
South Dakota State University South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional

Repository and Information Exchange Repository and Information Exchange

Electronic Theses and Dissertations

2023

A Study of the Local Deep Galerkin Method for the Modified Cahn A Study of the Local Deep Galerkin Method for the Modified Cahn

Hilliard Equation Hilliard Equation

Shi Wen Wong

Follow this and additional works at: https://openprairie.sdstate.edu/etd2

 Part of the Computer Sciences Commons, and the Mathematics Commons

16

(a) Initial Condition

(b) Solution

Figure 10: Experiment 10 with randomness

17

3 ARTIFICIAL NEURAL NETWORKS

An Artificial Neural Network (ANN) is a computational model inspired by the structure

and function of the human brain. ANNs have a wide range of applications, including

natural language processing, speech recognition, image and video processing, control

systems, robotics, and even art and music generation. In the 1940s, Warren McCulloch

and Walter Pitts first introduced a model of a neuron as a mathematical function, and since

then, ANNs have evolved over several decades. In the 1990s, researchers explored new

types of ANN architectures, such as recurrent neural networks and convolutional neural

networks, designed to handle sequential and image data, respectively. In recent years,

ANNs have become a powerful tool in the fields of artificial intelligence and machine

learning due to advancements in computing power and data availability.

3.1 ARTIFICIAL NEURONS

ANNs are named and structured after the neurons found in the brain. Neurons contain a

cell body with a nucleus, several dendrites that receive signals, and a single long axon that

transmits output (see Figure 11). The input is received by dendrites, processed by the cell

body, and then the output is transmitted through the axon. For example, when we hear a

loud noise in the distance (input), the neurons process the sound waves and interpret them

as a loud noise (process the input). This can trigger a startle response in our body,

preparing us for fight or flight by increasing our heart rate, releasing adrenaline, or tensing

our muscles (output). ANNs operate in a similar way, where artificial neurons take an

input, process it using a set of weights and biases, and produce an output based on the

activation function (see Figure 12). The mathematical formula to represent an artificial

neuron involves taking the weighted sum of the inputs (xi to xN where N is the total

number of inputs, and the inputs are multiplied by their corresponding weights wi to wN),

adding a bias term, b, applying an activation function to the sum, producing an output, and

18

then passing the result to the next layer of neurons in the network. The activation function,

σ, allows the model to learn complex relationships between the inputs and outputs. The

weights and bias term are learned during the training process, where the model adjusts

them to minimize the difference between its predicted outputs and the true outputs. The

formula for a single artificial neuron can be expressed as follows:

y = σ

(
N∑
i=1

wixi + b

)
(3)

Figure 11: Structure of a Neuron

Figure 12: How each neuron works in ANNs

19

3.2 ACTIVATION FUNCTIONS

An activation function is a mathematical function that determines the output of a neuron.

The output of the activation function is typically used to determine the input for the next

layer of neurons in the neural network. Activation functions are used to introduce

non-linearity into the neural network, which enables the network to learn and model

complex patterns in the data. Common activation functions used in neural networks

include the sigmoid function, hyperbolic tangent (tanh) function, and the rectified linear

unit (ReLU) function (see Table 1). These functions are applied to the weighted sum of

the inputs to a neuron and produce an output that is passed to the next layer of the neural

network. The choice of activation function depends on the specific problem being solved

and the characteristics of the data. For example, for binary classification problems, we can

use the sigmoid activation function, which maps the input to a value between 0 and 1.

This function is suitable for problems where we want to predict the probability of a binary

outcome. Also, for regression problems, we can use the linear activation function, which

produces an output that is proportional to the input. However, it is important to test

different activation functions because improper activation functions may result in slower

training and result being inaccurate.

20

Name Equation Graph

Linear σ(x) = x
−3 −2 −1 1 2 3

−2

2

x

σ(x)

Sigmoid σ(x) =
1

1 + e−x

−6 −4 −2 2 4 6

0.2

0.4

0.6

0.8

1

x

σ(x)

Tanh σ(x) =
ex − e−x

ex + e−x −6 −4 −2 2 4 6

−1

−0.5

0.5

1

x

σ(x)

Rectified Linear Unit
(ReLu) σ(x) =

{
0 ifx < 0

x ifx ≥ 0

−3 −2 −1 1 2 3

1

2

3

x

σ(x)

Table 1: Commonly Used Activation Functions

21

3.3 NEURAL NETWORK

A neural network typically consists of an input layer, one or more hidden layers, and an

output layer, with each layer comprised of several neurons. However, it is possible for a

neural network to have an input and output layer only, and this is known as a single-layer

perceptron. Single-layer perceptrons are often used for simple classification tasks, but

they have limited capacity to model complex patterns in the data and may not be suitable

for more challenging tasks. In contrast, multi-layer neural networks with hidden layers

have much greater capacity to learn complex patterns in the data and are capable of

solving a wide range of machine learning problems. Additionally, when counting the

number of layers in a neural network, we generally exclude the input layer. For Figure 13,

we call it a 2-layer ANN. It has 2 neurons (x1, x2) in the input layer, 3 neurons (h1, h2, h3)

in the hidden layer, 1 neuron ŷ in the output layer, and 2 bias neurons (b0, b1).

Figure 13: 2-Layer Neural Network

22

Each neuron to the right of the input layer performs calculations as described in

Figure 12 and used Equation 3. The process of finding the value of each neuron is called

the forward pass. For simplicity, we will show how to find the value of each hidden

neuron and the output neuron following the structure of Figure 13, which consists of only

one hidden layer.

Applying Equation 3,

h1 = σ
(
w

(1)
1,1x1 + w

(1)
2,1x2 + b

(1)
0

)
(4)

h2 = σ
(
w

(1)
1,2x1 + w

(1)
2,2x2 + b

(1)
0

)
(5)

h3 = σ
(
w

(1)
1,3x1 + w

(1)
2,3x2 + b

(1)
0

)
. (6)

Combining Equation 4, 5, and 6, and using Equation 3 to get

ŷ = σ
(
w

(2)
1,1h1 + w

(2)
2,1h2 + w

(2)
3,1h3 + b

(2)
1

)
(7)

Note that w(q)
s,p where s represents the number of the input neuron, p represents the

number of the hidden neuron, and q represents the number of the hidden layer. b(q)
l where l

represents the number of the bias term.

Additinally, to simplify the calculations, Equation 4, 5, and 6 can be reformulated

as a matrix, as shown below:


h1

h2

h3

 = σ



w

(1)
1,1 w

(1)
2,1

w
(1)
1,2 w

(1)
2,2

w
(1)
1,3 w

(1)
2,3


x1

x2

+


b1

0

b1
0

b1
0


 (8)

h = σ
(
W (1)x + b(1)

)
(9)

23

Equation 7 can be rewritten as the following matrix form:

ŷ = σ



w

(2)
1,1 w

(2)
2,1

w
(2)
1,2 w

(2)
2,2

w
(2)
1,3 w

(2)
2,3



h1

h2

h3

+


b2

1

b2
1

b2
1


 (10)

ŷ = σ
(
W (2)h + b(2)

)
(11)

For the neural networks that have more hidden layers, we will go through the process

above to find the value of hidden neurons and output neurons.

3.4 LOSS FUNCTIONS

A loss function, or cost function, measures the difference between the predicted output of

a model and the actual output, given a set of input data. The goal is to minimize the value

of the loss function, which indicates a lower difference between the predicted and actual

outputs. In other words, we want the predicted outputs to be as close as possible to the

actual outputs. The choice of loss function depends on the problem being solved, and it

has a significant impact on the performance of the model. Therefore, it is crucial to choose

a loss function wisely. Please see Table 2 for some commonly used loss functions.

24

Loss function Formula
Common use

cases

Mean squared error 1

n

n∑
i=1

(yi − ŷi)2 Regression

Mean absolute error 1

n

n∑
i=1

|yi − ŷi| Regression

Binary cross-entropy
loss (Logistic loss) − 1

n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]
Binary

classification

Categorical
cross-entropy loss

(CCE)
− 1

n

n∑
i=1

m∑
j=1

yij log(ŷij)
Multiclass

classification

Table 2: Commonly Used Loss Functions

Notation Remarks:

• yi is the true label for the ith training example

• ŷi is the predicted label for the ith training example

• n is the total number of training examples

• m is the number of classes in the multiclass classification problem

• yij is the indicator variable for whether the true label of the ith training example is

the jth class

• ŷij is the predicted probability of the ith training example belonging to the jth class

25

3.5 SUPERVISED LEARNING VS UNSUPERVISED LEARNING

The learning process involves training a model to recognize patterns or make predictions

based on input data, and enabling the model to generalize from the training data to new

data. Two common types of learning in machine learning are supervised learning, which

involves training on labeled data, and unsupervised learning, which involves training to

discover patterns or structure.

Supervised learning is used for tasks such as image classification, speech

recognition, and language translation. In these tasks, the model is trained on labeled data

where the correct output is provided along with the input data. The goal is to learn a

mapping from input to output so that the model can accurately predict the output for new

and unseen input data. On the other hand, unsupervised learning is typically used in

scenarios like image generation and text summarization. The objective is to reveal

patterns or structure in the data, such as clustering or dimensionality reduction, that can be

used to better comprehend the data and make decisions or predictions based on that

information. In some cases, we may use some labeled data for validation purposes to

evaluate the performance of the unsupervised learning algorithm.

During the learning process, the model adjusts its parameters, such as weights and

biases, to optimize its performance on the given task. To prevent overfitting to the training

data and improve the model’s ability to generalize to new data, the data is typically split

into training and validation sets, and the model’s parameters are adjusted based on the

validation performance. This is done using optimization algorithms such as gradient

descent to update the weights and biases in the direction that minimizes the error (please

see Subsubsection 3.6.2).

26

3.6 PARAMETERS LEARNING

3.6.1 WEIGHT INITIALIZATION

Weight initialization is the process of setting initial values for the weights in a neural

network. Choosing appropriate initial values can significantly impact the performance of a

neural network during training. Some common weight initialization methods include

random initialization, He initialization, and Xavier initialization (Please see Table 3.)

Weight Initialization
Method

Description

Random Initialization

Assigns random values to the weights
within a certain range. The range is

commonly specified as
(−1, 1), (−0.5, 0.5), or (0,1).

Xavier Initialization

Uses a normal distribution to initialize
the weights with values whose mean is
0 and standard deviation is

√
(2/n).

This method is commonly used for
activation functions such as tanh and

sigmoid.

He Initialization

Uses a normal distribution to initialize
the weights with values whose mean is
0 and standard deviation is

√
(2/n).

This method is commonly used for
activation functions such as ReLU and

its variants.

LeCun Initialization

Uses a normal distribution to initialize
the weights with values whose mean is
0 and standard deviation is

√
(1/n).

This method is commonly used for
convolutional neural networks.

Uniform Initialization

Assigns random values to the weights
within a specified uniform distribution

range. Common ranges include
(−k, k) and (0, k).

Normal Initialization
Assigns random values to the weights
using a normal distribution with mean

0 and standard deviation k.

Table 3: Common Weight Initialization Methods

27

Notation Remarks:

• n is the number of input neurons

• k is a scaling factor

3.6.2 OPTIMIZATION AND BACKPROPAGATION

Optimization refers to the process of finding the optimal set of parameters or weights for a

model to minimize the loss function. The most common optimization algorithm is

gradient descent, which updates the weights in the direction of the negative gradient of the

loss function with respect to the weights. The formula for gradient descent is:

θt+1 = θt − η∇J(θt) (12)

where θt is the weight at time t, ∇J(θt) is the gradient of the loss function with respect to

the weight at time t, and η is the learning rate, which controls the step size taken in the

direction of the negative gradient. The default learning rate is 0.01.

Stochastic gradient descent is a variant of gradient descent that randomly selects a

subset, or mini-batch, of the training data to compute the gradient and update the weights.

The formula for stochastic gradient descent is as follows:

θt+1 = θt − η∇J(θt;xi, yi) (13)

where xi and yi are a randomly selected input and its corresponding output from the

training data. Additionally, Adam optimizer is an optimization algorithm that is

commonly used in machine learning and deep learning. It is an extension of the stochastic

gradient descent algorithm that uses adaptive learning rates for each parameter. This helps

in faster convergence and better performance compared to other optimization algorithms.

Furthermore, backpropagation is an algorithm used to efficiently compute the

gradient of the loss function with respect to the weights in a neural network. It uses the

28

chain rule of calculus to recursively compute the gradients of the loss function with

respect to each layer of the network, starting from the output layer and working

backwards. By using the gradients computed by backpropagation, gradient descent can be

applied to update the weights in a neural network. Please see Reference [7] for details of

the calculations of backpropagation.

29

4 LOCAL DEEP GALERKIN METHOD (LDGM)

4.1 LITERATURE REVIEW

Before determining the direction to take, I conducted some literature reviews. The

following papers are ones that I have read about solving higher order PDEs in machine

and deep learning.

Reference [12] is published by Google researchers that introduced a new neural

network architecture called the Transformer for natural language processing (NLP) tasks.

The Transformer architecture was proposed as an alternative to recurrent neural networks

(RNNs) and convolutional neural networks (CNNs) for sequence-to-sequence (seq2seq)

learning problems in NLP. The main idea behind the Transformer architecture is to use a

self-attention mechanism to process input sequences, allowing the model to learn to attend

to different parts of the input sequence during each output element processing. This

mechanism captures the dependencies between all positions in the input sequence in a

single pass, making it faster than RNNs and CNNs. The Transformer model comprises

two primary parts: the encoder and the decoder. The encoder processes the input sequence

through a series of self-attention and feed-forward layers. In contrast, the decoder

generates a target sequence by attending to the encoder’s output using a masked

self-attention mechanism, which only allows the decoder to attend to previous positions in

the target sequence. The Transformer model has achieved state-of-the-art results on

various NLP tasks, including machine translation, language modeling, and question

answering. The self-attention mechanism in the Transformer has also been applied to

other domains such as image and video processing. Although the Transformer architecture

has shown great potential in NLP, to date, no one has used it to solve higher order PDEs.

Nevertheless, the Transformer has the potential to be applied in this task, as it can learn

complex dependencies between input and output sequences. In an attempt to create

automatic PDE solvers using the Transformer architecture, I faced challenges with dataset

30

size and input formatting. My input data typically consist of multiple numerical value

sequences which makes it challenging to input into the model. Skipping the input

embedding step was a possible solution, but it led to dimensionality issues in subsequent

steps. I spent a significant amount of time trying to resolve these issues but was

unsuccessful. Consequently, I decided to investigate other neural network-based methods

for solving PDEs.

In Reference [14], the authors propose a method based on the cell-average finite

difference method and combine it with a neural network approximation of the solution.

The method involves discretizing the domain into a grid of cells and approximating the

solution at each cell by its average value. This approach leads to a system of equations

that can be solved numerically to obtain the solution. However, as the dimension of the

problem increases, the number of grid points required to discretize the domain grows

exponentially, making the method computationally infeasible. To overcome this

limitation, the paper proposes using a neural network to approximate the solution at each

cell. The neural network takes as input the cell-average values of the solution at

neighboring cells and outputs an approximation of the solution at the center cell. The

weights of the neural network are trained using a set of initial and boundary conditions, as

well as the PDE itself. The proposed method is then applied to several parabolic PDEs,

including the heat equation, which describes the diffusion of heat in a medium over time,

the Black-Scholes equation, which is used to model the pricing of European-style options

on a stock, and the Allen-Cahn equation, which is used to model phase transitions in a

material. In conclusion, the authors prove that the method is stable and converges to the

exact solution as the grid size and the number of neurons in the neural network increase.

In addition, Reference [8] derive specific iterative schemes for the heat equation,

wave equation, and Poisson equation, which are commonly used to model various

physical phenomena. The wave equation is used to model the propagation of waves in

various physical systems, such as sound waves, electromagnetic waves, and water waves,

31

while the Poisson equation is used to model steady-state diffusion processes in physics,

engineering, and other fields. For each type of equation, the authors use a different

iterative method - the forward Euler method for the heat equation, the leapfrog method for

the wave equation, and the Jacobi method for the Poisson equation. To train the DELISA

model, the authors first discretize the PDEs using finite differences or finite elements to

obtain a set of discrete equations. These equations are then rearranged to obtain an update

formula for the unknown function at each iteration, which serves as a template for the

neural network. The current numerical approximation is used as input, and the updated

approximation is output by the neural network. The neural network is trained on a dataset

of solutions obtained using traditional numerical methods. The authors show that

DELISA can achieve accurate solutions with significantly fewer iterations than traditional

numerical methods.

Furthermore, Reference [9] introduces a method to solving forward and inverse

problems involving nonlinear PDEs using Physics-Informed Neural Networks (PINNs).

The authors introduce the PINNs framework, which involves training a neural network to

predict the solution of a PDE while also minimizing the residual of the PDE to enforce the

physical laws as a constraint. By incorporating the physical laws as a constraint, the

PINNs approach ensures that the predicted solutions satisfy the governing PDE, even in

the presence of noisy or incomplete data. The authors demonstrate the effectiveness of

PINNs on several examples of solving forward problems in fluid mechanics, heat transfer,

and structural mechanics. They show that PINNs can achieve better accuracy and

efficiency than traditional numerical methods. For instance, the authors demonstrate the

application of PINNs in the simulation of the flow of a fluid around a cylinder and the

prediction of the temperature distribution in a heated rod. After all, the authors suggest

that PINNs have the potential to revolutionize the field of scientific computing by

providing a new approach to solving PDEs using deep learning techniques. They highlight

that PINNs can reduce the computational cost of solving complex PDEs, eliminate the

32

need for mesh generation, and handle uncertain and noisy data. The authors also discuss

the challenges and opportunities for future research in the area of PINNs.

Additionally, Reference [13] proposes a method called the Local Deep Galerkin

Method (LDGM) for solving higher order PDEs in one and two dimensions. LDGM is an

extension of the Deep Galerkin Method (Reference [10]) and involves introducing

lower-order variables, which are called intermediate variables, to represent higher order

derivatives in the PDE. Then, intermediate variables and the solutions to the PDEs are

simultaneously approximated by a multi-output deep neural network. The method is

applicable to both linear and nonlinear PDEs. LDGM has been demonstrated to be

effective for solving a variety of higher order PDEs, including the 1D and 2D heat

equation, wave equation, and Burgers’ equation, and 1D CH equation. However, the paper

did not include the 2D CH equation. As an extension of their work, for my thesis, I

implemented the LDGM method to solve the 2D CH equation. This implementation is the

original contribution of my thesis.

4.2 PROBLEM STATEMENT

Consider a k-th order Initial Boundary Value Problem:


ut = F (u,Du,D2u, . . . , Dku) x, y ∈ Ω, t ∈ [0, T],

u(x, y, 0) = u0(x, y) x, y ∈ Ω,

Bu = g x, y ∈ ∂Ω, t ∈ [0, T]

(14)

where F and g are linear or nonlinear functions, B is the boundary condition operator, and

k is the order of the equation (Reference [13]).

The LDGM approximates u(x, y, t) with a multi-output fully connected neural

