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ABSTRACT 

 

IMPROVING THE UTILITY OF PRECISION AGRICULTURE 

 THROUGH MACHINE LEARNING AND CLIMATE SMART PRACTICES 

SKYE BRUGLER 

2023 

Climate Smart Practices are management strategies that focus on increasing soil 

and crop productivity, utilize site-specific strategies to increase resiliency against the 

effects of climate change, and mitigate these negative effects by reducing greenhouse gas 

(GHG) emissions. Decision Support Systems (DSSs) using machine learning (ML) can 

adjust models based on new information and help farmers make climate smart decisions 

within their operation. The 4R nutrient management model of right source, rate, location, 

and time also demonstrates a framework that may be considered climate smart by 

improving soil and crop productivity. However, when initially conceptualized, the 4R 

model did not consider GHG emissions. Additionally, the long-term adoption of DSSs 

has been low in agriculture, reducing the ability of farmers to collect and analyze farm 

data to the fullest. Therefore, the objective of the first chapter is to examine applications 

of, and barriers to, DSSs in precision agriculture (PA). The objective of the second 

chapter evaluates the 4R model to determine the impact of GHG emissions when utilizing 

near continuous chambers over a two-year period. The GHG emissions were measured by 

analyzing nitrous oxide and carbon dioxide emissions from a 50/50 split application of 

157 kg N/ha that was applied to corn (Zea mays) at pre-emergence and V6 compared to a 

single application at pre-emergence 157 kg N/ha in a two-year replicated study. Results 

from the first chapter identify the barriers preventing farmers from using DSSs as well as 

suggesting solutions to these challenges. Results from the second chapter indicate that the 
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split application can reduce carbon dioxide and carbon equivalent emissions and 

therefore, may be a useful framework for DSSs to follow in achieving Climate Smart 

Practices.
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STATEMENT OF THE PROBLEM 

Climate Smart Practices are management strategies within the framework of 

Climate Smart Agriculture. These strategies focus on three pillars: 1) increase soil and 

crop productivity, 2) site-specific techniques that increase ecosystem resiliency, and 3) 

reduce greenhouse gas (GHG) emissions. Agriculture is a large producer of GHG 

emissions that include nitrous oxide (N2O) and carbon dioxide (CO2). For example, while 

on average less than 1% of the Nitrogen fertilizer that has been applied to corn is lost as 

N2O, 60% to 75% of total anthropogenic loss of this gas comes from agriculture 

(Cavigelli et al., 2012; Syakila & Kroeze, 2011). Nitrous oxide is commonly emitted 

through denitrification, and nitrification, and because this gas absorbs infrared radiation 

at a rate approximately 298 times greater than CO2, N2O is a serious threat to the 

productivity of global agriculture (Weil & Brady, 2017; DeKlein et al., 2006; EPA, 

2023). To balance environmental and economic concerns the 4R management model was 

developed in the early 2000s (Fixen, 2020). The goals of 4R management were to create 

locally based strategies that maximized efficiency while minimizing inputs and to 

produce healthier more productive soils (Fixen, 2020). The four R’s: right time, right 

rate, right place, and right source, set a framework that allows for site-specific flexibility 

in reducing environmental impact and promoting more productive soils. 

Climate smart goals can be implemented most effectively when frameworks such 

as the 4R framework are combined with Precision Agriculture (PA) technologies such as 

Decision Support Systems (DSSs). This has the potential to consistently, and at a large 

scale, increase yields while simultaneously reducing resource use and the impact of 
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agriculture on the environment (Pretty, 1997; Petersen et al., 2015; Joshi et al., 2022; 

Hamrani et al., 2020). However, barriers to the widespread use of this technology exist 

including financial constraints of small farms, mistrust of DSSs, concerns about the 

privacy of farm data, and a lack of a specialized/ trained work force. Through 

acknowledging and addressing these challenges agriculture can work towards achieving 

climate smart goals. 

Additionally, through new data management and measurement technologies, 

researchers are provided with the unprecedented opportunity to collect and evaluate a 

huge amount of environmental data. This opportunity allows researchers to re-test 

previously held assumptions. For example, much of what is known about GHG emissions 

from agriculture was produced through point measurements of data that were collected 

through static chambers. These points were averaged over the growing season to estimate 

total emissions. Studies using these techniques provided a baseline for policy by shaping 

how government agencies conceptualized agriculture’s role in climate change (Venterea 

et al., 2015; Maharjan et al., 2013; Collier et al., 2014; DeKlein et al., 2006; EPA, 2023). 

However, new technology such as near continuous gas measurement systems, like the LI-

COR LI-8100-104 long-term opaque chambers (8100-104 LI-COR, Lincoln, NE), can 

measure emissions nearly continuously and therefore significantly increase the accuracy 

of the data by measuring the area under the curves produced. This increased accuracy and 

new data collection system has revealed new information about GHG emissions and can 

also be used to re-test previously held assumptions about management strategies (Joshi et 

al., 2022; Thies et al., 2020; Reicks et al., 2021; Fiedler et al., 2021).  
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Through re-testing with more accurate PA technologies and DSS tools, 

researchers and extension specialists may begin to reconsider some management 

strategies. For example, in the 4R management model the right timing of nitrogen 

fertilizer is often associated with a split nitrogen application. This management strategy 

has been shown to reduce leaching and denitrification loss by applying fertilizer when it 

is needed (Graham et al., 2016; DeBruin & Butzen, 2014). In fact, this strategy is so 

ingrained as an environmentally beneficial strategy it is encouraged through crop 

insurance programs such as Post-Application Coverage Endorsement program in the U.S. 

Department of Agriculture’s Risk Management Agency (USDA, 2021). In addition, it is 

an effective strategy to reduce nitrate leaching and denitrification losses in soils. 

However, weather conditions and soil parameters have been observed as significant 

variables impacting the success of split nitrogen application (Clark et al., 2020; Butzen, 

2011). Additionally, split applications of nitrogen have not demonstrated significant 

reduction in N2O emissions. In fact, research suggests that it can increase these emissions 

(Venterea and Coulter, 2015).    

As researchers and farmers begin to collect data more accurately and use DSS 

tools for analysis and retesting we believe that accurate site-specific algorithms will be 

created (Gardezi et al., 2022). However, these algorithms will not be implemented 

without first reducing the adoption barriers. These barriers are systematic and social 

challenges that prevent farmers from collecting and utilizing data to make actionable 

decisions (Lindblom, 2017). By examining the adoption barriers that farmers face in 

using new technologies such as DSSs, researchers and stakeholders can work towards an 

ethical and equitable future to use PA and achieve the three pillars of Climate Smart 
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Practices that include increasing soil and crop productivity, increasing agriculture 

ecosystem resiliency, and reducing GHG emissions where possible.  

Therefore, the objective of this thesis is to: 1) examine adoption barriers to long-

term adoption of DSS tools that utilize ML and AI to move PA responsibly towards 

climate smart goals; and 2) demonstrate through example how this technology can 

advance PA towards a climate smart future by re-examining the 4R management model 

for its ability to reduce GHG emissions. The objective of the field experiment conducted 

in the second chapter was to reassess previous conclusions about nitrogen fertilizer 

timing concerning N2O-N, CO2-C and CO2e emissions using a 50/50 split urea 157 kg 

N/ha application compared to a single urea application 157 kg N/ha at pre-emergence.  
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CHAPTER I 

 IMPROVING DECISION SUPPORT SYSTEMS WITH MACHINE LEARNING: 

IDENTIFYING BARRIERS TO ADOPTION  

ABSTRACT 

Precision agriculture (PA) has been defined as a “management strategy that gathers, 

processes and analyzes temporal, spatial and individual data and combines it with other 

information to support management decisions according to estimated variability for 

improved resource use efficiency, productivity, quality, profitability and sustainability of 

agricultural production.” This definition suggests that because PA should simultaneously 

increase food production and reduce the environmental footprint, the barriers to adoption 

of PA should be explored. These barriers include: 1) the financial constraints associated 

with adopting DSS, 2) the hesitancy of farmers to change from their trusted advisor to a 

computer program often behaves as a black box, 3) questions about data ownership and 

privacy, and 4) the lack of a trained workforce to provide the necessary training to 

implement DSSs on individual farms. This paper also discusses the lessons learned from 

successful and unsuccessful efforts to implement DSSs, the importance of 

communication with end-users during DSS development, and potential career 

opportunities that DSSs are creating in PA.  

Abbreviations:  ML, machine learning; AI artificial intelligence; DSS decision support 

system; ICT information communication technology; UAV unmanned aerial vehicles; PA 

Precision agriculture; GMO, genetically modified organism. 
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1 INTRODUCTION 

1.0 What is a Decision Support System (DSS)? 

Decision Support Systems (DSSs) are models that use information and 

communication technologies (ICTs) for complex decision-making (Manos et al., 2004). 

The models embedded in DSSs take data stored in the database to produce a user-specific 

result (Alenljung, 2008; Manos et al., 2004). These models can be created using many 

techniques including process based, empirical models, and/or machine learning 

(ML)/artificial intelligence (AI) techniques. In agriculture, process-based models are 

generally mathematical representations of biogeochemical and physical systems; 

empirical models are statistical models based on observations among variables; and ML 

models make predictions based on patterns learned from the data set. A difference 

between process, empirical models, and ML/AI models is that ML/AI models learn as 

new input data are added, which makes them uniquely suited for PA.  

However, as with all models, errors exist when the underlying understanding of 

the processes or model assumptions are incorrect. For example, a very common 

assumption is that weeds reduce yields by competing with the crop for water, nutrients, 

light, space, and carbon dioxide. However, current research, made possible by the ability 

to decipher the crop genomes, has shown that weeds can reduce yields regardless of 

resource availability. This finding is based on the ability to quantify transcriptomic 

changes (e.g. down-regulation of photosynthesis, root growth reductions) that are induced 

by weed presence, long before direct competition occurs (Clay et al., 2009; Horvath et 

al., 2023).  Models, based on incorrect assumptions, may provide acceptable 

recommendations under some conditions but flawed recommendations in others.  
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2.0 Why are DSSs needed? 

Agriculture is facing immense challenges, such as reducing greenhouse gas 

emissions and topsoil loss due to erosion, while increasing yields in an unstable climate 

(United Nations, 2022). The failure to manage these challenges can result in societal and 

environmental upheaval. As examples, the French revolution (1789-1799) has been 

linked to the Little Ice Age, when crops failed in cold climates, which led to starvation 

and societal instability (Ljungqvist et al., 2021). The Middle Eastern Arab Spring in 2011 

has also been linked to climate change with low crop yields and increased food prices, 

which again led to social upheaval (Zurayk, 2016). To reduce the risks of future 

agricultural failures, sustainable intensification needs to be implemented to optimize 

production and simultaneously decrease agriculture’s environmental impact (Lindblom et 

al., 2017). Sustainable intensification requires enhanced management that can be 

delivered in part using DSSs (Lindblom et al., 2017).   

3.0.  Low adoption of DSSs 

While some components of Precision Agriculture (PA), such as autosteer and 

yield monitors, were quickly adopted, to date variable rate fertilizers, another PA tool, 

has not been widely adopted (Rossi et al., 2013; Winter, 2018; Baumeister et al., 2015; 

Lindblom et al., 2017, McCown et al., 2002). The discrepancy between the adoption of 

some PA tools and not others suggests that there are barriers to long term use of PA tools.  

Many barriers have been suggested and may include financial constraints, a hesitancy to 

change from a known trusted decision processes to an unknown decision system, 

uncertainty of data ownership and privacy, and workforce availability (USDA 2022; 

Mitchell et al., 2021; Erickson et al., 2018).  
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In addition to these barriers, it is important to understand that fully integrating 

data collection, processing, and implementing is difficult, and requires diverse 

knowledge, skills, and abilities. For example, processing remote sensing data into useful 

information may require a human pilot to collect the data, a geographic information 

specialist to create a map, an agronomist to confirm yield limiting factor(s), machines 

that can perform these tasks, knowledgeable applicators to apply the treatments at the 

right time, place, and rate, and follow-up with economists and agronomists to determine 

if savings, yield, or other tangible outcomes have occurred. It is important to point out 

that currently each step requires time, and that skipping steps that often require human 

involvement can reduce the value of the information (Priya and Ramesh, 2020).   

4.0 Barriers to adoption of DSSs  

 4.1.  Financial constraints  

 Agricultural retailers have been surveyed about producer attitudes at least every 

other year since the mid-1990s (Erickson & Lowenberg-Deboer, 2022). These surveys 

provide insights into the adoption barriers. In 2021 about 37% of the dealers reported that 

economic limitations was one of the most important barriers. However, this barrier 

fluctuates with crop prices and is reduced when prices are high and increased when prices 

are low. For greater use of these technologies, uncertainties must be balanced with an 

increased return on investment (Baldin et al., 2021; Rinaldi et al., 2014).   

4.2. Financial constraints of small farms 

Farm size also influences the amount of capital that can be invested in DSSs and 

PA tools that can be used by DSSs (Baldin et al., 2021; Akaka et al., 2021). In general, 

large farms have more capital and manpower to test and implement new practices (Akaka 
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et al., 2021). A good example of this barrier was discussed by Ashworth et al. (2018), 

where partial budgeting determined that the break-even farm size for auto-guidance was 

between 10 to 50 ha. The implication of this analysis is that the cost of the equipment per 

hectare decreases with increasing farm size. For example, if the equipment costs 

$100,000 and the farm size is 100 ha, then the cost/ha is $1,000.  However, if the farm 

size is 1000 ha, then the cost/ha is $100.  This difference in cost/ha may result in lower 

adoption PA adoption rates on small farms (Denmark Statistics, 2022; Thompson et al., 

2021). The difference in price/ha between small and large farms results in small farms 

taking longer to return a profit than large farms. Another barrier is that DSS 

recommendations do not provide protection from uncertainty (Ara et al., 2021).  

Uncertainty results from any given treatment having a chance that it may or may not be 

effective.  

 Solving cost differences between small and large farms (financial equity) is a 

complex problem, but solutions have been proposed to overcome this adoption barrier. 

One potential solution is for DSS designers and manufacturers to provide free or 

inexpensive trial periods or monthly subscriptions to DSS services. A free trial period 

would allow a farmer to see if the DSS fits their operation and provides useful actionable 

recommendations (Akaka et al., 2021). Small farms could work together to spread 

technology costs over many producers. In addition, university extension services could 

provide training that reduces the investment costs or federal agencies and/or industry 

could provide financial incentives to use DSSs (McFadden et al., 2023).  

 

 



13 
 

4.3. Farmers hesitancy to change the decision process 

 On many farms, agricultural decisions result from one-on-one discussions 

between the producer and their trusted advisor. Many producers do not feel comfortable 

replacing the trusted advisor with a DSS (Gardezi et al., 2022). This discomfort or lack of 

trust may be attributed to poor communication between the users and DSS developers, 

who may or may not have agriculture experience. This often manifests as 

recommendations that are acceptable to a developer but not considered acceptable or 

actionable by the end-user. For example, if the recommendation is to apply water, but the 

field is not, or cannot be, irrigated, the recommendation is useless. The difference 

between a recommendation and what is possible, is called the paradox of acceptability 

(Hochman et al., 1994).  

Trust can also be lost due to miscommunication between the development team 

and the end-user. One form of miscommunication is the selection of an DSS tool that 

assists in short-term planning (tactical) when a tool for long-term (strategic) planning is 

required (Ara et al., 2021). A DSS could combine strategic and tactical systems, which 

would provide the initial short-term decision and aide in long term strategic planning 

(Ara et al., 2021).  

To improve trust in DSSs, producers and their advisors should carefully consider 

the benefits and deficiencies of the various options before purchase. Similarly, the 

marketing of a DSS as tactical, strategic, or both, needs to be made clear to the end-user. 

The failure to select an appropriate system can result in a general distrust of PA 

(Lindblom et al., 2017; Rossi et al., 2013; Ara et al., 2021).  A milestone is reached when 

a farmer decides to trust a DSS recommendation because each decision has  economic 
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implications that can be devastating. For example, a farmer may not have the income to 

make land payments, purchase farm inputs for the next cropping season, and/or cover 

their personal expenses. These financial concerns, especially when combined with 

distrust, can result in farmers deciding to keep a trusted decision process that has worked 

reasonably well in the past (McCown et al., 2002).  However, trust in DSSs can be 

cultivated by providing demonstrations, training, and clear examples on how to 

successfully integrate the technology into their operations (Akaka et al., 2021).  

4.4.  Questions over data ownership and privacy  

Many producers and lawmakers are concerned about data ownership and privacy 

of farm data (Erickson & Lowenberg-DeBoer, 2022). Examples of on-farm data include 

current and historical yield, seeding rates, applied soil nutrient rates, and remote sensing 

(Ellixson, 2022). When these data are combined with public information through models 

connected to “the cloud” or the internet, the models may produce sensitive information.  

Unlike a bushel of corn that is tangible, data are intangible, easily transmitted long 

distances, stored in “the cloud”, and can be subject to security breaches.  Additionally, 

farm data ownership is legally difficult to protect because it is considered both unrivaled, 

meaning one person’s access does not prevent another’s, and because of its uncertain 

excludability (the right of the owner to deny another’s access) (Goeringer, 2016; 

Jouanjean, 2020; Kaur et al., 2022).  

Farm data ownership is akin to a FICO credit score. FICO collects data on an 

individual and calculates their score. Although FICO does not own the data, it does own 

the credit score because it is newly generated data (Goeringer, 2016). It is currently 

legally, and ethically ambiguous, whether a third-party technology provider has the right 
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to generate new data from technology owned by individual farmers, and then sell the 

“new” data back to them after it has been combined with data from the same 

geographical region (Jouanjean, 2020). This problem is further confounded by efforts to 

make programs and data collected by ‘smart machinery’ freely available as “open source” 

(Rinaldi et al., 2014) to other companies, which then take the free data and profit by 

selling it back to farmers in DSS technologies.  

 Laws are often slow to catch up with technology, and currently laws that protect 

farmers and their data are limited (Ellixson, 2022; Kaur et al., 2022; Goeringer, 2016). 

Moreover, the term “ownership” itself is only the tip of the iceberg. Legally speaking, 

“ownership” is a relatively weak protection for farm data and does not necessarily mean 

the kind of control that farmers seek. Conditions and rights are often specified separately 

in individual contracts; therefore, there is no such thing as an all-inclusive data ownership 

law (Jouanjean, 2020). Determining where to draw the line is a challenge that law makers 

and stakeholders must define together, highlighting many new career opportunities for 

those interested in the legal protection of farm data as well as opportunities to bridge the 

gap between companies and farmers through legal communication and advocacy of 

farmer’s data rights.   

4.5 Limited trained workforce 

A 2015 survey asked agriculture retailers about their minimum education 

requirements for careers in PA such as equipment operator, agronomist, equipment 

technician, technical support, and PA specialist (Erickson et al., 2018; Fausti et al., 2021). 

Results at that time revealed that most of the PA workforce met or exceeded the 

education expectations of employers by completing either a 2-yr associate degree or a 4-
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year bachelor’s degree. However, employers indicated difficulty in locating and 

recruiting qualified applicants. Additionally, necessary skills, such as data intensive 

thinking, the ability to understand statistical standards to produce means and standard 

deviations, as well as their ability to install, calibrate, troubleshoot, and repair PA 

hardware and equipment were lacking (Erickson et al., 2018; Fausti et al., 2021). Further 

analysis suggested that there was a mismatch between the training received and the 

training required to proficiently perform the job.  

To help PA employees meet the job expectations, professional societies and 

higher education institutions must commit to curricula that will close this gap. For 

example, the American Society of Agronomy and Ag*IDEA have created PA certificate 

programs (Erickson et al., 2018). Those trained in both the technical and human 

dimension of DSSs can act as important communicators between program developers and 

the end-users (Lundström & Lindblom et al., 2018). Additionally, communicators 

between education institutions and industry professionals, such as retail dealerships, can 

help to align academic programs for students pursuing PA positions with the 

qualifications required by industry professionals. This will aid in creating employees 

proficient in the knowledge, skills, and abilities in math and statistical skills required by 

the PA industry (Fausti et al., 2021).  

5.0.  Lessons learned 

While there are a range of barriers slowing DSS adoption, it is also important to 

evaluate why some succeed (e.g. Vite.net and Pigs2Win) and others fail (e.g. 

FEEDMAN). Vite.net® has been adopted successfully in both small and large European 

vineyards since 2013 (Rossi et al., 2013). Vite.net uses real-time data from sensors placed 
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around a vineyard to produce recommendations for pest (disease, weed) control, 

fertilization, and irrigation management decisions that have increased the overall 

vineyard productivity (Lindblom et al., 2017; Rossi et al., 2013). For example, in 2016, 

organic producers who used Vite.net saved about €195 ($205) per hectare (ha) relative to 

their usual practices. The savings were attributed to the DSS making site-specific 

recommendations about the application of non-organic herbicides, pesticides, and 

fertilizers. Specifically, growers using Vite.net reduced copper application by 37% when 

compared to producers who did not use the DSS (TpOrganics, 2016).  

Along with observable savings, Vite.net designers focused on communication 

with end-users with feedback throughout development. Vite.net also focused on specific 

vineyard problems that were identified by vineyard managers. The communication 

between developers and users was deliberate and allowed the developers to understand 

how to best convey and make recommendations through the system’s user interface. This 

communication/training had value because it improved end-user trust.  

 Another example of a successful DSS is Pigs2win, which improves swine 

production and reduces environmental impact (smell and nutrient losses) of the operation 

(Lindblom et al., 2017; Meensel et al., 2012). These decisions were traditionally made 

using key performance indicators such as productivity costs, labor income, and feed 

conversion (kg of feed per kg of live weight). However, the Pigs2Win development team 

worked closely with the farmers and stakeholders to ensure that results are aligned with 

the expectations of the end-user. Objectives were defined by the development team and 

farmers and stakeholders identified how an objective could be met by using a DSS. For 

example, Pigs2Win was built using Excel® as a framework because it was easily 
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accessed and understood by end-users. Several prototypes were presented, and farmers 

were encouraged to provide feedback and familiarize themselves with the system. A 

benefit of this open communication process was that it built trust by demonstrating 

transparency (Meensel et al., 2012).  

FEEDMAN, a feed to dollars beef management package, in contrast to Vite.net 

and Pigs2Win, was an unsuccessful DSS. FEEDMAN was designed in 1998 to help 

farmers and farm managers make strategic and tactical decisions about feeding options, 

animal performance, market options, and economic decisions for livestock (Newman et 

al., 2000). While the development team understood the need to make the system user-

friendly, users found it to be easy to use but not useful. Many users indicated that they 

were reluctant to take recommendations from DSS that did not provide clear benefits. 

Users also cited abandoning the program due to a lack of maintenance. These issues 

likely could have been avoided by communicating with the end-users throughout the 

process such as in the case of Vite.net and Pigs2Win. Potential users and stakeholders 

were brought into the process at the end of FEEDMAN development, instead of being 

allowed to shape the DSS in the process.   

Vite.net, Pigs2Win, and FEEDMAN are different DSSs, however, communication 

is a common thread linking their successes and failures. Vite.net and Pigs2Win worked 

with the end-users throughout the process to ensure that the software would provide real 

value, whereas FEEDMAN was marketed as a complete system that did not provide real 

value to the users. Additionally, Pigs2Win took steps to appeal to smaller farms by 

ensuring that the users did not need to purchase additional software, building part of the 

system in Excel® to reduce the financial burden. While this represents only a few of the 
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many examples of successful and not successful DSSs, it is important to learn from what 

has and has not worked.  

6.0. The Future of DSSs and the importance of improved communication 

 Decision tools are being developed to provide more accurate recommendations to 

farmers. Future DSSs that are empowered by ML algorithms will have the capacity to 

collect and process enormous amounts of site-specific information (Priya and Ramesh, 

2020). However, because research scientists tend to work very narrowly and silo 

themselves, our ability to address “big questions” may take a long time. Dr. Cynthia 

Rosenzweig, the 2022 World Food Prize winner, addressed the scope of these problems 

and stated, “Climate change is so challenging: We must solve it; but no one group or 

discipline or sector of society is going to solve it on their own.  -- Such ‘silos’ do not 

work for finding solutions to climate change” (Coyne, 2022). 

 To improve communication among scientists, Dr. Rosenzweig created a program 

called AgMIP (Agriculture Model Intercomparison and Improvement Project). AgMIP 

brings together an interdisciplinary and international team of stakeholders and experts to 

estimate and predict how climate change will produce new risks and vulnerabilities in 

global agriculture, while also providing risk mitigation and adaptation suggestions 

(AgMIP, 2022). The model’s framework focuses on four dimensions: adaptation, 

mitigation, food security, and agriculture policy (Rosenzweig et al., 2017). The user 

interface provides this information at three different levels of expertise. The first level is 

the regional summary provided and demonstrated using individual stories about farmers 

who have benefited. The second level is the spatial dashboard using maps and data to 

make comparisons among various regions This approach was designed in response to the 
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United Nations (United Nations Framework Convention on Climate Change) request for 

information about, and implications of, constraining the global temperature increase to 

1.5℃ and 2.0℃. While there is still much uncertainty in how much the climate will 

change, the model identified vulnerabilities and uncertainties in managing the future risk 

to agriculture (Rosenzweig et al., 2017).  

 Another agriculture DSS that stepped out of its silo and into a broad regional 

system is DAWN (Dashboard for Agricultural Water use and Nutrient management). 

DAWN is supported by the USDA through NIFA’s Agriculture and Food Research 

Initiative, with the goal of informing row crop producers about water and nutrient 

management decisions. The system couples a crop growth model with existing regional 

climate systems and links them with data about land and water use, agroecology, 

hydrology economics and human intervention. The DSS then uses these models to help 

producers with field level decisions (DAWN, 2022). This system, produced for both 

farmer and researcher use, can run scenarios about specific problems and predict 

outcomes based on soil maps, historical climate data, estimated crop yields, and more. 

These scenarios look to optimize economic return and minimize environmental impacts. 

From these various predictions, the producer can choose the most preferred scenario. This 

tool can help producers explore, risk free, their options for different crops, and various 

irrigation strategies. Even without an irrigation system, this DSS can be helpful by 

providing land and yield information that relate to potential water quantity and quality 

needs such as evapotranspiration rates, average precipitation and air temperature, soil 

moisture, crop yield potential, nutrient loss, runoff, and drainage potential.  

The user interface of DAWN is also being co-developed by stakeholders to ensure 
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that the intended users/communities will have their needs met. DAWN will do this by 

providing information through both text and graphics, allowing users to explore options 

and strategies easily and quickly, collect statistics for the user about location and crop 

type, evaluate the producers’ needs, and finally provide education materials such as 

extension publications and research summaries to keep users informed on the decisions 

they make. This new and exciting DSS will provide insights into new strategies for 

sustainable agriculture as well as opportunities for graduate students and early career 

researchers to work on creating/improving farm management.     

 FRST (the Fertilizer Recommendation Support Tool) also seeks to take DSSs to a 

broader scale by being a USDA operated, national fertilizer recommendation database 

and tool in the United States. This project takes inspiration from a national soil 

recommendation project produced in Australia in 2013 called The Australian Better 

Fertilizer Decisions for Cropping Systems Project (Conyers et al., 2013). FRST is a 

calibration and correlation study currently focused on potassium and phosphorus but will 

expand into nitrogen and micronutrient recommendations (Lyons et al., 2020). This 

collaborative project includes over 30 land grant universities, USDA-ARS and USDA-

NRCS and aims to address the inconsistent information on fertilizer recommendation 

across state lines based on local site characteristics rather than state boundaries 

(McCauley, 2020). The dataset is being populated with historic data from 29 states that 

meet appropriate criteria and includes crop yield, grain moisture, rainfall, air and soil 

temperatures, seasonal stresses, and the production system used (Speirs et al., 2013). The 

web-based, user-friendly platform allows users to select input variables such as soil test 

methods, geographic locations, yield levels, and crop types to assist in recommendation 
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decisions. This tool is expected to be continuously updated and hosted on a neutral 

internet space with common access and author attribution for as long as possible. The 

project leaders are encouraging more collaborative research on soil fertility among 

researchers and provide new career opportunities for graduate students to work with large 

historical, as well as current, datasets to produce transparent useful information to 

producers.  We believe that programs such as AgMIP, DAWN, and FRST can help 

graduate students and professionals cultivate career opportunities, expand their horizons, 

see how their research can help answer the “big” questions, and move out of their narrow 

research path. 

7.0. CONCLUSION 

 In this unprecedented era of environmental crisis and high-tech digital agriculture, 

which can collect information at high spatial and temporal resolutions, DSS product 

developers, researchers, and end-users need to collaborate and broaden their scope to 

solve critical issues facing agriculture at multiple scales. When implemented, we believe 

that DSSs are powerful tools that can help humans make connections in large datasets 

and find patterns that are crucial to making more sustainable and resilient crop production 

decisions. While DSS tools demonstrate an exciting future, it is important to recognize 

five aspects that have implications for PA adoption.   

 First, while many producers want to increase sustainability of their production, it 

is difficult to be cognizant of all factors that create the most profitable and sustainable 

outcomes. Second, the replacement of process or empirical models with machine learning 

algorithms within a DSS has the potential to improve accuracy and reduce uncertainty.    
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 Third, policy makers must continue to reduce the financial burden of acquiring 

the technology through strengthening programs that provide financial incentives to 

smaller farms to adopt DSSs. Fourth, industry professionals need to increase 

opportunities for farmers to engage with technology to build confidence in appropriate 

DSS products while lawmakers must begin to address serious questions about data equity 

such as the legal definition of data ownership.  

Fifth, communication barriers between DSS designers and stakeholders also still 

need to be broken down, and additionally, appropriate training must be provided at higher 

education levels for those pursuing careers in PA. Once these hurdles have been 

overcome, DSSs can work as tools to aid farmers in making decisions that will fully 

allow us to meet both the current and future agronomic needs for food, feed, fuel, and 

fiber in a sustainable manner. 
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CHAPTER II 

DOES SPLITTING THE NITROGEN RATE REDUCE CARBON 

EQUIVALENTS? 

ABSTRACT 

Climate smart practices are site-specific approaches focused on combating the 

challenges of climate change through sustainably increasing agricultural production, 

employing site-specific strategies to increase resiliency, and utilizing strategies to reduce 

greenhouse gas (GHG) emissions. Climate smart practices can work within management 

frameworks such as the 4R nutrient management model; an approach that encourages 

farmers to apply the right fertilizer source at the right rate at the right location and at the 

right time. However, the 4R model was not specifically designed to be a climate smart 

practice. The goal of this paper is to partially fill this gap. Therefore, the objective was to 

determine if splitting half the urea application between pre-emergence (VE) and half 

between corn (Zea mays) V6 growth stage could be considered a climate smart practice. 

This replicated two-year study contained three N treatments including 0, 157 split 

between pre-emergence and V6, and a single application of 157 kg N/ha at pre-

emergence. The GHGs were determined using a near continuous sampling and 

measurement system; LI-COR LI-8100-104 long-term opaque chambers. Across the 

years and treatment interaction, splitting the N fertilizer compared to the pre-emergence 

application did not impact N2O-N emissions, however, CO2-C and CO2e was reduced. 

Results indicated that the split application should be considered as a climate smart 

practice.  
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INTRODUCTION 

 Climate smart practices are approaches to agriculture that transform and reorient 

agriculture systems to deal with the effects of climate change. These practices do this 

through focusing on the three pillars: increasing crop and soil productivity, improving 

soil resiliency through management adaptation, and reducing greenhouse gas emissions 

(GHG) where possible (Campbell, 2017). Because management, soils, genetics, and 

climate impact an agricultural system’s ability to achieve these goals, specific practices 

can vary from location to location. For example, at sites subject to drought, the climate 

smart practices may focus on maintaining soil moisture through reduced tillage or leaving 

residue on the field. However, at another location subject to flooding, the climate smart 

practices used may include a change in crop type, creating grass waterways, or building 

vegetated riparian buffers.  

 Agricultural systems in the U.S and globally are extremely variable, these climate 

smart strategies seek to work within the framework of sustainable agriculture with a 

strong focus on the climate change dimensions of agriculture. Therefore, these strategies 

can be used within the 4R framework model. The conceptual basis for 4R nutrient 

management is to apply the right source of fertilizer, at the right rate, at the right time, 

and at the right location to optimize plant productivity while minimizing the impact on 

the environment (Fixen, 2020). Adopting 4R nutrient management can involve many 

different strategies, including the use of soil sampling to determine residual soil N, 

splitting the fertilizer rate, and using urease and nitrification inhibitors to reduce N losses 

to the atmosphere and groundwater (Clay et al., 1990a; Venterea et al., 2016).  Research 
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suggests that appropriate 4R nutrient management strategies are dependent on crops, soil, 

and environmental conditions. However, the impacts on greenhouse gas (GHG) 

emissions were not initially considered upon conception of the 4R nutrient management 

strategies. A 4R strategy that has the potential to be widely adopted is splitting the N rate. 

However, splitting the N application or delaying the application of the N fertilizer to 

match plant uptake requirements may increase GHG emissions (Thies et al., 2020; 

Venterea and Coulter, 2015). Thies et al. (2020) reported that applying urea in the fall 

after soil temperatures had decreased to less than 10 ̊C minimized Nitrous oxide (N2O) 

emissions, whereas delaying the fertilizer from spring to early summer increased fertilizer 

derived N2O emissions over the 21 days following the application. In studies conducted 

in Minnesota, Venterea and Coulter, (2015) and Venterea et al. (2016) reported that when 

N was applied as a single application at planting when compared to a split application, 

splitting the application either increased or had no impact on N2O emissions over the 

entire season. Differences in emissions were partially attributed to climate and moisture 

variability. Venterea and Coulter (2015) suggested that a prolonged dry period before the 

split application followed by a large rainfall event resulted in higher N2O emissions from 

the split application compared to the single application. Additionally, Venterea and 

Coulter (2015) and Venterea et al. (2016) indicated that years with wetter soils are more 

likely to produce higher levels of N2O. This may be due to the increase in microbial 

activity and respiration in wetter soil compared to dry soil (Bogati & Walczak, 2022). 

However, Venterea and Coulter, (2015) and Venterea et al. (2016) did not report the 

carbon dioxide (CO2), or carbon equivalents (CO2e) and they used a measurement method 
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that can have very high variability (Thies et al., 2020). The CO2e is the summation of the 

emitted greenhouse gases of CO2-C and N2O-N that have been converted to CO2.  

 One of the goals of 4R is to apply fertilizer at the right time. Matching when the 

fertilizer is applied to when the plant takes up the nutrient. This strategy has the potential 

to improve  fertilizer use efficiency in many soils. However, splitting the N rate does not 

consider the potential impact to N2O emissions. Urea applied in the early summer has 

demonstrated increased GHG emissions compared to urea applied in the fall. The lower 

N2O emissions in the early winter than early summer were attributed to lower fall soil 

temperatures which increased N2O water solubility and reduced microbial activity (Joshi 

et al., 2022; Reicks et al., 2021; Clay et al., 2015; Clay et al., 2012). The hypothesis of 

this experiment was that a 50/50 split urea (157 kg N/ha) as a broadcast application will 

not reduce and may increase N2O-N and CO2-C emissions compared to a single (157 kg 

N/ha) broadcast application Therefore, the objective was to determine if splitting the N 

rate increased N2O-N, CO2-C, and CO2e emissions.   

MATERIALS AND METHODS 

Site location and Climate 

 The study was conducted at the SD Aurora Research Farm that was located at 44° 

18’ 20.0448” N, 96° 40’ 12.5004” W. The soil at the site was a Brandt silty clay loam 

(Fine-silty, mixed super active, frigid Calcic Hapludolls) (Thies et al., 2019; Clay et al., 

2015; Soil Survey Staff , 2023) and the parent materials were loess over glacial outwash. 

The soil surface horizon contains 110g sand, 580 g silt, and 310 g clay. The soil organic 

carbon in the surface 15 cm was approximately 2.21 g SOC-C kg-1, (Clay et al., 2015). 

The surface soil water contents at field capacity and the wilting point were 0.315 g/g and 
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0.1777 g/g, respectively (Thies et al., 2020).  The surface 15 cm had a bulk density of 

1.27 g/cm3 in 2021 and 2022. Additional information on this site has been reported in 

Clay et al., (1996, 2005, 2015).  In 2021 and 2022 years, the site had been in no-tillage 

for one year and the previous crop was soybean (Glycine max L.). The experiment site is 

found within a semi-arid moisture regime on the eastern side of South Dakota with a hot 

summer continental climate (Dfa) as the Koppen climate region. Rainfall and air 

temperatures were obtained from the South Dakota Mesonet (2023).   

Experimental Design and Treatments 

The study used a completely randomized design (CRD), three N rates (0, 157 kg 

N/ha, and 78.5 kg N/ha that was applied twice), with two replicates and it was repeated in 

2021 and 2022.  For the pre-emergence 157 kg N/ha treatment, N was broadcast late due 

to funding complications on 1 June 2021 and several days after planting 17 May 2022. 

For the split N application, the second broadcast application (78.5 kg N/ha) was applied 

at the corn V6 growth stage. In 2021 and 2022 the applications were made on 28 June 

2021 and 22 June 2022, respectively.  

Corn was planted on 12 May in 2021, and 11 May 2022 at a seeding rate of 

79,000 plants/ha. It was harvested on 15 Oct 2021 and 11 Oct 2022. The corn rows were 

separated by 76 cm. The impacts of splitting the N rate on corn yields and N budgets are 

beyond the scope of this paper and will be reported in subsequent papers. 

Greenhouse gas emissions and soil moisture and temperature measurements 

 Assays of GHG emissions were initiated on 17 May 2021 before urea application 

and 25 May 2022, 8 days after urea application and terminated on 25 Oct 2021 and 11 

Oct 2022. GHG emissions were measured with LI-COR LI-8100-104 long-term opaque 
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chambers that had a diameter of 20 cm (8100-104 LI-COR, Lincoln, NE). The chamber 

consisted of a base with a bottom PVC ring that was pushed approximately 5 cm into the 

soil, and a pivoting top that seals itself by pivoting itself to cover the base. The chambers 

had a surface area of 317 cm2. Each chamber measured emissions six times daily between 

0000 to 0230 h, 0400 to 0630 h, 0800 to 1030 h, 1200 to 1430 h, 1600 to 1830 h, and 

2000 to 2230 h (LI-COR, 2019). At each sampling interval, gas concentrations (CO2, and 

N2O) were measured every second for 15 minutes by a Picarro® Cavity Ringdown 

Spectrometer (model G2508; Picarro Inc., Santa Clara, CA). N2O-N emissions were 

calculated with data obtained between 45 to 900 seconds, while CO2-C emissions were 

most accurately calculated between 45 and 165 seconds. The software 4.01 LI-COR 

SoilFluxPro™ (v. 4.01; LICOR, Lincoln, NE) was used in the calculations. At the 

initiation and completion of the studies, measured GHG values were compared with 

known standard gases (Airgas USA LLC, Cinnaminson, NJ) . 

 Soil temperature and moisture for the surface 5 cm were measured simultaneously 

with LI-COR LI-8150-205 Soil Moisture Probes (LI-COR, Lincoln, NE) and LI-COR LI-

8150-203 Soil Temperature Probes (LI-COR, Lincoln, NE).  During the two-year 

experiment there were machine errors and power failures that resulted in short gaps in 

measurement of gas, soil temperature, air temperature, and soil moisture which were 

replaced with time-appropriate information from each chamber. The chambers were 

placed in the center between the corn rows.   

Soil sampling  

 Soil samples were collected at pre-plant and post-harvest in 2021 and 2022. Initial 

soil samples from the 0 to 15, 15 to 30, and 30 to 60 cm depths were analyzed for soil 
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moisture, EC, pH, soil organic matter (SOM) and inorganic N. Following soil moisture 

determination, samples were dried, ground, and sieved. Inorganic nitrogen in the soil 

sample was extracted with 1M KCl using a 10 to 1 solution to soil ratio. This mixture was 

shaken for one hour and filtered. The extracted solution was analyzed for NO3-N and 

NH4-N using spectrophotometry (Astoria-Pacific ™). The soil properties and chemical 

conditions are shown in Table 2.1. Soil organic matter was determined using loss on 

ignition, and pH1:1 and EC1:1 was determined using 10 g soil and 10 mL of water. After 

harvest, soil samples were collected on 29 Oct 2021 and 21 Oct 2022 from 0 to 60 cm 

depth. These samples were analyzed for NO3-N and NH4-N using the above method.  

Phospholipid Fatty Acid Analysis (PLFA) 

The soil microbial community plays a crucial role in N2O and CO2 emission 

pathways through denitrification, nitrification, and microbial respiration. Composite soil 

samples were collected from the surface 15 cm on 19 July 2021 and 15 July 2022. 

Following collection, the samples were placed in a sterile bag that was placed on dry ice. 

Once out of the field, the samples were stored in a -80 ̊C freezer until analysis. To 

prepare the samples for analysis they were dried for approximately 8 hours using vacuum 

pressure and centrifugation in the Thermo Scientific Savant SC250EXP SpeedVac 

Concentrator. Once dried, 1.5g of soil was weighed into a tube to complete the four steps 

of PLFA: Extraction, Separation, Chromatography, and Transesterification. Further 

PLFA methodology is detailed in the appendix. The samples were then analyzed using 

gas chromatography via GC-2010 Plus High-end GC and the peaks were 

analyzed using MIDI Sherlock™ Chromatographic Analysis System (CAS).  

Statistical analysis 
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ANOVA was conducted to determine significant differences among the 

treatments, years, and years by treatment (R core team, 2020). Years and treatments were 

considered fixed effects. On GHG emissions there was a significant interaction between 

years and treatments (p= < 0.01). An LSD test was used to determine treatment 

differences (R Core Team, 2020).  

Spearman correlation, through R software, was used to determine a correlation 

across years between the measured gases, soil temperature, and soil moisture. Spearman 

correlation was used instead of Pearson correlation due to the monotonic relationship 

between the variables. Pearson is used when the variables show either a positive or 

negative linear relationship, this can be tested through a scatterplot. However, this GHG 

data was monotonic showing both positive and negative relationships with variables 

moving in the same direction but not at a constant rate (Figure 2.1). When visually 

inspected, the scatterplots did not produce a constant positive or negative linear graph, 

but instead some variables had the same strength and direction without a constant rate, 

producing a non-linear graph. P-values for each correlation were also determined through 

the R software.  

Figure 2.1. Scatterplot of N2O-N (kg/ha), CO2-C (kg/ha), soil moisture (SM) 

(cm3/cm3) and soil temperature (ST) ( ̊C) over total 2021 and 2022 growing season. In 

2021, the sampling period was 17 May to 25 October. In 2022, the sampling period was 

25 May to 11 October. 
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RESULTS AND DISCUSSION 

Table 2.1. Rainfall cm for both experimental years from planting to split application and 

after split application to harvest, (South Dakota Mesonet, 2023). 

Year Date 
Planting to Split 

(V6) 
Date 

Split to 

Harvest  

  Rainfall cm  Rainfall cm 

2021 12 May- 28 Jun 1.96 29 Jun- 19 Oct 16.8 

2022 11 May- 22 Jun 10.6 23 Jun- 12 Oct 17.7 

 

Table 2.2. Rainfall cm and Air Temperature ̊C for both experimental years by month and 

100-year (1901-2000) average by month from May to October data was collected from 

South Dakota Mesonet. 

  Average Rainfall cm Average Air Temperature ̊C 

Year May Jun Jul Aug Sept Oct May Jun Jul Aug Sept Oct 

2021 4.5 1.7 5.8 6.4 5.4 8.6 14 23 24 23 19 12 

2022 7.2 5.3 6.7 3.0 1.0 1.0 14 20 24 23 19 10 

1901-2000 8.1 9.3 6.9 6.3 5.1 3.8 14 20 23 22 17 10 

 

Total growing season (1 May -30 Sept) in 2021 and 2022 was 32.5 and 26.2 cm, 

respectively. Rainfall in 2021 was 24.1 cm while 2022 had 20% greater rainfall with a 

total of 30 cm. At Aurora South Dakota, the long-term 100-year precipitation mean 

(1901- 2000) at planting (May) is 8 cm (NOAA, 2023) and in June the 100-year average 
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is 9.2 cm. The 100-year annual precipitation mean (1901-2000) is 55 cm and the 100-year 

precipitation mean (1901-2000) from 1 May to 30 September is 35 cm (NOAA, 2023). In 

2021, low rainfall during May and June resulted in 1.03 cm of surface soil moisture (5 

cm) on 28 June 2021. The split application date in 2022, 22-June had more soil moisture 

at the soil surface (1.57 cm). 2021 and 2022 both had higher accumulated growing degree 

days (GDD) (1 May – 31 Oct) than long term 20-year seasonal GDD of 1376 (NOAA, 

2023). Base temperature used for corn was 10 ̊C and maximum temperature was 30 ̊C. 

Table 2.3. Initial soil properties (1 May- 31 May) pre-V6 in the surface 0-15cm depth in 

2021 and 2022 experimental years. 

Pre-V6 

2021 NO3 kg N/ha 32.5 

  NH4 kg N/ha 14 

  pH 1:1 5.6 

  EC 1:1 dS/m 0.14 

  Soil Organic Matter % 0.46 

  Bulk Density 15cm g/cm3 1.27 

2022 NO3 kg N/ha 26.2 

  NH4 kg N/ha 15.4 

  pH 1:1 6.5 

  EC 1:1 dS/m 0.17 

  Soil Organic Matter % 0.49 

  Bulk Density g/cm3 1.27 

 

Initial Soil Properties and Climate Conditions    

 Prior to planting, the amount of NO3
- in the surface 15 cm in 2021 and 2022 was 

32.5 kg-N/ha and 26.2 kg-N/ha, respectively (Table 2.1). These results suggest that in 

both years the soil contained a moderate amount of NO3
-. The amount of inorganic N 

concentrations contained in the soil are important. For example, Thomas et al. (2017) 

suggested that the transformation of N2O into N2 increases when NO3
- concentration 
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decreased below 6 ppm (11 kg N/ha). This is lower than the initial soil NO3 levels in both 

experimental years indicating more N2O is being lost to the atmosphere because the 

microorganisms in the soil are less likely to reduce N2O into N2. Weier et al. (1993) 

reported that when the microbial community is N limited adding N may stimulate both 

denitrification and CO2 emissions.  

Nitrous oxide emissions  

Table 2.4. The N2O-N loss during the 2021 and 2022 growing season with first and 

second application compared separately and both years analyzed together showing the 

Treatment: Year interaction significance. Means with different letters are different at the 

5% level. In 2021, the sampling periods were pre- split, before V6 from 17 May to 27 

June and post-split after V6 from 28 June to 25 October. In 2022, the sampling periods 

were from 25 May to 21 June and from 22 June to 11 October. 

N 

Treatment 
Year Pre-Split 

N rate kg 

N/ha 
Post-Split 

Total N 

applied 
Total 

kg N/ha  kg N2O-

N/ha 
kg N/ha 

kg N2O-

N/ha 
kg N/ha 

kg N2O-

N/ha 

0 2021 0.03a 0 0.04a 0 0.07a 

78.5 2021 0.05a 78.5 0.13bc 157 0.18a 

157 2021 0.05a  0.08a 157 0.13a 

0 2022 0.15a 0 0.19bc 0 0.34a 

78.5 2022 0.28a 78.5 1.67c 157 1.95b 

157 2022 0.71b 0 0.60b 157 1.32b 

p value   0.04   < 0.01   0.02 
 2021 0.04a  0.08a  0.13a 
 2022 0.38b  0.82b  1.20b 

p value   < 0.01   < 0.01   < 0.01 

0  0.09a 0 0.11a 0 0.21a 

78.5  0.16a 78.5 0.90b 157 1.06b 

157  0.38b 0 0.34a 157 0.72b 

p value   0.03   < 0.01   0.01 

 

Table 2.5. The CO2-C loss during the 2021 and 2022 growing season with first and 

second application compared separately and both years analyzed together showing the 

Treatment: Year interaction significance. Means with different letters are different at the 

5% level. In 2021, the sampling periods were pre- split, before V6 from 17 May to 27 

June and post-split after V6 from 28 June to 25 October. In 2022, the sampling periods 

were from 25 May to 21 June and from 22 June to 11 October. 

N 

Treatment 
Year Pre-Split N rate kg N/ha Post-Split 

Total N 

applied 
Total 
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kg N/ha  kg CO2-

C/ha 
kg N/ha 

kg CO2-

C/ha 
kg N/ha 

kg 

CO2-

C/ha 

0 2021 199a 0 847a 0 1045a 

78.5 2021 255a 78.5 1,001a 157 1256a 

157 2021 294a  888a 157 1183a 

0 2022 700a 0 1,460a 0 2161a 

78.5 2022 1130a 78.5 8,425b 157 
9556

b 

157 2022 3029b 0 11,245c 157 
1427

4c 

p value   0.02   < 0.01 
  

< 

0.01 

 2021 249b  912b  1162

b 
 2022 1620a  7044a  8664a 

p value   < 0.01   < 0.01   
< 

0.01 

0  449b 0 1153c 0 1603c 

78.5  693b 78.5 4713b 157 
5406

b 

157  1662a 0 6067a 157 7727a 

p value   0.01   < 0.01   <0.01 

 

Table 2.6. The carbon equivalents (CO2e), as impacted from fertilizer treatment and year. 

Due to both CO2-C and N2O-N. Both years during the 2021 and 2022 growing season 

with first and second application compared separately and both years analyzed together 

showing the Treatment: Year interaction significance. Means with different letters are 

different at the 5% level. In 2021, the sampling periods were pre- split, before V6, from 

17 May to 27 June and post-split, after V6, from 28 June to 25 October. In 2022, the 

sampling periods were from 25 May to 21 June and from 22 June to 11 October. 

N 

Treatment 
Year Pre-Split 

N rate 

kg N/ha 
Post-Split 

Total N 

applied 
Total 

kg N/ha  kg CO2e/ha 

Intensity 
kg N/ha 

kg 

CO2e/ha 

Intensity 

kg N/ha 
kg CO2e/ha 

Intensity 

0 2021 209a 0 859a 0 1067a 

78.5 2021 269a 78.5 1040a 157 1310a 

157 2021 309a  913a 157 1222a 

0 2022 745a 0 1517a 0 2262a 

78.5 2022 1213a 78.5 8922b 157 10136b 

157 2022 3242b 0 11424c 157 14667c 
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p value   0.02  < 0.01  < 0.01 
 2021 1733b  937a  1199a 
 2022 262a  7288b  9021b 

p  value   < 0.01  < 0.01  < 0.01 

0  477a 0 1187a 0 1665a 

78.5  741a 78.5 4981b 157 5723b 

157  1775b 0 6168c 157 7944c 

p value   0.01  < 0.01  < 0.01 

 

Nitrous oxide emissions 

Figure 2.2. N2O-N, CO2-C and CO2e emissions with soil moisture (cm H2O) at 0 to 5 cm 

at post V6 mid- season 15-July to 28-Aug 2021 and 2022.  
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Across the years, adding urea increased N2O-N emissions. These results were 

expected because N2O emissions are produced during nitrification and denitrification. 

Prior to the split urea application, the lowest N2O emissions rates were for the 0 and 78.5 
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kg N/ha treatment in 2022 while in 2021 the 0, 78.5, and 157 kg N/ha treatments were all 

low. The lack of increase in emissions in 2022 between the 0 and 78.5 kg N/ha treatment 

was attributed to N2O emissions following an S-shaped curve rather than a linear curve. 

In an S-shaped curve, N2O emissions may not be increased by small increases in organic 

N when the amount of inorganic N in the soil is either low or high (Joshi et al., 2022; 

Kima et al., 2013). After the split application the highest N2O emissions losses for 2021 

and 2022 were in the 78.5 kg N/ha treatment. These results were attributed to reduced 

solubility of the gases with increasing temperature (i.e. gases are emitted at higher 

temperatures). Thies et al. (2020) had similar results and reported that fertilizer-induced 

N2O-N emissions were highest when applied on 12 June and lowest when applied on 1 

November. The impact of the sampling date on N2O-N losses could be attributed to 

several factors including higher temperatures and moisture differences across the growing 

season. The lowest N2O-N emissions were associated with the 0 N/ha treatment. The split 

while numerically higher was not significantly different from the application of 157 kg 

N/ha early in the growing season. These results indicate that splitting the fertilizer rate 

did not reduce N2O emissions. Venterea et al. (2015) had the same results and reported 

that splitting the N rate increased N2O -N emissions in one of the two years. They 

attributed their results to rainfall fluctuations that resulted in a prolonged dry period prior 

to the fertilizer application followed by a large rainfall event after fertilizer application. 

Others have reported a mixed impact of a split application, on N2O (Burton et al., 2008; 

Del Grosso et al., 2009; Phillips et al., 2009). For example, De Grosso et al. (2009) used 

the DAYCENT model to assess the impact of different management scenarios on CO2e 

and reported that the split N had higher yields of corn than baseline management but 
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similar CO2e values. Burton et al. (2008) reported that splitting the fertilizer application 

decreased cumulative N2O emissions in 2003, but not in 2002.   

Across years, the split and preplant fertilizer application treatments emitted < 1% 

of the fertilizer derived N (Fertilizer – 0 N) (DeKlein et al., 2006). For the split N rate the 

% decrease was 46% [=100*(1- 0.58/1.57)] and for the preplant N the decrease was 68 % 

[=100*(1-0.51/1.57)]. Del Grosso et al. (2007) using the DAYCENT model had similar 

results, and reported that emissions can be lower than IPCC predicted values.  

Lower than predicted values may be due to not accounting for N 

immobilization/fixation. In related research conducted at this site, Thies et al. (2020) 

reported that 54% of the applied fertilizer was either immobilized by the soil 

microorganisms or fixed on the clay exchange sites. Microbial immobilization or clay 

fixation contradicts the perception that 100% nitrogen is available and subject to 

leaching, nitrification, and denitrification. Others have reported that immobilization 

and/or fixation can affect inorganic N concentrations. For example, Nieder and Benbi 

(2008) reported that NH4
+ fixation can range from 10 to 60 mg N/kg in sandy soils and 

from 90 to 460 mg N/kg in clay soils. Clay et al. (1990a) reported that 18 days after 

applying 15N-labeled urea to sandy loam soil, 35% was either immobilized/fixed into 

pools that were not extracted by 1 M KCl. Of the immobilized/ fixed N, 13.9% and 66% 

were in 6 M HCl hydrolysable amino acid and NH4
+ pools, respectively. They also 

reported that the immobilized/ fixed-N mineralized 5 to 10 times faster than the non-

labeled organic N. Therefore, while a significant portion of N is lost as N2O-N to the 

atmosphere in agriculture, a much larger portion of N is likely fixed to clay particles or 

immobilized by microorganisms. It is important to consider the possibility that due to 
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environmental conditions, 2021 had greater fixation and immobilization of the N 

compared to 2022, producing greater N2O-N emissions in 2022. The higher soil moisture 

recorded in 2022, compared to in 2021, produced higher emissions likely due to 

microbial and plant metabolic functions being more able to actively work with the 

addition of water while a dry soil will have slowed these metabolic functions in the soil 

significantly (Bogati & Walczak, 2022).  

Carbon dioxide emissions 

When urea [CO(NH2)2] is applied to soil, it is hydrolyzed by the extracellular 

urease enzyme. Hydrolysis transforms [CO(NH2)2] into NH3 and CO2. Through 

secondary reactions, CO2 reacts with water to form H2CO3, and NH3 reacts with H+ to 

form NH4
+. However, H2CO3 is not a stable molecule and will quickly decompose into 

CO2 and H2O (DeKlein et al., 2006). CO2 is also released via microbial respiration when 

soil organic carbon is mineralized (Clay et al., 2012). The NH3 component 

simultaneously reacts with H+ to form NH4
+, which when taken up by soil 

microorganisms can stimulate microbial respiration if they are N-limited.   

The year-by-treatment interaction showed that CO2-C emissions can change 

depending on the year (Table 2.5). Others have reported large temporal variation in CO2-

C emissions.  For example, Joshi et al. (2022) reported that in 2019 and 2020 on a similar 

soil, CO2-C emissions were 3935 and 5691 kg CO2-C/ha, respectively. Lower CO2-C 

emissions in 2019 than 2020 were attributed to lower growing degree days that were 

1266 in 2019 and 1436 in 2020, and higher growing season rainfall that was 61 cm in 

2019 and 32 cm in 2020. At our study site in 2021 and 2022, the growing degree days 

were almost identical to the past studies in both years, however precipitation was lower in 
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2021 than 2022 (Table 2.1).  Lower soil moisture most likely contributed to reduced CO2-

C emissions (Fig. 2.2).  

 In addition to a large annual difference in CO2-C emissions, splitting the fertilizer 

had a different impact on CO2-C emissions in 2021 than 2022. For example, in 2021, 

CO2-C emissions were not influenced by the fertilizer application, whereas in 2022 CO2 

emissions were increased by urea application. Differences between years most likely can 

be attributed to less microbial respiration in 2021 than in 2022, which resulted in a lower 

N requirement in 2021 than 2022.  Others have reported that applying N fertilizer can 

increase CO2-C emissions (Zhang et al., 2019; Fiedler et al., 2021). Fiedler (2021) 

showed that when averaging over soils and years, applying 224 kg N/ha increased CO2-C 

emissions. Thies et al. (2020) had similar results and reported that urea can have a mixed 

impact on CO2-C emissions and increased CO2-C emissions when applied in early winter 

and early spring. Additionally, Thies et al. (2020) also reported that CO2-C emissions did 

not increase emissions when applied in early fall, mid-fall, mid-spring, and early summer.  

N2O and CO2 relationship to soil moisture and temperature 

Table 2.7. Correlation coefficients between N2O-N, CO2-C emission rates as impacted by 

soil moisture and soil temperature contents. Years were analyzed together across the 

growing season. In 2021, the sampling periods reported in correlation include 17 May to 

25 October. In 2022, the sampling periods reported in correlation include from 25 May to 

11 October. Bolded correlation coefficients were significant at the 5% level. 

Treatment Date   N2O-N     CO2-C   

2021 and 2022  N rate SM ST CO2 SM ST 

    kg N/ha r r r r r 

Control 17-May to 27-Jun 0 0.08 -0.47 0.65 0.22 -0.53 

Control 28-Jun to 25-Oct 0 -0.19 -0.41 0.46 -0.43 -0.35 

Control 17-May to 25-Oct 0 -0.19 -0.39 0.49 -0.33 -0.39 

Urea 17-May to 27-Jun 157 0.36 0.04 0.51 0 0.38 

Urea 28-Jun to 25-Oct 157 -0.04 0.25 0.33 -0.3 0.29 

Urea 17-May to 25-Oct 157 0.04 0.27 0.28 -0.24 0.27 
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Split Urea 17-May to 27-Jun 78.5 0.01 -0.25 0.29 -0.14 0.41 

Split Urea 28-Jun to 25-Oct 78.5 0.1 -0.13 0.42 -0.26 0.26 

Split Urea 17-May to 25-Oct 157 0.08 -0.15 0.36 -0.32 0.33 

 

 The urea fertilizer influenced the relationship between soil moisture, soil 

temperature, N2O-N, and CO2-C emissions. N2O -N emissions in the 157 kg N/ha pre-

emergence and 78.5 kg N/ha split treatments had weak positive relationships with soil 

moisture; however, the 0 kg N/ha treatment there was a  negative relationship (r = -0.19 

p<0.05) This difference in moisture likely had an impact on denitrification and nitrification 

in the soil and therefore, an impact on N2O-N emissions. Nitrification is an aerobic process, 

whereas denitrification is an anaerobic process. The increased soil moisture and 

precipitation in 2022 most likely increased the likelihood of N2O-N being lost from 

denitrification compared to nitrification.  

The fertilizer treatments also affected the relationship between N2O-N emissions 

and temperature. The 157 kg N/ha pre-emergence treatment had a positive relationship 

while the 0 kg N/ha treatment was negatively correlated to soil temperature, (r= -0.39, p-

value< 0.05). Differences in correlation relationships in the unfertilized and fertilized 

treatments to soil temperature were also observed for CO2-C emissions (Table 2.7). CO2-

C emissions from the 0 kg N/ha control had a negative correlation to temperature while 

78.5 kg N/ha split application and 157 kg N/ha pre-emergence had positive correlations. 

These data indicated that soil temperature plays an important role in the gas’ solubility, 

influencing the N2O-N and CO2-C emissions lost to the atmosphere. 

 Many studies have measured over the growing season and have reported that 

N2O-N emissions are event based with soil temperature and soil moisture playing 

important roles (Fujinuma et al., 2011; Venterea et al., 2015; Thies et al., 2020). In this 
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experiment, soil temperature and soil moisture differences in the two experimental years 

agree with the literature that N2O-N loss is variable due to environmental fluctuations 

such as soil moisture and temperature. These environmental characteristics influence the 

solubility equilibrium and gas diffusion rate (Thies et al., 2019). Henry’s Law is used to 

determine the amount of gas that will be retained by the soil. It is a temperature-

dependent equation that relates gas solubility to temperature (Blackmer et al., 1982).  

N2O-N loss to the atmosphere also depends on its ability to be emitted from the 

soil. The release of gases from the soil depends on soil moisture which was different 

between 2021 and 2022 experiment years. Fick’s law states that an increase in soil 

moisture will slow the release of oxygen gas in the soil via diffusion, the soil-gas 

diffusion constant coefficient. This can be applied to other gases in the soil solution as 

well such as N2O and CO2 (Thies et al., 2019; Clay et al., 1990a; Desutter et al., 2008). 

The 2021 experiment year had relatively low soil moisture from May to October whereas 

in 2022 moisture was higher (Table 2.1 and Figure 2.2).  

A positive relationship was observed between N2O-N and soil moisture in the 

78.5 kg N/ha split and 157 kg N/ha pre-emergence treatments, disagreeing with Fick’s 

law. This indicates that gas diffusion is not the single guiding principle to determining 

emission rates. Soil moisture influences gas fluxes, but also nitrification and 

denitrification, microbial processes. These processes are ultimately influenced by 

microbial activity playing a crucial role influencing emissions (Di et al., 2014). Venterea 

et al. (2015) agree, also finding a positive trending relationship between N2O emissions 

and soil moisture.   
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However, it is also important to consider that N2O and CO2 emissions can be 

limited by many factors, including N and C limitations. When N is limited, adding N will 

increase respiration and GHG emissions, and when C is limited adding N may not 

increase GHG emissions. Variable correlations between soil temperature, soil moisture, 

N2O-N, and CO2-C emissions indicate that soil can switch back and forth from being N- 

and C-limited.  

When organic matter decays, the carbon components can be integrated into soil 

organic carbon or mineralized into CO2 by microorganisms (Clay et al., 2012; Clay et al., 

2015; Chang et al., 2017). Because CO2 is released from microbial respiration, it follows 

a diurnal cycle, similar to N2O (Thies et al., 2019). These cycles throughout the day are 

based on soil temperature phases (Weerden et al., 2013; Blackmer et al., 1982; Chang et 

al., 2017; Chang et al., 2016). CO2-C demonstrated a positive trend with soil temperature 

in the 157 kg N/ha pre-emergence and 78.5 kg N/ha split treatments, because microbial 

activity increases with temperature, whereas gas solubility decreases with temperature 

(Drake et al., 2013). Using phospholipid fatty acid analysis (PLFA), the mid-season 0-15 

cm surface soil samples in 2021 and 2022 were analyzed for microbial biomass (Table 

2.8). Microbial biomass among the treatments is statistically similar mid-season in July 

2021. Figure 2.2 demonstrates how soil moisture likely impacted the microbial 

community. This reduced microbial respiration and nitrification, resulting in lower 

emissions in 2021 compared to 2022. 

Table 2.8. The total soil microbial biomass ug C/ g soil, fungi ug C/ g soil and bacteria ug 

C/ g soil in the mid-season post V6 19 July 2021 and 15 July 2022. 

N treatment N rate  Date Year 
Total 

Biomass 
Fungi  Bacteria  

Fungi: 

Bacteria  
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 kg N/ha    ug C/g 

soil 

ug C/g 

soil 

ug C/g 

soil 

ug C/g 

soil 

Control 0 19-Jul 2021 11.8 1.30 10.49 20.0 

Split N Rate 157 19-Jul 2021 10.9 0.70 10.20 13.8 

Pre-emergence 157 19-Jul 2021 12.0 1.10 10.90 12.75 

Control 0 15-Jul 2022 10.6 0.53 10.10 9.0 

Split N Rate 157 15-Jul 2022 9.1 0.51 8.58 9.25 

Pre-emergence 157 15-Jul 2022 9.7 0.52 9.20 10.3 

p value       0.9 0.7 0.9 0.2 
   2021 11.5 1.02 10.3 15.5b 
   2022 9.8 0.52 9.30 9.25a 

p value       0.19 0.07 0.3 0.03 

Control 0   11.2 0.90 10.3 14.5 

Split N Rate 157   1.0 0.60 9.5 11.5 

Pre-emergence 157   10.9 0.81 10.0 11.5 

p value       0.7 0.7 0.8 0.4 

 

Using phospholipid fatty acid analysis (PLFA), the post-V6 was analyzed for 

microbial biomass and microbial community structure (Table 2.8). Fungi in this analysis 

included arbuscular mycorrhizal fungi (AMF) and saprophytes, while bacteria included 

Gram negative unicellular bacteria, Gram positive unicellular bacteria, and 

actinomycetes. Analysis of the interaction between the years and the treatments was 

nonsignificant. However, numerically it is clear that 2021 had a higher total microbial 

biomass than 2022. Analysis of years showed that there was a higher Fungi: Bacteria 

ratio in 2021 compared to 2022. This supports the low N2O-N and CO2-C emissions 

found in 2021. Fungi have a higher C:N ratio, increasing the amount of carbon that must 

be collected and stored in the soil to allow fungi to grow and reproduce. Studies utilizing 

PLFA and RNA genome sequencing support this by indicating that fungi are linked to 

higher carbon storage potential (Malik et al., 2016). Analysis of treatments also did not 

indicate that the split application changed the microbial community. This indicated that 
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nitrogen application did not play as significant a role as the environmental conditions 

within the year.  

Findings Relative to IPCC N2O default value of 1% of applied N 

Agriculture is the main source of anthropogenic N2O loss to the atmosphere. It is 

estimated that agriculture is responsible for more than 60% of global N2O emissions 

(Myhre et al., 2013, Syakila et al., 2011, Adair et al., 2019). Analysis of the interaction 

between years and treatments indicated that 157 kg N/ha pre-emergence had a higher 

percent of N lost as N2O before V6 in 2022; however, after V6 in the same year, the 78.5 

kg N/ha split application appeared to lose a higher percent of N as N2O instead. Over the 

total growing season, there was no difference between the treatments. In 2021 there was 

no difference between the treatments before or after corn’s V6 growth stage. Analysis of 

years indicated that overall, 2022 had the highest percent N lost as N2O. Analysis of 

treatments indicated that pre-emergence 157 kg N/ha had a higher percentage of N lost as 

N2O before the V6 growth stage. After V6, the split application produced the highest 

loss, but the total over the growing season demonstrated no significant difference.  

While agriculture is a main source of N2O, its loss from applied synthetic 

fertilizer has demonstrated to be low. Analysis of treatments shows that 75% percent of 

treatments lost less than 1% of N from fertilizer as N2O (Table 2.9). This is below the 

IPCC Tier 1 emission factor method used. Across years, the split and pre-emergence 

fertilizer application treatments emitted < 1% of the fertilizer derived N (Fertilizer – 0 N) 

(DeKlein et al., 2006). For the split N rate, the % decrease was 46% [=100*(1- 

0.58/1.57)] and for the pre-emergence N the decrease was 68 % [=100*(1-0.51/1.57)].  
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These results agree with past studies and suggest a re-evaluation of lifecycle 

analysis policies aimed at agriculture depending on climatic variables such as the year’s 

soil moisture content instead of a single static default value. Dry years appear to lose less 

N as N2O compared to wet years (Thesis et al., 2019, Halvorson & Del Grosso 2013; 

Maharjan et al., 2013).  

Table 2.9. The % of N applied as urea fertilizer lost as N2O-N during the 2021 and 2022 

growing season with first and second application compared separately and both years 

analyzed together. The 0 kg N/ha control is subtracted out to determine the effect of the 

fertilizer. Means with different letters are different at the 5% level. In 2021, the sampling 

periods were pre- split, before V6, from 17 May to 27 June and post-split, after V6, from 

28 June to 25 October. In 2022, the sampling periods were from 25 May to 21 June and 

from 22 June to 11 October. 

 

N 

treatment 
Year 

Pre-

Split 
N rate kg N/ha Post-Split 

Total N 

applied 
Total 

kg N/ha  % N kg N/ha % N kg N/ha % N 

78.5 2021 0.005a 78.5 0.06a 157 0.09a 

157 2021 0.004a 0 0.027a 157 0.06a 

78.5 2022 0.15a 78.5 1.04b 157 1.21b 

157 2022 0.43b 0 0.36a 157 0.81b 

p value   0.07   0.04   0.3 
 2021 0.005a  0.04a  0.07a 
 2022 0.3b  0.70b  1.0b 

p value   < 0.01   < 0.01   < 0.01 

78.5  0.08a 78.5 0.55b 157 0.65a 

157  0.22a 0 0.19a 157 0.43a 

p value   0.07   0.03   0.22 

 

Carbon equivalents  

In carbon equivalent calculations, all GHG emissions are converted to an 

equivalent amount of CO2-C using appropriate conversion factors. CO2, because of its 

molecular geometry, absorbs a wide range of wavelengths including infrared 

wavelengths. This is approximately half of the absorbed energy reradiated toward earth. 
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As more CO2 is added to the atmosphere the ability to trap energy (heat) increases. This 

heats up the earth like a blanket, or the inside of a car left in the sun (Stips et al., 2016). 

Different gases have various abilities to trap energy. For example, 1 kg N2O traps as 

much heat as 298 kg of CO2 (DeKlein et al., 2006). Therefore, 1 kg of N2O is equivalent 

to 298 kg of CO2 (DeKlein et al., 2006). This produced the carbon-equivalent (CO2e) 

results before the split application and post-split application, as well as total CO2e over 

the 2021 and 2022 growing seasons (Table 2.6).  

Analysis of the years and treatments interaction shows that  the 157 kg N/ha pre-

emergence had a higher CO2e compared to the 78.5 kg N/ha split application. This 

appears to be true especially in the year with higher soil moisture, 2022. However, in 

2021 all values were similar. Analysis of the years indicates that 2022 had the higher 

CO2e over the entire growing season compared to 2021. In 2021 and 2022, the 0 kg N/ha 

treatment had the lowest CO2e and the 157 kg N/ha pre-emergence treatment had the 

highest CO2e. These findings indicate that while a split N rate may not reduce N2O-N 

emissions, it may reduce the CO2e. Therefore, because CO2e was reduced by the split N 

application, it should  be considered a climate smart practice. However, because prior 

research did not determine CO2e, additional research is needed. It is important to consider 

that N2O and CO2 are unavoidable products of the important chemical and biological 

processes associated with producing food. Given our current technologies, we do not 

have the capacity to eliminate these losses. Therefore, a realistic and prudent goal is 

reduction, not elimination. For example, during the production of corn, a portion of the 

fixed soil C is respired to produce CO2, and a portion of the nitrogen fertilizer applied is 

lost to N2O through nitrification or denitrification (Thies et al., 2019; Clay et al., 2012).  
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In many situations, our ability to accurately assess the impact of 4R nutrient 

strategies such as urea fertilizer timing has been limited by technology. While the 

concepts of the 4R model are extremely important, it is necessary to improve our 

understanding of the theory and application (Clay et al., 1990; Thies et al., 2020, Thies et. 

al., 2019; Dunsenbury et al., 2008; Reicks et al., 2021, Bouwman et al., 2002). For 

example, research shows that GHG emissions are lost from soils by diurnal cycles 

influenced by soil temperature and moisture (Thies et al., 2019; Thies et al., 2020; 

Weerden et al., 2013). Past recommendations suggested that the diurnal cycle could be 

minimized by sampling in mid-morning (Parkin & Venterea, 2010).  However, Theis et 

al. (2019) showed that this sampling protocol may or may not accurately estimate 

emissions.     

This technology has been used by many studies for example, in samples collected 

every two weeks from 7 May 2018 to 3 July 2018 at 12:48 PM the average N2O-N 

emissions were 2.18 ± 3.54 g N2O-N /(ha×4 h). When samples were collected every 4 

hours over the same period, the average emissions were 1.48 ± 0.22 g N2O-N /(ha×4 h). It 

is important to note that the two sampling protocols had different means and confidence 

intervals. Improvements in technology allow for continuous measurement throughout the 

growing season, as well as the simultaneous measurement of soil physical properties, 

providing a greater understanding of the system to reduce environmental impact.   

CONCLUSION 

Climate smart agriculture focuses on site specific approaches to achieving its three pillars 

of increasing soil productivity and resilience while reducing GHG emissions. The IPCC 

has predicted that increasing the earth’s warming to 2 ̊C could reduce yields globally by 
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15% (Masson-Delmotte et al., 2018; Campbell, 2017) (EPA, 2023). To reduce this risk, 

GHG emissions need to be reduced.  One approach to help achieve GHG emission 

reduction is to adopt climate smart practices. However, techniques used in the past have 

relied on methods with very high measurement variability. To resolve these fundamental 

issues and to assess the potential more accurately for the reduction of GHG emissions 

using 4R nutrient management, additional research was conducted. The results showed 

that N2O was not impacted by the split application and may be increased by the split. 

However, the split application reduced CO2 and CO2e emissions in wet years. Therefore, 

the 4R nutrient framework has demonstrated that it can be used as a climate smart 

practice to reduce GHG emissions and can act as one of many the site-specific 

approaches to combat the negative effects of climate change (Galloway et al., 2003; 

Wolfe & Patz, 2002). Similar research should be conducted on other 4R nutrient 

management strategies.  
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FINAL STATMENT 

Agriculture is a large producer of GHG emissions such as N2O and CO2 which 

can result in persistent environmental effects (Galloway et al., 2003; Cavigelli et al., 

2012). These GHG emissions absorb energy in the form of photons in the earth’s 

atmosphere, warming the earth and increasing the effects of global warming, which 

include loss of biodiversity, decreased ecosystem resiliency and a reduced ability to grow 

food (De Klein et al., 2006; Weil & Brady, 2017). Climate Smart Practices focus on 

strategies to mitigate these effects. These practices work within management frameworks 

to focus on an assortment of site-specific and locally based strategies to increase soil and 

crop productivity, increase resiliency in the agriculture ecosystem, and to mitigate the 

effects of climate change by reducing GHG emissions. Currently, technology is unable to 

entirely prevent the release of these GHG emissions from the soil because they are 

emitted through necessary soil processes such as nitrification, denitrification, and 

microbial respiration. Therefore, the goal is to reduce loss of GHG emissions to the 

atmosphere.  

This can be achieved using Climate Smart Practices effectively implemented 

through DSSs that are combined with AI and ML algorithms. DSSs as a PA technology 

are effective tools that can find patterns in large datasets and synthesize the information 

into a sustainable and profitable recommendation. The 4R management model is a 

framework that can be utilized by DSSs. This framework includes climate smart 

strategies focusing on applying fertilizer at the right time, right rate, right place, and right 

source. New technologies are changing agriculture practices and research broadly. An 

example of this change is in GHG measurement. Initially, GHG emission measurement 
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methods that have been used to make important policy decisions for agriculture were 

measured with much variability. The emissions were measured once daily or weekly 

through static chambers using approximately five syringes to collect the gas from the 

headspace over equally spaced intervals of time (for example, collected at 0, 0.5, 1, and 

1.5 hours) for each chamber. This data would be averaged over the entire growing season 

(Venterea et al., 2015; Dusenbury et al., 2008; Thomas et al., 2017). However, by using 

new technology such as near-continuous measurement systems, an example being LI-

COR LI-8100-104 long-term opaque chambers (8100-104 LI-COR, Lincoln, NE), 

researchers can more accurately measure and determine the impact of the 4R model on 

GHG emissions (Thies et al., 2019; Weerden et al., 2013; Thies et al., 2020; Blackmer et 

al., 1982). This has increased our understanding of how various aspects of the 4R 

framework may impact GHG emissions. Technology is changing rapidly and providing 

new information to agriculture researchers and managers. Therefore, management 

strategies in agriculture must also change. This thesis has discussed the importance of, 

and barriers to, widespread use of technology such as DSSs and machine learning that 

can help evolve agriculture management strategies and achieve climate smart goals. 

Finally, the second chapter of this thesis evaluated fundamental concepts in management 

practices and, by utilizing new technology in a two-year study, has determined that split 

N timing, as described within the 4R framework can be considered a climate smart 

practice due to the reduction of GHG emissions such as CO2-C and CO2e. Future research 

may compare nitrogen stabilizers such as urease inhibitors to non-stabilized fertilizer. 

These nitrogen stabilizers may change peak emission time which may produce inaccurate 

results when comparing GHG emission peaks for nitrogen stabilizers to the non-



63 
 

stabilized fertilizer. For example, when a fertilizer amendment is applied such as NBPT 

the peak emission is slightly later than its untreated urea counterpart (Clay et. al., 1990). 

If the GHG measurement is taken once a day or once weekly, the measurement could 

pick up the peak of NBPT but miss the much larger peak from untreated urea that 

occurred more quickly after application. These results would conclude that NBPT 

increases GHG emissions compared to untreated urea. Therefore, our understanding of 

the 4R model in terms of nitrogen stabilizers as well as other aspects of the framework 

like fertilizer timing, requires new technology and data collection techniques such as the 

near continuous measurement technology. 

Additionally, this project will continue to move forward with evaluating 

components of the 4R management strategy, examining ‘the right source’ using nitrogen 

stabilizers to determine their potential as Climate Smart Practices. The nitrogen 

stabilizers that will be included will be urease inhibitor N-butyl-thiophosphoric-triamide 

(NBPT) treated urea also known as Factor or Agrotain commercially, and slow-release 

polymer-coated urea fertilizers known as Environmentally Smart Nitrogen (ESN). This 

will focus on measuring the impact of NBPT- treated urea and polymer-coated urea 

(ESN) on GHG emissions utilizing the long-term opaque chambers. Additionally, 

analysis of crop yield, tissue RNA expression, and the soil microbial community 

including PLFA and DNA analysis will also be performed.  

Previous studies have indicated that NBPT treated urea can reduce Ammonia 

emissions 100 times more than its untreated counterpart (Clay et al., 1990). This is 

because NBPT delays the urease enzyme from breaking down the urea molecule. 

Originally, the urea molecule would be drawn into the urease enzyme’s active site by the 
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two Ni2+ ions inside the site (Franzen, 2017). However, with NBPT treated urea, the 

NBPT molecule will act as a competitive inhibitor to urea for approximately 10 days, 

making it more difficult for urea to be broken down (Franzen, 2017). This will more 

accurately synchronize the timing of nitrogen release to nitrogen demand, making NH3 

less likely to be lost through volatilization when applied to the soil surface. Many studies 

have demonstrated the effectiveness of NBPT. A meta-analysis on use of NBPT reviewed 

literature from 1990 to 2014. It used regression analysis to determine that NBPT is 

capable of reducing NH3 volatilization loss by 52% across all soil texture classes, pH 

classes, soil organic carbon (SOC) classes and nitrogen rates. NBPT was also observed to 

delay 50% of nitrogen loss by 8.3 days compared to the untreated urea, as well as 

produce a 5.3% crop yield increase (Silva et al., 2017). Future work will create a cost 

benefit analysis of using NBPT compared to untreated urea. This will examine how corn 

yield is affected from using a split application of NBPT compared to a single pre-

emergence application. Additionally, future work will examine how NBPT may affect the 

plant at the transcription level by examining RNA expression from tissue samples. The 

impact of using NBPT compared to an untreated urea on the soil microbial community 

will also be evaluated using PLFA and DNA sequencing of the soil to gain greater 

understanding of how soil biology can be impacted by NBPT.    

Polymer-coated urea (ESN) slows the release of nitrogen by waiting for an 

increase in soil moisture and soil temperature (Franzen, 2017). ESN slows the release of 

urea by first allowing soil moisture to move into the polymer membrane, then the urea 

granule forms a nitrogen solution with the soil water which, is released from the 

membrane as the soil temperature increases. The N is released when physiological 
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development is most likely to occur, increasing the likelihood that the N will be taken up 

and used by the plant.  

When considering GHG emissions and climate smart practices of this nitrogen 

stabilizer, Parkin and Hatfield et al. (2013) reported that ESN was less effective at 

reducing N2O emissions in a dry, rain-fed region when compared to conventional 

fertilizers UAN, and UAN treated with Agrotain. However, Halvorson and Del Grosso et 

al. (2013) reported that ESN applied to irrigated fields was effective at reducing N2O by 

34% to 57% compared to untreated urea. This indicates that ESN is more effective in an 

environment with higher soil moisture and is more likely to reduce N2O loss due to 

denitrification than from nitrification. Additionally, future work will examine how ESN 

may affect the plant at the transcription level by examining RNA expression from tissue 

samples. The impact of using ESN compared to an untreated urea on the soil microbial 

community will also be evaluated using PLFA and DNA sequencing of the soil to gain 

greater understanding of how soil biology can be impacted by ESN.    

Overall, future works will focus on exploring the network of soil biology within 

the agroecosystem, nutrient-use efficiency, and yield to understand how the 4R model 

affects all aspects of the agroecosystem, and the potential for each component to be a 

climate smart practice.   
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APPENDIX 

Introduction to Phospholipid Fatty Acid Analysis  

The procedure was completed in 4 steps using the Buyer & Sasser extraction method 

(Buyer & Sasser, 2016). These steps included: extraction and separation of the lipids 

from the rest of the organic material, isolation of the phospholipids through lipid 

chromatography, and finally the production of Fatty Acid Methyl Esters (FrAMEs) 

through the process of transesterification. These FrAMEs are analyzed for peaks using 

flame ionization chromatography (FID-GC) to determine microbial community. These 

peaks were interpreted by the MIDI Sherlock™ Chromatographic Analysis System (CAS) 

Software. The microbial categories identified are based on the structural components of 

the fatty acid chain through nomenclature as follows: A:BωC. “A” indicates the number 

of carbon atoms in the fatty acid position, “B” indicates the number of double bonds, and 

“C” indicates the carbon atom from the aliphatic end before the double bond. Prefixes 

and suffixes also indicated cis or trans configuration as well as iso and anteiso. 

Additionally, the point of branching and point of hydroxy groups were also considered as 

the software identified the microbial community within each sample.   

 

Preparation Details  

Once soil was collected it was immediately placed on dry ice and stored in a -80 ̊C 

freezer. The sample was later freeze dried through vacuum pressure and centrifugation 

using the Thermo Scientific Savant SC250EXP SpeedVac Concentrator. This drying 

process occurred for approximately 5 hours. The method of extraction used in this 

procedure is the Buyer & Sasser extraction method (Buyer & Sasser, 2016) which uses 
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the Bligh and Dyer method to optimize lipid extraction. Additionally, an internal standard 

1,2-dinonadecanoyl-sn-glycero-3-phosphochloline (19:0 PC) was added at the beginning 

of extraction to assess overall extraction method. Lipid chromatography was performed 

using a silica gel plate to produce the separation of phospholipids from neutral lipids and 

glycolipids (Quideau et al., 2016; Zelles, 1999).  

 

List of Reagents and Equipment Used in Procedure 

1. Screw caps and glass test tubes 16x100  

2. Disposable glass Pasture Pipettes 

3. 50 mM PO4 Buffer pH 7.4 (8.7g K2HPO4 per liter of deionized water) 

4. Bligh-Dyer Extractant (100ml of 50 mM PO4 Buffer, 500ml methanol, 125ml 

chloroform)  

5. Internal standard 1,2-dinonadecanoyl-sn-glycero-3-phosphochloline (19:0 

PC) purchased from Avanti Polar Lipids Catalog #850367P as a white 

powder.  

6. Thermo Scientific Savant SC250EXP SpeedVac Concentrator 

7. Silica gel SPE 96-well plate from Phenomenex part #8E-S012-DGB 

8. Microplate E & K Scientific Part # EK-99238 

9. Transesterification reagent (0.561g KOH, 75ml methanol, 25ml toluene) 

10. Thomas Scientific 2ml autosampler GC vial Part # 2702-A01 

11. Agilent 250 ul limited volume insert Part #5183-2085 

12. Thomas scientific screw caps for GC vials with PTFE/Silicone/PTFE Septa 

part #2702-A68 
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13. GC-2010 Plus High-end GC 

14. MIDI Sherlock™ Chromatographic Analysis System (CAS) Software  

The Procedure was Completed as Follows: 

Extraction and Separation  

1. 1.5g of freeze-dried soil, 4 ml of Bligh-Dyer extractant, 2 uL of internal standard 

19:0 PC was added to a sterile glass 16x100 test tube. 

2. The sample was capped and vortexed. 

3. The sample was sonicated for 10 minutes and vortexed with this step being 

immediately repeated.  

4. The sample was centrifuged for 11 minutes at 3700 rpm. 

5. The supernatant was transferred to a new sterile glass tube. 

6. 1 ml chloroform was added to the glass tube containing the sample.  

7. 1 ml of deionized water was added to the glass tube containing the sample.  

8. The sample was capped and vortexed. 

9. The sample was centrifuged for 15 minutes at 3700 rpm. 

10. The bottom lipid layer was transferred to a new sterile glass tube. 

11. The sample was freeze dried using SpeedVac Concentrator for 1 hour.  

Lipid Chromatography  

1. The freeze-dried sample was dissolved in 1 ml of chloroform.  

2. The sample was capped and vortexed.  

3. 1 ml of methanol was added to the wells of a silica gel plate. The methanol was 

allowed to gravity drain into the waste container underneath the wells for 1 

minute and then was drained through vacuum pressure. 
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4. This step with methanol was repeated twice more. 

5. This step with 1 ml of chloroform was preformed three times.  

6. The sample extract was applied to the wells, the liquid was gravity drained for 1 

minute and then was vacuum drained into the waste container.  

7. 1 ml of chloroform was added to the wells containing the sample, the liquid was 

gravity drained for 1 minute and then was vacuum drained into the waste 

container.  

8.  1 ml of acetone was added to the wells containing the sample, the liquid was 

gravity drained for 1 minute and then was vacuum drained into the waste 

container.  

9. The waste container underneath the wells was replaced by microplate to collect 

the phospholipid extract from each sample.  

10. 0.5 ml of extract containing a ratio of 5 ml methanol :5 ml chloroform: 1 ml 

deionized water was applied to the wells containing the sample, the liquid was 

gravity drained for 1 minute and then was vacuum drained into the small sterile 

glass tubes.  

11. The collected liquid containing the extracted phospholipids in the small tubes was 

decanted into large sterile tubes. 

12. The sample was freeze dried using SpeedVac Concentrator for 1 hour.  

Transesterification  

1. The freeze-dried sample was dissolved in 0.2 ml of transesterification reagent.   

2. The sample was capped and vortexed.  

3. The sample was placed in a 37 ̊C oven for 15 minutes. 
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4. 0.4 ml of 0.075M acetic acid was added to the sample.  

5.  0.4 ml of chloroform was added to the sample. 

6. The sample was capped and vortexed.  

7. The sample was placed at room temperature and the layers were allowed to 

separate for 15 minutes.  

8. The bottom fatty acid methyl ester layer was transferred to a sterile glass 2ml GC 

vial.  

9. The sample within the vial was freeze dried using SpeedVac Concentrator for 20 

minutes.  

Gas Chromatography Analysis  

1. The freeze-dried sample was dissolved in 75ul of hexane using a glass syringe.  

2. The dissolved sample was transferred to a glass limited volume insert that was 

then inserted back into the GC vial. 

3. The sample GC vials were placed in order within the autosampler attached to the 

gas chromatography instrument.  

4. The peaks were analyzed using flame ionization gas chromatography and using 

MIDI Sherlock™ Chromatographic Analysis System (CAS).     
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