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(d) 
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(e) 

 

(f) 

Figure 16: (a) Pixel level scatter plot of Landsat 5 SR product and ELM SR for blue band, 

(b) Histogram plot of the difference between Landsat 5 SR and ELM SR for blue band, (c) 

Pixel level scatter plot of Landsat 5 SR product and ELM SR for NIR band, (d) Histogram 

plot of the difference between Landsat 5 SR and ELM SR for NIR band, (e) Pixel level 

scatter plot of Landsat 5 SR product and ELM SR for SWIR2 band, (f) Histogram plot of 

the difference between Landsat 5 SR and ELM SR for SWIR2 band.  

Table 4. Accuracy, Precision, and RMSE between L5 TM L2 SR and ELM SR for seven 

bands. 
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Bands Accuracy Precision  RMSE 

Blue (482 nm) 0.0010 0.0029 0.0031 

Green (561.4 nm) 0.0012 0.0026 0.0028 

Red (654.6 nm) 0.0012 0.0044 0.0045 

NIR (864.7 nm) 0.0021 0.0038 0.0043 

SWIR1 (1608.9 nm) 9.95 X10-4 (~0) 0.0030 0.0032 

SWIR2 (2200.7 nm) 2.23X10-4 (~0) 0.0026 0.0026 

 

UNCERTAINTY RESULTS 

Uncertainty analysis was performed after validation of USGS SR products over ELM SR. 

Pixel level uncertainty was calculated for selected ROI using the Monte-Carlo Simulation 

method (see section 3.2). The uncertainties associated with four input parameters were 

considered for the simulation, and the atmospheric coefficients (gain and bias) were 

calculated within their uncertainties. Monte-Carlo Simulation was performed for 160 

iteration levels, giving 160 gain and bias. Further, 160 simulated coefficients were applied 

to the image, and 160 surface reflectance images were produced for all spectral bands. 

Finally, the standard deviation of 160 surface reflectance images gives the overall absolute 

pixel level uncertainty of the ELM SR model for seven different bands of Landsat 8 sensor.  

Figure 17 demonstrates absolute pixel level uncertainty images for Landsat 8 sensor (CA, 

green, NIR, and SWIR2 bands). In CA and green bands images, Algodones dunes and rock 

uncertainty range from 0.0271 to 0.0305, whereas the vegetative and water uncertainty 

ranges from 0.0186 to 0.0245. Similarly, in NIR and SWIR2 band images, Algodones 
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dunes and rock uncertainty range from 0.0312 to 0.0450, whereas the vegetative and water 

uncertainty ranges from 0.0101 to 0.0271.  

The absolute uncertainty of surface reflectance varies with the target in an image. In the 

visible bands such as CA, blue, and green bands, the uncertainty seems higher in dark 

targets like water and vegetation and seems lower in the bright target like Algodones dunes 

and rock. While in longer wavelengths bands such as NIR, SWIR1, and SWIR2 the 

uncertainty seems lower in water and vegetation and seems higher in the bright target like 

Algodones dunes and rock. Compared to the longer wavelength bands, a slight difference 

was observed in shorter wavelength bands of dark targets. This is primarily due to 

difficulties in aerosol estimation and lower signal levels received by the OLI sensor from 

dark targets [47].  

 

(a) 



64 

 

(b) 

 

(c) 
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(d) 

Figure 17: (a) pixel level uncertainty image of CA band, (b) pixel level uncertainty image 

of green band, (c) pixel level uncertainty image of NIR band and (d) pixel level uncertainty 

image of SWIR2 band 
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CONCLUSION 

Due to the increased demand for SR products, a need exists to verify that L2C2 SR products 

are precise and accurate. Several methods for atmospherically correcting level-1 TOA 

reflectance and validating L2C2 SR product are carried out, although they are insufficient. 

This work was developed to validate SR products by developing an atmospheric correction 

model. At first, the ELM technique was employed in this research for atmospheric 

correction of remotely sensed data from at-sensor DN to ground reflectance.  

The theoretical basis for ELM was carried out by selecting the sites based on the knowledge 

of ground truth measurements. So, Algodones Dunes and the Salton Sea were selected for 

developing the overall methodology of the project. Implementing ELM requires ground 

truth measurements at every point of the Landsat acquisitions for given sites. But there 

were limited ground truth measurements, so the absolute surface reflectance model of 

Algodones Dunes and Salton Sea were developed to overcome the limitation of ground 

truth measurements. The absolute surface reflectance of Algodones Dunes was developed 

using L8 SR trend, sun and sensors angle, and ground truth measurements by ASD. 

Similarly absolute surface reflectance model of the Salton Sea was developed using L8 SR 

trend, sun and sensor angles, IOPs of water, and ground truth measurements by AVIRIS. 

The absolute surface models of Algodones dunes and Salton Sea gives ground truth 

measurements during Landsat acquisitions and are not limited to time constraints, and have 

the potential to give ground truth reflectance in any time frame (going back and forth). The 

result of the Absolute surface reflectance model of Algodones Dunes predicts the response 

of Algodones Dunes and gives ground measurements over a time with an average accuracy 

of 0.0041 and average precision of 0.0063 overall bands of the Landsat 8 sensor. Similarly, 
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the Salton Sea's absolute surface reflectance model predicts the Salton Sea's response and 

gives ground measurements over time with a mean absolute error (MAE) of 0.0035 overall 

bands of the Landsat 8 sensor after the ELM technique is applied and generates 

atmospheric coefficients (gain and bias) based on four inputs, when applied to image 

produces the surface reflectance.  

This study has evaluated the accuracy and reliability of level-2 surface reflectance products 

with surface reflectance derived from ELM. Validation of Landsat 8 OLI L2C2 SR, 

Landsat 9 OLI-2 L2C2 SR, and Landsat 5 TM L2C2 SR were carried out in this work. The 

validation of Landsat 5 TM and Landsat 9 OLI requires the SBAF correction since the 

absolute surface reflectance model was generated using the Landsat 8 sensor. Thus, 

compensating factors for matching spectral response of Landsat 5 TM and Landsat 9 OL 

were computed using the hyperspectral measurement taken at Algodones Dunes and Salton 

Sea. 

When considering the surface reflectance data from ELM, the result indicates that the 

Landsat 8 SR products show good agreement within an average accuracy of 0.0038 

reflectance unit in all bands with ELM SR for selected ROI. Precision between both 

products ranges from 0.0019 to 0.0113 reflectance units; this also says that Landsat 8 SR 

products show consistent agreement with ELM SR. Landsat 8 SR products are validated 

within ±0.01 reflectance unit in all bands except shorter wavelength bands (CA & blue 

bands). Data points in shorter wavelength bands tend to deviate from the 1:1 line in the low 

reflective region. In the CA and blue bands, we can see more scatteredness for low 

reflective regions or dark sites, whereas less scatteredness was observed in longer 
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wavelength bands. However, on –average, a consistent agreement was observed in all 

bands within half a unit of reflectance except CA and blue bands.  

After validating Landsat 8 SR over ELM SR for selected ROI, the validation of Landsat 9 

and 5 SR products was carried out, which requires the application of SBAF to adjust the 

spectral response of Landsat 8 with Landsat 9 and Landsat 5. As a result, the absolute 

surface reflectance model from Landsat 8 can be applied to Landsat 9 and 5. Based on the 

SBAF corrected model, gain and bias were calculated using ELM approach, which can be 

applied to Landsat 9 and Landsat 5 images to produce SR. Landsat 9 SR products agree 

well within an accuracy of 0.0049 (half unit of reflectance) in all bands with ELM SR. 

Precision between both products ranges from 0.0019 to 0.0094 reflectance units; this also 

says that Landsat 9 SR products show consistent agreement with ELM SR. Thus, on 

average, this result indicates that the Landsat 9 SR product consistently agrees with ELM 

SR across all the Landsat 9 OLI-2 bands, especially on longer wavelength bands. Here, 

also in CA and blue bands, we can see the scatteredness and data points tend to deviate 

from the 1:1 line in the low reflective region (below 10% reflectance). 

The Landsat 5 SR demonstrates a good agreement with ELM SR products with a low 

accuracy value from 0 to 0.0021 and RMSE from 0.0026 to 0.0045. On-average, Landsat 

5 SR products agree within a half unit of reflectance with ELM SR in all spectral bands. 

The slight deviation was usually seen in blue and which is the shorter wavelength band. 

Similarly, a consistent agreement was observed in all bands. This means that TM SR and 

ELM SR show good agreement within a half unit of reflectance for selected ROI. 
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Finally, pixel level uncertainty of the ELM SR model for seven different bands of Landsat 

8 sensor was done using Monte-Carlo simulation. After that, the standard deviation of 160 

surface reflectance images gives the overall absolute pixel level uncertainty of the ELM 

SR model for seven different bands of the Landsat 8 sensor. In CA and green bands images, 

Algodones dunes and rock uncertainty range from 0.0271 to 0.0305, whereas the vegetative 

and water uncertainty ranges from 0.0186 to 0.0245. Similarly, in NIR and SWIR2 band 

images, Algodones dunes and rock uncertainty range from 0.0312 to 0.0450, whereas the 

vegetative and water uncertainty ranges from 0.0101 to 0.0271. 

The conclusions of this study demonstrate the usefulness of the level-2 surface reflectance 

product for providing accurate information on the reflectance properties of the Earth's 

surface. To guide the advantage of this methodology, (i) the developed method is not 

limited to time constraints, i.e., it is independent of the temporal resolution of the sensor. 

The validation of the L2 SR product can be carried out in any period of satellite image 

acquisition. (ii) The L2 SR product can be validated in any satellite after the SBAF 

correction using the hyperspectral measurement. 
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