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ABSTRACT 

 

PERCHLORATE VARIATIONS OVER 300 YEARS: INFLUENCE OF HUMAN 

ACTIVITIES, VOLCANIC ERUPTIONS, AND BOLIDE EVENTS 

KARI M. PETERSON 

2016 

 

Perchlorate, which derives from both anthropogenic and natural sources in the 

current environment, constitutes a significant health risk to humans because it 

competitively inhibits iodine uptake by the thyroid gland.  Thus, there has been 

considerable interest in reducing the human exposure to environmental perchlorate by 

limiting the release of perchlorate from anthropogenic sources.  However, a lack of 

understanding of the relative contributions from anthropogenic and natural sources has 

prevented widespread regulation.  A 300-year ice core perchlorate record from Summit 

Station, Greenland (1700-2007 C.E.) that extends beyond the onset of the Industrial 

Revolution (1850 C.E.) is used to assess the anthropogenic contributions to 

environmental perchlorate.  The perchlorate record shows that the onset of the Industrial 

Revolution did not impact perchlorate levels in the environment. 

   Despite remarkably consistent concentrations for at least 280 years (1700-1980 

C.E.), perchlorate concentrations begin unexpectedly to increase around 1980, its 

concentration by the early 21st century approximately tripling pre-1980 concentrations.  

Perchlorate is manufactured primarily for use as an oxidizer and is also produced 

naturally in the atmosphere.  Post-1980 perchlorate concentrations are most likely 
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influenced by changing atmospheric conditions that favor the atmospheric production of 

perchlorate.  Rising stratospheric chlorine concentrations resulting from the emission of 

chlorine-containing compounds, including chlorofluorocarbons (CFCs), are likely 

indirectly responsible for approximately two-thirds of the perchlorate present in the 

current environment. 

Variations in perchlorate concentrations suggest that natural perchlorate 

production occurs in the stratosphere and the production rate is dependent on a delicate 

balance between activated (i.e., radical) chlorine species and ozone concentrations.  

Furthermore, a link between large, stratospheric volcanic eruptions and brief periods of 

increased perchlorate concentrations has been discovered.  These volcanic eruptions 

increase stratospheric H2SO4 aerosols, which provides a surface for heterogeneous 

chlorine activation, resulting in increased perchlorate production.  Finally, we suggest 

that a superbolide event, the Tunguska meteor explosion in 1908, may be primarily 

responsible for extraordinarily high perchlorate levels between 1908 and 1914.  The 

breakup of the Tunguska meteor could have directly released perchlorate, or the 

increased aerosol/dust from the explosion could have enhanced chlorine activation in the 

stratosphere leading to elevated perchlorate concentrations. 
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1 Introduction 

1.1 Chemistry of Perchlorate 

Perchlorate (ClO4
-) is a highly oxidized, nonvolatile form of chlorine that consists 

of a chlorine atom bonded to and surrounded by four oxygen atoms in a tetrahedral 

geometry1.  Due to a large kinetic barrier towards reduction, perchlorate is very slow to 

react despite its potential as an oxidizer.  As a result, perchlorate reduction is not 

common2 and perchlorate is quite stable under normal conditions.  Because the negative 

charge on perchlorate is delocalized across four oxygen atoms, perchlorate is a poor 

nucleophile and is a non-complexing anion.  Thus, perchlorate is often used as an inert 

electrolyte in inorganic and electrochemical studies involving metal ions in solution.  

Finally, as a result of perchlorate’s low affinity for cations, perchlorate salts are highly 

soluble in both water and organic solvents2.    

1.2 Perchlorate in the Environment 

Due to its high solubility in water, the environmental reservoir of perchlorate is 

typically surface water and groundwater systems1.  Perchlorate has been identified in 

various water systems including multiple groundwater systems across the southwest 

United States3–6, in seawater off the coast of Maine7, and in the lower Colorado River8.  

As an example, because the lower Colorado River serves as a source of drinking water 

for more than 15 million people, there is substantial human exposure to perchlorate in the 

United States.  In addition, water from the Colorado River is used to irrigate fields from 

which produce is shipped across the country8, introducing perchlorate into the food 

supply.  The Food and Drug Administration (FDA) has reported perchlorate 

contamination in fruits and vegetables across the United States9, as well as in dairy 
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milk10.  Blount et al.11 also found measureable quantities of perchlorate in chicken feed 

and eggs in California and Arizona.  Perchlorate contamination, however, is not limited 

to the United States.  El Aribi et al.12 measured perchlorate in various consumer products 

from across the world.  The authors found measurable levels of perchlorate in bottled 

water from the United States, Canada, India, and Portugal.  Perchlorate contamination 

was also found in various food products from the United States, Canada, China, and 

several Latin American and European countries.  Finally, El Aribi et al.12 found 

perchlorate contamination in beer and wine samples from every continent (except 

Antarctica).  Thus, human exposure to perchlorate is a worldwide problem.   

1.3 Sources of Perchlorate 

1.3.1 Anthropogenic Sources 

  In the United States, perchlorate is primarily manufactured as ammonium 

perchlorate (NH4ClO4), and to a lesser extent potassium perchlorate (KClO4), for use as 

an oxidizer13.  Ammonium perchlorate is often used in solid fuels due to its ease of 

handling and manufacturing14.  As a result, ammonium perchlorate has been used as a 

primary component of rocket fuel, as well as in the National Aeronautics and Space 

Administration’s (NASA) space shuttle solid rocket boosters15. Ammonium and 

potassium perchlorate are also used as the major component of solid propellants in many 

national defense applications including tactical and strategic missiles, training munitions, 

and many underwater explosives14.  Finally, perchlorate is used commercially in highway 

flares and fireworks/pyrotechnics13.   

 When used as an oxidant, perchlorate undergoes essentially complete conversion 

to chloride1,13.  Analysis of space shuttle plumes showed elevated levels of chloride, but 



3 
 

no elevation in perchlorate levels13.  In addition, the analysis of fully burnt road flares 

indicate that only about 0.05% of the original perchlorate remains after burning16.  This 

suggests that it is unlikely that anthropogenic contribution to environmental perchlorate 

stems from the dispersal of perchlorate when used for intended purposes.  Instead, the 

primary anthropogenic contribution to environmental perchlorate may result from the 

disposal or unavoidable release of the solid salts of perchlorate during manufacture and 

other applications1. 

 Perchlorate pollution may also come from sodium chlorate (NaClO3) that is 

contaminated with perchlorate.  Sodium chlorate is produced through the electrolysis of 

an acidic brine solution, and is primarily used for bleaching pulp in the paper industry.  

Because the oxidation of brine (NaCl) to chlorate has a similar electrochemical potential 

as the oxidation of brine to perchlorate, manufactured sodium chlorate is usually 

contaminated with perchlorate.  Studies have reported that laboratory grade sodium 

chlorate contains as high as 0.2% w/w (2,000 mg kg-1) perchlorate, whereas analytical 

grade contains anywhere from 200-900 mg kg-1 (ref 1).  Considering that in 2012 over 3 

million tons of sodium chlorate were produced worldwide, and that production is 

expected to exceed 4 million tons by 2017 (ref 17), this may represent a relevant source 

of environmental perchlorate. 

 Another possible source of anthropogenic perchlorate is through the historical use 

of Chilean nitrate mineral13, which contains approximately 0.1% perchlorate18.  Chilean 

nitrate has been used as a fertilizer (CNF), in gunpowder, and other explosives.  Chile 

began exporting its nitrate to the United States and several European countries including 

England, France, Germany, and Italy in 1830 with maximum exports in 1920 (ref 18).  
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Chilean nitrate controlled the world nitrate market throughout the nineteenth and early 

twentieth centuries.  However, with the development of the Haber-Bosch process in 

1918, synthetic nitrogen became a major competitor to Chilean nitrate.  By 1950, Chilean 

nitrate only represented 15% of the world nitrogen market and by 1980 the share dropped 

to 0.14% (ref 18).  Due to limited data on the import of Chilean nitrate to the United 

States between 1830 and 1938, it remains difficult to estimate the amount of perchlorate 

that was presumably imported during this time.  However, using the historical 

information available, Jackson et al.18 were able to conservatively estimate that 

approximately 16.1 million kg of perchlorate were imported into the United States 

through Chilean nitrate between 1938 and 1968.  Thus, it is plausible that the use of CNF 

and explosives containing Chilean nitrate could have represented a significant source of 

anthropogenic perchlorate in the environment. 

1.3.2 Natural Perchlorate 

 The natural occurrence of perchlorate was thought to be confined to the nitrate 

deposits in the Atacama Desert, Chile18, and that perchlorate in the general environment 

derived exclusively from anthropogenic sources.  However, the measurement of 

perchlorate in pre-anthropogenic groundwater4–6 has shown that natural sources of 

perchlorate exist outside the Atacama Desert.  Additionally, perchlorate has been 

detected in the soils of the Dry Valleys, Antarctica19, an area that is unlikely impacted by 

human activities.   

 Non-anthropogenic perchlorate is formed or produced from other forms of 

chlorine in the natural environment. Although the natural production of perchlorate is not 

well understood, it is believed to be produced solely in the atmosphere.  Perchlorate 
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found in groundwater systems located in the high plains of Texas and New Mexico 

demonstrated a high correlation with the atmospherically derived iodate3 (IO3
-).  Elevated 

levels of 36Cl in natural perchlorate suggest that the atmospheric production of 

perchlorate likely occurs in the stratosphere20, where 36Cl is abundant.  Additionally, 

Furdui and Tomassini21 noted a strong correlation between perchlorate concentrations in 

an ice core from Devon Bay, Canada and ozone measurements from nearby Resolute 

Bay, Canada between 2002 and 2006, further suggesting a likely stratospheric production 

of perchlorate involving ozone.  Finally, the perchlorate deposits in the Atacama Desert 

demonstrate elevated Δ17O values22, which is another strong indication of ozone 

involvement in atmospheric production. 

1.4 Environmental Stability of Perchlorate 

 Perchlorate is exceptionally stable in the environment and, due to its high 

solubility in water, persists and accumulates in water systems.  Although the reduction of 

perchlorate to chloride in aqueous solutions is thermodynamically favorable (E0 = +1.388 

V), there is a large kinetic barrier to reduction1.  Reduction of perchlorate via protonation 

is also unlikely because perchlorate’s conjugate acid, perchloric acid, is a strong acid.  

Thus, the direct reduction of perchlorate in water systems is considered negligible1.   

Additionally, due to the delocalization of the negative charge across four oxygen atoms, 

perchlorate is a poor nucleophile and non-complexing anion.  As a result, perchlorate is 

not readily bound to particle surfaces or sorbed by sediments, resulting in its persistence 

in water systems2.  Perchlorate that does sorb to sediments can be taken up by plants23, 

but it is unclear whether plants metabolize perchlorate24.  The perchlorate that plants 

uptake is released again when the plant undergoes senescence23,25.  Therefore, the only 
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possibly effective way for perchlorate to be removed from the environment is by 

reduction via bacteria that use perchlorate as an electron acceptor in anaerobic 

environments.  However, bacteria preferentially use NO3
- over perchlorate as an electron 

acceptor25.  The reason for this is not well understood, but could be because of the much 

greater availability of NO3
- compared to perchlorate.  Thus, perchlorate readily 

accumulates in the environment. 

1.5 Health Concerns over Perchlorate 

 The accumulation of perchlorate in groundwater and surface water systems has 

become a concern due to the negative health effects of perchlorate exposure.  Perchlorate 

competitively inhibits the uptake of iodine through the sodium/iodide symporter (NIS) to 

the thyroid gland, which compromises the production of thyroid hormones26–28.  

Sustained inhibition of iodine uptake can lead to hypothyroidism causing metabolic 

problems in adults.  In addition, the adequate production of thyroid hormones is vital to 

the normal growth and development of fetuses and young children.  Fetuses and children 

with compromised thyroid hormone production are more likely to display behavioral 

problems, attention deficit hypertension disorder (ADHD), reading and language deficits, 

lower IQs, and are at greater risk to develop cerebral palsy26.  Therefore, young children 

and pregnant mothers, in whom ingested perchlorate is transported to the fetus, are 

particularly vulnerable to perchlorate exposure27,28.  Furthermore, infants and children 

generally intake more perchlorate per unit body mass than any other subpopulation due to 

the consumption of dairy foods and breast milk, which generally contain high levels of 

perchlorate29. 
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1.6 Regulation of Perchlorate 

 Due to the adverse health effects of perchlorate exposure, there has been 

considerable interest and effort in regulating perchlorate in drinking water.  In 2005 the 

National Academy of Sciences (NAS) set an official reference dose (Rfd), which is an 

estimate of the daily exposure level below which no adverse health effects are expected 

to occur in humans, for perchlorate at 0.0007 mg kg-1 day-1 (ref 27).  The Environmental 

Protection Agency (EPA) also adopted this Rfd the same year30.  The Rfd includes a 10-

fold uncertainty factor so that the most sensitive populations (pregnant women, young 

children, and those with low-iodide intake) are protected.  In addition to establishing an 

Rfd, the EPA also set a Drinking Water Equivalent Level (DWEL) at 24.5 μg L-1 (ref 30).  

The DWEL represents the concentration of perchlorate in drinking water below which no 

adverse health effects are expected to occur, assuming a 70 kg individual consumes 2 L 

of water per day, and that all perchlorate exposure is from drinking water26,30.  Both the 

Rfd and the DWEL are recommended exposure limits, not enforceable limits.    

 Despite the establishment of an Rfd and a DWEL in the United States, 

enforceable regulation of perchlorate has been limited to the state level in only a few 

states.  California originally set a maximum perchlorate concentration in drinking water 

at 6 μg L-1 in 2007.  In 2015, however, California announced a goal to limit perchlorate 

concentrations in drinking water to below 1 μg L-1 (ref 31).  Oregon requires the 

concentration of perchlorate in drinking water to be less than 4 μg L-1 (ref 3), while 

Massachusetts requires the concentration to be less than 2 μg L-1 (ref 32).  Nationwide 

regulation of perchlorate in drinking water remains difficult, partly because of a lack of 

understanding of the relative source contributions of natural and anthropogenic sources to 
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environmental perchlorate.  Currently, it is unknown how much of the perchlorate in the 

environment derives from anthropogenic sources, which can be controlled and potentially 

limited through regulation, and how much of the perchlorate in the environment derives 

from natural sources.  Therefore, the knowledge of relative contributions is vital to the 

effective mitigation of perchlorate exposure by regulation.    

1.7 Ice Core Records 

 Snow, which carries chemical substances from the atmosphere, accumulates 

continuously on the glaciers in polar regions, such as Antarctica and Greenland.  Thus, 

ice cores from these areas provide a chronological record of the chemical substances in 

the environment.  Ice core records from Greenland, in particular, have been used in 

paleoclimatology studies33,34.  Additionally, ice cores from Greenland are often used to 

study environmental pollutants, including in the assessment of natural and anthropogenic 

contributions of an environmental pollutant.  For example, ice core records have 

indicated that the current environmental levels of NO3
- and sulfate (SO4

2-) are elevated 

due to anthropogenic emissions of these species35, when compared to the levels prior to 

the Industrial Revolution.  Thus, a similar ice core record of perchlorate in the 

environment could be very beneficial in the assessment of the natural and anthropogenic 

sources of perchlorate.   

 Perchlorate has been measured in selected samples of ice cores from the Canadian 

Arctic21,36 and from the Upper Fremont Glacier in Wyoming, USA36.  Fifteen samples 

from the Upper Fremont Glacier covering the time period 1726-1993 were analyzed for 

perchlorate.  Perchlorate concentrations in these measurements range from below the 

method detection limit (0.2 ng L-1) in all pre-1982 samples to 2.6 ng L-1 (ref 36).  Rao et 
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al.36 also collected snow samples from the Eclipse Icefield, Yukon Territory, Canada 

covering the time periods of 1970-1973, 1982-1986, and 1999-2002.  Perchlorate 

concentrations in these samples ranged from below the method detection limit (0.2 ng L-

1) to 8.8 ng L-1, with lower concentrations in the samples dated between 1970 and 1973 

than in samples dated after 1982.  Furthermore, Furdui and Tomassini21 analyzed ice 

samples from the Devon Island Ice Cap, Canada covering the time period of 1996-2005.  

Perchlorate concentrations in these samples ranged approximately 1-18 ng L-1.   

 While the ice core perchlorate records discussed above provide insight into the 

more recent environmental perchlorate levels, and even suggest the influence of 

anthropogenic activities on environmental perchlorate, the in-depth study of 

environmental perchlorate would greatly benefit from a comprehensive record of 

perchlorate in the environment.  A continuous, high-temporal resolution ice core 

perchlorate record that dates prior to the onset of the Industrial Revolution would allow 

for the assessment of the natural levels of perchlorate and the natural variations in these 

levels.  This would allow for the accurate evaluation of the anthropogenic contribution to 

perchlorate in the current environment.  Such information is valuable to future plans to 

effectively regulate perchlorate.  Furthermore, a continuous perchlorate record with high 

temporal resolution, in which multiple samples per year are analyzed, could give valuable 

insight into the natural production of perchlorate, as well as the atmospheric and climatic 

conditions that influence its production.   

1.8 Objectives of Research 

 The primary objective of this research is to gain a better knowledge of the history 

of perchlorate in the environment.  Accurate measurement of perchlorate in ice cores can 
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provide data that will aid in this effort.  As discussed above, polar ice cores provide 

chronological records of the chemical substances in the environment, and thus represent 

an important tool in the study of the past and present environment.  Greenland ice core 

records, in particular, have been proven to be very valuable in the study of the 

anthropogenic contributions to environmental pollutants, such as NO3
-, SO4

2- (ref 35), and 

lead (Pb)37–39.   

In this research, a 150 m ice core from Summit Station, located in central 

Greenland (72°34’46” N, 38°27’33” W), was used to create a 300-year record of 

environmental perchlorate.  This record represents the longest and most comprehensive 

record of environmental perchlorate to date.  The record provides the opportunity to 

obtain an accurate measure of the natural environmental perchlorate level, and to assess 

the variability in the natural level, which allows for a robust estimation of the 

anthropogenic contributions to environmental perchlorate.  Furthermore, the snow 

accumulation rate at Summit Station, Greenland is relatively high, receiving 

approximately 0.24 m ice equivalent of snow per year40.  Therefore, the analysis of 

multiple samples per year allows for investigation into the intra-annual variation in 

perchlorate concentrations.  Such information allows for the study of how atmospheric 

conditions impact the natural production of perchlorate.  For example, the examination of 

the seasonal variations in perchlorate could provide insight into the role of sunlight 

and/or the impact chemically reactive species have on environmental perchlorate 

concentrations.  

 The Greenland ice core perchlorate record will be used to achieve additional 

project objectives.  The first of these additional objectives is to determine the relative 
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contributions of the natural and anthropogenic sources to perchlorate in the current 

environment.  The magnitude of the natural sources of perchlorate, and the variability in 

these sources, will be established through the examination of the portion of the record 

prior to the onset of anthropogenic impact.  The perchlorate in more recent snow likely 

represents perchlorate derived from both natural and anthropogenic sources.  Thus, the 

difference between perchlorate levels in recent snow/ice samples and perchlorate levels 

in ice dated prior to the onset of the Industrial Revolution likely represents the 

anthropogenic contributions to environmental perchlorate, assuming the natural sources 

of perchlorate have remained unchanged.  This robust estimate of the anthropogenic 

contributions to environmental perchlorate will be valuable in the efforts to minimize the 

anthropogenic sources of perchlorate, as well as in the regulation of perchlorate in 

drinking water. 

 In addition to the 300-year perchlorate record obtained from the Summit Station 

(central Greenland) ice core, perchlorate measurements were also made on ice cores from 

two additional locations in Greenland: TUNU, located in northern Greenland (78.1° N, 

34.0° W)41, and Basin 4, located in southern Greenland (62.31° N, 46.3° W)42.  

Comparison of the three separate perchlorate records allows for exploration into the 

spatial variability in perchlorate concentrations and trends in these concentrations across 

Greenland.  This could yield information about the atmospheric transport of perchlorate 

from specific locations, using knowledge of circulation.  Furthermore, perchlorate 

concentrations and trends from these three Greenland cores can be compared with the 

measurements obtained by Rao et al.36 and Furdui and Tomassini21 from Canadian Arctic 
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locations to gain a greater understanding of the variability in perchlorate concentrations 

across the Arctic. 

 Another objective of the project is to explore conditions that possibly impact the 

atmospheric production of perchlorate.   This will be accomplished through the detailed 

analysis of the various perchlorate records.  The high temporal resolution of the records 

will allow for the assessment of the intra-annual variations in perchlorate concentrations.  

Such information can give insight into if and how environmental/atmospheric conditions 

influence perchlorate production.  For example, perchlorate has been observed to reach 

peak concentrations in the spring/summer and minimum concentrations in the winter in 

the Arctic21,36, suggesting that the production of perchlorate or perchlorate precursors is 

dependent on the availability or intensity of solar radiation.  Additionally, Furdui and 

Tomassini21, through the examination of seasonal variations, noted that perchlorate shows 

a strong correlation with ozone, suggesting the involvement of ozone in the production of 

perchlorate.  Finally, it has been speculated that perchlorate concentrations may be 

influenced by volcanic eruptions21,36.    Prior analysis of Summit, Greenland ice cores has 

yielded records of volcanic eruptions43–45.  Because the perchlorate record from Summit, 

Greenland will include periods when volcanic eruptions occurred, the influence of 

volcanic eruptions on perchlorate production may be investigated through perchlorate 

variations during those periods. 

  



13 
 

2 Analytical Method Development 

2.1 Techniques for Measuring Perchlorate 

As the work by Rao et al.36 and Furdui and Tomassini21 demonstrates, perchlorate 

concentrations in ice cores from the Arctic are generally at the ng L-1, or even sub-ng L-1 

level.  Thus, the measurement of perchlorate in ice core samples requires an ultra-

sensitive technique.  Conventional ion chromatography (IC) with conductivity detection 

can measure perchlorate down to 0.5 μg L-1 (ref 46).  Two-dimensional ion 

chromatography (2D-IC) with conductivity detection offers a slightly better limit of 

detection (LOD) for perchlorate at 12 ng L-1 (ref 47–49).  However, a lower LOD is still 

needed to quantify perchlorate in most ice core samples, especially those dated prior to 

the Industrial Revolution.  The use of mass spectrometry has achieved lower LODs than 

those of conventional chromatography techniques.  For example, Koester et al.50 utilized 

tandem mass spectrometry with electrospray ionization (ESI-MS/MS) to measure 

perchlorate down to 10 ng L-1.  However, in the presence of non-target ions the LOD 

increased to 50 ng L-1, indicating the need for chromatographic separation prior to mass 

spectrometry.  A method utilizing high performance liquid chromatography-tandem mass 

spectrometry with electrospray ionization (HPLC-ESI-MS/MS) was able to measure 

perchlorate down to 5 ng L-1 (ref 51).  Finally, the technique of ion chromatography-

tandem mass spectrometry with electrospray ionization (IC-ESI-MS/MS) has 

demonstrated the most success in the measurement of low levels of perchlorate.  Furdui 

and Tomassini21 were able to achieve a LOD of 0.3 ng L-1 without pre-concentration and 

Jiang et al.52 were able to obtain a LOD of 0.2 ng L-1 utilizing 10-fold online pre-

concentration.  However, the study of perchlorate, especially the natural levels of 
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perchlorate, would benefit from a more sensitive technique, as the natural variability in 

perchlorate is likely at the low sub-ng L-1 level.  In addition, a rapid technique that does 

not require pre-concentration procedures is desirable so that a large number of samples 

can be analyzed quickly.   

2.2 Overview of IC-ESI-MS/MS 

The separation of perchlorate from other matrix species was accomplished using a 

ThermoFisher (formerly Dionex, Sunnyville, CA) DX500 ion chromatography system 

consisting of an IP25 isocratic pump and a CD25 conductivity detector.  A Dionex AS40 

autosampler was used to load samples from 5 mL vials into a 600 μL injection loop.  The 

samples were subsequently injected onto a Dionex IonPac AS16 (2 x 250 mm) analytical 

column.  Perchlorate was eluted from the column with 60 mM sodium hydroxide (NaOH) 

at 0.3 mL min-1, which was suppressed using an AERS-500 (2 mm) suppressor.  The 

effluent from the suppressor was mixed with a 90% (v/v) acetonitrile:10% water solution 

at 0.3 mL min-1 to decrease the surface tension and aid in the nebulization of the sample. 

This mixture was delivered to the electrospray (ESI) inlet/nebulizer of an AB SCIEX 

(Framingham, MA) QTRAP 5500 triple quadrupole mass spectrometer operating in 

negative ion mode.  In order to analyze both 35ClO4
- (m/z 99.0 to 83.0) and 37ClO4

- (m/z 

101.0 to 85.0), multiple reaction monitoring (MRM) was utilized.  The individual mass 

spectrometry ion source, gas, and compound specific operational parameters can be seen 

in Table 1 (ref 53).  
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Table 1.  Ion source, gas, and compound specific operational parameters for the AB 

SCIEX QTRAP 5500 triple quadrupole mass spectrometer53. 

 

Parameter Optimized Condition 

Source Temperature 600° C 

Ionspray Voltage -3,000 V 

Curtain Gas 20 psi 

Ion Source Gas 1 40 psi 

Ion Source Gas 2 15 psi 

Collision Gas Medium 

Declustering Potential  -25 V 

Entrance Potential -10 V 

Collision Energy -40 V 

Collision Cell Exit Potential -5 V 

Dwell Time 1,000 ms 

 

2.3 Analytical Figures of Merit 

2.3.1 Selectivity 

 The mass chromatogram of a perchlorate sample is shown in Figure 1a.  

Perchlorate elutes at approximately 10.2 min.  The peak area for 35ClO4
- (blue signal) was  

used for the quantification of perchlorate and the 3:1 peak area ratio between the 35ClO4
- 

peak and the 37ClO4
- (red signal) peak verifies that the detected species is perchlorate.  

The method demonstrates excellent selectivity for perchlorate.  The common impurities 

in Greenland snow samples consist mostly of ionic species, including Cl-, NO3
-, SO4

2-, 

Na+, NH4
+, K+, Mg2+, and Ca2+ at the μg L-1 level54.  Figure 1b shows a typical Greenland 

sample containing these matrix species, but no perchlorate.  No peaks interfere with the 

perchlorate peak eluting at approximately 10.2 min. 
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Figure 1. Mass chromatogram of a typical Greenland ice sample containing matrix 

species along with perchlorate (a) and a typical Greenland ice sample containing matrix 

species but no perchlorate (b).  The blue signal represents 35ClO4
- and the red signal 

represents 37ClO4
- (ref 53). 

 

2.3.2 Limit of Detection and Lower Limit of Quantification 

The LOD, defined as a signal-to-noise (S/N) ratio of three, was determined by 

analyzing the mass chromatogram and estimating the peak-to-valley baseline noise.  The 

concentration that yielded a S/N ratio of three using this method was 0.1 ng L-1 (Figure 

2).  The LOD was further verified using the standard deviation (σ = 0.04) of the replicate 

analysis (n = 9) of a 0.75 ng L-1 standard.  Thus, the LOD of the method described above 
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was established to be 0.1 ng L-1 (ref 53).   The lower limit of quantification (LLOQ), 

defined as a S/N ratio of ten, was determined to be 0.3 ng L-1 (ref 53), based upon the 

analysis of the mass chromatogram.  The linear dynamic range was determined as the 

range of concentrations at which the relative standard deviation and the percent deviation 

from the nominal concentration for each standard analyzed was within ±20% (ref 55).  

Using these criteria, the linear dynamic range of the method was determined to be 0.3-

10.0 ng L-1 (ref 53).  When the perchlorate concentration of a sample exceeded this range, 

the sample was diluted so that its concentration would be within the linear dynamic range 

and reanalyzed. 

 

Figure 2.  Mass chromatogram of a 0.10 ng L-1 standard used to determine the LOD 

(S/N>3).  The blue signal represents 35ClO4
-.  The red signal represents 37ClO4

- (ref 53). 

 

2.3.3 Accuracy and Precision 

 The accuracy and precision of the method was determined by intra-assay (1 day 

of analysis, n = 3) and inter-assay (3 days of analysis, n = 9) analysis of 1.0 and 9.0       

ng L-1 perchlorate standards.  The accuracy was assessed by measuring the recovery of 
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perchlorate added to deionized water and the precision was assessed by determining the 

coefficient of variation (%CV).  As shown in Table 2, the recovery was between 97.3-

98.5% and the precision was between 3.8-12.8%. 

Table 2. Quality control data for the analysis of perchlorate by IC-ESI-MS/MS53. 

Nominal 

Concentration 

(ng L-1) 

Intra-assay 

Recovery (%)a 

Inter-assay 

Recovery (%)b 

Intra-assay 

Precision 

(%CV)a 

Inter-assay 

Precision 

(%CV)b 

1.00 97.38 98.46 7.80 12.76 

9.00 97.25 98.27 3.76 6.73 
aMean for 1 day of validation (n = 3) 
bMean for 3 days of validation (n = 9) 

 

2.3.4 Inter-laboratory Comparison 

In order to further validate the method, an inter-laboratory comparison was 

performed in collaboration with Texas Tech University (TTU) in Lubbock, Texas.  

Perchlorate standards and meteorite samples were prepared and analyzed by TTU36, and 

then independently analyzed at South Dakota State University (SDSU) using the method 

described above.  The results from this study can be seen in Table 3.  The percent 

deviation between the measured concentrations of the standards is less than 10%.  There 

are slightly higher deviations for the two meteorite samples analyzed.  This could be due 

to the measured perchlorate concentrations falling outside the linear dynamic range of the 

SDSU method.  Due to limited sample volume, however, no dilution of these samples 

could be performed to obtain a more accurate comparison.  There also could have been an 

unknown matrix affect in the meteorite samples that is not present in ice core samples 

that may have impacted the accuracy of the measurement. 
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Table 3. Results of an inter-laboratory comparison study between TTU and SDSU53.  

Sample TTU 

Concentration (ng 

L-1) 

SDSU 

Concentration (ng 

L-1) 

Percent 

Deviation 

Purified water <1 <LLOQ N/A 

1 ng L-1 standard 1.18 1.3 9.2 

5 ng L-1 standard 5.78 6.0 3.7 

10 ng L-1 standard 11.3 12.1 6.6 

Fayteville 10 52 64.2 19.0 

Fayteville 10 fusion layer 140 157.3 11.0 
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3 Sample Preparation and Analysis 

3.1 Ice Core Collection 

 Three Greenland ice cores, an ice core from the South Pole, and snow pit samples 

from the West Antarctic Ice Sheet (WAIS) Divide were used over the course of this 

study.  In June-July 2007 four ice cores were drilled near Summit Station, Greenland 

(72°34’46” N, 38°27’33” W).  The primary perchlorate analysis was performed on core 2 

(SM07C2) of these cores, which was 150 m deep and 10 cm in diameter.  The second 

Greenland core used for perchlorate analysis (20 m deep, 10 cm diameter) was drilled in 

1996 near the TUNU site (78.1° N, 34.0° W)41.  The third Greenland core was drilled 

near the Basin 4 site (62.31°N, 46.3° W) in 2002 (~23.65 m deep, 8 cm diameter)56.  The 

location of these core sites in Greenland can be seen in Figure 3 (ref 57).  The South Pole 

ice core (10 cm in diameter) was drilled in 2004-2005.  After drilling, each meter section 

of the cores was contained in a plastic bag and placed inside reflective cardboard tubes.  

The reflective cardboard tubes were packed inside insulated cardboard boxes for 

transport.  All cores were maintained at or below a temperature of -20° C during 

shipment and storage.  The WAIS Divide (79.467° S, 112.085° W) samples were 

collected in January 2013 from a 2.8 m snow pit.  Individual samples were placed inside 

clean plastic specimen cups and packed inside an insulated cardboard box for transport.  

Once again the samples were maintained at or below -20° C during shipment and storage.  
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Figure 3.  Greenland map showing the location of the Summit, TUNU, 

and Basin 4 ice core sites.  Image adapted from Maps of the World57.  

 

3.2 Ion Chromatography Eluent Preparation 

 A 0.5 M NaOH stock solution in ultrapure deionized water was prepared from 

50% (w/w) NaOH purchased from Fisher Scientific (Fair Lawn, NJ).  The 60 mM NaOH 

used to elute perchlorate from the column was prepared by dilution of this stock solution 

with ultrapure deionized water.  Following dilution, the 60 mM solution was degassed 

under vacuum for approximately 45 min.  The 90% acetonitrile solution, used to decrease 

the surface tension and aid in the nebulization of the sample, was prepared by diluting 

HPLC grade acetonitrile purchased from Fisher Scientific with ultrapure deionized water.  
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This solution was also degassed under vacuum for approximately 45 min following 

dilution.   

3.3 Calibration 

 Analytical grade potassium perchlorate (KClO4) purchased from Acros Organics 

(Geel, Belgium) was used to prepare a 1,000 mg L-1 perchlorate stock solution in 

ultrapure deionized water.  A 1.00 μg L-1 intermediate stock solution was prepared by 

dilution of the 1,000 mg L-1 stock.  Daily perchlorate calibration standards (0.30, 0.75, 

2.00, 5.00, and 10.00 ng L-1) were prepared from the intermediate stock solution.  

Calibration curves were constructed by plotting the 35ClO4
- peak area against the nominal 

concentration.  Linear least squares regression was used to fit the data.   

3.4 Sample Preparation 

 The exposed surfaces of an ice core are assumed to become contaminated during 

drilling and handling.  Therefore, care must be taken to remove all previously exposed 

surfaces in order to obtain a clean, uncontaminated sample.  All samples from the 

SM07C2, TUNU, and South Pole cores were cut from one-quarter of the 10 cm diameter 

cores using a band-saw in a -20° C walk-in freezer.  Samples from the Basin 4 core were 

cut from one-half of the 8 cm diameter core.  Prior to use, the band-saw blade was 

washed with ethyl alcohol and then with ultrapure deionized water.  Also, sample 

specimen cups used to melt individual ice samples were thoroughly washed with 

ultrapure deionized water and allowed to air dry prior to use.  

 The exposed surfaces of all samples below the core depth of 57 m were removed 

via washing with ultrapure deionized water.  These samples were cut into “ice cubes” (4 

x 4 x 3.5 cm) and placed into carrier cups in the -20° C walk-in freezer.  These samples 
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were then transferred from the freezer to the analytical laboratory for washing.  Each 

individual sample was handled with clean tongs and held under the ultrapure deionized 

water stream until a layer of at least 2 mm of the previously exposed surfaces was washed 

away.  The sample was then placed into a pre-cleaned sample cup, capped, and allowed 

to melt at room temperature.   

 Samples above 57 m (firn samples) are too porous to be decontaminated through 

washing.  Therefore, the previously exposed surfaces need to be removed via mechanical 

means.  In the preparation of the firn samples, the operator wore pre-cleaned vinyl gloves 

to handle the ice core during band-saw cutting.  Once an exposed surface was removed, 

the now clean surface of the sample was not allowed to come into contact with the band-

saw bench or any material not explicitly cleaned.  After all previously exposed surfaces 

had been removed, the sample (3.5 x 3.5 x 5.0 cm) was placed directly into a pre-cleaned 

sample specimen cup, capped, and allowed to melt at room temperature. 

The efficacy of the decontamination procedures was assessed through the analysis 

of operational blanks, which were prepared from frozen ultrapure deionized water.  Three 

different types of operational blanks were prepared: (1) unwashed blanks to estimate the 

extent of contamination if no decontamination protocols were implemented, (2) washed 

blanks prepared as ice samples (exposed surfaces removed via washing), and (3) cut 

blanks prepared as firn samples (exposed surfaces removed using the band-saw).   These 

operational blanks were prepared on three separate days and analyzed in triplicate each 

day for a total of nine measurements.  The results from this study are summarized in 

Table 4.  The relatively high perchlorate concentration (2.2 ng L-1) in the unwashed 

blanks indicates the need for decontamination protocols.  While no perchlorate 
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contamination was observed in the washed blanks, there was slight contamination in the 

cut blanks.  However, this contamination remained below the LLOQ in all samples 

analyzed, and is unlikely to affect the accuracy of the perchlorate measurement.  The 

source of the miniscule contamination is difficult to ascertain, but possibly stems from 

the washed vinyl gloves or the band-saw blade.  For quality control, an operational blank 

was prepared each time samples were prepared for analysis to ensure that contamination 

was not introduced during sample preparation. 

Table 4. Results of the contamination assessment53. 

Blank Type Average ClO4
- 

Concentration (ng L-

1) 

Concentration 

Range (ng L-1) 

Standard 

Deviation (ng L-1) 

Washed Below LOD N/A N/A 

Cut 0.15 0.12 – 0.18 0.02 

No Decontamination 2.20 0.35 – 3.85 1.48 
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4 Ice Core Dating 

4.1 Importance 

 The development of a depth-age scale for, or dating, an ice core is one of the most 

important aspects of ice core research.  An accurate depth-age scale for an ice core is 

particularly important for investigations into how historical events have impacted the 

concentrations of various species, such as how human activities or volcanic eruptions 

have influenced environmental perchlorate levels.  The development of a depth-age scale 

is also necessary for the comparison of data across ice cores from different locations 

because snow accumulation rates vary from location to location.   

4.2 Dating Methods 

4.2.1 Annual Layer Counting  

 One technique often used for dating an ice core is annual layer counting.  Certain 

measured parameters of an ice core oscillate on an annual time scale.  For example, the 

amount of a specific chemical impurity, such as Ca2+, Mg2+, Na+, NH4
+, NO3

-, and SO4
2-, 

can fluctuate due to variations in source strength and atmospheric transport efficiency.  

When this fluctuation oscillates on an annual time scale, a yearly peak in concentration is 

observed.  A plot of concentration vs. depth allows for the counting of each yearly peak 

(or layer).  Thus, when the accumulation rate and temporal resolution of measurement is 

high enough to resolve annual layers, the age at a given depth of snow can be determined 

by counting the number of peaks between that depth and a depth of a known age (usually 

the top of the ice core, which would correspond to the year the ice core is drilled).   

 Chemical impurities are not the only components of an ice core that can oscillate 

on an annual time scale.  Due to increased sublimation during the warmer summer 
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months, snow in the summer is less dense than in the winter58.  Thus, density also 

oscillates on an annual time scale (at the top of the core) and can be used to date an ice 

core.  Density variations may be visually observed within the core itself, making it 

possible to date the core via visible stratigraphy.  Finally, the stable oxygen isotopic 

composition of the water molecules in snow oscillate on an annual time scale.  This is 

due to the temperature dependence of the preference of H2
16O molecules over H2

18O 

molecules when water evaporates or when water vapor condenses.  During colder 

conditions, H2
16O molecules are preferentially removed from the atmosphere.  Thus, the 

snow that accumulates during the winter has a higher content of H2
16O molecules than the 

snow that accumulates during the summer.  As a result of their annual oscillations, 

chemical impurities, density, and the stable oxygen isotopic composition of water can all 

be used to date an ice core via annual layer counting.  Often multiple parameters 

exhibiting annual layers are used to develop the most accurate time scale possible.  This 

technique is particularly useful when an annual signal for one parameter becomes unclear 

or is temporarily lost.  For example, the annual signal for NH4
+ in Greenland ice cores 

can become obscured by biomass burning events59.  Thus, NH4
+ cannot be used for dating 

during these events, but the presence of other parameters, such as Ca2+, can be used, 

allowing for continuous annual layer counting. The age determined for a certain depth 

can be verified using time stratigraphic markers60,61, which are events observed in ice 

core data that correspond to a known year.  For example, large volcanic eruptions are 

represented in ice cores with prominent SO4
2- signals due to the emission of large 

amounts of sulfur dioxide (SO2).  Therefore, a prominent SO4
2- signal corresponding to 
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the year of a well-known volcanic eruption can be used to verify that the assigned date 

for that particular depth is correct. 

4.2.2 Constant Accumulation Method 

 Another technique that can be employed to date an ice core is the use of snow 

accumulation rates.  This technique involves using the average annual snow accumulation 

rate at a specific location to determine the age at a certain depth.  The use of 

accumulation rates for dating is made more difficult by the compression of annual layers 

with increased depth by continuous snow accumulation.  As a result, annual layer 

thickness decreases with increasing depth.  Thus, the average snow water equivalent 

(SWE), which is the accumulation measured in amount of liquid precipitation, is often 

used rather than the actual snow accumulation depth interval to date the ice core.   

4.3 Dating SM07C2 

 The depth-age scale for the portions of SM07C2 used in this study (0 – 98 m) was 

developed using the method of annual layer counting throughout core 1 from Summit, 

Greenland (SM07C1) and SM07C2.  The concentrations of the major ions (Cl-, NO3
-, 

SO4
2-, Na+, K+, Mg2+, and Ca2+) in SM07C1 and SM07C2 were determined using 

continuous flow analysis-ion chromatography (CFA-IC)62.  The depth resolution of the 

CFA-IC samples analyzed was slightly less than 3 cm per sample.  This resulted in an 

average of 10.8 samples per year43, which is sufficient resolution for annual layer 

counting at this site.  As can be seen in Figure 4, Ca2+, which derives from terrestrial dust 

and peaks in the spring59, exhibits a very reliable annual signal and was primarily used 

for annual layer counting.  This was complemented by the annual signal in Mg2+, which 

also derives from terrestrial dust and peaks in the spring.  In cases where the annual 
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signals in Ca2+ and Mg2+ became unclear, the annual signals in Na+, which derives from 

sea salt and generally peaks in the winter, and NO3
-, which peaks in the summer, were 

used to assist in the annual layer counting40,43. 

   

Figure 4.  Annual oscillations in Ca2+ (red), Na+ (blue), and NO3
- (black) from SM07C2, 

which were used in annual layer counting to develop the depth-age scale for SM07C2.  

The Tambora SO4
2- (green) volcanic signal was used to adjust SM07C2 depths to 

SM07C1 depths. 

 

Annual layer counting as described above was used to date the top 66.50 m of 

SM07C1 to the year 1820 C.E.  The top 66.50 m of SM07C2 were not analyzed for major 

ion concentrations.  Thus, the Tambora SO4
2- volcanic signal (Figure 4) was used to   

establish the corresponding layer in SM07C2.  This layer occurred at a depth of 67.44 m 

in SM07C1 and at 67.62 m in SM07C2.  This means that a layer of snow in SM07C2 is 

0.18 m deeper than the layer of snow in SM07C1 that fell at the same time of year. 

Therefore, 0.18 m was subtracted from the SM07C2 depths, which allowed SM07C2 to 

be appended onto the SM07C1 depth scale, and annual layer counting proceeded on 

SM07C2 below 66.38 m40.  Because of occasional ambiguity in the annual signals of the 
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ions used for dating, there is uncertainty associated with the final time scale of any ice 

core.  The age at the bottom portion of SM07C2 used in this study was determined to be 

1700 with an uncertainty of ± 3 years.   

4.4 Dating the TUNU and Basin 4 Cores 

 The ice cores from TUNU and Basin 4 could not be dated via annual layer 

counting because there was no data available by which annual layer counting could be 

performed.  Thus, these cores were dated using the constant accumulation rate method.  

The SWEs for TUNU and Basin 4 were 12.5 cm yr-1 and 41.1 cm yr-1, respectively.  In 

order to date each core using the accumulation rate method, the density for each sample 

needed to be determined.  The density for each sample (ρsample) was calculated using 

Equations 1 (TUNU) and 2 (Basin 4), where the numerical values for coefficients a-h are 

shown in Table 5.  Equation 1 was determined by the polynomial fit of density 

measurements from a core drilled at 75° N, 30° W and Equation 2 was determined by the 

polynomial fit of density measurements from a core drilled at 63.1° N, 44.8° W63.  In 

Equations 1 and 2, MD is the middle depth for each sample.  After calculating the density 

for each sample, the water sample size (WSS) was calculated by multiplying ρsample by 

the sample size.  Finally, the water depth for each sample was determined by summing 

the WSSs for all the samples above the sample of interest.  The water depth for each 

sample was then used to determine the age of each sample based upon average annual 

SWE for each site.  The age at the bottom of the TUNU core (19.96 m) was determined 

to be 1918 C.E., and the age at the bottom of the Basin 4 core (23.654 m) was determined 

to be 1972.  Figure 5 shows the depth-age profiles of the SM07C2, TUNU, and Basin 4 

cores through the year 1915. 
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Equation 1 𝜌𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑎 + (𝑏 × 10−2)𝑀𝐷 − (𝑐 × 10−4)𝑀𝐷2 − (𝑑 × 10−6)𝑀𝐷3 

Equation 2 𝜌𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑒 + (𝑓 × 10−2)𝑀𝐷 − (𝑔 × 10−3)𝑀𝐷2 + (ℎ × 10−5)𝑀𝐷3 

 

Table 5.  Numerical values for coefficients a-h in Equations 1 and 2. 

Coefficient Numerical Value 

a 0.324 

b 2.185 

c 2.348 

d 9.558 

e 0.388 

f 4.530 

g 2.954 

h 7.140 

 

 

Figure 5.  Depth-age profiles through 1915 for the SM07C2 (black), TUNU (blue), and 

Basin 4 (green) cores. 
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5 Long Term Trends in Perchlorate 

5.1 Pre-Industrial Revolution vs. Modern Concentrations 

The 300-year (1700-2007 C.E.) perchlorate record from SM07C2 allows for the 

comparison of perchlorate concentrations from prior to the onset of the Industrial 

Revolution (~1850 C.E.), which are assumed to be solely from natural sources, and 

modern perchlorate concentrations, which likely derive from both anthropogenic and 

natural sources.  This allows for the determination of the anthropogenic contributions to 

environmental perchlorate, assuming that the contribution from natural sources has 

remained the same during the entire time period.  The average perchlorate concentration 

prior to the onset of the Industrial Revolution (1700-1850) was 1.0 ± 0.7 ng L-1 (n = 801) 

compared to an average concentration of 1.4 ± 1.4 ng L-1 (n = 1,194) between 1850 and 

2007.  This suggests some anthropogenic contribution to environmental perchlorate 

following the onset of the Industrial Revolution.  However, closer examination of the 

perchlorate record shows that there is no significant change or trend in perchlorate 

concentrations during the time period of 1700-1980.  The average perchlorate 

concentration between 1850 and 1980 was 1.0 ± 0.9 ng L-1 (n = 930), essentially the same 

as pre-Industrial Revolution concentrations (Figure 6).  Therefore, it can be concluded 

that the onset of the Industrial Revolution had negligible impact on environmental 

perchlorate.  
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Figure 6.  A comparison of average perchlorate concentrations in pre-Industrial 

Revolution samples, pre-1980 samples, and post-1980 samples (bars).  The black solid 

line is the smoothed annual perchlorate concentrations between 1700 and 2007 from 

SM07C2.  Data was smoothed using a running average with a 0.1 sampling proportion.  

Error bars represent the standard deviation of the perchlorate measurements.   

 

Perchlorate concentrations increased significantly post-1980.  The average 

perchlorate concentration between 1980 and 2007 was 2.7 ± 2.1 ng L-1 (n = 266), nearly a 

three-fold increase over pre-Industrial Revolution concentrations.  A Mann-Whitney 

Rank Sum Test between annual perchlorate concentrations between 1700 and 1980 and 

between 1980 and 2007 revealed a statistically significant difference (p = <0.001).  The 

significantly higher perchlorate concentrations post-1980 indicate that an additional 

source of perchlorate appeared around 1980.  This source could be the direct release of 
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perchlorate from anthropogenic activities, which is discussed in more detail in section 

5.3.  Another possibility is that conditions changed in favor of the atmospheric 

production of perchlorate.  This possibility is discussed in Chapter 6. 

5.2 Perchlorate Concentrations across the Arctic 

Analysis of perchlorate concentrations in three different Greenland ice cores 

allows for the comparison of perchlorate concentrations, as well as a more 

comprehensive view of trends and fluctuations in these concentrations, across Greenland.  

Figure 7 shows the average annual perchlorate concentrations between 1972 and 1996 in 

the SM07C2, TUNU, and Basin 4 cores.  In general, perchlorate concentrations, as well 

as the trends in these concentrations, with the exception of the large peak in the TUNU 

core between 1983 and 1985, are similar across Greenland, suggesting similar sources 

and deposition patterns.  The average annual concentrations (excluding the large peak in 

the TUNU core between 1983 and 1985) for SM07C2, TUNU, and Basin 4 between 1972 

and 1996 are 2.23, 2.50, and 2.51 ng L-1, respectively.   
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Figure 7.  The average annual perchlorate concentrations in the SM07C2 (black circles), 

TUNU (blue triangles), and Basin 4 (green squares) ice cores covering the time period 

1972-1996. 

 

The cause of the large perchlorate peak in the TUNU core between 1983 and 1985 

remains unclear.    TUNU samples over this time period were analyzed twice, yielding 

the same result.  Furthermore, a second set of samples for this time period was cut from 

the remaining core and analyzed.  The Mann-Whitney Rank Sum Test showed that there 

was no statistical difference between the two sets of samples (p = 0.445).  Thus, the high 

concentration is not likely a result of errors in sample preparation and analytical 

measurement, and this perchlorate peak represents the actual environmental perchlorate 

concentrations across the time period at the TUNU site.  There is an increase in 

perchlorate concentrations during this time period in SM07C2 and Basin 4, although the 

increase is much smaller in these two cores.  The increase in perchlorate concentrations 
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over this time period could be associated with the volcanic eruption of El Chichón in 

Mexico in 1982 (this possibility is discussed in detail in Chapter 7).  While the El 

Chichón eruption seems to be a possible explanation for the large peak in perchlorate 

concentrations in the TUNU core between 1983 and 1985, it remains difficult to explain 

why these concentrations are significantly higher than those observed in SM07C2 and 

Basin 4, especially when perchlorate concentrations are so similar during other periods in 

the records.  Data from other Greenland locations would be needed to determine if this 

anomaly in perchlorate concentrations is localized to the TUNU site, or is an anomaly 

seen only in northern Greenland locations.  If the anomaly was seen in other northern 

Greenland locations, it could suggest that there was a local event impacting northern 

Greenland, but not other Greenland locations.  

Perhaps the most notable trend in perchlorate concentrations in the TUNU and 

Basin 4 cores is a marked increase in perchlorate concentrations post-1980, remarkably 

similar to that observed in SM07C2.  The average perchlorate concentrations pre-1980 

for TUNU (1918-1979) and Basin 4 (1972-1979) were 1.05 and 0.92 ng L-1, respectively, 

compared to 3.40 and 2.94 ng L-1 post-1980, respectively (excluding the anomaly in the 

TUNU core).   This 3- to 4-fold increase in perchlorate concentrations post-1980 over 

pre-1980 concentrations is consistent with the increase observed in SM07C2. 

 The typical perchlorate concentrations and the trends across Greenland are also 

found in other Arctic locations.  Furdui and Tomassini21 found the average perchlorate 

concentration in ice samples dated between 1996 and 2005 from Devon Island in eastern 

Canada to be 5.5 ng L-1, compared to 2.4 ng L-1 during the same period in SM07C2.  Rao 

et al.36 measured perchlorate concentrations in ice core samples dated 1970-1973, 1982-
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1986, and 1999-2002 from the Eclipse Icefield, Yukon Territory, Canada.  Similar to the 

trend observed across Greenland, perchlorate concentrations post-1980 at Eclipse Icefield 

were approximately 3-fold higher than pre-1980 concentrations, as the average 

perchlorate concentration between 1970 and 1973 was 0.6 ng L-1 compared to 2.3 and 2.2 

ng L-1 between 1982 and 1986 and between 1999 and 2002, respectively.    

5.3 Possible Anthropogenic Sources 

5.3.1 Perchlorate as an Oxidizer 

 In the United States perchlorate is considered a strategic chemical due to its use in 

many military and strategic applications.  As a result, accurate production and usage data 

on perchlorate is not openly and readily available.  The lack of such data complicates the 

process of identifying specific anthropogenic contributors to environmental perchlorate.  

Despite limited data, Dasgupta et al.13 were able to develop perchlorate production 

figures in the United States based upon production data in EPA archives for three 

perchlorate production plants and estimates for one additional plant.  As seen in Figure 8 

(from Dasgupta et al.13), the industrial production of perchlorate in the U.S. began to 

increase around 1980 over the annual production of the previous 15 years.  This rise in 

the industrial production of perchlorate likely led to an increase in perchlorate usage in 

applications, such as its use as a propellant in space shuttle launches. 
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Figure 8.  Perchlorate production in the United States based on data 

from EPA archives for Oxychem, PEPCON, Kerr-McGee, and 

estimates for WECCO.  Figure from Dasgupta et al.13 

   

The National Aeronautics and Space Administration’s (NASA) space shuttle 

program began in 1981(ref 15).  Between 1981 and 2007, there were 120 space shuttle 

launches, averaging slightly more than four per year.  The advent of space shuttle 

launches corresponds with the increase in perchlorate levels observed in the ice core 

record.  This seemingly suggests a link between space shuttle launches and increasing 

perchlorate levels.  However, as mentioned in Chapter 1, when perchlorate is used as an 

oxidizer, as in a space shuttle launch, evidence indicates that essentially no perchlorate 

residue remains1,13,16,21.  Thus, it is unlikely that residue from space shuttle launches is a 

significant direct source of perchlorate, although it may serve as a minor source to 

environmental perchlorate.  Each space shuttle launch utilizes approximately 701,000 kg 

of ammonium perchlorate15.  Even if as little as 0.05% of the perchlorate remains, as is 

the case in road flares16, each space shuttle launch could release up to approximately 350 
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kg of ammonium perchlorate to the environment.  Thus, during the space shuttle era, it is 

possible that more than 1,400 kg of perchlorate could have been released to the 

environment per year, assuming four space shuttle launches per year.  Considering the 

perchlorate concentrations observed in the ice core records are in the low ng L-1 range, 

this could represent a relevant source of perchlorate.  However, as pointed out by 

Dasgupta et al.13 the temperatures during a space shuttle launch are much higher and 

sustained much longer than in a road flare, which would presumably result in much less 

perchlorate residue.  

 While it seems unlikely that space shuttle launches are a significant direct source 

of environmental perchlorate since 1980, they may serve as an indirect source.  While no 

significant elevation in perchlorate levels was found in space shuttle plumes, elevated 

levels of chloride were observed13.  The chloride release could enhance the level of 

chlorine in the stratosphere.  As will be discussed at length in Chapter 6, stratospheric 

chlorine is likely a major precursor to perchlorate.  Therefore, space shuttle launches 

could contribute to the enhanced stratospheric production of perchlorate.  This assumes, 

though, that the levels of chloride that reach the stratosphere is significant relative to the 

typical levels of stratospheric chlorine.  The contribution of space shuttle launches to the 

rising perchlorate concentrations in post-1980 samples remains unclear, but this 

possibility should considered in future research. 

 Although perchlorate’s usage as an oxidizer in applications may not contribute 

significantly to environmental perchlorate, the release from disposal when it is no longer 

needed may be significant.  According to Dasgupta et al.13, the rocket propellant mixture 

containing perchlorate has a limited lifetime, and often needs to be replaced when not 
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used immediately.  When this occurs the propellant is washed out with high pressure 

water creating large volumes of perchlorate-contaminated wastewater which is 

discharged into sewage systems or natural waters.  As a result of similar disposal 

practices by the Department of Defense and manufacturing plants, perchlorate has been 

found to be present in groundwater in at least 22 states8.  Similarly, perchlorate pollution 

in the lower Colorado River has been attributed to disposal at upstream production 

plants8.  The lower Colorado River, as a source of drinking water and irrigation water 

throughout southwestern Arizona and southern California, may pose as a significant 

potential for human perchlorate exposure8.   

5.3.2 Perchlorate as an Impurity 

 The presence of perchlorate as an impurity in CNF and in sodium chlorate used in 

the pulp and paper industry may represent another anthropogenic source of perchlorate.  

However, these sources of perchlorate are unlikely contributing to the post-1980 increase 

in perchlorate concentrations in Arctic snow.  The import of Chilean nitrate to the United 

States and Europe declined significantly as the large-scale industrial production of 

nitrogen fertilizer increased.  As a result, imports of Chilean nitrate have remained 

relatively consistent since the mid-1960s (ref 13).  Finally, although the global production 

of sodium chlorate has been steadily increasing, it remains unclear if this is a significant 

source of perchlorate pollution.  Therefore, perchlorate as an impurity in sodium chlorate 

may currently exist as a minor anthropogenic source of environmental perchlorate. 

 The perchlorate pollution resulting from the disposal of perchlorate salts and the 

release from applications typically remains local.  Thus, these sources of perchlorate are 

likely largely responsible for the perchlorate observed in the groundwater and surface 
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water systems across the United States.  However, in order for perchlorate that is 

disbursed locally, as is the case in the disposal of perchlorate salts and the use of CNFs, 

to reach Greenland, it would likely be transported with dust.  Dust records from Arctic 

ice cores have revealed that dust concentrations have not increased since 1980 (ref 64).  

As an example, calcium concentrations in SM07C2 are provided in Figure 9. Calcium 

concentrations in ice cores are often used as a proxy for dust59.  Calcium concentrations 

do not change significantly around 1980, indicating no increased dust input.  Thus, it 

does not appear the perchlorate concentrations in Greenland snow were impacted by the 

direct release of perchlorate from anthropogenic sources.   

 

Figure 9.  Calcium concentrations (proxy for dust) between 1960 (left) and 2000 (right) 

in SM07C2.   
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5.4 Conclusions  

 The 300-year perchlorate record from SM07C2 reveals that the onset of the 

Industrial Revolution did not impact environmental perchlorate levels, as typical 

perchlorate concentrations were remarkably stable between 1700 and 1980.  A significant 

increase in perchlorate concentrations began in 1980, which is observed in all three 

Greenland ice cores, as well as in other Arctic locations36, indicating additional 

perchlorate likely entered the environment.  Despite limited available data on perchlorate 

production, analysis by Dasgupta et al.13 suggested that more perchlorate may have been 

released into the environment because the industrial production of perchlorate increased 

around 1980.  The most likely human activities contributing to environmental perchlorate 

are perchlorate’s use as an oxidizer in space shuttle launches and the disposal of unused 

perchlorate. 

 The disposal of perchlorate likely contributes to the perchlorate pollution found in 

groundwater and surface water systems.  However, this pollution generally remains 

localized.  Because of the tendency of perchlorate pollution to remain localized to the 

source of the release, the disposal of perchlorate by the manufacturing plants and 

perchlorate users unlikely explains the significant increase in observed perchlorate levels 

in the Canadian and Greenland ice core records.  The impact of perchlorate as an oxidizer 

in large scale activities could be detected in ice core records.  This is because when 

perchlorate is used as an oxidizer it is often released into the atmosphere where it can 

undergo more widespread distribution.  However, as discussed above, it remains 

debatable whether perchlorate’s use as an oxidizer could represent a significant source of 

environmental perchlorate.  Likely, the direct release of perchlorate from anthropogenic 
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applications is not a significant cause of the increase since 1980.  As a result, it seems 

likely that there is another source of perchlorate, or that atmospheric conditions changed 

in a way that promotes the atmospheric production of perchlorate and is contributing to 

the post-1980 increase that is observed across the Arctic.  
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6 Stratospheric Chlorine 

6.1 Evidence of Stratospheric Production of Perchlorate 

 In addition to the anthropogenic sources discussed in Chapter 5, formation in the 

atmosphere is expected to be a significant source of environmental perchlorate3–5,22,65.  

The processes leading to perchlorate production, though, are not well understood.  

Elevated levels of cosmogenic chlorine (36Cl) observed in natural perchlorate deposits 

suggest that at least some perchlorate is formed in the stratosphere20.  This is because 36Cl 

is formed in the stratosphere due to the galactic cosmic-ray spallation of 40Ar, whereas 

the chlorine present in the troposphere is dominated by marine chlorine, and contains 

negligible amounts of 36Cl (ref 20). Furthermore, perchlorate has been observed in H2SO4 

aerosols present in the stratosphere66.  Thus, it seems likely that stratospheric chlorine is 

important for the formation of perchlorate, and its role in enhanced perchlorate 

production post-1980 will be discussed in this chapter.   

6.2 Overview of Chlorine Chemistry in the Stratosphere 

The only significant natural contributor to stratospheric chlorine is methyl 

chloride67, which mainly derives from biogenic sources including salt marsh plants68, 

fungal species69, and marine algae70.  The other main sources of stratospheric chlorine in 

the present environment are chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons 

(HCFCs), which originate from anthropogenic sources67.  CFCs were synthesized in the 

1930s and were produced to replace the toxic fluids used as coolants in refrigerators.  

However, they also found uses as solvents, cleaners, propellants for spray cans, and as 

blowing agents for plastic foam.  CFCs are inert in the troposphere.  Because CFCs lack 

hydrogen atoms, they are not reactive to the hydroxyl radical (HO•), a ubiquitous species 
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in the troposphere that typically initiates oxidation of hydrocarbons by abstraction of 

hydrogen in C-H bonds71.  Furthermore, CFCs are not soluble in water, and therefore are 

not removed via precipitation72.  As a result, CFCs released into the environment are 

transported through the troposphere to the stratosphere.  Because the transport of CFCs to 

the stratosphere, where they break down readily, is very slow, the atmospheric residence 

time of CFCs is on the order of a century72, allowing for the accumulation of chlorine 

species in the atmosphere.  Table 6 shows common CFCs along with their atmospheric 

residence times73. 

Table 6.  The atmospheric residence times of common CFCs73. 

CFC Formula Short Name Lifetime (years) 

CCl3F CFC-11 45 

CF2Cl2 CFC-12 100 

CF2ClCFCl2 CFC-113 85 

ClF2CCF2Cl CFC-114 300 

CClF2CF3 CFC-115 1700 

 

Once in the stratosphere, CFC molecules are exposed to short wavelength (<220 

nm) solar ultraviolet radiation.  Exposure to this ultraviolet radiation destroys CFC 

molecules and causes the release of radical chlorine atoms72, as shown in Reaction 1. 

   

(R1) CF2Cl2 + hv (<220 nm) → Cl• + CF2Cl 

 

The chemical and physical processes by which chlorine radicals catalyze the destruction 

of ozone in the stratosphere leading to the annual appearance of the stratospheric ozone 

hole over Antarctica has been well documented74. Here is a brief summary of the current 

understanding of the stratospheric ozone loss phenomenon. As first suggested by Molina 

and Rowland75, the chlorine atoms react to destroy ozone via the cycle shown in 
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Reactions 2 and 3, in which the Cl• is regenerated, resulting in the catalytic destruction of 

ozone.   

 

(R2) Cl• + O3 → ClO• + O2 

(R3) ClO• + O → Cl• + O2 

 

These reactions continue to deplete ozone until the chlorine radicals combine or react to 

form chlorine reservoir species (HCl and ClONO2) through Reactions 4 and 5, where M 

is a third body molecule such as N2 or O2. 

 

(R4) Cl• + CH4 → HCl + CH3• 

(R5) ClO• + NO2 + M → ClONO2 + M 

 

Under normal conditions, chlorine is sequestered in the reservoir chlorine species and 

therefore unavailable for ozone destruction reactions.  Reactions 6 and 7 can release 

chlorine from the reservoir76–79, yielding species (Cl2 and HOCl) that can easily generate 

radicals.   

 

(R6) HCl + ClONO2 → Cl2 + HNO3 

(R7) H2O + ClONO2 → HOCl + HNO3 

 

The rates of Reactions 6 and 7 are much faster when they heterogeneously occur on the 

surface of ice crystals of polar stratospheric clouds (PSCs) than in the gas-phase 

(homogeneous reactions).  For example, experiments performed by Atkinson et al.80 

show that the homogeneous rate constant for Reaction 7 is approximately 2 × 10-21 cm3 

molecule-1 s-1, whereas experiments performed by Rowland et al.81 show that the 
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heterogeneous rate constant is approximately 1 × 10-19 cm3 molecule-1 s-1, approximately 

two orders of magnitude higher.  The dramatic increase in the rate constant is mainly due 

to the reactants becoming concentrated on the surface of the PSCs, compared with in the 

gas phase.  PSCs also increase activated chlorine concentrations because Cl2 gas 

molecules can escape the surface of PSCs, which shifts the equilibrium of Reaction 6 

towards the products71,80,81.  During the Antarctic winter, the absence of sunlight allows 

Cl2 and HOCl to accumulate in the stratosphere.  When sunlight returns in the spring, Cl2 

and HOCl undergo photolysis to form Cl• and ClO•, respectively, which then initiate the 

catalytic destruction of ozone, resulting in the spring ozone hole over most of the high 

southern latitudes including Antarctica. 

As the emission of CFCs increased the amount of chlorine species in the 

stratosphere, the amount of activated (radical) chlorine, particularly over the poles, 

increased as well.  While stratospheric chlorine chemistry and the enhanced chlorine 

activation over the poles has mainly been studied in relation to the depletion of ozone, it 

is possible that these processes lead to increased perchlorate production, because radical 

chlorine species are important precursors to perchlorate82,83. 

6.3 Trends in Stratospheric Chlorine and Perchlorate Concentrations 

 The abundance of stratospheric chlorine is estimated by a parameter referred to as 

equivalent effective stratospheric chlorine (EESC).  EESC is essentially the sum of ozone 

depleting substances, which are primarily chlorine- and bromine-containing chemicals, 

taking into account their atmospheric residence time and the their ozone destruction 

efficiency.  EESC, which is estimated from the production of ozone depleting substances, 

is often used to predict the extent and duration of ozone depletion.  Equation 3 shows 
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how EESC is calculated.  In Equation 3, a is an arbitrary factor and is often assumed to 

be 1 (ref 84), ni is the number of chlorine or bromine atoms in a specific source gas, fi is 

the fractional halogen release of a specific source gas at a designated time, ρi is the 

mixing ratio of the source gas, and α accounts for the increased efficiency at which 

bromine destroys ozone compared to chlorine and is assumed to be 60.  Based upon 

mixing ratios reported by Newman et al.84 for 2000 and fi values for 3 and 5.5 years after 

the release of the source gases, the contribution of chlorine containing source gases to 

total EESC is calculated to be approximately 70–75%.  Furthermore, as EESC 

concentrations have increased in the recent decades, measurements by Fabian and 

Borchers85 show that stratospheric chlorine concentrations have also increased.  Thus, 

EESC is considered a good estimate of stratospheric chlorine concentrations84. 

Equation 3 𝐸𝐸𝑆𝐶(𝑡) = 𝑎(∑ 𝑛𝑖𝑓𝑖𝜌𝑖 + 𝛼∑ 𝑛𝑖𝑓𝑖𝜌𝑖𝐵𝑟𝐶𝑙 ) 

As can be seen in Figure 10, EESC increases rapidly throughout the 1980s and 

early 1990s before peaking in 1996, a trend that has been attributed primarily to changes 

in the production and emission of CFCs.  To reduce and prevent the destruction of ozone, 

the production of CFCs was first limited under the Montreal Protocol in 1987, and 

eventually phased out in the subsequent London and Copenhagen amendments in 1990 

and 1992, respectively72.  As a result, EESC concentrations have been steadily decreasing 

since 1996.  As shown in Figure 11 (from Elkins86), these trends are also reflected 

atmospheric levels of CFC-11, one of the key CFC compounds.  The average annual 

perchlorate concentrations from SM07C2 parallel the increasing trend in EESC 

throughout the 1980s and early-1990s, followed by decreasing concentrations throughout 

the late-1990s and early 2000s.  Furthermore, a similar trend, increasing concentrations 
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starting in 1980 followed by decreasing concentrations starting in the mid-1990s, was 

observed in perchlorate measurements in an ice core drilled at the South Pole (Figure 12).  

The parallel trends in EESC and perchlorate concentrations in both the Arctic and 

Antarctic strongly suggest that stratospheric chlorine is likely playing a major role in 

perchlorate production globally.    

 

Figure 10.  Average annual (black) and smoothed (green) perchlorate concentrations 

from SM07C2, as well as annual EESC concentrations (red) between 1950 and 2006.  

Perchlorate concentrations were smoothed in Sigma Plot by taking a running average 

with a sampling proportion of 0.3.  Lack of ice core samples resulted in no perchlorate 

data for the time period of 1964-1966. 
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Figure 11.  Atmospheric CFC-11 concentrations from various National Oceanic and 

Atmospheric Administration/Climate Monitoring and Diagnostic Laboratory locations 

(from Elkins86). 

 

Figure 12. Annual (black) and smoothed (green) perchlorate concentrations from the 

South Pole, as well as EESC concentrations (red) between 1950 and 2004.  Perchlorate 

concentrations were smoothed in Sigma Plot by taking a running average with a sampling 

proportion of 0.3.  
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As can be seen in Figures 10 and 12, perchlorate concentrations are significantly 

higher in Antarctica than in Greenland, which was unexpected. Initially, it was speculated 

that perchlorate in recent snow was influenced by anthropogenic activities and, due to the 

fact that anthropogenic activities are more prevalent in the Northern Hemisphere, higher 

perchlorate levels would be found in Greenland snow. It was also thought that, in the 

absence of significant anthropogenic influence, perchlorate levels in Antarctic snow 

would be similar to those in Greenland snow.  The data show that the average annual 

perchlorate concentration in snow between 1980 and 2004 at the South Pole is 56.7 ± 

35.8 ng L-1 (n = 134) compared to only 2.8 ± 2.2 ng L-1 (n = 245) for the same time 

period in SM07C2.  The average perchlorate concentration at WAIS Divide, Antarctica 

between 2008 and 2012 is 45.9 ± 31.4 ng L-1 (n = 87).  This indicates that the difference 

in snow accumulation between the South Pole (SWE = 8.4 cm yr-1 (ref 87)) and Summit 

Station (SWE = 24 cm yr-1 (ref 40)) cannot account for the difference in perchlorate 

concentration, as WAIS Divide (22 cm yr-1 (ref 88)) and Summit Station have similar 

snow accumulation rates.  Perchlorate concentrations at the South Pole are also much 

higher than concentrations at Summit Station prior to 1980.  The average perchlorate 

concentration between 1950 and 1979 at the South Pole and Summit Station are 8.9 ± 5.4 

(n = 126) and 0.7 ± 0.6 ng L-1 (n = 243), respectively.   

6.3.1 Enhanced Chlorine Activation over Antarctica  

The reason for the significantly higher concentrations of perchlorate in Antarctica 

is unclear.  However, assuming activated chlorine in the stratosphere is a significant 

precursor to perchlorate production, greater chlorine activation over the Antarctic 

compared to the Arctic67 could be responsible for the higher perchlorate concentrations in 
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Antarctica than in Greenland.  There are two main reasons why chlorine activation is 

greater over the Antarctic than over the Arctic, and why stratospheric ozone loss over the 

Arctic is much less severe than over the Antarctic.  First, the Arctic polar vortex is 

warmer than its Antarctic counterpart because it is weaker, it moves away from the pole, 

and it becomes more easily distorted in shape67.  Thus, although PSCs still form over the 

Arctic89, temperatures cold enough for their formation are reached less often and do not 

persist as long, resulting in smaller-sized PSCs.  With smaller PSCs, the activation of 

chlorine is not as massive over the Arctic as it is over the Antarctic, resulting in lower 

concentrations of radical chlorine species over the Arctic.   A second reason there is more 

activated chlorine over the Antarctic than over the Arctic is that more HNO3 is removed 

from the Antarctic stratosphere (denitrification) than the Arctic stratosphere leading to 

lower NO2 concentrations67.  As discussed in section 6.2, NO2 is responsible for the 

termination of radical chlorine species.  Therefore, more significant denitrification in the 

Antarctic prevents the deactivation of chlorine radicals, leading to more activated 

chlorine in the stratosphere over Antarctica67.  Thus, the combination of larger, longer 

lasting PSCs and more significant denitrification over Antarctica explains the higher 

degree of chlorine activation observed over Antarctica. This is likely responsible for the 

higher perchlorate concentrations in Antarctica, since perchlorate production is strongly 

influenced by activated chlorine, as discussed previously.   

The abundance of stratospheric chlorine appears to be a major factor in 

perchlorate production.  Furthermore, significantly higher perchlorate concentrations in 

Antarctica compared to Greenland indicate that activated, or radical, chlorine species are 

important precursors to perchlorate.  Therefore, the reactions leading to these precursors 
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and the subsequent oxidation reactions leading to perchlorate need to be investigated.  

Most notably, the role of ozone in the formation of perchlorate needs to be given 

significant attention due to its close relationship with radical chlorine species in the 

stratosphere.  

6.4 Mechanisms for Stratospheric Perchlorate Production 

6.4.1 Chlorine Activation 

 Rao et al.82 proposed a mechanistic pathway to perchlorate involving the 

oxidation of chlorine radicals to higher chlorine oxide radicals, such as Cl2O4 and Cl2O6, 

via ozone, and their subsequent hydrolysis to form perchlorate.  This mechanism is 

summarized herein.  The most efficient precursor to perchlorate was identified to be 

ClO2
- followed by Cl-, HOCl, and OCl-.  The rapid reaction between ClO2

- and O3 or HO• 

in the aqueous phase via Reactions 8 and 9 (k = 8.2 x 106 M-1 s-1 and 4.2 x 109 M-1 s-1, 

respectively) forms ClO2, an activated chlorine species that has been observed in the 

stratosphere over Greenland90.   

 

(R8) O3 + ClO2
- ↔ ClO2 + O3

- 

(R9) ClO2
- + HO → ClO2 + OH- 

 

Chlorine dioxide is also formed in the atmosphere as part of the ClO dimer cycle 

(Reactions 10-12)67  

 

(R10) 2 x (Cl + O3 → ClO + O2) 

(R11) ClO + ClO + M → Cl2O2 + M 

(R12) Cl2O2 + hv → ClO2 + Cl 

 

and through coupled BrO/ClO chemistry (Reaction 13)91.   
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(R13) ClO + BrO → Br + ClO2 

 

In the stratosphere, the ClO dimer cycle and the coupled BrO/ClO chemistry likely play a 

larger role in the production of ClO2 than Reactions 8 and 9, because the lack of water in 

the stratosphere makes aqueous reactions unlikely.  Chlorine dioxide can undergo several 

different oxidation pathways to form higher chlorine oxide radicals, which can then 

undergo hydrolysis to form perchlorate.  These oxidation pathways and hydrolysis 

reactions are summarized in Figure 13, and the rate constants for several of these 

reactions are shown in Table 7.  One should note that perchlorate often represents a minor 

product in these reactions.  However, considering that observed perchlorate 

concentrations in snow are only about 1 ng L-1, this still likely represents a significant 

source of perchlorate.  The most likely pathway to perchlorate begins with common 

chlorine radicals, the formation of ClO2 via Reactions 10-13, and proceeds through the 

gas phase oxidation of ClO2 (Reaction 2a in Figure 13), rather than through the aqueous 

phase.  In addition to these oxidation pathways, ClO2 can also undergo photolysis to form 

higher chlorine oxide radicals92,93.   
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Figure 13.  Proposed oxidation pathways for the formation of perchlorate in the 

stratosphere adapted from Rao et al.82.  The numbers in parentheses correspond to 

the reactions listed in Table 7. 

 

 

Table 7.  Reaction rate constants for potential oxidation and hydrolysis reactions leading 

to perchlorate82. 

 

Reaction Number Reaction Rate Constant 

1a ClO2 + O3
- → O3 + ClO2

- k = 1.8 x 105 M-1 s-1 

2a O3 + ClO2 → ClO3 + O2 k = 1.05 x 103 M-1 s-1 

3a O3
- + ClO2 → ClO3

- + O2 k = 1.8 x 105 M-1 s-1 

4a ClO3 + ClO3 → Cl2O6 k = 4.5 x 108 M-1 s-1 

5a ClO3 + ClO → ClO2O4 k = 7.5 x 109 M-1 s-1 

6a Cl2O6 + H2O → ClO3
- +ClO4

- + 2H+ kh = 180 M-1 s-1 

7a Cl2O4 + H2O → HClO + ClO4
- + H+ kh = 180 M-1 s-1 

 

6.4.2 Oxidation 

6.4.2.1 Ozone-Mediated Oxidation 

In addition to perchlorate production being dependent on the availability and 

amount of activated chlorine, the mechanism for perchlorate production in the 

stratosphere proposed by Rao et al.82 also suggests a dependence on ozone.  Previous 

studies on the isotopic composition of the natural perchlorate found in the NO3
- deposits 
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from the Atacama Desert have shown elevated Δ17O levels22.  Because perchlorate does 

not exchange oxygen atoms with the ambient environment, its oxygen isotopic signature 

retains that of its sources.  Atmospheric ozone is known to have a highly positive Δ17O 

signature, which can be transferred to products receiving oxygen in reactions.  Thus, the 

elevated Δ17O signature in perchlorate suggests ozone plays an important role in the 

oxidation of chlorine species22.  Further evidence supporting the importance of ozone in 

the production of perchlorate can be inferred by investigating the seasonal variations in 

perchlorate concentrations and total column ozone measurements.   

The annual oscillations in certain chemical impurities have already been discussed 

in their use as time markers for annual layer counting and dating ice core records 

(Chapter 4).  These annual oscillations can also be useful in determining the seasonality 

of other species, such as perchlorate, which may provide clues about their atmospheric 

formation.  Figure 14 shows the oscillations in the Ca2+ and perchlorate concentrations in 

SM07C2.  Elevated Ca2+ concentrations in Greenland ice cores are associated with high 

dust content and peak in the boreal (northern hemisphere) spring59.  As can be seen in 

Figure 14, although perchlorate does not demonstrate as explicit seasonal signal as Ca2+, 

it does generally peak at approximately the same time or slightly after Ca2+, indicating 

maximum perchlorate concentrations are reached in the late spring and early summer.   
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Figure 14.  Seasonal oscillations in Ca2+ (red) and perchlorate (black) concentrations in 

SM07C2 between 1997 and 2002.  Gray shaded bars (with years labeled on the top axis) 

highlight the maximum Ca2+ concentrations reached during the boreal spring (March- 

May).  The perchlorate and Ca2+ concentrations are smoothed with a running average. 

 

Total ozone also exhibits seasonal variations in Arctic locations.  Figure 15 shows 

the monthly total ozone column concentrations at Sondrestrom, Greenland (67°00’38 N, 

50°42’33 W) reported by the World Ozone and Ultraviolet Radiation Data Centre 

(WOUDC)94 and average monthly perchlorate concentrations between 1997 and 2002 

(the same time period shown in Figure 14) in SM07C2.  In order to determine the 

monthly perchlorate concentration, the snow accumulation between Ca2+ peaks, which 

were assumed to peak March 1, was calculated.  This value was then divided by 12 to 

approximate the average monthly snow accumulation.  This information was then used to 

determine an average perchlorate concentration for each month.  For example, if the 
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maximum Ca2+ concentration was reached at 2.0 m and the average monthly snow 

accumulation was 0.05 m, all perchlorate concentrations between 2.0 and 2.05 m were 

averaged and determined to be the average perchlorate concentration for March.  As can 

be seen in Figure 15, maximum ozone concentrations are generally reached in the late 

winter and early spring, in which winter is defined as December-February and spring is 

defined as March-May.  Although perchlorate concentrations appear to peak slightly later 

in the year, they do show a slight correlation with ozone indicating that ozone is involved 

in the formation of perchlorate.  The slightly later peak in perchlorate concentrations 

could be due to a lack of sunlight in the late winter and early spring.  The production of 

perchlorate also depends on radical chlorine, and the lack of sunlight in the late winter 

and early spring inhibits the generation of radical chlorine.  In addition, the later 

perchlorate peak could be partially due to the assumption that snow accumulation is the 

same each month.  Furdui and Tomassini21 also noted a correlation between perchlorate 

concentrations at Devon Island, Canada and ozone concentrations from nearby Resolute 

Bay, Canada, and found that both reached maximum concentrations in the spring, further 

suggesting that ozone plays a key role in the formation of perchlorate.  
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Figure 15.  Monthly total ozone column concentrations (blue triangles) from 

Sondrestrom, Greenland94 and average monthly perchlorate concentrations (black circles) 

in SM07C2.  The gray shaded bars (with years labeled on the top axis) indicate the boreal 

spring (March-May). 
 

The analysis of perchlorate in the snow pit samples collected from WAIS Divide, 

Antarctica has revealed that perchlorate concentrations in recent Antarctic snow exhibit a 

different seasonal signal than that in Greenland.  Figure 16 shows the seasonal 

oscillations in the concentrations of perchlorate, non-sea salt (nss) SO4
2-, and Cl-.  Sulfate 

in Antarctica derives mainly from sea salt and marine biogenic sources.  The 

concentration of SO4
2- that originates from marine biogenic sources (nss SO4

2-) is 

calculated using the ratio of SO4
2- to Na+ in sea water95.  Peak concentrations in nss SO4

2- 

are reached during the austral summer (December-February) at WAIS Divide.  Chloride 

in Antarctic ice cores mainly derives from sea salt and generally exhibits a peak in 
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concentration during the austral winter (June-August) due to the increased frequency and 

intensity of storms into Antarctica95.  As can be seen in Figure 16, perchlorate 

concentrations reach a maximum slightly after peak SO4
2- concentrations and slightly 

before peak Cl- concentrations. Thus, perchlorate concentrations reach a maximum 

during the austral autumn (March-May) at WAIS Divide. 

 

Figure 16.  Seasonal oscillations in perchlorate (black), nss SO4
2- (green), and Cl- (blue) 

as seen in WAIS Divide snow pit samples between 2008 and 2012. The gray shaded bars 

(with years labeled on the top axis) highlight the austral autumn season when maximum 

ClO4
- concentrations are reached.  The data was smoothed with a running average.   

   

The autumn peak in perchlorate concentrations seemingly contradicts the 

conclusion that activated chlorine is a major contributor to perchlorate production, as 

chlorine activation is most prominent in the austral spring.  However, if the availability of 

ozone is taken into account, the difference in the seasonality of perchlorate in Greenland 

and Antarctica, as well as the autumn peak in perchlorate concentration in Antarctica can 
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be explained.  The depletion of ozone over Antarctica during the austral spring over the 

last three decades has been well documented and is demonstrated in Figure 17, which 

shows the monthly total ozone column measurements from the South Pole reported by 

WOUDC94 and average monthly perchlorate concentrations from WAIS Divide.  The 

average monthly perchlorate concentrations were determined using the method described 

above, except in this case SO4
2- concentrations were used to determine the annual snow 

accumulation and SO4
2- concentrations were assumed to peak January 1. These 

measurements indicate that ozone concentrations reach a minimum during October and 

are relatively low throughout the austral spring (September-November).  Thus, although 

there is more activated chlorine available for perchlorate production in the spring, ozone 

concentrations are low due to the significant depletion of ozone during this time; in this 

scenario it is likely that ozone limits the rate of perchlorate production.  Therefore, a 

maximum in perchlorate concentrations is not observed in the spring in Antarctica as it is 

in Greenland, where spring ozone concentrations are much higher.  As seen in Figure 17, 

ozone concentrations quickly recover from a spring minimum to reach maximum 

concentrations during the austral summer (December-February) before decreasing 

slightly during the autumn.  Maximum ozone concentrations during the austral summer 

seem to suggest that perchlorate concentrations should also peak in the summer.  

However, warmer temperatures during the summer prevent the formation of PSCs, and 

thereby decreases the magnitude of chlorine activation.  As a result, activated chlorine 

levels are likely much lower than during the austral spring and limits the rate of 

perchlorate production during the summer.  The slight decrease in ozone concentrations 

during the austral autumn indicates increased chlorine activation over that during the 
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summer96.  Unlike during the spring, though, ozone concentrations may remain 

sufficiently high to maintain or enhance the production of perchlorate, leading to 

maximum austral autumn perchlorate concentrations.  Ozone concentrations increase 

again during the austral winter.  However, the lack of sunlight over Antarctica during the 

winter prevents the release of chlorine radicals from their reservoirs, limiting perchlorate 

production.  The relationship between stratospheric chlorine, ozone, and perchlorate 

concentrations is illustrated in Figure 18.  In the end, the austral autumn peak in 

perchlorate concentrations at WAIS Divide indicates that perchlorate production depends 

on a delicate balance between activated chlorine and ozone concentrations.  This is due to 

the close relationship between activated chlorine and ozone.  As activated chlorine in the 

stratosphere increases, ozone levels decrease. 

 

 

Figure 17. Monthly total ozone column concentrations (blue triangles) from the South 

Pole94 and perchlorate concentrations (black circles) from WAIS Divide.  The gray 

shaded bars (with years labeled on the top axis) indicate the austral autumn (March-May).  
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Figure 18.  Relationship between radical chlorine (red), ozone (green), and perchlorate 

(blue circles) concentrations (WAIS Divide). Maximum perchlorate production occurs in 

the autumn when neither radical chlorine nor ozone concentrations are too low. 

 

6.4.2.2 Photochemical Oxidation 

 Although there is strong evidence that ozone is directly involved in the oxidation 

of ClO2 to higher chlorine oxide radicals, it should be noted that ClO2 can also undergo 

photolysis in the presence of an unspecified oxygen source to form higher chlorine oxide 

radicals92,93.  Quiroga et al.93 found that perchlorate forms when ClO2 undergoes 

photolysis in the gas phase, but not in the aqueous phase.  The authors attributed this to 

the formation of Cl2O5 via photolysis in the aqueous phase as opposed to the perchlorate 

precursors Cl2O4 and Cl2O6.  When Cl2O5 undergoes hydrolysis it preferentially forms 
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ClO3, as opposed to perchlorate, via Reaction 14, whereas Cl2O4 and Cl2O6 form 

perchlorate, as shown in Reactions 15 and 16, respectively93. 

 

(R14) Cl2O5 + H2O → 2ClO3
- + 2H+ 

(R15) Cl2O4 + H2O → HClO + ClO4
- + H+ 

(R16) Cl2O6 + H2O → ClO3
- + ClO4

- + 2H+ 

 

In the aqueous phase the decomposition of Cl2O5 is likely prevented by rapid hydrolysis 

to ClO3.  On the other hand, in the gas phase, if Cl2O5 is formed, it is expected to 

decompose quickly, as the hydrolysis reaction is slowed due to lack of liquid water in the 

gas phase.  Thus, in the gas phase the formation of Cl2O4 and Cl2O6 is favored.  The 

absence of gas phase photolysis of ClO2 is supported by the winter minimum in 

perchlorate concentrations in both Greenland and Antarctica due to the lack of sunlight 

over the Arctic and Antarctic during the winter.  However, the activation of chlorine also 

requires sunlight.  Therefore, the winter minimum in perchlorate concentrations could 

also be explained by a lack of activated chlorine.  As a result, the data from the 

perchlorate record cannot determine which mechanism, ozone-mediated oxidation or 

photochemical oxidation, contributes more to perchlorate production, but it is possible 

that both processes are involved.  Although, the elevated Δ17O in natural perchlorate 

deposits22 does suggest that ozone-mediated oxidation may be the more important 

contributor to perchlorate formation.  Either way, it appears that the availability of 

sunlight is also an important factor in perchlorate formation as demonstrated by minimum 

perchlorate concentrations during the winter.     
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6.4.3 Hydrolysis 

The final step in the formation of perchlorate according to the mechanism 

proposed by Rao et al.82 is the hydrolysis of higher chlorine oxide radicals.  Hydrolysis 

reactions in the stratosphere often occur on aerosol surfaces97.  Most likely, gaseous 

higher chlorine oxide radicals undergo hydrolysis via heterogeneous reactions on H2SO4 

aerosols, which are ubiquitous in the lower stratosphere98.  Perchlorate has been observed 

within stratospheric H2SO4 aerosols66, suggesting that perchlorate is being formed via 

hydrolysis in these aerosols in the stratosphere.  Furthermore, in a series of wall reaction 

studies, Martin et al.99, showed that after chlorine radical species were titrated with 

excess ozone and subsequently passed through H2SO4, measurable quantities of 

perchlorate were formed.  

6.5 Conclusions 

Based upon perchlorate seasonal patterns in Greenland (Summit, TUNU, and 

Basin 4), Antarctica (South Pole and WAIS Divide), and in other Arctic locations21,36, the 

stratospheric production of perchlorate appears to be a major source of environmental 

perchlorate.  Furthermore, the information from the high temporal resolution perchlorate 

data from SM07C2 and WAIS Divide strongly supports the stratospheric production 

mechanism for perchlorate proposed by Rao et al.82 in which perchlorate production 

proceeds through ozone-mediated oxidation of radical chlorine species to higher chlorine 

oxide radicals, followed by hydrolysis of these radicals to form perchlorate.  The ice core 

records also suggest that the production of perchlorate is dependent on a delicate balance 

between radical chlorine and ozone concentrations.   
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The apparent influence of the emission of CFCs on the observed trends in the 

perchlorate records is an example of how human activities can impact natural processes 

in the environment.  As concentrations of stratospheric chlorine increased due to CFC 

emissions, the abundance of reactive chlorine species, such as ClO2 and higher chlorine 

oxide radicals, also rose.  This likely led to enhanced perchlorate production in the 

stratosphere.  This enhanced production of perchlorate is likely the major contributor to 

the observed increase in perchlorate concentrations across Greenland and in Antarctica in 

the recent decades, as perchlorate concentrations are unlikely to be significantly impacted 

by the direct emission of perchlorate from manufacture, application, and disposal 

processes.  However, this does not completely rule out a potential contribution from the 

usage of perchlorate, particularly in applications involving explosives, where perchlorate 

could reach the stratosphere and be disbursed across a large area.   
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7 Impact of Volcanic Eruptions 

 With the exception of the recent increase in concentrations, there appear to be no 

notable trends in perchlorate over the last 300 years.  However, the 300-year perchlorate 

record does reveal substantially elevated perchlorate levels during brief periods.  As seen 

in Figure 19, although transient, the elevated perchlorate levels are likely from sources 

that have not been identified or discussed.  These sources are either direct sources of 

perchlorate, or they contribute to the enhanced atmospheric production of perchlorate, 

similar to how CFC emissions have increased perchlorate production.  These peaks in  

perchlorate concentrations resemble the appearance of SO4
2- peaks seen in ice core 

records.  Because elevated SO4
2- concentrations in ice cores are commonly associated 

with volcanic eruptions100, it seems likely that the elevated perchlorate concentrations 

seen in Figure 19 are also influenced by volcanic eruptions.  A potential link between 

volcanic eruptions and elevated perchlorate concentrations has been suggested by 

others21,36, but due to limited data this link has remained speculative.  As will be 

discussed below, the perchlorate record from SM07C2 provides strong evidence that 

volcanic eruptions do impact environmental perchlorate concentrations. 
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Figure 19.  Perchlorate concentrations in SM07C2 between 1825 (left) and 1897 (right).  

The gray shaded bars highlight episodes of elevated perchlorate concentrations. 

 

7.1 Identification of Volcanic Eruptions in Ice Cores 

 Volcanic eruptions emit significant quantities of SO2, which is oxidized to H2SO4 

in the atmosphere and form H2SO4 aerosols.  These H2SO4 aerosols are eventually 

deposited from the atmosphere to the Earth’s surface.  The H2SO4 fallout from volcanic 

eruptions are preserved within the snow layers of ice sheets101.  As a result, past volcanic 

eruptions are often identified in polar ice cores by increased SO4
2- concentrations100.  The 

volcanic eruptions in this study were identified by periods of increased SO4
2- 

concentrations that corresponded with known volcanic eruptions.  Using this technique, 

five volcanic events were identified.  These volcanic events include Pinatubo 
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(Phillippines, 1991), El Chichón (Mexico, 1982), Krakatoa (Indonesia, 1883), Cosiguina 

(Nicaragua, 1835), and Babuyan Claron (Philippines, 1832).   

The explosiveness of a volcanic eruption is rated on a scale ranging from 0-8, 

referred to as the volcanic explosivity index (VEI).  Volcanic eruptions with a VEI of at 

least four are considered sufficiently explosive to have injected gaseous materials into the 

stratosphere102.  With the exception of Babuyan Claron, all these eruptions had a VEI of 

at least five103.  Although the VEI of Babuyan Claron is unknown, it is estimated to be 

four43.  Thus, all five of the eruptions in this study were very large, explosive eruptions in 

which material was likely injected into the stratosphere.   

7.2 Elevated Perchlorate Concentrations 

 The five volcanic eruptions mentioned above are all associated with elevated 

perchlorate concentrations in the SM07C2 record.  This is demonstrated in Figure 20, 

which shows both perchlorate concentrations and the volcanic SO4
2- signals in SM07C2 

for each event.  The volcanic SO4
2- signals for Pinatubo and El Chichón are not readily 

identifiable in the record due to increased anthropogenic emissions of SO2 in the 20th 

century104 increasing the background levels and fluctuation of SO4
2-.  However, an 

increase in perchlorate concentrations during these two eruptions is still evident. 
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Figure 20.  Perchlorate (black) and SO4
2- (green) concentrations in SM07C2 with gray 

shaded bars highlighting elevated perchlorate and SO4
2- concentrations associated with 

the volcanic eruptions of Babuyan Claron (1832), Cosiguina (1835), Krakatoa (1883), El 

Chichón (1982), and Pinatubo (1991). 

 

7.2.1 Correlation between Perchlorate and Sulfate 

A statistically significant positive correlation between SO4
2- and perchlorate 

concentrations would further substantiate a link between volcanic eruptions and elevated 

perchlorate concentrations.  In order to determine if such correlation exists, an analysis of 

variance (ANOVA) was performed.    The correlation between perchlorate and SO4
2- was 

determined to be statistically significant if the p value was less than 0.05.  The results of 

the ANOVA tests for the five volcanic eruptions, as well as two non-volcanic sections are 

shown in Table 8.  The non-volcanic sections were chosen to represent modern times (5-6 

m, 1997-1999) and pre-Industrial Revolution times (60-61 m, 1840-1843).  The results 
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from the ANOVA tests indicate that while there is not a correlation between perchlorate 

and SO4
2- concentrations under non-volcanic conditions, there is a statistically significant 

positive correlation between the two ions during all five volcanic events.  A significant 

correlation between perchlorate and SO4
2- concentrations remains for the eruptions of El 

Chichón and Pinatubo, where anthropogenic SO4
2- emissions may have masked a 

possible correlation.  The lack of a statistically significant correlation between 

perchlorate and SO4
2- concentrations under ambient atmospheric conditions, but the 

presence of a statistically signifcant correlation under volcanic conditions, is strongly 

indicative that volcanic eruptions contribute to increased perchlorate concentrations.  

Table 8.  Results from ANOVA tests for a correlation between perchlorate and SO4
2-  

concentrations during volcanic events (n = number of samples, R = coefficient of 

determination). 

 

Eruption n R p value 

Pinatubo 19 0.715 <0.001 

El Chichón 25 0.489 0.013 

Krakatoa 43 0.474 0.001 

Cosiguina 26 0.530 0.005 

Babuyan Claron 38 0.518 <0.001 

Background (5 – 6 m) 19 0.300 0.212 

Background (60 – 61 m) 26 0.302 0.396 

 

7.3 Volcanoes as a Direct Source 

 One possible explanation for increased perchlorate concentrations associated with 

volcanic eruptions is that perchlorate is being injected into the atmosphere directly by the 

volcano.  This explanation, however, is doubtful.  Prior to an eruption, volcanoes have 

very low oxygen (O2) concentrations.  As a result, their chemistry is typically reducing105.  

However, terrestrial magmas contain volatile chlorine species106.  During an eruption, the 

conditions change from reducing to oxidizing105.  Thus, the volatile chlorine species 
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could be oxidized to perchlorate.  Even if this were to occur, though, perchlorate’s high 

solubility in water would mean it would be quickly scavenged by water droplets in the 

troposphere.  As a result, any perchlorate emitted by a volcano or formed during the 

eruption would remain local and not be capabable of long-range transport.  There were 

several Icelandic volcanic eruptions between 1870 and 1880 (48.75-52 m in Figure 19).  

However, as seen in Figure 19, there does not appear to be elevated perchlorate 

concentrations over the typical background variation across this section.  This suggests 

that (1) perchlorate is not directly emitted by the volcanic eruptions and (2) the volatile 

chlorine species present in the magma are not oxidized to perchlorate immediately after 

the eruption.  Thus, volcanic eruptions likely influence the atmospheric production of 

perchlorate by impacting atmospheric chemistry.   

7.4 Volcanic Aerosols 

 Volcanic eruptions emit significant quantities of gas and ash into the atmosphere.  

In the case of very large, explosive eruptions, the introduction of these materials has been 

shown to impact climate.  Ash clouds from volcanoes can darken skies by blocking 

visible sunlight and contribute to reduced solar heating.  These effects, however, are 

generally short-lived and limited geographically because ash settles out of the atmosphere 

by gravity quickly after the eruption has ceased101.  The main gases emitted by volcanoes 

include water vapor, CO2, SO2, H2S, and HCl107.  The contribution of water vapor and 

CO2 to the atmosphere from volcanic eruptions are neglible due to large reservoirs of 

these species in the atmosphere.  Therefore, the climatic impacts from these gases are 

insignificant.  The emission of sulfur compounds (mostly as SO2), on the otherhand, are 

known to impact climate, especially when these compounds are injected into the 
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stratosphere.  The H2SO4 aerosols resulting from the emission of SO2 can efficiently 

scatter visible light, reducing the energy that reaches the Earth’s surface.  Therefore, the 

presence of H2SO4 aerosols contributes to cooling at the Earth’s surface101.  The lifetime 

of H2SO4 aerosols in the troposphere is short, approximately a week.  Therefore, as is the 

case with volcanic ash, any climate impact from these aerosols when they are only 

present in the troposphere is very short-lived and geographically limited43.  The lifetime 

of volcanic H2SO4 aerosols in the stratosphere, though, is much longer, ranging from 

months to a few years108.  Thus, when SO2 is injected into the statosphere, H2SO4 

aerosols can have long-term impacts on global climate.  In addition to impacting climate, 

H2SO4 aerosols can also influence atmospheric chemistry, potentially leading to increased 

concentrations of chemically reactive species, such as reactive chlorine, in the 

stratosphere109.     

7.5 Possible Explanations for Increased Perchlorate Concentrations 

 As discussed in section 7.3, volcanoes are unlikely to release perchlorate directly 

to the environment.  Most likely volcanoes are changing atmospheric conditions in a way 

that favors perchlorate production.  One possible way volcanoes could do this is through 

the emission of chlorine species, such as HCl.  If these chlorine species reach the 

stratosphere, they could enhance the stratospheric production of perchlorate.  Another 

possibility is that H2SO4 aerosols from an eruption enhance chlorine activation in the 

stratosphere resulting in increased perchlorate production.  The likelihood of these two 

explanations are discussed below.   
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7.5.1 Input of Chlorine to the Stratosphere 

 Volcanic eruptions could contribute to elevated perchlorate levels by the injection 

of chlorine species into the stratosphere.  Major volcanic eruptions can inject anywhere 

from 0.5 to 5 Mt (1 Mt = 1 million metric tons) of HCl into the atmosphere110.  

Considering that the the total mass of chlorine in the stratosphere under ambient 

conditions is approximately 0.5 Mt, if the HCl from a large volcanic eruption reaches the 

stratosphere, volcanic eruptions could potentially increase stratospheric chlorine 

concentrations by 2-10 times. 

 However, there is evidence that very little of the HCl emitted during an eruption 

reaches the stratosphere.  Measurements of stratospheric chlorine by Mankin et al.111 and 

Wallace et al.112 following the eruption of Pinatubo indicated that less than 1% of the 

total chlorine emitted during the eruption entered the stratosphere.  Furthermore, if a 

significant amount of HCl reached the stratosphere, elevated levels of Cl- in ice core 

records would be expected110.  However, ice core records provide little evidence that Cl- 

concentrations increase due to volcanic eruptions113,114.  This is demonstrated in Figure 

21, where there does not appear to be an increase in Cl- concentrations in the SM07C2 

record associated with the eruptions of Babuyan Claron, Cosiguina, or Krakatoa.  The 

reason very little chlorine emitted during a volcanic eruption reaches the stratosphere is 

because HCl is likely scavenged by supercooled water within the volcanic plume prior to 

reaching the stratosphere.  Tabazadeh and Turco110 discussed the physical properties of a 

volcanic plume, as well as how HCl is scavenged prior to reaching the stratosphere. 
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Figure 21.  Sulfate (green) and Cl- (blue) concentration profiles in SM07C2 between 

1825 and 1891.  Gray shaded bars highlight the Babuyan Claron (1832), Cosiguina 

(1835), and Krakatoa (1883) volcanic eruptions.   

   

 Although the injection of HCl into the stratosphere is usually prevented due to 

scavenging by supercooled water droplets, models by Textor et al.115 suggest that as 

much as 25% of the HCl emitted by a volcanic eruption could become associated with ice 

particles rather than supercooled water droplets and reach the stratosphere.  However, 

based on Cl- concentrations, this does not appear to be the case for the volcanic eruptions 

in this study (Figure 21).  Occasionally, unique eruption conditions can contribute to 

increased chlorine concentrations in the stratosphere.  This is believed to be the case in 

the eruption of El Chichón, where Mankin et al.116 observed stratospheric HCl levels to 

increase by 3%.  This is also demonstrated in the SM07C2 record (Figure 22), where 
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there does appear to be a slight increase in Cl-  concentrations associated with the eruption 

of El Chichón.  El Chichón injected a large amount of halites, mostly as NaCl, which 

reacted with H2SO4 in the stratosphere to form gaseous HCl via Reaction 17 (ref 117). 

(R17) 2 NaCl + H2SO4 → Na2SO4 + 2 HCl 

Therefore, under unique eruption and atmospheric conditions, the stratospheric loading of 

HCl could become an important factor in increased perchlorate production.  However, it 

does not appear to be the driving force behind the increased perchlorate levels observed 

in SM07C2 due to a lack of increased Cl- concentrations associated with the volcanic 

eruptions studied (with the exception of El Chichón).  Even if stratospheric chlorine 

concentrations were to increase due to a volcanic eruption, the chlorine would still have 

to undergo activation in order to produce perchlorate. 

 

Figure 22.  Sulfate (green) and Cl- (blue) concentration profiles in SM07C2 between 

1977 (left) and 1986 (right).  The gray shaded bar highlights the El Chichón eruption 

(1982). 
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7.5.2 H2SO4 Aerosols 

 Despite the lack of an observed increase in overall stratospheric chlorine 

concentrations following the eruption of Pinatubo111,112, Solomon et al.118 observed 

increased levels of ClO2 over Antarctica, which is indicative of enhanced chlorine 

activation107.  The increased levels in activated chlorine are likely leading to the increased 

perchlorate concentrations associated with volcanic eruptions.  Therefore, it appears that 

volcanic eruptions influence chlorine activation.  Because the increase in chlorine 

activation does not seem to stem from increased chlorine concentrations, there must be 

another factor contributing to the activation of the chlorine that was already present in the 

stratosphere. 

 Unlike HCl, SO2 has a low solubility in water under typical volcanic plume 

conditions110 and can therefore reach the stratosphere.  This leads to the increase in 

H2SO4 aerosols following a volcanic event.  Solomon et al.118 suggest that the presence of 

H2SO4 aerosols is responsible for the increased chlorine activation observed over 

Antarctica following the eruption of Pinatubo, as H2SO4 aerosol surface area was 

observed to increase substantially during this time period119.  The surface provided by 

H2SO4 aerosols can lead to heterogeneous chlorine activation in the same way the surface 

provided by PSCs does, resulting in enhanced chlorine activation.  Furthermore, 

laboratory studies by Tolbert et al.120 and Hanson and Ravishankara121 have shown that 

Reactions 18 and 19 take place in H2SO4. 

(R18) N2O5 + H2O → 2 HNO3 

(R19) ClONO2 + H2O → HNO3 + HOCl 

Although HNO3 can undergo photolysis to form NO2, this reaction is much slower than 
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the photolysis of N2O5 to form NO2 (ref 122).  The HNO3 formed can also be removed 

via denitrification preventing its photolysis to NO2.  Thus, the formation of HNO3 via 

Reactions 18 and 19 inhibits the formation of NO2, which, as discussed in Chapter 6, is 

responsible for the termination of chlorine radicals.  As a result, these reactions indirectly 

contribute to chlorine activation.  Also, the HOCl formed in Reaction 19 can rapidly 

undergo photolysis to form ClO•, which is likely the source of the observed increase in 

ClO2, perhaps the most important precursor to perchlorate.   

 Once chlorine activation occurs, the production of perchlorate likely proceeds 

through the process outlined in Chapter 6.  However, it is important to remember that the 

formation of perchlorate is not solely dependent on the availability of activated chlorine 

species.  The availability of ozone is also a very important factor, and increased activated 

chlorine is typically associated with decreased ozone concentrations.  Ozone 

concentrations were observed to decrease over Antarctica following the eruption of 

Pinatubo109.  Single day total ozone column measurements in October 1992 and 1993, 

revealed the lowest ozone concentrations on record, which was attributed to unusually 

cold temperatures and the presence of H2SO4 aerosols from Pinatubo123.  As can be seen 

in Figure 23, unlike in SM07C2 (Figure 20), there does not appear to be a significant 

increase in perchlorate concentrations associated with the eruption of Pinatubo at the 

South Pole.  Furthermore, there is not a statistically significant correlation between 

perchlorate and SO4
2- concentrations (R = 0.342, n = 12, p = 0.276).  The absence of a 

perchlorate peak associated with the eruption of Pinatubo in Antarctica could be because 

ozone concentrations became too low to contribute to increased perchlorate production.  

In the Arctic, however, ozone loss was not observed, despite indications of an 
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enhancement in H2SO4 aerosol surface area and increased levels of activated chlorine 

species124.  In order to determine if the absence of a perchlorate peak associated with the 

Pinatubo eruption in Antarctica is due to lower ozone concentrations, perchlorate and 

ozone data from Antarctica covering other volcanic eruptions would be needed.   

 

Figure 23.  Perchlorate (black) and SO4
2- (green) concentrations in the South Pole ice 

core associated with the eruption of Pinatubo (highlighted by the gray bar). 

 

Another possible explanation for why there is not a significant increase in 

perchlorate concentrations observed in Antarctica corresponding with the eruption of 

Pinatubo could be that the small increase in perchlorate concentrations typically 

associated with volcanic eruptions is simply not relevant due to higher background 

concentrations of perchlorate in Antarctica than in Greenland.  The perchlorate 

concentrations in Greenland were only observed to increase approximately 1-6 ng L-1 
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when associated with a volcanic eruption.  As the background perchlorate concentrations 

in Greenland are on average only about 1 ng L-1, this marks a significant increase.  

However, the background perchlorate concentrations at the South Pole are approximately 

50 ng L-1.  The small increase in perchlorate concentrations due to a volcanic eruption 

may not be detectable in the fluctuation of the high background in Antarctica.  In the case 

of the Pinatubo eruption, this seems to be the more likely explanation for the absence of a 

perchlorate peak.  Despite ozone reaching its lowest recorded concentrations in 1992 and 

1993 over the South Pole, these extremely low concentrations appear to have been short-

lived (on the order of days).  As demonstrated in Figure 24, the monthly ozone 

concentrations reported by WOUDC were not significantly lower in these years 

compared to other years.  Furthermore, the average ozone concentrations in the three 

years before (1988-1990) and three years after (1992-1994) the eruption of Pinatubo, 

261.9 and 248.2 DU94, respectively, are very similar.  A Mann-Whitney Rank Sum Test 

indicated that there was no statistical difference between the ozone concentrations for 

these time periods (p = 0.518). 
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Figure 24.  Monthly ozone concentrations at the South Pole94 between 1990 and 1995.  

The gray shaded box highlights the years 1992-1993, in which there were short-lived 

periods of ozone depletion. 

 

 As can be seen in Figure 25, there does appear to be a small perchlorate peak in 

the South Pole record associated with the eruption of Mt. Agung (VEI = 5)103 in 

Indonesia in 1963.  Like Pinatubo, the eruption of Mt. Agung does not meet the criteria 

for a significant correlation between SO4
2- and perchlorate concentrations (R = 0.574, n = 

11, p = 0.065).  The eruption of Mt. Agung occurred before the formation of the ozone 

hole.  Thus, ozone depletion associated with the eruption would likely have less of an 

impact than for the eruption of Pinatubo because ozone concentrations were higher.  

Also, as was the case for Pinatubo there was not a statistically significant difference (p = 
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0.122) between ozone concentrations in the two years prior (1961-1962) and the three 

years following (1964-1966) the eruption.   

 

Figure 25.  Perchlorate (black) and SO4
2- concentrations from the South Pole associated 

with the 1963 eruption of Mt. Agung (highlighted by the gray-shaded bar). 

 

The background perchlorate concentrations at the time of the Mt. Agung eruption 

are much lower (6 ng L-1), than at the time of the Pinatubo eruption (50 ng L-1).  Thus, the 

fluctuation in perchlorate concentrations associated with volcanic eruptions is more 

relevant to the background perchlorate concentrations at the time of Mt. Agung.  This 

likely explains why there appears to be a small peak in perchlorate concentrations at the 

time of Mt. Agung.  Although, the correlation between SO4
2- and perchlorate did not 

meet the criteria for a statistically significant correlation, it is much stronger than that for 

Pinatubo.  The lower background perchlorate concentrations at the time of Mt. Agung 
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likely accounts for the stronger correlation.  However, a definitive connection between 

volcanic eruptions and perchlorate concentrations in Antarctica cannot be made until 

other evidence is found.   

7.6 Conclusions 

 The 300-year perchlorate record from SM07C2 reveals a connection between 

perchlorate concentrations in the Arctic and volcanic eruptions.  During the periods of 

volcanic eruptions (Pinatubo, El Chichón, Krakatoa, Cosiguina, and Babuyan Claron), a 

statistically significant positive correlation is found between perchlorate and SO4
2- 

concentrations.  In contrast, no significant correlation is found between the two ions 

during typical non-volcanic periods.  Whether there is a connection between perchlorate 

and volcanic eruptions in the Antarctic remains unclear.  The Antarctic perchlorate data 

only covers the eruptions of Pinatubo and Mt. Agung.  Neither eruption displayed a 

significant correlation between SO4
2- and perchlorate concentrations.  This could be due 

to greater ozone depletion over Antarctica preventing the oxidation of activated chlorine, 

or because the increase in perchlorate concentrations due to the eruption may be 

undetectable compared to the higher background perchlorate concentrations in 

Antarctica.  Because the eruption of Mt. Agung occurred before the ozone hole, at a time 

when background perchlorate concentrations were much lower than for Pinatubo, and 

exhibits a stronger correlation between SO4
2- and perchlorate concentrations, the latter 

seems to be the more likely explanation.  Other volcanic eruptions, particularly eruptions 

occuring when background perchlorate concentrations are much lower (prior to 1950) 

than the current levels, need to be investigated to determine if there is a link between 

perchlorate and volanic eruptions in the Antarctic. 
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 The most important factor contributing to elevated perchlorate concentrations 

appears to be the volcanic H2SO4 aerosols in the stratosphere.  These aerosols are 

believed to be responsible for the elevated levels of reactive chlorine species observed in 

the stratosphere above Antarctica associated with the eruption of Pinatubo by enhancing 

the heterogeneous activation of chlorine species already present in the stratosphere.  As 

described in Chapter 6, activated chlorine species are important precursors to perchlorate.  

Thus, enhanced chlorine activation likely leads to enhanced perchlorate production.  In 

addition, the increased amount of H2SO4 aerosols may also contribute to increased 

hydrolysis of higher chlorine oxide radicals, further enhancing perchlorate production 

following a volcanic eruption.  Although the emission of HCl by volcanic eruptions does 

not appear to be a major factor in increased perchlorate concentrations due to efficient 

HCl scavenging in the troposphere110, it is possible that under unique eruption conditions 

the injection of chlorine species into the stratosphere may be a minor factor in perchlorate 

production. 

 Elevated perchlorate levels are only observed for large, stratospheric volcanic 

eruptions, not for small tropospheric eruptions, supporting the conclusion that perchlorate 

production likely occurs only in the stratosphere.  Furthermore, the volcano-perchlorate 

connection supports the conclusion that a key factor in determining perchlorate 

production appears to be the activation of chlorine species.  In the case of volcanic 

eruptions, activation appears to occur on the surface of H2SO4 aerosols in a fashion 

similar to chlorine activation on PSCs, resulting in elevated levels of reactive chlorine in 

the stratosphere, and consequently elevated perchlorate concentrations.   

 The role of H2SO4 aerosols on perchlorate production may be even more 
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pronounced at non-polar latitudes, where temperatures are not cold enough to permit 

consistent PSC formation.  Therefore, chlorine activation is likely controlled by the 

availability of solid and liquid particles, such as H2SO4 aerosols.  The concentration of 

H2SO4 aerosols was observed to increase at non-polar latitudes following the eruption of 

Pinatubo125.  This is consistent with increased concentrations of ClO• indicating 

enhanced chlorine activation125, which likely led to increased perchlorate production.  

Jaeglé et al.126 performed balloon-borne measurements of total chlorine species in the 

stratosphere out of Fort Sumner, New Mexico in September 1993, when H2SO4 aerosol 

concentrations were still high following the Pinatubo eruption.  The measurements 

revealed the observed levels were lower than the predicted levels by 30-40% 

(approximately 0.2 μg L-1).  The authors suggest that the missing fraction of chlorine was 

in the form of HClO4.  If true, the increased presence of H2SO4 aerosol due to a volcanic 

eruption at non-polar latitudes may play a much larger role in enhancing perchlorate 

production at non-polar latitudes than it does at polar latitudes.        
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8 Unknown Perchlorate Event 

 Prior to 1980, perchlorate concentrations in the Summit, Greenland ice core 

typically ranges from about 0.3-2 ng L-1, with an average concentration of 1.0 ± 0.8 ng L-

1 (n = 1,763).  Brief anomalies with higher perchlorate concentrations, typically 

associated with volcanic eruptions, are observed, but even during these events the 

maximum perchlorate concentration reached is only 9.1 ng L-1.  Even in post-1980 

samples, where perchlorate concentrations are likely influenced by the emission of CFCs, 

the maximum concentration is 10.7 ng L-1, also likely influenced by the eruption of 

Pinatubo.  The largest anomaly in SM07C2, though, reaches a maximum concentration of 

43.7 ng L-1, approximately 4 times higher than concentrations observed anywhere else in 

the record.  This anomaly, which is highlighted in Figure 26, occurs between 1908 and 

1914 and remains difficult to explain.  Ice core samples over this time period were 

analyzed twice and the same result was obtained.  Therefore, it appears unlikely that this 

anomaly stems from analytical error or contamination, but rather derives from perchlorate 

deposition in central Greenland.  Although uncertainty about the cause of the anomaly 

remains, possible explanations, including two potential volcanic eruptions and a 

superbolide event, are discussed below. 
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Figure 26.  The entire perchlorate record from SM07C2 (1700-2007) with the gray 

shaded bar highlighting an outstanding perchlorate event occuring between 1908-1914. 

 

8.1 Volcanic Impact 

 Most brief periods of elevated perchlorate concentrations appear to be connected 

to volcanic eruptions.  In this case, it is possible that volcanic eruptions may be 

contributing to the high perchlorate concentrations observed between 1908 and 1914, as 

there were two volcanic eruptions around this time.  The first was the March 1907 

eruption of Ksudach in Russia (VEI = 5) and the second was the June 1912 eruption of 

Katmai in Alaska, United States (VEI = 3)103.  While these two volcanic eruptions 

probably did contribute to increased perchlorate production to an extent, several pieces of 

evidence indicate that they are unlikely the sole source behind the elevated perchlorate 



87 
 

concentrations observed between 1908 and 1914.  First, as mentioned above, the 

maximum perchlorate concentrations observed for this anomaly are significantly higher 

than those observed for any other volcanic eruption.  Second, a statistically significant 

positive correlation between SO4
2- concentrations and perchlorate concentrations was 

found in each of the five volcanic eruptions studied in Chapter 7, where the eruptions 

appeared to be the sole contributor to the elevated perchlorate levels.  No such 

statistically significant correlation between SO4
2- and perchlorate concentrations (n = 36, 

R = 0.198, p = 0.248) is found in this early 20th century event.  Finally, closer 

examination of this anomaly in perchlorate concentrations reveals that the maximum 

concentrations occurred in 1911.  The maximum concentrations, therefore, occur at a 

time when it would be expected that perchlorate concentrations would no longer be 

elevated due to Ksudach, and before concentrations would be influenced by the eruption 

of Katmai.  Thus, other factors which could contribute to the elevated perchlorate levels 

need to be considered. 

8.2 Bolide Events 

 A bolide is a large cosmic body, such as part of a comet or an asteroid, that 

explodes within the Earth’s atmosphere resulting in the emission of a bright light and 

release of a large amount of energy.  Due to the release of a large amount of energy 

bolides can have significant atmospheric impacts.  The atmospheric impact of a bolide 

depends heavily on its density127.  Occasionally, superbolides, bolides with an apparent 

magnitude (measure of brightness) of at least -17 (brightness increases with decreasing 

apparent magnitude), explode in the atmosphere.  These superbolides can have even more 

devastating physical and atmospheric effects than typical bolides.  The most recent 
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superbolide was the Chelyabinsk meteor that exploded over Russia in 2013.  Another 

superbolide, which exploded over Russia in 1908 and is referred to as the Tunguska 

Event, may be partially responsible for the large peak in perchlorate between 1908 and 

1914. 

8.2.1 Tunguska Event 

 On June 30, 1908 a meteor entered the Earth’s atmosphere and exploded 

approximately 9 km above the Tunguska River basin in Siberia127.  The explosion was so 

massive that it was heard over 1,000 km away128.  The energy released from the 

explosion is estimated to be 5 × 1016 J, approximately 60 times the energy released by 

the atomic bomb dropped on Hiroshima at the end of World War II.  The force from the 

explosion killed hundreds of reindeer129, knocked men 60 km away from their feet128, and 

downed 2,200 km2 of forest127.  The airwave disturbance caused by the explosion circled 

the Earth twice128.  In the days following the the explosion, Europe experienced bright 

nights caused by the scattering of sunlight by dust particles during which there was 

enough light to read outdoors at midnight130.  The Tunguska Event is the largest meteor 

impact event in recorded history128. 

 Despite being classified as a meteor impact event, the Tunguska Event does not 

appear to have generated a crater128,130–132.  Some suggest that Lake Cheko in Siberia may 

be a crater from the event, but these claims are heavily disputed130.  The lack of a crater 

and any fragments of a substantial size, coupled with the fact that the first scientific 

investigation into the Tunguska Event did not occur until 1927, 19 years after the event, 

have led to considerable debate over the nature of the event.  A wide range of theories 

have been suggested, some more plausible than others.  Perhaps the most extraordinary 
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theory about the Tunguska Event was suggested by Alexander Kazantsev in 1946 (ref 

130).  Kazantsev suggested that a nuclear powered alien spaceship exploded, an idea that 

was earnestly pursued for several decades.  Another interesting theory was proposed by 

Jackson and Ryan133, in which the Tunguska Event was caused by a black hole passing 

through the Earth.  One idea that garnered significant attention was first suggested by 

Lincoln Lapaz.  Lapaz proposed that the Tunguska explosion was due to a meteor 

containing antimatter130.  The antimatter theory seemed to gain support when elevated 

carbon-14 levels were observed in tree rings dated at 1909, suggesting the release of 

radiation when the antimatter was annihilated as it hit the atmosphere134.  However, 

elevated levels of carbon-14 have not been observed from antimatter annihilation in 

nearby cosmos.  Thus, this theory has lost favor.   

 Several theories about the nature of the Tunguska event have revolved around the 

idea that it was an exploding comet.  This idea was first proposed in 1930 when Harlow 

Shapely suggested that the explosion was due to a very low density comet.  Shapely 

argued that due to the low density of the comet, it exploded and burned up at altitude, 

explaining the lack of a crater130.  The idea of an extremely low density comet was 

accepted by others including Turco et al.135, who in 1982 suggested that the comet had a 

density of 0.003 g cm-3.  Another theory, proposed in 1989 and not as widely accepted, 

was that a deuterium-rich comet was turned into a hydrogen bomb when it was exposed 

to extreme heat and pressure as it entered Earth’s atmosphere130.  The final theory 

involving a comet is that the exploding body was a fragment of Comet Encke.  A meteor 

shower derived from the dust from Encke reportedly occurred around the time of the 

Tunguska Event130. 
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 Originally, the idea that the Tunguska Event could be due to a stony asteroid was 

neglected because of the lack of a crater.  Turco et al.135 suggested that the atmosphere 

could only overcome the momentum of a low-density object to slow it down enough to 

cause complete vaporization prior to reaching the ground.  However, as more information 

was collected about the event, it was discovered that a comet would likely explode at too 

high of an altitude to account for the ground observations, such as the downing of the 

Siberian forests.  This led Chyba et al.136 to model the entry of different types of cosmic 

bodies, such as comets, carbonaceous asteroids, iron asteroids, and stony asteroids, into 

Earth’s atmosphere.  The authors found that comets and carbonaceous asteroids would 

likely explode at too high of an altitude, and iron asteroids would likely not be 

completely burned in the atmosphere and would reach the Earth’s surface resulting in a 

crater.  Based upon the results from the model, the authors concluded that the Tunguska 

Event was most likely caused by a stony asteroid approximately 30 m in diameter with a 

density of 3.5 g cm-3 and mass of 560,000 Mg, traveling at about 15 km s-1, and 

exploding at an altitude around 9 km (ref 136). 

8.2.2 Atmospheric Impacts of Tunguska 

 Because the first investigations into the Tunguska Event did not occur until 19 

years after the event, much of what is assumed about the atmospheric impacts of the 

event is based on models as opposed to actual measurements of the direct impact of the 

event.  Also, most of the investigations into the Tunguska Event have been into the nature 

of the meteor itself.  Therefore, there have been only a few investigations into the 

atmospheric impacts of the event.  However, the effort has been complicated by the fact 

that the atmospheric impacts of a bolide event depend heavily on the nature of the bolide.  
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Because of the debate over the nature of the bolide responsible for Tunguska, there have 

been conflicting reports on the atmospheric impacts of the event, most notably on how 

ozone was affected.  Below, the possible atmospheric effects of the Tunguska Event are 

discussed in the context of the most important factors leading to perchlorate formation: 

ozone, chlorine, and aerosols.   

8.2.2.1 Ozone   

The energy generated from the ablation of a bolide passing through the 

atmosphere can break the triple bond in N2 molecules.  This is followed by the formation 

of active nitrogen species, including NO (ref 137).  Thus, a bolide event can result in the 

production of a tremendous amount of NOx (NO + NO2).  As shown in Reactions 20 and 

21 (ref 71), NOx can lead to the destruction of ozone through a catalytic cycle. 

(R20) NO• + O3 → NO2• + O2 

(R21) NO2• + O → NO• + O2 

However, NOx can also prevent ozone destruction by reacting with other ozone depleting 

substances, such as HO• and ClO•, converting them to unreactive reservoir species, as 

seen in Reactions 22 and 23, respectively71. 

(R22) HO• + NO2• → HONO2 

(R23) ClO• + NO2• → ClONO2 

Whether NOx contributes more to ozone destruction or more to the prevention of ozone 

destruction depends mostly on altitude.  NOx mainly contributes to ozone destruction 

above an altitude of 25 km, but because of higher radical chlorine concentrations in the 

lower stratosphere, NOx typically prevents ozone destruction below an altitude of 25 km 

(ref 71).  However, in an atmosphere with low halogen concentrations, NOx can 
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contribute significantly to ozone loss71, as NOx is not consumed by reactions with ClO•, 

allowing it to enter the catalytic ozone destruction cycle.   

  Turco et al.128 predicted that as much as 30 Tg of NO could have been formed in 

the atmosphere as a result of the Tunguska Event.  Assuming that 30 Tg of NO was 

injected into the stratosphere, the authors modeled that stratospheric ozone could have 

been depleted by as much as 45% across the entire Northern Hemisphere within the first 

year following the event, with significant depletion persisting for 3 or more years.  Turco 

et al.128 also modeled ozone depletion over a limited latitude band ranging from 55-65° 

N.  The results from this model suggested that ozone depletion was as high as 96% above 

an altitude of 10 km within the first month.  This depletion, though, was only expected to 

last a few months, rather than years.   

 The possible ozone depletion described by Turco et al.128 relies on the generation 

of a significant amount of NO in the atmosphere.  However, no evidence of such a large 

production of NO associated with the Tunguska Event has been found.  Because NO3
- is 

an oxidative product of NOx, it has served as a proxy in ice cores of atmospheric NOx (ref 

133).  Thus, a significant generation of NO would be reflected by elevated NO3
- in ice 

cores.  As can be seen in Figure 27, NO3
- concentrations  in SM07C2 during the 

Tunguska Event are not elevated.  Furthermore, Rasmussen et al.132 also measured NO3
- 

concentrations associated with the Tunguska Event in ice cores from Camp Century, 

(77.18°N, 61.11°W) and Dye-3 (65.18°N, 43.83°W), Greenland.  As in SM07C2, no 

elevated levels of NO3
- were observed.  Because no elevated levels of NO3

- were 

observed, Rasmussen et al.132 estimated that the total NO resulting from the Tunguska 

Event could not exceed one standard deviation of the average annual global NO fallout.  
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Thus, the authors suggest that the maximum NO formed from Tunguska could only be 

about 0.6 Tg (ref 132), as opposed to 30 Tg.  As a result, it is very unlikely that 

stratospheric ozone underwent the significant depletion described by Turco et al128.  

 

Figure 27.  Perchlorate (black) and NO3
- (pink) concentrations between 1906-1918 in 

SM07C2.   

 

The estimate made by Turco et al.128 that 30 Tg of NO was produced by the 

Tunguska Event, was based on the assumption that the Tunguska meteor was a low 

density comet (0.003 g cm-3) entering the atmosphere with approximately 1018 J of 

kinetic energy.  In this case, NO would be efficiently produced throughout the 

mesosphere and stratosphere due to ablation of the comet, and only about 1% of its 

energy would be released at the time of explosion approximately 9 km above the 

surface127.  However, if the Tunguska meteor was a stony asteroid, significantly less NO 
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would be produced.  Due to its higher density, a stony asteroid would not undergo 

significant ablation.  As a result, nearly all of its energy (assumed to be 5 × 1016 J)127 

would be released at the point of explosion.  Operating under these assumptions, and that 

the NO production efficiency is 1.5 × 1017 molec J-1 (same value assumed by Turco et 

al.127), Curci et al.127 predicted that only about 0.4 Tg of NO were produced by the 

Tunguska Event.  This is much more consistent with the 0.6 Tg of NO predicted by 

Rasmussen et al132.   

 Assuming that the Tunguska meteor was a stony asteroid and that 0.4 Tg of NO 

were produced in the troposphere, Curci et al.127 also modeled ozone depletion associated 

with the Tunguska event.  The modeling results suggest that ozone was nearly completely 

scavenged from the troposphere 3-4 days after the event, but then concentrations 

increased briefly by about 30% compared to the ozone levels prior to the Tunguska 

Event.  Despite the near complete scavenging from the troposphere immediately after the 

event, the model shows that the monthly mean ozone concentrations would only drop by, 

at most, a few percent127, consistent with models performed by Melott et al137.  Based 

upon these models, the ozone depletion associated with Tunguska was very short-lived 

and constrained in the troposphere.  Because perchlorate is assumed to be formed in the 

stratosphere, the short-lived depletion of ozone in the troposphere would not likely inhibit 

perchlorate production.  On the other hand, as ozone does not appear to increase over this 

time period, it would not have led to enhanced perchlorate production.  As a result, it 

appears that changes in ozone associated with the Tunguska Event would not have played 

a role in the highly elevated perchlorate levels.   
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8.2.2.2 Chlorine 

 The explosion of the Tunguska meteor was so powerful that debris from the 

explosion has been claimed to be found in ice cores from the South Pole, indicating that 

the debris was injected into the stratosphere131.  Therefore, if the meteor contained a 

substantial quantity of chlorine, it is possible that a large amount of chlorine was injected 

into the stratosphere, which could lead to enhanced perchlorate production.  

Unfortunately, investigations into the mineralogical and chemical compositions of the 

Tunguska meterorite have not reported chlorine content.   

 A rough estimate of the chlorine content of the Tunguska meteor may be inferred 

based upon chlorine measurements from other meteorites.  However, this  inference may 

not be completely valid due to the uncertainty over the identity of the Tunguska meteor.  

Even with the assumption that the Tunguska meteor was a stony asteroid, chlorine 

content may vary significantly among different classifications of stony asteroids.  

Garrison et al138. studied the total chlorine content in 94 different types of meteorites and 

found that the chlorine concentrations differ greatly both between classes of meteorites, 

and within the same class of meteorites.  Chlorine concentrations for stony asteroids 

ranged from 1-653 mg kg-1, with an average of 82 ± 111 mg kg-1 (n = 124)137.  If a 

chlorine concentration of 82 mg kg-1 is used to calculate a rough estimate of the mass of 

chlorine released from the explosion of the Tunguska meteor, the total amount of chlorine 

released would only be approximately 4.6 × 10-5 Mt.  This mass of chlorine is 

insignificant when compared to the ambient mass of chlorine in the stratosphere (0.5 Mt).  

Finally, as shown in Figure 28, the chloride concentrations in SM07C2 throughout the 
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Tunguska Event remain unchanged from the background levels, suggesting that 

stratospheric chlorine concentrations were not impacted by the event.   

 

Figure 28.  Perchlorate (black) and Cl- (blue) concentrations between 1906-1918 in 

SM07C2.   

 

Although it does not appear that meteorites contribute enough chlorine to the 

stratosphere to greatly impact the production of perchlorate, a recent study by Jackson et 

al.139 suggests that a fraction of the chlorine content of meteorites could be in the form of 

perchlorate.  A series of perchlorate measurements on two different chondrite meteorites 

(a class of stony asteroid) showed that perchlorate concentrations ranged from 0.06-6.0 

mg kg-1 with an average concentration of 2.4 ± 1.9 mg kg-1 (n = 8)139.  If the average 

perchlorate concentration observed by Jackson et al. is applied to the Tunguska meteor, 

approximately 1.3 Mg of perchlorate would have been released by the explosion.  
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Therefore, it is possible that the Tunguska meteor itself served as a direct source of 

perchlorate.  However, this estimation is based on two major of assumptions.  First, this 

assumes that the Tunguska meteor is a stony asteroid.  Secondly, the estimation assumes 

that perchlorate concentrations in the chondrite meteorites are representative of all classes 

of stony asteroids.  The variation of perchlorate concentrations observed by Jackson et 

al.139 range over two orders of magnitude, demonstrating that perchlorate concentrations 

are not consistent within a single class of meteorite, much less among different classes of 

meteorites.  Jackson et al. also found perchlorate to be present in lunar samples139 and 

Catling et al.140 found perchlorate on Mars, suggesting that it may be ubiquitous 

throughout the Solar System.  Therefore, it is not unreasonable that the Tunguska meteor 

contained perchlorate, which was released on explosion in the atmosphere.  Although 

intriguing, this explanation for the increased levels of perchlorate that seem to be 

associated with the Tunguska Event is speculative at this stage of research.       

8.2.2.3 Aerosols   

 Similar to the case for volcanic eruptions, the increased perchlorate levels may be 

due to increased aerosol or dust surface in the stratosphere during the Tunguska Event.  

Once again, little information is available on the impact the Tunguska Event had on 

stratospheric aerosols.  However, studies on more recent bolide events, such as the 

Chelyabinsk meteor explosion over Russia in 2013, can provide some insight into the 

potential impact of the Tunguska Event.  

 The 18 m diameter, 11,000 ton Chelyabinsk bolide is one of only two bolide 

events over the last century to release energy comparable in magnitude to the Tunguska 

Event, releasing approximately the equivalent of 570 kt of TNT141, or 2.4 × 1015 J 
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(Tunguska = 5 × 1016 J).  Most of the debris from the explosion was transported upward 

in a mushroom cloud.  The Ozone Mapping Profiler Suite Limb Profiler (OMPS/LP) 

identified a meteor dust belt in the stratosphere with a vertical depth of approximately 5 

km following the explosion of the Chelyabinsk meteor.  Although the Tunguska meteor 

exploded at a much lower altitude than the Chelyabinsk meteor (9 km compared to 23.3 

km)142, there is evidence that meteoric debris still entered the stratosphere.  Ganapathy131 

estimated that approximately 7 × 106 tons of debris was injected into the stratosphere by 

the explosion of the Tunguska meteor.  As suggested by the studies on the Chelyabinsk 

meteor, the meteoric debris injected into the stratosphere could have formed dust belts.   

The effects the meteor dust belt from the Chelyabinsk meteor on stratospheric 

chemistry have yet to be studied.  However, it is known that meteoric debris can serve as 

a condensation nuclei for the formation of stratospheric clouds142.  Thus, it is possible 

that in addition to providing a surface for heterogeneous chlorine activation itself, the 

meteoric debris/dust could also promote the formation of stratospheric clouds, providing 

additional surface for heterogeneous chlorine activation.  Thus, it seems plausible that the 

presence of dust particles in the stratosphere from the Tunguska Event, could have led to 

enhanced chlorine activation.  This enhanced chlorine activation, if it did occur, could be 

responsible for the increased perchlorate concentrations observed in SM07C2 following 

the Tunguska Event.  Future studies on the impact bolide events have on stratospheric 

chemistry could contribute to evaluating the significance of this mechanism for enhanced 

perchlorate production.    
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8.3 Future Investigations into the Tunguska Event  

Although the hypothesis that the Tunguska Event is mainly responsible for the 

elevated perchlorate levels observed in SM07C2 appears plausible, more research is 

needed before a definitive conclusion can be made.  First, the elevated perchlorate 

concentrations will need to be verified, probably through replication measurements in 

other ice cores.  Because the Tunguska Event was unusually powerful, with claimed 

effects seen as far away as the South Pole, the elevated perchlorate levels would be 

expected in ice cores from other Arctic locations and perhaps even from Antarctica.  

Also, perchlorate records covering other bolide events could be helpful in establishing a 

link between such events and perchlorate.  As can be seen in Figure 29, there are elevated 

perchlorate levels between 1964 and 1966 in both SM07C2 and TUNU.  This could be 

associated with a bolide event off the coast of South Africa that occurred on August 3, 

1963.  This bolide event is the only other bolide event, besides the Chelyabinsk bolide, 

over the last 100 years to release a comparable amount of energy (1.11 × 1015 J)143 as the 

Tunguska Event141.  However, it is important to note that the perchlorate concentrations 

between 1964 and 1966 in the SM07C2 and TUNU ice core records may also be 

influenced by the eruption of Mt. Agung in 1963.  Measurement of perchlorate in polar or 

Arctic snow covering the Chelyabinsk bolide event could help in verifying the link 

between bolide events and perchlorate concentrations. 
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Figure 29.  Average annual ClO4
- concentrations in the SM07C2 (black circles) and 

TUNU (blue triangles) cores.  Elevated perchlorate concentrations between 1964 and 

1966 may correspond to the 1963 bolide event off the coast of South Africa. Lack of ice 

core samples resulted in no perchlorate data for the time period of 1964-1966. 

 

Future investigations into bolide events should also focus on how these events 

affect atmospheric chemistry.  The injection of a tremendous amount of debris into the 

atmosphere when a bolide explodes likely has a significant impact on the chemical 

processes occuring in the atmosphere.  Understanding the impact can improve our 

knowledge of atmospheric chemistry.  For example, a better understanding of how bolide 

events may affect chlorine activation could provide insight into if and how these events 

lead to significant natural fluctuations in stratospheric ozone.  Finally, understanding of 

the origin of perchlorate in bolide events may shed light on the occurrence of perchlorate 
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in the Solar System.  If perchlorate is indeed ubiquitous in extraterrestrial material, the 

entry of these materials into Earth’s atmosphere could represent a previously 

unrecognized source of terrestrial perchlorate. 

8.4 Conclusions 

 The anomaly in perchlorate concentrations between 1908 and 1914 contains 

perchlorate concentrations that are more than four times higher than any other anomaly 

observed in the 300-year SM07C2 perchlorate record.  These significantly elevated 

perchlorate levels appear to be due to the combined effect of two volcanic eruptions and a 

superbolide event.  The first volcanic eruption was that of Ksudach, which occurred in 

Russia in 1907.  However, it is unlikely that elevated perchlorate levels from this eruption 

persisted until the eruption of Katmai, which occurred in Alaska in 1912.  Furthermore, 

although volcanic eruptions have been shown to contribute to increased perchlorate 

levels, the increase is only a few parts per trillion, not the tens of parts per trillion 

observed over this time period.  Therefore, although still hypothetical at this point, 

another contributor to the elevated perchlorate levels is the Tunguska Event in 1908.  The 

presence of perchlorate in other stony asteroids suggest that it is possible that the 

Tunguska meteor could have served as a direct source of perchlorate.  Also, the injection 

of significant amounts of debris could have contributed to the heterogeneous activation of 

chlorine in the stratosphere.  The debris injected into the stratosphere could have also 

promoted the formation of stratospheric clouds, which could also enhance chlorine 

activation.  Perhaps both mechanisms contributed to the extraordinarily high perchlorate 

levels.  However, it is important to note that the atmospheric impacts of the Tunguska 

Event, and bolide events in general, are not well understood at this point.  Thus, much 
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more research is needed to make a verified connection between, not only the Tunguska 

Event and elevated perchlorate levels, but also between bolide events in general and 

perchlorate.   
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9 Conclusions and Future Work 

9.1 Anthropogenic Contributions 

 Human exposure to environmental perchlorate is widespread.  Thus, there has 

been considerable interest in the regulation of perchlorate.  The widespread regulation of 

perchlorate, though, has remained difficult due to a lack of understanding of the relative 

contribution of the anthropogenic sources of perchlorate compared to the natural sources.  

The 300-year perchlorate record from SM07C2 shows that perchlorate levels remained 

relatively consistent between 1700 and 1980 C.E, suggesting that the source(s) of 

perchlorate did not change over this time period, and that the Industrial Revolution 

(beginning around 1850 C.E.) did not impact environmental perchlorate levels.  

However, average perchlorate concentrations increased from approximately 1 ng L-1 

between 1700 and 1980 to nearly 3 ng L-1 post-1980, a trend that was observed, not only 

at two other Greenland locations (TUNU and Basin 4), but also in the Canadian Arctic36 

and the South Pole.  While the industrial production of perchlorate, and presumably 

usage and disposal, increased in the 1980s, these anthropogenic sources that directly 

release perchlorate to the environment are unlikely responsible for the trend seen in the 

ice core perchlorate records, as the dispersal of this type of pollution tends remain local.  

However, as perchlorate pollution enters rivers and other water systems that are used for 

irrigation purposes, human exposure to perchlorate from direct anthropogenic sources can 

become more widespread. 

 Perchlorate concentrations in modern snow have most likely been indirectly 

influenced by increased stratospheric chlorine concentrations.  Increased stratospheric 

chlorine concentrations enhanced the stratospheric production of perchlorate, resulting in 
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the approximate 3-fold increase in perchlorate concentrations post-1980 when compared 

to pre-1980 concentrations.  Rising stratospheric chlorine concentrations throughout the 

1980s and early-1990s have largely been attributed to the emission of CFCs.  Thus, 

human activities appear to be indirectly responsible for about two-thirds of the current 

environmental perchlorate.  However, as stratospheric chlorine concentrations continue to 

decrease due to the phasing-out of the use of CFCs and other chlorine compounds, 

perchlorate concentrations in polar snow will also likely decrease.   

9.2 Stratospheric Production 

 The data from our various ice core perchlorate records suggests that perchlorate is 

produced naturally in the stratosphere and then deposited to the Earth’s surface.  The 

stratospheric production of perchlorate appears to be largely dependent on three factors: 

stratospheric chlorine, aerosol surfaces, and ozone.  The parallel trends between 

increasing perchlorate and EESC concentrations starting in 1980 and continuing through 

the mid-1990s indicates that stratospheric chlorine is the main driving force of inter-

annual variability in perchlorate. The key step in the production of perchlorate seems to 

be the conversion of reservoir chlorine to radical chlorine species.  One of the most 

important factors in the activation of chlorine species is the availability of particle surface 

for heterogeneous activation reactions, which proceed much faster than homogeneous 

activation in the gas phase.  This is supported by higher perchlorate concentrations 

observed in Antarctica than in Greenland.  Mainly due to colder temperatures, larger, 

longer lasting PSCs form in the stratosphere above Antarctica than the Arctic.  Thus, 

there is more prominent chlorine activation over Antarctica, which presumably leads to 

enhanced perchlorate production.  The increased perchlorate concentrations associated 
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with large, stratospheric volcanic eruptions further supports the role of heterogeneous 

chlorine activation in perchlorate production.  These volcanic eruptions produce H2SO4 

aerosols in the stratosphere, which provide additional particle surface for chlorine 

activation.  Finally, heterogeneous chlorine activation could also occur on the surface of 

dust particles, which may have occurred in the case of the Tunguska Event.   

Events such as volcanic eruptions and superbolide explosions may have a greater 

impact on enhanced perchlorate production at non-polar latitudes than at the polar 

latitudes.  This is because at non-polar latitudes it is too warm for the formation of PSCs.  

As a result, chlorine activation at non-polar latitudes often relies on the presence of 

aerosol surfaces.  Thus increased aerosol suface area resulting from volcanic eruptions or 

bolide events could potentially lead to the production of a significant amount of 

perchlorate, as was suggested by Jaeglé et al126. 

 The second step in the stratospheric production of perchlorate is likely the ozone-

mediated oxidation of radical chlorine species to higher chlorine oxide radicals.  This is 

demonstrated by the intra-annual variations observed in SM07C2, as both perchlorate and 

ozone concentrations peak during the spring, a trend also observed by Furdui and 

Tomassini21 in the Canadian Arctic.  At WAIS Divide, Antarctica, peak perchlorate 

concentrations were not reached until the autumn.  In the spring over Antarctica, the rate 

of perchlorate production is likely limited by ozone levels which reach annual minimum 

in the austral spring due to its well documented destruction during this time of year.  

Although ozone levels recover quickly by the beginning of the summer, perchlorate 

production does not fully rebound, since, during the summer, chlorine activation is 

inhibited due to warmer temperatures preventing the formation of PSCs.  With the onset 
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of autumn, temperatures become cold enough to allow for the formation of PSCs, leading 

to increased chlorine activation, as suggested by a slight decrease in ozone concentrations 

during this time.  Despite the slight decrease in ozone concentrations during the autumn, 

they appear to remain high enough to allow for the formation of perchlorate.  In the end, 

the autumn concentration maximum in perchlorate observed at WAIS Divide suggests 

that perchlorate production relies on a delicate balance between activated chlorine and 

ozone concentrations in the stratosphere.  

 The final step in the stratospheric production of perchlorate appears to be the 

hydrolysis of higher chlorine oxide radicals, such as Cl2O6 and Cl2O4.  Once again the 

presence of aerosols is important in this aspect of perchlorate production, as hydrolysis 

reactions in the stratosphere often occur within aerosols, most notably H2SO4 aerosols.  

The observation of perchlorate within H2SO4 aerosols in the stratosphere by Murphy et 

al.66 further suggests that the hydrolyis of higher chlorine oxide radicals to form 

perchlorate occurs in these aerosols. 

   In the end, the information from the perchlorate records from Greenland and 

Antarctica strongly indicates a stratospheric production mechanism of perchlorate with 

dependence on stratospheric chlorine levels, the presence of PSCs or other aerosol 

surfaces for chlorine activation, and the availability of ozone (Figure 30).  The records 

also demonstrate how unusual phenomena such as volcanic eruptions, and perhaps 

superbolide events, can affect stratospheric chemistry, leading to increased perchlorate 

production.  Furthermore, this research also reveals the impact of human activities on 

atmospheric processes.  Although CFCs are not a direct anthropogenic source of 

perchlorate, it is evident from the increasing perchlorate concentrations starting in 1980 
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and continuing through early-1990s, that they have impacted the stratospheric production 

of perchlorate. 

 

 

Figure 30.  Overview of the stratospheric production of perchlorate. 

9.3 Future Work 

 In summary, our polar ice core records of environmental perchlorate strongly 

support, with mechanistic understanding, the stratospheric production of perchlorate.  

Future work can build upon this knowledge and seek to gain a better understanding, or a 

more quantitative description of how atmospheric and climatic conditions impact 

perchlorate production.  More specifically, attention should be given to the roles of 

chlorine activation and ozone.  

 Radical chlorine and ozone are closely related because radical chlorine 

participates in the catalytic destruction of ozone.  Consequently, as the concentration of 

radical chlorine increases, the concentration of ozone typically decreases.  Thus, as 

demonstrated by the WAIS Divide perchlorate record, the production of perchlorate 

depends on a delicate balance between ozone and radical chlorine concentrations.  In 

order to better understand this relationship, the reactions between radical chlorine species 

and ozone over varying concentrations (yet still relevant to stratospheric concentrations) 

need to be studied.  This will be important in identifying at which concentrations ozone 
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limits the rate of perchlorate production, and at which concentrations the availability of 

activated chlorine limits the rate of perchlorate production.  This understanding will be 

key in building models for perchlorate production.  Furthermore, the formation of other 

chlorine species, such as chlorate, should be studied under these conditions.  As 

mentioned in Chapter 6, perchlorate is often the minor product of oxidation reactions.  

Thus, studying the formation of not only perchlorate, but also other chlorine species, 

could help identify conditions that favor perchlorate production as opposed to the 

formation of other chlorine species.  

 The role of volcanic eruptions in perchlorate production over Antarctica and non-

polar latitudes also need further investigation.  A connection between volcanic eruptions 

and increased perchlorate concentrations in Antarctica has not been established beyond 

doubt.  One obstacle to establishing a connection between volcanic eruptions and 

perchlorate concentrations in Antarctica is the higher perchlorate concentrations in 

Antarctica than in Greenland.  An increase of a few parts per trillion in perchlorate 

concentrations, as is typically associated with a volcanic eruption, may not be readily 

detectable in recent Antarctic snow.  One way to determine if this is the case, is to study 

volcanic eruptions in Antarctic samples prior to 1950, when average perchlorate 

concentrations are much lower (approximately 3 ng L-1).  If, even at lower background 

perchlorate concentrations, a lack of significant increase in perchlorate concentrations 

following volcanic eruptions could indicate that ozone concentrations may be too low to 

promote perchlorate production.  The H2SO4 aerosol surface resulting from volcanic 

eruptions promotes chlorine activation in the stratosphere, and, as a result, ozone 

destruction.  Thus, because average ozone concentrations are generally lower over 
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Antarctica than over Greenland (241 and 344 DU, respectively, between 1995-2000), 

ozone concentrations following a volcanic eruption may become too low to promote the 

production of perchlorate.  Such information could also improve our understanding of the 

stratospheric production of perchlorate.  Finally, it has been suggested that volcanic 

eruptions could contribute to the production of a significant amount of perchlorate at non-

polar latitudes126.  This could be verified by studying volcanic eruptions and perchlorate 

concentrations in mountain glaciers located at non-polar latitudes.  Increased perchlorate 

concentrations associated with volcanic eruptions would further substantiate the role of 

H2SO4 aerosols promoting chlorine activation and consequently perchlorate production.   

 Finally, the role of superbolide events, such as the Tunguska Event, in perchlorate 

production/deposition need to be further investigated.  The first step in such 

investigations should be to determine if there are significantly higher perchlorate 

concentrations in ice cores from other locations, including Antarctic locations, over the 

time period associated with the Tunguska Event (1908-1914).  Significantly higher 

perchlorate concentrations in ice cores from other Arctic locations, but not Antarctic 

locations, could suggest that the Tunguska meteor may have served as a direct source of 

perchlorate.  On the other hand, if perchlorate concentrations also increase at Antarctic 

locations, this could implicate the role of dust/debris in enhancing chlorine activation, 

leading to increased perchlorate production.  In addition, other superbolide events, such 

as the 2013 Chelyabinsk Event, should be studied in relation to perchlorate 

concentrations.  The connection between increased perchlorate concentrations and 

superbolide events is still speculative due to, not only a lack of data on the Tunguska 

Event itself, but also the lack of an understanding of the atmospheric effects of bolide 
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events in general.  Thus, studying other superbolide events would be very beneficial in 

determining if there is a connection between these events and perchlorate, or if it was an 

unique occurrence.   
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