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Abstract

Some 2-Color Rado Numbers For A Linear Equation With A Negative Constant

Rachel Bergjord

April 2023

An r-coloring is a function ∆ that assigns a color to each natural number from 1 to

some number n using colors 0, 1, . . . , r − 1. A monochromatic solution (in ∆) to an

equation L with m variables is an ordered m-tuple (x1, x2, . . . , xm) where

∆(x1) = ∆(x2) = · · · = ∆(xm) and (x1, x2, . . . , xm−1, xm) solves L. Given a linear

equation L and t ∈ N, the t-color Rado number for L is the least integer n (if it exists)

such that every ∆ : [1, n] → [0, t− 1] admits a monochromatic solution to L. If no such

integer exists, the t-color Rado number for L is infinite. We prove the following two

theorems.

Theorem. The two-color Rado number for the equation

x1 + x2 + x3 + c = x4

with c < 0 is

R(4, c) =


− c

2
−
⌈−c
22

⌉
+ 1 m = 4, c even

∞ m = 4, c odd
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Theorem. The two-color Rado number for the equation

x1 + x2 + x3 + x4 + c = x5

with c < 0 is

R(5, c) =



− c
3
−
⌈−c
57

⌉
+ 1 m = 5, c ≡ 0 (mod 3)

7 m = 5, c = −2

− c+2
3

+ 2 m = 5, − 11 ≤ c ≤ −5 and c ≡ 1 (mod 3)

− c+2
3

−
⌈−c+19

57

⌉
+ 2 m = 5, c < −11 and c ≡ 1 (mod 3)

13 m = 5, c = −1

5 m = 5, c = −4

− c+1
3

−
⌈−c+38

57

⌉
+ 2 m = 5, c < −4 and c ≡ 2 (mod 3)
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Chapter 1

Introduction

Throughout this paper, we use [a, b] to denote the set {a, a+ 1, . . . , b− 1, b}

where a and b are integers with a ≤ b. A coloring is a function that assigns a color to

each natural number from 1 to some number n. We use ∆ : [1, n] → [0, r − 1] to denote

an r-coloring of the natural numbers from 1 to n using colors 0, 1, . . . , r − 1. A

monochromatic solution (in ∆) to an equation L with m variables is an ordered

m-tuple (x1, x2, . . . , xm) where ∆(x1) = ∆(x2) = · · · = ∆(xm) and x1, x2, . . . , xm−1, xm

solves L.

We will start by introducing a major theorem from combinatorics that was

proven by Issai Schur in 1916 [4].

Theorem 1 (Schur’s Theorem). For every finite t ≥ 2, there exists a least integer

n = S(t) such that every coloring ∆ : [1, n] → [0, t− 1] admits a monochromatic

solution to the equation x1 + x2 = x3.

S(t) is called the t-color Schur number and the equation x1 + x2 = x3 is called

Schur’s equation.

Schur’s theorem is part of a branch of combinatorics called Ramsey Theory.

Ramsey Theory has two major areas: coloring the natural numbers, and coloring the

edges of a graph. A graph is a set of vertices where some edges exist between the

vertices. A complete graph is a graph where there is an edge between each pair of

vertices. The following theorem, proven in 1930 by Frank Ramsey[5], considers coloring

the edges of a graph using t colors.
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Theorem 2 (Ramsey’s Theorem). For every integer t ≥ 2 and every si ∈ N with

i ∈ [1, t], there exists a least integer n = R(s1, s2, . . . , st) such that for every t-coloring

of the edges of a complete graph on n vertices there exists a complete graph on si

vertices monochromatic in color i for some i.

In the next section, we will prove Schur’s theorem using Ramsey’s theorem.

Richard Rado, one of Schur’s students, worked on a variation of Schur’s

problem by making a modification to the equation. Because of this we have the

following definition.

Definition 1 (Rado Number). Given a linear equation L and t ∈ N, the t-color Rado

number for L is the least integer n (if it exists) such that every coloring

∆ : [1, n] → [0, t− 1] admits a monochromatic solution to L. If no such integer exists,

the t-color Rado number for L is infinite.

Note that Schur numbers always exist, but Rado numbers do not always exist.

In other words, Schur numbers are always finite while some Rado numbers may be

infinite.

Definition 2 (L(m, c), R(m, c)). Let L(m, c) denote the equation

x1 + x2 + · · ·+ xm−1 + c = xm and let R(m, c) denote the 2-color Rado number for

L(m, c).

In order to visualize a coloring, we use the following notation to denote that 1 is
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colored with color a, 2 is colored with color b, 3 is colored with color c, and so on.

a

1

b

2

c

3
. . .

In 1982, Beutelspacher and Brestovansky [1] considered one modification of

Schur’s equation by adding more variables to get L(m, 0) : x1 + x2 + · · ·+ xm−1 = xm.

They found the following result, which we prove in the following section.

Theorem 3. The 2-color Rado number for L(m, 0) with m ≥ 3 is

R(m, 0) = m2 −m− 1

Before stating the next result, we need the following definition.

Definition 3 (Ceiling). The ceiling of x, denoted ⌈x⌉, is the least integer in the

interval [x, x+ 1).

Another modification of Schur’s equation was investigated by Burr, Loo and

Schaal [2]. For the equation L(3, c) : x1 + x2 + c = x3, they found the following result.

Theorem 4. The 2-color Rado number for L(3,c) is

R(3, c) =


4c+ 5 c ≥ 0

⌈−4c+1
5

⌉
c < 0

We prove this result for c ≥ 0 in the next section.
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Schaal combined the above two modifications of Schur’s equation and

considered the equation x1 + x2 + · · ·+ xm−1 + c = xm for non-negative values of c [3].

He proved the following theorem.

Theorem 5. For m ≥ 3 and c ≥ 0,

R(m, c) =


∞ m even, c odd

m2 −m− 1 + c(m+ 1) otherwise

We wish to continue this problem for c < 0. Note that m = 3 with c < 0 is done

(Theorem 4). We will give a result for R(4, c) and R(5, c) with c < 0.
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Chapter 2

Background

We will prove several of the theorems stated in the previous section. First, we

will prove Schur’s theorem using Ramsey’s theorem. Although Schur proved his

theorem 14 years before Ramsey’s theorem was proven, the proof of Schur’s theorem is

simplest with the use of Ramsey’s theorem.

Theorem 1 (Schur’s Theorem). For every finite t ≥ 2, there exists a least integer

n = S(t) such that every coloring ∆ : [1, n] → [0, t− 1] admits a monochromatic

solution to the equation x1 + x2 = x3.

Proof of Theorem 1. Let t ≥ 2 be finite. Then let n = R(3, 3, . . . , 3)− 1 from Ramsey’s

Theorem (Theorem 2) with t colors. Let ∆ : [1, n] → [0, t− 1]. Let K be a complete

graph on n+ 1 vertices where the vertices are labeled 1, . . . , n, n+ 1. Color the edge xy

of K ∆(|x− y|) for all vertices x and y. By Ramsey’s Theorem, K contains a complete

graph on 3 vertices that is monochromatic. Denote these vertices i, j, and k with

i > j > k. Then ∆(i− j) = ∆(j − k) = ∆(i− k). Also (i− j) + (j − k) = (i− k). Let

x1 = i− j, x2 = j − k, and x3 = i− k. So ∆ admits monochromatic solution

x1 + x2 = x3.

Next, we prove Beutelspacher and Brestovansky’s results for the equation

x1 + x2 + · · ·+ xm−1 = xm.



6

Theorem 3. The 2-color Rado number for L(m, 0) with m ≥ 3 is

R(m, 0) = m2 −m− 1

Proof of Theorem 3. Consider the equation L(m, 0) : x1 + x2 + · · ·+ xm−1 = xm. To

show that R(m, 0) = m2 −m− 1, we first demonstrate a coloring of length m2 −m− 2

with no monochromatic solution to L(m, 0). This gives a lower bound:

R(m, 0) ≥ m2 −m− 1. Then we show that every coloring of length m2 −m− 1 admits

a monochromatic solution to R(m, 0). This gives an upper bound:

R(m, 0) ≤ m2 −m− 1.

Lower Bound:

Consider the coloring ∆ which colors as follows:

0

1
. . .

0

m− 2

1

m− 1
. . .

1

m2 − 2m

0

m2 − 2m+ 1
. . .

0

m2 −m− 2

Let ∆(x1) = ∆(x2) = · · · = ∆(xm) = 1. Then

x1 + x2 + · · ·+ xm−1 ≥ (m− 1) + (m− 1) + · · ·+ (m− 1)

= (m− 1) · (m− 1)

= m2 − 2m+ 1

> m2 − 2m

≥ xm
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So (x1, x2, . . . , xm−1, xm) is not a solution to L(m, 0).

Let ∆(x1) = ∆(x2) = · · · = ∆(xm) = 0. If x1, x2, . . . , xm−1 ∈ {1, 2, . . . ,m− 2},

then

x1 + x2 + · · ·+ xm−1 ≥ 1 + 1 + · · ·+ 1 = 1 · (m− 1) = m− 1

and

x1 + x2 + · · ·+ xm−1 ≤ (m− 2) + (m− 2) + · · ·+ (m− 2)

= (m− 2) · (m− 1)

= m2 − 3m+ 2

= m2 − 2m+ (−m+ 2)

≤ m2 − 2m

since m ≥ 3. Then m− 1 ≤ x1 + x2 + · · ·+ xm−1 ≤ m2 − 2m, but

xm /∈ [m− 1,m2 − 2m] so (x1, x2, . . . , xm−1, xm) is not a solution to L(m, 0).

Otherwise, ∃xi (where 1 ≤ i ≤ m− 1) with xi ≥ m2 − 2m+ 1. Then

x1 + x2 + · · ·+ xm−1 ≥ (m2 − 2m+ 1) + 1 + · · ·+ 1

= (m2 − 2m+ 1) + 1 · (m− 2)

= m2 −m− 1

> xm
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So (x1, x2, . . . , xm−1, xm) is not a solution to L(m, 0).

Therefore ∆ does not admit a monochromatic solution to L(m, 0). We have

shown that there exists a coloring ∆ : [1,m2 −m− 2] → [0, 1] which does not admit a

monochromatic solution to L(m, 0). Therefore, R(m, 0) ≥ m2 −m− 1.

Upper Bound:

Let ∆ : [1,m2 −m− 1] → [0, 1] be any coloring. We show that ∆ admits a

monochromatic solution to L(m, 0). Without loss of generality, assume ∆(1) = 0.

If ∆(m− 1) = 0, then (1, 1, . . . , 1,m− 1) is a monochromatic solution to

L(m, 0). Otherwise ∆(m− 1) = 1.

If ∆(m2 − 2m+ 1) = 1, then (m− 1,m− 1, . . . ,m− 1,m2 − 2m+ 1) is a

monochromatic solution to L(m, 0). Otherwise ∆(m2 − 2m+ 1) = 0.

If ∆(m) = 0, then (1,m,m, . . . ,m,m2 − 2m+ 1) is a monochromatic solution to

L(m, 0). Otherwise ∆(m) = 1.

Then if ∆(m2 −m− 1) = 1, (m− 1,m,m, . . . ,m,m2 −m− 1) is a

monochromatic solution to L(m, 0). Also, if ∆(m2 −m− 1) = 0 then

(1, 1, . . . , 1,m2 − 2m+ 1,m2 −m− 1) is a monochromatic solution to L(m, 0). So ∆

must admit a monochromatic solution to L(m, 0). Then R(m, 0) ≤ m2 −m− 1.

Therefore R(m, 0) = m2 −m− 1.

We prove Burr, Loo, and Schaal’s result for the equation x1 + x2 + c = x3 with

c ≥ 0.
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Theorem 4. The 2-color Rado number for L(3,c) is

R(3, c) =


4c+ 5 c ≥ 0

⌈−4c+1
5

⌉
c < 0

Proof of Theorem 4 for c ≥ 0. Consider the equation L(3, c) : x1 + x2 + c = x3

Lower Bound:

Consider the coloring ∆ which colors as follows:

0

1
. . .

0

c+ 1

1

c+ 2
. . .

1

3c+ 3

0

3c+ 4
. . .

0

4c+ 4

Let ∆(x1) = ∆(x2) = ∆(x3) = 0. If x1, x2 ∈ [1, c+ 1], then

x1 + x2 + c ≥ 1 + 1 + c = c+ 2

and

x1 + x2 + c ≤ (c+ 1) + (c+ 1) + c = 3c+ 2

But x3 /∈ [c+ 2, 3c+ 2] so (x1, x2, x3) is not a monochromatic solution.
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If ∃i ∈ {1, 2} such that xi ≥ 3c+ 4, then

x1 + x2 + c ≥ 1 + (3c+ 4) + c

= 4c+ 5

> 4c+ 4

≥ x3

So ∆ does not admit a solution monochromatic in 0.

Let ∆(x1) = ∆(x2) = ∆(x3) = 1. Then

x1 + x2 + c ≥ (c+ 2) + (c+ 2) + c

= 3c+ 4

> 3c+ 3

≥ x3

So ∆ does not admit a solution monochromatic in 1. Therefore ∆ does not admit a

monochromatic solution to x1 + x2 + c = x3. So R(3, c) ≥ 4c+ 5 for all c ≥ 0.

Upper Bound:

Let ∆ : [1, 4c+ 5] → [0, 1] be any coloring. We show that ∆ admits a

monochromatic solution to L(3, c). Without loss of generality, assume ∆(1) = 0.

If ∆(c+ 2) = 0, then (1, 1, c+ 2) is a monochromatic solution to L(3, c).

Otherwise ∆(c+ 2) = 1.
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If ∆(3c+ 4) = 1, then (c+ 2, c+ 2, 3c+ 4) is a monochromatic solution to

L(3, c). Otherwise ∆(3c+ 4) = 0.

If ∆(2c+ 3) = 0, then (1, 2c+ 3, 3c+ 4) is a monochromatic solution to L(3, c).

Otherwise ∆(2c+ 3) = 1.

Then if ∆(4c+ 5) = 0, (1, 3c+ 4, 4c+ 5) is a monochromatic solution to L(3, c).

Also, if ∆(4c+ 5) = 1 then (c+ 2, 2c+ 3, 4c+ 5) is a monochromatic solution to

L(3, c). So ∆ must admit a monochromatic solution to L(3, c). Then R(3, c) ≤ 4c+ 5.

Therefore R(3, c) = 4c+ 5.
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Chapter 3

Main Result

The following two theorems are the main results of this paper.

Theorem 6. The two-color Rado number for the equation

x1 + x2 + x3 + c = x4

with c < 0 is

R(4, c) =


− c

2
−
⌈−c
22

⌉
+ 1 c even

∞ c odd

Theorem 7. The two-color Rado number for the equation

x1 + x2 + x3 + x4 + c = x5

with c < 0 is
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R(5, c) =



− c
3
−
⌈−c
57

⌉
+ 1 c ≡ 0 (mod 3)

7 c = −2

− c+2
3

+ 2 −11 ≤ c ≤ −5 and c ≡ 1 (mod 3)

− c+2
3

−
⌈−c+19

57

⌉
+ 2 c < −11 and c ≡ 1 (mod 3)

13 c = −1

5 c = −4

− c+1
3

−
⌈−c+38

57

⌉
+ 2 c < −4 and c ≡ 2 (mod 3)

We prove Theorem 6 and Theorem 7 in the following chapters.
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Chapter 4

m=4, c even

We restate the first case of Theorem 6 and provide a proof in this chapter.

Theorem. R(4, c) = − c
2
−
⌈−c
22

⌉
+ 1 for even c < 0.

Proof.

4.1 Lower Bound R (4, c) ≥ − c
2
−
⌈−c
22

⌉
+ 1

Let c < 0 be even. We show that there exists a coloring

∆′′ :
[
1,− c

2
−
⌈−c
22

⌉]
→ [0, 1] with no monochromatic solution to L (4, c).

Let ∆ :
[
1, 10 ·

⌈−c
22

⌉]
→ [0, 1] be such that ∆ has no monochromatic solution to

L
(
4, 2 ·

(⌈−c
22

⌉
− 1
))
. We know such a coloring exists since 2 ·

(⌈−c
22

⌉
− 1
)
≥ 0 so by

Theorem 5, R
(
4, 2 ·

(⌈−c
22

⌉
− 1
))

≥ 11 + 5 · 2 ·
(⌈−c

22

⌉
− 1
)
= 1 + 10 ·

⌈−c
22

⌉
.

Let ∆′ :
[
1, 10 ·

⌈−c
22

⌉]
→ [0, 1] be defined by ∆′ (x) = ∆

(
1 + 10 ·

⌈−c
22

⌉
− x
)
. Let

∆′′ :
[
1,− c

2
−
⌈−c
22

⌉]
→ [0, 1] be defined by ∆′′ (x) = ∆′

(
x+

c+22·⌈−c
22 ⌉

2

)
for x ≥ 1.

Suppose ∃z1, z2, z3, z4 ∈
[
1,− c

2
−
⌈−c
22

⌉]
such that

z1 + z2 + z3 + c = z4
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Define yi by yi = zi +
c+22·⌈−c

22 ⌉
2

. Then

(
y1 −

c+ 22 ·
⌈−c
22

⌉
2

)
+

(
y2 −

c+ 22 ·
⌈−c
22

⌉
2

)
+

(
y3 −

c+ 22 ·
⌈−c
22

⌉
2

)
+ c

=

(
y4 −

c+ 22 ·
⌈−c
22

⌉
2

)

So

y1 + y2 + y3 −
(
c+ 22 ·

⌈
−c

22

⌉)
+ c = y4

y1 + y2 + y3 − 22 ·
⌈
−c

22

⌉
= y4

Define xi by xi = 1 + 10 ·
⌈−c
22

⌉
− yi. Then

(
1 + 10 ·

⌈
−c

22

⌉
− x1

)
+

(
1 + 10 ·

⌈
−c

22

⌉
− x2

)
+

(
1 + 10 ·

⌈
−c

22

⌉
− x3

)
− 22 ·

⌈
−c

22

⌉
=

(
1 + 10 ·

⌈
−c

22

⌉
− x4

)

Thus

2 + 20 ·
⌈
−c

22

⌉
− x1 − x2 − x3 − 22 ·

⌈
−c

22

⌉
= −x4

2− 2 ·
⌈
−c

22

⌉
− x1 − x2 − x3 = −x4

x1 + x2 + x3 − 2 + 2 ·
⌈
−c

22

⌉
= x4

x1 + x2 + x3 + 2 ·
(⌈

−c

22

⌉
− 1

)
= x4
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Since (x1, x2, x3, x4) solves L
(
4, 2 ·

(⌈−c
22

⌉
− 1
))

and ∆ has no monochromatic solution

to L
(
4, 2 ·

(⌈−c
22

⌉
− 1
))
, x1, x2, x3, and x4 must not be monochromatic in ∆. Consider

∆′′ (zi) = ∆′
(
zi +

c+22·⌈−c
22 ⌉

2

)
= ∆′ (yi) = ∆

(
1 + 10 ·

⌈−c
22

⌉
− yi

)
= ∆(xi). So z1, z2, z3,

and z4 are not monochromatic in ∆′′.

We have shown that there exists a coloring ∆′′ :
[
1,− c

2
−
⌈−c
22

⌉]
→ [0, 1] that

has no monochromatic solution to L (4, c). Therefore R (4, c) ≥ − c
2
−
⌈−c
22

⌉
+ 1 for even

c < 0.

4.2 Upper Bound R (4, c) ≤ − c
2
−
⌈−c
22

⌉
+ 1

4.2.1 c < −22

Let c be even and c < −22. Let ∆ : [1,− c
2
−
⌈−c
22

⌉
+ 1] → [0, 1] be an arbitrary

coloring. We show that ∆ has a monochromatic solution to L(4, c).

Let ∆′ :
[
1, 10 ·

⌈−c
22

⌉
− 9
]
→ [0, 1] be defined by ∆′(x) = ∆

(
x− c+22·⌈−c

22 ⌉−20

2

)
for x ≥ 1. Let ∆′′ :

[
1, 10 ·

⌈−c
22

⌉
− 9
]
→ [0, 1] be defined by

∆′′(x) = ∆′ (10 · ⌈−c
22

⌉
− 8− x

)
. Since R(4, c) ≤ 11 + 5c for c ≥ 0,

R
(
4, 2 ·

⌈−c
22

⌉
− 4
)
≤ 11 + 5 ·

(
2 ·
⌈−c
22

⌉
− 4
)
= 10 ·

⌈−c
22

⌉
− 9 since c < −22. So ∆′′ must

admit a monochromatic solution to L
(
4, 2 ·

⌈−c
22

⌉
− 4
)
. Let

z1 + z2 + z3 + 2 ·
⌈−c
22

⌉
− 4 = z4 where ∆′′(z1) = ∆′′(z2) = ∆′′(z3) = ∆′′(z4).
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Define yi by yi = 10 ·
⌈−c
22

⌉
− 8− zi. Then

(
10 ·

⌈
−c

22

⌉
− 8− y1

)
+

(
10 ·

⌈
−c

22

⌉
− 8− y2

)
+

(
10 ·

⌈
−c

22

⌉
− 8− y3

)
+ 2 ·

⌈
−c

22

⌉
− 4 =

(
10 ·

⌈
−c

22

⌉
− 8− y4

)

So

2 ·
(
10 ·

⌈
−c

22

⌉
− 8

)
− y1 − y2 − y3 + 2 ·

⌈
−c

22

⌉
− 4 = −y4

y1 + y2 + y3 − 22 ·
⌈
−c

22

⌉
+ 20 = y4

Define xi by xi = yi −
c+22·⌈−c

22 ⌉−20

2
. Then

(
x1 +

c+ 22 ·
⌈−c
22

⌉
− 20

2

)
+

(
x2 +

c+ 22 ·
⌈−c
22

⌉
− 20

2

)

+

(
x3 +

c+ 22 ·
⌈−c
22

⌉
− 20

2

)
− 22 ·

⌈
−c

22

⌉
+ 20 =

(
x4 +

c+ 22 ·
⌈−c
22

⌉
− 20

2

)

Thus

x1 + x2 + x3 +

(
c+ 22 ·

⌈
−c

22

⌉
− 20

)
− 22 ·

⌈
−c

22

⌉
+ 20 = x4

x1 + x2 + x3 + c = x4

Consider ∆(xi) = ∆

(
yi −

c+22·⌈−c
22 ⌉−20

2

)
= ∆′(yi) = ∆′ (10 · ⌈−c

22

⌉
− 8− zi

)
= ∆′′(zi).

Since z1, z2, z3 and z4 are monochromatic in ∆′′, x1, x2, x3 and x4 are monochromatic in
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∆. Therefore (x1, x2, x3, x4) is a monochromatic solution to L(4, c). So

R(4, c) ≤ − c
2
−
⌈−c
22

⌉
+ 1.

Therefore R(4, c) = − c
2
−
⌈−c
22

⌉
+ 1 for c even and c < −22.

4.2.2 0 > c ≥ −22

For c even and 0 > c ≥ −22, − c
2
−
⌈−c
22

⌉
+ 1 = − c

2
− 1 + 1 = − c

2
. Let

∆ :
[
1,− c

2
−
⌈−c
22

⌉
+ 1
]
→ [0, 1] and consider x1 = x2 = x3 = x4 = − c

2
.

x1 + x2 + x3 + c = − c

2
− c

2
− c

2
+ c = − c

2
= x4

So (x1, x2, x3, x4) is a monochromatic solution to L(4, c). Then

R(4, c) ≤ − c
2
−
⌈−c
22

⌉
+1. Therefore R(4, c) = − c

2
−
⌈−c
22

⌉
+1 for c even and 0 > c ≥ −22

Then R(4, c) = − c
2
−
⌈−c
22

⌉
+ 1 for all even c with c < 0.



19

Chapter 5

m=4, c odd

We restate the second case of Theorem 6 and provide a proof in this chapter.

Theorem. R(4, c) = ∞ for odd c < 0.

Proof.

Let m = 4 and c < 0 be odd. Consider the coloring ∆ : N → [0, 1] where

∆(x) =


0 if x is even

1 if x is odd

Choose x1, x2, x3, and x4 monochromatic in ∆. Then they are either all even or all odd.

If x1, x2, x3, and x4 are all even, then x1 + x2 + x3 + c is

even+ even+ even+ odd = odd ̸= x4, so (x1, x2, x3, x4) is not a solution to L(4, c).

If x1, x2, x3, and x4 are all odd, then x1 + x2 + x3 + c is

odd+ odd+ odd+ odd = even ̸= x4, so (x1, x2, x3, x4) is not a solution to L(4, c).

Then ∆ does not have a monochromatic solution to L(4, c). Therefore R(4, c) is

infinite for m = 4 and c odd.
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Chapter 6

m = 5 Special Cases

In this chapter, we prove the special cases from Theorem 7: R(5,−1) = 13,

R(5,−2) = 7 and R(5,−4) = 5. We also prove that R(5,−5) ≤ 3.

6.1 c = −1: R(5,−1) = 13

Proof.

6.1.1 Lower Bound

Consider L(5,−1) : x1 + x2 + x3 + x4 − 1 = x5 and the coloring ∆ which colors

as follows:

0

1

0

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

0

11

0

12

We show that ∆ does not admit a monochromatic solution to L(5,−1).

Let ∆(x1) = ∆(x2) = ∆(x3) = ∆(x4) = ∆(x5) = 1. Then

x1 + x2 + x3 + x4 − 1 ≥ 3 + 3 + 3 + 3− 1 = 11 > 10 ≥ x5

So (x1, x2, x3, x4, x5) is not a solution to L(5,−1).

Let ∆(x1) = ∆(x2) = ∆(x3) = ∆(x4) = ∆(x5) = 0. If x1, x2, x3, x4 ∈ {1, 2}, then

x1 + x2 + x3 + x4 − 1 ≥ 1 + 1 + 1 + 1− 1 = 3
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and

x1 + x2 + x3 + x4 − 1 ≤ 2 + 2 + 2 + 2− 1 = 7

But x5 /∈ [3, 7]. So (x1, x2, x3, x4, x5) is not a solution to L(5,−1). Otherwise, ∃xi

(where 1 ≤ i ≤ 4) with xi ∈ {11, 12}. Then

x1 + x2 + x3 + x4 − 1 ≥ 11 + 1 + 1 + 1− 1 = 13 > 12 ≥ x5

So (x1, x2, x3, x4, x5) is not a solution to L(5,−1).

Therefore ∆ does not admit a monochromatic solution to L(5,−1). We have

shown that there exists a coloring ∆ : [1, 12] → [0, 1] which does not admit a

monochromatic solution to L(5,−1). Therefore, R(5,−1) ≥ 13.

6.1.2 Upper Bound

Let ∆ : [1, 13] → [0, 1] be any coloring. We show that ∆ admits a

monochromatic solution to L(5,−1). Without loss of generality, assume ∆(1) = 0.

If ∆(3) = 0, then (1, 1, 1, 1, 3) is a monochromatic solution to L(5,−1).

Otherwise ∆(3) = 1.

If ∆(11) = 1, then (3, 3, 3, 3, 11) is a monochromatic solution to L(5,−1).

Otherwise ∆(11) = 0.

If ∆(5) = 0, then (1, 1, 5, 5, 11) is a monochromatic solution to L(5,−1).

Otherwise ∆(5) = 1.



22

Then if ∆(13) = 0, (1, 1, 1, 11, 13) is a monochromatic solution to L(5,−1).

Also, if ∆(13) = 1 then (3, 3, 3, 5, 13) is a monochromatic solution to L(5,−1). So ∆

must admit a monochromatic solution to L(5,−1). Then R(5,−1) ≤ 13. Therefore

R(5,−1) = 13.

6.2 c = −2: R(5,−2) = 7

Proof.

6.2.1 Lower Bound

Consider L(5,−2) : x1 + x2 + x3 + x4 − 2 = x5 and the coloring ∆ which colors

as follows:

0

1

1

2

1

3

1

4

1

5

0

6

We show that ∆ does not admit a monochromatic solution to L(5,−2).

Let ∆(x1) = ∆(x2) = ∆(x3) = ∆(x4) = ∆(x5) = 1. Then

x1 + x2 + x3 + x4 − 2 ≥ 2 + 2 + 2 + 2− 2 = 6 > 5 ≥ x5

So (x1, x2, x3, x4, x5) is not a solution to L(5,−2).

Let ∆(x1) = ∆(x2) = ∆(x3) = ∆(x4) = ∆(x5) = 0. If x1 = x2 = x3 = x4 = 1,

then

x1 + x2 + x3 + x4 − 2 = 1 + 1 + 1 + 1− 2 = 2 ̸= x5

So (x1, x2, x3, x4, x5) is not a solution to L(5,−2). Otherwise, ∃xi (where 1 ≤ i ≤ 4)
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with xi = 6. Then

x1 + x2 + x3 + x4 − 2 ≥ 6 + 1 + 1 + 1− 2 = 7 > 6 ≥ x5

So (x1, x2, x3, x4, x5) is not a solution to L(5,−2).

Therefore ∆ does not admit a monochromatic solution to L(5,−2). We have

shown that there exists a coloring ∆ : [1, 6] → [0, 1] which does not admit a

monochromatic solution to L(5,−2). Therefore, R(5,−2) ≥ 7.

6.2.2 Upper Bound

Let ∆ : [1, 7] → [0, 1] be any coloring. We show that ∆ admits a monochromatic

solution to L(5,−2). Without loss of generality, assume ∆(1) = 0.

If ∆(2) = 0, then (1, 1, 1, 1, 2) is a monochromatic solution to L(5,−2).

Otherwise ∆(2) = 1.

If ∆(6) = 1, then (2, 2, 2, 2, 6) is a monochromatic solution to L(5,−2).

Otherwise ∆(6) = 0.

If ∆(5) = 1, then (1, 1, 1, 5, 6) is a monochromatic solution to L(5,−2).

Otherwise ∆(5) = 0.

If ∆(3) = 1, then (1, 1, 3, 3, 6) is a monochromatic solution to L(5,−2).

Otherwise ∆(3) = 0.

Then if ∆(7) = 0, (1, 1, 1, 6, 7) is a monochromatic solution to L(5,−2). Also, if

∆(7) = 1 then (2, 2, 2, 3, 7) is a monochromatic solution to L(5,−2). So ∆ must admit
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a monochromatic solution to L(5,−2). Then R(5,−2) ≤ 7. Therefore

R(5,−2) = 7.

6.3 c = −4: R(5,−4) = 5

Proof.

6.3.1 Lower Bound

Consider L(5,−4) : x1 + x2 + x3 + x4 − 4 = x5 and the coloring ∆ which colors

as follows:

0

1

1

2

1

3

0

4

We show that ∆ does not admit a monochromatic solution to L(5,−4).

Let ∆(x1) = ∆(x2) = ∆(x3) = ∆(x4) = ∆(x5) = 1. Then

x1 + x2 + x3 + x4 − 4 ≥ 2 + 2 + 2 + 2− 4 = 4 > 3 ≥ x5

So (x1, x2, x3, x4, x5) is not a solution to L(5,−4).

Let ∆(x1) = ∆(x2) = ∆(x3) = ∆(x4) = ∆(x5) = 0. If x1 = x2 = x3 = x4 = 1,

then

x1 + x2 + x3 + x4 − 4 = 1 + 1 + 1 + 1− 4 = 0 ̸= x5

So (x1, x2, x3, x4, x5) is not a solution to L(5,−4). Otherwise, ∃xi (where 1 ≤ i ≤ 4)
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with xi = 4. If there is only one such xi, then

x1 + x2 + x3 + x4 − 4 = 4 + 1 + 1 + 1− 4 = 3 ̸= x5

So (x1, x2, x3, x4, x5) is not a solution to L(5,−4). Otherwise, there is more than one

xi = 4 (where 1 ≤ i ≤ 4), then

x1 + x2 + x3 + x4 − 4 ≥ 4 + 4 + 1 + 1− 4 = 6 > 4 ≥ x5

So (x1, x2, x3, x4, x5) is not a solution to L(5,−4).

Therefore ∆ does not admit a monochromatic solution to L(5,−4). We have

shown that there exists a coloring ∆ : [1, 4] → [0, 1] which does not admit a

monochromatic solution to L(5,−4). Therefore, R(5,−4) ≥ 5.

6.3.2 Upper Bound

Let ∆ : [1, 5] → [0, 1] be any coloring. We show that ∆ admits a monochromatic

solution to L(5,−4). Without loss of generality, assume ∆(1) = 0.

If ∆(2) = 0, then (1, 1, 1, 2, 1) is a monochromatic solution to L(5,−4).

Otherwise ∆(2) = 1.

If ∆(4) = 1, then (2, 2, 2, 2, 4) is a monochromatic solution to L(5,−4).

Otherwise ∆(4) = 0.

If ∆(3) = 1, then (1, 1, 1, 4, 3) is a monochromatic solution to L(5,−4).



26

Otherwise ∆(3) = 0.

Then if ∆(5) = 0, (1, 1, 1, 5, 4) is a monochromatic solution to L(5,−4). Also, if

∆(5) = 1 then (2, 2, 2, 3, 5) is a monochromatic solution to L(5,−4). So ∆ must admit

a monochromatic solution to L(5,−4). Then R(5,−4) ≤ 5. Therefore

R(5,−4) = 5.

6.4 c = −5: R(5,−5) ≤ 3

Proof. Let ∆ : [1, 3] → [0, 1] be any coloring. We show that ∆ admits a

monochromatic solution to L(5,−5). Without loss of generality, assume ∆(1) = 0.

If ∆(2) = 0, then (1, 1, 2, 2, 1) is a monochromatic solution to L(5,−5).

Otherwise ∆(2) = 1.

Then if ∆(3) = 0, (1, 1, 1, 3, 1) is a monochromatic solution to L(5,−5). Also, if

∆(3) = 1 then (2, 2, 2, 2, 3) is a monochromatic solution to L(5,−5). So ∆ must admit

a monochromatic solution to L(5,−5). Then R(5,−5) ≤ 3.

6.5 Summary of Special Cases

We summarize the results from this chapter and Theorem 5 in the table below.

These results will be used in the next chapter to prove the remainder of Theorem 7.
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c R(5, c)

≥ 0 19 + 6c

-1 13

-2 7

-4 5

-5 ≤ 3

Table 6.1: Some Rado numbers for L(5, c)

Also note that 19 + 6 · (−1) = 13 = R(5,−1) and 19 + 6 · (−2) = 7 = R(5,−2).

Then the results can also be summarized as follows:

c R(5, c)

≥ -2 19 + 6c

-4 5

-5 ≤ 3

Table 6.2: Some Rado numbers for L(5, c) (simplified)
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Chapter 7

m = 5 In General

In this chapter, we prove the remaining pieces of Theorem 7 using the results

summarized in Table 6.2.

7.1 c ≡ 0 (mod 3)

We restate the c ≡ 0 (mod 3) case of Theorem 7 and provide a proof in this

section.

Theorem. R(5, c) = − c
3
−
⌈−c
57

⌉
+ 1 for c ≡ 0 (mod 3)

Proof.

7.1.1 Lower Bound: R(5, c) ≥ − c
3
−
⌈−c
57

⌉
+ 1

Let c < 0 and c ≡ 0 (mod 3). We show that there exists a coloring

∆′′ :
[
1,− c

3
−
⌈−c
57

⌉]
→ [0, 1] with no monochromatic solution to L (5, c). Let

∆ :
[
1, 18 ·

⌈−c
57

⌉]
→ [0, 1] be such that ∆ has no monochromatic solution to

L
(
5, 3 ·

⌈−c
57

⌉
− 3
)
. We know such a coloring exists since 3 ·

⌈−c
57

⌉
− 3 ≥ 0 so

R
(
5, 3 ·

⌈−c
57

⌉
− 3
)
= 19 + 6 ·

(
3 ·
⌈−c
57

⌉
− 3
)
= 1 + 18 ·

⌈−c
57

⌉
by Theorem 5.

Let ∆′ :
[
1, 18 ·

⌈−c
57

⌉]
→ [0, 1] be defined by ∆′(x) = ∆

(
1 + 18 ·

⌈−c
57

⌉
− x
)
. Let

∆′′ :
[
1,− c

3
−
⌈−c
57

⌉]
→ [0, 1] be defined by ∆′′(x) = ∆′

(
x+

c+57·⌈−c
57 ⌉

3

)
for x ≥ 1.

Suppose ∃z1, z2, z3, z4, z5 ∈
[
1,− c

3
−
⌈−c
57

⌉]
such that z1 + z2 + z3 + z4 + c = z5.
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Define yi by yi = zi +
c+57·⌈−c

57 ⌉
3

. Then

(
y1 −

c+ 57 ·
⌈−c
57

⌉
3

)
+

(
y2 −

c+ 57 ·
⌈−c
57

⌉
3

)
+

(
y3 −

c+ 57 ·
⌈−c
57

⌉
3

)

+

(
y4 −

c+ 57 ·
⌈−c
57

⌉
3

)
+ c =

(
y5 −

c+ 57 ·
⌈−c
57

⌉
3

)

So

y1 + y2 + y3 + y4 −
(
c+ 57 ·

⌈
−c

57

⌉)
+ c = y5

y1 + y2 + y3 + y4 − 57 ·
⌈
−c

57

⌉
= y5

Define xi by xi = 1 + 18 ·
⌈−c
57

⌉
− yi. Then

(
1 + 18 ·

⌈
−c

57

⌉
− x1

)
+

(
1 + 18 ·

⌈
−c

57

⌉
− x2

)
+

(
1 + 18 ·

⌈
−c

57

⌉
− x3

)
+

(
1 + 18 ·

⌈
−c

57

⌉
− x4

)
− 57 ·

⌈
−c

57

⌉
=

(
1 + 18 ·

⌈
−c

57

⌉
− x5

)

Thus

3 ·
(
1 + 18 ·

⌈
−c

57

⌉)
− x1 − x2 − x3 − x4 − 57 ·

⌈
−c

57

⌉
= −x5

x1 + x2 + x3 + x4 + 3 ·
⌈
−c

57

⌉
− 3 = x5

Since ∆ does not have a monochromatic solution to L
(
5, 3 ·

⌈−c
57

⌉
− 3
)
,

x1, x2, x3, x4, and x5 are not monochromatic in ∆. Consider
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∆′′(zi) = ∆′
(
zi +

c+57·⌈−c
57 ⌉

3

)
= ∆′(yi) = ∆

(
1 + 18 ·

⌈−c
57

⌉
− yi

)
= ∆(xi). So

z1, z2, z3, z4, and z5 are not monochromatic in ∆′′. Then ∆′′ has no monochromatic

solution to L(5, c). Therefore, R(5, c) ≥ − c
3
−
⌈−c
57

⌉
+ 1 for c < 0 and c ≡ 0 (mod 3).

7.1.2 Upper Bound: R(5, c) ≤ − c
3
−
⌈−c
57

⌉
+ 1

c < −57

Let c < −57 and let ∆ :
[
1,− c

3
−
⌈−c
57

⌉
+ 1
]
→ [0, 1]. Let

∆′ :
[
1, 18

⌈−c
57

⌉
− 17

]
→ [0, 1] be defined by ∆′(x) = ∆

(
x− c+57·⌈−c

57 ⌉−54

3

)
for x ≥ 1.

Let ∆′′ :
[
1, 18

⌈−c
57

⌉
− 17

]
→ [0, 1] be defined by ∆′′(x) = ∆′ (18 ⌈−c

57

⌉
− 16− x

)
.

Also, since c < −57, 3 ·
⌈−c
57

⌉
− 6 ≥ 0. Then

R
(
5, 3 ·

⌈−c
57

⌉
− 6
)
= 19 + 6 ·

(
3 ·
⌈−c
57

⌉
− 6
)
= 18 ·

⌈−c
57

⌉
− 17. So ∆′′ admits a

monochromatic solution to L
(
5, 3 ·

⌈−c
57

⌉
− 6
)
. Let z1 + z2 + z3 + z4 + 3 ·

⌈−c
57

⌉
− 6 = z5

with ∆′′(z1) = ∆′′(z2) = ∆′′(z3) = ∆′′(z4) = ∆′′(z5).

Define yi by yi = 18
⌈−c
57

⌉
− 16− zi. Then

(
18 ·

⌈
−c

57

⌉
− 16− y1

)
+

(
18 ·

⌈
−c

57

⌉
− 16− y2

)
+

(
18 ·

⌈
−c

57

⌉
− 16− y3

)
+

(
18 ·

⌈
−c

57

⌉
− 16− y4

)
+ 3 ·

⌈
−c

57

⌉
− 6 =

(
18 ·

⌈
−c

57

⌉
− 16− y5

)
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So

3 ·
(
18 ·

⌈
−c

57

⌉
− 16

)
− y1 − y2 − y3 − y4 + 3 ·

⌈
−c

57

⌉
− 6 = −y5

y1 + y2 + y3 + y4 + 54− 57 ·
⌈
−c

57

⌉
= y5

Define xi by xi = yi −
c+57·⌈−c

57 ⌉−54

3
. Then

(
x1 +

c+ 57 ·
⌈−c
57

⌉
− 54

3

)
+

(
x2 +

c+ 57 ·
⌈−c
57

⌉
− 54

3

)
+

(
x3 +

c+ 57 ·
⌈−c
57

⌉
− 54

3

)

+

(
x4 +

c+ 57 ·
⌈−c
57

⌉
− 54

3

)
+ 54− 57 ·

⌈
−c

57

⌉
=

(
x5 +

c+ 57 ·
⌈−c
57

⌉
− 54

3

)

Thus

x1 + x2 + x3 + x4 +

(
c+ 57 ·

⌈
−c

57

⌉
− 54

)
+ 54− 57 ·

⌈
−c

57

⌉
= x5

x1 + x2 + x3 + x4 + c = x5

Also, ∆(xi) = ∆

(
yi −

c+57·⌈−c
57 ⌉−54

3

)
= ∆′(yi) = ∆′ (18 ⌈−c

57

⌉
− 16− zi

)
= ∆′′(zi).

Since z1, z2, z3, z4, and z5 are monochromatic in ∆′′, x1, x2, x3, x4, and x5 are

monochromatic in ∆. Therefore ∆ admits a monochromatic solution to L(5, c). So

R(5, c) ≤ − c
3
−
⌈−c
57

⌉
+ 1 for c ≡ 0 (mod 3) and c < −57.
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0 > c ≥ −57

Let 0 > c ≥ −57 and ∆ :
[
1,− c

3

]
→ [0, 1]. Consider

x1 = x2 = x3 = x4 = x5 = − c
3
. Then

x1 + x2 + x3 + x4 + c = − c

3
− c

3
− c

3
− c

3
+ c = − c

3
= x5

So
(
− c

3
,− c

3
,− c

3
,− c

3
,− c

3

)
is a monochromatic solution to L(5, c). Then

R(5, c) ≤ − c
3
= − c

3
−
⌈−c
57

⌉
+ 1 for 0 > c ≥ −57 and c ≡ 0 (mod 3).

Therefore, R(5, c) = − c
3
−
⌈−c
57

⌉
+ 1 for all c < 0 with c ≡ 0 (mod 3).

7.2 c ≡ 1 (mod 3)

We restate the remaining c ≡ 1 (mod 3) cases of Theorem 7 and provide a proof

in this section.

Theorem.

R(5, c) =


− c+2

3
+ 2 −11 ≤ c ≤ −5 and c ≡ 1 (mod 3)

− c+2
3

−
⌈−c+19

57

⌉
+ 2 c < −11 and c ≡ 1 (mod 3)

We first prove the case where −11 ≤ c ≤ −5 and c ≡ 1 (mod 3).

7.2.1 −5 ≥ c ≥ −11: R(5, c) = − c+2
3

+ 2

Proof.
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Lower Bound: R(5, c) ≥ 2− c+2
3

Let −5 ≥ c ≥ −11 where c ≡ 1 (mod 3) and let ∆ : [1, 4] → [0, 1] be such that

∆ has no monochromatic solution to L(5,−4). Let ∆′ : [1, 4] → [0, 1] be defined by

∆′(x) = ∆ (5− x).

Let ∆′′ :
[
1, 1− c+2

3

]
→ [0, 1] be defined by ∆′′(x) = ∆′ (x+ c+11

3

)
for x ≥ 1.

Suppose ∃z1, z2, z3, z4, z5 ∈
[
1, 1− c+2

3

]
such that z1 + z2 + z3 + z4 + c = z5.

Define yi by yi = zi +
c+11
3

. Then

(
y1 −

c+ 11

3

)
+

(
y2 −

c+ 11

3

)
+

(
y3 −

c+ 11

3

)
+

(
y4 −

c+ 11

3

)
+ c =

(
y5 −

c+ 11

3

)

So

y1 + y2 + y3 + y4 − (c+ 11) + c = y5

y1 + y2 + y3 + y4 − 11 = y5

Define xi by xi = 5− yi. Then

(5− x1) + (5− x2) + (5− x3) + (5− x4)− 11 = (5− x5)

15− x1 − x2 − x3 − x4 − 11 = −x5

x1 + x2 + x3 + x4 − 4 = x5
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Since ∆ does not admit a monochromatic solution to L(5,−4), x1, x2, x3, x4, and x5 are

not monochromatic in ∆. Also, ∆(xi) = ∆(5− yi) = ∆′(yi) = ∆′ (zi + c+11
3

)
= ∆′′(zi)

so z1, z2, z3, z4, and z5 are not monochromatic in ∆′′. Then ∆′′ does not admit a

monochromatic solution to L(5, c). Therefore R(5, c) ≥ 2− c+2
3

for c ≡ 1 (mod 3) and

−5 ≥ c ≥ −11.

Upper Bound: R(5, c) ≤ 2− c+2
3

Let −5 ≥ c ≥ −11 where c ≡ 1 (mod 3) and let ∆ :
[
1, 2− c+2

3

]
→ [0, 1]. Let

∆′ : [1, 3] → [0, 1] be defined by ∆′(x) = ∆
(
x− c+5

3

)
for x ≥ 1. Since R(5,−5) ≤ 3 by

results in Table 6.2, ∆′ admits a monochromatic solution to L(5,−5). Let

y1 + y2 + y3 + y4 − 5 = y5 with ∆′(y1) = ∆′(y2) = ∆′(y3) = ∆′(y4) = ∆′(y5).

Define xi by xi = yi − c+5
3
. Then

(
x1 +

c+ 5

3

)
+

(
x2 +

c+ 5

3

)
+

(
x3 +

c+ 5

3

)
+

(
x4 +

c+ 5

3

)
− 5 =

(
x5 +

c+ 5

3

)
x1 + x2 + x3 + x4 + (c+ 5)− 5 = x5

x1 + x2 + x3 + x4 + c = x5

Also, ∆(xi) = ∆
(
yi − c+5

3

)
= ∆′(yi). Since y1, y2, y3, y4, and y5 are monochromatic in

∆′, x1, x2, x3, x4, and x5 are monochromatic in ∆. Then ∆ admits a monochromatic

solution to L(5, c). So R(5, c) ≤ 2− c+2
3

for −5 ≥ c ≥ −11 and c ≡ 1 (mod 3).

Therefore, R(5, c) = 2− c+2
3

for −5 ≥ c ≥ −11 and c ≡ 1 (mod 3).
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7.2.2 c < −11: R(5, c) = − c+2
3

−
⌈−c+19

57

⌉
+ 2

We now prove the case where c < −11.

Proof.

Lower Bound: R(5, c) ≥ − c+2
3

−
⌈−c+19

57

⌉
+ 2

Let c < −11 and c ≡ 1 (mod 3). We show that there exists a coloring

∆′′ :
[
1,− c+2

3
−
⌈−c+19

57

⌉
+ 1
]
→ [0, 1] with no monochromatic solution to L (5, c). Let

∆ :
[
1, 18 ·

⌈−c+19
57

⌉
− 6
]
→ [0, 1] be such that ∆ has no monochromatic solution to

L
(
5, 3 ·

⌈−c+19
57

⌉
− 4
)
. We know such a coloring exists since 3 ·

⌈−c+19
57

⌉
− 4 ≥ −1 for

c < −11 so R
(
5, 3 ·

⌈−c+19
57

⌉
− 4
)
= 19 + 6 ·

(
3 ·
⌈−c+19

57

⌉
− 4
)
= 18 ·

⌈−c+19
57

⌉
− 5 by the

results in Table 6.2. Let ∆′ :
[
1, 18 ·

⌈−c+19
57

⌉
− 6
]
→ [0, 1] be defined by

∆′(x) = ∆
(
18 ·

⌈−c+19
57

⌉
− 5− x

)
. Let ∆′′ :

[
1,− c+2

3
−
⌈−c+19

57

⌉
+ 1
]
→ [0, 1] be defined

by ∆′′(x) = ∆′
(
x+

c+57·⌈−c+19
57 ⌉−19

3

)
for x ≥ 1. Suppose

∃z1, z2, z3, z4, z5 ∈
[
1,− c+2

3
−
⌈−c+19

57

⌉
+ 1
]
such that z1 + z2 + z3 + z4 + c = z5.

Define yi by yi = zi +
c+57·⌈−c+19

57 ⌉−19

3
. Then

(
y1 −

c+ 57 ·
⌈−c+19

57

⌉
− 19

3

)
+

(
y2 −

c+ 57 ·
⌈−c+19

57

⌉
− 19

3

)

+

(
y3 −

c+ 57 ·
⌈−c+19

57

⌉
− 19

3

)
+

(
y4 −

c+ 57 ·
⌈−c+19

57

⌉
− 19

3

)
+ c

=

(
y5 −

c+ 57 ·
⌈−c+19

57

⌉
− 19

3

)
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So

y1 + y2 + y3 + y4 −
(
c+ 57 ·

⌈
−c+ 19

57

⌉
− 19

)
+ c = y5

y1 + y2 + y3 + y4 − 57 ·
⌈
−c+ 19

57

⌉
+ 19 = y5

Define xi by xi = 18 ·
⌈−c+19

57

⌉
− 5− yi. Then

(
18 ·

⌈
−c+ 19

57

⌉
− 5− x1

)
+

(
18 ·

⌈
−c+ 19

57

⌉
− 5− x2

)
+

(
18 ·

⌈
−c+ 19

57

⌉
− 5− x3

)
+

(
18 ·

⌈
−c+ 19

57

⌉
− 5− x4

)
− 57 ·

⌈
−c+ 19

57

⌉
+ 19 =

(
18 ·

⌈
−c+ 19

57

⌉
− 5− x5

)

Thus

3 ·
(
18 ·

⌈
−c+ 19

57

⌉
− 5

)
− x1 − x2 − x3 − x4 − 57 ·

⌈
−c+ 19

57

⌉
+ 19 = −x5

x1 + x2 + x3 + x4 + 3 ·
⌈
−c+ 19

57

⌉
− 4 = x5

Since ∆ does not have a monochromatic solution to L
(
5, 3 ·

⌈−c+19
57

⌉
− 4
)
,

x1, x2, x3, x4, and x5 are not monochromatic in ∆. Consider

∆′′(zi) = ∆′
(
zi +

c+57·⌈−c+19
57 ⌉−19

3

)
= ∆′(yi) = ∆

(
18 ·

⌈−c+19
57

⌉
− 5− yi

)
= ∆(xi). So

z1, z2, z3, z4, and z5 are not monochromatic in ∆′′. Then ∆′′ has no monochromatic

solution to L(5, c). Therefore, R(5, c) ≥ − c+2
3

−
⌈−c+19

57

⌉
+ 2 for c < −11 and c ≡ 1

(mod 3).
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Upper Bound: R(5, c) ≤ − c+2
3

−
⌈−c+19

57

⌉
+ 2

c < −38

Let c < −38 and c ≡ 1 (mod 3). Let ∆ :
[
1,− c+2

3
−
⌈−c+19

57

⌉
+ 2
]
→ [0, 1]. Let

∆′ :
[
1, 18 ·

⌈−c+19
57

⌉
− 23

]
→ [0, 1] be defined by ∆′(x) = ∆

(
x− c+57·⌈−c+19

57 ⌉−73

3

)
for

x ≥ 1. Let ∆′′ :
[
1, 18 ·

⌈−c+19
57

⌉
− 23

]
→ [0, 1] be defined by

∆′′(x) = ∆′ (18 · ⌈−c+19
57

⌉
− 22− x

)
. Note that for c < −38, 3 ·

⌈−c+19
57

⌉
− 7 ≥ −1. So

R
(
5, 3 ·

⌈−c+19
57

⌉
− 7
)
= 19 + 6 ·

(
3 ·
⌈−c+19

57

⌉
− 7
)
= 18 ·

⌈−c+19
57

⌉
− 23 by results in Table

6.2. Then ∆′′ admits a monochromatic solution to L
(
5, 3 ·

⌈−c+19
57

⌉
− 7
)
. Let

z1 + z2 + z3 + z4 + 3 ·
⌈−c+19

57

⌉
− 7 = z5 with

∆′′(z1) = ∆′′(z2) = ∆′′(z3) = ∆′′(z4) = ∆′′(z5).

Define yi by yi = 18 ·
⌈−c+19

57

⌉
− 22− zi. Then

(
18 ·

⌈
−c+ 19

57

⌉
− 22− y1

)
+

(
18 ·

⌈
−c+ 19

57

⌉
− 22− y2

)
+

(
18 ·

⌈
−c+ 19

57

⌉
− 22− y3

)
+

(
18 ·

⌈
−c+ 19

57

⌉
− 22− y4

)
+ 3 ·

⌈
−c+ 19

57

⌉
− 7 =

(
18 ·

⌈
−c+ 19

57

⌉
− 22− y5

)

So

3 ·
(
18 ·

⌈
−c+ 19

57

⌉
− 22

)
− y1 − y2 − y3 − y4 + 3 ·

⌈
−c+ 19

57

⌉
− 7 = −y5

y1 + y2 + y3 + y4 − 57 ·
⌈
−c+ 19

57

⌉
+ 73 = y5
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Define xi by xi = yi −
c+57·⌈−c+19

57 ⌉−73

3
. Then

(
x1 +

c+ 57 ·
⌈−c+19

57

⌉
− 73

3

)
+

(
x2 +

c+ 57 ·
⌈−c+19

57

⌉
− 73

3

)

+

(
x3 +

c+ 57 ·
⌈−c+19

57

⌉
− 73

3

)
+

(
x4 +

c+ 57 ·
⌈−c+19

57

⌉
− 73

3

)

− 57 ·
⌈
−c+ 19

57

⌉
+ 73 =

(
x5 +

c+ 57 ·
⌈−c+19

57

⌉
− 73

3

)

Thus

x1 + x2 + x3 + x4 +

(
c+ 57 ·

⌈
−c+ 19

57

⌉
− 73

)
− 57 ·

⌈
−c+ 19

57

⌉
+ 73 = x5

x1 + x2 + x3 + x4 + c = x5

Also,

∆(xi) = ∆

(
yi −

c+57·⌈−c+19
57 ⌉−73

3

)
= ∆′(yi) = ∆′ (18 · ⌈−c+19

57

⌉
− 22− zi

)
= ∆′′(zi).

Since z1, z2, z3, z4, and z5 are monochromatic in ∆′′, x1, x2, x3, x4, and x5 are

monochromatic in ∆. So ∆ admits a monochromatic solution to L(5, c). Then

R(5, c) ≤ − c+2
3

−
⌈−c+19

57

⌉
+ 2 for c < −38 and c ≡ 1 (mod 3).

Therefore, R(5, c) = − c+2
3

−
⌈−c+19

57

⌉
+ 2 for c < −38 and c ≡ 1 (mod 3).

−11 > c ≥ −38

Let −11 > c ≥ −38 and c ≡ 1 (mod 3). Let ∆ :
[
1,− c+2

3
+ 1
]
→ [0, 1] and let

∆′ : [1, 5] → [0, 1] be defined by ∆′(x) = ∆
(
x− c+14

3

)
for x ≥ 1. Let ∆′′ : [1, 5] → [0, 1]

be defined by ∆′′(x) = ∆′(6− x). Since R(5,−4) = 5 by results in Table 6.2, ∆′′
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admits a monochromatic solution to L(5,−4). Let z1 + z2 + z3 + z4 − 4 = z5 with

∆′′(z1) = ∆′′(z2) = ∆′′(z3) = ∆′′(z4) = ∆′′(z5).

Define yi by yi = 6− zi. Then

(6− y1) + (6− y2) + (6− y3) + (6− y4)− 4 = (6− y5)

18− y1 − y2 − y3 − y4 − 4 = −y5

y1 + y2 + y3 + y4 − 14 = −y5

Define xi by xi = yi − c+14
3

. Then

(
x1 +

c+ 14

3

)
+

(
x2 +

c+ 14

3

)
+

(
x3 +

c+ 14

3

)
+

(
x4 +

c+ 14

3

)
− 14

=

(
x5 +

c+ 14

3

)

So

x1 + x2 + x3 + x4 + (c+ 14)− 14 = x5

x1 + x2 + x3 + x4 + c = x5

Also, ∆(xi) = ∆
(
yi − c+14

3

)
= ∆′(yi) = ∆′ (6− zi) = ∆′′(zi). Since z1, z2, z3, z4, and z5

are monochromatic in ∆′′, x1, x2, x3, x4, and x5 are monochromatic in ∆. So ∆ admits

a monochromatic solution to L(5, c). Then R(5, c) ≤ − c+2
3

+ 1 for −11 > c ≥ −38 and

c ≡ 1 (mod 3).
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Note that − c+2
3

−
⌈−c+19

57

⌉
+ 2 = − c+2

3
+ 1 for −11 > c ≥ −38 and c ≡ 1 (mod

3). Therefore, R(5, c) = − c+2
3

−
⌈−c+19

57

⌉
+ 2 for all c < −11 and c ≡ 1 (mod 3).

7.3 c ≡ 2 (mod 3)

We restate the remaining c ≡ 2 (mod 3) case of Theorem 7 and provide a proof

in this section.

Theorem. R(5, c) = − c+1
3

−
⌈−c+38

57

⌉
+ 2 for c < −4 and c ≡ 2 (mod 3)

Proof.

7.3.1 Lower Bound: R(5, c) ≥ − c+1
3

−
⌈−c+38

57

⌉
+ 2

Let c < −4 and c ≡ 2 (mod 3). We show that there exists a coloring

∆′′ :
[
1,− c+1

3
−
⌈−c+38

57

⌉
+ 1
]
→ [0, 1] with no monochromatic solution to L (5, c). Let

∆ :
[
1, 18 ·

⌈−c+38
57

⌉
− 12

]
→ [0, 1] be such that ∆ has no monochromatic solution to

L
(
5, 3 ·

⌈−c+38
57

⌉
− 5
)
. We know such a coloring exists since 3 ·

⌈−c+38
57

⌉
− 5 ≥ −2 for

c < −4 so R
(
5, 3 ·

⌈−c+38
57

⌉
− 5
)
≥ 19 + 6 ·

(
3 ·
⌈−c+38

57

⌉
− 5
)
= 18 ·

⌈−c+38
57

⌉
− 11 by

results in Table 6.2. Let ∆′ :
[
1, 18 ·

⌈−c+38
57

⌉
− 12

]
→ [0, 1] be defined by

∆′(x) = ∆
(
18 ·

⌈−c+38
57

⌉
− 11− x

)
. Let ∆′′ :

[
1,− c+1

3
−
⌈−c+38

57

⌉
+ 1
]
→ [0, 1] be

defined by ∆′′(x) = ∆′
(
x+

c+57·⌈−c+38
57 ⌉−38

3

)
for x ≥ 1. Suppose

∃z1, z2, z3, z4, z5 ∈
[
1,− c+1

3
−
⌈−c+38

57

⌉
+ 1
]
such that z1 + z2 + z3 + z4 + c = z5.
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Define yi by yi = zi +
c+57·⌈−c+38

57 ⌉−38

3
. Then

(
y1 −

c+ 57 ·
⌈−c+38

57

⌉
− 38

3

)
+

(
y2 −

c+ 57 ·
⌈−c+38

57

⌉
− 38

3

)

+

(
y3 −

c+ 57 ·
⌈−c+38

57

⌉
− 38

3

)
+

(
y4 −

c+ 57 ·
⌈−c+38

57

⌉
− 38

3

)
+ c

=

(
y5 −

c+ 57 ·
⌈−c+38

57

⌉
− 38

3

)

So

y1 + y2 + y3 + y4 −
(
c+ 57 ·

⌈
−c+ 38

57

⌉
− 38

)
+ c = y5

y1 + y2 + y3 + y4 − 57 ·
⌈
−c+ 38

57

⌉
+ 38 = y5

Define xi by xi = 18 ·
⌈−c+38

57

⌉
− 11− yi. Then

(
18 ·

⌈
−c+ 38

57

⌉
− 11− x1

)
+

(
18 ·

⌈
−c+ 38

57

⌉
− 11− x2

)
+

(
18 ·

⌈
−c+ 38

57

⌉
− 11− x3

)
+

(
18 ·

⌈
−c+ 38

57

⌉
− 11− x4

)
− 57 ·

⌈
−c+ 38

57

⌉
+ 38 =

(
18 ·

⌈
−c+ 38

57

⌉
− 11− x5

)

Thus

3 ·
(
18 ·

⌈
−c+ 38

57

⌉
− 11

)
− x1 − x2 − x3 − x4 − 57 ·

⌈
−c+ 38

57

⌉
+ 38 = −x5

x1 + x2 + x3 + x4 + 3 ·
⌈
−c+ 38

57

⌉
− 5 = x5
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Since ∆ does not have a monochromatic solution to L
(
5, 3 ·

⌈−c+38
57

⌉
− 5
)
,

x1, x2, x3, x4, and x5 are not monochromatic in ∆. Consider

∆′′(zi) = ∆′
(
zi +

c+57·⌈−c+38
57 ⌉−38

3

)
= ∆′(yi) = ∆

(
18 ·

⌈−c+38
57

⌉
− 11− yi

)
= ∆(xi). So

z1, z2, z3, z4, and z5 are not monochromatic in ∆′′. Then ∆′′ has no monochromatic

solution to L(5, c). Therefore, R(5, c) ≥ − c+1
3

−
⌈−c+38

57

⌉
+ 2 for c < −4 and c ≡ 2 (mod

3).

7.3.2 Upper Bound: R(5, c) ≤ − c+1
3

−
⌈−c+38

57

⌉
+ 2

c < −19

Let c < −19 and c ≡ 2 (mod 3). Let ∆ :
[
1,− c+1

3
−
⌈−c+38

57

⌉
+ 2
]
→ [0, 1]. Let

∆′ :
[
1, 18 ·

⌈−c+38
57

⌉
− 29

]
→ [0, 1] be defined by ∆′(x) = ∆

(
x− c+57·⌈−c+38

57 ⌉−92

3

)
for

x ≥ 1. Let ∆′′ :
[
1, 18 ·

⌈−c+38
57

⌉
− 29

]
→ [0, 1] be defined by

∆′′(x) = ∆′ (18 · ⌈−c+38
57

⌉
− 28− x

)
. Note that for c < −19, 3 ·

⌈−c+38
57

⌉
− 8 ≥ −2. So

R
(
5, 3 ·

⌈−c+38
57

⌉
− 8
)
= 19 + 6 ·

(
3 ·
⌈−c+38

57

⌉
− 8
)
= 18 ·

⌈−c+38
57

⌉
− 29 by results in Table

6.2. So ∆′′ admits a monochromatic solution to L
(
5, 3 ·

⌈−c+38
57

⌉
− 8
)
. Let

z1 + z2 + z3 + z4 + 3 ·
⌈−c+38

57

⌉
− 8 = z5 with

∆′′(z1) = ∆′′(z2) = ∆′′(z3) = ∆′′(z4) = ∆′′(z5).
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Define yi by yi = 18 ·
⌈−c+38

57

⌉
− 28− zi. Then

(
18 ·

⌈
−c+ 38

57

⌉
− 28− y1

)
+

(
18 ·

⌈
−c+ 38

57

⌉
− 28− y2

)
+

(
18 ·

⌈
−c+ 38

57

⌉
− 28− y3

)
+

(
18 ·

⌈
−c+ 38

57

⌉
− 28− y4

)
+ 3 ·

⌈
−c+ 38

57

⌉
− 8 =

(
18 ·

⌈
−c+ 38

57

⌉
− 28− y5

)

So

3 ·
(
18 ·

⌈
−c+ 38

57

⌉
− 28

)
− y1 − y2 − y3 − y4 + 3 ·

⌈
−c+ 38

57

⌉
− 8 = −y5

y1 + y2 + y3 + y4 − 57 ·
⌈
−c+ 38

57

⌉
+ 92 = y5

Define xi by xi = yi −
c+57·⌈−c+38

57 ⌉−92

3
. Then

(
x1 +

c+ 57 ·
⌈−c+38

57

⌉
− 92

3

)
+

(
x2 +

c+ 57 ·
⌈−c+38

57

⌉
− 92

3

)

+

(
x3 +

c+ 57 ·
⌈−c+38

57

⌉
− 92

3

)
+

(
x4 +

c+ 57 ·
⌈−c+38

57

⌉
− 92

3

)

− 57 ·
⌈
−c+ 38

57

⌉
+ 92 =

(
x5 +

c+ 57 ·
⌈−c+38

57

⌉
− 92

3

)

Thus

x1 + x2 + x3 + x4 +

(
c+ 57 ·

⌈
−c+ 38

57

⌉
− 92

)
− 57 ·

⌈
−c+ 38

57

⌉
+ 92 = x5

x1 + x2 + x3 + x4 + c = x5
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Also,

∆(xi) = ∆

(
yi −

c+57·⌈−c+38
57 ⌉−92

3

)
= ∆′(yi) = ∆′ (18 · ⌈−c+38

57

⌉
− 28− zi

)
= ∆′′(zi).

Since z1, z2, z3, z4, and z5 are monochromatic in ∆′′, x1, x2, x3, x4, and x5 are

monochromatic in ∆. So ∆ admits a monochromatic solution to L(5, c). Then

R(5, c) ≤ − c+1
3

−
⌈−c+38

57

⌉
+ 2 for c < −19 and c ≡ 2 (mod 3).

Therefore, R(5, c) = − c+1
3

−
⌈−c+38

57

⌉
+ 2 for c < −19 and c ≡ 2 (mod 3).

−4 > c ≥ −19

Let −4 > c ≥ −19 and c ≡ 2 (mod 3). Let ∆ :
[
1,− c+1

3
+ 1
]
→ [0, 1] and let

∆′ : [1, 3] → [0, 1] be defined by ∆′(x) = ∆
(
x− c+7

3

)
for x ≥ 1. Let ∆′′ : [1, 3] → [0, 1]

be defined by ∆′′(x) = ∆′(4− x). Since R(5,−5) ≤ 3 by results in Table 6.2, ∆′′

admits a monochromatic solution to L(5,−5). Let z1 + z2 + z3 + z4 − 5 = z5 with

∆′′(z1) = ∆′′(z2) = ∆′′(z3) = ∆′′(z4) = ∆′′(z5).

Define yi by yi = 4− zi. Then

(4− y1) + (4− y2) + (4− y3) + (4− y4)− 5 = (4− y5)

12− y1 − y2 − y3 − y4 − 5 = −y5

y1 + y2 + y3 + y4 − 7 = −y5
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Define xi by xi = yi − c+7
3
. Then

(
x1 +

c+ 7

3

)
+

(
x2 +

c+ 7

3

)
+

(
x3 +

c+ 7

3

)
+

(
x4 +

c+ 7

3

)
− 7

=

(
x5 +

c+ 7

3

)

So

x1 + x2 + x3 + x4 + (c+ 7)− 7 = x5

x1 + x2 + x3 + x4 + c = x5

Also, ∆(xi) = ∆
(
yi − c+7

3

)
= ∆′(yi) = ∆′ (4− zi) = ∆′′(zi). Since z1, z2, z3, z4, and z5

are monochromatic in ∆′′, x1, x2, x3, x4, and x5 are monochromatic in ∆. So ∆ admits

a monochromatic solution to L(5, c). Then R(5, c) ≤ − c+1
3

+ 1 for −4 > c ≥ −19 and

c ≡ 2 (mod 3).

Note that − c+1
3

−
⌈−c+38

57

⌉
+ 2 = − c+2

3
+ 1 for −4 > c ≥ −19 and c ≡ 2 (mod 3).

Therefore, R(5, c) = − c+1
3

−
⌈−c+38

57

⌉
+ 2 for all c < −4 and c ≡ 2 (mod 3).
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Chapter 8

Suggestions for Further Research

This problem may be investigated further by considering m = 6, 7, . . . for c < 0.

Although a generalization may be possible, the formula seems to become more

complicated with each larger value of m. We also suspect that the quantity of special

cases will increase with larger values of m.
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