 43.65670° -96.48118° 

24 Southeast 2020 6 Clay 43.05167° -96.88500° 

25 Southeast 2021 6 Yankton 42.94833° -97.55278° 

26 Southeast 2021 6 Hutchinson 43.30389° -97.44583° 

27 Southeast 2021 6 Turner 43.25583° -97.36222° 

28 Southeast 2021 6 Lincoln 43.14194° -96.89639° 

29 South Central 2020 6 Tripp 43.57205° -99.94139° 

30 South Central 2020 6 Tripp 43.57163° -99.94139° 

31 South Central 2021 2 Tripp 43.49968° -99.86528° 

32 Central 2021 2 Aurora 43.78678° -98.54619° 

33 Central 2021 2 Hand 44.54529° -98.92332° 

34 Central 2022 2 Aurora 43.87224° -98.35197° 

35 Central 2022 2 Aurora 43.82943° -98.34608° 
† 6 treatments (0, 34, 67, 101, 134, 168 kg K2O ha-1); 2 treatments (0, 112 kg K2O ha-1)  
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Table 3.2. Soil characteristics of the 35 field trials conducted (Soil Survey Staff, 2023). 

Site Soil Map Unit Symbol Surface Texture Slopes 

    % 

1 Agar AgA Silt Loam 0-2 

2 Williams-Bowbells Complex C210C Loam 6-9 

3 Agar AgA Silt Loam 0-2 

4 Agar-Mobridge Complex AmA Silt Loam 0-3 

5 Esmond-Heimdal-Sisseton Complex HsB Loam 2-6 

6 Esmond-Heimdal-Sisseton Complex HsB Loam 2-6 

7† 

7 

7 

Aastad 

Dickey 

Peever 

AcA 

DcA 

PeB 

Clay Loam 

Fine Sandy Loam 

Loam 

1-3 

0-2 

2-6 

8 Kranzburg-Brookings Complex J143A Silty Clay Loam 0-2 

9 Kranzburg-Brookings Complex J143A Silty Clay Loam 0-2 

10 Nora-Crofton Complex NcC Silt Loam 6-9 

11 Venagro-Svea Complex VaB Loam 1-6 

12 Nora-Crofton Complex NcC Silt Loam 6-9 

13 Poinsett-Waubay Complex PwB Silty Clay Loam 1-6 

14 Clarno-Crossplain Complex Co Loam 0-2 

15 Nora-Crofton Complex NcC Silt Loam 6-9 

16 Houdek-Prosper Complex HkA Loam 0-2 

17 Blendon BfA Fine Sandy Loam 0-3 

18 Moody-Nora Complex MnB Silty Clay Loam 2-6 

19 Brandt Z181A Silty Clay Loam 0-2 

20 Kranzburg-Brookings Complex KrB Silty Clay Loam 1-6 

21† 

21 

Renshaw-Fordville Complex 

Renshaw-Sioux Complex 

Z171A 

Z173B 

Loam 

Loam 

0-2 

2-6 

22 Estilline Z182A Silt Loam 0-2 

23 Moody-Norav MnB Silty Clay Loam 2-6 

24† 

24 

Egan-Clarno-Tetonka Complex 

Egan-Clarno-Trent Complex 

EcA 

EdB 

Silty Clay Loam 

Silty Clay Loam 

0-2 

1-6 

25 Clarno-Crossplain-Davison Complex CkA Loam 0-2 

26 Hand-Bonilla Complex HcA Loam 0-3 

27 Egan-Ethan Complex EeB Silty Clay Loam 2-6 

28 Wentworth-Chancellor Complex WhA Silty Clay Loam 0-2 

29 Millboro MoA Silty Clay 0-3 

30 Millboro MoA Silty Clay 0-3 

31 Millboro MoB Silty Clay 3-6 

32 Houdek-Dudley Complex HdA Loam 0-2 

33 Houdek-Prosper Complex HkB Loam 1-6 

34 Clarno-Bonilla Complex CpA Loam 0-2 

35 Clarno-Bonilla Complex CpA Loam 0-2 
† Sites 7, 21, and 24 had multiple map units mapped within the research area   
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Table 3.3. Planting data for the 35 field trials conducted. 

Site Cultivar† RM‡ Planting Date Seeding Rate 

  days  seeds ha-1 

1 DEKALB 46-18RIB 96 5/11/20 61,750 

2 27B15 (organic cultivar) 88 5/15/20 66,667 

3 DEKALB 51-92RIB 101 5/4/21 65,432 

4 Integra 5280 102 5/5/21 64,198 

5   Unknown Unknown Unknown Unknown 

6   Unknown Unknown Unknown Unknown 

7§ 

7 

Pioneer 0157AMXT  

Channel 201-05DGVT2PRIB 

101 

101 
4/28/21 79,040 

8 DEKALB 43-75RIB 93 5/3/21 83,980 

9 NK 9175 91 5/27/22 73,086 

10   Unknown Unknown Unknown Unknown 

11   Unknown Unknown Unknown Unknown 

12   Unknown Unknown Unknown Unknown 

13 Ag Performance 972 97 4/27/20 79,040 

14 Pioneer 0339AM 103 4/24/20 76,570 

15   Unknown Unknown Unknown Unknown 

16   Unknown Unknown Unknown Unknown 

17   Unknown Unknown Unknown Unknown 

18   Unknown Unknown Unknown Unknown 

19 DEKALB 47-27RIB 97 4/29/21 83,980 

20 DEKALB 49-45RIB 99 5/11/22 54,321 

21 DEKALB 51-25RIB 101 5/15/22 83,951 

22 DEKALB 43-75RIB 93 5/22/22 83,951 

23 Renk 485DGVT2P 94 5/14/22 77,778 

24 Pioneer 0421AM 104 4/29/20 81,510 

25 LG 5643 114 4/28/21 63,314 

26 Pioneer 0306AM 103 5/1/21 70,148 

27 Pioneer 0421AM 104 5/1/21 70,148 

28 Pioneer 0688AM 108 4/27/21 79,040 

29§ 

29 

Pioneer 0046AM  

AgVenture 5798 

100 

98 
4/29/20 60,515 

30§ 

30 

Pioneer 0046AM  

AgVenture 5798 

100 

98 
4/29/20 60,515 

31§ 

31 

NC Plus 04-99 VT2PRIB 

Pioneer 0421AM 

104 

104 
5/3/2021 59,000 

32 Golden Harvest 00H12-5122 100 4/27/21 60,494 

33 Integra 5280 102 5/4/21 69,136 

34 Pioneer 0404AM 104 5/12/22 66,667 

35 Pioneer 1185AM 111 5/7/22 66,667 
† Citations in Table A.2 

‡ Relative maturity 

§ Even split of corn hybrids planted at sites 7, 29, 30, and 31 
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Table 3.4. Agronomic data for the 35 field trials conducted. 

Site Tillage 

Previous 

Crop† 

Mean Plot 

Stand Count 

Treatment 

Application Date 

Fertilizer 

Placement 

   plants ha-1   

1 None Wheat Not Measured 5/21/20 Surface 

2 None Hay Not Measured 5/13/20 Surface 

3 None Pasture 64,533 6/28/21 Surface 

4 None  Wheat‡ 64,533 6/28/21 Surface 

5 Reduced Soybean Not Measured Unknown Surface 

6 Reduced Soybean Not Measured Unknown Surface 

7 Reduced Soybean 67,928 5/3/21 Incorporated 

8 Conventional Soybean 69,642 5/3/21 Surface 

9 Conventional Wheat 67,558 5/27/22 Incorporated 

10 None Soybean Not Measured Unknown Surface 

11 Reduced Soybean Not Measured Unknown Surface 

12 Conventional Soybean Not Measured   Unknown Surface 

13 None Soybean Not Measured 5/12/20 Surface 

14 Reduced Soybean Not Measured 4/22/20 Incorporated 

15 None Corn Not Measured 4/8/20 Surface 

16 None Wheat 52,557 6/10/21 Surface 

17 Conventional Corn 60,702 4/27/21 Surface 

18 Conventional Corn 73,810 4/28/21 Surface 

19 Conventional Soybean 80,566 4/30/21 Incorporated 

20 Conventional Soybean 75,154 4/26/22 Incorporated 

21 Conventional Soybean 55,122 4/25/22 Incorporated 

22 Conventional Soybean 83,456 4/26/22 Incorporated 

23 None Soybean 75,558 5/16/22 Surface 

24 None Soybean Not Measured 5/7/20 Surface 

25 None Wheat 56,332 4/27/21 Surface 

26 None Soybean 67,693 4/26/21 Surface 

27 Reduced Soybean 68,768 4/26/21 Incorporated 

28 Reduced Soybean 78,549 4/26/21 Incorporated 

29 None Wheat Not Measured 5/19/20 Surface 

30 None Wheat Not Measured 5/19/20 Surface 

31 None Wheat 55,660 6/28/21 Surface 

32 None Sunflower 58,349 6/10/21 Surface 

33 None Fallow 60,366 6/28/21 Surface 

34 None Soybean 62,997 5/11/22 Surface 

35 None Soybean 59,156 5/11/22 Surface 
† Wheat, Triticum aestivum L.; Soybean, Glycine max (L.) Merr.; Corn, Zea mays L.; Hay, forage sorghum 

[(Sorghum bicolor L.) Moench.] + oat (Avena sativa L.) + foxtail millet (Setaria italica L.); Sunflower, 

Helianthus annuus L. 

‡ At site 4, wheat stubble was grazed by cattle prior to planting the 2021 field trial 
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Table 3.5. Soil test measurements (0-15 cm sampling depth) and their associated 

methods/extractants.  

Variable† Soil Fraction Method or Extractant Reference 

Sand N/A Hydrometer Gee & Bauder, 1979 

Silt N/A Hydrometer Gee & Bauder, 1979 

Clay N/A Hydrometer Gee & Bauder, 1979 

STK N/A NH4CH3CO2 
Warncke & Brown, 1998 

Haby et al., 1990 

pH N/A 1:1 Soil Water 
Burt & Soil Survey Staff, 2014 

Peters et al., 2014 

CEC N/A Sum of Cations Burt & Soil Survey Staff, 2014 

POXC N/A KMnO4 Weil et al., 2003 

SOM N/A Loss on Ignition 
Nelson & Sommers, 1996 

Broadbent, 1965 

Amphibole Whole XRD‡ Rietveld, 1967 

K Feldspar Whole XRD Rietveld, 1967 

Muscovite Whole XRD Rietveld, 1967 

Plagioclase Whole XRD Rietveld, 1967 

Quartz Whole XRD Rietveld, 1967 

Kaolinite <2 µm Clay Speciation Rietveld, 1967 

Illite <2 µm Clay Speciation Rietveld, 1967 

Smectite <2 µm Clay Speciation Rietveld, 1967 

Chlorite <2 µm Clay Speciation Rietveld, 1967 

Smectite:Illite <2 µm Ratio Breker et al., 2019 
† STK, soil test potassium; CEC, cation exchange capacity; POXC, permanganate-oxidizable carbon; 

SOM, soil organic matter; K Feldspar; potassium-bearing feldspars; Smectite:Illite, smectite to illite ratio  

‡ Quantitative X-ray diffraction  
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Table 3.6. Minimum, mean, maximum, standard deviation (SD), and coefficient of 

variation (CV) for each measured soil test variable.  

Category Variable† (Units) Minimum Mean Maximum SD CV 

Physical       

 Sand (g kg-1) 110 310 640 114 13,035 

 Silt (g kg-1) 180 376 530 81 7,073 

 Clay (g kg-1) 120 314 580 86 7,435 

Chemical       

 STK (mg kg-1) 100 274 960 155 24,136 

 pH 5.1 6.6 8.3 0.9 0.8 

 CEC (cmolc kg-1) 12.3 23.6 42.2 6.3 39.7 

Biological       

 POXC (mg kg-1) 328 1,024 1,533 299 89,355 

 SOM (g kg-1) 24 43 59 8 72 

Mineral       

 Amphibole (g kg-1) 0 6 15 4 12 

 K Feldspar (g kg-1) 30 43 66 7 45 

 Muscovite (g kg-1) 11 35 66 13 181 

 Plagioclase (g kg-1) 48 102 159 21 429 

 Quartz (g kg-1) 249 466 714 86 7,445 

 Kaolinite (g kg-1) 20 69 160 35 694 

 Illite (g kg-1) 30 383 740 206 42,548 

 Smectite (g kg-1) 110 510 940 238 56,733 

 Chlorite (g kg-1) 0 38 80 16 265 

 Smectite:Illite 0.2 3.1 31.3 4.7 21.9 
† STK, soil test potassium; CEC, cation exchange capacity; POXC, permanganate-oxidizable carbon; 

SOM, soil organic matter; K Feldspar; potassium-bearing feldspars; Smectite:Illite, smectite to illite ratio  
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Table 3.7. Harvest parameters and mean soil test potassium (STK) levels for the 35 field 

trials conducted.  

   Harvest Parameter†  

Site Harvest Area  Harvest Date Mean Y0 Mean YMax Mean RY Mean STK 

 m2  kg ha-1 kg ha-1 % mg kg-1 

1 9.2 10/6/20 12,247 12,266 99.85 493 

2 9.2 10/14/20 8,810 8,810 100.00 362 

3 9.2 10/15/21 11,469 11,469 100.00 374 

4 9.2 10/15/21 5,744 5,744 100.00 442 

5 9.2 Unknown 12,280 13,670 89.83 137 

6 9.2 Unknown 12,768 13,200 96.73 104 

7 20.8 10/23/21 14,334 14,355 99.85 368 

8 20.8 10/19/21 14,599 14,628 99.80 187 

9 18.5 10/21/22 11,110 12,285 90.43 161 

10 9.2 Unknown 12,176 16,410 74.20 123 

11 9.2 Unknown 11,187 11,187 100.00 185 

12 9.2 Unknown 10,473 10,473 100.00 359 

13 9.2 10/8/20 15,080 15,629 96.49 277 

14 23.1 10/13/20 13,931 14,468 96.28 193 

15 9.2 9/24/20 12,679 13,932 91.01 142 

16 9.2 10/14/21 6,147 6,147 100.00 230 

17 20.8 10/8/21 2,497 2,666 93.67 173 

18 20.8 10/8/21 11,333 11,745 96.49 177 

19 20.8 11/1/21 5,279 7,432 71.03 324 

20 20.8 10/18/22 14,868 15,085 98.56 166 

21 20.8 10/12/22 3,404 5,108 66.64 137 

22 20.8 10/12/22 14,899 15,660 95.14 162 

23 18.5 10/21/22 15,232 15,657 97.29 182 

24 23.1 10/8/20 12,107 12,570 96.31 206 

25 20.8 10/22/21 12,017 12,085 99.44 274 

26 20.8 10/12/21 10,105 10,247 98.62 132 

27 20.8 10/12/21 9,081 10,318 88.01 136 

28 16.2 10/18/21 8,287 9,419 87.98 417 

29 9.2 9/29/20 9,941 12,034 82.61 626 

30 9.2 9/29/20 8,834 9,614 91.89 965 

31 9.2 10/15/21 4,565 4,565 100.00 472 

32 9.2 9/23/21 3,162 3,162 100.00 430 

33 9.2 10/15/21 11,230 11,230 100.00 317 

34 20.8 10/13/22 9,084 9,084 100.00 227 

35 20.8 10/13/22 7,838 7,838 100.00 277 
† Mean Y0, mean yield of plots receiving no K fertilizer; Mean YMax, maximum mean yield among all 

plots; Mean RY, mean relative corn yield 
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Table 3.8. Critical soil test values (CSTV) and their associated K response prediction 

accuracies along with confidence intervals and Akaike information criterion (AIC) for 

seven individual models and two model averaging approaches. 

   Confidence Interval‡  

 

CSTV 

Prediction 

Accuracy 

68% 95%  

Model† Lower Upper Lower Upper AIC 

 mg kg-1 % --------------mg kg-1--------------  

Cate-Nelson 124 64 N/A N/A N/A N/A N/A 

LinPlat 157 63 155 166 129 201 747.83 

LinPlat_Origin 111 63 107 121 103 129 747.84 

LinPlat_105M 196 54 142 259 82 319 747.83 

QuadPlat 172 57 160 186 147 199 748.43 

QuadPlat_Origin 150 63 131 167 112 181 749.37 

QuadPlat_95M 114 63 97 131 80 149 748.43 

Overall Mean 146 64 132 172 109 196 N/A 

Top Model Mean§ 144 64 143 167 121 191 N/A 
† Cate-Nelson, Cate-Nelson analysis (Cate & Nelson, 1965; Cate & Nelson, 1971); LinPlat, linear plateau; 

LinPlat_Origin, linear plateau forced to intercept the y-axis at 0; LinPlat_105M, linear plateau forced to 

climb to 105% of the maximum; QuadPlat, quadratic plateau; QuadPlat_Origin, quadratic plateau forced to 

intercept the y-axis at 0; QuadPlat_95M, quadratic plateau forced to climb to 95% of the maximum 

‡ Bootsrapped replicates (n = 5000 times) for Cate-Nelson, LinPlat, LinPlat_Origin, QuadPlat, 

QuadPlat_Origin, QuadPlat_95M; Wald interval for LinPlat_105M 

§ Mean of Cate-Nelson, LinPlat, and QuadPlat_Origin 
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Table 3.9. Model equations and corresponding plateau relative yields.  

Model† Equation RYPlateau‡ 

  % 

LinPlat 𝑦 = 0.12𝑥 + 76 when 𝑥 < 157 94.84 

LinPlat_Origin 𝑦 = 0.85𝑥 when 𝑥 < 111 94.35 

LinPlat_105M 𝑦 = 0.12𝑥 + 76 when 𝑥 < 196 99.58 

QuadPlat 𝑦 = −0.001279𝑥2 + 0.44𝑥 + 56 when 𝑥 < 172 93.84 

QuadPlat_Origin 𝑦 = −0.004200𝑥2 + 1.26𝑥 when 𝑥 < 150 94.50 

QuadPlat_95M 𝑦 = −0.001279𝑥2 + 0.44𝑥 + 56 when 𝑥 < 114 89.54 
† Cate-Nelson, Cate-Nelson analysis (Cate & Nelson, 1965; Cate & Nelson, 1971); LinPlat, linear plateau; 

LinPlat_Origin, linear plateau forced to intercept the y-axis at 0; LinPlat_105M, linear plateau forced to 

climb to 105% of the maximum; QuadPlat, quadratic plateau; QuadPlat_Origin, quadratic plateau forced to 

intercept the y-axis at 0; QuadPlat_95M, quadratic plateau forced to climb to 95% of the maximum 

‡ Relative yield at which the model plateaus 
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Table 3.10. Statistical summaries for the three sets of random forest models conducted.  

Model (n = 100 models each) Accuracy κ†† 

Basic† %  

Mean 61 0.11 

Standard Deviation 10 0.20 

Basic + POXC‡ + Texture§    

Mean 61 0.09 

Standard Deviation 8 0.17 

Basic + POXC + Texture + Minerals⁋    

Mean 55 0.05 

Standard Deviation 10 0.20 
† Soil test potassium + pH + cation exchange capacity + soil organic matter 

‡ Potassium oxidizable carbon 

§ Sand + Silt + Clay 

⁋ Amphibole + potassium-bearing feldspars + muscovite + plagioclase + quartz + kaolinite + illite + 

smectite + chlorite + smectite:illite ratio 

 †† Cohen’s kappa value 

 

  



116 

3.8. FIGURES 

Figure 3.1. Geographic location of the 35 field trials conducted.   
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Figure 3.2. Relative yield (RY) as a function of soil test potassium (STK) using seven 

different models to calculate a critical soil test value (n = 105). Models and methods to 

calculate CSTVs included the following: linear-plateau (LinPlat), quadratic-plateau 

(QuadPlat), linear-plateau beginning at 0% RY (LinPlat_Origin), quadratic-plateau 

beginning at 0% RY (QuadPlat_Origin), linear-plateau forced to plateau 5% above the 

plateau of the LinPlat model (LinPlat_105M), CSTV calculated as 95% of the QuadPlat 

model plateau (QuadPlat_95M), and Cate & Nelson analysis (Cate-Nelson). 
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Figure 3.3. Relative yield (RY) observed as a function of soil test potassium (STK) in 

South Dakota (n = 105). The graph was divided into four separate quadrants where RY = 

95% and STK = 160 mg kg-1.. The current hypothesis is that corn yield response should 

be <95% when STK is below 160 mg kg-1 (the lower left quadrant). When STK exceeds 

160 mg kg-1, then corn yield response should be >95% (the upper right quadrant). 

Therefore, data points that lie in the lower left and upper right quadrants are accurately 

predicted. Points that lie in the upper left and lower right quadrants are inaccurate 

predictions. This same method was applied to the seven regression models and their 

associated critial soil test values (CSTV) in this study to determing prediction accuracy. 
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Figure 3.4. Correlation matrix to quantify potential linear relationships between soil test 

parameters (pH, smectite, smectite:illite ratio [Smectite_to_Illite], soil test potassium 

[STK], muscovite, soil organic matter [SOM], cation exchange capacity [CEC], clay, silt, 

potassium-containing feldspars [K_Feldspar], amphibole, sand, quartz, plagioclase, 

permanganate oxidizable carbon [POXC], chlorite, illite, kaolinite) and relative yield 

(RY). The closer the coefficient was to 1, the stronger the positive relationship was 

between the two variables. Conversely, the closer the coefficient was to -1, the stronger 

the negative relationship was between the two variables. A coefficient near or equal to 0 

indicated a poor relationship between the two variables. Variables in the matrix were 

ordered based on hierarchical clustering using Ward’s minimum variance method.   
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Figure 3.5. Mean decrease in accuracy (MDA) and mean decrease in Gini index (MDG) 

plots for the random forest model using basic soil test parameters (soil test potassium 

[STK], pH, cation exchange capacity [CEC], and soil organic matter [SOM]). For both 

methods, a higher value indicates that the variable was highly important to the overall 

model.   
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Figure 3.6. Distribution of minimal depth and mean (DMDM) plot for the random forest 

model using basic soil test parameters (soil test potassium [STK], pH, cation exchange 

capacity [CEC], and soil organic matter [SOM]). The lower the mean value and minimal 

depth, the closer the variable was to the root of the decision tree, thus indicating higher 

importance. Also, variables that appear in decision trees more frequently are more 

important.   



122 

 
Figure 3.7. Mean decrease in accuracy (MDA) and mean decrease in Gini index (MDG) 

plots for the random forest model using basic soil test parameters (soil test potassium 

[STK], pH, cation exchange capacity [CEC], and soil organic matter [SOM]), plus texture 

(sand, silt, and clay) and permanganate oxidizable carbon (POXC). For both methods, a 

higher value indicates that the variable was highly important to the overall model. 
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Figure 3.8. Distribution of minimal depth and mean (DMDM) plot for the random forest 

model using basic soil test parameters (soil test potassium [STK], pH, cation exchange 

capacity [CEC], and soil organic matter [SOM]), plus texture (sand, silt, and clay) and 

permanganate oxidizable carbon (POXC). The lower the mean value and minimal depth, 

the closer the variable was to the root of the decision tree, thus indicating higher 

importance. Also, variables that appear in decision trees more frequently are more 

important.  
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Figure 3.9. Mean decrease in accuracy (MDA) and mean decrease in Gini index (MDG) 

plots for the random forest model using basic soil test parameters (soil test potassium 

[STK], pH, cation exchange capacity [CEC], and soil organic matter [SOM]), plus texture 

(sand, silt, and clay), permanganate oxidizable carbon (POXC), and minerals (smectite, 

illite, kaolinite, chlorite, quartz, amphibole, plagioclase, muscovite, K_Feldspar 

[potassium-containing feldspars], and smectite:illite ratio [Smectite_to_Illite]). For both 

methods, a higher value indicates that the variable was highly important to the overall 

model. 
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Figure 3.10. Distribution of minimal depth and mean (DMDM) plot for the random forest 

model using basic soil test parameters (soil test potassium [STK], pH, cation exchange 

capacity [CEC], and soil organic matter [SOM]), plus texture (sand, silt, and clay), 

permanganate oxidizable carbon (POXC), and minerals (smectite, illite, kaolinite, 

chlorite, quartz, amphibole, plagioclase, muscovite, K_Feldspar [potassium-containing 

feldspars], and smectite:illite ratio [Smectite_to_Illite]). The lower the mean value and 

minimal depth, the closer the variable was to the root of the decision tree, thus indicating 

higher importance. Also, variables that appear in decision trees more frequently are more 

important. 
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Figure 3.11. Decision tree for the updated critical soil test value (CSTV) of 144 mg kg-1 

soil test potassium (STK), plus incorporation of cation exchange capacity (CEC), soil 

organic matter (SOM), and permanganate oxidizable carbon (POXC). The percentage 

located in the top of each box refers to the frequency of observed yield responses. The 

number located in the bottom of each box refers to the total number of observations that 

meet the previous criteria.  
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CHAPTER 4. GENERAL DISCUSSION 

4.1. ADVANTAGES OF THIS STUDY 

 There were several advantages that this study possessed that will aid in potassium 

(K) fertilizer recommendation development and validation for corn (Zea mays L.), both in 

South Dakota and beyond. First, this study involved extensive field work, with 43 sites 

used for analyzing soil samples, and 35 sites used for measuring corn yield responses. 

This was much higher than a majority of soil test correlation studies previously 

conducted, which have generally used no more than 25 site-years. Precipitation recorded 

during each growing season in this study ranged from 144 mm in 2021 in Hyde County 

(abnormally dry year) to 646 mm in 2021 in Brookings County (abnormally wet year) 

(Table A.1), thus representing a variety of climates and soil moisture regimes. There were 

numerous relationships determined in literature between clay mineralogy, K fixation, and 

moisture. Therefore, evaluation across several growing seasons with differing 

precipitations was crucial for examining all angles of these relationships. Sites also 

differed considerably in other weather parameters, soil types, and management practices, 

thus allowing for a broad representation throughout South Dakota.  

 A second advantage of this study was that that all data was uniformly transformed 

into relative yields to bring every site to a common scale. This was necessary because of 

the aforementioned variations noted throughout all sites. Thus, corn yield potential was 

not the same from one site to another. For a couple sites, maximum yields were <4,000 

kg ha-1, while another site exceeded 16,000 kg ha-1, a four-fold difference. To accurately 

compare the impacts of K fertilization on yield, these sites needed to be evaluated on a 

relative yield basis. The use of relative yields should also be applied to other agronomic 
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studies in the agricultural industry. Additionally, the use of a relative yield to compare 

sites allows for easier comparisons between other soil test correlation studies.  

 Another advantage that this study presented was the evaluation of these trials on 

commercial operations. While this study did utilize the South Dakota Agricultural 

Experiment Station for implementation of a few trials, a majority were conducted directly 

on the fields of corn producers throughout central and eastern South Dakota. This had 

two benefits within itself. First, it allowed for greater representation across South Dakota, 

as this study was not limited to the few university research stations throughout the state. 

Second, it provided opportunities to show producers that these studies can be replicated 

and implemented directly on their operations. Furthermore, this study demonstrated that 

K fertilizer applications do not always guarantee a yield response, especially when soil 

test potassium (STK) levels exceed 144 mg kg-1. Communicating results like this directly 

to the producer is much more effective when it is conducted within their own fields.  

 Lastly, an over-arching advantage that this study provided was the attention to 

detail with respect to the clay mineralogy component of this research. Very few studies 

have conducted a comprehensive analysis between clay mineralogy, K, and other 

traditional soil test parameters. For researchers that did evaluate these relationships, this 

study offers validation. A large portion of the costs associated with this study were used 

for mineralogy analysis, not only to look at other minerals beyond conventional 

phyllosilicates, but to provide enough replicate data to perform sufficient statistical 

measurements.  
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4.2. LIMITATIONS OF THIS STUDY 

 While this study was overall very successful, a few limitations should be noted. 

One of the most prominent limitations was a lack of field trials conducted on soils with 

low and very low STK levels. The Covid-19 pandemic indirectly caused several logistical 

issues during the 2020 growing season, but for the other years, the inability to locate 

severely K-deficient soils was simply due to the fact that most soils in South Dakota are 

naturally high in K. Overall, this made it difficult to completely evaluate relationships 

with relative yield and soil test parameters in soils that are extensively lower than the 

current South Dakota critical soil test value (CSTV) of 160 mg kg-1. This was especially 

problematic for linear- and quadratic-plateau models, as the lack of observations below 

100 mg kg-1 resulted in initial slopes being relatively flat. Therefore, one of the tactics 

used to compensate for that was forcing each model plateau model to start at the origin of 

the y-axis.  

 Another limitation of this study was an inconsistency in the soil tests analyzed 

across each year. For example, for all 35 site-years in Chapter 3, common physical, 

chemical, biological, and mineral parameters were tested at the 0-15 cm depth (Table 

2.5). The analysis of these variables began at the beginning of this study, but as time 

progressed, more pertinent variables were added in subsequent years, including water-

soluble K, total K, Mehlich-III extractable K (Mehlich, 1984), Haney H3A-1 extractable 

K (Haney et al., 2010), and soil respiration. Samples were also collected from depths of 

0-10, 15-30, and 30-60 cm in subsequent years. Although those variables and sampling 

depths could be useful for further studying relationships with STK and corn yield 

response, the inconsistency across each year led to their exclusion from analysis in 

Chapter 3. In Chapter 2, water-soluble K and total K were included in analyses of 
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variance (ANOVA) and regression modeling, but missing data from those two variables 

prevented inclusion in the random forest algorithm.   

 Finally, soil samples collected and field trials conducted in this study, although 

numerous, were concentrated in specific areas of the state, as opposed to being spread 

out. For example, soil samples in Chapter 2 were collected from the same counties 

multiple times (Brookings, Clay, Minnehaha, Roberts, and so forth), but many other 

counties in eastern South Dakota were excluded. The main issue that this caused was 

prevention of clay mineralogy from being uniformly mapped for all of eastern South 

Dakota, as soil samples were not collected from several counties. However, when 

interpreting the clay mineralogy data, it was revealed that some of these sites close to 

each other differed considerably in the smectite:illite ratio. For example, in Chapter 2, 

sites 18 (coarse-textured) and 19 (fine-textured) were about 17 km apart, but the soil at 

site 18 was predominately illitic, while the soil at site 19 was predominately smectitic. 

Also, sites 29 (medium-textured) and 30 (fine-textured) were separated by <9 km, but the 

mean smectite:illite ratio was approximately seven times higher at site 30. This implied 

that there were considerable differences in clay mineralogy at a very small scale in South 

Dakota. Therefore, future work to map clay mineralogy in South Dakota should 

emphasize soil characteristics over geographic locations.  

4.3. OVERALL CONCLUSIONS 

 The overall objectives of this study were to 1) evaluate relationships among clay 

mineralogy, STK, and other common soil test parameters, and 2) use those relationships 

to improve K fertilizer recommendations for South Dakota. This was accomplished using 

extensive field work throughout central and eastern South Dakota, various laboratory 
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methods to analyze soil test parameters, and several statistical tools. The ultimate goal of 

this study was to validate K fertilizer recommendations to provide South Dakota farmers 

with accurate and updated guidelines to make financially and environmentally sound 

decisions.  

 A correlation matrix and random forest model showed that of the various soil 

parameters analyzed, STK had the strongest relationship with the smectite:illite ratio. 

Linear- and quadratic-plateau modeling showed that the smectite:illite ratio was highest 

at low STK levels and decreased until approximately 225 mg kg-1. Above 225 mg kg-1, 

the smectite:illite ratio remained constant around 1.5. This suggested that soils in South 

Dakota that are high in STK (>225 mg kg-1) contain a lower proportion of smectites than 

illites. The smectite:illite ratio further influenced relationships between STK and other 

common soil parameters, with lower STK predictions for highly smectitic (>4.5 

smectite:illite ratio) soils compared to illitic (<1 smectite:illite ratio) and smectitic (>1 

but <4.5 smectite:illite ratio) soils. While most linear regressions were positive regardless 

of clay mineralogy, the relationship between STK and pH in highly smectitic soils was 

negative. While random forest modeling found STK, pH, cation exchange capacity 

(CEC), soil organic matter (SOM), and clay content to be slightly more accurate than 

STK alone for predicting the smectite:illite ratio, STK by itself was deemed the simplest 

method for estimating the smectite:illite ratio. Overall, clay mineralogy, specifically the 

smectite:illite ratio, influenced STK and other soil parameters, and therefore had the 

potential to improve K fertilizer recommendations.  

 Seven nonlinear regression models similarly fit the dataset (Aikaike information 

criterion [AIC] range = 1.54), but their associated CSTV range was wide (111-196 mg 
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kg-1). Five of the seven models correctly predicted responsiveness to K fertilization 63-

64% of the time, but the range of CSTVs was still wide (111-157 mg kg-1). Therefore, 

model averaging (Cate-Nelson analysis, linear-plateau, and quadratic plateau forced 

through the y-axis origin) determined that the optimal CSTV for South Dakota K 

fertilizer recommendations should be 144 mg kg-1, which was 16 mg kg-1 less than the 

current CSTV. In addition to this CSTV, other soil test variables were found to be 

important predictors of responsiveness to K fertilization. While clay mineralogy variables 

were not identified as important predictors of yield responsiveness using random forest 

modeling, CEC, SOM, and permanganate oxidizable carbon (POXC), along with STK 

(CSTV = 144 mg kg-1), improved prediction accuracy from 62% to 72% compared to 

using STK alone (CSTV = 160 mg kg-1). In summary, the CSTV for South Dakota should 

be reduced to 144 mg kg-1 STK, and CEC, SOM, and POXC should be included in K 

fertilizer recommendations to further improve accuracy.  

 This study demonstrated the need to validate K fertilizer recommendations in 

South Dakota. Higher yield response prediction accuracy could be achieved if the CSTV 

is reduced from 160 to 144 mg kg-1 STK. Inclusion of other variables such as CEC, 

POXC, and SOM were also found to be beneficial for recommendations. Although clay 

mineralogy could not confidently be incorporated into K fertilizer recommendations, this 

study revealed that there were relationships between the smectite:illite ratio and STK. 

Furthermore, the smectite:illite ratio influenced how STK interacts with other soil test 

variables, including water-soluble, total K, CEC, pH, and clay content. Future work 

should aim to extrapolate data to digital mapping of clay mineralogy throughout South 

Dakota, which would be beneficial to various stakeholders in the agricultural sector. In 
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conclusion, this study both updated current K fertilizer recommendations and offered 

exploratory insights for measuring clay mineralogy, STK, and corn yield response 

relationships.   
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APPENDIX 

Table A.1. Climate data for the 35 field trials in described in Chapter 3 (South Dakota 

Mesonet, 2023). 

Site Year 

Climate 

Class† 

Nearest South Dakota 

Mesonet Station (County) 

Total 

Precipitation‡ 

Mean Air 

Temperature ‡ 

    mm °C 

1 2020 Dwa Gettysburg (Potter) 267 18 

2 2020 Dfb Bowdle (Edmunds) 195 19 

3 2021 Dwa Gettysburg (Potter) 193 19 

4 2021 Dwa Gettysburg (Potter) 193 19 

5 2019 Dfb Webster (Day) 514 17 

6 2019 Dfb Webster (Day) 514 17 

7 2021 Dfb Webster (Day) 316 19 

8 2021 Dfb South Shore (Codington) 362 19 

9 2022 Dfb South Shore (Codington) 264 18 

10 2019 Dfa Colton (Minnehaha) 596 18 

11 2019 Dfb Oak Lake (Brookings) 646 17 

12 2019 Dfa Colton (Minnehaha) 596 18 

13 2020 Dfb Volga (Brookings) 366 19 

14 2020 Dfa Colton (Minnehaha) 220 19 

15 2020 Dfa Baltic (Minnehaha) 275 19 

16 2021 Dfa White Lake (Aurora) 260 21 

17 2021 Dfa Baltic (Minnehaha) 303 20 

18 2021 Dfa Baltic (Minnehaha) 303 20 

19 2021 Dfb Volga (Brookings) 242 19 

20 2022 Dfb Brookings (Brookings) 289 21 

21 2022 Dfb Oak Lake (Brookings) 342 19 

22 2022 Dfb Brookings (Brookings) 289 21 

23 2022 Dfa Baltic (Minnehaha) 285 19 

24 2020 Dfa Beresford (Clay) 224 20 

25 2021 Dfa Beresford (Clay) 298 21 

26 2021 Dfa Parkston (Hutchinson) 233 21 

27 2021 Dfa Parkston (Hutchinson) 233 21 

28 2021 Dfa Beresford (Clay) 298 21 

29 2020 Dfa Hamill (Tripp) 319 20 

30 2020 Dfa Hamill (Tripp) 319 20 

31 2021 Dfa Hamill (Tripp) 298 21 

32 2021 Dfa White Lake (Aurora) 260 21 

33 2021 Dfa Highmore (Hyde) 144 20 

34 2022 Dfa White Lake (Aurora) 156 20 

35 2022 Dfa White Lake (Aurora) 156 20 
† Köppen classification: Dfa, hot-summer humid continental without a dry season; Dwa, hot-summer 

humid continental with a dry winter; Dfb, warm-summer humid continental without a dry season 

‡ Recorded from May 1 to September 30 
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Table A.2. Citations for seed varieties planted in the field trials in Chapter 3.  

Trade Name Company 

Ag Performance Ag Performance, Buffalo Center, IA 

AgVenture Corteva Agriscience, Indianapolis, IN 

Channel Bio Bayer CropScience, St. Louis, MO 

DEKALB Bayer CropScience, St. Louis, MO 

Golden Harvest Syngenta, Greensboro, NC 

Integra Wilbur-Ellis Agribusiness, Aurora, CO 

LG Seeds AgReliant Genetics, Westfield, IN 

NC Plus NC Plus, Kentland, IN 

NK Syngenta, Greensboro, NC 

Pioneer  Corteva Agriscience, Indianapolis, IN 

Renk Seed Renk Seed, Sun Prairie, WI 
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Table A.3. Soil classification information (Soil Survey Staff, 2023a, 2023b).   

Soil Series Taxonomic Class 

Aastad Fine-loamy, mixed, superactive, frigid Pachic Argiudolls 

Agar Fine-silty, mixed, superactive, mesic Typic Argiustolls 

Blendon Coarse-loamy, mixed, superactive, mesic Pachic Haplustolls 

Bonilla Fine-loamy, mixed, superactive, mesic Pachic Haplustolls 

Bowbells Fine-loamy, mixed, superactive, frigid Pachic Argiustolls 

Brandt Fine-silty, mixed, superactive, frigid Calcic Hapludolls 

Brookings Fine-silty, mixed, superactive, frigid Pachic Hapludolls 

Chancellor Fine, smectitic, mesic Vertic Argiaquolls 

Clarno Fine-loamy, mixed, superactive, mesic Typic Haplustolls 

Crofton Fine-silty, mixed, superactive, calcareous, mesic Udic Ustorthents 

Crossplain Fine, smectitic, mesic Typic Argiaquolls 

Davison Fine-loamy, mixed, superactive, mesic Aeric Calciaquolls 

Dickey Sandy over loamy, mixed, superactive, frigid Calcic Hapludolls 

Dudley Fine, smectitic, mesic Typic Natrustolls 

Egan Fine-silty, mixed, superactive, mesic Udic Haplustolls 

Esmond Coarse-loamy, mixed, superactive, frigid Typic Calciudolls 

Estilline 
Fine-silty over sandy or sandy-skeletal, mixed, superactive, frigid Calcic 

Hapludolls 

Ethan Fine-loamy, mixed, superactive, mesic Typic Calciustolls 

Fordville 
Fine-loamy over sandy or sandy-skeletal, mixed, superactive, frigid 

Pachic Hapludolls 

Hand Fine-loamy, mixed, superactive, mesic Typic Haplustolls 

Heimdal Coarse-loamy, mixed, superactive, frigid Calcic Hapludolls 

Henkin Coarse-loamy, mixed, superactive, mesic Udic Haplustolls 

Houdek Fine-loamy, mixed, superactive, mesic Typic Argiustolls 

Kranzburg Fine-silty, mixed, superactive, frigid Calcic Hapludolls 

Millboro Fine, smectitic, mesic Typic Haplusterts 

Mobridge Fine-silty, mixed, superactive, mesic Pachic Argiustolls 

Moody Fine-silty, mixed, superactive, mesic Udic Haplustolls 

Nora Fine-silty, mixed, superactive, mesic Udic Haplustolls 

Peever Fine, smectitic, frigid Vertic Argiudolls 

Poinsett Fine-silty, mixed, superactive, frigid Calcic Hapludolls 

Prosper Fine-loamy, mixed, superactive, mesic Pachic Argiustolls 

Renshaw 
Fine-loamy over sandy or sandy-skeletal, mixed, superactive, frigid 

Calcic Hapludolls 

Sioux Sandy-skeletal, mixed, frigid Entic Hapludolls 

Sisseton Coarse-loamy, mixed, superactive, frigid Typic Eutrudepts 

Svea Fine-loamy, mixed, superactive, frigid Pachic Hapludolls 

Tetonka Fine, smectitic, mesic Argiaquic Argialbolls 

Trent Fine-silty, mixed, superactive, mesic Pachic Haplustolls 

Venagro Fine-loamy, mixed, superactive, frigid Calcic Hapludolls 

Waubay Fine-silty, mixed, superactive, frigid Pachic Hapludolls 

Williams Fine-loamy, mixed, superactive, frigid Typic Argiustolls 

Wentworth Fine-silty, mixed, superactive, mesic Udic Haplustolls 
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