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ABSTRACT 
 

 
A FRET INVESTIGATION INTO MOLECULAR MECHANISMS OF  

 
CARDIAC TROPONIN ACTIVATION IN RECONSTITUTED THIN FILAMENTS 

 
 

MARIA ELENI MOUTSOGLOU 
 

2016 
 
  
 Cardiomyopathies (CM) are the leading cause of death in America, and can 

develop from mutations in sarcomeric proteins, leading to altered protein structure and 

function. Current therapies target upstream signaling pathways to treat the symptoms of 

heart failure, but are associated with increased mortality by affecting downstream 

signaling pathways and other muscle types. Rational drug design can develop therapies to 

treat CM at the protein level. However, a detailed knowledge of how sarcomeric proteins 

regulate muscle contraction is required. Muscle contraction occurs through a cyclic 

interaction between actin thin and myosin thick filaments, regulated by intracellular Ca2+ 

concentration. Troponin (Tn), the Ca2+-binding protein in muscle, allosterically regulates 

actin and myosin interactions (crossbridge formation) by facilitating the release of two 

troponin I (TnI) actin binding sites at high Ca2+, the inhibitory region (IR) and the second 

actin binding site (SABS). The mechanism to remove TnI crossbridge inhibition is not 

well understood. A multi-site Förster resonance energy transfer (FRET) assay in cardiac 

Tn in reconstituted thin filaments was used to investigate the Ca2+-dependent structure 

and dynamics of the SABS, and show current theories behind Tn activation are biased 

using structures developed in isolated Tn. The SABS underwent large Ca2+-dependent 

conformational changes, suggesting this region plays an important structural role in 



 

 

xvii 

muscle regulation. The mechanisms behind thin filament Ca2+ sensitivity were also 

assessed to facilitate rational drug design. Titrations monitoring FRET efficiency (Tn 

activation) by Ca2+ and myosin showed the drug bepridil works in a similar mechanism to 

rigor myosin binding, which in native muscle increases Ca2+ sensitivity. The Ca2+-

desensitizing drug EGCG, however, does not work in a similar mechanism to protein 

kinase A (PKA)-mediated phosphorylation of cardiac TnI, which in native cardiac muscle 

disrupts residues in TnC responsible for binding Ca2+ at Site II. A single point drug 

screen was developed for Tn in reconstituted thin filaments using a novel correlation 

between the Ca2+-depleted FRET efficiency and Ca2+ sensitivity. This study shows the 

utility of performing Tn structural studies in an environment that mimics native muscle.  
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THE CALCIUM-DEPENDENT STRUCTURE AND DYNAMICS OF THE C-

TERMINAL REGION OF CARDIAC TROPONIN I 

 
ABSTRACT SECTIONS 1-3 

 
 

Heart failure is the leading cause of death in the United States. To facilitate drug 

design, the molecular mechanisms behind muscle regulation must be resolved. Cardiac 

muscle contraction occurs through the Ca2+-dependent cyclic interaction between thin 

and thick filaments, regulated by the heterotrimeric protein complex troponin (Tn). At 

low Ca2+, the C-terminus of cardiac troponin I (C-cTnI) has two regions bound to actin to 

inhibit myosin binding (crossbridge formation): the inhibitory region (IR) and the second 

actin binding site (SABS). At high Ca2+, the Herzberg model of Tn activation suggests 

the switch region binds an exposed hydrophobic pocket of N-TnC, dragging the IR off 

actin to remove crossbridge inhibition. While structural studies have attempted to 

describe the mechanism of Tn activation, the Ca2+-dependent nature of C-cTnI remains 

elusive due to the complex inter- and intramolecular interactions between the proteins of 

the thin filament. This study attempts to resolve the structure and dynamics of C-cTnI 

within the reconstituted thin filament using a multi-site Förster resonance energy transfer 

(FRET) assay. Epifluorescence imaging and fluorescence correlation spectroscopy were 

used to monitor filament quality prior and during measurements. Ensemble time-resolved 

FRET was used to derive the inter-dye distances with and without Ca2+. Regions of cTnC 

displayed independent Ca2+ dynamics, most evident in the inter-lobe linker. The switch 

region had minimal Ca2+-dependent dynamics (≈0.5 nm decrease in inter-dye distance 

with Ca2+), and maintained a ≈5 nm distance from the regulatory core of Tn, ≈3 nm 
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farther than predicted by the Ca2+-saturated crystal structure of cTn. Steady-state FRET 

measurements performed on isolated cTn with donors on cTnI(151-189) and an acceptor 

on cTnC89 showed good agreement with atomistic model-derived distances, suggesting 

actin and tropomyosin (Tm) alter the overall architecture of cTn. Functional studies in 

isolated rat ventricular fibers monitored force as a function of Ca2+, and showed 

mutagenesis in the cTnI switch region and N-lobe of cTnC did not alter the native 

function of cTn. cTnI177 appears to act as a pivot point separating the static switch 

region and the highly dynamic C-terminal end of cTnI. Residues after cTnI177 

underwent the greatest Ca2+-dependent changes (distances decreased by ≈1.5 nm), 

leading to the designation of this region as the SABS. The binding of the SABS on actin 

may account for the apparent displacement of the switch region from the cTn core. This 

suggests the Hertzberg model may incorrectly assign the role of the switch region; 

instead, some other mechanism may account for the removal of the IR and SABS from 

actin.   
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1 INTRODUCTION 
 

This dissertation is based on a study of the Ca2+-dependent interactions between 

two thin filament regulatory proteins: troponins I and C. Mutations in the C-terminal 

region of cardiac troponin I are known to cause cardiomyopathies through an interruption 

in protein structure and function. However, the structure of this region of cardiac TnI is 

not well defined due to its highly mobile nature and complex interactions with both actin 

and troponin C. This author hypothesizes the C-terminal region of cardiac TnI plays a 

dynamic role in muscle regulation. In this study, a Förster resonance energy transfer 

(FRET) assay was developed to investigate the Ca2+-dependent structure and dynamics of 

the C-terminal region of troponin I in reconstituted thin filaments. The presence of 

tropomyosin and actin may influence the structure of cardiac troponin, and the 

mechanisms of troponin activation currently presented in literature may be biased from 

structural studies performed on troponin in isolation. An overview of basic muscle 

contraction is given below to understand how proteins in the heart work together to 

regulate myocardial activation.  

 
1.1 An overview of cardiac muscle activation 
 

In 2009, the Center for Disease Control (CDC) stated heart disease was the 

leading cause of death in the United States.1 Cardiomyopathies result from functional 

changes or a weakening in heart muscle, often as a result of mutations in sarcomeric 

proteins. While current therapies attempt to slow the progression of heart disease by 

addressing symptoms, direct therapies targeting sarcomeric proteins (called sarcomeric 

modulators) would be more effective in reducing mortality by eliminating some of the 

negative side effects of current therapies.2 In order to facilitate the development of 
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informed drug design, the underlying mechanisms governing cardiac muscle regulation 

must be resolved.  

Cardiac muscle is striated muscle composed of fibrous myocytes (heart muscle 

cells). Myocytes contain myofibrils comprised of bundles of sarcomeres. Sarcomeres are 

the repeating contractile unit of muscle cells containing a network of proteins with two 

types of filaments: thin and thick. Following a change in action potential (depolarization) 

in myocytes, the sarcoplasmic reticulum (SR) releases Ca2+ into the myofibrils. 

Intracellular Ca2+ regulates muscle contraction at the level of the thin filament by 

interacting with the troponin (Tn) complex.3 When cytosolic [Ca2+] reaches ≈10 µM, 

conformational changes in the thin filament cause thin and thick filaments to slide past 

each other (contraction), mediated by crossbridge interactions between actin protomers 

and myosin catalytic heads.4-5 This is known as the sliding filament model, coined by 

Huxley and Hansen in 1954.4 Ryanodine receptors in the SR facilitate Ca2+ release and its 

subsequent uptake via the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), leading 

to muscle relaxation.6 A schematic view of the relaxed and contracted sarcomere is 

shown in Figure 1.  

Thin filaments are repeating structural units, where each functional unit is 

composed of seven actin monomers, one tropomyosin (Tm) dimer, and one Tn complex. 

Tn is composed of troponin T (TnT, Tm-binding), troponin C (TnC, Ca2+-binding), and 

troponin I (TnI, ATPase inhibition). Globular α-actin (G-actin) monomers polymerize to 

form F-actin in a double helix with an axial rise of ≈27.6 Å.7  
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Figure 1. Organization of the sarcomere showing the interdigitation of the thin and 

thick filaments. ATP hydrolysis by myosin motors causes filaments to slide past each 

other, shortening sarcomere length. Intracellular [Ca2+] controls myosin heads, cyclically 

attaching and detaching from actin during relaxation and contraction. Labeled are thin 

filaments (green) composed of troponin, tropomyosin, and actin; thick filaments (red) 

composed primarily of myosin; Z-discs, composed of α-actinin, define a sarcomere unit 

and crosslink the thin filaments; overlap regions, where myosin overlaps actin thin 

filaments; the non-overlap region, absent thin filaments; the I-bands, absent myosin; the 

A-band, the length encompassing one thick filament; and m-region, portion of the thick 

filament without myosin heads. 
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 The actin structure is divided into four subdomains: subdomains 3 and 4 in the 

inner domain of one actin monomer interact with subdomains 3 and 4 of an adjacent 

monomer; subdomains 1 and 2 in the outer domain face outward, where subdomain 1 

provides the binding site for myosin heads.8 Actin filaments are anchored to the Z-discs 

(Figure 1), which regulate the length of the thin filament.9 Tm is a rod-like coiled-coil 

dimer that acts as a molecular ruler. Tm runs along F-actin, providing binding sites for 

the N-terminal tail of TnT at every seventh actin protomer, ensuring an equal distribution 

of Tn every ≈40 nm.10-11 Tm binds in the grooves of F-actin between subdomains 1 and 3 

(close to the myosin binding site),12 with a tail-to-tail overlapping region between Tm 

molecules.13  

Thick filaments are composed of myosin-II, which is divided into two regions.  

The N-terminal end is composed of two motor or catalytic domains (globular heads). 

Each motor domain associates with two light chains (regulatory and essential) and a 

heavy chain. The C-terminal end is composed of an α-helical tail that forms a coiled-coil 

with the heavy chain.14 The motor domain is termed subfragment-1 (S1), and protrudes 

outward from the rigid filamentous region of bundled myosin tails (Figure 2). S1 is an 

ATPase catalyzing the hydrolysis of adenosine triphosphate (ATP) into adenosine 

diphosphate (ADP) and inorganic phosphate (Pi). S1 binding to actin facilitates the 

release of ADP and Pi.15  
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Figure 2. A simplified schematic of Ca2+- and myosin-dependent activation of the 

thin filament. One regulatory unit is composed of seven actin protomers (red circles), 

one α-helical Tm dimer (blue), and one Tn complex composed of TnT (green), TnI 

(cyan), and TnC (yellow). For simplicity, actin is depicted as a single, straight filament; 

in native muscle, F-actin is a double helix composed of two strands of actin. When 

muscle is relaxed (state 1) at low Ca2+, TnC has a Mg2+/Ca2+ ions (black stars) bound to 

Sites III and IV. The TnI inhibitory region (IR) and second actin binding site (SABS) are 

bound to actin, forcing Tm in a position to prevent myosin binding. The thick filament is 

composed of myosin, where myosin tails are intertwined, and the catalytic heads (S1) 

protrude outward. At state 1, myosin has ATP bound, and is not interacting with actin. 

When intracellular Ca2+ increases at state 2, Ca2+ binds to Site II in TnC causing Ca2+-

dependent activation of the thin filament. Conformational changes propagate through Tn, 

causing the release of the IR and SABS from actin, allowing Tm to move away from 

myosin S1 binding sites. Actin activates the S1 ATPase, where crossbridge formation 

leads to hydrolysis of ATP into ADP and inorganic phosphate (Pi), with Pi is still 

associated with the S1 head. Energy from ATP hydrolysis forces S1 into a higher energy 

conformation. S1 binding to actin is cooperative, allowing for downstream crossbridge 

formation (state 3). When ADP and Pi are released from S1 (state 4), S1 changes 

conformation to a lower energy state, dragging the thin filament to contract 

(powerstroke). S1 then binds ATP and releases actin, and Ca2+ is released from TnC; the 

thin and thick filaments thus to return to state 1. 
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The schematic in Figure 2 describes the Ca2+-and myosin dependent activation of 

the thin filament leading to contraction. At low Ca2+ (Figure 2, state 1), Tn is in an 

inactive conformation, with the inhibitory region (IR) and second actin binding site 

(SABS) of TnI bound to actin, forcing Tm in a position that blocks myosin binding sites 

on actin to prevents crossbridge formation.16 At high Ca2+ (Figure 2, state 2), Ca2+ binds 

to Site II of TnC, causing conformational changes in Tn that promote IR and SABS 

release from actin.17-18  

 Tm is free to move away from the myosin binding sites, allowing crossbridge 

formation. S1 hydrolyzes ATP, forcing the catalytic head into a higher energy 

conformation, with both Pi and ADP still associated with S1.19-20 Myosin then binds actin 

in this higher energy state. More myosin heads are cooperatively recruited to bind to actin 

(Figure 2, state 3). Figure 2, state 4 shows the actin-activated release of ADP and Pi from 

S1,21 causing S1 to change to a lower energy conformation, dragging the thin filament 

along in the powerstroke (contraction).22 When ATP binds to S1, myosin releases actin, 

leading to relaxation. This cycling of ATP by myosin and actin is known as the 

crossbridge cycle. 

The detailed mechanism of activation of the thin filament to promote myosin 

binding is still under investigation. One proposed mechanism is the steric blocking 

model: in the absence of Ca2+, Tm blocks myosin-binding positions on actin due to the 

inhibitory properties of TnI (as described previously). When Ca2+ binds to TnC, 

conformational changes in Tn cause TnI to remove its inhibitory properties, allowing Tm 

to move away from the myosin binding site, promoting myosin binding and ATPase 

activity. Another proposed mechanism is the cooperative/allosteric model, which 
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emphasizes the importance of actin conformational changes during activation to promote 

myosin binding.23-25 Further studies are needed to verify these mechanisms.  

In the next section, more detail is given to the structure and function of the Tn 

complex as understood and presented in contemporary scientific literature. This is useful 

in understanding why this study utilized the entire thin filament to investigate TnI in an 

attempt to mimic the native muscle environment. Some of the mechanisms of Tn 

activation and TnI structure outlined in the Introduction will be revisited in the Results 

and Discussion section to compare and contrast to the conclusions reached by this study.  

 
1.2 Troponin: the command center for muscle activation 
 

In the sarcomere, contracted and relaxed states exist in a dynamic equilibrium, 

where Ca2+ transients and other modifications shift the balance. Muscle contraction 

occurs when a certain fraction of Tn is in the active state. The components of cardiac Tn 

dynamically interact to modulate muscle activation using allosteric and cooperative 

mechanisms to translate the signal across the myofilament. Tn activation itself can be 

modulated by covalent and non-covalent modifications, including Ca2+ binding, 

crossbridge formation, post-translational modifications, mutations, and intracellular 

acidification. Changes in these modifications contribute to the contractile dysfunction 

associated with heart failure.26  

Tn uses allostery to control activation: conformational changes in Tn are 

propagated along the thin filament to promote crossbridge formation. Tn is able to fulfill 

this role due to its two distinct subdomains: the N-terminal region of TnT, which grips 

the Tn complex onto the Tm-actin filament; and the regulatory core of C-TnT, TnI and 

TnC. These domains are mainly composed of α-helices connected by flexible linkers.27 



 

 

11 

Figure 3 shows the Manning-Tardiff-Schwartz (MTS) molecular model, with certain 

regions of TnT, TnI, and TnC discussed in more detail in the following sections. The 

MTS model utilized the 52kDa cardiac crystal structure of Tn, and was used as a 

reference in the Results and Discussion section. In the following text, “on” and “open” 

may be used interchangeably to describe the active state of Tn, and “off” and “closed” 

may be used to describe the inactive state of Tn.  

Understanding how Tn translates on or off signals to actin during activation is 

imperative to a complete understanding muscle regulation. Of particular importance are 

the unique structure-function relationships between actin and TnI (the inhibitory protein), 

and TnI and TnC (the Ca2+ binding protein). This assay was designed to monitor the 

structural transition of C-TnI with respect to three specific sites on TnC, allowing for a 

triangulation of the relative position C-TnI during activation, and broaden the 

understanding of the Ca2+-induced dynamics between TnI and TnC. Though nuclear 

magnetic resonance (NMR) spectroscopy and X-ray crystallography have given insights 

into the Ca2+-saturated and Ca2+-depleted structural nature of Tn, this assay was designed 

to directly probe the Ca2+-dependent dynamics of C-TnI in relation to TnC reconstituted 

into thin filaments in solution. Using thin filaments as a simple biochemical model28 for 

muscle activation yields insight into the behavior of Tn in the presence of Tm and actin.  
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Figure 3. Structure of the Ca2+-saturated cTn core. Ribbon representation of the MTS 

molecular model of Ca2+-bound cTn, where TnI (grey), TnT (T2) (cyan), and TnC (black) 

are shown. Helices I and II of the T2 region of TnT and helices I-III of TnI are labeled. 

For the C-terminal region of TnI, the inhibitory region (residues 138-149, red), the switch 

region (residues 151-167, blue), the mobile domain (residues 168 to 189, green), and the 

C-terminal end (residues 190 to 211, pink). The switch region is bound to the 

hydrophobic pocket of the N-lobe of TnC.  
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1.2.1 Troponin C: the Ca2+-binding subunit of the thin filament 
 

Troponin C is an ≈18 kDa, 161-residue protein known as the Ca2+-sensitive 

switch of the myofilament. Cardiac TnC is composed of two globular lobes connected by 

a flexible linker.29 The N- and C-lobes (N: amino terminus; C: carboxy terminus) each 

contain two EF-hand structural motifs (helix-loop-helix) that bind divalent cations at sites 

numbered I-IV (N-ward to C-ward). Sites III and IV in the C-lobe constitutively bind 

Mg2+ or Ca2+. Sites I and II in skeletal TnC (sTnC) bind Ca2+ at physiological levels,30 

but only Site II in cTnC binds Ca2+.31 Site I is unable to bind Ca2+ due to mutations in two 

acidic residues responsible for coordinating Ca2+ (D29L, D31A), and an insertion of a 

valine at residue 28.32 The chelation residues coordinating Ca2+ at Site II are D65, D67, 

E76, S69, and T71.33 When Ca2+ binds to Site II, the N-lobe of cTnC partially opens, as 

opposed to a full opening in sTnC when two Ca2+ bind.34-35 This opening occurs through 

a structural rearrangement of the B and C helices, revealing a hydrophobic cleft where 

the switch region of TnI is thought to bind to stabilize the open conformation of the N-

lobe of TnC.35-36 The C-lobe of TnC requires no other protein interactions to stabilize its 

open conformation.29 Residues 44-66 of helix I of TnI bind to the C-lobe.27, 37 Due to the 

lobes’ individual roles within TnC, the C-lobe has been termed the structural domain, and 

the N-lobe the regulatory domain.  

 
1.2.2 Troponin T: the tropomyosin-binding anchor of the thin filament 
 

Troponin T is a ≈36 kDa protein responsible for anchoring the Tn complex onto 

the thin filament through interactions with Tm. The N-terminus of TnT modulates 

ATPase activity, and the C-terminus interacts with Tm in a Ca2+-sensitive manner.38-39 

TnT is a flexible, elongated protein with two distinct regions: T1, the Tm-binding region 
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(residues 1-181, human numbering); and T2, which interacts with the core of Tn 

(residues 181-288, human numbering).40 Notably, T1 was removed to promote sample 

stability in the Takeda crystal structure, as this region increases aggregation of isolated 

Tn.27 T1 has an isoform-specific N-terminal extension (residues 1-76) that is negatively 

charged due to its composition of mostly of aspartate and glutamate residues.41 

Tobacman first suggested the N-terminal extension participates in Ca2+-dependent 

regulation, where a deletion of the first 38 residues in bovine cTnT resulted in a decrease 

in ATPase activity.42 Chandra et al. suggested the ATPase activity inhibition conferred by 

the N-terminal deletion is due to changes in interactions at the Tm-Tm overlap region.43   

Residues 98-136 (human numbering) in the central region (CR) in T1 interact 

with the C-terminal region of Tm to affix Tn onto the actin filament,44 and the N-terminal 

extension modulates this interaction.45 Residues 183-200 form a flexible linker 

connecting T1 and T2 together. Helix II (residues 226 to 279) in T2 forms the I-T arm 

with helix II of TnI.27 The C-terminal region of TnT in the I-T arm interacts with the C-

lobe of TnC27 and Tm.46-47 Interactions between the T2 region and TnI, TnC, and Tm 

occur in a Ca2+-dependent manner,39 and T2 has been shown to play a role in both Ca2+-

dependent regulation and in length-dependent activation.45 The behavior of TnT during 

muscle regulation is modulated by protein kinase C (PKC)-mediated phosphorylation 

sites at Thr 194, 203, and 284, and at Ser 198, which can result in an increase or decrease 

in thin filament sensitivity, depending on the site phosphorylated.48    

 
1.2.3 Troponin I: the inhibitory subunit of the thin filament 
 

Troponin I is a ≈24 kDa protein known as the inhibitory subunit of Tn. At 

intracellular [Ca2+] = 10-6 M, TnI inhibits crossbridge formation by preventing myosin 
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binding to actin (ATPase activity).49 Absent other Tn subunits, TnI is still capable of 

inhibiting ATPase activity in the myofilament.50 However, regulation of this inhibition 

requires the Ca2+ sensitivity of TnC.51-52 TnI and TnC interact in an antiparallel manner, 

where the N-terminus (residues 35-72) of TnI interacts with the C-terminus of TnC.  

Post-translational modifications on TnI in the form of phosphorylation primarily 

down-modulate cardiac contractility. Cardiac TnI has an isoform-specific ≈32-residue N-

terminal extension with two protein kinase A (PKA)-dependent phosphorylation sites at 

serines at 23 and 24 (human numbering).53 Ser-23/24 can also be phosphorylated by 

protein kinase D (PKD), causing reduced Ca2+ sensitivity of TnC.54 Yasuda et al. used 

mice expressing non-phosphorylatable cTnI to show PKA-mediated phosphorylation at 

Ser-23/24 contributes significantly to cardiac relaxation.55 When not phosphorylated, the 

extension stabilizes the N-terminus of TnC.56 Phosphorylation increases Ca2+ release by 

destabilizing Ca2+ binding through changes in the interactions between the N-TnI with N-

TnC.57-58 TnI also contains PKC-mediated phosphorylation sites at Ser-43/45, and on 

Thr144 in the inhibitory region (IR).59 Phosphomimetic mutations at Ser-43/45 showed 

reduced thin filament sensitivity to Ca2+.60 Under Ca2+-depleted conditions, Thr144 was 

shown to be involved in strong crossbridge-dependent activation of ATPase activity,61 

suggesting Thr144 modulates crossbridge formation.  

C- and N-TnI domains play structural and regulatory roles, respectively. Helix II 

(residues 91-136) of TnI forms a coiled-coil with helix II of TnT to form the I-T arm. The 

I-T arm and helix I of TnI (residues 44-80) enclose the C-lobe of TnC.27 The regulatory 

region of TnI comprises residues 138-211. Included is the inhibitory region (residues 

138-149), which interacts with actin under Ca2+-depleted conditions17, 62 to inhibit myosin 
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ATPase activity (muscle contraction).50 The structure of the IR for cTnI has not been 

resolved using X-ray crystallography, though FRET studies in cTn have predicted the IR 

switches from a β-turn coil into a quasi α-helix with Ca2+.63 

Upon Ca2+ binding, the switch region (residues 151-167) binds to the partially-

exposed hydrophobic pocket of the N-lobe of TnC, stabilizing the fully open state of the 

N-lobe. According to a model first developed by Herzberg, the binding of the switch 

region drags the IR off actin, removing its inhibitory effects from actin-tropomyosin.64-65 

Residues 168-211 are required for full ATPase inhibition through Ca2+-dependent 

interactions with actin (termed the second actin binding site, SABS).66-67 This region is 

composed of the mobile domain (residues 168-189) and C-terminal end (residues 190-

211), and has been the subject of numerous studies. However, the complete structure, 

dynamics, and functional details of this region remain unresolved. The fly-casting 

mechanism has been proposed to describe the role of TnI(168-211): under Ca2+ saturating 

conditions, these residues are an intrinsically disordered region (IDR), and able to sample 

multiple potential binding sites on actin that catalyze a return to the off state upon Ca2+ 

release.68 Deletion experiments, where the last 17 residues of sTnI were removed, 

showed the affinity of TnI for the thin filament decreases in the absence of this C-

terminal region, suggesting interactions with actin and TnC are in a Ca2+-dependent 

equilibrium.69  

The next sections include a brief overview of some of the proposed structures of 

different isoforms of C-TnI, and the mechanism in which C-TnI binds to either actin or 

TnC as understood in literature. This is helpful in discovering some of the drawbacks of 

the current methodology, and why structural biology investigations benefit when 
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performed in a more native environment. Also noted are the unresolved portions of 

cardiac and skeletal TnI structures. Of particular importance is the unresolved C-terminal 

region, the subject of this study.  

 
1.2.4 Sample stability and resolution limits: barriers to resolving native 
protein structure and dynamics 
 

A number of studies on skeletal and cardiac Tn have attempted to reveal the 

structure and dynamics of C-TnI, and identify specific interactions with TnC and actin. 

Unfortunately, due to sample stability issues or the resolution limits of the selected 

method, many studies were performed on free Tn, individual Tn subunits, or on Tn with 

amino acid deletions. This gives rise to the question of whether the Ca2+-depleted 

structure/dynamics of the C-TnI can be fully understood in the absence of actin. X-ray 

crystallography is a useful method that provides high resolution 3D protein structure at 

atomic resolution. Progress in resolving the crystal structure of the entire cTn complex 

and Ca2+-depleted cTn has been impeded by practical issues, such as sample aggregation 

or growing high quality crystals. To grow crystals, proteins are exposed to a non-native 

environment, where pH, ionic strength, temperature, and detergents used differ 

dramatically to the native muscle environment.70 Solution conditions could promote 

proteins to settle into non-native structures. Additionally, more mobile regions of proteins 

cause disorder in the crystal lattice, altering X-ray diffraction and preventing resolution.71 

NMR spectroscopy can resolve protein structure and dynamics in solution. However, 

NMR can only be used for proteins or peptides <40 kDa.72 Tn itself is a 75 kDa complex, 

and only an incomplete complex can be studied using NMR. To overcome the barriers in 

X-ray crystallography and NMR spectroscopy, this study utilized FRET spectroscopy to 
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resolve TnI-C structure and dynamics in solution. There is essentially no size limitation 

with FRET, therefore allowing the incorporation of FRET-labeled Tn into reconstituted 

thin filaments. Additionally, FRET can resolve large-scale conformational changes (≈10 

Å) in large assemblies.73 More detail into developing a FRET assay to study structural 

biology is given in the Results and Discussion section.  

Equating skeletal Tn structure and function to cardiac Tn can also be problematic. 

While the amino acid sequences between cardiac, fast skeletal, and slow skeletal C-

terminal regions of TnI are highly conserved,74 there are some substantial structural 

differences in TnT, TnC, and TnI isoforms. cTnT has an 18 residue N-terminal extension 

that may affect the cooperative activation of the thin filament.75 Comparing the results of 

deletion experiments in rabbit sTnT76 and bovine cTnT42 shows the N-terminal extension 

in cTnT alters Ca2+-dependent ATPase activity. In addition, sequence heterogeneity 

between fast skeletal (fs)TnT and cTnT suggests variations in structure impose a tissue-

specific function for TnT.77 As mentioned previously, cTnC does not bind Ca2+ at Site I, 

which effects the kinetics of the Ca2+-sensitive inhibitory properties of TnI (switching of 

TnI off actin to TnC).78 Ca2+ binding to cTnC induces only a partial opening of the N-

lobe, compared to a full opening in sTnC. sTnI has no N-terminal extension, which 

includes PKA-mediated phosphorylation sites at Ser-23/24 in TnI, important for 

modulating the Ca2+ sensitivity of the TnC.79  

Structural studies performed in isolated or fragmented Tn or in individual Tn 

subunits can still give insight into the mechanism of activation. Of concern to molecular 

and atomistic modeling, however, is the inherent bias introduced by incorporating 
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structures developed from isolated Tn. Proposed models for both skeletal and cardiac C-

TnI structure and function will be reviewed as presented in the literature. 

 
1.2.5 Crystal structures and proposed atomistic models of Tn  
 
The Takeda crystal structure of the Ca2+-saturated cTn core 

 Takeda et al. solved Ca2+-bound human cTn structures using X-ray 

crystallography in 2003 (human numbering will be used in this section).27 In total, four 

structures were resolved: two 46 kDa structures (A and B, PDBID 1J1D), and two 52 

kDa structures (A and B, PDBID 1J1E). The N-terminal extension of TnI and T1 region 

of TnT were removed to promote sample stability. TnI Helix III comprises residues 150-

159 of the switch region, which is bound to the hydrophobic cleft of the Ca2+-bound N-

lobe of TnC. Helix III is followed by a flexible linker, where a glycine at residue 160 

kinks helix IV (residues 164-189) to protrude rigidly outward from the core domain. 

Glycine is a small amino acid that destabilizes α-helices. Insufficient electron density 

prevented resolving the IR (138-147) and C-terminal end (192-211) most likely due to 

their mobile nature. At high Ca2+, the IR is in an extended conformation to allow the 

switch region to interact with the N-lobe of TnC, suggesting under Ca2+-depleted 

conditions, the IR changes both its position and potentially its conformation in order to 

bind to actin.  

 
The Vinogradova fsTn crystal structures with and without Ca2+ bound 
 

In 2005, Vinogradova et al. solved the Ca2+-saturated and Ca2+-depleted crystal 

structures of chicken fast skeletal (fs) Tn at 3.0 and 7.0 Å resolutions, respectively.80 The 

disordered C-terminal region (last 40 residues) juts perpendicularly away from the Tn 
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core. In the absence of Ca2+, the IR forms an α-helix and binds to actin. When Ca2+ binds 

to TnC, the IR helix extends to a loop, allowing the switch region to reach the 

hydrophobic cleft of the TnC N-lobe, corresponding to an ≈8 Å movement. The linker 

between the C- and N-lobes forms an α-helix. Vinogradova and colleagues suggest the 

disordered inter-lobe linker for TnC seen in the Takeda structure may be due to the 

absence of stabilizing interactions from the cardiac-specific N-terminal extension. 

 
The Murakami atomistic model of sTn 

In 2005, Murakami et al. used NMR to analyze a ≈52 kDa ternary sTn complex, 

showing the mobile domain (human cTnI160-210) of sTnI as a ß-sheet flanked by two 

short α-helices.81 The mobile domain tumbled independently of the Tn core around a 

pivot point between TnI Gly160 and Lys164 (human cardiac numbering), suggesting a 

capacity for this domain to interact with actin under Ca2+-depleted conditions. Under 

Ca2+-saturated conditions, the C-terminal end was less mobile due to contact of the 

switch region with N-TnC. This is in agreement with anisotropy measurements in 

reconstituted thin filaments by Zhou et al., who showed the flexibility of C-TnI decreases 

when Ca2+ binds.82 Using the ratio of chemical shift differences at high and low Ca2+, 

Murakami et al. showed there was greater mobility in residues sTnI170-180 (mcTnI199-

211), with less mobility in sTnI140-169.  

 
The Pirani/Vinogradova atomistic model of the Ca2+-saturated and Ca2+-depleted thin 
filament 
  

In 2006, Pirani and Vinogradova et al. reconstructed the Ca2+ bound and unbound 

atomistic models of the thin filament using Tm, actin, and the Vinogradova fsTn crystal 

structures.80 The model was aligned to electron microscopy (EM) images of isolated 
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skeletal thin filaments.83 The EM/atomistic reconstruction of the thin filament showed an 

“extra appendage” that extended outward from Tn under Ca2+-depleted conditions; this 

was attributed to C-TnI. This region branched outward from the I-T arm to form a bridge 

between two actin monomers. How this extension was connected to the rest of TnI was 

not resolved. The authors claim the N-lobe of TnC is positioned relatively remotely from 

the actin surface both with and without Ca2+. This suggests if the switch region is tethered 

away from N-TnC by the IR bound to actin, the switch region would have to travel an 

appreciable distance (more than 1 nm) to bind to the N-TnC at high Ca2+.  

 
The Manning-Tardiff-Schwartz (MTS) atomistic model of the thin filament 

In 2012, Manning, Tardiff, and Schwartz presented molecular models of the thin 

filament at high and low Ca2+.84 The 52 kDa cTn crystal structure,27 Pirani atomistic 

model of the thin filament,83 and fsTn80 were used to predict Tn and Tm/actin 

intramolecular interactions. Tn relaxation was a result of reduced interactions between 

the N-lobe of TnC and switch peptide of TnI, resulting in favored interactions between 

the IR and SABS regions with actin. This supports the fly-casting mechanism and 

Herzberg model of Tn activation. Under low Ca2+, the mobile domain had a “rigid” 

conformation favoring actin binding that forced Tm in a position to block myosin binding 

sites on actin, which supports the steric blocking model. Additionally, as a result of TnC 

N-lobe conformational changes, the I-T arm rotated, translating a deactivating structural 

change to Tm through TnT. The greatest Ca2+-dependent dynamics were seen in the I-T 

arm, the cTnT T1-T2 linker, and mobile domain of TnI. This study’s FRET-derived 

distances at high Ca2+ were compared to MTS model distances in the Results and 
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Discussion section, as the MTS model includes the crystal structure cTn core with 

molecularly-derived residues for the C-terminal end (mcTnI189-211). 

 
1.3 Mutations in C-TnI associated with heart failure 
 

Molecules that modulate the Ca2+ sensitivity of the thin filament are a therapeutic 

option to improve contractile function. Resolving the mechanism of thin filament 

activation could lead to rational structure-based drug design. Sarcomeric protein 

mutations are responsible for cardiomyopathies by interrupting the regulatory functions 

governed by those proteins.2 Cardiomyopathies (CM) develop when myocytes “sense” 

changes in contractility due to amino acid mutations that disrupt protein structure; the 

myocytes alter signaling cascades to initiate compensatory mechanisms, resulting in a 

CM phenotype.85 Familial hypertrophic cardiomyopathy (HCM),86 restrictive 

cardiomyopathy (RCM),87-88 and familial dilated cardiomyopathy (DCM)89 are the three 

most common forms of heart failure associated with mutations in genes encoding for 

sarcomeric proteins. Here, mutations in TNNI3, the gene encoding cTnI, will be 

discussed briefly to highlight the importance of cTnI’s IR and SABS (C-terminal end) for 

normal cardiac function. RCM is distinguished by impaired ventricular filling and 

reduced end diastolic volume due left ventricular wall stiffness, with preserved 

myocardial wall thickness and systolic function.90 Mutations in hcTnI that cause RCM 

are primarily focused in the IR (Leu144Gln, Arg145Trp) and C-terminal end (Ala171Thr, 

Lys178Glu, Asp190Gly, Arg192His, Arg204His).88, 91 These mutations increase the Ca2+ 

sensitivity of force development, decrease ATPase activity, and decrease ATPase 

inhibition.92-93 HCM is characterized by contractile dysfunction, a thickened left ventricle 

(hypertrophy), and arrhythmia.86  HCM is primarily a genetically inherited disease, as 
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opposed to RCM and DCM, which are both acquired and genetically inherited.94 Four of 

the 29 total TNNI3 mutations causing HCM are found in the IR, with the majority (22) 

found at the C-terminal end.95-97 These mutations have shown contrasting effects on Ca2+ 

sensitivity and Ca2+-activated force of myofibrils.98 DCM causes a thinning of the left 

ventricle (dilated) and poor systolic function.99 DCM mutations have been discovered in 

the N-terminus of cTnI: a mutation near the Ser-23/24 phosphorylation site (Arg21Cys) 

decreases phosphorylation rates in vitro, while a Ala2Val caused decreased TnT/TnI 

interactions.89 As of yet, no mutations in the C-terminal region of TnI have been 

discovered that cause of DCM. 

The high density of HCM- and RCM-causing mutations in C-TnI demonstrate the 

essential role of the two actin binding sites in this region to maintain normal cardiac 

muscle function. A greater understanding of the Ca2+-dependent structure and dynamics 

of this region, particularly of the second actin binding site of TnI, would yield insight into 

why these site mutations yield such dramatic phenotype changes to reduce mortality. 

 
1.4 A multi-site FRET assay in a most native environment 
 

A multi-site FRET assay was developed to resolve the Ca2+-dependent structure 

and dynamics of the C-terminal region of cTnI in reconstituted regulated actin. The inter-

dye distances derived at high and low Ca2+ clarify the role of cTnI in modulating muscle 

activation. Other studies lack the exhaustive assessment of filaments involving a 

combination of biochemical and spectroscopy methods that ensure a high degree of 

confidence in sample quality. Solution conditions mimicking the native environment of 

the sarcomere yield a more accurate assessment of Tn structure, as opposed to structures 

derived from isolated Tn.28 This is the first assay designed to use FRET to map the 
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position of C-cTnI with respect to the N-lobe, inter-lobe linker, and C-lobe of cTnC, and 

to confirm the hypothesis that the SABS of cTnI plays a vital structural and functional 

role in regulating muscle activation. Here, the switch region (helix III) of cTnI was 

shown to have minimal Ca2+-dependent dynamics, and most likely is a rigid helix 

comprising residues 151-177 that maintains a distance of ~5 nm away from the cTn core. 

This is surprising considering the Herzberg model predicts switch binding to N-TnC upon 

Ca2+ binding. Helix III is connected by a short loop to a more mobile helix (called helix 

IV). The SABS consists of residues 189-211, and is the most dynamic region of C-cTnI. 

cTnC undergoes region-dependent Ca2+-induced movement. This study has shown at low 

Ca2+, the SABS is bound to actin; when Ca2+ binds to cTnC at Site II, the SABS is 

displaced from actin, where the regulatory region of cTn would translate this activating 

signal to TnT(T1), Tm, and finally actin to promote cooperative activation of the thin 

filament. The binding of the switch region to cTnC may require further thin filament 

modifications, such as myosin binding or phosphorylation. The surprisingly long 

distances resolved between the switch region and the N-lobe of cTnC compared to 

previous studies may be due to the displacement of the C-terminal region away from the 

core of cTn by the SABS binding to actin.   
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2 METHODS 
 
2.1 Native protein purification 
 
2.1.1 Acetone powder from bovine left ventricle tissue 
 

Acetone powder was prepared from fresh bovine hearts at 4°C as described.100 

Connective tissue, blood vessels, and blood were removed, and the left ventricle was 

ground in a pre-chilled meat grinder. The minced meat was soaked in 0.1 M KCl and 

0.15 M potassium phosphate (pH 6.5) for 10 min, then filtered through pre-soaked 

cheesecloth. The mince was stirred in 0.05 M NaHCO3 (sodium bicarbonate) for 10 min 

and filtered, then stirred in 1 mM EDTA (pH 7.0) for 10 min, filtered, and stirred again in 

the same buffer for 5 min. Mince was filtered, then stirred in deionized and distilled H2O 

(ddH2O) for 5 min, and filtered. Mince was stirred in 1 L of acetone for 10 min at 25°C, 

filtered, and repeated four times. The mince was then dehydrated overnight in the hood, 

and stored at -20°C for up to a year. Purity was assessed using sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE, 12% bis/acrylamide, monomer to cross-

linker ratio 29:1) with Precision Plus Protein Kaleidoscope Protein Standards (Bio-Rad, 

Hercules, CA). 

2.1.2 Purification of tropomyosin from acetone powder 
 

Tm was purified from acetone powder as described.101 Briefly, about 100 g of 

acetone powder was extracted with a high salt solution (1.0 M KCl, 0.5 mM 

diothiothreitol [DTT]) at pH 7.0, filtered through cheesecloth, and the residue extracted 

again with the high salt solution. After adjusting the pH to 4.6 for 30 min, the solution 

was centrifuged for 20 min at 6,000 xg, and the pellet was dissolved in the high salt 



 

 

26 

buffer with pH 7.0. The insoluble material was removed using centrifugation at 6,000 xg 

for 10 min. This procedure was repeated twice, with the final pellet dissolved in ddH2O 

supplemented with 0.5 mM DTT. Ammonium sulfate (0-53%, mass calculated with 

http://www.encorbio.com/protocols/AM-SO4.htm) was added slowly to the solution, 

with pH maintained at 7.0 at 4°C with stirring for 30 min. The precipitate was removed 

with centrifugation for 30 min at 11,000 xg, and the supernatant was brought to 65% 

saturation with ammonium sulfate, with pH maintained at 7.0. The precipitate was 

pelleted with centrifugation, dissolved in 0.5 mM DTT, and dialyzed against 2 mM 2-

mercaptoethonol (BME). Tm consisting of a native mixture (9:1) of α:β isoforms was 

aliquoted, lyophilized, and stored at -80°C for up to 1 year. Purity was assessed using 

SDS-PAGE. Gels were stained using GelCode™ Blue Safe Protein Stain (Fisher 

Scientific Company, LLC, Hampton, NH).  

2.1.3 Purification of actin from acetone powder 
 

Actin was purified from acetone powder as described.100 Briefly, 5 to 10 g of 

acetone powder was dissolved in Buffer A (2 mM Tris-HCl [Trizma® hydrochloride, 

Tris(hydroxymethyl)aminomethane hydrochloride] (pH 8.0), 0.5 mM BME, 0.2 mM 

CaCl2, 0.005% sodium azide, and 0.2 mM Na2ATP) (20 mL/g acetone powder) and 

stirred for 30 min. Extract was filtered through sterilized cheesecloth. The filtrate was 

then centrifuged at 20,000 xg for 1 hour at 4°C. The supernatant was polymerized by 

adding drop-wise (the same volume as the supernatant volume) a solution of 50 mM KCl, 

2 mM MgCl2, and 1 mM ATP to the filtrate at 4°C while stirring, with continued stirring 

for two hours. Solid KCl was added to the solution to reach a concentration of 0.8 M and 

stirred for 30 min. The solution was centrifuged at 150,000 xg for 1.5 hours, and the 
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pellet was resuspended in Buffer A supplemented with 0.8 M KCl, 2 mM MgCl2, and 1 

mM ATP. The sample was centrifuged at 150,000 xg for 1.5 hours, and the pellet was 

resuspended in Buffer A at 1.5 mL/g acetone powder. The pellet was homogenized with a 

Dounce homogenizer, and dialyzed against Buffer A for 16 hours, with three additional 

buffer exchanges for a total of 48 hours. Globular actin (G-actin) was clarified with 

centrifugation at 150,000 xg for 1.5 hours. The supernatant containing G-actin was then 

polymerized with 50 mM KCl, 2 mM MgCl2, and 1 mM ATP added drop-wise with 

stirring, and stirred for 2 hours at 4°C. Filamentous (F-actin) was stored at 4°C in Buffer 

A for up to four months. Purity was confirmed using SDS-PAGE. 

 
2.2 Mutagenesis and DNA amplification and purification 
 

Wild type (WT) rat cardiac troponin T (TnT) and WT rat cardiac troponin C 

(TnC) plasmids were obtained from the Herbert C. Cheung lab (University of Alabama). 

WT mouse cardiac troponin I (TnI) and myc-tagged mouse cardiac TnT plasmids were 

gifts from the R. John Solaro lab (University of Illinois at Chicago). Primers were 

ordered from Integrated DNA Technologies (Coralville, IA), diluted to 1 µg/mL with 

ddH2O, and stored in -20°C. Cysteine-less (Cys-less), Cys-lite (removal of one native 

Cys), and single Cys mutations in TnC and TnI (Table 1) were made using QuikChange 

Lightning Site-Directed Mutagenesis kits (Agilent Technologies, Santa Clara, CA) by 

following the protocol provided. PCR products were transformed into XL10-Gold 

Ultracompetent Cells (Agilent Technologies, Santa Clara, CA) following the protocol 

provided. 100 µL of cells were inoculated onto lysogeny broth (L-B, Fisher BioReagents, 

Hampton, NH) agar plates supplemented with the appropriate antibiotic (100 µg/mL), and 

incubated overnight at 37°C. Minipreps were prepared in triplicate with 2 mL of L-B 
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supplemented with the appropriate antibiotic (100 µg/mL). Single colonies were 

inoculated into the medium, and grown overnight with shaking at 37°C. Plasmids were 

purified using Wizard Plus SV Minipreps DNA Purification System kits (Promega 

Corporation, Madison, WI) following the protocols provided. Purified plasmids were 

sequenced using single pass DNA sequencing by ACGT, Inc. (Wheeling, IL). Upon 

sequence confirmation, plasmids were stored at -20°C.  

 
Table 1. Recombinant troponin proteins expressed in Escherichia coli and purified.  

Protein Mutation/Modification Species Vector Antibiotic 
Resistance Cloning Sites 

troponin T N-terminal His-tag mouse cardiac pSBETa kan- NdeI-BamHI 

 none rat cardiac pET-3d amp- NcoI-BamHI 
troponin C none rat cardiac pET-3d amp- NcoI-BamHI 

 C84S     
 C35S, C84S, S89C     
 C35S, C84S, T127C     troponin I none mouse cardiac pET-3d amp- NcoI-BamHI 

 C81I, C98S, S151C     
 C81I, C98S, L160C     
 C81I, C98S, S167C     
 C81I, C98S, L174C     
 C81I, C98S, V177C     
 C81I, C98S, I182C     
 C81I, C98S, V189C     
 C81I, C98S, I196C     
 C81I, C98S, S200C     
 C81I, C98S, G204C     
 C81I, C98S, K208C       C81I, C98S, G211C         

 
 
2.3 Bacterial expression and recombinant protein purification 
 
2.3.1 Preparation of troponin C 
 

 WT rat cardiac TnC, Cys-lite TnC (C84S), and Cys-less TnC (C35S, C84S) were 

sub-cloned into the pET-3d vector with ampicillin (amp) resistance for expression. The 

plasmids were thawed on ice, and 0.5 µL of plasmid were added to 50 µL of BL21 (DE3) 
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competent Escherichia coli cells (New England Biolabs, Ipswich, MA). Cells were 

transformed using heat shock (42°C, 42 sec), and incubated with 250 µL S.O.C. medium 

(Super Optimal broth with Catabolite repression, 2% tryptone, 0.5% yeast extract, 10 mM 

NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose) shaking for 1 hour 

at 37°C. 100 µL of cells were inoculated onto L-B agar plates supplemented with 100 

µg/mL ampicillin and incubated at 37°C overnight. Pre-cultures were prepared by 

selecting a single colony, and inoculating 3 mL of L-B broth supplemented with 100 

µg/mL ampicillin. The pre-culture was incubated at 37°C under shaking for 6 hours. 

Bacteria were overexpressed in large growths, where 500 µL of cells from the pre-culture 

were inoculated into 500 mL of Terrific Broth (TB, Fisher BioReagents) (typically total 2 

L growths) supplemented with 100 µg/mL ampicillin under shaking for 18 hours at 37°C.  

Troponin C was purified from cells as described with some modifications.102-104 

Briefly, cells were harvested with centrifugation at 8,000 rpm for 9 min with a JA-10 

rotor, and used immediately or stored at -80°C for up to a month. Cells were re-

suspended in less than 100 mL of 2.5 mM EDTA, 0.5 mM PMSF, 50 mM Tris-HCl (pH 

8.0), and 15 mM BME with a stir bar at 4°C for 30 min. Cells were lysed on ice with 

ultrasonification in a Misonix ultrasonix liquid processor (power, 50; 10 sec on, 20 sec 

off) for 25 min of “on” time. Cellular debris was removed from the lysate with two 

rounds of centrifugation.  First, the lysate was centrifuged at 18,000 rpm for 25 min using 

a JA-20 rotor. The supernatant was then centrifuged at 35,000 rpm for 45 min in a 

Beckman XL-90 ultracentrifuge using a Ti-45 rotor. Ammonium sulfate (0-60%, mass 

calculated with http://www.encorbio.com/protocols/AM-SO4.htm) was added slowly 

with stirring to the supernatant at 4°C over the course of an hour, then centrifuged for 30 
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min at 10,000 rpm with a JA-14 rotor. Ammonium sulfate was added to the supernatant 

(60-80%) and centrifuged for 30 min at 10,000 rpm with a JA-14 rotor. The pellet was re-

suspended in and dialyzed against 1 L Buffer A-TnC (50 mM Tris-HCl (pH 7.5), 50 mM 

NaCl, 5 mM CaCl2, 1 mM MgCl2, and 1 mM DTT) overnight.  

TnC was purified from the lysate using hydrophobic interaction chromatography. 

The lysate was loaded onto a column with a matrix of Phenyl Sepharose 6 Fast Flow 

(High Sub) (GE Healthcare Life Sciences) equilibrated with Buffer A-TnC using a fast 

protein liquid chromatograph (FPLC, ÄKTAprime, GE Healthcare Life Sciences) and a 

UV lamp to monitor absorption at 280 nm. Non-specific proteins with weak hydrophobic 

interactions were removed with 50 mM Tris-HCl (pH 7.5), 1 M NaCl, 0.1 mM CaCl2, 

and 1 mM DTT. TnC was eluted from the column with 50 mM Tris-HCl (pH 7.5), 1 mM 

EDTA, and 1 mM DTT. SDS-PAGE was used to analyze peaks from absorbance at 280 

nm. Fractions containing purified protein were combined, lyophilized, and stored at -

80°C for up to three years.  

 
2.3.2 Preparation of troponin I 
 

WT mouse cardiac TnI and cysteine-modified TnI (see Table 1) were purified 

similarly to TnC, with some modifications. The pelleted cells were re-suspended in CM 

buffer supplemented with 0.5 mM PMSF. The ammonium sulfate precipitations were 0-

27% and 27-60%, and the pellet from the second cut was re-suspended in and dialyzed 

against 1 L of CM buffer overnight. TnI was purified from the lysate using weak cation 

exchange chromatography. The lysate was loaded onto a column with a matrix of CM 

(carboxymethyl) Sepharose Fast Flow (GE Healthcare Life Sciences) equilibrated with 
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CM buffer. TnI was eluted with a gradient elution of 0 to 100% mixtures of CM buffer 

and CM buffer supplemented with 300 mM NaCl. 

 
2.3.3 Preparation of troponin T 
 

WT rat cardiac TnT and mouse cardiac TnT with an N-terminal polyhistidine 

myc-tag (amino acid sequence, N-EQKLISEEDL-C) were purified similarly to TnC, with 

some modifications. Cells were grown for 36 hours at 37°C with shaking. The pelleted 

cells were re-suspended in CM buffer (6 M urea, 30 mM citric acid (pH 6.0), 1mM 

EDTA, and 1 mM DTT) supplemented with 0.5 mM PMSF. The ammonium sulfate 

precipitations were 0-35% and 40-60%, and the pellet from the second cut was re-

suspended in and dialyzed against 1 L of DEAE buffer (6 M urea, 50 mM Tris-HCl (pH 

8.0), 1 mM EDTA, 1 mM DTT) overnight. TnT was purified from the lysate using weak 

anion exchange chromatography. The lysate was loaded onto a column with a matrix of 

DEAE (diethylaminoethyl) Sepharose Fast Flow (GE Healthcare Life Sciences) 

equilibrated with DEAE buffer. TnT was eluted with gradient elution from 0 to 100% 

mixtures of DEAE buffer and DEAE buffer supplemented with 500 mM KCl.  

 
2.4 Development of FRET assay 
 
2.4.1 Calculation of the Forster critical distance 
 

The Förster distance (R0) is the distance at which 50% of the donor molecules 

decay by energy transfer, and 50% decay by radiative and non-radiative processes.105 For 

each FRET pair (AF546, FRET donor-ATTO655, FRET acceptor; ATTO550, FRET 

donor-ATTO655, FRET acceptor), R0 was determined using excitation and emission 

spectra provided by Life Technologies and ATTO-Tec GmbH using105 
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 𝑅"# =
9000 ln 10 𝜅+𝑄-

128𝜋+𝑁𝑛3 𝐹- 𝜆
6

"
𝜀8 𝜆 𝜆3𝑑𝜆, (1) 

where 𝜅+ is the relative orientation in space of the donor and acceptor transition dipoles, 

assumed 2/3; N is Avogadro’s number = 6.023	×	10+@ mol-1; n is the refractive index, 

assumed to equal 1.4 for biological particles in an aqueous solution; QD is the quantum 

yield of the donor in the absence of an acceptor, obtained from product literature; FD(λ) is 

the corrected fluorescence intensity of the donor from wavelength range λ to λ+∆ λ, with 

the total intensity normalized to 1; εA(λ) is the acceptor molar extinction coefficient at its 

maximum absorption wavelength λabs (see Figure 6B-C). 𝐹- 𝜆6
" 𝜀8 𝜆 𝜆3𝑑𝜆 is the 

spectral overlap integral in units of M-1 cm-1 (nm) between the donor emission and the 

acceptor absorption normalized to one.105 A MatLab script (MatLab and Statistics 

Toolbox Release 2015a, The MathWorks, Inc., Natick, MA) was used to calculate R0, 

and the code can be found in the Appendix.  

 
Table 2. Sarcomeric proteins (gene), their molecular weights, and molar extinction 

coefficients ε at 280 nm. 

Protein Species Molecular Weight (kDa)  ε (M-1 cm-1) 
Troponin C (TNNC1) rat cardiac 18.4 4,480 
Troponin I (TNNI3) mouse cardiac 24.3 11,460 
Troponin T (TNNT2) rat cardiac 35.7 15,470 
Troponin reconstituted cardiac 78.4 31,410 
α-Tropomyosin (TPM1) bovine cardiac 32.7 21,760 
β-Tropomyosin (TPM2) bovine cardiac 32.8  
Actin (ACTC1) bovine cardiac 42.0 43,960 
Myosin subfragment-1 chicken skeletal 110 90,850 
Myosin (MYSS) chicken skeletal 500 0.56* 
*units are mL/mg cm-1       
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2.4.2 Dye labeling of proteins 
 

Cys residues of proteins were selectively labeled with maleimide-containing 

fluorescent dye molecules. Lyophilized fluorophores were briefly centrifuged, and stock 

solutions were prepared at 10 mM in dimethyl sulfoxide (DMSO for UV-spectroscopy 

≥99%, Sigma-Aldrich, St. Louis, MO) and stored at -20°C for up to six months. Cys 

residues were reduced by dialysis against labeling buffer (LB: 50 mM MOPS (pH 7.2), 3 

M urea, 100 mM KCl, 1 mM EDTA) containing 5 mM DTT. DTT was removed with 

three dialysis steps against LB. Reduced proteins (100 µM) were reacted with a 5-fold 

excess of dye molecule for 12 hr at 4°C under nitrogen with stirring. Labeling was 

terminated with 5 mM DTT. The labeling was repeated for a total of three reactions to 

increase the labeling efficiency (fA, molar concentration of dye relative to total 

concentration of protein). Unreacted dye molecules were removed by size exclusion 

FPLC (Sephacryl S-100 HR, ÄKTAprime Plus, GE Life Sciences) in LB. Single-cysteine 

modified proteins will be abbreviated as TnXYC, where X is either the troponin protein I 

or C, and Y is the modified Cys residue. TnC35C, TnC89C, and TnC127C were labeled 

with ATTO655. TnIX1C, where X1 is either 151, 160, 167, 174, 177, 182, and 189 were 

labeled with Alexa Fluor® 546. TnIX2C, where X2 is either 196, 200, 204, 208, and 211 

were labeled with ATTO550. Protein and dye concentrations were determined by 

absorption spectroscopy using the extinction coefficients (M-1 cm-1) in Tables 2 and 3. 

The concentration of dye-labeled proteins was determined by absorption 

spectroscopy using  

 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝐴+H" − 𝐶𝐹+H"𝐴KLM 𝜀, (2) 
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where Amax is absorption maximum of the dye and CF280 is the correction factor for dye 

absorption at 280 nm. The labeling efficiency fA is the concentration of dye divided by 

the concentration of the protein.  

 
Table 3. Maleimide fluorophores, where ε is the molar extinction coefficient at 280 nm, 

CF is the correction factor at 280 nm, Q is the quantum yield, λabs and λem are the 

absorption and emission maximum wavelengths, respectively. 

Fluorophore 
Molecular 

Weight 
(g/mol) 

ε (M-1 cm-1) CF280 Q λabs (nm) λem (nm) 

Alexa Fluor® 546 (AF546) (donor)1 1034 104,000 0.08 0.79 532 554 
ATTO 550 (donor)2 816 120,000 0.12 0.80 554 576 
ATTO 655 (acceptor)2 812 125,000 0.08 0.30 663 684 
1Life Technologies, Cincinnati, OH 
2ATTO-Tec GmbH, Siegen, Germany 

 
 
2.5 Troponin and regulated actin reconstitution 
 

Tn was reconstituted as described49 with some modifications. TnC, TnI, and TnT 

were combined in the following molar ratios: for WT, unlabeled, and donor-labeled Tn, 

1:1.2:1.4, respectively; for donor-acceptor-labeled Tn, 1.2:1:1.4, respectively. Individual 

Tn components were dialyzed against DEAE buffer for 3 hours at 4˚C, and combined in 

glass vials and incubated at room temperature with gentle shaking for 2 hours. Tn was 

then stepwise dialyzed for 2 hours at 4˚C against 50% DEAE and 50% high salt buffer 

(HSB: 1 M KCl, 20 mM MOPS (pH 7.0), 1.25 mM MgCl2, 1.25 mM CaCl2, 5 mM DTT), 

HSB, WB supplemented with 625 mM KCl, 425 mM KCl, 225 mM KCl, and 75 mM 

KCl. Tn was aliquoted and stored at -80˚C for up to one year. After thawing prior to 

measurements, uncomplexed TnI and TnT were removed using centrifugation at 10,000 

xg for 1 min. Donor-only Tn (Tn-D) was prepared from TnIX1C labeled with AF546 or 
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ATTO550. Donor/acceptor Tn (Tn-DA) was prepared from TnIX2C labeled with AF546 

or ATTO550 and TnCXC labeled with ATTO655. An asterisk (*) represents dye-

conjugated proteins, e.g., TnI151C*AF546.  

Regulated actin filaments (rAc) were prepared by incubating Tn, Tm, and F-actin 

(7 µm in protomer) at a molar ratio of 1:5:7 in WB at 4˚C on ice. The order of protein 

addition was F-actin, Tm, then Tn. rAc were incubated at 4˚C for at least a week prior to 

use, and stored for up to three months.  

 
2.6 Steady-state fluorescence spectroscopy 
 
 Steady-state (ss) ensemble FRET spectroscopy was performed on paired D-only 

and DA samples of Tn containing donors labeled with AF546 on TnI residue 151, 160, 

167, 174, 177, 182, and 189, or containing a donor and an acceptor labeled with 

ATTO655 on TnC residue 89. Paired samples were donor concentration-matched using 

absorption spectroscopy, where ε and λabs used are shown in Table 3. Tn was diluted to 

500 nM (in donor concentration) in WB supplemented with 75 mM KCl into a 50 µL 

Quartz Fluorometer Cell (Starna Cells, Inc., Atascadero, CA), and incubated at room 

temperature (RT,  22°C) for 10 min. Emission spectra were collected at RT on a 

Fluorolog-3 spectrofluorometer (Horiba), with 530 nm excitation, and emission 

monitored from 540 to 630 nm (monochromator slit width 4 nm, 1 sec integration time). 

Energy transfer E was calculated using 

 𝐸 =
1
𝑓8

1 −
𝐼-8
𝐼-

, (3) 

where fA is the acceptor labeling efficiency, IDA is the intensity at 570 nm for the donor in 

the presence of an acceptor, and ID is the intensity at 570 nm for the donor in the absence 
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of an acceptor. Inter-dye distance (R) between the donor and acceptor dyes was 

calculated using the Förster relation 

 
𝑅 = 𝑅"

1 − 𝐸
𝐸

Q
#
, (4) 

where R0 is the Förster distance of the donor/acceptor dye pair. The R0 for FRET pair 

AF546-ATTO655 was 5.5 nm. 

 
2.7 Epifluorescence imaging of regulated actin filaments 
 

All regulated actin filaments were imaged post-reconstitution. rAc, or rAc stained 

with phalloidin*AF488 (Life Technologies, Cincinnati, OH) at a 1:35 actin:phalloidin 

were diluted to 10 nM in WB and deposited on glass coverslips (25 mm, ThermoFisher 

Scientific, Pittsburgh, PA). Fluorescence images were collected on an inverted 

microscope (IX71, Olympus USA, Center Valley, PA) with a TE cooled interline CCD 

camera (Clara, Andor) with a 100x (N.A. 1.4) oil immersion objective (UPlanSApo, 

Olympus). A xenon lamp (X-Cite 120PC, Lumen Dynamics) was used for excitation. For 

AF488, the filters 475/35: 495: 550/88 (Semrock) (excitation: dichroic: emission) were 

used. For AF546 and ATTO550, the filters 545/25: 565: 605/70 (Chroma) were used. For 

ATTO655, the filters 620/60: 660: 700/75 (Chroma) were used. Images were pseudo-

colored and merged using ImageJ 1.47v (National Institutes of Health, Bethesda, MD). 

Length was calibrated by imaging a dual axis linear scale (Edmund Optics, Barrington, 

NJ). 
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2.8 Time-resolved fluorescence spectroscopy 

2.8.1 Time-correlated single photon counting (TCSPC) 

TCSPC measurements were performed at room temperature (20±2˚C) using 500 

nM (in Tn) donor-only rAc (rAc-D) and donor/acceptor rAc (rAc-DA) in WB, or WB 

supplemented with 3 mM CaCl2 using a MicroTime 200 confocal fluorescence lifetime 

microscope (PicoQuant GmbH, Berlin, Germany) based on an inverted microscope 

(IX71, Olympus USA, Center Valley, PA). Samples were placed on glass coverslips (25 

mm width, ThermoFisher Scientific, Pittsburgh, PA) or in glass-bottomed microwell 

plates (96-well SensoPlate Plus, 175 µm heighth, glass bottom, E&K Scientific, Santa 

Clara, CA), and incubated at room temperature for 30 min prior to measurements. 

Excitation light from a 532 nm pulsed diode laser (LDH-P-FA-530-B, PicoQuant) was 

passed, respectively, through a quarter wave plate, a single mode fiber optic, a laser 

cleanup filter (534/635-25, Semrock, Lake Forest, IL), a principle dichroic mirror (DC1) 

(ZT532/638rpc, Chroma, Bellows Falls, VT), and a 100x (N.A. 1.3) oil immersion 

objective (UPlanFLN, Olympus). Emitted light was passed through the objective and 

DC1, then through a 550 nm long pass filter (HQ550lp, Chroma), 50 µm pinhole, a 

secondary dichroic (ZT532/638PC, Chroma), a bandpass filter (HQ580/70, Chroma), and 

recorded on an avalanche photodiode (MPD PDM series ϕ=100 µm, Micro Photon 

Devices, Italy), respectively. Data were collected until the maximum count per channel 

exceeded 10,000 (typically 10 min). Background intensity averaged 80 counts/sec. 

The photon counting histograms of TCSPC data were convolved with the 

instrument response function (IRF), and fit to a two-exponential decay model 𝐼 𝑡 =

𝑎Q𝑒ST UV + 𝑎+𝑒ST UX, where I(t) is the intensity of the donor as a function of time t, and ai 
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is the fraction of fluorophores with lifetime τi (SymphoTime Version 5.2, PicoQuant). 

Amplitude-weighted mean lifetimes 𝜏 = 𝑎Z𝜏ZZ 𝑎ZZ  of the donor in the presence of 

the acceptor dye 𝜏-8  and the donor in the absence of the acceptor dye 𝜏-  were used to 

obtain the FRET efficiency E 

 𝐸 =
1
𝑓8

1 −
𝜏-8
𝜏-

, (5) 

where fA is the labeling efficiency of the acceptor. The distance R between the donor and 

acceptor dyes is given by the Förster relation in Eq. 4. The R0 for FRET pair AF546-

ATTO655 was 5.5 nm, and for 6.4 nm for FRET pair ATTO550-ATTO655. 

 
2.8.2 Fluorescence correlation spectroscopy 
 

FCS measurements and analysis were performed by Dr. Gi-Ho Kim on rAc, TnC, 

and dyes in WB, or on Tn in WB supplemented with 75 mM KCl. Freely-diffusing TnC 

and Tn at 500 pM, and rAc filaments at 500 nM (in Tn) were examined using the time 

resolved confocal microscope described above, with a 0.4 fL effective confocal volume 

positioned 50 µm above the top surface of the glass coverslip. The effective confocal 

volume was determined by fitting the autocorrelation function of free AF546 dye (1 nM 

in ddH2O) with fixed correlation time (0.029 msec).106 Excitation from the pulsed 532 nm 

laser was attenuated to 50 µW. Photon arrival times were collected for approximately 10 

min. Data were analyzed by calculating the autocorrelation function107 

 𝐺 𝑡 =
𝐹 𝑡 𝛿𝐹 𝑡 + ∆𝑡

𝐹 𝑡 + , (6) 

where 𝛿𝐹 = 𝐹(𝑡) + 𝐹  is the fluctuation in fluorescence from the temporal average 

𝐹(𝑡) = Q
`

𝐹 𝑡 𝑑𝑡`
"  (SymphoTime Version 5.2, PicoQuant). To recover the 
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translational correlation times, the data were fit to a pure diffusion model with one or two 

species 

 𝐺 𝜏 = 𝜌Z 1 +
𝜏
𝜏Z

SQb

ZcQ

1 +
𝜏

𝜏Z𝜅+
SQ +

, (7) 

where 𝜌Zb
Z = 1 𝑁 , 𝑁  is the average number of molecules in the confocal volume; 

𝜅 = 𝑧" 𝜔", where z0 = 1.4 µm and 𝜔"	= 0.22 µm are the radial and axial radii, 

respectively, of the Gaussian beam profile at 1/e2 of its maximum intensity; and τi is the 

lateral diffusion time of the ith diffusing species.  

 
2.8.3 Statistical analysis 
 

The standard error of the mean (SEM) was calculated for n = 3 FRET efficiencies 

for each donor residue determined from rAc filaments reconstituted on different days. 

 
2.9 Functional characterization of mutated Tn 

2.9.1 Tn exchange into skinned cardiomyocytes 

All animal protocols were approved by the Animal Care and Use Committee at 

Loyola University School of Medicine, and conducted according to the NIH Guidelines 

for Care and Use of Animals in Research (NIH Publication No. 85-23, revised 1996). 

Cardiac myocytes were isolated from left ventricles of rats, detergent skinned, and 

subjected to Tn exchange as previously described.108 Briefly, myocytes were isolated 

from rat left ventricular tissue, snap frozen, and stored at -80°C. Frozen tissue was 

homogenized and filtered through a 70 µm cell strainer, then pelleted by centrifugation at 

120 xg for 1 min at 4°C. Cells were skinned by resuspending the cell pellet in relaxing 

solution (97.92 mM KOH, 6.24 mM ATP, 10 mM EGTA, 10 mM Na2CrP, 47.57 mM 
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potassium propionate, 100 mM BES, and 6.54 mM MgCl2) supplemented with 1% Triton 

X-100, and incubated on a rocking table (room temperature, 15 min). Triton was removed 

through two rounds of washing: myocytes were pelleted by centrifugation (300 xg, 5 min, 

4 °C), then suspended in 1 mL of ice cold relaxing solution. To replace endogenous Tn 

with recombinant Tn constructs, skinned myocytes in relaxing solution were co-

incubated (4°C, overnight) with exogenous Tn (2 mg/ml). Unbound Tn was removed 

with two rounds of washing through the pellet/suspension sequence just described. 

Myocytes were placed on ice and used within 8 hrs.  

To determine the efficiency of Tn exchange, a portion of the myocyte preparation 

was analyzed by Western blot as previously described.109 Briefly, total protein 

homogenates were resolved by 12% SDS-PAGE and blotted onto a nitrocellulose 

membrane. Blots were probed with a mouse monoclonal antibody against cardiac TnT 

(Clone JLT-12, Sigma), which detects both native and exogenous myc-tagged TnT. A 

secondary anti-mouse HRP-conjugated antibody (Promega W402B) allowed the relative 

TnT content (native vs. exogenous) to be quantified by chemi-luminescence (ECL, 

BioRad).  

 
2.9.2 Muscle mechanics experiments 

Myocytes with clear striation patterns were selected and attached to a force 

transducer (Aurora Scientific Inc. 403A transducer, Aurora, ON, Canada) and a high-

speed piezo translator (Thor Labs, Newton, NJ). Cells were perfused with a closely 

placed pipette through a constant perfusion control system (VC-8M Eight Channel Mini-

Valve Perfusion System, Warner Instruments, Hamden, CT). Cells were perfused with 

solutions of varying calcium concentrations (pCa 10.0–pCa 4.5). In each perfusate, 
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developed force was measured at two sarcomere lengths (1.9 μm and 2.3 μm). Cells were 

perfused with maximally activating Ca2+ solution at the beginning and the end to 

calculate time-dependent run down. Any cell showing more than 20% run down in 

maximal force was discarded. All data were acquired by custom-made LabView software 

and analyzed using Origin Pro 8.0. Individual force-pCa curves were fit to a modified 

Hill equation (P/Po)=[Ca2+]nH/( Ca50
 nH + [Ca2+] nH)), where nH is the Hill coefficient. All 

force data were normalized by the cross sectional area of the cell. Cell cross-sectional 

elliptical area was calculated using a calibrated on-screen monitor as described 

previously.108 

 
2.9.3 Statistical analysis 

Non-linear regression and statistical analysis were performed using GraphPad 

Prism ver. 6.0 (La Jolla, CA). The mean ± SEM of the parameters recovered from the 

fitting are reported. The recovered parameters from different samples were compared 

using two-way ANOVA. Statistical significance was defined as P<0.05. 
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3 RESULTS & DISCUSSION 
 
3.1 Designing a FRET assay on troponin 
 

The sequence of rat cTnC is identical to hcTnC, except for residue 119, which is 

an isoleucine in human and methionine in rat. Figure 4A shows the sequence alignment 

for rc and hcTnC. The 52 kDa Takeda crystal structure resolved the hcTnC structure to a 

3.3 Å resolution, except for two residues in the central linker.27 Figure 4C shows the 

secondary structure of cTnC, with FRET acceptor residues highlighted: 35 is in the N-

lobe, 89 is in inter-lobe linker, and 127 is in the C-lobe. None of the residues selected are 

involved in Ca2+ or Mg2+ binding.  

mcTnI is a 211 residue protein, and Figure 4B shows the sequence alignment 

between mc and hcTnI (210 residues). Figure 4C shows the secondary structure of cTnI 

with donor residues highlighted in green. hc and mcTnI residues differences in C-TnI are 

marked in yellow. Two of the three residue variances in the C-TnI were mutated to Cys 

for modification with fluorescent probes (mouse I182C and G211C). All donor residues 

and acceptor residues were visualized using the MTS molecular model of Ca2+-bound Tn 

(Figure 5).84 Donor positions span the C-terminal region of cTnI, beginning at TnI151 in 

the switch region, and acceptor positions are located on the N-lobe, the inter-lobe linker, 

and the C-lobe of cTnC.  
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Figure 4 
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Figure 4. Mouse cTnI and rat cTnC sequence alignment with human. Highlighted in 

blue are residues resolved in the Ca2+-saturated 52 kDa core of human cardiac Tn 

(PDBID 1J1E).27 (A) A sequence alignment was performed using the Basic Local 

Alignment Search Tool (BLAST) for hc TnC (gene name TNNC1, UniProt identifier 

P63316) and rcTnC (UniProt identifier Q4PP99). hcTnC, aligned, and rcTnC residues are 

shown in the top, middle, and bottom lines, respectively. Residue variances are shown in 

yellow. The residues selected for acceptor labeling are highlighted in red: C35, S89, and 

T127. (B) BLAST alignment of the amino acid sequences of hcTnI (gene name TNNI3, 

UniProt identifier P19429) and mcTnI (UniProt identifier P48787). The C-terminal 

region (residues 151-211 in mouse numbering) is identified by the magenta line, with 

amino acid residue differences between hc and mc in C-TnI highlighted in yellow. 

Residues selected for donor labeling are highlighted in green: S151, L160, S167, L174, 

V177, I182, V189, I196, S200, G204, K208, and G211. (C) Schematic showing the 

domain organization of cardiac TnC and TnI. Helices are depicted as blue rectangles. 

Sites III and IV of TnC bind Mg2+ constitutively. Site II of TnC binds regulatory Ca2+. 
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Figure 5. Multi-site FRET assay on troponin. Ribbon representation of MTS model 

resolved from the 52 kDa core of Ca2+-saturated Tn. Single Cys mutants with covalently-

bound donor dyes span the switch (151, 160, 167), mobile (174, 177, 182, 189), and C-

terminal (196, 200, 204, 208, 211) domains of TnI (green spheres). Acceptors dyes are 

covalently bound to single Cys mutants (red spheres) on TnC between the A and B 

helices (35) in the N-lobe, the linker between the N- and C-lobes (89), and between 

helices F and G (127) in the C-lobe.  

 
 
3.1.1 Donor and acceptor fluorophore selection 
 

The qualifications for designing a FRET pair were: fluorophores must (i) be 

excited and emit at visible wavelengths (400-700 nm), (ii) have low molecular mass ≈1 

kDa, (iii) have a long carbon linker (Cx, x ≤ 5), (iv) have an extinction coefficient >100K 

(bright), (v) and be thiol-reactive.  
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Labeling with low molecular weight fluorophores reduces potential tertiary 

structure perturbations. A long carbon linker, the carbon group spacer between the 

fluorescent moiety and the reactive moiety, increases the ease of the reactive moiety 

reaching the specific residue for labeling, leading to a higher degree of labeling. All 

fluorophores used had a five-carbon linker, where C5 = ≈7.7 Å for AF546, ATTO550, 

ATTO655. This introduced a threshold to the derived inter-dye distances, where 

distances have an inherent error range of ±1.54 nm. Time-resolved FRET measurements 

were repeated in triplicate to gauge the error range. The linker also allows for free 

rotation of the dyes to reduce steric hindrance,111 which could cause variations in the 

assumed orientation factor (κ2 = 2/3) that would influence the rate of energy transfer E. 

Additionally, the quantum yield can be reduced when the dye linker is too short.112 A 

high extinction coefficient ε, which is the capacity for the fluorophore to absorb a photon 

of light, is important for both donor and acceptor excitation (either directly-excited for 

the former or from sensitized emission for the latter). Molecular brightness, or the 

fluorescence output per fluorophore, is proportional to the product of ε and the quantum 

yield (Q), which is the number of photons emitted per photon absorbed.105 Cysteine was 

chosen as the reactive residue due its low native prevalence (two in both TnC113 and 

TnI114). Thiol-reactive fluorophores covalently bind to cysteine residues with high 

efficiency and specificity within a certain pH range.115 Maintaining a pH below 8 in the 

labeling reaction buffer ensured amine groups remained protonated, and did not undergo 

nucleophilic attack by maleimide moieties.  
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Figure 6. Emission spectra of FRET dye pairs, inter-Cα distances, and theoretical 

FRET efficiencies for troponin. (A) Cα (Rmod) bond lengths between donor residues on 

TnI and acceptor residue 35C on TnC (green), 89C (red), and 127C (blue) determined 

using the MTS model84 and VMD.116 Dashed grey lines at 5.5 and 6.4 nm indicate the R0 

for AF546/ATTO655 and ATTO550/ATTO655, respectively. (B) Normalized absorption 

and emission spectra for AF546 (magenta) and ATTO655 (blue) used to determine the 

spectral overlap needed to calculate R0. Dashed lines indicate absorption; solid lines 

indicate emission. The confocal time-resolved microscope used in this study has an 

excitation wavelength at 532 nm (green dashed line). (C) Normalized absorption and 

emission spectra for ATTO550 (pink, donor) and ATTO655 (blue, acceptor). 532 nm 

excitation (green dashed line). (D) Theoretical FRET efficiencies E calculated from Cα 

bond lengths in (A). A consistent coloring scheme is used in panels A and D.   
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3.1.2 Theoretical FRET efficiencies and Cα distances 
 

The carbon-α (Cα) distances between TnI donor residues (151, 160, 167, 174, 

177, 182, 189, 196, 200, 204, 208, 211) and TnC acceptor residues (35, 89, 127) were 

estimated using the MTS molecular model in VMD version 1.9.2.116 Figure 6A shows the 

Cα distances (Rmod), which range from ≈2 nm to ≈8 nm. The Förster critical distance (R0) 

between the donor and acceptor fluorophores was an important consideration in the 

design of this FRET assay. The R0 is the distance at which resonant energy transfer is 

50% efficient,105 and should be close to the theoretical Cα distances to ensure both small 

and large conformational changes can be resolved. The FRET efficiency strongly 

depends on inter-dye distance when close to the R0.105 The broad range of distances in 

this assay required a selection of two FRET pairs, one with R0 = 5.5 nm (donor-acceptor, 

AF546-ATTO655), and the other with R0 = 6.4 nm (ATTO550-ATTO655). TnI residues 

151-189 were labeled with AF546, and residues 196-211 were labeled with ATTO550. 

TnC residues were labeled with ATTO655.  

Figures 6B-C show the excitation and emission spectra for the FRET pairs 

(donor-acceptor) AF546-ATTO655 and ATO550-ATTO655 provided by Life 

Technologies (Alexa Fluor® dyes) and ATTO-Tec, Gmbh (ATTO dyes). To measure 

energy transfer, the donor must be promoted to its excited state. The confocal setup was 

equipped with a picosecond pulsed laser at 532 nm to excite the donor (λexc). The peak 

absorption (excitation) wavelengths λabs for AF546 and ATTO550 are 532 and 554 nm, 

respectively; therefore, the fluorophores are adequately excited at λexc. The probability of 

directly exciting ATTO655 is low at λexc (< 3%), compared to AF546 (≈100%) and 

ATTO550 (≈40%). Figure 6D shows the theoretical FRET efficiencies for each acceptor, 
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calculated using Eq. 4 from Rmod and the R0 for each donor/acceptor FRET pair. 

Particularly for acceptor position TnC35, some of the theoretical E appear too close to 1.0 

to provide accurate estimations of inter-dye distances. If the conformation of Tn within 

thin filaments is similar the MTS model (and by association, the Takeda structure), the 

experimentally-derived E should closely follow Figure 2D.  

 
3.1.3 Preparing the FRET assay in regulated actin 

Single Cys mutants were introduced on a Cys-less TnI with native Cys 81 and 98 

mutated to isoleucine and serine, respectively, and a Cys-less TnC plasmid with native 

Cys 35 and 84 mutated to serines. The complete list of single Cys TnI and TnC plasmids, 

in addition to the WT plasmids for TnI, TnC, and TnT, are shown in Table 1. Plasmids 

were sequenced prior to purification to confirm mutagenesis. Henceforth, proteins will be 

identified by their single Cys residue (e.g., TnI151C or TnI151). Plasmids were 

transformed into E. coli, and purified using fast protein liquid chromatography (FPLC). 

Figures 7-9 show representative results for recombinant TnC, TnI, and TnT purification.  

SDS-PAGE 12% (29:1) was used to analyze the purity of the Tn subunits. Panel C in 

Figures 7-9 shows the fractions containing purified Tn subunits. When a lane is 

overloaded, contaminant protein bands may appear. Figure 10, shows a representative 

SDS-PAGE gel loaded with 5 µM of Tn subunits, where contaminant proteins were too 

diluted to resolve. Since measurements will be performed using nanomolar 

concentrations of Tn, the likelihood of contaminant proteins in the sample solution is 

small. The staining intensity difference between equimolar-loaded subunits is due to the 

differences in molecular mass; higher molecular mass proteins provide more binding sites 

for Coomassie dye, and consequently stain more intensely.  
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Figure 7. Purification of rcTnC. Representation of results from purification of 

recombinant rcTnC127C. (A) SDS-PAGE (12%, 29:1) of the cell lysis of BL21(DE3) 

competent E. coli cells and subsequent clarification using centrifugation and (NH4)2SO4 

 precipitation. Molecular weight markers (M), E. coli grow (G), supernatant (S) and pellet 

(P) from 18 K rpm, 35 K rpm, 0-40% (NH4)2SO4 precipitation 14 K rpm, and 40-60% 

(NH4)2SO4 precipitation 14 K rpm sedimentation. (B) Resolution of TnC on Phenyl 

Sepharose. Absorbance at 280 nm (purple), conductivity (red), and fraction collection 

(grey box) are shown. The pellet containing TnC from the second (NH4)2SO4 

precipitation in (A) was loaded in the presence of 5 mM CaCl2. Weak hydrophobic 

products from the lysate were removed in the presence of 0.1 mM CaCl2 and 1 M NaCl. 

TnC was eluted with a Ca2+-free buffer. (C) Detection of purified TnC from the elution 

peak (around 0.9 L) from the absorbance at 280 nm. Molecular weight marker (M), 

sample loaded (L), and samples from the eluted fractions with purified TnC are shown.   
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Figure 8. Purification of mcTnI. Representation of results from purification of 

recombinant mcTnI167C. (A) SDS-PAGE (12%, 29:1) of the cell lysis of BL21(DE3) 

competent E. coli cells and subsequent clarification using centrifugation and (NH4)2SO4 

precipitation. Molecular weight markers (M), E. coli grow (G), supernatant (S) and pellet 

(P) from 18 K rpm, 35 K rpm, 0-27% (NH4)2SO4 precipitation 14 K rpm, and 27-60% 

(NH4)2SO4 precipitation 14 K rpm sedimentation. (B) Resolution of TnT on DEAE 

Sepharose. Absorbance at 280 nm (purple), conductivity (red) and 500 mM KCl gradient 

(green), and fraction collection (gray box) are shown. The pellet containing TnI from the 

second (NH4)2SO4 precipitation in (A) was loaded in a buffer containing no salt. (C) 

Detection of purified TnI around the 30% gradient mixture from the absorbance at 280 

nm. Molecular weight marker (M), sample loaded (L), and samples from the eluted 

fractions with purified TnI are shown.  
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Figure 9. Purification of rcTnT. Representation of results from purification of WT 

rcTnT. (A) SDS-PAGE (12%, 29:1) of the cell lysis of BL21(DE3) competent E. coli 

cells and subsequent clarification using centrifugation and (NH4)2SO4 precipitation. 

Molecular weight markers (M), E. coli grow (G), supernatant (S) and pellet (P) from 18 

K rpm, 35 K rpm, 0-35% (NH4)2SO4 precipitation 14 K rpm, and 35-60% (NH4)2SO4 

precipitation 14 K rpm sedimentation. (B) Resolution of TnT on DEAE Sepharose. 

Absorbance at 280 nm (purple), conductivity (red) and 500 mM KCl gradient (green), 

fraction collection (gray box) are shown. The pellet containing TnT from the second 

(NH4)2SO4 precipitation in (A) was loaded in a buffer containing no salt. (C) Detection of 

purified TnT from elution peak 1 (around 0.9 L, 30% gradient) from the absorbance at 

280 nm. Molecular weight marker (M), sample loaded (L), and samples from the eluted 

fractions with purified TnT are shown.  
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Figure 10. Purified troponin subunits. SDS-PAGE (12%, 29:1) showing purified TnT 

(T), TnI (I), and TnC (C) loaded at 5 µM. Also shown are molecular weight markers (M).  

 
 

Cys residues were site-specifically labeled with maleimide-containing 

fluorophoresin a denaturing high urea buffer (6 M) to reveal Cys residues buried in 

globular protein form. The labeling reaction was at pH 7.2 to reduce non-specific amine 

labeling, and unbound dye was removed using size-exclusion chromatography. The 

degree of labeling (labeling ratio, fA) was determined using Eq. 2. Typically, the labeling 

ratios for TnI*AF546 exceeded 95%; unfortunately, labeling ratios were at or below 80% 

for proteins labeled with ATTO dyes, although the labeling reaction was repeated three 

times. Labeling ratios were determined immediately prior to Tn reconstitution to ensure 

the highest degree of accuracy. Labeled proteins will henceforth be written as 

TnX###C*fluorophore, where X is the Tn subunit, ### is the Cys residue, and 

*fluorophore denotes covalent modification (e.g., TnC151C*AF546). 
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TnI, TnC, and TnT were combined to form reconstituted Tn through serial 

dilutions against high molar urea, to high salt, to low salt (150 mM KCl) for storage. Tn 

was stored for no longer than 6 months at -80°C, as these samples visibly precipitated 

(precipitate settled to bottom of tube), and were discarded. Tn reconstituted with a donor 

labeled on TnI, WT TnC, and WT TnT will henceforth be written as Tn-D, and Tn 

reconstituted with a donor on TnI, an acceptor on TnC, and WT TnT will henceforth be 

written as Tn-DA. Cardiac Tm and actin were purified from acetone powder from bovine 

left ventricle tissue. Figure 11 resolves the two Tm isoforms, α and β. Around 15-20% of 

skeletal Tm is in the β-isoform in adult larger mammals (such as bovine and human), 

whereas cardiac Tm is primarily composed of the α isoform.117 Tm and actin were 

resolved at 37 and 48 kDa, respectively, using SDS-PAGE. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Tropomyosin and F-actin purified from bovine left ventricle muscle. 

Molecular weight markers (M), tropomyosin (Tm) consisting of α and β isoforms, and F-

actin (Actin) are shown.  
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3.2 Quality assessment of singly- and doubly-labeled regulated 
actin 
 

The sarcomere in striated muscle is composed of a highly ordered structural array 

of muscle proteins arranged in filaments. To maintain the physiological function of thin 

filaments in vitro, preserving filament structure after reconstitution is imperative to 

maintaining a native-like environment. In muscle, there is generally one Tn bound for 

every one Tm dimer that lies across 7 actin monomers.3 Regulated actin filaments (rAc) 

were reconstituted at a ratio of 1:5:7 (Tn:Tm:Actin) with an ionic strength of 75 mM 

KCl. Filaments reconstituted with Tn-D, Tm, and actin will henceforth be written as rAc-

D, and with Tn-DA, Tm, and actin will be written as rAc-DA. Epifluorescence imaging 

was used as the primary control to monitor thin filament morphology, as there were 

various conditions (buffer composition, incubation time, concentration of thin filament 

proteins) that influenced the integrity of rAc. All measurements on rAc were performed 

in working buffer (WB: 75 mM KCl, 50 mM MOPS pH 7.0, 5 mM MgCl2, 2 mM EGTA, 

5 mM BME), unless otherwise stated. 

 
3.3 Epifluorescence imaging reveals stability of filaments under 
various conditions 
 
3.3.1 Tn binding to Tm-actin is dependent on ionic strength 
 

 rAc-DA was reconstituted with TnI182C*AF546, TnC89C*ATTO655, and with 

actin labeled with phalloidin-AF488 in WB with 75, 150, 225, or 300 mM total KCl, and 

incubated for 1 hour at 4°C. Filaments were deposited at 10 nM (in Tn) on glass 

coverslips, and imaged using epifluorescence microscopy. Figure 12 shows the directly-

excited emission from TnI182C*AF546, TnC89C*ATTO655, and actin*phalloidin-
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AF488. As ionic strength increases from 75 mM, the amount of Tn in solution increases, 

evident by an increase in background points of fluorescence. The amount of Tn bound to 

actin and Tm decreases, evident by the decrease in white signal from the merged images. 

White indicates a co-localization of green, red, and blue signals. The approximate length 

of actin, and the emission intensity from phalloidin-AF488, remains relatively constant 

across all ionic strengths. Therefore, an ionic strength of 75 mM promotes Tn binding to 

Tm and actin. However, Tn was still not congruently bound across actin, evident by large 

gaps in co-localized signal across the actin filaments.  

 
 
 

Figure 12  
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Figure 12. Tn binding to actin and Tm depends on ionic strength. rAc with Tn-DA 

(TnI182C*AF546, TnC89C*ATTO655) was reconstituted with Tm and actin stained 

with phalloidin-AF488 at a ratio of 1:1:7 (Tn:Tm:Actin) at a total ionic strength of 75, 

150, 200, and 300 mM KCl, and incubated for 1 hour at 4°C. Filaments were diluted to 

10 nM, and deposited on glass coverslips. Emission from AF546 (excitation, 545/25; 

emission 605/70), ATTO655 (excitation 620/60; emission 700/75), AF488 (excitation, 

475/35; emission 550/88), and merged images are shown. With higher ionic strength 

(>75 mM KCl), Tn is dissociated from Tm and actin, evident by the appearance of points 

of fluorescence in the AF546 and ATTO655 images, and the disappearance of 

colocalized Tn on actin (decrease in white from merge images). The scale bar is 5 µm. 

 
 
3.3.2 Incubation time affects Tn binding to Tm and actin 
 

rAc-D reconstituted with TnI211C*ATTO550, Tm, and actin stained with 

phalloidin-AF488 (1:1:7) was imaged after incubation at 4°C for 1 day, 1 week, and 3 

months. Figure 13A shows the emission from labeled TnI and actin, and the merged 

images. A 1 day incubation yielded short filaments with sparse Tn binding, and isolated 

Tn was visible in the background. Filaments showed congruently bound Tn and 

elongated filaments (5-10 µm) after 1 week, with little to no Tn in the background. A 3-

month incubation yielded even longer filaments (>10 µm), though the amount of Tn 

bound appears relatively unchanged from the 1 week incubation. The presence of 

congruently bound Tn-DA, suggested by the co-localized emission from TnI (green) and 

TnC (red), indicates Tn incorporated onto Tm and actin as an intact assembly.  
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Figure 13  
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Figure 13. Physical characterization of labeled regulated actin filaments. (A) 

Incubation time affects filament remodeling. Epifluorescence images of rAc-D with Tn-D 

(TnI211*ATTO550, TnC, TnT) and actin stained with phalloidin*AF488 was diluted to 

10 nM in WB 1 day, 1 week, and 3 months after reconstitution at 4°C. Emission from 

ATTO550 (excitation, 545/25; emission 605/70), AF488 (excitation, 475/35; emission 

550/88), and merged images show filament remodeling with time. Filaments appear 

longer, less dense, and more continuously decorated with Tn after 1 week. The scale bar 

is 5 µm. (B) The quantity of Tm affects filament stability. Epifluorescence images of 

rAc-DA with Tn-DA (TnI189C*AF546, TnC127C*ATTO655, TnT) showing aggregated 

(bundled) filaments reconstituted with a 1:1:7 mixture of Tn:Tm:actin. Single (non-

bundled) filaments made with a 1:5:7 mixture of Tn:Tm:actin with rAc-D with Tn-D 

(TnI189C*AF546) and rAc-DA are shown. Emission from AF546 (excitation 545/25; 

emission 605/70), directly-excited ATTO655 (excitation 620/60; emission 700/75), and 

the merged images are shown. The scale bar is 5 µm. 

 
 
3.3.4 The quantity of Tm affects filament stability  
 

Filaments reconstituted with Tn:Tm:Act at a ratio of 1:1:7 had a 25% chance of 

bundling. Bundling was evident in epifluorescence imaging by the appearance of thicker 

filaments, with the tails showing multiple “single” filament threads.  Figure 13B shows 

an example of bundled rAc-DA reconstituted from Tn-DA (TnI182C*AF546, 

TnC127C*ATTO655). Increasing the Tm concentration in solution during reconstitution 

dropped the bundling rate to <10%. Figure 13B shows the emission from rAc-D 

reconstituted with Tn-D (TnI182C*AF546) and rAc-DA reconstituted with Tn-DA 
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(TnI182C*AF546) at a ratio of 1:5:7 Tn:Tm:Act. Filaments appear non-bundled and 

single. All rAc reconstitutions were therefore performed with a Tn:Tm:Act ratio of 1:5:7, 

unless otherwise stated, and incubated for at least 1 week prior to measurements. 

 
3.3.5 Proteins did not undergo proteolysis after reconstitution and 
incubation 
 
 Sample purity and protein integrity of reconstituted filaments were assessed using 

SDS-PAGE. Figure 14 shows rAc reconstituted with WT Tn at a ratio of 1:1:7, and the 

pre-spin mixture and sedimented pellet of rAc reconstituted at a ratio of 1:5:7. The 

proteins showed minimal to no degradation after both Tn and rAc reconstitution. TnC had 

a faint band due to its low molecular mass. When rAc is sedimented, the pellet should 

show actin at a ≈7 times higher intensity than Tn subunits. Therefore, the intensity of Tm 

in the pellet should be similar to the Tn subunits, and similar to Tm in rAc reconstituted 

with a ratio of 1:1:7. The similarities in the Tm band intensities for the reserved (W) and 

pellet (P) of 1:1:7 and 1:5:7 rAc, respectively, showed the amount of Tm bound to actin 

remains unchanged regardless of the amount of Tm present in solution.  

 
3.3.6 Ca2+ does not affect the physical characterization of regulated 
actin filaments 
 

This assay was designed to monitor Ca2+-dependent conformational changes in 

Tn. To determine if changes were coming from Tn structural changes or filament 

instability with Ca2+, filaments were imaged with and without Ca2+. rAc-DA reconstituted 

with Tn-DA (TnI182C*AF546, TnC127C*ATTO655) was diluted to 500 nM, and 

imaged at 10 nM (no Ca2+, apo). rAc-DA was then supplemented with 3 mM CaCl2 and 

imaged at 10 nM after 10 min, 2 hours, and 5 hours to determine if Ca2+ affected filament 
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morphology. Figure 15 shows Ca2+ had no effect on filament morphology, evident by 

similar emission profiles, suggesting Ca2+-induced changes in dynamics or structure are 

not due to filament dissociation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Assessment of sample purity of reconstituted rAc. SDS-PAGE (12%, 29:1) 

of rAc reconstituted with WT Tn, Tm, and actin at a ratio of 1:1:7 or 1:5:7. TnI, TnC, 

TnT, Tm with α and β isoforms, and actin are resolved. A pre-spin mixture (W) of 1:1:7 

rAc (5 µM in actin protomer), and the W and pellet (P) of sedimented 1:5:7 rAc (5 µM in 

actin protomer) are shown.  Molecular weight markers are not shown. 
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Figure 15. Calcium does not affect the physical morphology of regulated actin. rAc-

DA filaments reconstituted with Tn-DA (TnI182C*AF546, TnC127C*ATTO655) were 

diluted to 500 nM, then imaged at 10 nM (no Ca2+, apo). rAc-DA was then supplemented 

with 3 mM CaCl2 and imaged after 0, 2, and 5 hours. Emission from AF546 (excitation 

545/25; emission 605/70), directly-excited ATTO655 (excitation 620/60; emission 

700/75), and the merged images are shown. The scale bar is 5 µm.  
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3.4 FCS as a filament screening tool 
 

Fluorescence correlation spectroscopy (FCS) can be used to estimate the mobility 

of molecules in solution.118 The primary parameter in FCS is not the emission from the 

fluorophore, but the fluctuations in the emission intensity at thermodynamic equilibrium 

over time. These fluctuations can be quantified by temporally autocorrelating the 

recorded intensity signal,105 and the fluctuations depend on the rate of diffusion of a 

fluorophore though the confocal volume. Assuming the fluorescent properties of AF546 

and ATTO550 do not change with time, and assuming a constant excitation power and a 

three-dimensional Gaussian intensity profile,119 the translational correlation time τC and 

diffusion coefficient D can be determined for a sample.  

FCS was used during data collection to assess filament diffusion. To determine if 

the sample contained Tn bound to Tm-actin or unbound Tn, the fluorescence emission 

from isolated AF546, TnC127C*AF546, Tn-D (TnC127C*AF546), and rAc-D 

(TnC127C*AF546), called rAcC*, were analyzed using FCS. As the FRET assay was 

designed with donors on TnI, a representative data set of rAc-D (TnI211C*ATTO550), 

called rAcI*, was also included in the normalized autocorrelations shown in Figure 16. 

rAc were fit to a model of two diffusing species (Eq. 7), and all other traces were fit to a 

model of a single diffusing species. AF546, TnC, and Tn had translational correlation 

times of 0.03, 0.10, and 0.16 msec, respectively. The translational correlation times 

(fractional amplitude) for rAcC* were 2.48 (0.44) and 18.23 (0.56) msec, and for rAcI* 

were 4.16 (0.46) and 81.61 (0.54) msec.  

The faster time components for rAc samples are most likely due to shorter 

fragments of rAc filaments, and not free Tn or TnI, as the correlation times for these 
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shorter components are more than an order of magnitude longer than correlation times for 

free Tn and TnI. Aggregates of TnI and Tn may account for this shorter correlation time 

component; however, the low prevalence of aggregates evident in epifluorescence 

imaging would not support that claim. The second or slow components for rAc samples is 

attributed to longer filaments, which are visible in epifluorescence images, and range 

between 5-15 µm in length.  

 

 

 

 

 

 

 

Figure 16. Fluorescence correlation spectroscopy estimates the molecular weight of 

a freely-diffusing particle. Correlation times correlate to sample molecular weights. The 

normalized autocorrelation function of free AF546 dye (500 pM, ¡), labeled TnC 

(TnC127*AF546, 500 pM, ✕), Tn reconstituted with TnC127C*AF546 (100 nM, r), 

rAc reconstituted with TnC127C*AF546 (rAcC*, 100 nM, Ç), and rAc reconstituted with 

TnI211C*ATTO550 (rAcI*, 100 nM, ¯) are shown. Solid lines represent fits of AF546, 

TnC, and Tn samples to a model of a single diffusing species with translational 

correlation times of 0.03, 0.10, and 0.16 msec, respectively, or rAc fit to a model of two 

diffusing species to determine correlation times (fractional amplitudes), where rAcC* has 

2.48 (0.44) and 18.23 (0.56) msec, and rAcI* has 4.16 (0.46) and 81.61 (0.54) msec.   
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Molecular diffusion D and friction F are related by 𝐹 = −𝑓𝑣, where f is the 

translational frictional coefficient and v is velocity. Friction and molecular size are 

related by Stokes’ equation, where 𝑓 = 6𝜋𝜂𝑎 for a smooth sphere with a minimal 

hydrodynamic radius a for a molecule of a certain molecular weight, and 𝜂 is the 

viscosity of the solution. Einstein’s relation  

 𝐷 =
𝑘j𝑇
𝑓 =

𝑘j𝑇
6𝜋𝜂𝑎, (8) 

shows the diffusion coefficient is inversely proportional to size, where kB is Boltzmann’s 

constant, and T is temperature. The radius a can be calculated from the molecular mass M 

of the molecule using 

 𝑎 =
3𝑀 𝑁8
4𝜋𝜌

n
, (9) 

where NA is Avogadro’s number = 6.023	×	10+@ mol-1, and 𝜌 is the mean density of the 

molecule, assumed to be ≈1 g/mL for globular proteins. The diffusion coefficient is 

therefore proportional to M-1/3, giving a proportionality constant of ≈-0.33. Translational 

correlation times are related to diffusion coefficients by 

 𝜏o =
𝜔"+

𝐷 , (10) 

where 𝜔" = 0.22 µm is the axial radius of the confocal detection volume.120 The 

dependence of the diffusion coefficient on the molecular mass of the labeled sample is 

shown in Figure 17 for molecules of known molecular mass, which are 1.0, 18.4, and 

78.3 kDa for AF546, TnC, and Tn, respectively. The experimental data were fit using 

linear regression (log scale). The slope yielded a proportionality constant of -0.40, which 
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differs by 18% from the theoretical value. This difference may come from a 

misestimation of the confocal volume.   

FCS gives molecular mass properties of a sample by monitoring the translational 

correlation times. rAc was analyzed using FCS from TCSPC measurements, which 

allowed for rejection of samples showing large populations of non-incorporated Tn, free 

TnC, or an excess of free dye. Using epifluorescence imaging and FCS provided means 

of examining only reconstituted rAc filaments that met certain quality standards: i) 

labeled Tn should be congruently bound to the filaments, ii) there should be no 

aggregates of Tn and TnI, iii) filaments should not be bundled, iv) there should not be a 

large population of unbound Tn or TnI (donor) in solution. These standards were in place 

to assure reconstituted filaments replicate native filament conditions by reducing artifacts 

introduced in the complex sample preparation.  
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Figure 17. Dependence of the diffusion coefficients on molecular mass. Free AF546 

dye (red), TnC127C*AF546 (black), and Tn-D (TnC127C*AF546) (green) were 

analyzed using FCS, and the autocorrelation was fit to a model of a single diffusing 

species. The translational correlation times were converted to diffusion coefficients and 

plotted against known molecular masses. The data were fit using linear regression (log 

scale) (black line), which yielded a slope and Y-intercept of -0.40 and -0.39, respectively. 

R2=0.98. 

 
 
3.5 TCSPC measurements of regulated actin filaments 
 

Ensemble lifetime measurements were performed using time correlated single 

photon counting (TCSPC). Following excitation by a pulse of light, the donor 

fluorophore absorbs the photon, and the lifetime is the average amount of time the 

fluorophore remains in this excited state.105 The sample is excited thousands of times, and 

the lifetimes are compiled into a histogram of intensity with respect to time. One benefit 

of using time-resolved methods to perform FRET measurements is the lifetime of a 

sample is not dependent on the concentration of fluorophores in the confocal volume, 

thereby removing the need for donor concentration-matching in paired D and DA 

samples. Lifetime is calculated from a multiexponential fit to the TCPSC histogram, and 

the peak intensity value does not affect the lifetime. Lifetimes are also independent of 

static quenching. Static quenching is the formation of a non-fluorescent complex between 

the donor and acceptor, creating a population of “invisible” donors that upon excitation 

do not release a photon during relaxation.105, 121 In steady-state FRET measurements, 



 

 

68 

where the emission intensity of the donor is used to calculate transfer efficiency, these 

“dark” complexes can yield falsely higher transfer efficiencies.  

The donor lifetime was collected in filaments absent an acceptor (rAc-D, 

reconstituted with Tn-D with TnI151C*AF546, TnI160C*AF546, TnI167C*AF546, 

TnI174C*AF546, TnI177C*AF546, TnI182C*AF546, TnI189C*AF546, 

TnI196C*ATTO550, TnI200C*ATTO550, TnI204C*ATTO550, TnI208C*ATTO550, or 

TnI211C*ATTO550, for a total of 12 donor positions), and in the presence of an acceptor 

(rAc-DA, reconstituted with Tn-DA with either TnC35C*ATTO655, 

TnC89C*ATTO655, or TnC127C*ATTO655 as the acceptor, for a total of 36 unique 

FRET pairs). rAc filaments were diluted to 500 nM in WB (apo), or WB supplemented 

with saturating Ca2+ (+Ca, 3 mM). The laser power and collection time were adjusted to 

reach a peak of >10,000 counts to ensure reasonable photon counting statistics,122 which 

typically took ≈10 min. An average background of 80 counts/sec for the avalanche 

photodiode (APD) detector indicated a good signal to noise ratio. Fluorescence decays 

were convolved with the instrument response function (IRF, at FWHM = 85 ps), and 

amplitude-weighted lifetimes were recovered from a nonlinear least-squares multi-

exponential fitting.  χ2 values show goodness of fit, with a value = 1 indicating a perfect 

fit. To confirm reproducibility, measurements were repeated at least three times on 

separately reconstituted filaments. Figure 18 shows a typical set of fluorescence decays 

for ATTO550 in rAc-D (Tn-D, TnI208C*ATTO550) and rAc-DA (Tn-DA, 

TnI208C*ATTO550, TnC127C*ATTO655) under apo and +Ca conditions. 
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Figure 18. Lifetime measurements of donor-only and donor/acceptor rAc filaments. 

Representative lifetime decay data from TCSPC analysis showing the normalized 

emission intensity decay from the donor in rAc-D reconstituted with Tn-D 

(TnI208C*ATTO550) and rAc-DA reconstituted with Tn-DA (TnI208C*ATTO550, 

TnC127C*ATTO655) diluted to 500 nM in WB or WB supplemented with 3 mM CaCl2 

(+Ca). (A) ATTO550 lifetime decays for rAc-D (blue), rAc-D +Ca (red), rAc-DA (cyan), 

and rAc-DA +Ca (magenta). Black lines represent fits to a multi-exponential decay 

model to the data convolved with the instrument response function (IRF, dotted line). 

Amplitude-weighted mean lifetimes 𝜏-  are 3.30, 3.28, 3.01, 2.64 nsec, respectively. (B) 

Weighted residuals from fits in (A) with χ2 values shown. A consistent coloring scheme 

is used in (A-B).  

 
 

A representative table of lifetime (fractional amplitude), amplitude-weighted 

mean lifetime, χ2, and E for rAc-D, and for rAc-DA with an acceptor attached to TnC 

residue 35, 89, or 127 can be found in Tables A1-4. Donor-only lifetime decays were fit 

to three-exponential fit for samples labeled with AF546, and two-exponential fits for 

samples labeled with ATTO550. The inverse lifetime is the sum of rates that depopulate 



 

 

70 

the excited state, and therefore a fluorophore in solution (ideally a donor-only filament) 

should single exponential decay lifetimes, indicating no competing paths for excited state 

depopulation.105 The heterogeneous character of the donor-only lifetime decays, 

particularly those with a three-exponential fitting, may be due to self-quenching from 

interactions between the dye and protein residues (dynamic quenching). Because the 

decay is heterogeneous, the amplitude-weighted mean lifetime was used for calculating E 

to remove any assumptions as to the nature of the individual decay rates.123 rAc—DA 

lifetime decays were always fit to a three exponential function. For most fits, 𝜏Q was less 

than 1 ns, and accounted for less than 20% of the total lifetime, and is attributed to 

scattering from the glass coverslip or the solution.  

 
3.6 Calculating FRET efficiency and inter-dye distance 

The donor dye was not sensitive Ca2+, evident from the comparison of donor 

lifetimes in rAc-D filaments under apo and +Ca conditions. Table A1 shows the lifetimes 

of donor-only filaments from one reconstitution set. The average Ca2+-induced lifetime 

change 𝜏- poL − 𝜏- Lqr  ± SEM is 0.02 ± 0.01 ns (n = 12). Although the change is 

not significant, apo and +Ca E were calculated from 𝜏-  and 𝜏-8  collected in the 

absence or presence of 3 mM CaCl2, respectively, to maintain similar environmental 

conditions around the donor dye. 

The amplitude-weighted mean lifetime of the donor in the absence 𝜏-  and 

presence of an acceptor 𝜏-8 	was used to calculate transfer efficiency E using Eq. 5. The 

inter-dye distance R between D and A dyes was calculated using the Förster relation (Eq. 

4). Due to the dependence on distance of resonant energy transfer, an increase in transfer 
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efficiency corresponds to a decrease in the inter-dye distance. To account for absent 

acceptor fluorophores in rAc-DA filaments (i.e., a donor-only population), E were 

corrected using the acceptor labeling efficiency fA. The FRET efficiency E is typically 

calculated using  

 𝐸 = 𝜏- − 𝜏-8 / 𝜏- . (11) 

The amplitude-weighted mean lifetime of the donor in rAc-DA filaments is 

 𝜏-8 = 𝑓8 𝜏-8′ + 1 − 𝑓8 𝜏- , (12) 

where 𝜏-8′  is the lifetime of the donor in the presence of an acceptor, and 𝜏-  is the 

lifetime of the donor in the absence of an acceptor determined from TCSPC 

measurements of rAc-D filaments. 1 − 𝑓8 𝜏-  and 𝑓8 𝜏-8′  are the contributions to 

donor lifetime from populations of Tn-D and Tn-DA within rAc-DA filaments, 

respectively. To correct 𝐸	for the presence of this donor-only population, 𝜏-8  is 

substituted with 𝜏-8′ =
Uuv
wv

− Uu
wv

+ 𝜏- 	from Eq. 12 to yield Eq. 5. 

The presence of a donor-only population in rAc-DA samples inflates 𝜏-8 , 

resulting in lower transfer efficiencies and longer inter-dye distances. To emphasize 

confidence in utilizing fA as a correction factor for calculating E from lifetime decays, a 

representative example of uncorrected E and R and fA-corrected E and R obtained from 

three separately reconstituted rAc-D (Tn-D, TnI211C*ATTO550) and rAc-DA (Tn-DA, 

TnI211C*ATTO550, TnC127C*ATTO655) are shown in Table A5. The data were 

chosen due to the large variation in fa, where fa ranges from 0.33 to 0.85. Table A6 shows 

the average E and R ± SEM. Figure 19 shows the changes in E and R when using fA 

correction, where values for E increase and R decrease. This suggests fA can be used to 

correct for a population of donors absent an acceptor in rAc-DA samples. Even with 
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diverse sample conditions in separately reconstituted filaments, the mean E and R show a 

smaller variance compared to the uncorrected data.  The Ca2+-depleted and Ca2+-saturated 

FRET efficiencies for the three acceptor positions were plotted for each donor residue 

(Figure 20). Tables A7, A8, and A9 show the E and R with and without Ca2+ for all 

donors with respect to acceptor TnC35C, TnC89C, and TnC127C, respectively.  

 

 

Figure 19. Correcting the FRET efficiency with the acceptor labeling efficiency 

removes the influence of a donor-only population in Tn-DA-decorated filaments. 

Representative data for separately reconstituted rAc-D (Tn-D, TnI211C*ATTO550) and 

rAc-DA (Tn-DA, TnI211C*ATTO550, TnC127C*ATTO655) filaments. (A) The non-

corrected (raw) and fa-corrected mean FRET efficiency E for rAc (apo, black), and rAc 

supplemented with 3 mM CaCl2 (+Ca, grey). Error bars represent SEM (n = 3). (B) The 

mean inter-dye distance R calculated from E (raw) and Ec (corrected) for rAc, and rAc 

supplemented with 3 mM CaCl2. Error bars represent SEM (n = 3). A consistent coloring 

scheme is used in panels A-B. 
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Figure 20. FRET efficiencies in Tn within thin filaments with and without Ca2+. rAc 

filaments were diluted to 500 nM in WB (apo, open circles and dotted line) or WB 

supplemented with 3 mM CaCl2 (+Ca, solid circles and solid line). Transfer efficiencies 

were calculated from the amplitude-weighted mean lifetime of the donor, and the donor 

in the presence of the acceptor on TnC35C (green), TnC89C (red), or TnC127C (blue). 

Increases in E with Ca2+ indicate the donor on TnI moving closer to TnC. Average E ± 

SEM (n = 3) is shown.  
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Studies utilizing FRET as a structural biology method should take heed of the 

influence on E (and R) by the orientation of the fluorophores. This influence depends on 

the constrained nature of the covalently attached dyes, and the influence on the emission 

and absorption dipole moments of the donor and acceptor fluorophores, respectively.124 

In calculating FRET efficiency, the orientation factor κ2 was assumed to be 2/3, as both 

the donor and acceptor have C5 linkers that should allow for free rotation of the dyes to 

sample random orientations.111 If there is not free rotation, an error of  up to 35% could 

be introduced to R calculations.105 To completely remove any doubt about the distances 

obtained, fluorescence anisotropy measurements, which determine whether or not 

covalently attached fluorophores are freely rotating in solution, would need to be 

performed on both the donors and acceptors in the future to determine whether the 

fluorophores are constrained.105 Anisotropy values would give a tailored R0 for each 

FRET pair (instead of using a universal R0 based on isolated fluorophore emission 

spectra), which would theoretically produce more accurate calculation of R. These 

experiments are time-consuming and sample intensive, and thus would be more 

appropriate for a future study. Conveniently, Xing et al. published anisotropy results for 

an AEDANS (5-(iodoacetamidoethyl)amino-naphthalene-1-sulfonic acid) fluorophore 

covalently bound to mcTnI residues 151C, 160C, 167C, 188C, and 210C in thin 

filaments, and reported no change in fluorophore mobility across all TnI residues.125 This 

provides a small level of insight into the protein environment of some of the donor 

residue positions.  
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3.7 Inter-dye distances reveal the dynamics of the C-TnI 
 
3.7.1 Dynamics of the C-TnI with respect to the N-lobe of TnC 

 The Ca2+-depleted and Ca2+-saturated R for rAc with acceptor TnC35 are plotted 

for each donor residue (Figure 21A). The Ca2+-induced change in inter-dye distance (∆R 

= R+ca - R-Ca) is shown in Figure 22B, with the corresponding change in E for reference in 

Figure 22A. A comparison between recovered +Ca R and Rmod is shown in Figure 22D. 

Average ∆E and ∆R values ± SEM (n = 3) are shown in Table A10. Negative ∆R values 

indicate the donor and acceptor fluorophores move closer together in space due to Tn 

conformational changes. 

The switch region (residues 151-167) maintained a distance of ≈5.3 nm from the 

N-lobe of TnC, ≈3 nm farther than predicted by the MTS model. TnI167 had an 

appreciable ∆R = -0.60 nm, though other residues in the switch region had minimal ∆R. 

TnI167 may be in a portion of the switch region moving closer to the N-lobe; however, 

the switch region and N-TnC are too far apart to be interacting. ∆R were greater in the C-

terminal end (residues 182-211) than in the switch region, suggesting a more dynamic 

nature probably corresponding to the second actin binding site (SABS) lifting off actin 

when Ca2+ binds to N-TnC. Because apo and +Ca R values increased sharply after 

TnI177, the N-TnC may be positioned in the middle of the switch region, with TnI177-

211 extending laterally away from N-TnC.  

The minimal Ca2+-induced movements in the switch region are slightly surprising, 

though not a novel discovery. Cordina et al. used paramagnetic relaxation enhancement 

NMR in a recombinant binary complex of rcTnC/TnI to show movement in the switch 

region (residues 151 and 159) and IR (residue 143) was small, suggesting the switch 
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region remains close to the N-lobe of TnC to increase the probability the switch region 

will bind to the incompletely open N-lobe.126 They averaged the Ca2+-induced distance 

changes for TnI residues 151 and 159 with respect to the N-lobe, and observed ∆Rav = -

0.95 nm. The FRET-derived ∆Rav for TnI151, 160, and 167 is -0.33 nm. Differences may 

be due to the influence on TnC and TnI structure from TnT, Tm, and actin that force the 

switch region away from N-TnC; a binary TnC/TnI complex may retain a more compact 

structure. 

Ca2+-induced distance changes with respect to the N-TnC were smaller than those 

in the inter-lobe linker (acceptor TnC89C) and C-lobe (acceptor TnC127C). This 

suggests the change in distance was due to TnC movement, not TnI movement. One of 

the novel benefits of this study was maintaining the same donors on TnI and altering the 

acceptor positions on TnC, allowing for insights into both TnC and TnI dynamics, as all 

Ca2+-induced ∆R would be the same if TnC was immobile. NMR has shown N-TnC has 

independent dynamics,127 though the results presented here show N-TnC has only 

minimal dynamics compared to the rest of TnC. The partial opening of this N-lobe when 

Ca2+ binds does not cause dramatic movement of the lobe in space. However, spatial 

movement may not be resolved using FRET if TnC35C moves orbitally with respect to a 

donor on TnI—movement space would not translate to a change in distance. These 

inquiries could be clarified in the future by applying the resolved distance constraints 

from all acceptors towards molecular modeling. 
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Figure 21 
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Figure 21. Inter-dye distances in Tn reconstituted in thin filaments with and without 

Ca2+. The inter-dye distance (R) was calculated from E in the absence (apo, open circles 

and dotted lines) and presence of 3 mM CaCl2 (+Ca, closed circles and solid lines). (A) R 

with acceptor TnC35C (green) vs. TnI donor. (B) R with TnC89C (red). (C) R with 

TnC127C (blue). (D) +Ca FRET-derived R (l, solid lines) and MTS model-derived84 

Rmod (Ð, dotted lines) for acceptor position 35C, 89C, and 127C. (E) +Ca E derived from 

steady-state ensemble FRET of isolated Tn (500 nM in Tn) in WB +3 mM CaCl2 (p, 

solid line) from n = 1 reconstitution, +Ca E from trFRET of rAc (l, solid line) from 

Figure 19B, and theoretical E derived from the MTS model (Ð, dotted line) from Figure 

6D. (F) R calculated from E in (E), where Rmod is from Figure 6A, and rAc R is in (D). 

Color scheme and symbols are preserved from (A-F). 
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Figure 22. Relative FRET efficiency and inter-dye distance changes upon Ca2+ 

binding to Tn within the thin filament. (A) The change in E was obtained by 

subtracting the mean +Ca E from the mean apo E. The positive values indicate a closer 

proximity of the donors on TnI and acceptors on TnC. Changes in E for acceptor position 

35, 89, and 127 are in red, green, and blue, respectively. (B) Inter-dye distances (R) were 

obtained by subtracting the +Ca mean distances from apo distances. The negative values 

indicate a closer proximity of the C-TnI to TnC35C (green), TnC89C (red), or TnC127C 

(blue).   
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3.7.2 Dynamics of the C-TnI with respect to the inter-lobe linker of TnC 

The +Ca and apo R with acceptor TnC89 are plotted for each donor residue 

(Figure 21B). The Ca2+-induced ∆R is shown in Figure 22B, with the corresponding 

change in E for reference in Figure 22A. In switch region, +Ca R were longer compared 

to Rmod; however, the MTS model seemed to predict with some accuracy the +Ca R for 

TnI(182-211), seen in a superposition of the red solid (R) and dotted (Rmod) lines in 

Figure 21D. The switch region maintained a distance ≈5 nm from the inter-lobe linker, 

with a sharp increase after TnI177 in both R (distance) and ∆R (dynamics). Without Ca2+, 

the C-terminal end extended away from the inter-lobe linker beyond TnI177. 

Interestingly, at high Ca2+, R dropped to ≈6 nm at the C-terminal end, as opposed to ≈7 

nm for TnC35C, indicating both the inter-lobe linker of TnC and the C-terminal end of 

TnI may dynamically move towards each other. This is consistent with NMR studies in 

sTnC127 and human cTnC,29, 35 and in the MTS modeling.84  

The longer inter-dye distances between the switch region and the core of Tn 

compared to Rmod are dramatically pronounced with respect to TnC89C. Robinson et al. 

performed time-resolved measurements on cTn alone, cTn-Tm, and cTn in rAc using the 

FRET pair TnI151C*AEDANS-TnC89C*DDPM, and showed a Ca2+-induced ∆R = -0.4 

nm for Tn in rAc.49 This is two times larger than the ∆R = -0.19 nm from this study. 

Robinson et al. also showed the recovered Ca2+-depleted distances increased by 0.4 nm 

from Tn and Tn-Tm to rAc, suggesting structural changes in Tn are influenced by actin. 

Robinson et al. reported a +Ca R in rAc of 2.42 nm, not dramatically different from Rmod 

= 1.40 nm in isolated Tn. There is an important point to consider when comparing 

Robinson et al.’s results to those presented in this study: the ionic strength of their sample 
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buffer was 150 mM KCl, compared to 75 mM KCl in this study. When imaging rAc with 

an ionic strength of 150 mM, a large population of unbound Tn was present in solution 

(Figure 12). Free Tn could falsely decrease distances derived from Tn in rAc.  

To determine if distances recovered in isolated Tn using this study’s FRET 

constructs would correspond more closely to both Robinson’s and the Rmod distances, 

steady state FRET was performed in Tn with donor residues TnI(151-189) (donor 

AF546) with acceptor TnC89C. Figure 22E and 22D show the comparison of FRET-

derived E and R, respectively, from Tn alone and Tn within rAc, and the E and Rmod 

predicted by the MTS model. Values are shown in Table A11. R for isolated Tn clearly 

correlate to Rmod, where the switch region and TnI(174-189) are in close proximity to the 

Tn core. However, for R derived from Tn within rAc, there is a clear structural influence 

on TnI and TnC from the presence of Tm and actin. Importantly, this shows a more 

native environment is necessary to define the structure-function role of Tn. Utilizing 

epifluorescence imaging and FCS can give confidence in filament integrity, where 

samples with unbound Tn in solution are discarded prior to measurement.  

 
3.7.3 Dynamics of the C-TnI with respect to the C-lobe of TnC  

Apo and +Ca R with acceptor TnC127 are plotted for each donor residue (Figure 

21C). ∆R is shown in Figure 22B, with the corresponding change in E for reference in 

Figure 22A. Apo R in the switch region maintained a distance of ≈6 nm, compared to ≈5 

nm with acceptors on TnC35 and 89. Of particular interest are the ∆R at TnI151 and 160 

(∆Rav = -0.8 nm), which differ from the almost non-existent ∆R at those TnI residues 

with acceptors on TnC35 and 89. Because NMR relaxation studies have shown the C-

lobe has intra-lobe dynamics,127 this author concludes the entire C-lobe must alter its 
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position in space when Ca2+ binds, moving closer to the C-terminal region of TnI. This is 

in agreement with reports of a Ca2+-dependent rotation of the I-T arm around the actin 

filament, shown in MTS modeling.84 With Ca2+, R only increased ≈0.8 nm from the 

switch region to residue 211, indicating the C-lobe and TnI182-211 both alter their 

conformation/position such that the C-lobe becomes “enclosed” in space by the C-

terminal region of TnI. TnI177 still appears to still behave as a pivot point for greater 

Ca2+-induced dynamics in the C-terminal end, with ∆R values increasing from ≈-0.5 to ≈-

1.2 nm N- to C-ward, respectively (Figure 22B).  

Cordina et al. monitored the Ca2+-induced distance changes in the IR (TnI151 and 

159) with respect to the C-lobe in a binary complex of TnC/TnI, where ∆Rav = 0.97 nm, 

indicating the switch region moved farther away from the C-lobe with Ca2+.126 Averaging 

this study’s ∆R from TnI 151, 160, and 167 showed ∆Rav = -0.44 nm, suggesting in the 

presence of Tm and actin, the switch region and the C-lobe move closer together. 

Therefore, both TnC and TnI may undergo spatial rearrangement when in reconstituted 

thin filaments that are not observed in a binary TnC/TnI complex. 

In this section, the dynamics and distances with respect to each region of TnC 

were described. It appears that the MTS model predicted the position of the C-lobe with 

some accuracy at high Ca2+, but appears to have incorrectly predicted the position of the 

N-lobe with respect to C-TnI.  In the next section, the structure and general dynamics of 

cTnI with respect will be discussed in greater detail, with comparisons to literature 

reports of C-TnI dynamics.  
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3.7.4 The majority of Ca2+-dependent dynamics are within TnI residues 
182-211 
 

A pictorial summary of Figure 22B is shown as a primary sequence color map in 

Figure 23A, with a secondary structure model in Figure 23B. A cursory glance across all 

acceptor positions shows large Ca2+-dependent dynamics are focused at the C-terminal 

end (from residues 182-211). The largest changes were seen in TnI196 and 200, located 

in the second actin binding region of TnI. These results are consistent with those by 

Jayasundar et al., who proposed a molecular model with constraints from FRET-derived 

distances in free cTn. The second actin binding site, which they predicted was in the 

mobile domain (TnI182-189), underwent greater conformational changes than the 

inhibitory region.128 Structural studies such as those by Jayasundar may have been 

focusing on the wrong “mobile” domain, however, as the results in this study predict the 

greatest dynamics are in TnI196-211.  

Observing the trend in R in C-TnI with respect to the three acceptor positions can 

give some insight into the secondary structure of the C-TnI. The MTS model predicted an 

extended α-helix comprising TnI158-189 (predicted from the Takeda crystal structure 

1J1E), and a denatured C-terminal end (residues 190-211). A FRET study by Dong et al. 

showed the switch region in mcTnI150-165 maintains an α-helix both with and without 

Ca2+.129 The results of study suggest the switch region may be part of a helix-loop-helix 

motif, where the switch region is helix III (residues 151-177), with a loop connecting 

helix IV (residues 180-189). The loop allows for the relatively rigid switch region to 

connect to the dynamic helix IV. There may be similarities in the structure and dynamics 

of the two actin binding sites in TnI. The SABS comprises residues TnI189-211, and is 

slightly C-ward from where Murakami predicted the SABS in sTnI.81 Dong et al. used 
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intra-molecular FRET on TnI to show when Ca2+ binds, the IR experiences a ≈9 Å 

increase in length, and the conformation changes from a β-turn coil to a quasi α-helix 

with Ca2+.63 The SABS may undergo a similar conformational change, where the C-

terminal end becomes more extended when not bound to actin, evident from the Ca2+-

dependent disappearance in an apparent “kink” at residue TnI196. RKKK is a critical 

amino acid sequence for actin binding found in the IR,130 and this sequence is also found 

in the SABS at TnI(205-208). Peak inter-dye distance and Ca2+-dependent dynamics were 

observed around TnI196, where glycines at TnI190, 201, and 204 could be responsible 

for imparting mobility. In summary, the switch region (helix III) is an α-helix with minor 

Ca2+-dependent dynamics; a pivot point at residue TnI177 leads into a dynamic α-helix 

(helix IV) and the dynamic SABS (189-211). This is illustrated in Figure 23B. 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 
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Figure 23. Dynamics of the C-terminal region of TnI (residues 151 to 211) in 

reconstituted thin filaments. (A) Primary sequence map of the Ca2+-induced dynamics 

of C-TnI compared to the N-lobe, flexible linker, and C-lobe of TnC. The color-coded 

results of the Ca2+-induced distance changes (∆R) from Table A11. The number of 

residues represented by each box is three, with the residue attached to the donor in the 

middle (e.g., for donor position 151, the box represents residues 150, 151, and 152). (B) 

The model depicts a helix-loop-helix motif, where helix III (151-177) and helix IV (180-

189) are shown. Helix III remains relatively static in the absence of Ca2+ (apo) and with 

Ca2+ bound, with a pivot point near residue 177 leading into helix IV. Residues 182 to 

211 comprise the second actin binding site (SABS). The SABS has the greatest Ca2+-

dependent dynamics. 

  

A simplified approach to the results presented in the previous sections is shown in 

Figure 24 as a highly schematic model of the Ca2+-dependent activation of Tn within the 

thin filament. For simplicity, only one actin strand is shown in a “straightened” 

formulation without helical twisting; in native muscle, two actin chains form a double 

helical strand, each with its own Tm dimer and evenly-spaced Tn complex. TnC is 

positioned perpendicularly relative to the actin filament,131-132 above the interface 

between two adjacent actin protomers. The C-terminal region of TnI bridges two actin 

monomers, with the inhibitory region bound on one monomer, and the SABS bound on 

the other.81 In the absence of Ca2+, the IR and the SABS are bound to actin, displacing the 

switch region away from the N-lobe. When Ca2+ binds to Site II, the inhibitory region 

and SABS move off actin; the switch region, however, undergoes minor Ca2+-induced 
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movements towards the N-lobe and does not bind to the partially-exposed hydrophobic 

pocket. The SABS undergoes major Ca2+-induced movements towards TnC. TnC itself 

has independent dynamics, with the greatest dynamics evident in the inter-lobe linker. 

 

 

 

Figure 24 
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Figure 24. Schematic model of the structure and displacement of the switch region 

and SABS with respect to TnC under Ca2+-saturated and Ca2+-depleted conditions. 

(A) The thin filament under low Ca2+, with actin (red), Tm (blue), TnT (purple), TnI 

(cyan), and TnC (yellow) shown. For TnI, the N-terminal phosphorylation sites at Ser-

23/24 (P), helix I, the I-T arm (helix II), helix III (switch region), and the actin binding 

sites (black dotted circles) consisting of the IR and second acting binding site (SABS) are 

shown. For TnC, the N-lobe and Sites III and IV occupied by Mg2+/Ca2+ (blue circles) on 

the C-lobe are shown. For TnT, the T1 and T2 regions are shown. (B) Close-up from (A) 

showing TnI, TnC, TnT, and the actin surface under low Ca2+. Yellow stars represent the 

12 donor positions spanning from TnI(151-211). TnI(151-177) form helix III, known as 

the switch region; TnI(180-189) form helix IV; and TnI(189-211) form the SABS. The 

three acceptor positions are shown on TnC35 (N-lobe), 89 (flexible linker), and 127 (C-

lobe). TnC lies across actin, where the N-lobe is positioned out of the page, and the C-

lobe into the page. Helix I of TnI and the I-T arm are in the plane of the page. (C) Same 

as (B), but under +Ca conditions, where Ca2+ is bound to Site II on the N-lobe of TnC 

(blue circle). Black arrows depict Ca2+-induced movement. The IR has moved off actin. 

Movement in the switch region is minimal. The N- and C-lobes move towards actin, 

where the inter-lobe linker is the most dynamic region of TnC. TnI177 acts as the pivot 

point, bridging the non-dynamic switch region and dynamic SABS, which lifts off actin, 

moving ~1-1.4 nm towards TnC. TnC35, 89, and 127 are positioned such that they are 

~equidistant from residue 151 of TnI. 
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The physiological importance of C-TnI is supported by myocardial stunning, a 

phenomenon where cTnI(193-211) is selectively degraded,133 resulting in contractile 

dysfunction.134 Functional studies have predicted the importance of these residues in 

inhibiting thin filament activation. Tachampa et al. exchanged recombinant cTn 

containing mcTnI(1-193) and hcTnI(1-192) into skinned rat cardiac trabeculae, and 

showed a resulting ≈50% decrease in maximal force and cooperative activation. Actin-

activated ATPase activity also dropped by ≈50%.135 Importantly, they showed a ≈50% 

increase in Ca2+ sensitivity, but only when cTn was reconstituted into thin filaments. This 

author hypothesizes the SABS is responsible for the reduction in Ca2+ sensitivity when 

Tn is reconstituted into thin filaments136 due the the displacement of the switch region 

away from the N-lobe of TnC.  

 
3.8 Functional characterization of a FRET pair in the switch region 
and N-lobe of TnC 
 

Tn containing TnI151C and TnC35C was selected to determine whether potential 

functional or structural effects from mutagenesis could account for the unexpectedly 

large distance between switch region and the N-lobe of TnC. Mutant Tn containing 

mcTnI (C81I, C98S, S151C), rcTnC (C84S), N-terminal myc-mcTnT and WT Tn 

containing mcTnI, rcTnC, and N-terminal myc-mcTnT were exchanged into isolated rat 

myofibrils. The efficiency of exchange of WT Tn (53.73±3.94%) and mutant Tn 

(43.64±6.23%) were estimated from Western blots of the exchanged cells (Figure 25A-

B). Figure 25C shows measurements of force at different Ca2+ concentrations. During 

measurements, the sarcomere length (SL) was maintained at either 1.9 µm or 2.3 µm. 

Two sarcomere lengths were used to determine if mutagenesis had any effect on the Ca2+ 
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sensitivity of force development, as sarcomere length determines the Ca2+ response of the 

sarcomere.137  

At 1.9 µm and 2.3 µm SL, peak force (Figure 25D) and Ca2+ sensitivity (pCa50) 

(Figure 25E) were not statistically different between fibers exchanged with WT and 

mutant Tn (P > 0.05). The mutagenesis required for this FRET pair negligibly affected 

the Ca2+-dependent regulatory activity of the mutant Tn compared to WT Tn, suggesting 

no significant structure or functional perturbations of the switch region by the 

mutagenesis required for this FRET pair. In the future, these experiments should be 

repeated with FRET-labeled Tn in order to determine if dye modification affects the 

native function of Tn. Ideally, these measurements would be performed on all paired 

D/DA Tn. 

The previous sections have attempted to explain and give credence to the 

surprising observation of C-TnI structure and dynamics in reconstituted thin filaments. In 

the next section, the importance of actin and Tm on Tn structure will be discussed, along 

with a comparison between results derived from this FRET assay and current 

mechanisms of Tn activation proposed in literature. 
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Figure 25   
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Figure 25.  Functional characterization of wild type and mutated Tn. WT Tn 

consisting of myc-mcTnT, mcTnI, rcTnC and mutant Tn consisting of myc-mcTnT, 

mcTnI151C, rcTnC35C were exchanged into skinned cardiomyocytes isolated from rat 

ventricles. (A) Western blot analysis of reserved fibers. Exchanged myc-TnT was 

compared to native TnT to determine the Tn exchange efficiency. (WT: n = 3 hearts; 

mutant: n = 3 hearts) (B) Shown is the mean exchange efficiency from samples in (A) ± 

SEM. Differences were not significant (P > 0.05, two-way ANOVA). (C) Pooled data 

(mean ± SEM, WT: n = 9 fibers; mutant: n = 9 fibers) from force-pCa measurements of 

fibers at short (red, 1.9 µm) and long (blue, 2.3 µm) sarcomere lengths (SL). Lines for 

mutant (dotted line) and WT (solid) exchanges are drawn using the mean Ca2+-sensitivity 

pCa50 and maximum force Fmax recovered from individual fits of fibers. (D) Average 

maximum force ± SEM from (C) for SL at 1.9 µm (white) and SL 2.3 µm (grey). (E) 

Average pCa50 ± SEM from (C). A consistent coloring scheme is used in (D-E).  

 
 
3.9 Actin ultimately determines Tn structure and dynamics during 
activation 
 

The muscle field emphasizes the importance of the switch region as the molecular 

toggle for cardiac muscle regulation, responsible for dragging the IR and SABS off actin 

to remove myosin binding inhibition. This may be a biased view, however, as the switch 

region/N-lobe interactions are based on isolated or fragmented Tn structures solved using 

NMR or X-ray crystallography. In reconstituted thin filaments, the switch region was 

around 5 nm from the N-lobe (both apo and +Ca), too far to promote an interaction. Other 

modulatory modifications to the thin filament (like crossbridge formation) may be 
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required to push the switch region into the hydrophobic pocket of N-TnC in native 

muscle, whereas for Tn in the absence of actin, the fully active conformation is 

energetically preferred. Hence, why some of the previously-mentioned studies in Tn 

reported limited Ca2+-induced movements of the switch region due to its close proximity 

to the N-lobe, as Tn was already in an active-like conformation, even at low Ca2+.126, 128 

Temporarily averting full binding of the switch region may be a stopgap mechanism to 

prevent hyperactivation from Ca2+ binding, where full thin filament activation requires 

additional steps. Therefore, the Herzberg model of TnC activation may still hold true,64 

though Ca2+ alone may not promote switch region binding to N-TnC. Conversely, the 

inability of the N-lobe to fully open due to the inactivity of Site I may indicate the switch 

region evolved out of vogue in cardiac muscle as the major Tn structural change; instead, 

SABS and IR lift off actin in an isoform-specific mechanism.  

 
3.9.1 The role of TnI in the steric blocking mechanism of thin filament 
activation 
 

The steric blocking mechanism for muscle activation dictates that the IR inhibits 

Tm movement under low Ca2+, where Tm blocks myosin binding sites and prevents 

ATPase activity. Under high Ca2+ conditions, TnC competes with actin, causing liftoff of 

the IR to allow Tm movement away from myosin binding sites.51, 138-139 A three-state 

model of activation branching from the steric blocking model has been proposed by 

McKillop and Geeves,23 and this mechanism is consistently discussed in terms of Tm 

position correlated to the activation level. However, some studies have shown Tm 

undergoes minor Ca2+-140-141 and myosin-induced141 movement on actin. A mechanism 

proposed by Patchell et al. stated IR-dependent actin conformational changes are 
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responsible for promoting myosin binding, and not the position of Tm on actin.24 Using 

electron microscopy (EM) on filaments reconstituted with actin, Tm, and the C-terminal 

half of hcTnI (residues 132-210), Galinska-Rakoczy et al. showed this fragment of TnI 

lies across two adjacent actin protomers.11 Murakami et al. developed their atomistic 

model based those results,81 where sTnI-IR binds to the N-terminal region of actin,142 and 

SABS binds to the DNase-I loop (interface between actin protomers) near the N-terminal 

region of actin and a region in the C-terminal region of actin.81 The DNase loop may 

facilitate interactions between actin protomers in the thin filament that promote myosin 

crossbridge formation.143-144  

The three-state model in terms of Tn would dictate: 1) in the absence of Ca2+, Tn 

is in an inactive state, with complete ATPase inhibition due to IR/SABS bound to actin 

(blocked); 2) when Ca2+ binds, Tn is in a semi-inactive state, where TnI may have 

removed some of its inhibitory properties from actin, but the switch region is not bound 

to N-TnC, and myosin may weakly bind (closed); 3) myosin binds to actin in the 

presence of Ca2+, causing the fully-activated state, pushing the switch region into the 

hydrophobic pocket of N-TnC, and inducing cooperative activation of the thin filament. 

The second half of this of dissertation goes into greater detail of Tn activation by myosin 

binding.  

 
3.9.2 Minimal switch region dynamics: implications on the “drag and 
release” mechanism   
  

Since most of the Ca2+-dependent dynamics appear to be focused in the C-

terminal end of TnI instead of the switch region, the “drag and release” mechanism145 

may not be relevant to TnI when in the cardiac thin filament, as this study has shown the 
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switch region does not bind to the hydrophobic pocket of N-TnC when Ca2+ is bound to 

Site II. The dramatic difference in distance from the switch region to the inter-lobe linker 

between isolated Tn to Tn in rAc should be compelling evidence to prompt a discussion 

towards a modified theory of thin filament activation. Functional in situ studies have 

attempted to support the “drag and release” mechanism, but may still be biased in their 

analysis of results. A study monitoring simultaneous FRET and force in skinned cardiac 

fibers showed strong crossbridge formation stabilized the N-lobe opening, evident from 

an increase in the ensemble-averaged FRET in the presence of myosin and Ca2+.146 In a 

2014 follow-up study, time-resolved FRET was used to monitor the effect of sarcomere 

length on N-lobe opening, where N-lobe opening was sensitive to Ca2+ binding, 

crossbridge state, and sarcomere length.147 Unfortunately, the FRET assay in both studies 

only monitored intra-N-lobe conformational changes; the authors were essentially blind 

in monitoring switch region binding to the N-lobe. Removing the assumption that Ca2+ 

causes switch region binding to N-TnC, the results from both of studies can instead be 

explained using conclusions presented in this dissertation: the N-lobe may experience 

minor opening with Ca2+, but crossbridge formation is ultimately responsible for pushing 

the switch region into the hydrophobic pocket. As crossbridge formation is a function of 

sarcomere length, N-lobe opening would correlate to sarcomere length. In order to truly 

determine the role of the switch region, simultaneous force and time-resolved 

fluorescence should be performed on one of the FRET constructs developed in this study, 

where the donor is in the switch region and the acceptor in the N-lobe of TnC. The in 

vitro behavior of the switch region with Ca2+ or myosin binding could thus be compared 

to in situ behavior. 
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Other FRET studies in rAc lend credence that myosin binding promotes N-TnC 

and switch region interactions. Xing et al. used trFRET to show the Ca2+-saturated R 

between donor residues in the switch region of mcTnI(151, 160, 167) and Cys374 in actin 

in reconstituted thin filaments increased by as much as 0.7 nm upon S1 binding, 

indicating S1 causes the switch region to move farther from actin,125 and potentially into 

the hydrophobic pocket in the N-lobe of TnC. Wang et al. developed a multi-site steady-

state FRET assay in rAc with five donor positions ranging from TnI(108-211) (mouse 

cardiac numbering) on hcTnI and an acceptor on Cys374 in actin.148 Like Xing et al., 

Wang and coauthors saw an increase in inter-dye distance with S1 binding at TnI residue 

152C.  

 
3.9.3 The order in the disorder: the fly-casting mechanism of C-TnI 

The fly-casting mechanism states a highly disordered SABS participates in long-

range sampling of the thin filament to catalyze TnI binding to actin upon Ca2+ 

dissociation.68 This mechanism is based on the assumption that the SABS is an 

intrinsically disordered region, and does not undergo conformational switching similar to 

the IR. Julien et al. attempted to discover nascent structure in the IDR using NMR on an 

sTnC/TnI chimera comprised of the N-lobe of sTnC and sTnI(126-211).149 They reported 

no secondary structure, contrary to the skeletal Murakami and cardiac MTS models 

already discussed. Again, these minimalistic structural studies raise concerns regarding 

their physiological relevance to native cardiac protein structure and function in vivo. The 

fly-casting mechanism may still apply in part; perhaps the potential absence of secondary 

structure in the SABS after TnI189 still allow this region to participate in sampling the 

actin surface for potential binding sites.  
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3.10 Mutations in the C-TnI emphasize its functional importance 

As outlined in the introduction, RCM- and HCM-causing mutations in TNNI3 are 

found at a high density in the C-terminal region.97 Most of the mutations are missense, 

meaning one amino acid has been substituted for another. The structure and dynamics of 

this region found using this multi-site FRET assay could potentially give insight into the 

mechanisms behind the disease-causing mutations. Notably, mutations in hcTnI around 

the pivot point (K178E in human, K179E in mice) and a residue in the SABS (R192H in 

human, R193H in mice) have been implicated in patients with RCM.88 Both cause a 

dramatic increase in Ca2+ sensitivity and decrease in ATPase inhibition.92-93 This suggests 

both residues play essential roles in regulating muscle contraction. Yumoto et al. utilized 

circular dichroism and NMR to show K178E in an hcTnI129-210 peptide imparted a 

small structural change in residues hcTnIK177-T181.93 Structural perturbations around 

the pivot point could result in a loss of mobility in the C-terminal region, affecting the 

ability of the SABS to bind actin. The arginine to histidine substitution at 193 results in a 

loss of TnI inhibitory function, potentially due to the loss of a positive charge potentially 

important for maintaining actin associations.150 Davis et al. showed exchange of 

mcTnI(R193H) into mouse myocytes promoted shortened sarcomere lengths in a Ca2+-

independent manner, possibly due to a heightened contracted state as a result of increases 

in myosin-actin interactions even at low intracellular Ca2+.150 Deletion mutations at 

hcTnI177 and 178 result in HCM again emphasize the importance of the pivot point for 

conferring mobility to the second actin binding site.151 Of the 29 HCM mutations in 

TNNI3, 12 are found after hcTnI195.97 This supports the conclusion that the SABS of 

TnI plays an essential role in regulating muscle contraction. Alterations of this binding 
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site could either hinder SABS binding to actin, or enhance SABS release; either way, 

changes in the binding of this region result in dramatic changes in the muscle phenotype 

and function leading to the development of cardiomyopathies.  
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MECHANISMS OF ACTION OF INOTROPIC AGENTS, MYOSIN BINDING, AND 

PKA-MEDIATED PHOSPHORYLATION OF TNI TO MODULATE CARDIAC THIN 

FILAMENT ACTIVATION AND CALCIUM SENSITIVITY 

 
ABSTRACT SECTIONS 4-7 

 
 

To pump blood, the heart fills and empties through periods of relaxation and 

contraction regulated by Ca2+ binding to cTnC and myosin binding to actin. Activation is 

further tuned by protein kinase A (PKA)-mediated phosphorylation of Ser-23/24 in cTnI. 

Small molecules that target the thin filament to affect cardiac output by altering 

activation by Ca2+ and myosin are called cardiotonic agents, used to improve cardiac 

function in heart failure patients. This study hypothesized these agents may mimic 

mechanisms of myosin binding and TnI phosphorylation to modulate Tn activation. 

Steady-state FRET was used to monitor structural changes in Tn in reconstituted thin 

filaments, a physiologically relevant model of cardiac activation. Ca2+ and rigor-S1 

titrations were performed as a two dimensional screening method to assess the effects on 

cooperativity and sensitivity from bepridil and levosimendan, Ca2+ sensitizers that target 

the N-lobe of TnC, and EGCG, a green tea compound with potential for Ca2+ 

desensitizing effects that targets the C-lobe of TnC. Filaments were treated with PKA to 

determine if compounds acted in a similar mechanism to TnI Ser-23/24 phosphorylation. 

For Ca2+ titrations, bepridil and S1 increased the level of active Tn, induced negative 

cooperativity, and increased Ca2+ sensitivity. Notably, bepridil eliminated S1-induced 

activation of Tn, suggesting bepridil and S1 activate the thin filament with a similar 

mechanism, where both work by stabilizing the open conformation of the N-lobe of TnC. 
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While both EGCG and PKA treatment reduced Ca2+ and myosin sensitivity, EGCG 

decreased the level of active Tn under Ca2+-depleted conditions, while Ser-23/24 

phosphorylation did not alter the level of active Tn. This suggests independent 

mechanisms for conferring Ca2+ desensitivity to the thin filament. A correlation was 

discovered between the Ca2+-depleted FRET efficiency and Ca50. This study shows proof 

of concept of a high throughput screen (HTS) to discover and develop small molecule 

compounds that target sarcomere proteins to modulate cardiac output in the treatment of 

heart failure. 
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4 INTRODUCTION  
 

Muscle contraction is mediated by the Ca2+-triggered cyclic interaction of myosin 

motors with regulated actin filaments, where ATP hydrolysis by myosin enables thick 

and thin filaments to slide past one other, causing shortening.152 Thin filaments are 

composed of troponin (Tn), tropomyosin (Tm), and actin. Cardiac Tn is a heterotrimer 

composed of troponin I (TnI), which inhibits actin-activated ATPase through interactions 

with actin; troponin T (TnT), which binds to Tm and TnI to tether Tn to the thin filament; 

and troponin C (TnC), which binds Ca2+. Cardiac TnC is composed of two EF hand 

globular domains (lobes) connected by a flexible linker.27 The C-lobe (structural domain) 

has two high-affinity divalent cation binding sites always occupied by Ca2+ or Mg2+, 

stabilizing the open conformation of the structural domain.27 The N-lobe (regulatory 

domain) has one low-affinity binding site (Site II).  When Ca2+ floods the sarcomere 

during diastole (relaxation), Ca2+ binds to TnC at Site II, causing conformational changes 

in Tn-Tm that modulate myosin binding to actin (crossbridge formation), leading to 

systole (contraction).64-65  

Historically, the mechanism of activation has been thought to occur through a 

structural rearrangement in the B/C helices in the N-lobe of TnC, which exposes a 

hydrophobic pocket where the switch region of TnI binds, stabilizing the open 

conformation of the regulatory domain.36 The inhibitory region (IR) and the second actin 

binding site (SABS) of TnI come off actin as a result of Ca2+-dependent conformational 

changes in Tn, allowing for a Tn-Tm-actin conformation that promotes crossbridge 

formation and muscle contraction. While Ca2+ binding is a critical step in initiating 

contraction by stabilizing the active state of Tn, Ca2+ alone does not account for the 
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activation-dependence of the contractile properties of the myocardium. Strong (rigor) 

crossbridge formation also plays a prominent role in activation itself: the strong force-

generating crossbridge positively and cooperatively activates the thin filament,153 

affecting the activation of Tn and its affinity for Ca2+.49, 154  

In addition to the regulatory effects by Ca2+ and myosin on myofilament 

activation, post-translational modifications of sarcomeric proteins also modulate 

activation by changing the response of the myofilament to Ca2+. Kinase-mediated serine 

and threonine phosphorylation of cTnI can alter myofilament properties in response to 

stress or exercise.155 cTnI contains a ≈33 residue, isoform-specific N-terminal extension, 

which contains two serines at residues 23 and 24.53 To meet changes in circulatory 

demands requiring variations in contraction and relaxation, enhanced β1-adrenergic 

stimulation causes an increase in the production of cAMP-dependent protein kinase A 

(PKA).156 PKA phosphorylates cTnI Ser-23/24, promoting Ca2+ release (Ca2+ 

desensitivity) and increased crossbridge cycle kinetics to facilitate muscle relaxation 

(lusitropy).157-158 Ser-23/24 phosphorylation is thought to disrupt interactions between the 

N-terminal extension of TnI (residues 16-29) and TnC that promote Ca2+ binding to Site 

II of TnC.56 In transgenic animals expressing non-phosphorylatable TnI (either mutant 

S23A/S24A or slow sTnI, which lacks the ≈33 amino acid N-terminal extension), a 

decrease in Ca2+ sensitivity following β1-stimulation is abolished, and its lusitropic effect 

is reduced in isolated myocytes, isolated hearts, and in vivo.159-161 While the effects of 

Ser-23/24 phosphorylation on the myofilament are known, the molecular mechanism 

behind the decrease in Ca2+ sensitivity remains elusive.  

Resolving the mechanisms behind Ser-23/24 phosphorylation-induced Ca2+ 
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desensitivity in Tn, and Ca2+- and myosin-dependent activation of Tn, can yield valuable 

insight into the molecular mechanisms behind muscle regulation, facilitating the path to 

create targeted drug therapies for heart failure. Heart failure, or cardiomyopathy (CM), 

comprises changes in cardiac contractility, electrical conduction, Ca2+ transients, and 

energy metabolism, leading to a failure of the heart to meet altered circulatory 

demands.162-163 Sympathetic nervous system (SNS) activation is normal with heart 

failure, but the myocardial response to SNS signaling is blunted by down-regulation of 

the β-receptor-cAMP-PKA pathway.164-165 This causes reduced phosphorylation of cTnI, 

leading to an increase in Ca2+ sensitivity; in the failing heart, Ser-23/24 phosphorylation 

decreases by 33-80%.166-167 Restrictive cardiomyopathy (RCM) is a form of heart failure 

associated with altered diastolic function and impaired ventricular filling due to increased 

muscle stiffness, with normal systolic function and ventricular muscle wall thickness.90 

An arginine to histidine mutation at residue 192 (R192H in human, R193H in mice) in 

the second actin binding site (SABS) of cTnI has been implicated in RCM.88 Though 

other forms of CM are associated with increases in myofilament Ca2+ sensitivity, 

mutations associated with RCM are thought to cause the most dramatic increase in Ca2+ 

sensitivity compared to other forms of CM.93 Skinned fibers from failing human hearts 

exhibiting increased sensitivity to Ca2+ and impaired diastolic function can be corrected 

when the fibers are treated with PKA, enhancing Ca2+ desensitivity and promoting 

relaxation.168-170 Unfortunately, the pitfalls of pharmacologically augmenting cAMP-

PKA signaling are illustrated by the negative survival benefit of treatment with the 

phosphodiesterase III inhibitor milrinone.171 A PKA-mediated hyperphosphorylation of 

the ryanodine receptor results in diastolic Ca2+ leak and impaired Ca2+ re-uptake by 
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SERCA2a.172 An increase in cytosolic Ca2+ causes arrhythmias, stimulates maladaptive 

Ca2+-dependent signaling cascades, and stimulates altered energy metabolism.173 

Increased Ca2+ sensitivity due to R192H has been reversed in skinned muscle 

fibers by desensitizing Tn to Ca2+
,
174 and in mice treated with EGCG,175 a green tea 

compound targeting TnC to reduce Ca2+ sensitivity.176 This suggests a promising 

approach to develop CM therapies by directly altering the Ca2+ sensitivity of Tn, 

bypassing altered Ca2+ handling through increased cAMP-PKA signaling. Small 

molecule compounds that target the thin filament (sarcomeric modulators) and mimic the 

effect of PKA-dependent phosphorylation of TnI Ser-23/24 may be a viable therapeutic 

strategy promoting myofilament relaxation in persons with RCM. Since the N-terminus 

of TnI is unique to the cardiac isoform, pharmacotherapies that mimic the effect of N-TnI 

bisphosphorylation are likely to be specific for the myocardium. 

Here, the effects on Ca2+- and myosin-dependent activation by small molecules 

and PKA treatment were investigated using a FRET-labeled Tn assay in reconstituted 

thin filaments. This FRET assay monitored the activating structural change in Tn, with a 

FRET donor in the SABS of TnI, and a FRET acceptor in the C-lobe of TnC. Ca2+ and S1 

titrations were performed as a 2D screening method to assess the effects on cooperativity 

and sensitivity with bepridil and levosimendan, proposed as Ca2+ sensitizers targeting the 

thin filament,177-178 and EGCG.176 These small molecules were hypothesized to mimic 

effects from myosin binding or TnI Ser-23/24 phosphorylation, giving insight into their 

molecular mechanism. Results suggest TnI Ser-23/24-dependent desensitization to 

myofilament force and ATPase to Ca2+ may be due to enhanced inhibition, where the 

phosphorylated N-TnI is released from TnC to prevent IR displacement from actin, even 
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with Ca2+ and myosin binding. Bepridil and S1 appear to have a similar mechanism of 

increasing Ca2+ sensitivity in the thin filament, where bepridil stabilizes the open 

conformation of the N-lobe, and myosin binding enhances cTnI switch region binding to 

stabilize the open conformation of the N-lobe. EGCG and PKA-mediated Ser-23/24 

phosphorylation appear to not share a mechanism to desensitize the thin filament for 

Ca2+, evident by monitoring the level of Tn activation under Ca2+-depleted conditions. A 

correlation was discovered between the deactivated (Ca2+-depleted) Tn state and Ca2+ 

sensitivity. The capacity of this FRET assay as a possible high-throughput screening 

method (HTS) was demonstrated for small molecules targeting cardiac thin filaments to 

treat heart failure.  
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5 METHODS 
 

Native and recombinant protein purification, fluorescent dye conjugation, labeling 

ratio determination, epifluorescence imaging, and force-pCa experiments were described 

in the Methods (Section 2).  

5.1 Purification of myosin from chicken pectoralis major muscle 
 

Skeletal myosin was purified from chicken pectoralis major muscle as 

described,179-180 with some modifications. Breast tissue from a freshly slaughtered young 

chicken was sliced into strips and ground in a food processor. Ground muscle was 

extracted with 0.3 M KCl, 0.15 M KH2PO4 (pH 6.5), 20 mM EDTA, 5 mM MgCl2, and 1 

mM ATP at 3x w/v at 4°C with stirring for 10 min. Remaining tissue was sedimented 

with centrifugation at 8,000 rpm using a Beckman J2-Mi centrifuge with rotor JA-10 for 

25 min. The supernatant was diluted slowly with stirring with 10x v/v of cold ddH2O. 

The precipitate was settled for a minimum of 1 hour. The supernatant was siphoned off, 

and the myosin precipitate was pelleted with centrifugation at 8,000 rpm for 45 min using 

a Beckman centrifuge with rotor JA-10. The pellets were re-suspended in in 1 M KCl, 25 

mM EDTA, and 60 mM KPO4 (pH 6.5) at 0.25 mL/g of original muscle mass and 

dialyzed against 0.6 M KCl, 25 mM KPO4 (pH 6.5), 10 mM EDTA, and 1 mM DTT 

overnight. Ammonium sulfate  (0-30%, mass calculated with 

http://www.encorbio.com/protocols/AM-SO4.htm) was added slowly to the solution with 

stirring for a minimum of 30 min. The precipitate was pelleted with centrifugation at 

12,000 rpm for 30 min using a Beckman centrifuge with rotor JA-14. The pellet was re-

suspended and dialyzed against 0.6 M NaCl, 10 mM NaPO4 (pH 7.0), 1 mM EDTA, and 

1 mM DTT overnight.  
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Myosin was stored in 50% glycerol in -20°C for up to six months, and purity was 

confirmed using SDS-PAGE. 

5.2 Myosin digest into subfragment-1 
 

Myosin subfragment-1 (S1) was prepared as described181 with some 

modifications. Myosin was dialyzed against 20 mM MOPS (pH 7.0), 50 mM KCl, 1 mM 

EDTA and digested with 0.64 units chymotrypsin/1 mg myosin (α-chymotrypsin, TLCK 

treated, Worthington Biochemical Co., Lakewood, NJ) for 10 minutes with stirring on 

ice. The digestion was terminated with 5 mM phenylmethylsulfonyl fluoride (PMSF). 5 

mM MgATP was added, and insoluble components were pelleted by centrifugation at 

180,000 xg for 15 min. Soluble S1 in the supernatant was dialyzed into working buffer 

(WB: 75 mM KCl, 50 mM MOPS pH 7.0, 5 mM MgCl2, 2 mM EGTA, 5 mM BME) and 

stored at 4°C for up to 1 week. Catalytically inactive S1 (dead heads) were removed by 

ultracentrifugation in a Beckman TL-100 ultracentrifuge at 64,000 rpm for 15 minutes 

(TLA-100 rotor) in the presence of 5 mM ATP and F-actin at a molar ratio of 1 S1: 2 

actin. ATP was removed using dialysis against WB (Spectra/Por 2 Dialysis Membrane, 

MWCO 12-14 kDa, Spectrum Laboratories, Irving, TX). S1 was used within 24 hours of 

dead head removal. Purity was confirmed using SDS-PAGE. 

 
5.3 Phosphorylation of TnI in regulated actin 
 

Serines 22 and 23 of TnI in rAc were phosphorylated using the protein kinase A 

(PKA) catalytic subunit from bovine heart (Sigma-Aldrich, St. Louis, MO). Stock 

solutions of PKA were prepared at 500 units/mL (50 µg/mL) in ddH2O with 6 mg/mL 

DTT, and stored at 4°C for up to 1 week. Literature provided by Sigma-Aldrich indicated 
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a 15% loss of activity after 8 days when stored at 4°C.182 PKA was incubated for three 

hours at room temperature with rAc in WB supplemented with 5 mM MgATP at a ratio 

of 125 units of PKA/mg of TnI.183 To remove unreacted ATP, rAc was sedimented by 

ultracentrifugation at 64,000 rpm for 15 min (Beckman TLA-100 rotor). Pellets were 

washed twice with WB, and reconstituted by Dounce homogenization.  

The extent of phosphorylation was quantified using phosphate affinity SDS-

PAGE with PeppermintStick phosphoprotein molecular weight markers (Life 

Technologies). Markers were loaded at 1 µg. The markers contain ovalbumin, which has 

two phosphorylation sites, and β-casein, which runs close to TnI. Gels were stained 

successively with Pro-Q Diamond phosphoprotein and SYPRO Ruby total protein stains 

(Life Technologies), and scanned with UV excitation (Gel Logic 112, Kodak) with an 

exposure time of 14 sec. Images were pseudo-colored using ImageJ 1.47v (National 

Institutes of Health, Bethesda, MD). The amount of loaded TnI was adjusted to 1 µg by 

multiplying the TnI SYPRO Ruby (SI) and TnI Pro-Q (DI) intensities by (𝑆y/𝑆z), where 

Sβ is the SYPRO Ruby band intensity of β-casein. The ratio of the Pro-Q Diamond and 

SYPRO Ruby band intensities (abbreviated D/S ratio) of ovalbumin (𝐷{ 𝑆{) was 

normalized to 2, and used as the maximum normalization factor. The number of sites in 

TnI phosphyorylated (NP.) was found using  

 𝑁| 	=
𝐷z′ 𝑆z′
𝐷{ 𝑆{ /2, 

(13) 

where 𝑆z′ and 𝐷z′ is the corrected SYPRO Ruby and Pro-Q Diamond band intensities of 

TnI.  
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5.4 Steady state fluorescence spectroscopy 

5.4.1 Calcium titrations 

Steady-state measurements were performed at 22°C on a Fluorolog-3 

spectrofluorometer (Horiba) equipped with a MicroLab500 syringe dispenser (Hamilton) 

and Versa water bath temperature control (ThermoFisher Scientific). Singly- and doubly-

labeled reporter filaments, rAc-D (with Tn-D, TnI189C*AF546, TnC127C, TnT) and 

rAc-DA (with Tn-DA, TnI189C*AF546, TnC127C*ATTO655, TnT), respectively, were 

prepared in WB (250 nM in Tn). Stock solutions of (-)epigallocatechin gallate (EGCG, 

Sigma-Aldrich), bepridil hydrochloride (bepridil, Sigma-Aldrich), and levosimendan 

(Sigma-Aldrich) were prepared at 25 mM in DMSO, aliquoted, and stored at -20°C for 

up to six months. Stock solutions were monitored for precipitation, and vortexed for 30 

sec prior to use. 

Fluorescence emission from the FRET donor was monitored (530 nm excitation, 

570 nm emission, monochromator slit width 4 nm, 1 sec integration time) following 25 

serial injections (2 µL) of +Ca buffer into 1 mL of sample. +Ca buffer consisted of WB 

supplemented with 50 mM CaCl2. A mixing time of 3 sec was applied after the addition 

of each aliquot. Following the titration, the sample was denatured with 3 M guanidine 

hydrochloride, and the donor emission was collected. This provided the relative 

concentration of the donor dye. All intensity data were corrected for dilution. The 

intensity of the rAc-DA sample was corrected for donor concentration mismatch using  

 𝐼}(𝐶𝑎)-8 = 𝐼(𝐶𝑎)-8 𝐼-∗ 𝐼-8∗ , (14) 
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where 𝐼-∗  is the intensity of the denatured (+GnHCl)  rAc-D sample and 𝐼-8∗  is the 

intensity of the denatured rAc-DA sample. Ca2+-dependent FRET efficiency E was 

calculated using  

 𝐸(𝐶𝑎) =
1
𝑓8
(1 −	

𝐼}(𝐶𝑎)-8
𝐼(𝐶𝑎)-

), (15) 

where fA is the labeling efficiency of the acceptor dye. Data were fit to the Hill equation  

 𝐸 = 𝐸S +
𝐸p − 𝐸S

1 + (𝐶𝑎�" 𝐶𝑎)b�, (16) 

where nH is the Hill coefficient and Ca50 is the Ca2+ concentration that produces half 

maximal activation, E− is the FRET efficiency without added Ca2+ and E+ is the FRET 

efficiency with saturating Ca2+.  

Calcium titrations were performed on rAc-D and rAc-DA, phosphorylated rAc, 

and rAc supplemented with 0.5% (v/v) DMSO drug vehicle solvent, 200 µM bepridil, 

200 µM levosimendan, 200 µM EGCG, and 750 nM S1. Control measurements were also 

performed on rAc phosphorylated with PKA (125 units/mg TnI) and 5 mM ATP, with 

PKA only (125 units/mg TnI), and with 5 mM ATP only.  

 
5.4.2 Concentration of free calcium  
 

The concentration of free Ca2+ was obtained using the titration protocol described 

above with injections into 1 mL of Fluo-4FF pentapotassium salt (Life Technologies) 

(250 nM) in WB. Fluorescence (490 nm excitation, 520 nm emission, 4 nm slit width, 

0.25 sec integration time) was corrected for dilution. The concentration of free Ca2+ was 

calculated using  

 [𝐶𝑎+p]Z = 𝐾-
𝐹Z − 𝐹KZb
𝐹KLM − 𝐹Z

, (17) 
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where KD (9.7 µM) is the dissociation constant of Fluo-4FF, Fmin is the intensity under 

Ca2+-depleted conditions, and Fmax is the intensity under Ca2+-saturating conditions.  

 
5.4.3 Myosin S1 titrations 
 

Steady-state measurements were performed on the instrument detailed above. 

rAc-D and rAc-DA (250 nM in Tn) were suspended in WB or WB supplemented with 3 

mM CaCl2. Fluorescence emission from the FRET donor was monitored following 200 

serial injections (2 µL) of 5 µM S1 in WB. A mixing time of 3 sec was applied after the 

addition of each aliquot. Intensity data were corrected for dilution, and intensity of the 

rAc-DA sample was corrected for donor concentration mismatch. E was calculated using 

Eq. 3, which includes the acceptor labeling efficiency correction. FRET efficiency data 

were fit to the Hill equation 

 𝐸 = 𝐸S +
𝐸p − 𝐸S

1 + (𝜃�" 𝜃)b�, (18) 

where nH is the Hill coefficient,  𝜃 is the total [S1]/[Actin], 𝜃�" is the [S1]/[Actin] ratio 

that produces half maximal activation, E− is the FRET efficiency without S1, and E+ is 

the FRET efficiency with saturating S1.  

Myosin titrations were performed in triplicate on rAc, phosphorylated rAc, and 

rAc supplemented with 200 uM bepridil and 200 uM EGCG.  

 
5.4.4 Determining EC50 of EGCG 
 

rAc-D and rAc-DA (250 nM in Tn) were suspended in 1 mL of WB. Fluorescence 

emission from the FRET donor was monitored following 200 serial injections (2 µL) of 
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WB supplemented with 5 µM EGCG. Intensity data were corrected as indicated above, 

and E was calculated using Eq. 3. FRET efficiency data were fit to the Hill equation 

 𝐸 = 𝐸S +
𝐸p − 𝐸S

1 + (𝐸𝐶�" 𝐸𝐺𝐶𝐺)b�, (19) 

where nH is the Hill coefficient, 𝐸𝐶�" is the [EGCG] that produces half maximal 

activation, E− is the FRET efficiency without EGCG and E+ is the FRET efficiency with 

saturating EGCG.  

 
5.5 Cosedimentation assays 

5.5.1 Chemomechanical binding assay 

Mixtures of F-actin or rAc (10 µM in actin protomer) and S1 (20 µM) were 

prepared in W or WB supplemented with 5 mM MgATP, then sedimented at 64,000 rpm 

for 15 min in a TLA-100 rotor. Reserved sample, supernatant, and pellet were examined 

by quantitative SDS-PAGE. Coomassie-stained gels (GelCode Blue Safe Protein Stain, 

ThermoFisher Scientific) were scanned (Gel Logic 112, Kodak) for 14 sec using white 

light epi-illumination. Intensities of S1 and actin bands were quantified using ImageJ. 

Band intensities I were converted to the relative C using 

 𝐶 = 𝐼 − 𝐼j 𝛼, (20) 

where IB is the background intensity and α is the staining efficiency of the S1 relative to 

actin. α was determined from the band intensity of the reserved sample, which contains 

proteins of known concentration. Measurements were performed in triplicate. 

 



 

 

112 

5.5.2 S1 binding to regulated actin with PKA treatment and small 
molecules 
 

Phosphorylated rAc, rAc (10 µM in actin protomer), or rAc supplemented with 8 

mM bepridil or 8 mM EGCG were mixed with S1 (20 µM) in WB, sedimented, and 

analyzed as described above.  

 
5.6 Statistical analysis 

Unless otherwise stated, parameters such as nH and Ca50 were recovered through 

non-linear regression using the least squares method using GraphPad Prism ver. 6g 

(GraphPad Prism Software, Inc., La Jolla, CA). For Ca2+ titrations, E is reported as the 

maximum likelihood estimate, and recovered parameters are shown for n = 1 trial. For S1 

titrations, data are plotted as the mean, with errors bars as SEM. E is reported as the 

maximum likelihood estimate, and recovered parameters are shown for n = 3 trials, 

except in control measurements with rAc mock-treated with PKA, where n =1 trial. 

Standard errors obtained from the fitting are shown next to each value. The significance 

(P > 0.05) between untreated rAc filaments and filaments treated with PKA or small 

molecule compounds was determined using the Z-test on the mean and asymptotic SE for 

each parameter recovered from fits of the data to the Hill equation.184 In the case of high 

throughput drug screening trials, compounds not producing significant shifts in Ca50 and 

θ50 using this test would be discarded.  
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6 RESULTS 

6.1 Two-colored FRET in regulated actin filaments 

Samples containing only a FRET donor (D), and both a FRET donor and acceptor 

(DA) are necessary to determine energy transfer from a directly excited donor to an 

acceptor fluorophore. FRET efficiency E is calculated from paired D/DA samples using 

𝐸 = 1 − (𝐼-8 𝐼-), where IDA is the emission intensity of the donor in the presence of an 

acceptor, and ID is the emission intensity of the donor in the absence of an acceptor. Due 

to the sixth power dependence of distance on resonant energy transfer 𝑅 =

𝑅" 1 − 𝐸 𝐸 Q #, where R is the inter-dye distance, R0 is the Förster radius of the FRET 

pair, and E is FRET efficiency,105 an increase in E corresponds to a decrease in the inter-

dye distance. FRET efficiency was used to report Tn activation in reconstituted thin 

filaments, corresponding to the movement of the SABS of TnI from actin towards the N-

lobe of TnC. From the multi-site FRET assay described in Sections 1-3, a FRET pair that 

fulfilled the requirements to report the activation-dependent structural change in Tn was 

chosen to pursue drug screen design. The FRET pair needed to exhibit a large Ca2+-

induced change in E to provide maximum resolution for discovering alterations to Tn 

activation from phosphorylation or small molecule binding. Figure 26A shows the 

engineered Tn, which contains a single Cys in the C-terminal end of the second actin-

binding domain of TnI (residue 189) labeled with FRET donor AF546. A single Cys in a 

loop in the C-lobe of rat cardiac TnC (residue 127) was labeled with the FRET acceptor 

ATTO655. The loop has no role in coordinating Ca2+or Mg2+. TCSPC measurements of 

rAc filaments showed a Ca2+-induced change of 21% (Table A10). The assay is sensitive 

to structural movements of the mobile domain of TnI with respect to the C-lobe of TnC.  
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Figure 26. A steady-state FRET assay for measuring Tn activation. (A) Molecular 

model of the Ca2+-saturated 52 kDa core of Tn showing placement of FRET dyes.84 TnC, 

TnI, and TnT are colored cyan, blue, and grey, respectively. The FRET donor, AF546, 

and FRET acceptor, ATTO655, are attached to Cys 189 of TnI (green sphere) and Cys 

127 of TnC (red sphere), respectively. Ser-23/24 of TnI are represented as VDW spheres. 

(B) Fluorescence emission spectra from rAc reconstituted with the FRET donor 

TnI189C*AF546 (rAc-D) or both the donor and FRET acceptor TnC127C*ATTO655 

(rAc-DA). rAc-D (blue dashed), rAc-D supplemented with 3 mM CaCl2 (+Ca, red 

dashed), rAc-DA (blue), and rAc-DA +Ca (red). Denatured samples of rAc-D (black 

dashed) and rAc-DA (black) are shown. Inset, Sensitized emission.   
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Figure 26B shows the steady-state emission spectra from rAc-D and rAc-DA 

under Ca2+-depleted (no added Ca2+), Ca2+-saturated (with 3 mM CaCl2), and denatured 

(with 3 mM CaCl2 and 3 M GnHCl) conditions. Denaturation with GnHCl allowed for a 

correction in the differences in donor concentration between rAc-D and rAc-DA samples, 

as donor intensity with 3 M GnHCl provided the relative concentration of the FRET 

donor dye in the sample.  

The emission intensity of rAc-D was relatively insensitive to 3 mM CaCl2, while 

the emission intensity of rAc-DA showed a 34% decrease in the emission of the FRET 

donor (575 nm peak), and a corresponding 21% increase in the emission from the FRET 

acceptor (675 nm peak). Denaturation with 3 M GnHCl served to eliminate the emission 

peak from the FRET acceptor in rAc-DA samples (Figure 26B, inset). This strongly 

suggests the emission peak at 675 nm is fluorescence emission from the acceptor due to 

photons transferred from the donor to acceptor dyes through sensitized emission (FRET).  

 
6.2 Characterizing the binding of myosin subfragment-1 
 

Purified myosin is shown under denaturating gel conditions, where the myosin 

heavy chain (MHC) runs ≥ 250 kDa, and the essential light chains (ELC1/2) and the 

regulatory light chain (RLC) are resolved (Figure 27). Other proteins are visible in the 

lane with purified myosin (P2), and are most likely contaminant actin and tropomyosin. 

Myosin was enzymatically digested into the catalytically active myosin head, 

subfragment-1 (S1). Figure 28A shows how SDS-PAGE was used to monitor the 

progress of digestion, resolve proteins, confirm molecular weights, and determine sample 

purity. In the presence of EDTA, chymotryptic digestion eliminates the RLC, though 

ELC1/2 are still resolved.185  
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Muscle contraction is maintained through a steady cyclic interaction between 

myosin motor proteins and actin filaments. Myosin binds to actin by successively 

forming contacts through nucleotide- and actin-dependent reorientations of different 

subdomains in myosin. An accurate assessment of the catalytic ability of purified S1 

required the removal of all non-specific S1 binding due to catalytically inactive S1 

(called deadheads), which bind irreversibly to actin in the presence of ATP. Figure 28B 

shows the difference between rigor and deadhead binding to actin in the presence and 

absence of ATP, respectively. Under rigor conditions, a 2:1 mixture of actin and S1 

showed a high degree of S1 binding, evident from the pellet of the sedimented sample. 

An interesting note is the presence of two bands near the ELC1 isoform, where only the 

lower molecular weight band appears to bind to actin. The higher molecular weight band 

cannot be attributed to TnI or TnC, which run higher and lower, respectively. In the 

presence of 5 mM ATP, a small portion of S1 was bound to actin (deadheads), and a 

majority of S1 remained in solution (catalytically active S1).   

 

 

 

 

 

 

 

 

 
Figure 27 
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Figure 27. Purification of myosin from chicken pectoralis muscle. Molecular weight 

markers (M); the pellet containing myosin, contaminant actin (~48 kDa), and Tm (~37 

kDa) from the water precipitation (P1); the supernatant (S) and pellet (P2) containing 

purified myosin heavy chain (MHC), essential light chains 1 (ELC1) and 2 (ELC2), and 

regulatory light chain (RLC) from the 0-30% (NH2)4SO4 cut are shown. 

 

Figure 28. Chymotryptic digest of myosin into subfragment-1. (A) Myosin was 

digested with chymotrypsin (1:100, chymotrypsin:myosin) in the presence of EDTA for 

10 minutes. Molecular weight markers (M), and the supernatant (S) containing S1 and 

pellet (P) containing undigested myosin are shown. (B) Removal of catalytically inactive 

S1. Co-sedimentation of S1 (20 µM) and actin (10 µM) in WB (rigor) and WB 

supplemented with 5 mM MgATP. Molecular weight markers (M), the pre-spin mixture 

(W), the supernatant (S), and pellet (P) for both rigor and +ATP conditions are shown. S1 

in complex with either essential light chain 1 or 2 (ELC1, ELC2), and actin bands are 

resolved. Under rigor conditions, S1 binds actin >90%. In the presence of 5 mM MgATP, 

only catalytically inactive S1 bind to actin, and the supernatant contains catalytically 

active S1. 
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6.3 PKA-mediated phosphorylation of TnI Ser-23/24 
 
 PKA treatment of Tn selectively bis-phosphorylates TnI Ser-23/24.170 TnI Ser-

23/24 within reconstituted rAc was selectively phosphorylated with the catalytic subunit 

of PKA and ATP (co-factor), and these were removed by sedimentation, washing, and re-

suspension of filaments.  Schulenberg et al. showed the utility of characterizing protein 

phosphorylation using a fluorescent dual-staining approach.186 SDS-PAGE with 

subsequent staining using Pro-Q Diamond (selectively stains phosphorylated proteins) 

and SYPRO Ruby (stains all proteins) was used to quantify the degree of phosphorylation 

in rAc. Phosphorylated ovalbumin (from the phosphoprotein standard) has two 

phosphorylation sites,187 and was used as a control (Figure 29A). Figure 29B shows Ser-

23/24 phosphorylated to ≈100% efficiency after a 1.5 hour incubation with PKA. 

 
Figure 29. Quantification of PKA-dependent TnI phosphorylation. (A) Time course 

of PKA-treated WT rAc analyzed by 1D SDS-PAGE (12%, 29:1). Successive staining 

with Pro-Q Diamond (left) and SYPRO Ruby (right) provided, respectively, the level of 

TnI phosphorylation and total TnI. (B) Time-dependent efficiency of TnI 

phosphorylation by PKA. The number of phosphorylated residues in TnI was estimated 

from the intensity of TnI compared to ovalbumin (phosphorylation and molecular weight 

standard) in (A).  
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6.4 Physical characterization of regulated actin 
 

To determine if the triple mutants required for the assay on TnI (C81I, C98S, 

V189C) and TnC (C35S, C84S, T127C) affected the functional properties of Tn, 

isometric force-pCa experiments were performed. WT (control) and mutant Tn were 

reconstituted with mouse cTnT with an N-terminal myc sequence attached. The 

efficiency of exchange of WT Tn (80.6±1.0%) and mutant Tn (69.2±3.5%) were 

estimated from Western blots of the exchanged cells (Figure 30A-B). Figure 30C shows 

measurements of force at different Ca2+ concentrations. During measurements, the 

sarcomere length (SL) was maintained at either 1.9 µm or 2.3 µm. At 1.9 µm and 2.3 µm 

SL, peak force (Figure 30D) and Ca2+ sensitivity (pCa50) (Figure 30E) were not 

statistically different between fibers exchanged with WT and mutant Tn (P > 0.05). The 

mutagenesis required as part of the FRET assay design did not significantly alter the 

native function of Tn.  

Regulated actin filaments (rAc) were reconstituted from Tn, tropomyosin (Tm), 

and F-actin. rAc was reconstituted with Tn containing the FRET donor (rAc-D), and with 

Tn containing the FRET donor and acceptor (rAc-DA). SDS-PAGE was used to assess 

the purity of thin filament proteins, and show rigor-S1 binding did not perturb Tn or Tm 

bound to actin (Figure 31). rAc was reconstituted with 5x more Tm than actin protomer 

to promote filament stability, but the amount of Tm bound to actin remained unchanged 

with excess Tm in solution, compared to rAc reconstituted with one Tm:actin protomer.  

The chemical structure of the small molecule compounds bepridil, levosimendan, 

and EGCG used in this study are shown (Figure 32). To assess the effect on filament 

morphology from PKA treatment, S1 binding, DMSO, and small molecules, rAc-DA 
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filaments were imaged using epifluorescence (Figure 33). Filament bundling is not 

appreciated, and donor and acceptor dyes co-localize, suggesting Tn remains stably 

bound to rAc as an intact assembly. 

 

 
 

 
Figure 30 
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Figure 30. Functional characterization of mutated Tn. WT Tn consisting of myc-TnT, 

TnI, TnC and mutant (M) Tn consisting of myc-TnT, TnI189C, TnC127C were 

exchanged into skinned cardiomyocytes from rat ventricles. (A) Western blot analysis of 

reserved fibers. Exchanged myc-TnT (WT or M) was compared to native TnT to 

determine the Tn exchange efficiency. (WT: n=3; mutant: n= 3) Also shown are lanes 

containing native TnT (C). (B) Exchange efficiency from samples in (A). Shown are the 

mean ± SEM (WT: n=3; mutant: n=3). Differences were not significant (P > 0.05, two-

way ANOVA). (C) Pooled data (mean ± SEM, WT: n = 9; mutant: n = 9) from force-pCa 

measurements of fibers at short (red, 1.9 µm) and long (blue, 2.3 µm) sarcomere lengths 

(SL). Lines for mutant (dotted line) and WT (solid) exchanges are drawn using the mean 

of Ca2+-sensitivity pCa50 and maximum force Fmax recovered from individual fits of 

fibers. (D) Average maximum force ± SEM from (C) for SL at 1.9 µm (white) and SL 2.3 

µm (grey). (E) Average pCa50 ± SEM from (C). A consistent coloring scheme is used in 

(D-E).  
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Figure 31. Assessment of sample purity of thin filaments and myosin subfragment-1. 

SDS-PAGE (12%, 29:1) of reconstituted mutant Tn (TnI189C, TnC127C, TnT), Tm with 

α and β isoforms, actin, and S1. Molecular weight markers (M) are shown. rAc (10 µM 

in actin) reconstituted with mutant Tn, Tm, and actin at a molar ratio of 1:5:7 Tn:Tm:Act 

was cosedimented with S1 (10 µM). The pre-spin mixture (W) and pellet (P) are shown. 

 

 
 

 

 

 

 

Figure 32. Chemical structures of small molecules. Shown are bepridil, levosimendan, 

and EGCG. 
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Figure 33  
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Figure 33. Filament morphology of rAc-DA with small molecules, myosin S1, and 

PKA treatment. Epifluorescence images of PKA-treated rAc-DA and rAc-DA 

supplemented with DMSO (0.5%, v/v), 200 µM bepridil, 200 µM levosimendan, 200 µM 

EGCG, and 1.5 µM S1. Filaments were diluted to 10 nM in WB and imaged on glass 

coverslips. Shown is the emission from directly-excited TnI189C*AF546, directly-

excited TnC127C*ATTO655, and the merged images. The scale bar is 5 µm. 

 
 
6.5 Determining the concentration of free Ca2+  
 
 The concentration of free Ca2+ in solution was determined using the Ca2+ sensitive 

dye Fluo-4FF. Figure 34A shows the emission from 500 nM Fluo-4FF in WB with serial 

injections of the Ca2+ buffer utilized in subsequent Ca2+ titrations of rAc: WB 

supplemented with 50 mM CaCl2. Ca2+ binds to Fluo-4FF in a 1:1 complex, and upon 

binding, the dye molecule undergoes a conformational change that allows fluorescence 

emission upon excitation with blue light with no spectral shift. Eq. 17 was then used to 

convert emission intensity to [Ca2+]free (Figure 34B). WB alone did not have any 

contaminant Ca2+, evident from the first point prior to injecting Ca2+ (injection #0). Using 

a fluorescent Ca2+ indicator provided a direct measurement of Ca2+ in solution with fewer 

variables, as opposed to Ca2+ calculators that give an indirect measurement of free Ca2+. 

Ca2+ calculators that solve simultaneous equilibrium reactions require user-defined values 

prone to inaccuracies, including the absolute concentration of buffer components that 

compete for Ca2+ binding (e.g. EGTA) and instrument aliquot volume.188   
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Figure 34. Calibration of the concentration of free Ca2+. The Ca2+-sensitive dye Fluo-

4FF was diluted to 250 nM in WB, and serially injected with 2 µL of WB supplemented 

with 50 mM CaCl2. Left, emission from Fluo-4FF (excitation, 490 nm; emission, 520 

nm). The * indicates the emission from the donor after adding 100 mM CaCl2. Right, data 

were corrected for dilution, and the free Ca2+ was calculated from the fluorescence 

intensities using Eq 2.5, with fmax equal to emission after addition of 100 mM CaCl2 (*).  

 
 
6.6 Screening for Ca2+-induced activation 
 

The effect of small molecules on Ca2+-induced activation of Tn was assessed with 

Ca2+ titrations of rAc (250 nM in Tn) in the presence of the compound solvent (DMSO, 

0.5%, v/v), bepridil (200 µM), levosimendan (200 µM), EGCG (200 µM), S1 (750 nM), 

and in rAc with bisphosphorylated TnI Ser-23/24 (PKA-treated). The emission from the 

donor in paired D/DA filaments was monitored with 2 µL serial injections of working 

buffer (WB: 50 mM MOPS pH 7.0, 5 mM MgCl2, 2 mM EGTA, 5 mM BME) 

supplemented with 50 mM CaCl2 (Figure 35A). Paired samples were donor 

concentration-matched using 3 M guanidine hydrochloride (GnHCl) using Eq. 14. Tn 

dissociation eliminated donor quenching through resonant energy transfer. The emission 
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intensity of the donor from dissociated rAc-DA was corrected to match the donor 

intensity from dissociated rAc-D. Intensity data from rAc-D/DA samples were also 

corrected for dilution, then plotted again free Ca2+ (Figure 35A). FRET efficiency E was 

then calculated from the corrected intensity data using 𝐸 = 𝑓8
SQ 1 − 𝐼-8 𝐼- , where fA 

is the acceptor labeling efficiency, IDA is the intensity of the donor from rAc-DA, and ID 

is the intensity of the donor from rAc-D. 

 
6.6.1 Bepridil and S1 both increased Tn activation and Ca2+ sensitivity 
 

Figure 35C and 35D show E and normalized E, respectively, vs. free Ca2+, with 

fits to the Hill equation. Normalized E clearly shows an increase in Ca2+ sensitivity with 

S1 and bepridil compared to untreated rAc with bepridil and S1, evident from the 

leftward shift of the titration curves. Bepridil increased FRET efficiency both under Ca2+ 

depleted conditions (E-, apo) and Ca2+-saturating conditions (E+, ≈3 mM CaCl2), though 

not as dramatically as S1 binding (Figure 35E). The recovered Ca2+ dissociation constant 

Ca50 and Hill coefficient nH in Figure 35F show the similar effects induced by S1 binding 

and bepridil: both reduced cooperativity and significantly increased Ca2+ sensitivity 

compared to untreated filaments. Table A12 summarizes the recovered parameters from 

fits to the Hill equation. The Ca2+ sensitivity of Tn was unchanged with levosimendan. 

Ca50 and nH with levosimendan were not significantly different from non-treated rAc. 
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Figure 35. Effect of small molecules, PKA treatment, and S1 binding on the Ca2+-

dependent activation of regulated actin. (A) Representative traces for Ca2+ titrations of 

rAc-D (dashed) and rAc-DA (solid) at 250 nM. Fluorescence emission of the FRET 

donor vs. injection #. (B) Fluorescence emission from (A) corrected for dilution, and rAc-

DA corrected for dilution and concentration vs. the concentration of free Ca2+. (C) rAc 

(250 nM in Tn) (blue), PKA-treated rAc (magenta) and rAc supplemented with the drug 

carrier (red, 0.5% DMSO, v/v), 200 µM bepridil (green), 200 µM levosimendan (purple), 

200 µM EGCG (orange), and 0.75 uM S1 (cyan) were titrated with Ca2+. A consistent 

coloring scheme is used in (C-G). FRET efficiency was calculated from titrations of pair 

D/DA rAc filaments. Solid lines represent fits of the data to the Hill equation to recover 

the Hill coefficient (nH) and Ca2+ dissociation constant (Ca50) (Table A12), FRET 

efficiency under depleted Ca2+ (E-) and the FRET efficiency under saturating Ca2+ (E+). 

(D) Normalized data from (C). (E) Recovered E- (open bars) and E+ (filled bars) from fits 

in (C). Mean ± asymptotic SE (error bars) are shown. (F) Recovered nH and Ca50 from 

fits in (C). Mean ± asymptotic SE (error bars) are shown. (G) Plot of recovered E-  vs. 

pCa50 = − 𝑙𝑜𝑔 𝐶𝑎�"  for small molecule modulators of troponin activation. Solid line is 

a fit of data to a first order polynomial (R2 = 0.97).  
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6.6.2 EGCG and TnI phosphorylation reduced Ca2+ sensitivity 
 

EGCG dramatically desensitized Tn to Ca2+, evident from the rightward shift in 

the titration curve in Figure 35B, increasing the Ca50 from 1.12 µM for untreated rAc to 

4.06 µM. PKA treatment induced a smaller, but still significant (P<0.05) desensitization 

for Ca2+. Cooperativity significantly decreased with EGCG, but was unchanged with 

PKA treatment. EGCG caused a ≈1.5-fold decrease in E-, but E+ recovered slightly 

higher compared to untreated rAc. PKA treatment caused a small ≈1.1-fold decrease in E- 

 
6.6.3 Ca2+ sensitivity is correlated to the Ca2+-depleted FRET efficiency 
 

Figure 35G shows the FRET efficiency under Ca2+-depleted conditions E- plotted 

against pCa50 = − 𝑙𝑜𝑔 𝐶𝑎�" , fit to a first order polynomial (R2 = 0.97). Filaments treated 

with small molecules that increased Ca2+ sensitivity had higher E-, and treated filaments 

with decreases in Ca2+ sensitivity had lower E-. E-, a property of Tn in the absence of 

Ca2+, is correlated to a property of Tn under activating Ca2+. 

 
6.7 Screening for myosin-induced activation 
 

To assess myosin-induced activation of Tn, rigor-S1 titrations were performed on 

PKA-treated rAc, and rAc supplemented with EGCG (200 µM) and bepridil (200 µM). 

The emission from the donor in paired samples (250 nM in Tn) was monitored with 2 µL 

serial injections of 5 µM S1 in WB (Figure 36A) under Ca2+-saturating (+Ca, 3 mM 

CaCl2) and Ca2+-depleted conditions (apo). Donor intensity in paired rAc-D/DA samples 

was concentration-matched and corrected for volume as previously described (Figure 

36B), and used to calculate the FRET efficiency.  
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6.7.1 S1-induced activation of Tn occurs independently of Ca2+ 
 

Figure 36C and 36D show the FRET efficiency and normalized FRET efficiency, 

respectively, plotted against the ratio of the total amount of S1 added to actin in the 

sample (θ50 = [S1]T/[Actin]T) for samples under apo and +Ca conditions. Figure 36E 

shows the recovered FRET efficiencies with total S1 added (E+S1, +1.43 µM S1) and 

without S1 (E-S1). E+S1 for apo rAc and E-S1 for Ca2+-saturated rAc were 45.9 and 43.6%, 

respectively, indicating activation with S1 behaved like Ca2+-induced activation.  

Figure 36F shows the recovered Hill coefficients nH and θ50 for apo and Ca2+ 

conditions, where θ50 is the stoichiometry that produces half maximal activation. Adding 

Ca2+ increased myosin sensitivity in rAc and with EGCG, but myosin sensitivity 

remained unchanged when rAc was treated with PKA. Table A13 summarizes the 

recovered parameters.  

 
6.7.2 Bepridil eliminates S1-induced activation of Tn 
 

The FRET efficiency remained unchanged for rAc supplemented with bepridil 

from E-S1 to E+S1, indicating no myosin-induced Tn activation. Ca2+-induced activation of 

Tn was preserved, as seen in the Ca2+ titrations with bepridil.  

 
6.7.3 EGCG and PKA treatment reduce myosin sensitivity  

 
EGCG decreased E- as seen in the Ca2+ titrations; saturating S1, however, 

recovered E+S1 greater than the for rAc. The E+S1 for both apo and +Ca with EGCG was 

similar, indicating S1 activates Tn the same, regardless of the presence of Ca2+. So 

although myosin sensitivity increased with Ca2+, the level of S1-induced activation was 

unchanged with Ca2+. Myosin sensitivity significantly decreased under Ca2+ depleted 
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conditions for both EGCG and PKA treatment, where θ50 was 0.55±0.05 and 0.59± 0.01, 

respectively. When Ca2+ was added to rAc with EGCG, the myosin sensitivity recovered 

to rAc under apo Ca2+ conditions, whereas Ca2+ did not change the myosin sensitivity of 

PKA-treated rAc. PKA treatment induced a massive cooperativity compared to untreated 

filaments, with Ca2+ increasing cooperativity from 28.1 to 50.7. 
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Figure 36. The effect of small molecules and Ca2+ on the activation of thin filaments 

by myosin. (A) Representative traces for S1-titrations of rAc-D (dashed) and rAc-DA 

(solid) at 250 nM in Tn under Ca2+-saturated (+3 mM CaCl2, red) and Ca2+-depleted 

(cyan) conditions. Fluorescence emission of the FRET donor from rAc serially injected 

with 2 µL of 5 µM S1 in WB. (B) Fluorescence emission from (A) from rAc-D corrected 

for dilution, and rAc-DA corrected for dilution and concentration relative to the total 

concentration of [S1]/[Actin]. (C) rAc (blue) and rAc supplemented with 200 µM EGCG 

(orange) or 200 µM bepridil (green) were titrated with S1. The calculated FRET 

efficiency (mean ± SEM, n = 3) vs. the relative total concentration of [S1]/[Actin] is 

shown. Measurements were performed with no Ca2+ (dashed lines) and with 3 mM CaCl2 

(solid lines). Smooth lines represent fits of the data to the Hill equation. The fits to PKA-

treated rAc are shown (magenta). (D) Normalized FRET efficiencies from (C) for PKA-

treated rAc, rAc, and rAc supplemented with 200 µM EGCG. (E) Stacked bar plot 

showing FRET efficiencies from the fits ± asymptotic SE at saturating S1 (total S1 added 

1.43 µM, filled), and with no S1 (open) for samples in (C). (F) Scatter plot summarizing 

the Hill coefficients (nH) and relative total concentrations of  [S1]/[Actin] that produces 

half-maximal activation ([S1]/[Actin])50 ± asymptotic SE from the fits in (C) for PKA-

treated rAc, rAc, and rAc supplemented with 200 µM EGCG with no Ca2+ (apo, open) 

and with Ca2+ added (3 mM CaCl2, filled). A consistent coloring scheme is used in (C-F). 
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6.8 Control measurements for PKA treatment 
 

To determine if PKA treatment and the removal of PKA and its co-factor ATP 

from treated filaments influenced Tn behavior to Ca2+ and myosin binding, Ca2+and S1 

titrations were performed on paired untreated rAc filaments, PKA-treated filaments (PKA 

and 5 mM ATP), and filaments mock-treated with PKA and 5 mM ATP. Figure 37 shows 

mock-treatment did not have a significant effect (P>0.05) on Ca50 compared to untreated 

filaments, where PKA treatment produced a significant increase in Ca50. As expected, 

PKA treatment and mock treatment did not produce a significant effect on nH. Table A14 

summarizes the recovered parameters from Ca2+ titrations. Figure 38 shows only PKA 

treatment produced a significant effect on nH and θ50 under both apo and +Ca conditions. 

Recovered parameters are listed in Table A15. PKA-mediated TnI Ser-23/24 

phosphorylation is responsible for modulating Tn activation. 
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Figure 37. Control measurements of PKA treatment of rAc titrated with Ca2+. (A) 

Calculated FRET efficiency vs. free Ca2+ for rAc, rAc treated with PKA and ATP 

(magenta), mock-treated with ATP (green), and mock-treated with PKA (tan) (250 nM in 

Tn in WB). Lines represent fits to the Hill equation. (B) Normalized FRET efficiency. 

(C) The recovered Hill coefficients (nH) asymptotic SE from fits in (A). (D) The 

recovered concentration of calcium to achieve half maximal activation (Ca50) from fits in 

(A) ± SE. *P<0.05 relative to non-treated rAc (n.s. = not significant). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38  
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Figure 38. Control measurements of treatment of reporter filaments with PKA titrated 

with S1. (A) Calculated FRET efficiency vs. the relative total concentration of 

[S1]/[Actin] for rAc, rAc treated with PKA and ATP (magenta), mock-treated with ATP 

(green), and mock-treated with PKA (tan) in WB (apo, dashed lines) and WB 

supplemented with 3 mM CaCl2 (+Ca, solid lines). Lines represent fits to the Hill 

equation. (B) Normalized FRET efficiency. (C) The recovered Hill coefficients (nH) 

asymptotic SE from fits in (A) for apo (open) and +Ca (filled). (D) The recovered 

concentration of calcium to achieve half maximal activation (Ca50) from fits in (A) ± SE. 

*P < 0.05 relative to non-treated rAc for apo and +Ca (n.s. = not significant). 

 
 
6.9 S1 binds to rAc with small molecules and PKA treatment 
 

To determine if S1 was binding to rAc filaments under all conditions, SDS-PAGE 

was used to assess S1 binding to rAc, and rAc treated with PKA, bepridil, or EGCG. S1 

(10 µM) was cosedimented with rAc reconstituted with WT Tn (10 µM in actin) under 

apo conditions and with 3 mM CaCl2. Figure 39A shows the SDS-PAGE of the pre-spin, 

the supernatant, and the pellet. Densitometry analysis of the S1 and actin band intensities 

in the pellet gave percent S1 saturation, seen in Figure 39B. The percent saturation 

(>80%) shows S1 binds under all conditions.  

 
6.10 A high throughput single point drug screen 
 

Figure 40 shows the high throughput (HTS) strategy for screening compound 

libraries for potential inotropic agents, and finding the EC50 for qualifying compounds. 

EC50 is the concentration of compound that produces a half-maximal response.  
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Figure 39. SDS-PAGE shows myosin binding with small molecules and PKA 

treatment. (A) SDS-PAGE (12%, 29:1) showing the reserved fraction (W), supernatant 

(S), and pellet (P) from the cosedimentation of regulated actin (rAc) reconstituted with 

WT Tn (10 µM in actin protomer) and S1 (10 µM) in WB.  The fraction of S1 bound was 

determined using densitometry analysis comparing the band intensities S1 and actin. rAc, 

PKA-treated rAc, and rAc supplemented with 200 µM EGCG or bepridil without added 

Ca2+ and with 3 mM CaCl2 are shown. Molecular weight markers (M), tropomyosin 

(Tm), TnI, TnC, and the two isoforms of the essential light chains (ELC1 and 2) are 

resolved. (B) The fraction of S1 bound is shown for rAc (blue), PKA-treated rAc 

(magenta), and rAc supplemented with 200 uM EGCG (orange) and bepridil (green) 

without added Ca2+ (apo, open) and with 3 mM CaCl2 (filled). 
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Figure 40. High throughput screening (HTS) strategy. (A) The FRET efficiency 

without added Ca2+ E- was normalized to untreated rAc. The grey rectangle indicates a ± 

0.1 threshold for E-, where compounds above the threshold are Ca2+ sensitizing; 

compounds below the threshold are Ca2+-desensitizing. (B) EGCG concentration-

response curve illustrating HTS lead generation. (E-) was measured for different 

concentrations of EGCG. Solid line is a fit to the Hill equation with EC50 = 446 nM. 
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7 DISCUSSION 
 

Sarcomeric modulators are a promising therapeutic strategy in the treatment of 

heart failure that do not require changes in Ca2+ transients. Ca2+ inotropes increase or 

decrease the Ca2+ binding affinity of TnC without changing intracellular Ca2+ 

concentrations, shifting the population of active or inactive Tn that corresponds to a shift 

in contracted or relaxed sarcomeres. Insights into the mechanism of action of these 

molecules can facilitate informed drug design and development, which could eliminate 

many of the negative effects associated with compounds currently used.189-190  

A compound does not need to bind directly to TnC to alter Ca2+ sensitivity; 

therefore, a drug screen developed in reconstituted thin filaments can potentially resolve 

effects from compounds discarded in screens with isolated TnC or Tn alone. Non-specific 

interactions would also be reduced. This FRET assay was designed within reconstituted 

thin filaments as an in vitro biochemical model28 for muscle activation to directly monitor 

the activating structural change in Tn, where the SABS moves off actin and closer to 

TnC. A higher FRET efficiency is associated with a higher population of Tn in the active 

conformation. FRET provides the relative distances between the donor and acceptor dyes, 

positioned, respectively, on TnI189 in the SABS, and TnC127, in the C-lobe of TnC. The 

design of this assay was specific for drug screening, where a green-excitable FRET donor 

was used to reduce the possibility of photoinactivation of small molecules (drugs) by 

blue-shifted excitation wavelengths, e.g. blebbistatin deactivation by exposure to light 

below 488 nm.110 While other fluorescence assays in thin filaments have been developed 

to monitor Ca2+ sensitivity using changes in TnC conformation,191 this assay was highly 

sensitive to the activating structural change between TnC and TnI in reconstituted thin 
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filaments. The fraction of active Tn was estimated by monitoring FRET efficiency. The 

contributions of Ca2+ and rigor S1 to activate the thin filament were determined, where in 

native cardiomyocytes, these contributions would be difficult to resolve. This 2D 

screening method was applied to three previously studied compounds thought to alter the 

Ca2+ sensitivity of TnC: bepridil, levosimendan, and EGCG. The assay was validated as a 

drug screen to identify compounds that bind the thin filament and alter myosin sensitivity 

to actin and/or TnC to Ca2+, while also obtaining data suggesting the molecular 

mechanisms behind Ca2+- and myosin-dependent activation, and PKA-mediated Ca2+ 

desensitivity of the thin filament.  

 
7.1 Cooperative activation by Ca2+ is dependent on the presence of 
rigor-S1 
 

Ca2+ binding to TnC is a critical step for initiating activation, but cardiac muscle 

activates in a highly cooperative process involving both Ca2+ and myosin binding. 

Crossbridge formation (S1 binding to actin) not only causes additional myosin binding, 

but also increases the Ca2+ sensitivity of TnC. Previous experiments have shown rigor-S1 

exerts a Ca2+-sensitization on thin filament activation,49, 136, 192 and full activation can be 

achieved by the S1 head alone.193 Rigor-S1 not only sensitized regulated actin to Ca2+, 

but also cooperatively activated Tn in a Ca2+-independent manner, consistent with studies 

in isolated cardiomyocytes.22 The implications of Tn activating independently of Ca2+ 

hint at the possibility that Ca2+-dependent Tm movement may not be required for for 

myosin crossbridge formation. In the absence of Ca2+, rigor-S1 binding could produce a 

conformational change in actin, forcing Tn into the active conformation. However, Ca2+ 

and S1 together maximally increased the population of active Tn, suggesting Ca2+ alone 
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does not maximally activate Tn. These results coincide with those seen by Zhou et al., 

who used anisotropy to show S1 changes the dynamics in the C-terminal region of TnI 

independently of Ca2+, but both Ca2+ and S1 are required for maximal activation.82   

S1 cooperatively activated thin filaments in a Ca2+-independent manner; Ca2+ 

cooperatively activated thin filaments only in the absence of S1. Ca2+-induced activation 

of rigor-S1-bound thin filaments was negatively cooperative (nH = 0.8 ± 0.1), but S1-

induced activation of thin filaments in both Ca2+-depleted conditions (nH = 2.9 ± 0.1) and 

Ca2+-saturating conditions (nH = 2.8 ± 0.1) was cooperative. The high cooperativity in 

S1-dependent activation suggests multiple S1 heads must cooperatively bind to the thin 

filament to displace a single SABS. Conversely, the cooperativity of Ca2+ binding was <1 

in filaments with a high probability of multiple rigor-S1 heads already bound to actin 

(rigor-S1:actin protomer = 1:2.3). This suggests the binding of one Ca2+ molecule 

displaced one SABS from actin. Simply stated, when strong crossbridges are bound to 

actin, Ca2+ activates the thin filament non-cooperatively; rigor-S1 activates thin filaments 

cooperatively, whether or not Ca2+ is bound.  

These results suggest actin conformational changes may be responsible for 

cooperative activation. When rigor-S1 binds to an actin protomer, conformational 

changes in actin may be translated from the SABS to the regulatory head of Tn, through 

TnT(T1) to Tm. These translated conformational changes may influence further changes 

in actin, allowing for S1 heads to cooperatively bind. Adding Ca2+ to these already semi-

activated filaments still produces a conformational change in Tn regulatory head, where 

the SABS moves closer to TnC, having already been displaced off actin by S1 binding. 

This Ca2+-induced conformational change is not cooperatively translated along the thin 
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filament. In the absence of rigor-S1 binding, Ca2+-dependent conformational changes in 

the SABS are translated across the thin filament, allowing for cooperative activation (nH 

= 1.2± 0.1) by Ca2+.  

 
7.2 Cys84Ser substitution in TnC prevents levosimendan binding  
 

Levosimendan is a Ca2+ sensitizer used in the management of acutely 

decompensated heart failure.194-195 Levosimendan binds weakly to the N-lobe of TnC,196-

197 and exhibits Ca2+-sensitizing effects in skinned muscle fibers,177, 196 and in isolated 

TnC and reconstituted Tn.177 There were no effects on the level of Tn activation with 

levosimendan, and no changes in Ca2+ sensitivity using this assay. This is most likely due 

to the assay design. Native Cys residues in TnC and TnI were removed to covalently 

attach fluorescent maleimide probes to engineered Cys on residues 189 and 127 for TnI 

and TnC, respectively. In TnC, one of the mutations was Cys84Ser. Levijoki et al. 

showed levosimendan increased Ca2+ sensitivity in isolated WT hcTnC; when the point 

mutation Cys84Ser was introduced in TnC, there was no change in Ca2+ sensitivity with 

levosimendan, indicating Cys84 is necessary for levosimendan binding to the C-lobe of 

TnC.177 Schlecht et al. also showed levosimendan did not produce a significant change in 

Ca2+ sensitivity using a FRET assay monitoring TnC conformational changes in 

reconstituted thin filaments, where their TnC also had the Cys84Ser mutation.191 This 

shows a potential limitation in this assay design, where engineered Tn could alter the 

binding of small molecules to TnC or TnI compared to native proteins.  
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7.3 Bepridil and rigor-S1 promote a stabilized open conformation 
of the N-lobe to increase Ca2+ sensitivity 
 

Bepridil is a Ca2+ sensitizer shown to increase maximally activated force and 

ATPase activity in isolated myofibrils, and increase the sensitivity of the thin filament for 

Ca2+.178 X-ray crystallography studies using isolated TnC,198 and NMR studies of a 

TnI/TnC complex199 showed bepridil binds to the N-domain of TnC, stabilizing the open 

(active) conformation of TnC.200 This is consistent with the observation that bepridil 

increases the population of active Tn, evident by increases in E at both apo and +Ca, 

compared to untreated filaments (Figure 35E). This increase in E is similar to the effects 

of S1 binding. In the Ca2+ screen, S1 and bepridil equivalently increased Ca2+ sensitivity 

(Figure 35F).   

The myosin screen was surprising in that there was no evident S1-induced 

activation of Tn in filaments treated with bepridil. From Sections 1-3, this author 

hypothesized actin-Tm causes a ≈7.4-fold decrease in Ca2+ sensitivity of Tn136 due to the 

displacement of the switch region away from the N-lobe of TnC as a result of SABS-

actin binding. The switch region cannot, therefore, stabilize the open conformation of N-

TnC, as predicted by the Herzberg model of Tn activation.64 Bepridil is thought to 

increase Ca2+ sensitivity by stabilizing the open conformation of the N-lobe by binding to 

its hydrophobic pocket. If stabilizing the N-lobe were the main mechanism of action of 

bepridil, there should be no reason why myosin has no effect on the conformation of Tn 

in the presence of bepridil, particularly because bepridil does not appear to maximally 

activate Tn with Ca2+ alone (Figure 36C-D). This suggests myosin and bepridil both 

activate Tn using the same mechanism—that is, myosin binding to actin is enough to 

push the displaced switch region into the hydrophobic pocket of the N-lobe of TnC, 
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inducing the same effect as bepridil binding. This is evident by the S1-dependent increase 

in E, suggesting the SABS may be “pushed” off actin by myosin, and the switch region is 

“pushed” towards the N-lobe.  The sedimentation experiments showed S1 was still 

binding to rAc in the presence of bepridil, suggesting bepridil does not act as an inhibitor 

of myosin. Bepridil-dependent increases in myosin ATPase activity and force generation 

suggest bepridil is not preventing crossbridge cycling.178 Thus, it is reasonable to expect 

when bepridil is bound to the N-lobe of TnC and stabilizing the open conformation, 

myosin-induced displacement of the switch region has no further stabilizing effects on 

the open conformation. Indeed, the switch region may not be binding at all when bepridil 

is bound, as bepridil reduces the affinity of the switch region for the N-lobe ≈3.5-fold.200 

This actually supports this author’s hypothesis that the switch region may not bind to the 

N-lobe at all in the absence of myosin, as even in the presence of bepridil, there was no 

change in the level of Tn activation with Ca2+. If the switch region were binding, the 

activation should have decreased with Ca2+ in the presence of bepridil. Bepridil binding 

to TnC and myosin binding to actin both act as Ca2+ sensitizers by promoting the open 

conformation of the N-lobe: the former does so by directly binding to the hydrophobic 

pocket; the latter does so indirectly, by promoting the switch region from binding to the 

hydrophobic pocket through some mechanism that may involve myosin-dependent actin-

Tm conformational changes.  

 
7.4 The effect of TnI Ser-23/24 phosphorylation on Tn activation 

Phosphorylation of TnI Ser-23/24 increases lusitropy, enabling rapid relaxation 

during an increase in heart rate. To gain insights into the mechanistic action behind PKA-

mediated Ca2+ desensitization of TnC, Ser-23/24 of TnI was phosphorylated using PKA 
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treatment. Ser-23/24 phosphorylation facilitates the release of the TnI N-terminal peptide 

from the N-lobe of TnC, promoting Ca2+ release from Site II.57 Ward et al. showed the 

deletion of residues 1-29 of the N-terminal extension of TnI mimicked the effects of 

phosphorylation of Ser-23/24 to reduce Ca2+ sensitivity of myosin ATPase activity, 

suggesting phosphorylation eliminates N-TnI and N-TnC interactions.56 PKA treatment 

did not dramatically alter the level Tn activation under low and high Ca2+ (Figure 35E) 

compared to non-treated filaments, but it did cause a ≈1.4-fold decrease in Ca2+ 

sensitivity. This suggests conformational changes between TnC/TnI do not affect the 

overall architecture of Tn, meaning there are no PKA-dependent allosteric changes 

evident in Tn. Since the level of Tn activation remains the same, a decrease in Ca2+ 

sensitivity may be due to allosterically-induced changes focused in the Ca2+ coordination 

at Site II in the N-lobe of TnC.  

An NMR study by Hwang et al. on a cTnI(1-73) fragment in complex with cTnC 

showed the N-TnI/N-TnC interactions fix the position of the N-lobe in space, and Ser-

23/24 phosphorylation removes those restricting interactions, allowing N-TnC to move 

more freely.58 They suggest when the N-lobe is rigid in space, interactions between the 

switch region and N-lobe could be compromised, reducing the level of Tn activation, 

meaning more Ca2+ would be required to activate Tn (reduced Ca2+ sensitivity). If what 

Hwang et al. suggest is true, the level of active Tn should decreased with Ser-23/24 

phosphorylation (i.e., increase the level of SABS bound to actin, drawing the switch 

region away from the TnC N-lobe); instead, there was no dramatic change in Tn 

activation. The presence of Tm-actin could influence N-lobe dynamics in a way not 

evident in a fragmented TnI/TnC complex; additionally, since this dissertation predicts 
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Ca2+-dependent switch region binding is eliminated in thin filaments, no change in the 

level of Tn activation with PKA treatment is reasonalbe, as a stiffer N-lobe of TnC would 

not affect the switch region or SABS of TnI.   

It’s interesting to note Hwang et al. proposed the N-terminal extension of cTnI is 

a highly dynamic IDR, much like the C-terminal region of TnI (see Sections 1-3); this is 

in contrast to an NMR study by Howarth et al. using a cTnI(1-32) peptide, which showed 

a more rigid α-helical N-terminal extension that maintains the same structure 

independent of Ser-23/24 phosphorylation.201 The presence of potential binding sites 

(actin, TnT, TnC, the remaining portion of TnI) could significantly affect the structure 

and dynamics of the N-terminal extension, suggesting it may be too early to designate 

this region as an IDR. Indeed, Howarth et al. docked their NMR structure of the N-

terminal extension onto the Takeda crystal structure,27 showing that when 

phosphorylated, residues in the N-terminal extension interact with the inhibitory region 

(IR) of TnI, preventing the IR from displacement from actin, subsequently increasing 

crossbridge inhibition.  

The results from the myosin screen of PKA-treated rAc may support the Howarth 

hypothesis. PKA treatment caused a dramatic ≈1.6- and ≈2.9-fold decrease in myosin 

sensitivity (θ50 in Table A13) under apo and +Ca conditions, respectively, compared to 

untreated filaments. PKA treatment also significantly enhanced cooperativity for myosin 

binding. Previous studies using skinned cardiomyocytes showed TnI Ser-23/24 

phosphorylation desensitizes force and ATPase to Ca2+;79, 202 this may be due to reduced 

crossbridge-mediated activation when TnI is phosphorylated. If the N-terminal extension 

is “blocking” the displacement of the IR when phosphorylated, it is reasonable to expect 
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more rigor-S/actin binding is required to induce an activating conformational change, 

hence why it takes so many myosin molecules to activate Tn in such an extremely 

cooperative manner. This also is reasonable when considering the level of active Tn in 

PKA-treated rAc was similar to non-treated rAc: Ser-23/24 phosphorylation does not 

increase the amount of IRs bound to actin; instead, it works to strengthen the inhibitory 

effect of IRs already bound to actin.  

 

7.5 EGCG may destabilize Ca2+-dependent allosteric changes in Tn 

A molecular compound specifically targeted to Tn to decrease myofilament 

sensitivity to Ca2+ is a potential therapeutic strategy for treating RCM, and other CMs 

that cause an increase in myofilament Ca2+ sensitivity. EGCG is a compound found in 

green tea203 that reduces myofilament Ca2+ sensitivity in skinned cardiac myofibrils.176 In 

mice expressing the RCM mutation TnI(R193H), treatment with EGCG restored 

impaired diastolic function.175 NMR studies showed EGCG binds to the hydrophobic 

cleft of the C-terminal domain of cTnC in the absence of TnI, and suggested EGCG may 

compete with TnI(34-71) binding to C-TnC, potentially weakening the anchor holding 

TnC onto the thin filament.204 This is interesting, considering the C-lobe is historically 

thought to play only a structural role in Tn;31 there are, however, known CM-causing 

mutations in this region,97 suggesting a potential functional target for EGCG. Fuchs et al. 

showed EGCG decreases Mg2+ sensitivity for Sites III and IV, which may alter the 

conformation of the C-lobe directly and the N-lobe allosterically as the mechanism for 

decreased Ca2+ sensitivity.205 Is EGCG destabilizing C-TnC/N-TnI interactions, or is an 

allosteric change translated to Site II that facilitates Ca2+ release or decreases the potential 

for Ca2+ to bind? 
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EGCG treatment caused a ≈3.6-fold decrease in Ca2+ sensitivity. EGCG also 

stabilized the inactive Tn state, evident by the sharp decrease in E under Ca2+-depleted 

conditions (Figure 35E). This could translate into a larger number of SABS bound to 

actin; or into destabilized interactions between the C-TnC/N-TnI, forcing the C-lobe 

farther from the SABS. Destabilized interactions would hinder Ca2+-dependent activating 

allosteric transitions from being translated to the rest of the Tn complex, effectively 

reducing Ca2+ sensitivity. The level of active Tn at saturating Ca2+ was not significantly 

different from untreated filaments, suggesting Ca2+ binding can still restore the active 

population of Tn to non-treated levels.  

In the absence of Ca2+, S1 increased the level of active Tn with EGCG treatment 

(E+S1=59.8 ± 0.4%) significantly more than for untreated filaments (E+S1=45.9 ± 0.4%) 

(Table A13). The S1-induced change in E (∆ES1=E+S1-E-S1) for non-treated filaments is 

22.8%, and for EGCG-treated filaments is a dramatic 47.9%. This suggests EGCG 

binding causes conformational changes that promote the inactive conformation of Tn, but 

does not alter (and may enhance) the ability of Tn to maximally activate with saturating 

S1 only. Ca2+ is not needed to maximally activate Tn. This would be a potential benefit 

for RCM treatment with EGCG: hypersensitivity to Ca2+ is reduced without affecting the 

ability of the filament to maximally activate. Li et al. showed hypersensitivity to Ca2+ 

from RCM mutations (including TnIR193H) is not due to altered Ser-23/24 TnI 

phosphorylation,174 suggesting changes in SABS due to the R193H mutation enhance 

SABS displacement from actin to cause Ca2+ hypersensitivity. Therefore, treatment of 

RCM with a molecule that promotes a stabilization of the inactive state of Tn (SABS-
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actin interactions), like EGCG, is a rational strategy; this was already proven viable in 

mice in vivo by Zhang et al.175 

The mechanism of EGCG-dependent Ca2+ sensitivity may simply be a numbers 

game—there are fewer Tn active due to either a displaced C-lobe or enhanced SABS 

binding— meaning more Ca2+ has to bind to more Tn to restore the population of active 

Tn. Or, destabilized interactions between TnI/TnC prevent a translation of Ca2+-

dependent activating conformational changes. This explains reduced myofilament Ca2+ 

sensitivity with EGCG treatment.176 Therefore, EGCG may not actually prevent Ca2+ 

binding or facilitate Ca2+ release from Site II, therefore not altering the Ca2+ sensitivity of 

Site II at all, as Fuchs et al. predicted. Because EGCG dramatically alters the level of Tn 

activation and reduces cooperativity of Ca2+ binding, its mechanism of action to induce 

Ca2+ desensitivity differs from PKA-mediated TnI Ser-23/24 phosphorylation, which 

does not cause a dramatic change in the level of active Tn under Ca2+-depleted conditions 

nor any significant changes in cooperativity.  

 
7.6 Ca2+ sensitivity reflects the level of Tn activation under resting 
conditions 
 

There was a strong correlation between the Ca2+ sensitivity (pCa50 = -log[Ca2+]) 

and the FRET efficiency E under Ca2+-depleted conditions for compounds that target Tn 

(bepridil and EGCG binding to TnC) and processes directly affecting Tn subunits (PKA-

mediated Ser-23/24 phosphorylation). S1 was not included, as any effects on the level of 

Tn activation are secondary results of S1 binding to actin. A correlation between the 

inactive state of Tn, and the state of Tn at non-saturating Ca2+ was observed. Thus, the 

state of Tn in the absence of Ca2+ influences or predisposes the behavior of Tn activation. 
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A lower E may be due to an increase in the fraction of Tn in the inactive state, and 

perturbations that increase the probability that Tn is inactive under relaxing conditions 

desensitize Tn to Ca2+. Ca2+ sensitivity may reflect the fraction of active Tn under resting 

conditions. 

This correlation could be useful for drug screening. Figure 40 shows the proof of 

concept for using this assay as a two-point high throughput screen. The assay requires 

both the donor emission for rAc-D and –DA filaments. First, the Ca2+-depleted E- would 

be determined and normalized to non-treated rAc for thin filaments in the presence of the 

compounds, as depicted in Figure 40A. Lead compounds exceeding the threshold (Ca2+ 

sensitizers) or falling below the threshold (Ca2+ desensitizers) would then undergo 

compound titrations to determine the EC50 (the [compound] that incurs a half-maximal 

change in E), as seen for ECGC in Figure 40B. Promising compounds could then undergo 

Ca2+ and S1 titrations to fully resolve their Ca2+ and myosin-sensing abilities before 

undergoing more expensive functional assessments in skinned fibers.  

 
7.7 A drug screening tool—and beyond 
 

Multiple TnI mutations have been implicated in inherited cardiomyopathies.88 

This assay would first determine changes in the fraction of active Tn, and then assess 

changes in Ca2+ and myosin sensitivity. This assay could be used to assess the effects on 

Ca2+- and myosin-dependent activation from numerous mutations troponin, tropomyosin, 

actin, and S1 that have been implicated in cardiomyopathies.85, 206 Although altered 

molecular binding from the engineered Tn has proven problematic with levosimendan, a 

silver lining could be an assessment of altered molecular binding from disease-causing 

mutations, relevant in determining if a molecule is an appropriate therapeutic strategy for 
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a specific CM as an assessment of the binding ability of therapeutic agents to Tn with 

disease-causing mutations in sarcomeric proteins. Few, if any, biochemical thin filament 

reconstitution assays have monitored both myosin and Ca2+ sensitivity, in addition to 

revealing the fraction of active Tn. This screen could be used to expand insights into the 

mechanism of thin filament activation. 
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APPENDIX 
 
Calculating the Förster distance (R0). MatLab code for determining R0 for a FRET pair.  
 
 

 
 
 
 
 

1

%calculation of the J integral.
% units are in M^-1 cm^-1 nm^4
% donor and acceptor are peak normalized
% the x range is in common for donor and acceptor
% numerator

Error using evalin
Undefined function 'Calculating' for input arguments of type 'char'.

load donor emission and acceptor absorption
data

clear all;
donorFileName = 'donor_em';
acceptorFileName = 'acceptor_abs';

%pick integer wavelengths from absorbance

Donor=load(donorFileName);
Acceptor=load(acceptorFileName);

%pick integer wavelengths from absorbance

delta = Acceptor(2,1)-Acceptor(1,1);
pick=1:int32(1/delta):length(Acceptor);
AcceptorPick=Acceptor(pick,:);

donorWavelengthMin=Donor(1,1);
donorWavelengthMax=Donor(end,1);
donorLength = length(Donor);
donorRange = [donorWavelengthMin donorWavelengthMax]

acceptorWavelengthMin=AcceptorPick(1,1);
acceptorWavelengthMax=AcceptorPick(end,1);
acceptorLength = length(AcceptorPick);
acceptorRange = [acceptorWavelengthMin acceptorWavelengthMax]

rangeMin = min([donorWavelengthMin acceptorWavelengthMin]);
rangeMax = max([donorWavelengthMax acceptorWavelengthMax]);
lambda = rangeMin:rangeMax;

%
%len = size(Donor)(1);
donorEm = 0*lambda;
acceptorEx = 0*lambda;

donorOffset=donorWavelengthMin - rangeMin % 500-250
acceptorOffset=acceptorWavelengthMin - rangeMin % 250 - 250

donorEm(donorOffset+1:donorOffset+donorLength) = Donor(1:end,2);
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Table A1. Fitting results of rAc-TCSPC measurements of donor-only regulated 

actin filaments. Data represent one rAc reconstitution set. The TCSPC histogram of the 

FRET donor AF546 (TnI151-189) or ATTO550 (TnI196-211) was fit to a multi-

exponential decay model convolved with the IRF. Conditions: rAc-D were in working 

buffer (apo) or WB supplemented with 3 mM CaCl2 (+Ca). 

    Lifetime (ns)a     
Donor residue on TnI Condition 𝜏Q 𝜏+ 𝜏@ 𝜏- b χ2 
151C*AF546 apo 0.32 (0.11) 1.72 (0.16) 3.82 (0.73) 3.10 1.09 

 +Ca 0.33 (0.13) 1.92 (0.21) 3.76 (0.66) 2.91 0.95 
160C*AF546 apo 0.15 (0.14) 1.45 (0.16) 3.75 (0.70) 2.89 1.05 

 +Ca 0.17 (0.14) 1.43 (0.17) 3.70 (0.69) 2.81 0.95 
167C*AF546 apo 0.25 (0.11) 1.56 (0.17) 3.79 (0.72) 3.01 1.02 

 +Ca 0.31 (0.10) 1.71 (0.18) 3.79 (0.72) 3.07 1.01 
174C*AF546 apo 0.20 (0.14) 1.33 (0.20) 3.69 (0.66) 2.73 1.03 

 +Ca 0.15 (0.16) 1.20 (0.17) 3.72 (0.67) 2.72 1.00 
177C*AF546 apo 0.14 (0.18) 1.11 (0.20) 3.61 (0.62) 2.48 1.05 

 +Ca 0.24 (0.20) 1.43 (0.26) 3.66 (0.54) 2.40 1.09 
182C*AF546 apo 0.11 (0.14) 1.23 (0.20) 3.69 (0.66) 2.71 1.01 

 +Ca 0.13 (0.15) 1.26 (0.21) 3.67 (0.64) 2.64 0.98 
189C*AF546 apo 0.08 (0.26) 0.99 (0.18) 3.50 (0.56) 2.16 1.01 

 +Ca 0.12 (0.27) 1.18 (0.24) 3.52 (0.49) 2.05 1.07 
196C*ATTO550 apo 0.83 (0.16) 3.64 (0.84)  3.20 1.08 

 +Ca 0.92 (0.16) 3.66 (0.84)  3.22 1.12 
200C*ATTO550 apo 0.66 (0.15) 3.61 (0.85)  3.16 1.12 

 +Ca 0.73 (0.18) 3.72 (0.82)  3.19 1.03 
204C*ATTO550 apo 0.68 (0.09) 3.69 (0.91)  3.41 1.08 

 +Ca 1.64 (0.25) 3.78 (0.75)  3.24 1.34 
208C*ATTO550 apo 0.13 (0.16) 1.27 (0.19) 3.54 (0.65) 2.55 1.01 

 +Ca 0.12 (0.20) 1.33 (0.20) 3.56 (0.60) 2.44 0.95 
211C*ATTO550 apo 0.59 (0.12) 3.69 (0.88)  3.32 1.11 
  +Ca 0.75 (0.11) 3.72 (0.89)   3.40 1.06 
aLifetime (fractional amplitude). 
bAmplitude-weighted mean lifetime. 
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Table A2. Fitting results of rAc-TCSPC measurements of donor/acceptor regulated 

actin filaments with ATTO655 on TnC residue 35. Data represent one rAc 

reconstitution set. The TCSPC histogram of the FRET donor AF546 (TnI151-189) or 

ATTO550 (TnI196-211) was fit to a multi-exponential decay model convolved with the 

IRF. Conditions: rAc-D were in working buffer (apo) or WB supplemented with 3 mM 

CaCl2 (+Ca). 

    Lifetime (ns)a       
Donor residue on TnI Condition 𝜏Q 𝜏+ 𝜏@ 𝜏-8 b χ2 E 
151C*AF546 apo 0.21 (0.26) 1.17 (0.28) 3.29 (0.46) 1.91 0.99 0.38 

 +Ca 0.19 (0.31) 1.16 (0.28) 3.30 (0.41) 1.74 1.03 0.40 
160C*AF546 apo 0.13 (0.32) 0.99 (0.29) 3.10 (0.39) 1.55 1.05 0.46 

 +Ca 0.12 (0.38) 0.86 (0.28) 3.11 (0.34) 1.35 1.13 0.52 
167C*AF546 apo 0.24 (0.24) 1.24 (0.29) 3.18 (0.47) 1.92 1.02 0.36 

 +Ca 0.18 (0.31) 1.11 (0.29) 3.18 (0.40) 1.66 1.06 0.46 
174C*AF546 apo 0.16 (0.35) 1.00 (0.33) 3.07 (0.32) 1.36 1.18 0.50 

 +Ca 0.15 (0.41) 0.94 (0.32) 3.03 (0.27) 1.17 1.24 0.57 
177C*AF546 apo 0.14 (0.30) 1.04 (0.30) 3.14 (0.40) 1.62 1.04 0.35 

 +Ca 0.13 (0.34) 0.95 (0.28) 3.01 (0.38) 1.46 1.01 0.39 
182C*AF546 apo 0.13 (0.24) 1.08 (0.31) 3.17 (0.45) 1.79 1.10 0.34 

 +Ca 0.12 (0.33) 0.98 (0.33) 3.19 (0.34) 1.45 1.19 0.45 
189C*AF546 apo 0.11 (0.31) 1.00 (0.27) 3.16 (0.42) 1.63 1.05 0.25 

 +Ca 0.11 (0.34) 0.95 (0.32) 3.03 (0.34) 1.37 1.10 0.33 
196C*ATTO550 apo 0.17 (0.14) 1.49 (0.25) 3.42 (0.61) 2.48 1.13 0.23 

 +Ca 0.23 (0.24) 1.47 (0.32) 3.39 (0.44) 2.0 1.11 0.38 
200C*ATTO550 apo 0.15 (0.18) 1.59 (0.19) 3.61 (0.63) 2.6 1.05 0.18 

 +Ca 0.16 (0.20) 1.32 (0.22) 3.55 (0.58) 2.37 1.10 0.26 
204C*ATTO550 apo 0.12 (0.11) 1.27 (0.13) 3.50 (0.76) 2.84 1.02 0.17 

 +Ca 0.11 (0.20) 1.21 (0.21) 3.42 (0.59) 2.28 1.03 0.29 
208C*ATTO550 apo 0.11 (0.18) 1.13 (0.18) 3.38 (0.64) 2.37 1.15 0.07 

 +Ca 0.12 (0.26) 1.08 (0.23) 3.19 (0.51) 1.90 1.05 0.22 
211C*ATTO550 apo 0.12 (0.12) 1.31 (0.15) 3.54 (0.73) 2.81 1.03 0.15 
  +Ca 0.13 (0.17) 1.28 (0.20) 3.46 (0.62) 2.44 1.03 0.28 
aLifetime (fractional amplitude). 

 bAmplitude-weighted mean lifetime.   
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Table A3. Fitting results of rAc-TCSPC measurements of donor/acceptor regulated 

actin filaments with ATTO655 on TnC residue 89. Data represent one rAc 

reconstitution set. The TCSPC histogram of the FRET donor AF546 (TnI151-189) or 

ATTO550 (TnI196-211) was fit to a multi-exponential decay model convolved with the 

IRF. Conditions: rAc-D were in working buffer (apo) or WB supplemented with 3 mM 

CaCl2 (+Ca).  

    Lifetime (ns)a       
Donor residue on TnI Condition 𝜏Q 𝜏+ 𝜏@ 𝜏-8 b χ2 E 
151C*AF546 apo 0.19 (0.32) 1.06 (0.29) 3.08 (0.39) 1.57 0.96 0.49 

 +Ca 0.20 (0.37) 1.04 (0.30) 3.10 (0.33) 1.41 1.07 0.52 
160C*AF546 apo 0.13 (0.37) 0.94 (0.30) 2.93 (0.33) 1.29 1.13 0.55 

 +Ca 0.14 (0.40) 0.93 (0.30) 3.00 (0.30) 1.22 1.06 0.56 
167C*AF546 apo 0.24 (0.27) 1.18 (0.39) 3.05 (0.34) 1.56 1.04 0.48 

 +Ca 0.20 (0.32) 1.09 (0.33) 2.99 (0.35) 1.46 1.08 0.52 
174C*AF546 apo 0.14 (0.31) 1.03 (0.27) 3.16 (0.42) 1.64 1.02 0.4 

 +Ca 0.15 (0.28) 1.01 (0.26) 3.05 (0.46) 1.70 1.08 0.38 
177C*AF546 apo 0.13 (0.30) 1.00 (0.29) 3.15 (0.41) 1.61 1.06 0.35 

 +Ca 0.15 (0.31) 0.93 (0.29) 3.06 (0.40) 1.53 1.05 0.36 
182C*AF546 apo 0.14 (0.24) 1.11 (0.30) 3.27 (0.46) 1.87 1.03 0.31 

 +Ca 0.15 (0.32) 1.07 (0.33) 3.22 (0.35) 1.52 1.15 0.42 
189C*AF546 apo 0.11 (0.31) 0.98 (0.27) 3.14 (0.42) 1.61 1.08 0.26 

 +Ca 0.12 (0.38) 0.95 (0.33) 2.96 (0.29) 1.23 1.19 0.4 
196C*ATTO550 apo 0.14 (0.13) 1.21 (0.18) 3.37 (0.69) 2.57 1.11 0.2 

 +Ca 0.18 (0.20) 1.19 (0.26) 3.22 (0.54) 2.07 1.02 0.36 
200C*ATTO550 apo 0.07 (0.21) 1.23 (0.16) 3.63 (0.63) 2.50 1.05 0.21 

 +Ca 0.10 (0.24) 1.21 (0.20) 3.55 (0.56) 2.26 1.01 0.29 
204C*ATTO550 apo 0.12 (0.18) 1.27 (0.20) 3.48 (0.62) 2.45 0.95 0.28 

 +Ca 0.13 (0.25) 1.16 (0.28) 3.30 (0.47) 1.91 1.08 0.41 
208C*ATTO550 apo 0.09 (0.21) 1.01 (0.19) 3.36 (0.60) 2.22 1.02 0.13 

 +Ca 0.14 (0.25) 1.22 (0.29) 3.23 (0.46) 1.88 1.06 0.23 
211C*ATTO550 apo 0.15 (0.11) 1.27 (0.16) 3.49 (0.73) 2.78 0.96 0.16 
  +Ca 0.14 (0.20) 1.29 (0.24) 3.38 (0.56) 2.22 1.11 0.35 
aLifetime (fractional amplitude). 

 bAmplitude-weighted mean lifetime.   
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Table A4. Fitting results of rAc-TCSPC measurements of donor/acceptor regulated 

actin filaments with ATTO655 on TnC residue 127. Data represent one rAc 

reconstitution set. The TCSPC histogram of the FRET donor AF546 (TnI151-189) or 

ATTO550 (TnI196-211) was fit to a multi-exponential decay model convolved with the 

IRF. Conditions: rAc-D were in working buffer (apo) or WB supplemented with 3 mM 

CaCl2 (+Ca).  

    Lifetime (ns)a       
Donor residue on TnI Condition 𝜏Q 𝜏+ 𝜏@ 𝜏-8 b χ2 E 
151C*AF546 apo 0.23 (0.20) 1.27 (0.30) 3.20 (0.50) 2.01 1.02 0.35 

 +Ca 0.23 (0.24) 1.23 (0.34) 3.19 (0.42) 1.81 0.99 0.38 
160C*AF546 apo 0.13 (0.19) 1.09 (0.26) 3.17 (0.55) 2.06 1.04 0.29 

 +Ca 0.15 (0.27) 1.35 (0.35) 3.40 (0.38) 1.81 1.11 0.36 
167C*AF546 apo 0.24 (0.18) 1.30 (0.27) 3.20 (0.55) 2.16 0.96 0.28 

 +Ca 0.21 (0.22) 1.14 (0.31) 3.05 (0.47) 1.83 1.03 0.40 
174C*AF546 apo 0.15 (0.24) 1.05 (0.30) 3.02 (0.46) 1.75 1.09 0.36 

 +Ca 0.15 (0.26) 1.04 (0.33) 2.93 (0.41) 1.59 1.07 0.41 
177C*AF546 apo 0.18 (0.20) 1.16 (0.29) 3.24 (0.51) 2.03 1.06 0.18 

 +Ca 0.18 (0.26) 1.20 (0.28) 3.17 (0.46) 1.83 1.04 0.24 
182C*AF546 apo 0.11 (0.20) 1.14 (0.25) 3.45 (0.55) 2.20 1.00 0.19 

 +Ca 0.14 (0.20) 1.18 (0.26) 3.47 (0.54) 2.19 1.03 0.17 
189C*AF546 apo 0.12 (0.29) 1.01 (0.30) 3.06 (0.41) 1.59 1.16 0.26 

 +Ca 0.12 (0.33) 1.00 (0.32) 2.94 (0.35) 1.39 1.15 0.32 
196C*ATTO550 apo 0.16 (0.17) 1.20 (0.25) 3.13 (0.58) 2.15 1.08 0.33 

 +Ca 0.13 (0.24) 1.07 (0.31) 2.98 (0.44) 1.69 1.05 0.48 
200C*ATTO550 apo 0.04 (0.20) 0.92 (0.11) 3.62 (0.69) 2.61 0.96 0.17 

 +Ca 0.15 (0.18) 1.40 (0.22) 3.43 (0.60) 2.39 1.04 0.25 
204C*ATTO550 apo 0.06 (0.18) 1.13 (0.21) 3.31 (0.61) 2.26 1.04 0.34 

 +Ca 0.12 (0.20) 1.14 (0.23) 3.25 (0.57) 2.14 1.05 0.34 
208C*ATTO550 apo 0.14 (0.22) 1.20 (0.24) 3.35 (0.54) 2.11 1.09 0.17 

 +Ca 0.11 (0.28) 0.97 (0.30) 3.08 (0.42) 1.62 1.07 0.34 
211C*ATTO550 apo 0.17 (0.14) 1.38 (0.20) 3.38 (0.66) 2.54 1.02 0.24 
  +Ca 0.12 (0.20) 1.15 (0.25) 3.24 (0.55) 2.08 1.11 0.39 
aLifetime (fractional amplitude). 

 bAmplitude-weighted mean lifetime.   
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Table A5. Correcting FRET efficiency with the acceptor labeling ratio. 

Representative data from separately reconstituted rAc-D (Tn-D, TnI211C*ATTO550) 

and rAc-DA (Tn-DA, TnI211C*ATTO550, TnC127C*ATTO655) filaments. The 

lifetime of the donor in the absence and presence of an acceptor ( 𝜏-  and 𝜏-8 , 

respectively), FRET efficiency E, fa-corrected FRET efficiency Ec, and the calculated 

inter-dye distances (R and Rc) are shown. 

  𝜏-  𝜏-8    E Ec R Rc 
Trial apo +Ca apo +Ca fa apo +Ca apo +Ca apo +Ca apo +Ca 

1 3.49 3.44 3.03 2.58 0.49 0.13 0.25 0.27 0.51 8.76 7.69 7.56 6.36 

2 3.32 3.4 2.54 2.08 0.85 0.23 0.39 0.28 0.46 7.79 6.90 7.51 6.59 

3 3.57 3.53 3.28 2.89 0.33 0.08 0.18 0.25 0.55 9.59 8.23 7.71 6.19 
 
 
 
 
Table A6. Non-corrected and fA-corrected mean FRET efficiencies and inter-dye 

distances. Representative data from separately reconstituted rAc-D (Tn-D, 

TnI211C*ATTO550) and rAc-DA (Tn-DA, TnI211C*ATTO550, TnC127C*ATTO655) 

filaments. The mean FRET efficiency E and fA-corrected FRET efficiency Ec, and 

calculated inter-dye distance R and Rc are shown ± SEM (n = 3). 

E Ec R Rc 

apo +Ca apo +Ca apo +Ca apo +Ca 

0.15±0.06 0.27±0.06 0.26±0.01 0.51±0.03 8.71±0.52 7.61±0.38 7.60±0.06 6.38±0.11 
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Table A7. FRET efficiency and inter-dye distance at acceptor position TnC35C. The 

average FRET efficiency calculated from the amplitude-weighted mean lifetime of the 

donor for rAc-D and DA in WB (apo) and WB supplemented with 3 mM CaCl2 (+Ca), 

and calculated inter-dye distance (R) ± SEM from n = 3 experiments are shown. 

  FRET Efficiency R (nm) 

Donor residue on TnI apo +Ca apo +Ca 

151C*AF546 0.54 ± 0.05 0.55 ± 0.04 5.35 ± 0.20 5.32 ± 0.14 
160C*AF546 0.68 ± 0.03 0.77 ± 0.06 4.85 ± 0.10 4.48 ± 0.25 
167C*AF546 0.49 ± 0.02 0.66 ± 0.01 5.54 ± 0.08 4.94 ± 0.04 
174C*AF546 0.51 ± 0.04 0.58 ± 0.05 5.47 ± 0.15 5.21 ± 0.17 
177C*AF546 0.49 ± 0.02 0.57 ± 0.03 5.54 ± 0.09 5.23 ± 0.12 
182C*AF546 0.38 ± 0.06 0.53 ± 0.08 6.45 ± 0.26 5.40 ± 0.30 
189C*AF546 0.28 ± 0.05 0.42 ± 0.05 7.59 ± 0.32 5.80 ± 0.19 
196C*ATTO550 0.27 ± 0.04 0.41 ± 0.09 7.59 ± 0.26 6.85 ± 0.46 
200C*ATTO550 0.22 ± 0.02 0.36 ± 0.01 7.90 ± 0.19 7.05 ± 0.08 
204C*ATTO550 0.24 ± 0.06 0.34 ± 0.06 7.78 ± 0.41 7.18 ± 0.33 
208C*ATTO550 0.25 ± 0.06 0.33 ± 0.04 7.74 ± 0.38 7.21 ± 0.22 
211C*ATTO550 0.20 ± 0.01 0.34 ± 0.04 8.06 ± 0.10 7.14 ± 0.20 
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Table A8. FRET efficiency and inter-dye distances at acceptor reside TnC89C. The 

average FRET efficiency calculated from the amplitude-weighted mean lifetime of the 

donor for rAc-D and DA in WB (apo) and WB supplemented with 3 mM CaCl2 (+Ca), 

and calculated inter-dye distance (R) ± SEM from n = 3 experiments is shown. 

  FRET Efficiency R (nm) 

Donor residue on TnI apo +Ca apo +Ca 

151C*AF546 0.58 ± 0.04 0.64 ± 0.04 5.19 ± 0.15 5.00 ± 0.13 

160C*AF546 0.71 ± 0.02 0.77 ± 0.04 4.74 ± 0.09 4.50 ± 0.09 
167C*AF546 0.60 ± 0.04 0.69 ± 0.01 5.13 ± 0.14 4.82 ± 0.02 
174C*AF546 0.54 ± 0.00 0.56 ± 0.03 5.36 ± 0.01 5.29 ± 0.11 
177C*AF546 0.47 ± 0.00 0.48 ± 0.04 5.62 ± 0.01 5.58 ± 0.13 
182C*AF546 0.36 ± 0.03 0.49 ± 0.06 6.06 ± 0.15 5.54 ± 0.22 
189C*AF546 0.28 ± 0.05 0.44 ± 0.05 6.50 ± 0.30 5.73 ± 0.20 
196C*ATTO550 0.31 ± 0.03 0.46 ± 0.04 7.30 ± 0.16 6.58 ± 0.19 
200C*ATTO550 0.22 ± 0.03 0.46 ± 0.09 7.97 ± 0.24 6.58 ± 0.37 
204C*ATTO550 0.36 ± 0.05 0.62 ± 0.06 7.09 ± 0.24 5.87 ± 0.26 
208C*ATTO550 0.27 ± 0.06 0.49 ± 0.09 7.62 ± 0.40 6.50 ± 0.42 
211C*ATTO550 0.24 ± 0.01 0.45 ± 0.01 7.76 ± 0.10 6.61 ± 0.06 
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Table A9. FRET efficiency and inter-dye distances at acceptor reside TnC127C. The 

average FRET efficiency calculated from the amplitude-weighted mean lifetime of the 

donor for rAc-D and DA in WB (apo) and WB supplemented with 3 mM CaCl2 (+Ca), 

and calculated inter-dye distance (R) ± SEM from n = 3 experiments is shown. 

  FRET Efficiency R (nm) 

Donor residue on TnI apo +Ca apo +Ca 

151C*AF546 0.42 ± 0.01 0.57 ± 0.08 5.81 ± 0.11 5.23 ± 0.28 
160C*AF546 0.37 ± 0.04 0.46 ± 0.04 6.04 ± 0.17 5.64 ± 0.13 
167C*AF546 0.37 ± 0.02 0.45 ± 0.02 6.03 ± 0.08 5.68 ± 0.06 
174C*AF546 0.44 ± 0.01 0.54 ± 0.04 5.72 ± 0.04 5.37 ± 0.13 
177C*AF546 0.38 ± 0.02 0.48 ± 0.02 5.96 ± 0.06 5.57 ± 0.08 
182C*AF546 0.21 ± 0.01 0.29 ± 0.06 6.89 ± 0.05 6.44 ± 0.30 
189C*AF546 0.23 ± 0.04 0.44 ± 0.06 6.79 ± 0.26 5.75 ± 0.22 
196C*ATTO550 0.25 ± 0.07 0.46 ± 0.08 7.81 ± 0.53 6.62 ± 0.36 
200C*ATTO550 0.27 ± 0.07 0.44 ± 0.08 7.61 ± 0.40 6.71 ± 0.38 
204C*ATTO550 0.27 ± 0.07 0.41 ± 0.06 7.70 ± 0.50 6.81 ± 0.28 
208C*ATTO550 0.25 ± 0.02 0.38 ± 0.02 7.70 ± 0.17 6.93 ± 0.10 
211C*ATTO550 0.26 ± 0.01 0.51 ± 0.03 7.60 ± 0.06 6.38 ± 0.11 
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Table A10. Calcium-induced changes in FRET efficiency and inter-dye distance in 

Tn within thin filaments. The mean FRET efficiency calculated from the amplitude-

weighted mean lifetime of the donor in the presence or absence of an acceptor on TnC 

residue 35, 89, or 127 and the calculated inter-dye distance (R) in WB supplemented with 

3 mM CaCl2 (+Ca) were subtracted from the mean E or R in WB without Ca2+ (apo). A 

positive change in E or a negative change in R indicates a closer proximity of the donor 

residue on TnI and acceptor residue on TnC.  

  ∆E for TnC acceptor residue ∆R for TnC acceptor residue (nm) 
Donor residue 35C 89C 127C 35C 89C 127C 
151 0.01 0.05 0.16 -0.03 -0.19 -0.58 
160 0.09 0.06 0.10 -0.36 -0.25 -0.40 
167 0.17 0.09 0.09 -0.60 -0.32 -0.35 
174 0.07 0.02 0.09 -0.26 -0.07 -0.35 
177 0.08 0.01 0.10 -0.30 -0.04 -0.39 
182 0.15 0.13 0.07 -0.57 -0.52 -0.45 
189 0.14 0.16 0.21 -0.65 -0.77 -1.05 
196 0.14 0.15 0.20 -0.73 -0.72 -1.19 
200 0.14 0.25 0.16 -0.85 -1.39 -0.90 
204 0.10 0.27 0.15 -0.60 -1.21 -0.89 
208 0.08 0.21 0.13 -0.54 -1.13 -0.77 
211 0.14 0.21 0.24 -0.92 -1.15 -1.22 
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Table A11. FRET efficiency and inter-dye distances from steady-state FRET and 

theoretically-derived from the MTS molecular model. The experimentally-determined 

FRET efficiency calculated from peak emission intensity at 570 nm from the donor in 

rAc-D and rAc-DA with acceptor position TnC89C in WB supplemented with 75 mM 

KCl and 3 mM CaCl2 (+Ca), and calculated inter-dye distance (R) from n = 1 experiment. 

Model-derived E were calculated from Cα distances determined from the MTS model. 

  Experimental Model-derived 

Donor residue on TnI E R (nm) E R (nm) 
151C*AF546 0.99 2.56 1.00 1.40 
160C*AF546 0.99 2.56 0.97 3.00 
167C*AF546 0.92 3.66 0.90 3.80 
174C*AF546 0.85 4.12 0.81 4.30 
177C*AF546 0.75 5.03 0.75 4.60 
182C*AF546 0.74 4.62 0.58 5.20 
189C*AF546 0.76 4.54 0.37 6.00 
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Table A12. Fitting results for Ca2+ titrations of PKA-treated thin filaments, and thin 

filaments with PKA treatment, small molecules, and S1. The FRET efficiency vs. free 

Ca2+ was fit to the Hill equation to recover estimates for FRET efficiency (%) without 

Ca2+ (apo, E-), with 3 mM CaCl2 (+Ca, E+), the Ca2+ concentration that produces half-

maximal activation Ca50, and the Hill coefficient nH. The maximum likelihood estimate ± 

asymptotic SE are reported. 

Sample E- E+ Ca50 (µM) nH 
rAc 22.3 ± 0.4 39.3 ± 0.3 1.12 ± 0.09 1.2 ± 0.1 
+DMSO 21.7 ± 0.4 40.5 ± 0.4 1.07 ± 0.08 1.2 ± 0.1 
+bepridil 26.3 ± 1.1 43.4 ± 0.6 0.53 ± 0.11 0.9 ± 0.2 
+levo. 21.1 ± 0.4 37.3 ± 0.4 1.05 ± 0.08 1.4 ± 0.2 
+EGCG 14.5 ± 0.5 41.9 ± 0.8 4.06 ± 0.50 0.9 ± 0.1 
+S1 36.1 ± 0.5 46.8 ± 0.3 0.54 ± 0.08 0.8 ± 0.1 
+PKA 20.1 ± 0.3 38.0 ± 0.3 1.57 ± 0.09 1.2 ± 0.1 
 
 
 
Table A13. Fitting results for S1 titrations of reporter filaments. The calculated 

FRET efficiency vs. the fractional binding of S1 to actin was fit to the Hill equation to 

recover the FRET efficiency (%) without S1 E-S1, the FRET efficiency with saturating S1 

E+S1, the stoichiometry θ = [S1]T/[Actin]T that produces half maximal activation θ50, and 

Hill coefficient nH. Maximum likelihood estimate ± asymptotic SE are reported. 

Sample E-S1 E+S1 θ50 nH 
rAc 23.1 ± 0.2 45.9 ± 0.4 0.36 ± 0.03 2.9 ± 0.1 
+Ca2+ 43.6 ± 0.2 55.4 ± 0.2 0.20 ± 0.03 2.8 ± 0.2 
+bepridil 27.7 ± 1.8 27.7 ± 1.8  

 +bepridil +Ca2+ 45.9 ± 3.1 45.9 ± 3.1  
 +EGCG 10.5 ± 0.2 58.4 ± 1.1 0.55 ± 0.05 3.3 ± 0.1 

+EGCG +Ca2+ 36.2 ± 2.2 59.8 ± 0.4 0.32 ± 0.05 2.2 ± 0.1 

+PKA 21.5 ± 0.1 34.5 ± 0.1 0.59 ± 0.01 28.1 ± 2.0 

+PKA +Ca2+ 42.0 ± 01 51.6 ± 0.1 0.57 ± 0.01 50.7 ± 6.1 
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Table A14. Fitting results for Ca2+ titrations of phosphorylated reporter filaments, 

and filaments mock-treated with PKA or ATP. FRET efficiency vs. free Ca2+ 

concentration were fit to the Hill equation, to recover estimates of FRET efficiency 

without Ca2+ (apo, E-), FRET efficiency with 3 mM CaCl2 (+Ca, E+), the Ca2+ 

concentration that produces half maximal activation Ca50, and the Hill coefficient nH. 

Maximum likelihood estimate ± asymptotic SE are reported. 

Sample E- E+ Ca50 (µM) nH 
rAc 20.4 ± 0.5 46.9 ± 0.6 2.6 ± 0.2 1.0 ± 0.1 
+PKA +ATP 17.8 ± 0.5 44.2 ± 1.5 4.2 ± 1.0 0.7 ± 0.1 
+PKA 20.6 ± 0.6 45.4 ± 0.8 2.7 ± 0.4 1.1 ± 0.1 
+ATP 20.4 ± 0.6 45.9 ± 0.7 2.4 ± 0.3 1.0 ± 0.1 
 
 
 
Table A15. Fitting results for S1 titrations of phosphorylated reporter filaments, 

and filaments mock-treated with PKA or ATP. The calculated FRET efficiency vs. the 

total fractional binding of S1 to actin was fit to the Hill equation to recover the FRET 

efficiency without S1 (apo, E-S1), the FRET efficiency with saturating S1 E+S1, the 

fractional binding of [S1]T/[Actin]T that produces half maximal activation θ50, and Hill 

coefficient nH. Maximum likelihood estimate ± asymptotic SE are reported. 

Sample E-S1 E+S1 θ50 nH 
rAc 20.4 ± 0.3 43.6 ± 0.3 0.27 ± 0.04 3.0 ± 0.2 
+Ca2+ 41.8 ± 0.3 57.7 ± 0.2 0.20 ± 0.05 2.8 ± 0.4 
+PKA +ATP 20.5 ± 0.1 37.5 ± 0.2 0.59 ± 0.02 38.6 ± 8.8 

+PKA +ATP +Ca2+ 41.2 ± 0.2 55.6 ± 0.1 0.55 ± 0.01 37.0 ± 6.2 

+PKA 22.1 ± 0.3 42.8 ± 1.1 0.31 ± 0.05 3.7 ± 0.6 

+PKA +Ca2+ 42.8 ± 0.4 55.7 ± 0.2 0.16 ± 0.06 3.1 ± 0.6 

+ATP 23.9 ± 0.3 46.1 ± 0.4 0.31 ± 0.06 2.6 ± 0.2 

+ATP +Ca2+ 44.7 ± 0.2 57.4 ± 0.1 0.21 ± 0.04 3.2 ± 0.4 
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