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ABSTRACT 

BUILDING NO-TILLAGE MAIZE NITROGEN RECOMMENDATION ALGORITHM 

THAT CONSIDERS IMPROVEMENTS IN SOIL HEALTH  

DWARIKA BHATTARAI  

2023 

   In long-term no-till fields, farmers have reported that less N is required to 

optimize maize (Zea mays L.) yields in long term no-tillage fields than conventional 

tillage fields. These reductions may be attributed to improved soil health resulting from 

increasing soil organic matter, higher soil microbial activities, and improved water and 

nutrient use efficiency. However, the impact of soil health measurements on fertilizer-N 

requirement has not been determined. The objective of this dissertation was to compare 

different regional N recommendation models to measured values and develop a maize 

fertilizer-N recommendation model, using machine learning approaches, that includes 

adjustments based on soil health measurements. The research was conducted for three 

years at 16-dryland sites that were under no-tillage practice for at least 6-years. The effect 

of six N rates (0, 45, 90, 135, 180, and 224 kg N ha-1) on maize grain yield was 

evaluated. Soil samples for nitrate-N (NO3-N), ammonium-N (NH4-N), pH, EC, and 

phospholipid fatty acid (PLFA) were collected from various depths before planting and 

after harvest. Climate variations influenced the maize yield across experimental sites. 

Comparison of error rates and bias showed that at lower cost/value ratios the current 

South Dakota and North Dakota N models had lower error rates and biases than models 

used in Nebraska, Iowa, and Minnesota.  Further, using soil health measurements the 

support vector machine (SVM) algorithm outperformed several other machine learning 

algorithms for forecasting the soil yield potential. The top five predictor variables were 



xii 
 

total N, total C, growing degree days (GDD), soil microbial biomass, and bacterial 

biomass. The overall findings from this study suggested that soil organic C, total N, 

inorganic N, soil microbial biomass in addition to the climate variables, rainfall, and 

temperature, can be used to predict the soil yield potential. 
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STATEMENT OF PROBLEM 

Agricultural practices focusing on maximizing crop yield has the potential to 

negatively impact the soil and the environment. We believe that these risks can be 

reduced by adopting climate-smart practices.  This dissertation is focused on the 

development of climate smart practices for no-tillage soils located in a semiarid frigid 

soil.  Common climate smart practices include reducing the tillage intensity, planting 

cover crop, and adoption a 4R nutrient fertilizer approach.  The 4R nutrient approach 

includes applying the right fertilizer, at the right, using the right product, at the right time, 

at the right place.  This project is focused on the right rate.   

The overuse of N fertilizers can cause soil acidification, nutrient imbalances, soil 

erosion, and water pollution. The over application of N fertilizer contributes to 

greenhouse gas (GHG) emissions, further exacerbating climate change (Thies et al., 

2020; Bhattarai et al., 2021; Sainju et al., 2019).  The impact of climate change is not 

observed evenly across the globe but is often focused on people who are least able to 

manage the problem. Therefore, the challenge is to develop an N recommendation system 

that considers soil health and ecosystem services while maintaining crop productivity at 

lower costs.  

No-tillage systems mainly rely on organic matter decomposition and nutrient 

cycling to maintain soil fertility, making it important to consider the current soil nutrient 

status and crop requirements before applying any fertilizer. Therefore, N fertilizer 

recommendation in no-till systems differs from the conventional farming systems and can 

be a more challenging task. No-tillage can be separated into two-time frames, transition, 

and long-term systems.  During the transition period soil organic matter increases and it 
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can often require more N than conventional system.  However, different results may be 

observed in long-term systems and require less N fertilizer than conventionally tilled 

systems.  This N rate reduction may be attributed to several factors including: 1) reduced 

N loss from leaching and volatilization, 2) improved soil organic C and fertility thereby 

enhancing nutrient cycling, 3) reduced soil compaction due to better root growth, and 4) 

the retention of crop residues on the soil surface that helps to conserve soil moisture, 

reduce soil erosion, and improve fertilizer efficiency (St. Luce et al., 2021; Blanco-

Canqui & Ruis, 2018).  Globally, agronomists have struggled with optimizing yields and 

minimizing N rates.  One approach for achieving this goal is to consider management 

induced changes in soil health.  Classical soil health measurements include measures of 

soils physical, chemical, and biological properties.  For example, water infiltration, 

biological activity, and soil organic matter. To date, integrated soil health information 

that combines physical, chemical, and biological properties has not been integrated into 

state-based N recommendation guideline in central US (Clark, 2019; Franzen, 2018; 

Kaiser et al., 2022). Preliminary research data from North Dakota and producer 

interviews suggests that as a soil transitions from a cultivated to a no-tillage system 

produces changes in soil health that can result in the amount of N needed to economically 

optimize yields.  However, a scientific justification for this N rate reduction has not been 

identified. This research focuses on two main objectives, 1) to validate if the regional N 

recommendation models are appropriate for long-term no-till corn N recommendations, 

and 2) to use machine learning approaches to predict the soil yield potential considering 

various soil health measurements as the predictor variables. 
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CHAPTER 1: ARE THE REGIONAL N RECOMMENDATION MODELS 

APPROPRIATE FOR LONG-TERM NO-TILL MAIZE? 

ABSTRACT 

 The current maize (Zea mays, L.) nitrogen (N) recommendation model in South 

Dakota (SD) is based on the yield goal approach, which is easy to understand but requires 

modifications considering climatic variations, and fertilizer and maize grain price to 

adjust in the cropping systems of semi-arid regions of SD. Research is required to 

determine the best regional N recommendation model that fits in the frigid soils with sub-

humid to semi-arid moisture regime of SD. The objective of this study was to compare 

maize N fertilizer algorithms on their ability to predict N recommendation in long-term 

no-tillage fields located in frigid semi-arid environment. The research was conducted for 

three years at 16-dryland sites that were under no-tillage practice for at least 6-years. The 

effect of six N rates (0, 45, 90, 135, 180, and 224 kg N ha-1) on maize grain yield was 

evaluated and the economic optimum N rates were calculated at N-to-maize price ratios 

of 4.11, 5.48, 6.85, and 8.23. Maize yield was influenced by climatic variations at 

different locations. Comparison of error rates and bias showed that at 4.11 price ratio the 

current SD N model had lower error rate and bias than models used in Eastern North 

Dakota (ND), Nebraska, Iowa, and Minnesota. At the price ratio of 4.11, EONR and the 

current SD N model recommended the same amount of N, 174 kg N ha-1. However, 

price-based adjustments to the current SD N recommendation model were recommended. 
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INTRODUCTION 

 Developing a universal maize (Zea mays L.) N model has challenged soil 

scientists and agronomists for many years (Morris et al., 2018; Rodriguez et al., 2019; 

Tremblay et al., 2012). One of the early attempts at managing N fertilizers was the use of 

the yield goal model (Equation 1). However, this model, while easy to understand, had 

several basic flaws that included not accounting for changes in soil health, tillage, soil 

organic C, available water, climatic conditions, differential mineralization, and price of 

fertilizer or selling price of the product (Kim et al., 2008). This basic model is,  

N Recommendation = constant × Yield Goal – N credits  (1) 

In equation (1), the constant ranges from 18 to 26.8 kg N Mg-1 maize grain, and N credits 

include soil NO3-N, N from previous legume crops, and N in the irrigation water. 

Agronomists have proposed numerous modifications of this model since the 1970s 

(Morris et al., 2018).  The most common modification is to consider the potential of the 

soil to mineralize N.  Most widely adopted N models do not consider the N 

mineralization potential as a credit for many reasons including: 1) the models are too 

complicated, 2) chemical extraction procedures do not provide consistent results across 

sites and years and 3) the methods are not easily integrated into commercial soil testing 

laboratories.   

 The second component of equation 1 that has been widely discussed is the yield 

goal.  Research shows that there is often a poor correlation between the yield goal and the 

economic optimum N rate (Morris et al., 2018; Andraski & Bundy, 2002; Fox & 

Piekielek, 1987; Lory & Scharf, 2003). These poor correlations are attributed to not 

considering the economic constraints and the model’s inability to consider soil and 



5 

climatic variation. In addition, equation 1 does not correlate with the N provided by soil, 

fertilizer and maize costs, changes in fertilizer use efficiency, and it suggests that simply 

increasing the N rate will increase the yield (Sawyer et al., 2006).  Due to these and other 

limitations of the yield goal-based approach, many soil scientists and agronomists are 

replacing or modifying the approach. For example, Iowa replaced the yield goal approach 

with the maximum return to N (MRTN) approach, whereas Nebraska integrated organic 

matter into the algorithm.  Numerous other states have integrated the cost of fertilizer and 

value of product into the calculations.  Given the wide variability in models used to 

predict N recommendations, research is needed to determine what type of model is best 

suited for a region that contains frigid soils and moisture that varies from subhumid to 

semiarid. Therefore, the objective of this study was to compare maize N fertilizer 

algorithms on their ability to predict N recommendation in long-term no-tillage fields 

located in frigid semi-arid environment.   

MATERIAL AND METHODS 

Experimental details 

On farm experiments were conducted in 2019, 2020, and 2021.  The study sites 

were in long-term no-till farmer’s fields (>6 years no-till). Over three years, the 

experiment was conducted in 16 dryland sites located at six different counties of South 

Dakota (Figure 1-1). All locations are characterized as a hot summer humid continental 

climate (Köppen climate: Dfa). Out of 16 sites, one site was planted to maize following 

fallow, two sites were seeded following livestock grazing, two sites were seeded 

following a winter cover crop, four sites were seeded to maize following soybean 

(Glycine max L.), and seven sites were seeded to maize following winter wheat (Triticum 
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aestivum L). Agronomic details including the planting dates, harvest dates, maize 

varieties, previous crops, and plant population of each site are shown in Table 1-1. 

 

Figure 1- 1: The map of South Dakota highlighted with the counties where field 
experiments were conducted from 2019-2021. Each color in the legend represents the 
experimental field names with the different years of experiment.  
Source: https://www.mapchart.net/usa-counties.html 

The experimental design was a randomized complete block design (RCBD) with 

four N rates (28, 84, 140, and 196 kg N ha-1) in 2019 and six N rates (0, 45, 90, 134, 179, 

and 224 kg N ha-1) in 2020 and 2021.  The experiments contained four blocks and urea 

(46-0-0) was the fertilizer source.  Nitrogen treatments were manually broadcast applied 

between the V2 and V4 maize growth stages. Each plot had dimensions of 15.24 × 4.6 m 

(50 ft × 15 ft). Based on initial soil test values phosphorus and K fertilizers were applied 

(Clark, 2019; Supplementary Table 1). 

https://www.mapchart.net/usa-counties.html
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Baseline soil samples from four blocks were collected from four depths (0-5, 5-

15, 15-30, and 30-60 cm) before planting maize and before the treatment application at 

each site. Plant residues on the soil surface were carefully removed and the samples were 

randomly collected from 15-20 random spots within each block using a standard soil 

probe with 1.9 cm inner diameter. Soil samples, for each depth per block, were mixed 

thoroughly, air-dried to a constant weight, and sieved through 2-mm mesh before soil 

analyses. Soil inorganic N, nitrate-N (NO3-N) and ammonium-N (NH4-N), were 

extracted using 1M KCl (1:10 soil to KCl ratio) (Kim et al., 2008), quantified by 

cadmium reduction method (Clark et al., 2019) analyzed using Astoria Analyzer 

(Astoria-Pacific).  

Maize was seeded with no-tillage planters and most sites had 75 cm row spacing. 

However, there were several sites that deviated from this convention.  For example, the 

BJC site in 2020 was planted with a 150 cm row spacing and a cover crop mixture was 

seeded at the maize V3 growth stage.  The cover crop mixture at this site were oats 

(Avena sativa, L., 13 kg ha-1), flax (Linum usitatissimum, L., 2.2 kg ha-1), mung bean 

(Vigna radiata, L., 4.5 kg ha-1), guar (Cyamopsis tetragonoloba, L. 2.2 kg ha-1) and red 

clover (Trifolium pratense var. sativum (Schreb.), 1.1 kg ha-1). In addition, a narrow row 

spacing (50 cm) was used at the Hughes County sites.  

Maize ears and stover were hand-harvested from 9.29 m2 area marked from the 

center of each plot.  Based on these values plant populations, harvest indexes, and corn 

yields at 15.5% moisture were determined. 
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Table 1- 1. Agronomic information including planting and harvest date, corn varieties 
and their maturity days, previous crops, and plant population of different experiment sites 
across the experiment years, 2019-2021. 

Field 
name Counties Planting 

Date 
Harvest 

Date 

Maize 
Maturity 

Days 

Previous 
crop(s) 

Plant 
population 

(per ha) 
BJO19 Tripp 5/15/2019 10/19/2019 106 Wheat 60500 

DFO19 Potter 5/14/2019 10/08/2019 101 Wheat 62000 

DHO19 Edmunds 5/26/2019 10/14/2019 88 Soybean 65000 

DLD19 Hughes 5/15/2019 10/15/2019 105 Wheat 52000 

SCA19 Kingsbury 5/16/2019 10/18/2019 97 Soybean 79000 

BJC20 Tripp 4/29/2020 10/01/2020 99 Wheat 60500 

BJO20 Tripp 4/29/2020 10/01/2020 100 Wheat 60500 

DFO20 Potter 5/11/2020 10/06/2020 96 Wheat 62000 

DLD20 Hughes 4/30/2020 9/26/2020 99 Oats + 
Barley 52000 

SCA20 Kingsbury 4/27/2020 10/08/2020 97 Soybean 79000 

BJO21 Tripp 5/3/2021 10/18/2021 99 
Wheat-
fallow-

livestock 
59000 

BSP21 Hand 5/4/2021 10/5/2021 102 Fallow 69000 

DFC21 Potter 5/4/2021 10/18/2021 101 Cover 
crops mix 65500 

DFO21 Potter 5/5/2021 10/12/2021 102 
Wheat-
fallow-

livestock 
64000 

DLD21 Hughes 5/6/2021 10/7/2021 100 Wheat 86500 

SCA21 Kingsbury 4/30/2021 9/28/2021 105 Soybean 79000 
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Nitrogen fertilizer response and EONR calculations 
 

The delta yield values were calculated to assess the improvement in N 

recommendation tool using the equation,  

𝑁𝑁 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑌𝑌0𝐸𝐸    (2) 

Where  YEONR is the maize yield at the EONR and Y0N is the maize yield when N was not 

applied (Kim et al., 2013; Lory & Scharf, 2003). The yield at EONR was calculated at the 

fertilizer-to-maize price ratio of 4.11. The correlation of delta yield was calculated with 

the EONR and the maize yield. 

Economic optimum N rates were calculated using quadratic and quadratic-plateau 

models using PROC GLM and PROC NLIN procedures, respectively, in SAS Studio 

(v3.8, Enterprise Edition, SAS Institute Inc., Cary, NC, USA). The best model with the 

lower root mean squared error (RMSE) was selected for further calculations. Economic 

optimum N rate is the point where the last increment of fertilizer provides a yield 

increase that can pays for the additional amount of fertilizer applied (CNRC, 2022). Both 

models were developed by plotting maize yield (kg ha-1) against applied N rates (kg N ha-

1), excluding the 0 N rate to exclude the possible bias. The EONRs were calculated using 

the first derivative of the selected model and fertilizer cost-to-maize price ratios (4.11, 

5.48, 6.85, and 8.23) using a maize price of US$262 Mg-1 grain at 15.5% moisture and N 

fertilizer (Urea) costs of US$450 ton-1, US$600 ton-1, US$750 ton-1, and US$900 ton-1, 

respectively. The fertilizer-to-maize price ratios considered were  0.075, 0.10, 0.125, and 

0.15 (Kaiser et al., 2022). The EONR values were calculated using the equation,  

𝐸𝐸𝐸𝐸𝑁𝑁𝐸𝐸 =
$/(𝑘𝑘𝑘𝑘 𝑁𝑁 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

$/(𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐 𝑘𝑘𝑓𝑓𝑔𝑔𝑓𝑓𝑐𝑐) −𝑏𝑏

2𝑐𝑐
                                    (3) 
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Where EONR is economic optimum N rate (kg N ha-1), $/ (kg of N) is cost of N (46% of 

Urea fertilizer cost), $/ (kg maize grain) is selling price of maize, b is the linear 

coefficient, c is the quadratic coefficient from the models. The economic optimum yield, 

also written as the yield at EONR, was calculated by substituting the EONR in the 

quadratic and quadratic-plateau models and solving the equation (Bhattarai et al., 2021). 

Nitrogen recommendation algorithms 
 

Across experimental sites, the EONRs for no-till maize were calculated using 

existing algorithms that are used in South Dakota, North Dakota (ND), Western 

Minnesota, Iowa, and Nebraska. The South Dakota N recommendation (NR; kg N ha-1) 

model is,  

𝑁𝑁𝐸𝐸 = 𝑘𝑘 × 𝑌𝑌𝑌𝑌 − 𝑆𝑆𝑆𝑆𝑁𝑁 − 𝐿𝐿𝐿𝐿           (4) 

In equation (4), YG is the yield goal (Mg ha-1), k is 21.4 kg N Mg-1 grain for the historic  

model, STN is the amount of NO3-N (kg N ha-1) at 0-to-60 cm soil depth, and LC is the 

previous legume crop credit (44 kg N ha-1) (Clark, 2019). An updated N recommendation 

model for South Dakota has reduced the value of k from 21.4 to 17.86 kg N Mg-1 grain 

(Clark, 2023). The yield goal was 11.29 Mg ha-1, which was determined as the average 

yield across experimental sites at the maximum N fertilizer rate. North Dakota N 

recommendation model has updated the N recommendation model to the MRTN 

approach from yield goal approach (Franzen, 2018). Nitrogen recommendation model in 

ND is classified as East ND and West ND approaches for long-term no-till systems. The 

ND N recommendation model includes soil test N at 0-to-60 cm soil depth and organic 

matter content (https://www.ndsu.edu/pubweb/soils/corn/). 

 The Western Minnesota recommendation model is, 

https://www.ndsu.edu/pubweb/soils/corn/
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𝑁𝑁𝐸𝐸 = (𝑀𝑀𝐸𝐸𝑆𝑆𝑁𝑁 𝑓𝑓𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 ∕ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟) − 0.60 × 𝑆𝑆𝑆𝑆𝑁𝑁 − 𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑟𝑟𝑟𝑟 𝑁𝑁 (5) 

where the MRTN for maize/maize is the fertilizer-N requirement based on the N 

cost/crop price ratio, and STN is the amount of NO3-N (kg N ha-1) contained in the 0-60 

cm soil depth (Kaiser et al., 2022), and irrigation N is the N applied by the irrigated 

water. Based on the Minnesota model, the MRTN for the 4.11, 5.48, 6.85, and 8.23 

fertilizer-to-maize price ratios were 213, 196, 185, and 174 kg N ha-1.  

The Iowa N recommendation algorithm used the MRTN approach., that does not  

consider preseason soil NO3-N. Based on Sawyer et al. (2006), the recommendations for 

maize-maize rotations were 188, 175, 165, and 155 kg N ha-1 and the recommendations 

for maize-soybean rotations were 135, 125, 118, and 110 kg N ha-1 for the 4.11, 5.48, 

6.85, and 8.23 fertilizer-to-maize price ratios, respectively.  The Nebraska N 

recommendation algorithm was,  

𝑁𝑁𝐸𝐸 = [39 + 21.4 × 𝑌𝑌𝑌𝑌 − 2.505(𝑌𝑌𝑌𝑌×𝐸𝐸𝑂𝑂)
10

− 9(𝑁𝑁𝐸𝐸3 − 𝑁𝑁) − 𝐿𝐿𝐿𝐿 −

𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑟𝑟𝑟𝑟 𝑁𝑁]𝑓𝑓𝐴𝐴 × 𝑓𝑓𝐸𝐸 (6) 

Where, YG was the yield goal (Mg ha-1), OM is the organic matter content (up to 30 g 

OM kg-1), NO3-N was the average amount of nitrate-N contained in the surface 120 cm (3 

mg kg-1 soil was considered for the 60 to 120 cm NO3-N content), LC was the soybean 

credit (50 kg N ha-1), fA was the correction factor for application time, and fR was the 

correction factor for the maize/N price ratio (Shapiro et al., 2019). 

Statistical Analysis 
For each model, the root mean square error (RMSE) and bias were calculated 

using equations 7 and 8, respectively. 
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𝐸𝐸𝑀𝑀𝑆𝑆𝐸𝐸 =  �∑ (𝑥𝑥�𝑓𝑓−𝑥𝑥𝑓𝑓)2𝑐𝑐
𝑓𝑓=1

𝑛𝑛
                  (7) 

𝐵𝐵𝑚𝑚𝑚𝑚𝑟𝑟 =  ∑  (𝑥𝑥�𝑓𝑓−𝑥𝑥𝑓𝑓)𝑐𝑐
𝑓𝑓=1

𝑛𝑛
                       (8) 

 

In equations 7 and 8, n is the number of comparisons, i is which individual sample, xi 

means the measured EONR values, and 𝑥𝑥�𝑖𝑖 is the mean of the measured N 

recommendations. A positive bias value indicates that the model overestimated the N 

recommendation while a negative bias indicated that the model underestimated the N 

requirements. 

RESULTS AND DISCUSSION 

Rainfall and Temperatures 

In frigid semiarid environments, it is likely that yields will be reduced by cool and 

drought conditions during some stage on growth.  Generally, corn yield is most sensitive 

to drought during reproductive stages is most resistant to cool conduction conditions 

early in the growing season and least able to manage drought conductions during 

reproductive growth stages and least sensitive as the plant approaches the R6 growth 

stage. To address seasonal differences, the climate data was separated into prior to 

tasseling and the entire growing season. 

Rainfall and growing degree days (GDD, based on 10 ºC) varied by year and site 

(Table 1-2).  In South Dakota, generally requires 780 growing degree days by silking and 

1390 days by maturity for corn with a maturity rating of 100 days.  In all three years, 

GDD were less than 1390 in 2019 (1280) and greater than 1390 in 2019, (1633) and 2020 

(1491).  It is likely that low temperatures reduced yields in 2019. 
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The seasonal cumulative precipitation at corn at black layer was higher in 2019 

than 2020 and 2021. However, slightly different results were observed at the tasseling 

stage when precipitation was less in 2021 than 2019 and 2020. It is likely that the limited 

precipitation prior to tasseling in 2021, reduced yields.  One approach that has been used 

to increase yields in water stressed systems is called the skip row approach.  In this 

approach, the seeding rate within a field remains the same but the row width increases.  

This approach has been used to increase the amount of stored soil moisture during the 

early growth stages.  

Table 1- 2: Pre-planting water depth at 0-to-60 cm soil depth (cm), cumulative rainfall 
(cm) from planting to tasseling and harvesting stages, and cumulative GDDs from 
planting to harvesting across different experimental sites, 2019-2021. The GDDs were 
calculated using the base temperature of 10 ºC.  

 

Years Sites Counties 
Water 
depth 
(cm) 

Cumulative Rainfall (cm) Cumulative 
GDD 

Tassel Harvest Harvest 

2019 

BJO19 Tripp 19.43 45 69.1 1441 
DFO19 Potter 20.32 28 48.2 1101 
DHO19 Edmunds 15.20 18.5 42.1 1128 
DLD19 Hughes 21.41 12.3 35.2 1389 
SCA19 Kingsbury 14.29 33.8 66.1 1235 

2020 

BJC20 Tripp 26.20 25.7 39.1 1584 
BJO20 Tripp 24.10 25.7 39.1 1584 
DFO20 Potter 19.63 14.9 23.1 1266 
DLD20 Hughes 17.68 17.7 28 1557 
SCA20 Kingsbury 23.20 22.5 42 1398 

2021 

BJO21 Tripp 24.60 8.4 30.8 1812 
BSP21 Hand 20.95 9.1 26.5 1601 
DFC21 Potter 18.97 8.4 27.4 1497 
DFO21 Potter 20.56 8.4 27.4 1492 
DLD21 Hughes 20.38 4.2 23.2 1785 
SCA21 Kingsbury 21.31 7.8 34.6 1460 
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Maize yields across years 

Water availability is one of the key factors influencing maize yields (Kim et al., 

2013; Kim et al., 2008).   Water impacts the plant demand for N and the ability of the soil 

to mineralize N and to transport the inorganic N to the growing plant. Previous studies 

have shown that soil water directly impacts microbial activity and because nitrate moves 

to the root in the transpiration stream, increasing transpiration increases nitrate uptake 

and nitrogen use efficiency (Clay et al., 2006; Clay et al., 1990). Mineralization of 

organic matter, driven by soil microbes and environmental factors, has potential to impact 

the N requirements (Cotrufo et al., 2019).   

 In dryland no-tillage dryland systems, surface residue reduces evaporation and 

increases precipitation use efficiency.  This increased water can result in improved N use 

efficiency.  Other approaches to improve water use efficiency is to reduce the seeding 

rate or use a skip row planting technique.   

 

 

 

 

 

 

 

 

 

Figure 1- 2: Scatter plot showing the relationship between maize yield (Mg ha-1) and 
water use efficiency (Mg cm-1) in the experimental sites across 2019, 2020, and 2021. 
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 In water limited systems, the stomates close to prevent water loss which in turn 

reduce CO2 fixation during photosynthesis.  Across the study sites, there was a strong 

relationship between maize yields and water use efficiency (Figure 1-2).  Generally 

increasing water use efficiency improved maize yields.  The optimum maize yield across 

the dryland sites in 2019, 2020, and 2021 were 11.20, 10.04, and 7.78 Mg ha-1, 

respectively. Lower yields in 2021 were attributed to water stress during grain filling 

(Table 1-2 and Figure 1-2).  

Fertilizer-N responsive and non-responsive sites 

Out of 16 dryland sites, 12 were responsive to the fertilizer-N whereas the other 

four sites were non-responsive to N. Sites that were not responsive to N could be 

attributed to several factors including drought, higher N mineralization rates, high 

seeding rates, and high residual N concentrations (Table 1-1 and Table 1-2).  The 

responsive sites generally had higher yield than the non-responsive sites which increased 

with increasing fertilizer-N (Figure 1-3). Maize yield from the responsive sites revealed 

that there was no yield difference (p=0.066) over years (data not shown); however, the 

yields were lower (p<0.001) in the low rainfall year of 2021(5.54 Mg ha-1) than the 

higher rainfall year of 2020 (8.11 Mg ha-1) in non-responsive sites.   

Although the yields were comparable to the sites that were responsive to N, four 

sites were non-responsive to fertilizer-N (Table 1-3). In 2019, there was enough moisture 

to support maize development (Table 1-1) and mobilize the applied N, which resulted in 

response to N fertilizer. One of the sites in Tripp country was not responsive to N 

fertilizer in 2020.  The lack or response was attributed to the farmer planting an in-season 
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cover crop.   In the Tripp and Potter County sites in 2021 limited rainfall most likely 

limited growth and most likely resulted in the sites being non-responsive to N (Table 1-

1).   Maize yield at the Hughes county sites was responsive despite the low rainfall, 

which can be related to closer row spacing and high plants density compared to other 

sites (Table 1-1). 

 

 

 

 

 

 

 

 

 

Figure 1- 3: Maize yield (Mg ha-1) in response to fertilizer-N (kg ha-1) between 
responsive and non-responsive sites averaged across three years. Each point in the plot 
represents the yield for each site. 

Delta yield correlated to the EONR 

The correlation among the maize yield at EONR, EONR, and delta yield were 

influenced by the fertilizer/maize price ratio (Figure 1-4). The relationship between the 

EONR and the maize yield at EONR were non-significant for all price ratios; however, 

the EONR showed strong positive correlation with delta yield.  These findings were 

 M
ai

ze
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similar to Lory & Scharf (2003) and can help farmers identify if they need to apply more 

fertilizer to produce more maize economically. The EONR for each price ratio was highly 

correlated to delta yield at lower price ratios (4.11 and 5.48) as compared to the higher 

price ratios (6.85 and 8.23). Traditionally, the yield goal approach has been used in the 

corn producing areas of central United States.  However, research suggests that 

modifications are needed (Derby et al., 2005; Kim et al., 2013; Lory & Scharf, 2003). 

Table 1- 3: Maize yield (Mg ha-1) at EONR (price ratio 4.11) with N responsiveness 
across experimental sites, 2019-2021. 

 

 

Years Site Counties Optimum Yield (Mg ha-1) N Response 

2019 

BJO19 Tripp 11.68 Responsive 
DFO19 Potter 14.42 Responsive 
DHO19 Edmunds 10.03 Responsive 
DLD19 Hughes 13.48 Responsive 
SCA19 Kingsbury 13.9 Responsive 

2020 

BJC20 Tripp 7.27 Non-responsive 
BJO20 Tripp 10.69 Responsive 
DFO20 Potter 10.81 Responsive 
DLD20 Hughes 10.65 Responsive 
SCA20 Kingsbury 13.38 Responsive 

2021 

BJO21 Tripp 3.79 Non-responsive 
BSP21 Hand 6.75 Responsive 
DFC21 Potter 6.8 Non-responsive 
DFO21 Potter 7.45 Non-responsive 
DLD21 Hughes 5.81 Responsive 
SCA21 Kingsbury 14.15 Responsive 
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Figure 1- 4. Pearson correlation coefficients between maize yield, delta yield, and EONR 
at different fertilizer-N to maize cost ratios. The different cost ratios were 4.11, 5.48, 
6.85, and 8.23. Correlation coefficients overlapped by “×” sign represents non-significant 
relationship at p= 0.05. In the figure, dYield’ means delta yield and ‘EONR’ mean 
economic optimum N rate. 
 

Nitrogen recommendation models across states 

The RMSE and bias values were impacted by the fertilizer to maize price ratio as 

well as the recommendation model (Table 1-4). Historically, different states use different 

approaches to calculate the recommended fertilizer N, which is mostly targeted for tilled 

systems. We viewed a negative bias as not acceptable because it could be viewed as 

reducing yields. Most of the bias values (N recommendation – EONR) across four states 

were greater than zero meaning that the recommendations were higher than actual 

requirements.
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Table 1- 4: Comparison of N recommendation models from South Dakota (SD), North 
Dakota (ND), western Minnesota (MN), Iowa (IA), and Nebraska (NE) using root mean 
square errors and bias. Data from all the fertilizer-N responsive dryland sites were 
included in this analysis.   

Fertilizer/
maize 
price 
ratio 

Root mean square errors (RMSE)  

Historic 
SD 

Model 

West 
MN 

Model 

IA 
Model 

NE 
Model 

Updated 
SD 

Model 

East ND 

Model 

West 
ND 

Model 
 kg N ha-1 

4.11 102 (40)‡ 95 (16) 97 (17) 97 (18) 94 (0) 107 (57) 92 (-19) 
5.48 101 (51) 87 (13) 90 (15) 89 (17) 88 (11) 96 (46) 83 (-7) 
6.85 101 (62) 79 (13) 82 (15) 80 (9) 82 (21) 88 (49) 73 (3) 
8.23 103 (72) 72 (14) 77 (15) 73 (7) 80 (31) 77 (39) 67 (-6) 

‡ Bias values in parentheses.  

Table 1- 5: Economic optimum N rates (EONR) and the state N recommendations as 
influenced by the fertilizer/maize price ratio and the state recommendation models from 
South Dakota (SD), North Dakota (ND), western Minnesota (MN), Iowa (IA), and 
Nebraska (NE). Numbers inside the parentheses represent the confidence interval of N 
recommendations across the sites at α=0.05. 

Price 
ratio 

Nitrogen recommendations  

Actual 
EONR 

Historic 
SD 

Model 

West 
MN 

Model 

IA 
Model 

NE 
Model 

Updated 
SD 

Model 

East 
ND 

Model 

West 
ND 

Model 

 kg N ha-1 

4.11 174 
(±51) 

214 
(±12) 

190 
(±12) 

191 
(±16) 

192 
(±15) 

174 
(±12) 

230 
 (±3) 

155  
(±3) 

5.48 162 
(±47) 

214 
(±12) 

175 
(±11) 

177 
(±15) 

179 
(±13) 

174 
(±12) 

211  
(±3) 

155  
(±3) 

6.85 152 
(±42) 

214 
(±12) 

166 
(±9) 

167 
(±15) 

161 
(±12) 

174 
(±12) 

201  
(±3) 

155  
(±3) 

8.23 142 
(±38) 

214 
(±12) 

156 
(±8) 

157 
(±13) 

149 
(±11) 

174 
(±12) 

181  
(±3) 

136  
(±3) 
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For the historical South Dakota model, the RMSE values were similar across the 

price ratios with the lowest bias was for the 4.11 price ratio. In comparison to the other 

state recommendation models, the historical South Dakota model had the greatest RMSE 

and bias values because the model did not consider the fertilizer-N to the seed price ratio. 

This has resulted in the same N recommendations across all the price ratios for South 

Dakota (Table 1-5). Nitrogen recommendation calculated using the historical South 

Dakota model was higher than the other models.  

Except for the lowest price ratio, the Western Minnesota model had lower RMSE 

values than the Eastern ND, Iowa and Nebraska models.  The bias was marginally lower 

than the historic SD model but higher than the updated SD and Western ND models 

(Table 1-4). This model uses N recommendation based on the MRTN values subtracted 

from the soil test N from 60 cm soil depth which might be the reason for lower error 

rates. At the two lower fertilizer-to-corn price ratios, the Western Minnesota 

recommendation model had lower N recommendations at the 5.48 price ratios, as 

compared to the historic South Dakota, Iowa, and Nebraska models (Table 1-5). 

The Iowa N recommendation model was similar to the Western Minnesota model 

as compared to the historic South Dakota model. The error rates and bias values were 

lower for the Iowa model in comparison with the historic South Dakota model (Table 1-

4). This model uses the MRTN approach too; however, unlike the Western Minnesota 

model, it does not consider the soil test N level before planting. The Iowa N 

recommendation was similar to that with the Western Minnesota model at all the price 

ratios. 
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The Nebraska N recommendation model that considers soil organic matters and 

yield goal; is more complex than the other three state models. The RMSE values of the 

Nebraska model, at all price ratios, were comparable to those of the Western Minnesota 

and Iowa models; however, the bias value at the highest price ratio, 8.23, was the lowest 

among all the state recommendation models (Table 1-4). At this higher price ratio, the N 

recommendation using the Nebraska model was closer to the EONR. As this model 

considers the organic matter content, it can provide the N recommendation more 

precisely. Long-term no-till systems may have large amounts of organic matter 

accumulated on the soil surface because the surface residue is not harvested, and the soil 

is minimally disturbed. The lowest bias value at higher price ratio could be due to the 

amount of organic matter considered in the recommendation model. Expectedly, the N 

recommendation at 8.23 fertilizer-to-corn price ratio was 149 kg N ha-1, respectively 

(Table 1-5). 

Considering the importance of soil properties and management practices, the 

historic South Dakota and North Dakota N recommendation algorithms have been 

updated (Franzen, 2018). The updated South Dakota model reduced the amount of grain 

N requirements from 21.4 to 17.86 kg N Mg-1 grain, which is approximately 20% 

reduction in the grain fertilizer-N requirement. Compared to the historic model, the 

updated South Dakota model reduced the N recommendation from 214 kg N ha-1 to 174 

kg N ha-1 (Table 1-5). The error rates and bias values at all price ratios were also reduced 

(Table 1-4).  

Similarly, both Eastern and Western ND N recommendation model are based on 

the MRTN approach.  The Eastern ND model, which is more relevant to our experimental 
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sites, had higher RMSE and biases for the 4.11 fertilizer to grain value ratio than the 

updated SD model.  These findings indicate that this model would overestimate the N 

recommendation in SD no-tillage fields, and therefore would not be considered as a 

climate smart practice.  The western ND model had slightly lower RMSE values than the 

updated SD model.  However, this model also had negative biases. Negative bias 

suggests that the model underestimated the N requirement (Table 1-4).  

Usually, areas with higher productivity require less fertilizer-N as those areas are 

believed to be high in organic matter and soil moisture content (Franzen, 2018). As 

mentioned earlier, the Nebraska model considered soil organic matter in the equation 

because the mineralization of organic matter is correlated to higher yield (Shapiro et al., 

2019). Kim et al. (2013) conducted a similar analysis of tilled system on experiments 

conducted between 2002 and 2006.  This analysis showed that the biases were dependent 

on the fertilizer price to corn price ratio and generally increased with increasing ratio.  

Differences between Kim et al. (2013) and those reported in this study could be attributed 

to increasing corn yields, reducing reliance on fertilizer, and increased mineralization. 

Our research results suggested that the ND model might work the best for the long-term 

no-till farmers; however, the amount of fertilizer that needs to be adjusted in the equation 

may vary based on soil types and the environment (Franzen, 2018).  

 Although different N recommendation models from different states were based 

on various approaches, most of them did not consider soil organic matter, soil microbial 

activities, soil moisture content, or other management factors. Soil moisture content plays 

important roles in the mineralization of organic matter and transportation of plant 

available-N. Approximately 60% water-filled pore space is required to gain the maximum 
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mineralization driven by soil microbes (Linn & Doran, 1984; Wang et al., 2004). Soil 

microbial activities and N mineralization is highly influenced by the temperature 

(Andersson & Nilsson, 2001; Bell et al., 2008). In addition, soil management factors such 

as soil tillage (Lal, 1993), and cover crops (Blanco-Canqui et al., 2015) are some of the 

most important factors influencing the soil N availability.  

Based on our current study, the EONR calculated at the lowest price ratio 

matched with the N recommended by the updated SD model. The higher positive bias at 

higher price ratios using the updated SD model suggested considering the price ratios in 

the model. Table 1-6 shows the maize N recommendations for long-term no-till maize for 

South Dakota based on our current study. 

Table 1- 6: Maize N recommendations (kg N ha-1) for long-term no-till maize for South 
Dakota based on the current study, considering N cost and maize grain price.  

 

CONCLUSIONS 

Our results suggested that, considering the historic (10-year average) and the 

lowest price ratio (4.11), the updated South Dakota N recommendation model provided a 

$/kg N 
$/kg maize 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
 kg N ha-1 
1 128 154 167 175 180 184 187 189 191 

1.5 88 128 147 159 167 173 177 180 183 
2 49 101 128 143 154 161 167 171 175 

2.5 9 75 108 128 141 150 157 163 167 
3 0 49 88 112 128 139 147 154 159 

3.5 0 23 68 96 114 128 137 145 151 
4 0 0 49 80 101 116 128 136 143 

4.5 0 0 29 65 88 105 118 128 135 
5 0 0 9 49 75 94 108 119 128 
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lower EONR estimate and was supported by the lowest bias and RMSE. The bias and 

error rates were high at higher price ratios for the updated SD model. Farmers need to 

consider N cost and maize grain price to calculate the recommended maize N rate. Table 

1-5 suggests maize N recommendation based on our study in long-term no-till sites. 

Considering the fertilizer price ratio of the past two years (price ratio 8.23), the 

Nebraska model estimated the lowest EONR.  This indicates that to offset the raised 

fertilizer cost, N recommendation model needs to consider soil organic matter as well as 

the price ratio as an input to the model. Further, improving soil health, reduced erosion, 

and increased water retention in long-term no-tillage systems can supply additional N to 

the crops. This can account for the mineralizable N available to the crops during the 

growing season.  Additional work needs to be conducted to integrate the fertilizer to corn 

value ratio into the recommendation.   
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CHAPTER 2: SOIL HEALTH MEASUREMENTS IMPACT MAIZE YIELD IN NO-

TILL SYSTEMS- PREDICTIONS USING MACHINE LEARNING APPROACHES. 

ABSTRACT 

Farmers have reported maize (Zea mays L.) requires less N in long-term no-tillage 

than conventional management.  This apparent reduction may be attributed to improved 

soil health resulting from increasing soil organic matter, higher soil microbial activities, 

and improved water and nutrient use efficiency. However, the impact of soil health 

measurements on fertilizer-N requirement has not been determined. This project aims to 

assess the feasibility of machine learning algorithms that use soil health measurements to 

forecast yield predictions. The research was conducted for three years at 16-dryland sites 

that were under no-tillage practice for at least 6-years. The effect of six N rates (0, 45, 90, 

135, 180, and 224 kg N ha-1) on maize grain yield was evaluated. Predictor variables for 

soil yield potential consisted of climatic data, and soil health measurements including 

nitrate-N (NO3-N), ammonium-N (NH4-N), pH, EC, soil respiration, and soil microbial 

biomass that were collected from various depths before planting. Positive correlations of 

maize yield were seen with water infiltration, soil respiration, and soil microbial biomass. 

Support vector machine (SVM) algorithm outperformed several other machine learning 

algorithms for forecasting the soil yield potential. The top five predictor variables were 

total N, total C, growing degree days (GDD), soil microbial biomass, and bacterial 

biomass. The overall findings from this study suggested that soil health measurements in 

addition to the climate variables, rainfall, and temperature, can be used to predict the soil 

yield potential. 
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INTRODUCTION 

Soil scientists have struggled for over 50 years to create techniques that can 

predict biological activity and microbial mineralization.  This research tested the ability 

of chemical extraction and biological incubations as tools for forecasting the soil N 

supplying power.  Despite improving our understanding of N cycling, most N 

recommendation models do not consider biological activity.  For example, the maximum 

return to N approach recommends a fixed N application rate does not consider the ability 

of soil to mineralize N.  The lack of integrating soil biological activity into many N 

recommendation is not consequence for the lack of trying, but it is the result of that we do 

not understand how to integrate this information into the recommendation 

(Franzluebbers, 2018; Yost et al., 2018).  

An alternative approach is to consider another component of most N models, 

yield.  There are numerous studies that have created yield forecasts using some 

combination of historical measurement,  in-season measurement, and modeling (Basso & 

Liu, 2019; Rosenzweig et al., 2013).  However, because historical measurements may not 

be useful as farmers transition to climate smart practices and because many agronomists 

are often not willing to invest the time to learn how to use process-based models, 

alternative approaches are needed (Drummond et al., 2003; Geisseler & Wilson, 2020; 

Ngwira et al., 2014; Puntel et al., 2019).  Machine learning algorithms based on soil 

health measurements can help fill this gap (Dhaliwal et al., 2022; Joshi et al., 2022).  

A review on crop yield prediction by Van Klompenburg et al. (2020) found that 

temperature, rainfall, and soil type were the most widely used variables to predict crop 

yield. Although including soil biotic parameters such as soil microbial biomass, soil 
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respiration, and other related variables to directly predict crop yield is not common, 

studies have shown that soil bacterial communities can improve soil quality and can 

predict soil properties like soil pH, bulk densities, and nutrient concentrations (Hermans 

et al., 2020). Previous research showed that soil health provide a good assessment of the 

soil and that the implementation of soil health practices (cover crops, reduced tillage, and 

rotations) may have a neutral to negative impact on yield (Miner et al., 2020).  However, 

this analysis may not consider the impact of soil health improvement on the ability of a 

soils resilience to adverse climatic conditions, such as drought.  For example, Clay et al. 

(2014) showed that increasing soil organic matter improved the soil productivity in the 

2012 drought and that the adoption or cover crops and reduced tillage increased SOM 

(Clay et al., 2012; Joshi et al., 2023). Therefore, given that: 1) machine learning 

techniques can quickly process a large amount of data, 2) N recommendations are a 

function of the soil supplying power and yield potential, and 3) biological information is 

rarely considered in N recommendations, our goal is to assess the feasibility of machine 

learning algorithms that uses soil health measurements to forecast yield predictions.   

MATERIALS AND METHODS 

Experimental details 

No-till maize on-farm experiments were conducted in 2019, 2020, and 2021.  The 

study sites were in long-term no-till fields (>6 years no-till). Over three years, the 

experiment was conducted in 16 dryland sites in South Dakota (SD) (Figure 2-1). All the 

locations are characterized as hot summer humid continental climate (Köppen climate: 

Dfa). Agronomic details of each site are shown in Figure 2-1. Average temperature and 

cumulative precipitation information can be found in Supplementary Figure 1. 
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Figure 2- 1: The map of South Dakota highlighted with the counties where field 
experiments were conducted from 2019-2021. Each color in the legend represents the 
experimental field names with the different years of experiment.  
Source: https://www.mapchart.net/usa-counties.html 

 

The experimental design was a randomized complete block design (RCBD) with 

four N rates (28, 84, 140, and 196 kg N ha-1) in 2019 and six N rates (0, 45, 90, 134, 179, 

and 224 kg N ha-1) in 2020 and 2021 with four replications. Urea (46-0-0) fertilizer was 

applied as the source of N. Nitrogen treatments were manually broadcast applied between 

the V2 and V4 maize growth stages. Each plot had dimensions of 15.24 × 4.6 m (50 ft × 

15 ft).  

Maize was planted by the farmers and most of the sites had 75 cm row spacing. 

One site in 2020 (BJC 2020), was planted with cover crops at 150 cm row spacing and 

cover crops were planted at maize V3 growth stage. The cover crop species planted were 

oats (Avena sativa, L., 13 kg ha-1), flax (Linum usitatissimum, L., 2.2 kg ha-1), mung bean 

https://www.mapchart.net/usa-counties.html
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(Vigna radiata, L., 4.5 kg ha-1), guar (Cyamopsis tetragonoloba, L. 2.2 kg ha-1) and red 

clover (Trifolium pratense var. sativum (Schreb.), 1.1 kg ha-1). All the sites in Hughes 

County were planted at 50 cm row spacing. Phosphorus and K fertilizers were applied 

based on the soil test results (Clark, 2019). Soil characteristics information is shown in 

Supplementary Table 1. Maize ears were hand-harvested from 9.29 m2 area marked from 

the center of each plot and calculated the final corn yield at 15.5% moisture. 

Soil sampling and measurements 

Baseline soil samples from four blocks were collected from four depths (0-5, 5-

15, 15-30, and 30-60 cm) before planting maize and before the treatment application at 

each site. Plant residues on the soil surface were carefully removed and the samples were 

randomly collected from 15-20 random spots within each block using a standard soil 

probe with a 1.9 cm inner diameter. Soil samples, for each depth per block, were mixed 

thoroughly, air-dried to a constant weight, and sieved through a 2-mm mesh screen 

before soil analyses. Soil inorganic N, nitrate-N (NO3-N) and ammonium-N (NH4-N), 

were extracted using 1M KCl (1:10 soil to KCl ratio) (Kim et al., 2008), quantified by 

cadmium reduction method (Clark et al., 2019) analyzed using Astoria Analyzer 

(Astoria-Pacific).  Soil pH and electrical conductivity were determined using pH and EC 

meter (Mettler Toledo). Total N, total C including d13C and d15N isotopes were analyzed  
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Table 2- 1: Agronomic information including planting and harvest date, corn varieties 
and their maturity days, previous crops, and plant population of different experiment sites 
across the experiment years, 2019-2021. 

Field 
name Counties Planting 

Date 
Harvest 

Date 

Maize 
Maturity 

Days 

Previous 
crop(s) 

Plant 
population 

(per ha) 
BJO19 Tripp 5/15/2019 10/19/2019 106 Wheat 60500 

DFO19 Potter 5/14/2019 10/08/2019 101 Wheat 62000 

DHO19 Edmunds 5/26/2019 10/14/2019 88 Soybean 65000 

DLD19 Hughes 5/15/2019 10/15/2019 105 Wheat 52000 

SCA19 Kingsbury 5/16/2019 10/18/2019 97 Soybean 79000 

BJC20 Tripp 4/29/2020 10/01/2020 99 Wheat 60500 

BJO20 Tripp 4/29/2020 10/01/2020 100 Wheat 60500 

DFO20 Potter 5/11/2020 10/06/2020 96 Wheat 62000 

DLD20 Hughes 4/30/2020 9/26/2020 99 Oats + 
Barley 52000 

SCA20 Kingsbury 4/27/2020 10/08/2020 97 Soybean 79000 

BJO21 Tripp 5/3/2021 10/18/2021 99 
Wheat-
fallow-

livestock 
59000 

BSP21 Hand 5/4/2021 10/5/2021 102 Fallow 69000 

DFC21 Potter 5/4/2021 10/18/2021 101 Cover 
crops mix 65500 

DFO21 Potter 5/5/2021 10/12/2021 102 
Wheat-
fallow-

livestock 
64000 

DLD21 Hughes 5/6/2021 10/7/2021 100 Wheat 86500 

SCA21 Kingsbury 4/30/2021 9/28/2021 105 Soybean 79000 
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from air dried soil using mass spectrometry (Clay et al., 2015). The C3 plants have d13C 

values between -18 to -23 and C4 plants have values from -12 to -14. 

Bulk densities were determined by drying the soil at 105ºC for 48 hours. Soil 

respiration was measured using Solvita burst test (Haney et al., 2008) and expressed in 

the form of CO2-C. Water infiltration rate was measured using in-situ steady state double 

ring infiltration method (Bodhinayake et al., 2004). 

Soil samples from 0- to 5-cm soil depth were collected and analyzed for soil 

microbial community structure using Veum et al. (2019). Phospholipid fatty acids were 

extracted following a modified protocol described by Buyer & Sasser, (2012), Fiedler et 

al., (2021), and Joshi et al. (2022) using a 19:0 phosphatidylcholine internal standard for 

PLFA and a check sample to confirm the final values. Extracts were analyzed using a 

Shimadzu GC-2010 Plus gas chromatograph (Shimadzu Corporation, Japan) using a 

flame ionization detector. The gas chromatograph was calibrated using a calibration 

standard provided by MIDI Sherlock (No. 1208, MIDI, Inc., Newark, DE) using 

PLFAD2 method.  

The extracted fatty acids were characterized into different microbial groupings 

using the MICSOILV2 method from MIDI Sherlock Software system (MIDI, Inc., 

Newark, DE). The Sherlock PLFA Analysis Software determines abundance and type of 

microbial community by assigning fatty acids into different functional groups associated 

with each community type (Veum et al., 2019).   
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Table 2- 2: Predictor variables used for machine learning algorithms from pre-plant soil 
samples. 

Variables Description Unit Data source 
N rate Fertilizer-N rates applied kg N ha-1 Data collection 
NO3-N Soil nitrate-N, 0-15 cm kg N ha-1 Data collection 
NH4-N Soil ammonium-N, 0-15 cm kg N ha-1 Data collection 
TIN NO3-N + NH4-N, 0-15 cm kg N ha-1 Data collection 
pH1:1 Soil pH, 0-15 cm  Date collection 
EC1:1 Soil electrical conductivity, 0-15 cm µS cm-1 Data collection 

Clay Clay percent, 0-15 cm % Web Soil 
Survey 

Bacteria Soil bacterial biomass, 0-5 cm µg C g-1 
soil Data collection 

Fungi Soil fungal biomass, 0-5 cm µg C g-1 
soil Data collection 

AMF Soil arbuscular mycorrhizal fungi 
biomass, 0-5 cm 

µg C g-1 
soil Data collection 

Biomass Soil microbial biomass, 0-5 cm µg C g-1 
soil Data collection 

OM Soil organic matter, 0-15 cm % Data collection 
CO2-C Solvita soil respiration mg kg-1 Data collection 
Infiltration Infiltration rate mm hr-1 Data collection 

PPT Cumulative precipitation from planting to 
tasseling growth stage cm Mesonet, SDSU 

GDD Cumulative growing degree days at 
maize harvest, base 10ºC  Mesonet, SDSU 

TN Organic + inorganic N, 0-5 cm % Data collection 
d15N 15N content, 0-5 cm ‰ Data collection 
TC Total carbon content, 0-5 cm % Data collection 
d13C 13C content, 0-5 cm ‰ Data collection 
Soil_water Soil water depth, 0-15 cm cm Data collection 

 

Data generation for machine learning algorithms 

Maize yield, from each individual plot, from the dryland experimental sites across 

three years were used as the response variable in the dataset. The dataset included 21 

predictor variables (soil health measurements) and yield as a response variable (Table 2-

2). The dataset was divided into training and testing datasets. The randomly selected 
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training portion contained 70% of the whole dataset, whereas the testing components 

contained 30%.   

Machine learning algorithms 
 

Maize yield for each individual plot was predicted using five different algorithms 

that included linear regression, two regularizations of linear regression- ridge and LASSO 

regressions, random forest, and support vector machine (SVM). These models are 

commonly used to predict crop yields (Dhaliwal et al., 2022; Joshi et al., 2022; Ransom 

et al., 2019). All the model development and validation process was performed using R 

software (R Core Team, 2022). A “set.seed” function with a value of “123” was used to 

make the predictions reproducible.  

Linear relationship between the response and predictor variables can be 

determined using linear regression (Montgomery et al., 2021). These models make 

several assumptions including linear relationships, constant variance, and little to no 

multicollinearity between the predictor variables. In linear regression, the chance of 

getting biased prediction with high error is common due to the simplicity of the model. 

Ridge and LASSO (least absolute shrinkage and selection operator) regressions are the 

regularizations of linear estimates (James et al., 2013) that reduce model complexity and 

prevent the model from obtaining high variances. The regularization is implemented by 

adding a penalty equivalent to square of the magnitude of the coefficients in ridge 

regression, whereas in LASSO regression, magnitude is considered instead of square of 

magnitude. They result in a reduced magnitude of the coefficients while the number of 

features remain constant in the training dataset.  
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Random forest is a robust machine learning approach that is based on the 

recursive partitioning principle and can be used  for regression and classification 

purposes (Breiman, 2001; Ransom et al., 2019).  This algorithm does not require specific 

information about the relationship between the response and predictor variables. 

Strengths of the RF approach is that the accuracy and robustness of the model generally 

increases with the number of trees in the forest.  However, a weakness of the RF 

approach is that it can over smooth predictions when the training datasets are relatively 

small (Koparan et al., 2022).      

Support Vector Machine (SVM) is a machine learning algorithm that separates 

the data into different classes using a line or a hyperplane. This approach was selected 

because it can solve non-linear prediction problems (Ahmad et al., 2014). The line or 

hyperplanes represent decision boundaries and are often used to classify continuous 

outputs (Brereton & Lloyd, 2010).  However, due to the computational time requirement, 

the method may not be well suited for large data sets. Additional information on this 

approach is available in Cortes & Vapnik (1995).  

Models’ performance 
 

All the machine learning algorithms were tuned using different hyperparameters. 

The training dataset (70% of the original dataset) was validated using 10-fold cross 

validation technique, which splits the data into 10 folds, estimates the error rates, and 

generates a model with the lowest error rate (Refaeilzadeh et al., 2009). The models’ 

performance was evaluated by root mean squared error (RMSE), goodness of fit (R2), and 

mean absolute error (MAE) using Equations 1-3. 

𝐸𝐸𝑀𝑀𝑆𝑆𝐸𝐸 =  �
∑ (𝑦𝑦𝑓𝑓−𝑦𝑦𝑝𝑝)2𝑐𝑐
𝑓𝑓=1

𝑛𝑛
                               (1) 
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𝐸𝐸2 = 1 −  
∑ (𝑦𝑦𝑓𝑓−𝑦𝑦𝑝𝑝)2𝑐𝑐
𝑓𝑓=1
∑ (𝑦𝑦𝑓𝑓−𝑦𝑦�𝑓𝑓)2𝑐𝑐
𝑓𝑓=1

                  (2)     

𝑀𝑀𝑀𝑀𝐸𝐸 =   
∑ ��𝑦𝑦𝑓𝑓−𝑦𝑦𝑝𝑝��𝑐𝑐
𝑓𝑓=1

𝑛𝑛
                              (3) 

In equations above, 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑝𝑝  are measured and predicted maize yield values, 

respectively, 𝑦𝑦�𝑖𝑖 is the mean of all measured yield, and n is the number of samples. The 

best model was selected based on the lowest error rates and greater goodness of fit. 

Software and graphics 
 

Statistical analyses including machine learning algorithms were run and analyzed 

using R programming software (R Core Team, 2022). The machine learning algorithms 

were built using “caret” package (v 6.0-88) in RStudio. All the graphics were finalized 

using GraphPad Prism (v8.2, GraphPad software, LLC).  

RESULTS AND DISCUSSION 

Correlation across variables 

Farmers are interested in learning and incorporating information about soil health 

into estimates about the soil’s yield potential. Current approaches for estimating the soil 

yield potential are based on averaging previous yields and do not consider how 

management changes affect soil health and the yield potential  (Reitsma et al., 2016; 

Shapiro, 2008). To assess the importance of different chemical and biological 

measurements a correlation analysis (Figure 2-2) was conducted between the measured 

values (Table 2-2).  Positive correlations between microbial biomass and Solvita soil 

respiration suggest that increasing microbial activity had a positive impact on maize 

yields.  Others have reported similar responses (Franzluebbers et al., 2000; Haney et al., 

2008).  The positive correlation between precipitation and yield and water infiltration and 
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yield suggests that water availability limited yields. The impacts of water availability on 

yield have been reported numerous times (Kim et al., 2008; Ransom et al., 2021).   

 Maize yield was negatively correlated with several measurements including soil 

pH1:1 and EC1:1. At the study sites, pH1:1 ranged from 5.8 to 8.  Over this range of values, 

increasing pH reduced yields.  This would be expected and could be attributed to many 

factors including reduced nutrient availability.  For EC1:1, the range of values was from 

0.13 to 2.3 dS/m.  Based on these values, soils with an EC1:1 of 2 or more would be 

considered as saline soils, and therefore yield reductions with an increasing EC1:1 would 

be expected.   

Many of the measured values were correlated to each other (Figure 2-2).  For 

example, the water infiltration rate was highly correlated with clay content, fungi, and 

arbuscular mycorrhizal fungi (AMF) biomass, whereas total N and C were correlated 

with soil bacterial biomass, and NO3-N, and CO2-C respiration was correlated to water 

infiltration, microbial biomass, mainly bacterial biomass.  The positive correlation 

between water infiltration rate and fungal biomass indicates that in these long-term no-

tillage fields building the fungal population had a positive impact on water infiltration. 
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Figure 2-2: Correlation across response and predictor variables. Nitrate and ammonium 
N are the amounts in the surface 15 cm, TN and TC are the concentration of organic N 
and C in the soil, d13C is 13C isotope in ‰, d15N is 15N isotope in ‰,   clay is g clay kg-1 
soil, OM is organic matter in g kg-1 soil, CO2-C is Solvita soil respiration in mg C kg-1 
soil, infiltration is the rate of water infiltration in cm h-1, bacteria, fungi, AMF and 
biomass are in µg C g-1 soil as measured using the PLFA technique, PPT is cumulative 
precipitation at tasseling stage in cm, GDD is growing degree days, pH is soil pH at 1:1, 
EC is soil electrical conductivity at 1:1 solution in µS cm-1, and soil water is soil water 
depth at surface 15 cm measured in cm.  
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Machine learning model performance 
 

The performance of five different machine learning algorithms that predict maize 

yield on training, and testing datasets are summarized in Table 2-3. The table showed that 

the random forest training algorithms had the highest R2 and lowest RMSE compared to 

the other regression models in the training dataset; however, the SVM algorithms had the 

highest R2 and lowest RMSE for the testing dataset. 

The performance of all three regression models were similar with similar R2 

values for each dataset. The R2 value on the training dataset for random forest and SVM 

models were 0.96 and 0.94, respectively. However, in the testing dataset, the R2 values 

and the error rates for the SVM were 0.93, 0.84 (RMSE), and 0.59 (MAE), respectively, 

whereas the random forest model had lower R2 value and higher error rates as compared 

to the SVM (Table 2-3). 

Table 2- 3: Machine learning models performance ability to predicate maize yields at 
each N rate. The training data was used to build the models and the testing data was 
independent data that was not included in creating the models. Comparison among linear 
regression, ridge regression, LASSO regression, random forest, and support vector 
machine (SVM) using root mean squared error (RMSE), mean absolute error (MAE), and 
goodness of fit (R2) in the training, and testing datasets are shown. 

Models 

Training data Testing data 

RMSE MAE R2 RMSE MAE R2 

Mg ha-1 Mg ha-1  Mg ha-1 Mg ha-1  

Linear regression 1.12 0.80 0.89 1.23 0.99 0.85 

Ridge regression 1.38 1.08 0.83 1.41 1.24 0.80 

LASSO regression 1.12 0.80 0.89 1.22 0.98 0.85 

Random Forest 0.61 0.40 0.96 1.17 0.79 0.86 

SVM 0.80 0.48 0.94 0.84 0.59 0.93 
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Linear regression and its regularization models had larger training and testing 

error compared to the other models; this suggested low variance and highly biased 

predictions. Although the training data error was small using the random forest model, 

larger error rate in testing dataset suggested higher possibility of low bias and high 

variance (overfitting) conditions. 
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Figure 2- 3: Observed vs. predicted maize yield (Mg ha-1) plots for Linear regression a) 
training dataset, b) testing dataset; Random forest c) training dataset, d) testing dataset, 
and support vector machine (SVM) e) training dataset, f) testing dataset. The brown solid 
lines indicate 1:1 relation between the observed and predicted yields. 

 

Scatterplots of predicted maize yield by linear regression, random forest, and the 

SVM on training and testing datasets are in Figure 2-3. The brown line in the figure 

indicates that there was a 1:1 relationship between the observed and predicted maize 

https://www.sciencedirect.com/topics/computer-science/random-decision-forest
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yields. Deviation of the data points from the 1:1 line (Figures 2-3a, 2-3b) suggested that 

the maize yields were generally underestimated. The random forest model 

underestimated the predicted yield at higher values for the testing datasets (Figures 2-3c, 

2-3d) and the error rates and goodness of fit for the training dataset were the best 

compared to any other models. The testing dataset for SVM showed the best fit across all 

three datasets and among all machine learning models (Figures 2-3e, 2-3f).  

Predictor variable performance 
 

The importance of predictor variables was determined using the best model fit, 

the SVM (Figure 2-4). Interestingly, total soil N was the most influencing factor to 

predict the maize yield followed by total C, growing degree days, soil microbial biomass, 

and bacterial biomass.  Of these measurements, total C and N and microbial biomass 

would be considered as soil health measurements. It was interesting that total C was a 

better predictor than soil organic matter. There were many measurements that were only 

minimally important, several of these variables were Solvita soil respiration, N rate, EC, 

fungal biomass, and water infiltration.  These findings were contrary to the correlation 

analysis discussed earlier.  Different results between machine learning and classical 

statistics are attributed to machine learning approaches behaving as a black box.   
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 Figure 2- 4: Variable importance plot based on support vector machine algorithms. X-
axis represents relative importance on a scale of 100 and Y-axis shows the different 
predictor variables. Nitrate and ammonium N are the amounts in the surface 15 cm, TN 
and TC are the concentration of organic N and C in the soil, d13C is 13C isotope in ‰, 
d15N is 15N isotope in ‰,   clay is g clay kg-1 soil, OM is organic matter in g kg-1 soil, 
CO2-C is Solvita soil respiration in mg C kg-1 soil, infiltration is the rate of water 
infiltration in cm h-1, bacteria, fungi, AMF and biomass are in µg C g-1 soil as measured 
using the PLFA technique, PPT is cumulative precipitation at tasseling stage in cm, GDD 
is growing degree days, pH is soil pH at 1:1, EC is soil electrical conductivity at 1:1 
solution in µS cm-1, and soil water is soil water depth at surface 15 cm measured in cm. 

 

Several efforts have been made to model crop yield in response to fertilizer 

(Dhakal & Lange, 2021); however, the soil health measurements were always 

overlooked. Earlier researchers have shown that addition of soil surface residue can 

improve soil physical, chemical, and biological properties (Clay et al., 2015; Turmel et 

al., 2015). Implementation of machine learning algorithms in yield modeling have 

provided more flexibility to the researchers in terms of variable selection and model 

performance testing (Lischeid et al., 2022; Shahhosseini et al., 2021). Our current results 
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have shown that soil microbial biomass including fungal biomass increased with better 

water infiltration; maize yield was strongly correlated with these predictors in addition to 

precipitation and inorganic N. 

CONCLUSIONS 

Our results suggest that increasing soil microbial biomass and higher cumulative 

rainfall at the tasseling stage increase the soil yield potential in long-term no-till systems. 

Soil surface crop residues, mainly from C3 plants, and minimal soil disturbance for long 

periods might have developed a high amount of organic matter on the soil surface, which 

were related with higher water infiltration rate, and higher soil microbial activities 

(higher respiration). These findings suggested three major findings. 1) Promoting soil 

microbial biomass maximizes the yield potential greater than the fertilizer-N, 2) Optimal 

precipitation is required at early reproductive stage to maximize the production, 3) 

Higher clay content and higher organic matter improve fungal population in the soil 

resulting in better water infiltration capacity of the soil.  

Deep analysis of the predictor variables with the selection of the most important 

variables might be necessary to provide a robust model for farmer’s understanding and 

use. All the dryland experimental sites were included in the current analysis; however, 

sub-setting N responsive and non-responsive sites and considering only the important soil 

health indicators in the model might make it more efficient. For example, maize yield in 

N responsive sites were poorly correlated with soil nitrate and ammonium N whereas the 

correlation was stronger in non-responsive sites (Supplementary figures 2 and 3).   
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SUMMARY  

In conclusion, a no-tillage maize N recommendation model considering soil 

health measurements can be valuable tool for farmers to improve crop yield and promote 

sustainable agricultural practices. The historic N recommendation model for SD does not 

consider fertilizer to grain price ratio as well as soil health measurements. Our results 

from this three-years study at 16 sites suggested that considering the price ratios and soil 

health measurements can greatly improve the N recommendation and the maize yield 

potential.  Integrating this information into the recommendation should be considered as 

a climate smart practice. 

In long-term no-tillage systems, our first chapter from this study suggested that 

either reducing the constant (amount of N per yield goal) from 21.4 kg to 18 N Mg-1 grain 

on the yield goal based historic SD model can best predict the optimum N required by 

maize at lower price ratio. Considering of N and maize grain price ratio is suggested in 

the N recommendation model for SD. In addition, the Nebraska model with organic 

matter content as one of the input values had the lowest biasness suggesting that price 

ratios in addition to the soil health information can improve the N recommendation 

models. 

Consideration of soil health measurements improved the predictions of maize 

yield potential using machine learning approach. Maize yield was correlated with 

different soil health measurements including soil NH4-N, soil microbial biomass, organic 

matter, soil respiration, and precipitation. Similarly, water infiltration capacity was 

improved with greater fungal population, clay content, and organic matter content. 

Support vector machine approach, which was implemented to predict the important 
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predictor variables for maize yield, suggested that total N, total C, growing degree days, 

soil microbial biomass, and bacterial biomass were the most important predictor variables 

of yield.  

By considering these and other relevant factors, the model can provide farmers 

with more precise and targeted N recommendations, reducing the risk of over-application 

and associated environmental impacts. In addition, by promoting no-tillage practices, the 

model can help improve soil health and reduce erosion, leading to more sustainable 

agriculture practices and long-term benefits for both farmers and the environment. 

Overall, a no-tillage maize N recommendation model that considers soil health 

can be a valuable tool for optimizing crop production while also promoting sustainable 

agriculture practices. 

Future research needs to consider the price factor in the N recommendation 

models in addition to the soil organic matter, climatic variations, and soil health 

measurements. Measurement of changes in N mineralization, and soil microbial 

community structure in-season might provide information regarding the N use efficiency 

and crop yield potential. Use of high-throughput advance technologies and machine 

learning can be an innovative way to obtain useful information. 
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Supplementary Figure 1: (a) Average air temperature and (b) cumulative precipitation 
throughout 2019, 2020, and 2021 averaged across all the experimental sites. 
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Supplementary Figure 2: Correlation across response and predictor variables in N 
responsive sites. Nitrate and ammonium N are the amounts in the surface 15 cm, TN and 
TC are the concentration of organic N and C in the soil, d13C is 13C isotope in ‰, d15N 
is 15N isotope in ‰,   clay is g clay kg-1 soil, OM is organic matter in g kg-1 soil, CO2-C 
is Solvita soil respiration in mg C kg-1 soil, infiltration is the rate of water infiltration in 
cm h-1, bacteria, fungi, AMF and biomass are in µg C g-1 soil as measured using the 
PLFA technique, PPT is cumulative precipitation at tasseling stage in cm, GDD is 
growing degree days, pH is soil pH at 1:1, EC is soil electrical conductivity at 1:1 
solution in µS cm-1, and soil water is soil water depth at surface 15 cm measured in cm.  
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Supplementary Figure 3: Correlation across response and predictor variables in N non-
responsive sites. Nitrate and ammonium N are the amounts in the surface 15 cm, TN and 
TC are the concentration of organic N and C in the soil, d13C is 13C isotope in ‰, d15N 
is 15N isotope in ‰,   clay is g clay kg-1 soil, OM is organic matter in g kg-1 soil, CO2-C 
is Solvita soil respiration in mg C kg-1 soil, infiltration is the rate of water infiltration in 
cm h-1, bacteria, fungi, AMF and biomass are in µg C g-1 soil as measured using the 
PLFA technique, PPT is cumulative precipitation at tasseling stage in cm, GDD is 
growing degree days, pH is soil pH at 1:1, EC is soil electrical conductivity at 1:1 
solution in µS cm-1, and soil water is soil water depth at surface 15 cm measured in cm.  
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Supplementary Table 1. Soil series and soil test results of different experiment sites 
before planting, 2019-2021. The results are presented for organic matter (OM), soil pH 
(1:1), soil electrical conductivity (EC1:1), soil nitrate-N (NO3-N), Olsen-phosphorus, 
Potassium (K), and sum of cations at 0-15 and 15-60 cm depths.  

SN Field 
name Soil series 

Depth OM pH 
1:1 

EC 
1:1 NO3-N Olsen-

P K Sum of 
cations 

 LOI   KCl Ammonium acetate 

cm g kg-1  dS m-1 kg ha-1 mg kg-1 mg kg-1 meq 
100g-1 

1 BJO19 
Fine, smectitic, 

mesic Typic 
Haplusterts 

0-15 46 8.0 0.21 6.44 4.38 380.00 42.83 

15-60 -- -- -- -- -- -- -- 

2 DFO19 
Fine-silty, mixed, 

mesic Typic 
Argiustolls 

0-15 40 6.5 0.09 13.16 11.74 537 20.9 

15-60 -- -- -- -- -- -- -- 

3 DHO19 

Fine-loamy, 
mixed, 

superactive, frigid 
Typic Argiustolls 

0-15 48 6.4 0.16 20.72 4.38 521.25 20.13 

15-60 -- -- -- -- -- -- -- 

4 DLD19 

Coarse-silty over 
clayey, mixed, 

mesic Fluventic 
Haplustolls 

0-15 33 7.0 0.32 4.48 20.20 609.00 19.00 

15-60 -- -- -- 7.85 -- -- -- 

5 SCA19 
Fine-silty, mixed, 
superactive, frigid 
Calcic Hapludolls 

0-15 50 6.7 0.13 13.72 8.4 189.00 26.6 

15-60 -- -- -- -- -- -- -- 

6 BJC20 
Fine, smectitic, 

mesic Typic 
Haplusterts 

0-15 48 8.0 0.60 4.50 11.00 572.00 35.80 

15-60 -- -- -- -- -- -- -- 

7 BJO20 
Fine, smectitic, 

mesic Typic 
Haplusterts 

0-15 48 8.0 0.60 4.50 11.00 572.00 35.80 

15-60 -- -- -- -- -- -- -- 

8 DFO20 
Fine-silty, mixed, 
superactive, mesic 
Typic Argiustolls 

0-15 27 5.8 0.24 8.30 18.90 
(Bray) 393.73 23.51 

15-60 17 7.3 0.46 28.70 5.50 164.98 27.84 

9 DLD20 

Coarse-silty over 
clayey, mixed, 

mesic Fluventic 
Haplustolls 

0-15 34 6.9 0.30 11.20 19.50 500.00 17.10 

15-60 27 -- -- 13.40 -- -- -- 

10 SCA20 
Fine-silty, mixed, 
superactive, frigid 
Calcic Hapludolls 

0-15 45 5.7 0.32 9.50 55.40 
(Bray) 221.25 30.16 

15-60 23 7.2 0.59 28.70 6.00 161.83 32.05 

11 BJO21 
Fine, smectite, 
mesic Typic 
Haplusterts 

0-15 38 8.45 0.39 7.84 112 368.43 36.5 

15-60 27 8.6 0.90 9.63 5.00 265.89 40 

12 BSP21 

Fine-loamy, 
mixed, 

superactive, mesic 
Typic Argiustolls 

0-15 23 7.6 0.60 7.62 64.0 553.79 18.8 

15-60 19 7.4 2.30 5.6 59.0 342.15 21.6 

13 DFC21 
Fine-silty, mixed, 
superactive, mesic 
Typic, Argiustolls 

0-15 27 7.2 0.38 12.32 10.0 1236.4 19.4 

15-60 17 7.9 0.49 7.62 6.00 1247.3 31.7 

14 DFO21 
Fine-silty, mixed, 

mesic Typic 
Argiustolls 

0-15 29 6.8 0.25 12.99 8.00 650.22 14.8 

15-60 20 7.2 0.36 10.08 2.00 87.73 28.2 

15 DLD21 
Fine, smectite, 
mesic Vertic 
Argiustolls 

0-15 32 7.9 0.24 9.52 4.00 319 28.4 

15-60 -- -- -- -- -- -- -- 

16 SCA21 
Fine-silty, mixed, 
superactive, frigid 
Calcic Hapludolls 

0-15 38 7.75 0.30 4.48 3.00 380.92 22.2 

15-60 18 7.15 0.41 4.48 2.00 553.72 30.3 
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