South Dakota Feedlot Management

D. C. Taylor

J. J. Wagner

Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_bulletins

Recommended Citation
http://openprairie.sdstate.edu/agexperimentsta_bulletins/714

This Bulletin is brought to you for free and open access by the South Dakota State University Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.
SOUTH DAKOTA
FEEDLOT
MANAGEMENT

Agricultural Experiment Station
South Dakota State University
U.S. Department of Agriculture
Contents

Summary and conclusions ... 3
Summary ... 3
Conclusions .. 6

South Dakota cattle feeding in perspective ... 7
Mail survey data collection and analysis ... 10
Mail survey ... 10
Data analysis ... 11
Nature of feedlots .. 12
Location and size of feedlots ... 12
Feedlot utilization in 1988 ... 13
Feedlot physical features ... 14
Feedlot management ... 15

Feeder cattle placement in 1988 .. 18
Age, gender, breed, and weight .. 18
Place of origin .. 20
Timing of placement .. 20
Means of procuring non-home-raised calves 21
Ownership of cattle in feedlot .. 22

Typical feeding practices .. 22
Days cattle on feed ... 22
Weight targets .. 23
Feed rations ... 25

Marketing practices in 1988 ... 29
Means of selling slaughter cattle ... 29
Market destination of slaughter cattle ... 31
Sources of market information ... 31

Other feedlot management practices .. 32

References .. 35
Annex A. cattle feeder survey .. 36
Annex B. procedures for computing percentages 40
To The Reader ...

The authors are deeply grateful to the South Dakota cattle feedlot managers who provided the information on which this bulletin is based.

Responses to the questionnaire were unusually high for a mail survey. Those who responded showed remarkable care and competence in answering the questions. Their assembled answers enhance the value of this report. We salute South Dakota's feedlot managers for their concern for the state's leading industry.

The authors also extend deep appreciation to Dr. Robbi Pritchard, associate professor of animal science, and Dr. Gene Murra, professor of agricultural economics, who shared many deep and valuable insights at the research design stage of this study; Rodney Kappes, research assistant in agricultural economics, who planned and carried out most of the processing and analysis of data; Dr. Dillon Fuez, assistant professor of agricultural economics, and Dr. Murra for their thoughtful suggestions to improve earlier versions of the manuscript; and Verna Clark for her patience and competence in preparing the tables for the report.

Donald C. Taylor and
John J. Wagner
May 1991
Tables
1. Feedlot cattle data, South Dakota and selected other states, selected 2-year periods between 1969-70 and 1988-89 .. 8
2. 1989 cattle feedlot survey respondents vs. 1982 cattle feeders in South Dakota, by size-of-feedlot .. 11
3. South Dakota cattle feedlot physical features .. 14
4. Feedlot manager, highest level of schooling attained, by area in South Dakota .. 14
5. Type of feedlot organization, by area in South Dakota .. 15
6. Sources of operating and long-term credit used in feedlot .. 16
7. Gross farm sales from total farm operation, by area in South Dakota .. 16
8. Gender of cattle placed on feed .. 18
9. Weight of cattle placed on feed .. 19
10. Days steer and heifer calves are on feed ... 23
11. Days yearling steers and heifers are on feed ... 23
12. Targeted average daily gain and final finishing weights, by type of cattle .. 24
13. Targeted final finishing weights, by type of cattle .. 24
14. Use of feed additives and growth promotants ... 28
15. Sources of price and market information on cattle, by quarter and size-of-feedlot .. 32
16. Management uses of microcomputers .. 33

Figures
1. Boundaries for and numbers of reporting feedlots, cattle feeding study, by region, South Dakota .. 3
3. Rate of feedlot utilization, by quarter and size-of-feedlot .. 13
4. Feedlot physical features, by size-of-feedlot .. 14
5. Type of feedlot organization, by size-of-feedlot .. 15
6. Feedlot hired labor use, by size-of-feedlot .. 17
7. Gross farm sales from slaughter cattle, by size-of-feedlot .. 17
8. Age of cattle placed on feed, by size-of-feedlot .. 18
9. Breed of cattle placed on feed, by size-of-feedlot .. 19
10. Weight of cattle placed on feed, by size-of-feedlot .. 20
11. Place of origin of cattle placed on feed, by size-of-feedlot .. 20
12. Quarter of cattle placement, by size-of-feedlot .. 21
13. Ownership of cattle in the feedlot, by size-of-feedlot .. 22
14. Average days on feed, by cattle type and size-of-feedlot .. 23
15. Targeted average daily gain for finishing cattle, by size-of-feedlot .. 24
16. Importance of grain in cattle rations, by size-of-feedlot .. 25
17. Roughages fed to cattle, by size-of-feedlot .. 26
18. Importance of home-raised feed fed to cattle, by size-of-feedlot .. 26
19. High moisture vs. dry grain fed to cattle, by size-of-feedlot .. 27
20. Form of dry grain fed to cattle, by size-of-feedlot .. 27
21. Form of hay fed to cattle, by size-of-feedlot .. 27
22. Form of protein supplement fed to cattle, by size-of-feedlot .. 28
23. Means of selling fed cattle, by size-of-feedlot .. 29
24. Use of feedlot scales to determine sale weight, by size-of-feedlot .. 30
25. Tools for pricing fed cattle, by size-of-feedlot .. 30
26. State in which fed cattle were sold, by size-of-feedlot .. 31
27. Sources of price and market information on cattle, by size-of-feedlot .. 32
28. Selected management practices used by managers, by size-of-feedlot .. 32
29. Use of microcomputers as a management tool, by size-of-feedlot .. 34
30. Use of outside consultants, by size-of-feedlots .. 34

Levels of significance for figures 3-30 are indicated just below the graphs, with coding as follows: * = 1% level of significance
** = 5% level of significance
ns = not significant at the 5% level
Summary and conclusions

South Dakota ranks about 10th in the U.S. in number of cattle and calves on feed. Compared to other major cattle feeding states, most of our feedlots are relatively small.

However, in the past 30 years, the configuration of South Dakota's cattle feedlot production has changed considerably. The share of production from over-1,000 head capacity lots increased from 16% in 1969-1970 to 64% in 1988-89. This percentage point increase is greater than in any of the nation's 12 other major cattle feeding states that collectively account for 85% of U.S. total cattle on feed.

Summary

A March 1989 survey shows the nature of South Dakota's cattle feeding industry and the management practices being followed by its practitioners. The most important findings from the 145 South Dakota feedlot managers that responded to the survey follow.

1. The surveyed feedlots range in size from 20- to 12,000-head design capacity and average 900 head each. This is 12 times larger than the state average of about 75 head per feedlot. Thus, in interpreting the findings, please bear in mind that the data on which the report is based are from generally above-average size feedlots.

2. Well over half of the reporting feedlots (83 of the 145) are in the southeastern part of the state (Fig 1). Between 16 and 22 are in each of the northeast, south-central, and north-central areas, and only 4 are in the west.

3. The average feedlot utilization for the four quarters in 1988 is 80% of design capacity. The highest quarter is January-March (90%); the lowest quarter is July-September (67%). Feedlot utilization during 1988 for the 145 feedlots collectively did not differ from that during the prior 5 years.

4. The most common feedlot physical feature—in addition to fences

Fig 1. Boundaries for and numbers of reporting feedlots, cattle feeding study, by region, South Dakota
and feedbunks—is a tree windbreak (80% of feedlots), followed by
mounds (57%), fence windbreaks (51%), and partial paving with con­
crete (47%).

5. Relative to other farms in the
state, the proportions of corporate
(18%) and partnership (15%) cattle
feedlots are above average. The pro­
portion of single-family proprietor­
ship feedlots (67%) is below average.

6. About 55% of the feedlots use no
hired labor; only 3% use no family
labor.

7. Nearly 31% of the reporting feed­
lot managers have typically received
80% or more of their gross farm
income from the sale of slaughter
cattle over the past 5 years.
Between 20% and 22% of the feed­
lots fit into one of three other cate­
gories: slaughter cattle providing
20-39%, 40-59%, or 60-79% of
gross farm income.

8. Of the surveyed cattle placed on
feed in 1988, (a) 51% were year­
lings, 42% calves, and 7% cattle 2
yr or older; (b) 56% were steers,
39% heifers, 4% cows, and 1% bulls;
(c) 63% were exotic European
beef breeds/crosses, 30% English
beef breeds, 4% beef-dairy crosses,
and 3% dairy cattle; and (d) 43% of
the steers were 700 lb or more in
weight and 45% of the heifers were
in the 500-699 lb weight range.

9. Of the surveyed cattle placed on
feed in 1988, 62% were purchased
from South Dakota sources, 24% were purchased from outside the
state, and 14% were home-raised.
The states from which feeder cattle
are most commonly purchased are
North Dakota and Montana.

10. The quarter during which feed­
ers place the most cattle on feed is
October-December; the least cattle
go on feed during July-September.

11. Most feeder cattle in 1988 were
obtained through sale barns (57% of
the surveyed cattle), followed by
order buyers (20%), custom feeding
(17%), and private treaty from cow­
calf producers (6%). About 12% of
reporting feedlots used the futures
market to hedge feeder cattle pur­
chases.

12. Nearly 76% of the cattle in this
survey were owned by the feedlot
where they were being fed. The
remaining cattle were owned as fol­
lows: 16% by outside investors, 5%
by the rancher that raised the feed­
ers, and 3% by the feedlot with a
partner. Retained ownership of
feeder cattle by cow-calf producers
appears to be rather uncommon in
South Dakota.

13. The average targeted finishing
weights for steers and heifers in the
reporting feedlots are 1,230 and
1,105 lb, respectively. These finishing
weights are considerably greater
than those reported in other states.

14. Steer calves are typically on feed
for an average of 208 days and year­
ling steers for 129 days. Steer
calves are kept on feed for an aver­
ge of 5 days longer than heifer
calves, and yearling steers for 10
days longer than yearling heifers.

15. The average targeted daily rates
of gain for growing and finishing
steers are 2.36 and 3.05 lb, respec­
tively. For heifers, the rates are
about 0.2 lb less.

16. Feedlot managers report an
average of 39% of grain (relative to
total dry matter intake) in the diets
of cattle during the growing period.
In finishing period diets, the average
proportion of grain is 80%.

17. Of the total grains typically fed
to growing and finishing cattle, an
average 92% is corn, followed by 4%
barnley, 3% milo, 0.5% oats, and
0.3% wheat.

18. About 91% of feedlot managers
find hay, 85% corn silage, 40% hay­
lage, 17% pasture, 8% crop
residues, and 13% other roughage (oatlage and milo/sorghum/sudan silage).

19. The average proportions of cattle receiving feedstuffs typically home-raised are 99% corn silage, 97% haylage, 58% hay, 53% high moisture grain, and 43% dry grain.

20. About 90% of feedlots feed dry grain and 58% feed high moisture grain. Dry grain is fed cracked (59% of feedlots), ground (44%), whole kernel (36%), steam flaked (3%), and reconstituted (1.4%). About 67% of feedlots feed ground hay, 49% unprocessed, and 4% other (haylage, green chop). About 66% of feedlots feed protein supplements only in dry form, 18% only in liquid form, and 16% in both forms.

21. About 73% of feedlots report the continuous use of ionophores (e.g., Rumensin and Bovatec) that alter rumen fermentation processes; 59% report the continuous use of growth implants. Between 45% and 69% of feedlots use, at selected times only, antibiotics therapeutically, antibiotics sub-therapeutically, and/or coccidiosis control. At the other extreme, 47% of feedlots do not use antibiotics sub-therapeutically at all, 39% do not control coccidiosis, and 30% do not use antibiotics therapeutically.

22. About 55% of feedlots sell their slaughter cattle directly to the packer, 51% through public stockyards, and 23% through order buyers at the feedlot (some feedlots use more than one outlet). Seventeen percent of reporting feedlots indicate that they market cattle through using futures markets (hedging), 15% contract for future delivery (forward contracts), and 12% use the options market.

23. Of the total surveyed cattle slaughtered in 1988, 23% were sold in South Dakota, 38% in Nebraska, 25% in Minnesota, and 12% in Iowa.

24. The most common source of price and other market information on fed cattle is radio (85% of feedlots), followed by television (54%) and newspapers (30%).

25. About 64% of feedlot managers test feeds for nutrient composition at least once each year, 63% have grain storage facilities to take advantage of price drops in purchased feed grains, 57% use feed scales to monitor and control feeding rates, 35% keep feed records for separate pens of cattle, and 21% check cattle weights periodically to track performance.

26. Slightly over 21% of the reporting feedlots indicate use of a microcomputer as a management tool. The most common use of microcomputers is for determining feedlot production costs/profitability (81% of micro users), followed by projecting cattle performance (77%), formulating rations (65%), keeping feed records (65%), and keeping weight gain records (48%).

27. Factors determined through statistical analysis to have direct (i.e., the values for the factors are larger for larger feedlots) and statistically significant associations with size-of-feedlot include: Rate of feedlot use during each quarter of the year, except during the fourth quarter; Use of tree windbreaks, mounds, fence windbreaks, and partial paving of feedlots with concrete; Feedlot partnerships and family held corporations; Hired labor use; Percentage of gross farm income from sale of slaughter cattle; Exotic European beef breeds/crosses on feed; Heavier (700 lb or more) heifers placed on feed; Feeder cattle purchased from South Dakota sources and out-of-state (rather than home-raised); Third quarter placements of cattle on feed; Targeted daily rates of gain for fin-
ishing steers and heifers;
Feeding of high moisture grain,
cracked dry grain, ground hay,
and both dry and liquid protein
supplements;
Continuous use of ionophores and
growth implants and the use, at
selected times, of antibiotics ther­
apapeutically;
Slaughter cattle sold direct to the
packer;
Use of hedging and forward con­
tacting in marketing of slaughter
cattle;
Use of electronic communication for
acquiring price and other market
information;
Use of microcomputers as a man­
gagement tool; and
Testing of feeds for nutrient com­
position at least once each year,
using grain storage facilities to
take advantage of price drops in
purchased feed grains, using feed
scales to monitor and control
feeding rates, keeping feed
records for separate pens of cat­
tle, and hiring consultants to for­
mulate rations, market cattle,
and advise on legal/accounting
matters.

28. Factors with an inverse (i.e., the
values for the factors are smaller
for larger feedlots) and statistically
significant relationship with size-of­
feedlot are:
Single-family proprietor ownership
of feedlots;
Lighter steers (under 500 lb) placed
on feed;
Home-raised cattle on feed;
Ownership of the cattle by the feed­
lot in which they are fed;
Days yearling steers and yearling
heifers on feed;
Home-raised hay, dry grain, and
high moisture grain primarily
used;
Feeding of only dry (versus liquid)
protein supplement and unpro­
cessed hay;
Ionophores and antibiotics not used
therapeutically;
Selling of slaughter cattle in South
Dakota; and
Use of newspapers and radio to
acquire price and other market
information.

Conclusions

The results of this survey clearly
show that tremendous variation
exists in the nature of South Dakota
feedlots and in the management
practices followed by the state's cat­
tle feeders. Such diversity presents
critical challenges to educators,
research scientists, industry repre­
sentatives, and policy makers con­
nected with South Dakota's cattle
feeding industry.

Diversification may indeed be this
industry's strongest quality.
Diversification can allow farmers to
use their various sets of resources
efficiently. It can be an excellent
way for managers to reduce risks.

However, diversification can also
cause managers to spread them­
selves so thinly that efficiency suf­
fers in some of their enterprises.
Such may be the case with some
South Dakota cattle feeders.

Large feedlots use feed testing, feed
scales, feed records, and microcom­
puters to monitor feeding rates and
performance. They use growth pro­
motants and feed additives. Large
feedlots are more likely than small
feedlots to use electronic media to
obtain market information and to
use the futures market, options,
and forward contracting for price
protection. They are more likely to
hire outside professionals to help
develop their nutrition, health,
management, and marketing pro­
grams.

Not all these technologies will be
appropriate for all feedlots in South
Dakota. However, there appears to
be an opportunity for many feedlot
managers to improve their competi­
tive position by adapting for their
own use those practices that have
been shown to work for others.
South Dakota's livestock industry is a major contributor to the economy of the state and the livestock industry of the nation.¹ South Dakota usually ranks in the top 10 in the U.S. in beef cows that calve, cattle and calves on feed, all hogs and pigs, all sheep and lambs, and total red meat production (SD Ag Stat Serv 1990a). From 1985 through 1987, livestock accounted for 57% of South Dakota's total annual farm cash receipts of slightly over $3 billion. Cattle and calves account for 65% of the livestock total.

This report focuses on the cattle feeding component of South Dakota's livestock industry and is based on findings from a survey of cattle feedlot managers in South Dakota.

First, however, is a discussion of trends over time in the nation's cattle feeding industry and of how such trends in South Dakota compare to those of other important cattle feeding states.

South Dakota cattle feeding in perspective

Of the 11.5 million cattle on feed in the U.S. on January 1, 1988, 38% were in the Central Plains (Nebraska, Kansas, Colorado),² 24% in the Southern Plains (Texas, Oklahoma, New Mexico), and 13% in the Corn Belt (Iowa, Illinois, Indiana, Ohio, Missouri) (USDA 1989).

Of regions with fewer cattle, those most pertinent to South Dakota are the Lake States (Minnesota, Michigan, Wisconsin: 5.4%) and the Northern Plains (South Dakota and North Dakota: 3.0%).³

Over the past 30 years, major changes have taken place in the regional location of cattle feeding in the U.S. (Fig 2). The Corn Belt's regional share has dropped from 38% in 1960 to 13% in 1988.⁴ This decline was most dramatic in the early 1970s and occurred again, to a lesser extent, during the mid-1980s.

Counterbalancing the Corn Belt decline are increases since 1960 in the regional shares for the Central Plains (from 18% to 38%) and for the other two regions with more cattle than the Northern Plains are the Southwest (California and Arizona), 6.8% of cattle on feed on January 1, 1988, and the Mountain Region (Idaho, Wyoming, Montana, Utah, and Nevada), 3.9% of cattle on feed.

If the Corn Belt were defined to include eastern Nebraska, conclusions about the declining role over time of the Corn Belt as a producer of fed cattle would be quite different.

Sources: Dietrich et al. (1985) and USDA (1989).

¹For a brief overview of South Dakota's cattle industry, see Murra and Mends (1987).

²This regional breakdown is based on Dietrich et al (1985). In this and the other state listings, the states are listed in their order of importance for cattle feeding.
the Southern Plains (from 4.9% to 24%). Growth in the number of cattle on feed in both these regions has been rather steady over time, except that growth in the Southern Plains essentially stagnated in the 1980s.

The shift of fed cattle to the Plains states was encouraged by expanded irrigated grain supplies, the development of new milo varieties (Johnson et al 1989), increased EPA concerns in the Midwest, and increased financing opportunities in the Southwest. The growing dominance of the Central Plains during the past decade is shown by (1) increases between 1977-1978 and 1988-1989 of over 24% in the fed cattle marketed in Nebraska and Kansas and (2) Nebraska having come to surpass Texas as the top fed-cattle producer in the nation (Sands 1990; USDA 1989).7

Numbers of cattle on feed in the Lake States and Northern Plains have remained rather steady over the past 30 years.

6 In the other Central Plains state (Colorado), no more fed cattle were marketed in 1988-1989 than in 1977-1978.

7 Two studies of regional comparative advantage in cattle feeding in the U.S. were conducted in the early 1980s. Clay et al (1984) concluded from their study of interregional competition in the U.S. fed-cattle economy that the natural competitive advantages of the Southern and Central Plains states were stable and should continue for some time in the future. Trapp's (1984) analysis of the changing profitability and efficiency of High Plains and Corn Belt (western Iowa and eastern Nebraska) feedlots over the 1970s and early 1980s showed the Corn Belt to have regained much of the production cost competitiveness that it had lost. He indicated, however, that it was too early to conclude whether cattle feeding activities would begin to shift back to the Corn Belt.

<table>
<thead>
<tr>
<th>Years and feedlot cattle characteristic</th>
<th>Texas</th>
<th>Nebraska</th>
<th>Kansas</th>
<th>Colorado</th>
<th>Iowa</th>
<th>Minnesota</th>
<th>South Dakota</th>
<th>Thirteen states</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average for 1987-1988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle and calves on feed, January 1st ('000 head)</td>
<td>2,150</td>
<td>1,930</td>
<td>1,418</td>
<td>930</td>
<td>665</td>
<td>308</td>
<td>303</td>
<td>9,769</td>
</tr>
<tr>
<td>Number of feedlots</td>
<td>900</td>
<td>9,360</td>
<td>1,900</td>
<td>303</td>
<td>16,000</td>
<td>6,000</td>
<td>4,150</td>
<td>47,622</td>
</tr>
<tr>
<td>Cattle per feedlot on January 1st</td>
<td>2,359</td>
<td>208</td>
<td>746</td>
<td>3,069</td>
<td>42</td>
<td>51</td>
<td>73</td>
<td>205</td>
</tr>
<tr>
<td>Average for 1988-1989</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fed cattle marketed ('000 head)</td>
<td>4,800</td>
<td>5,095</td>
<td>4,200</td>
<td>2,350</td>
<td>1,810</td>
<td>528</td>
<td>575</td>
<td>23,207</td>
</tr>
<tr>
<td>Percent of cattle from feedlots under 1,000 head capacity</td>
<td>0.7</td>
<td>23.9</td>
<td>1.4</td>
<td>1.7</td>
<td>67.7</td>
<td>82.0</td>
<td>35.9</td>
<td>16.3</td>
</tr>
<tr>
<td>Percent of feedlots under 1,000 head capacity</td>
<td>79.8</td>
<td>94.6</td>
<td>85.3</td>
<td>44.3</td>
<td>98.5</td>
<td>99.0</td>
<td>98.6</td>
<td>96.5</td>
</tr>
<tr>
<td>Apparent feedlot cattle turnover6</td>
<td>2.3</td>
<td>2.6</td>
<td>3.0</td>
<td>2.5</td>
<td>2.7</td>
<td>1.7</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Average for 1977-1978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fed cattle marketed ('000 head)</td>
<td>4,571</td>
<td>3,978</td>
<td>3,579</td>
<td>2,373</td>
<td>3,052</td>
<td>757</td>
<td>564</td>
<td>23,433</td>
</tr>
<tr>
<td>Percent of cattle from feedlots under 1,000 head capacity</td>
<td>2.5</td>
<td>39.7</td>
<td>16.7</td>
<td>6.4</td>
<td>79.8</td>
<td>91.4</td>
<td>64.4</td>
<td>30.2</td>
</tr>
<tr>
<td>Percent of feedlots under 1,000 head capacity</td>
<td>86.3</td>
<td>97.4</td>
<td>97.1</td>
<td>55.1</td>
<td>99.1</td>
<td>99.5</td>
<td>99.3</td>
<td>97.1</td>
</tr>
<tr>
<td>Average for 1969-1970</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fed cattle marketed ('000 head)</td>
<td>2,922</td>
<td>3,459</td>
<td>1,782</td>
<td>1,833</td>
<td>4,567</td>
<td>836</td>
<td>552</td>
<td>21,305</td>
</tr>
<tr>
<td>Percent of cattle from feedlots under 1,000 head capacity</td>
<td>3.6</td>
<td>45.6</td>
<td>29.3</td>
<td>16.4</td>
<td>90.4</td>
<td>93.7</td>
<td>83.5</td>
<td>43.0</td>
</tr>
<tr>
<td>Percent of feedlots under 1,000 head capacity</td>
<td>81.1</td>
<td>97.4</td>
<td>98.6</td>
<td>86.8</td>
<td>99.6</td>
<td>99.8</td>
<td>99.4</td>
<td>98.5</td>
</tr>
<tr>
<td>Percent change in total fed cattle marketed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969-1970 to 1977-1978</td>
<td>+56.4</td>
<td>+15.0</td>
<td>+89.6</td>
<td>+29.5</td>
<td>-33.2</td>
<td>-9.4</td>
<td>+2.2</td>
<td>+10.0</td>
</tr>
<tr>
<td>1977-1978 to 1988-1989</td>
<td>+7.0</td>
<td>+28.1</td>
<td>+24.5</td>
<td>-1.0</td>
<td>-40.7</td>
<td>-30.3</td>
<td>+2.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>1969-1970 to 1988-1989</td>
<td>+67.4</td>
<td>+67.3</td>
<td>+135.7</td>
<td>+28.2</td>
<td>-60.4</td>
<td>-36.8</td>
<td>+4.2</td>
<td>+8.9</td>
</tr>
</tbody>
</table>

6 Data for the following 13 states covered by the Western Livestock Marketing Information Project are reported in this column: Arizona, California, Colorado, Idaho, Illinois, Iowa, Kansas, Minnesota, Nebraska, Oklahoma, South Dakota, Texas, and Washington. (Sands, 1990). These are generally the states within the U.S. with the most cattle on feed. However, the average cattle on feed on January 1, 1987 and 1988 ('000 head) in two of these states (Idaho 177 and Washington 168) is less than that in three other states (Indiana 218, Michigan 200, and Ohio 203).

7 The apparent feedlot cattle turn-over is calculated by dividing the "total fed cattle marketed" by the "cattle and calves on feed, January 1st."

Sources: Based on Sands (1990) for 1988 and 1989 data; USDA (1971, 1979, and 1989) for other years' data.
South Dakota generally ranks about 10th among the states in number of cattle and calves on feed (USDA 1989). Data for the five major cattle feeding states in 1988-1989, for Minnesota and South Dakota, and collectively for the 13 states covered by the Western Livestock Marketing Information Project (WLMIP) (Sands, 1990) are shown in Table 1.

Some relationships appear:

Nebraska, the nation's number-one producer, Kansas (third), and Colorado (fourth) comprise the Central Plains;

Texas, which during a few years in the 1970s was the nation's number-one producer (but now is in second position), is by far the dominant cattle feeding state in the Southern Plains, accounting for 83% of that region's cattle on feed;

Iowa, ranking fifth nationally and the main cattle feeding state in the Corn Belt, accounts for 42% of that region's cattle on feed;

Minnesota, the main cattle feeding state in the Lake States, accounts for 50% of that region's cattle on feed; and

South Dakota accounts for 87% of Northern Plains cattle on feed.

The "big five" states covered in Table 1 account for 75% of the cattle on feed in the WLMIP's 13 states. Those 13 states, in turn, account for 85% of all cattle on feed in the U.S.

Variations in feedlot size among the seven selected states are considerable. The average feedlot size of 3,069 head in Colorado is 15 times larger than the average of 205 head per feedlot for the 13 major cattle feeding states. At the other extreme, Iowa's 16,000 feedlots, which account for 34% of all feedlots in the 13 states, average only 42 head per feedlot—only 20% of the 13-state average.

South Dakota's average feedlot size of 73 head is below average for the 13 states, but it is larger than the average feedlot size in either Iowa or Minnesota.

In 1988-1989, 97% of the feedlots in the 13 states had a capacity of under 1,000 head each. The corresponding figures for Iowa, Minnesota, and South Dakota are 98-99%. Colorado is unique among the seven states in its position, with only 44% of its feedlots having under 1,000-head capacity.

In terms of cattle marketed, however, a very different picture emerges.

Feedlots under 1,000 head in capacity account for only 16% of the total fed cattle marketed in the 13 states. This proportion varies widely among the seven selected states, ranging from less than 2% in Texas, Kansas, and Colorado to more than 67% in Iowa and Minnesota. Again, South Dakota is close to mid-range, with 36% of its fed cattle marketed from feedlots under 1,000-head capacity.

The average "apparent feedlot cattle turnover" in the 13 states is 2.4 per year. Each of the "big five" states except Texas has an above-average turnover; Kansas is at the top with a turnover of 3.0 per year.

Feedlots in Minnesota and South Dakota, on the other hand, appear to turn over on the average less than two batches of cattle per year.
Compared to 1969-1970, the 13 states collectively now are marketing 9% more fed cattle. The greatest increase has taken place in Kansas, where the absolute and relative increases are over 2.4 million head and 136%, respectively. In three of the other "big five" states, substantially increased numbers of cattle are being marketed: Texas (67% increase), Nebraska (47%), and Colorado (28%). In Iowa, on the other hand, 60% fewer cattle were marketed in the late 1980s than in the late 1960s.

South Dakota again is middle-of-the-road, with fed cattle numbers increasing by a modest 4%.

The relative increases in fed cattle marketings in Texas, Kansas, and Colorado were greater during the 1970s than the 1980s, whereas the relative increase in Nebraska was greater during the 1980s. The losses in cattle numbers in Iowa and Minnesota were greater during the 1980s than the 1970s.

Since 1969-1970, the relative number of fed cattle marketed from feedlots under 1,000-head capacity for the 13 states has dropped by 27 percentage points. The corresponding decrease for South Dakota is 48 percentage points (84% to 36%).

This drop is associated with a 45% decrease in the number of feedlots in South Dakota with under 1,000-head capacity (mainly between 1975 and 1985), a 54% decrease in the number of fed cattle marketed from these smaller feedlots, essentially no change in the number of feedlots with over 1,000-head capacity, and a 2.9-fold increase in the number of fed cattle marketed from these larger feedlots (Sands, 1990).

Mail survey data collection and analysis

Mail survey

A mail survey of South Dakota cattle feedlots was conducted in March 1989 (see Annex A for a copy of the questionnaire). The purpose of the survey was to characterize the cattle feeding industry in South Dakota and the relationships between (1) size-of-feedlot and geographic location within the state and (2) management practices used by cattle feeders.

The questionnaire was sent to managers of 431 feedlots with a capacity of 499 head or less (a 12% sample) and all of the state's 150 feedlots with a capacity of 500 head or more. The reason for unequal sampling fractions was to help insure an adequate number of the relatively scarce larger feedlots to analyze in relation to relatively common smaller feedlots.

Taking into account feedlots no longer in operation, the overall survey response rate was 35.5%. This includes 145 and 30 usable questionnaires for cattle finishing and cattle backgrounding operations, respectively. For the cattle finishing feedlots, the response rate for under-500 head capacity feedlots was 17%. For over-500 head capacity feedlots, the response rate was 45%.

Data based on the 145 cattle finishing feedlots are presented in this report. Tables showing the findings for the 30 backgrounding feedlots are available from the authors (Economics Department, South Dakota State University, Box 504a, Brookings, S.D. 57007).
Seventy-two responses were received from cattle finishing feedlots with under 500-head capacity, and 68 responses were from feedlots with more than 500-head capacity (Table 2). The responses cover about 1.4% of the state's feedlots with under 500-head capacity and 32% of the state's feedlots with more than 500-head capacity.

Data analysis

Cattle finishing survey responses were first analyzed for all 145 feedlot respondents collectively and then by size-of-feedlot and area within the state.14 Size-of-feedlot was defined by "feedlot design capacity" (based on the linear feet of feedbunk space in the respective feedlots). The following feedlot size categories were established:

- "Small," under 200 head;
- "Intermediate I," 200-999 head;
- "Intermediate II," 1,000-2,499 head; and
- "Large," 2,500 head or more.

These size categories were selected to reflect potential differences in management requirements and to reflect expected possible differences in the respective feedlots' commitment to cattle feeding.

The survey questionnaires called for two types of responses: (1) "yes" or "no" to categorical questions (e.g., Question 2 in Annex A) and (2) percentages of animals/feeds fitting into alternative categories (e.g., Question 6 in Annex A).

The first type of responses involves discrete (0, 1) variables in which percentages of reporting feedlots responding "yes" to each question were determined. The statistical significance of differences in report-

Table 2. 1989 cattle feedlot survey respondents vs. 1982 cattle feeders in South Dakota, by size-of-feedlot.

<table>
<thead>
<tr>
<th>Size-of-feedlot category</th>
<th>1989 survey respondents</th>
<th>1987 South Dakota feedlots</th>
<th>Respondents as a percent of 1987 S.D. cattle feeders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent of</td>
<td>Percent of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of feedlots</td>
<td>No. of feedlots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with <500</td>
<td>with >500</td>
<td></td>
</tr>
<tr>
<td>Less than 10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10 - 19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20 - 40</td>
<td>7</td>
<td>9.7</td>
<td>5.0</td>
</tr>
<tr>
<td>50 - 999</td>
<td>12</td>
<td>16.7</td>
<td>8.6</td>
</tr>
<tr>
<td>100 - 1999</td>
<td>24</td>
<td>33.3</td>
<td>17.1</td>
</tr>
<tr>
<td>200 - 499</td>
<td>29</td>
<td>40.3</td>
<td>20.7</td>
</tr>
<tr>
<td>Subtotal <500</td>
<td>72^a</td>
<td>100.0</td>
<td>51.4</td>
</tr>
<tr>
<td>500 - 999</td>
<td>27</td>
<td>39.7</td>
<td>19.3</td>
</tr>
<tr>
<td>1,000 - 2,499</td>
<td>31</td>
<td>45.6</td>
<td>22.2</td>
</tr>
<tr>
<td>2,500 or more</td>
<td>10</td>
<td>14.7</td>
<td>7.1</td>
</tr>
<tr>
<td>Subtotal >500</td>
<td>68^b</td>
<td>100.0</td>
<td>48.6</td>
</tr>
<tr>
<td>Total</td>
<td>140^d</td>
<td>n/a</td>
<td>5,212^c</td>
</tr>
</tbody>
</table>

^a The survey response rate for feedlots with less than a 500 head capacity was 17% plus (72^a of the 431 feedlots sampled).

^b The survey response rate for feedlots with a capacity of 500 head or more was 45% plus (68^b of the 150 feedlots with 500 head or more in 1989).

^c The South Dakota Agricultural Statistics Service (SD Agric Stat Serv 1989) shows a total of 4,100 feedlots in South Dakota in 1988, with 56 of the feedlots having a reported capacity of 1,000 head or more. The 41 feeders with a capacity of 1,000 head or more that responded to the survey are 73% of the state total of 56.

^d Information on the feedlot capacity for 5 of the feedlot respondents was unclear; hence, data are shown in this table for only 140 of the 145 respondents.

^e Data from USDC (1989, 28).
Nature of feedlots

Location and size of feedlots

Respondents provided information on the design capacity of their feedlots by indicating (1) the total number of feet of feed bunks that they have at 100% feedlot utilization and (2) feet of feed bunks that are accessible from one side (vs. both) by cattle. The total feet of feed bunk space was then divided by an assumed requirement of 1.5 feet per animal (MPS 1987) to determine the number of head that could be accommodated in each feedlot, i.e., the design capacity of each feedlot. The 145 feedlots range in size from 20- to 12,000-head design capacity each and average 900 head each. This average is 12 times larger than the state average of about 75 head per feedlot. Consequently, in interpreting the results presented in this report, readers should bear in mind that the data in this survey are based on generally above-average size feedlots in South Dakota.

The numbers and sizes of reporting feedlots in the five areas in South Dakota are shown in Fig 1. Well over half of the reporting feedlots (83 of 145) are located in the southeastern area, presumably because of their proximity to (a) locally produced corn, (b) packing plants in

15The percentages of feedlots with feedbunks involving one- vs. two-sided feeders are as follows:
34.0 One-sided feeders only;
27.7 Two-sided feeders only;
37.6 Both one- and two-sided feeders; and
0.7 Self feeder (one feedlot).

16Some producers, particularly if they feed twice a day, may provide less than 1.5 ft of bunk space per animal. To whatever extent that the 1.5-ft assumption may be too liberal, the estimated design capacity of feedlots in the survey would be biased down. Relationships among different sizes-of-feedlot, however, would not be altered.
southwestern Minnesota, northeastern Nebraska, and Iowa, and (c) the Sioux Falls public stockyards.

The southeastern feedlots include 13 cattle feeders in Brookings County, 11 in Minnehaha County, and 10 in Kingsbury County. Between 16 and 22 of the reporting feedlots are in each of the northeast, south-central, and north-central areas, and only 4 are in the west. The mean size-of-feedlot ranges from 690 head in the southeast to 1,585 head in the west, but the differences in feedlot size among areas are not statistically significant.18

Feedlot utilization in 1988

For all 145 feedlots in South Dakota, the average feedlot utilization rates for the four quarters of 1988 was 80% of design capacity. Among the four quarters of the year, the highest utilization rate for the state was 90% in January-March, followed by 84% for October-December, 81% for April-June, and 67% for July-September.

The percentage of feedlots reported to be fully (i.e., 100%) utilized ranged among quarters from 56% for January-March to 14% for July-September. At the other extreme, the percentage of empty (0% utilization) feedlots ranged from 17% in July-September to 5% in January-March.

Feedlot utilization rates varied directly with size-of-feedlot during each of the quarters except the fourth.19 The difference in feedlot utilization rates between "small" and "large" feedlots was least during January-March when 77% of the design capacity in "small" feedlots and 96% of the design capacity in "large" feedlots was used (Fig 3). The size-of-feedlot difference in utilization rates was greatest during July-September when only 46% of the design capacity of "small" feedlots was used and as much as 83% of that in "large" feedlots was used.

A possible reason for higher feedlot utilization rates in larger feedlots is that managers of these feedlots have a greater commitment to cattle feeding, relative to other enterprises, than do the managers of smaller feedlots.20 Larger feedlots may have higher turnover rates, partly because some small feedlots tend to fill their feedlots with one batch of cattle in the fall and to empty the feedlots in the summer. Gaarder (1971) also suggests that larger feedlots may be economically motivated to maintain high utilization rates to offset relatively high fixed investment costs.

18Van Arsdall and Nelson (1983) also point out a tendency for higher utilization rates with larger farm feedlots in the Midwest.

20Results of analysis show a direct association in this study between the percentage of gross farm income from sale of slaughter cattle and size-of-feedlot.

"large" feedlots was least during January-March when 77% of the design capacity in "small" feedlots and 96% of the design capacity in "large" feedlots was used (Fig 3). The size-of-feedlot difference in utilization rates was greatest during July-September when only 46% of the design capacity of "small" feedlots was used and as much as 83% of that in "large" feedlots was used.

A possible reason for higher feedlot utilization rates in larger feedlots is that managers of these feedlots have a greater commitment to cattle feeding, relative to other enterprises, than do the managers of smaller feedlots.20 Larger feedlots may have higher turnover rates, partly because some small feedlots tend to fill their feedlots with one batch of cattle in the fall and to empty the feedlots in the summer. Gaarder (1971) also suggests that larger feedlots may be economically motivated to maintain high utilization rates to offset relatively high fixed investment costs.

19Van Arsdall and Nelson (1983) also point out a tendency for higher utilization rates with larger farm feedlots in the Midwest.

20Results of analysis show a direct association in this study between the percentage of gross farm income from sale of slaughter cattle and size-of-feedlot.
Table 3. South Dakota cattle feedlot physical features.

<table>
<thead>
<tr>
<th>Feedlot feature</th>
<th>Percent of reporting feedlots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelter-belt windbreak</td>
<td>79.9</td>
</tr>
<tr>
<td>Mounds</td>
<td>56.9</td>
</tr>
<tr>
<td>Fence windbreak</td>
<td>51.4</td>
</tr>
<tr>
<td>Partially paved with concrete</td>
<td>47.2</td>
</tr>
<tr>
<td>Covered protection from wind and snow</td>
<td>25.7</td>
</tr>
<tr>
<td>Pollution control facilities(^{b})</td>
<td>13.9</td>
</tr>
<tr>
<td>Completely paved with concrete</td>
<td>6.2</td>
</tr>
<tr>
<td>Confinedment barn</td>
<td>4.9</td>
</tr>
</tbody>
</table>

\(^{a}\)Because more than one feature characterizes some feedlots, the column percentage does not total to 100.

\(^{b}\)The most commonly reported types of pollution control facilities are directed drainage areas and runoff containment lagoons/ponds. Manure slurry is stored above-ground in two feedlots.

About 62% of the responding feedlot managers reported their 1988 feedlot utilization did not differ from that of the past 5 years (1984-1988). Equal percentages (19%) of the managers reported their 1988 feedlot utilization rates were either lower or higher than that generally during the prior 5 years. Thus, although much of South Dakota experienced drought in 1988, that year appears to have been more or less normal for respondents from the standpoint of their cattle feedlot utilization.

Feedlot physical features

About 80% of the reporting feedlots have tree windbreaks to provide protection for their finishing cattle (Table 3). Between 51% and 57% of the feedlots have mounds and fence windbreaks, and 47% have feedlots partially paved with concrete.

Differences in the presence of these four physical features among size-of-feedlot categories are statistically significant, with a generally positive relationship between the presence of the physical feature and size-of-feedlot (Fig. 4). At the other extreme, only 5-6% of the feedlots are completely paved with concrete or have confinement feeding barns.

Table 4. Feedlot manager, highest level of schooling attained, by area in South Dakota.

<table>
<thead>
<tr>
<th>School level</th>
<th>West</th>
<th>North Central</th>
<th>South Central</th>
<th>Northeast</th>
<th>Southeast</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary school</td>
<td>0</td>
<td>6.3</td>
<td>15.0</td>
<td>4.6</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>High school</td>
<td>50.0</td>
<td>56.2</td>
<td>50.0</td>
<td>63.6</td>
<td>46.4</td>
<td>50.7</td>
</tr>
<tr>
<td>Vo Tech school</td>
<td>0</td>
<td>6.3</td>
<td>10.0</td>
<td>4.6</td>
<td>14.6</td>
<td>11.1</td>
</tr>
<tr>
<td>Two-year college degree</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>University Bachelors degree</td>
<td>50.0</td>
<td>25.0</td>
<td>5.0</td>
<td>22.7</td>
<td>28.1</td>
<td>24.3</td>
</tr>
<tr>
<td>Beyond Bachelors degree</td>
<td>0</td>
<td>6.2</td>
<td>15.0</td>
<td>0</td>
<td>1.2</td>
<td>3.5</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>5.0</td>
<td>4.5</td>
<td>1.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>

| Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |

\(^{a}\)Differences in the responses among areas are not statistically significant at the 0.05 level.
Feedlot management

Over 92% of the reporting feedlot managers have completed high school (Table 4). Nearly 28% have at least a bachelor's degree.

Nearly 67% of the reporting feedlots are operated as single-family proprietorships (Table 5). This compares to 87% for all farms in South Dakota (USDC 1989). The other relatively common types of feedlot organization are family-held corporations (18%) and partnerships (15%). For all of South Dakota's farms, the percentages of corporate and partnerships are 3% and 9%, respectively. The proportions of corporate and partnership feedlots are above average and the proportion of single-family proprietorship feedlots is below average, relative to farms in general in the state.21

The percentage of single-family proprietorships varies inversely with size-of-feedlot, with 91% of the "small" feedlots being proprietorships and only 30% of the "large" feedlots being proprietorships (Fig 5). The percentage of partnerships varies directly with size-of-feedlot, with 7% of the "small" feedlots in partnerships and 31% of the "large" feedlots in partnerships. The percentage of family held corporations also generally varies directly with size-of-feedlot.22

With the estimated cattle on feed in the reporting feedlots during 1988 as the unit of analysis, the percentage of hired labor used in the surveyed cattle feedlot operations is 49%.

About 55% of the reporting feedlots use no hired labor. On the other hand, only 3% of the feedlots use no family labor. A strong direct relationship exists between percent of hired labor and size-of-feedlot. For example, all "large" feedlots hire some labor, whereas only 4% of "small" feedlots do (Fig 6). Hired labor represents an average of 80%

21 Clauson's (1983) 1981 survey of South Dakota cattle producers shows 85% sole proprietorships, 15% partnerships, and 1% corporations. Van Arsdall's and Nelson's (1983) survey of Midwest farmer feedlots shows 82% sole proprietorships, 16% partnerships, and 2% corporations. Dietrich et al (1985) show a very different picture for feedlots in Texas. Nearly 74% of their surveyed feedlots are corporations, 19% are partnerships, and only 6% are sole proprietorships.

Table 5. Type of feedlot organization, by area in South Dakota.

<table>
<thead>
<tr>
<th>Organization type</th>
<th>Percent of reporting feedlots, by area</th>
<th>West</th>
<th>North Central</th>
<th>South Central</th>
<th>Northeast</th>
<th>Southeast</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-family proprietorship</td>
<td></td>
<td>25.0</td>
<td>60.0</td>
<td>65.0</td>
<td>72.7</td>
<td>68.3</td>
<td>66.4</td>
</tr>
<tr>
<td>Family held corporation</td>
<td></td>
<td>0</td>
<td>13.3</td>
<td>20.0</td>
<td>13.7</td>
<td>19.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Partnership</td>
<td></td>
<td>75.0</td>
<td>20.0</td>
<td>15.0</td>
<td>13.6</td>
<td>11.0</td>
<td>14.7</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>0</td>
<td>6.7</td>
<td>0</td>
<td>1.2</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a Differences in the responses among areas are not statistically significant at the 0.05 level.

b The other reported types of feedlot organizations are "joint enterprise" and "state owned".
of total labor in "large" feedlots and only 2% of total labor in "small" feedlots.23

Three sources of long-term credit are commonly used by reporting

Van Arsdall and Nelson (1983) also report the proportion of hired labor in farmer feedlots in the Midwest to vary directly with size-of-feedlot.

Table 6. Sources of operating and long-term credit used in feedlot.a

<table>
<thead>
<tr>
<th>Credit source</th>
<th>Percent of reporting feedlots with borrowed</th>
<th>Operating capital</th>
<th>Long-term capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Credit Services</td>
<td>7.7</td>
<td>37.1</td>
<td></td>
</tr>
<tr>
<td>In-state commercial bank</td>
<td>76.9</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td>Farmers Home Administration</td>
<td>1.5</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td>Private individuals</td>
<td>6.9</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>Out-of-state commercial bank</td>
<td>3.8</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Feed supplier</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insurance company</td>
<td>0.8</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Otherc</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a No feedlot manager reports using either short-term or long-term credit from packers or private lending groups.

b Because more than one credit source is used by some feedlots, the respective column percentages do not total to 100.

The "other" operating credit sources are (1) credit union, (2) personal loans from stockholders to a corporation, and (3) unspecified. A Small Business Administration (SBA) loan is used for long-term credit in one feedlot.

Table 7. Gross farm sales from total farm operation, by area in South Dakota.

<table>
<thead>
<tr>
<th>Gross farm sales (dollar range)</th>
<th>Percent of reporting feedlots, by area</th>
<th>West</th>
<th>North Central</th>
<th>South Central</th>
<th>Northeast</th>
<th>Southeast</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than $100,000</td>
<td>0.0</td>
<td>6.3</td>
<td>5.3</td>
<td>13.6</td>
<td>23.8</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>$100,000-$249,999</td>
<td>0.0</td>
<td>31.2</td>
<td>36.8</td>
<td>22.7</td>
<td>28.8</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>$250,000-$499,999</td>
<td>25.0</td>
<td>18.8</td>
<td>26.3</td>
<td>9.1</td>
<td>10.0</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>$500,000-$999,999</td>
<td>50.0</td>
<td>0.0</td>
<td>10.5</td>
<td>9.1</td>
<td>16.2</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>$1,000,000 or more</td>
<td>25.0</td>
<td>43.7</td>
<td>21.1</td>
<td>45.5</td>
<td>16.2</td>
<td>27.6</td>
<td></td>
</tr>
</tbody>
</table>

ad Differences in the responses among areas are not statistically significant at the 0.05 level.
slaughter cattle over the past 5 years. Between 20% and 22% received either 20-39%, 40-59%, or 60-79% of respective gross farm incomes from the sale of slaughter cattle. Only 7% earned less than 20% of their gross farm income from the sale of slaughter cattle.

The relationship between percentage of gross farm income from sale of slaughter cattle and size-of-feedlot is direct, with an average percentage of 38% for "small" feedlots and 78% for "large" feedlots (Fig 7).

About 41% of the reporting feedlots had gross farm sales from farming of $500,000 or more, an additional 42% between $100,000 and $499,999, and 17% less than $100,000 (Table 7). These levels are considerably greater than for all farms in South Dakota, where respective percentages are 1%, 18%, and 81% (USDC 1989).

In interpreting this apparent contrast in farming scale, however, remember that "gross farm sales" generally overstates the "real" value-added by cattle feeders who purchase feeder cattle. Such off-farm purchases may amount to 50% or more of the gross farm sales for many cattle feeders, but a much smaller percentage for most other types of farms. Thus, the contrast in average gross farm sales for cattle feeders, vs. for all farms, overportrays the "real" difference in farming scale between the two groups of farms.

24Dietrich et al (1985) show commercial banks, followed by the Farm Credit system, to be the major sources of operating credit in their survey of cattle feedlots in Texas. They show commercial banks to also be the main overall source of long-term credit, but with larger feedlots making relatively more use of long-term credit from insurance companies.
Feeder cattle placement in 1988

Age, gender, breed, and weight

Slightly over 51% of the surveyed cattle placed on feed in 1988 were yearlings (10-24 mo), 42% were calves, and 7% were cattle 2 yr or more of age. Larger feedlots tend to place fewer calves and more yearlings on feed (Fig 8). Differences in the percentages of calves and yearlings among size-of-feedlot categories are not statistically significant, however.25

About 27% of reporting feedlots placed only calves on feed in 1988, and 20% placed only yearlings on feed. At the other extreme, 26% of feedlots placed no calves on feed, 31% no yearlings, and 81% no cattle 2 yr or older.

Of the cattle, 56% were steers, 39% heifers, 4% cows, and 1% bulls. About 17% of the feedlots placed only steers on feed, 4% only heifers, 1% only cows, and 1% only bulls (Table 8). At the other extreme, 8% of feedlots placed no steers on feed, 21% no heifers, 82% no cows, and 92% no bulls.26

Of the surveyed cattle, 63% were exotic European beef breeds.

25Van Arsdall and Nelson (1983) report larger farmer feedlots in the Midwest place on feed more yearlings (relative to calves). They suggest that smaller feedlots more often purchase calves because these farmers have the more readily available forages for growing cattle on their more diversified farms. Their tendencies to match purchased with home-raised feeders and to feed only one lot of cattle each year may be other factors.

26Roughly similar proportions of steers and heifers are reported in two other surveys: 58% steers and 42% heifers in Colorado (Madsen and Gee 1986) and 57% steers and 43% heifers in Texas (Dietrich et al 1985). Van Arsdall and Nelson (1983) report 70% steers and 30% heifers in farmer feedlots in the Midwest.
crosses, 30% English beef breeds, 4% beef-dairy crosses, and 3% dairy cattle. About 24% of the feedlots had only exotic European beef breeds/crosses, 14% only English beef breeds, 4% only dairy cattle, and 1% only beef-dairy crosses. On the other hand, 25% of feedlots placed on feed no exotic European beef breeds/crosses, 14% no English beef breeds, 81% no beef-dairy crosses, and 85% no dairy cattle. About 24% of the feedlots had only exotic European beef breeds/crosses, 14% only English beef breeds, 4% only dairy cattle, and 1% only beef-dairy crosses. On the other hand, 25% of feedlots placed on feed no exotic European beef breeds/crosses, 14% no English beef breeds, 81% no beef-dairy crosses, and 85% no dairy cattle. About 24% of the feedlots had only exotic European beef breeds/crosses, 14% only English beef breeds, 4% only dairy cattle, and 1% only beef-dairy crosses. On the other hand, 25% of feedlots placed on feed no exotic European beef breeds/crosses, 14% no English beef breeds, 81% no beef-dairy crosses, and 85% no dairy cattle.

A direct and statistically significant relationship exists between the percentage of exotic European beef breeds/crosses placed on feed and size-of-feedlot, with the proportion being 39% for "small" feedlots and 66% for "large" feedlots (Fig 9). On the other hand, an inverse and statistically significant relationship exists between the percentage of dairy cattle placed on feed and size-of-feedlot, with the percentage being 18% for "small" feedlots and 2% for "large" feedlots.

Slightly over 43% of the surveyed steers placed on feed in 1988 weighed 700 lb or more. About 41% were in the 500-699 lb weight range, and 16% were lighter than 500 lb. The weights of heifers less than 2 yr old placed on feed were slightly lighter, with the following percentages in the respective weight ranges: 38% 700 lb or more, 45% 500-699 lb, and 17% under 500 lb.

The relationship between the percentage of steers weighing under 500 lb placed on feed and size-of-feedlot is statistically significant and inverse (Fig 10). Conversely, the percentage of heifers weighing 700 lb or more placed on feed varies directly with size-of-feedlot.

In comparison to the 1989 findings, Clauson (1983) showed South Dakota cattle producers placed lighter weight cattle in the feedlot: (a) in 1972, 55% of placements < 500 lb and 24% 500-699 lb and (b) in 1980, 39% < 500 lb and 31% 500-699 lb. Dietrich et al (1985) show somewhat heavier cattle in Texas feedlots than is shown in the 1989 South Dakota survey. Beginning feeder cattle weights commonly in excess of 700 lb are reported by (a) Hoelscher (1990) for 22 feedlots covering more than 300,000 cattle in the High Plains, (b) Madsen and Gee (1986) for surveyed feedlots in Colorado, and (c) Trapp (1984) for High Plains and Corn Belt feedlots in 1983.

For a more detailed breakdown on the weight of steers and heifers (< 2 yr) placed on feed in 1988, see Table 9.

Table 9. Weight of cattle placed on feed.

<table>
<thead>
<tr>
<th>Weight range (lb.)</th>
<th>Percent of cattle placed on feed</th>
<th>Steers</th>
<th>Heifers (<2 yr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 400</td>
<td>2.9</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>400 - 499</td>
<td>12.7</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>500 - 599</td>
<td>23.2</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>600 - 699</td>
<td>18.0</td>
<td>19.8</td>
<td></td>
</tr>
<tr>
<td>700 - 799</td>
<td>14.2</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>800 - 899</td>
<td>16.0</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>900 or more</td>
<td>13.0</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 9. Breed of cattle placed on feed, by size-of-feedlot.

27Dietrich et al (1985) report a very different mix of cattle breeds in Texas feedlots: 51% English breeds and English crosses, 34% Brahman and Brahman crosses, 7% exotic European crosses, and 8% other.

28Van Arsdall and Nelson (1983), on the other hand, report no consistent relationship between weight of feeder cattle and size-of-feedlot in Midwest farmer feedlots.
Place of origin

About 62% of the cattle were purchased from South Dakota sources, 24% were purchased from out-of-state, and 14% were home-raised. The relationship between percent of home-raised cattle and size-of-feedlot is inverse, with 78% of the cattle in "small" feedlots being home-raised and only 13% of the cattle in "large" feedlots being home-raised.

Fig 10. Weight of cattle placed on feed, by size-of-feedlot.

% of cattle placed on feed, by size-of-feedlot.

Fig 11. Place of origin of cattle placed on feed, by size-of-feedlot.

% of cattle placed on feed, by size-of-feedlot.

30 Madsen and Gee (1986) report 28% of the cattle fed in their surveyed feedlots in Colorado were purchased from Colorado sources. Dietrich et al (1985) report more than 60% of the cattle placed on feed in their surveyed feedlots in Texas originated from sources within Texas. Conversely, the relationships between (1) the percentages of cattle purchased from both South Dakota sources and out-of-state and (2) size-of-feedlot are generally direct.

About 33% of feedlots reported home-raising all the cattle they placed on feed in 1988, whereas only 17% purchased all their feeder cattle from South Dakota sources. No feedlots purchased all their feeder cattle from out-of-state. On the other hand, 39% of feedlots home-raised none of their feeder cattle, 36% purchased no feeder cattle from South Dakota sources, and 68% purchased no feeder cattle from out-of-state sources.

Of the 46 feeders who imported at least some of their feeder cattle from out-of-state in 1988, 24 (52%) imported their feeders from North Dakota, 21 (31%) from Montana, 6 (9%) from both Minnesota and Wyoming, 1 (6%) from Nebraska, 2 (3%) from each of Iowa, Kansas, and Oklahoma, and 1 from Texas. Nine feeders imported at least 60% of their feeder cattle in 1988 from other states: 4 from Montana, 3 from North Dakota, and 2 from elsewhere.

Timing of placement

About 40% of the surveyed cattle were placed on feed in the fourth quarter of 1988. This is a relatively heavy placement period: 33% of reporting feeders put all their cattle on feed during October-December, and only 17% put no cattle on feed during this quarter.

The second most common quarter for 1988 was January-March, when 23% of the cattle were placed on feed. About 19% of the cattle were
placed on feed during the second quarter and 18% during the third quarter. Third quarter placement is relatively light: only 2% of reporting feeders put all their cattle on feed during July-September, and 64% placed no cattle on feed during this quarter.

Larger feedlots generally have higher feedlot utilization rates and tend to place cattle in their feedlots more uniformly throughout the year than smaller feedlots (Fig 12).32 For example, the first- to fourth-quarter placements of cattle by "large" feedlots are 25%, 19%, 19%, and 37%, respectively. Corresponding figures for "small" feedlots are 25%, 10%, 6%, and 59%.

Differences among size-of-feedlot categories in the percentages of cattle placed on feed in various quarters, however, are statistically significant only in the third quarter.

Means of procuring non-home-raised calves

The most common means for the reporting feedlots to procure feeder calves in 1988 was through sale barns (57% of the surveyed cattle), followed by order buyers (20%), custom feeding (17%), and private treaty from cow-calf producers (6%).33 Differences among size-of-feedlot categories in the means of feeder calf procurement are not statistically significant.

The dominance of sale barn purchases is also indicated by 39% of feeders procuring all of their feeder cattle through them and by only 22% of them buying no cattle through sale barns. Nearly 14% of feedlots buy all their cattle through order buyers, and nearly 59% buy none of their cattle by this means. Less than 6% of the feeders acquire all their feeder cattle via either custom feeding or directly from cow-calf producers. More than 84% procure no cattle through either of these two means.

Eleven (12%) of 96 reporting feedlots use the futures market to hedge the purchase of feeder cattle. Differences among size-of-feedlot categories and the futures market purchase of feeder cattle are not statistically significant.

Slightly over 9% of the surveyed calves placed on feed in 1988 were pre-conditioned through the South

Fig 12. Quarter of cattle placement, by size-of-feedlot.
Dakota Green Tag Program. About 4% of the managers purchased only pre-conditioned calves, and 48% purchased no pre-conditioned calves. Differences among size-of-feedlot categories and the purchasing of pre-conditioned calves are not statistically significant.

Ownership of cattle in feedlot

Nearly 76% of the surveyed cattle were owned by the feedlot where the cattle were being fed. About 80% of the reporting feedlots owned all the cattle, and only 8% owned no cattle that they placed on feed in 1988.

The remaining cattle were owned as follows: 16% by outside investors, 5% by the rancher that raised the feeders, and 3% by the feedlot with a partner. Only 1% of the feedlots reported all their feeder cattle and 94% reported none of their feeder cattle being owned by the rancher that raised the feeders.

Consequently, retained ownership of cattle fed in South Dakota by the state's cow-calf producers appears to be rather uncommon for the reporting feedlots.

A generally inverse and statistically significant relationship exists between cattle being owned by the feedlot where the cattle are fed and size-of-feedlot. Between 88 and 94% of the cattle in "small" and "intermediate I" feedlots are feedlot-owned, and 74-77% of the cattle in "intermediate II" and "large" feedlots are feedlot-owned (Fig 13).

On the other hand, a direct and statistically significant relationship exists between cattle owned by outside investors and size-of-feedlot. No cattle in "small" feedlots and 21% of the cattle in "large" feedlots were owned by outside investors.

Typical feeding practices

Days cattle on feed

Steer calves and yearling steers were reported to be typically on feed for averages of 208 and 129 days, respectively. Steer calves are kept on feed for an average of 5 days longer than heifer calves and yearling steers for 10 days longer than yearling heifers.

The feeding periods vary widely among feedlots, but generally they

34The South Dakota Green Tag Program requires that calves be vaccinated, castrated, de-horned, and weaned 30 days before they are sold.

35This statement requires two qualifications. The retaining of ownership of calves by South Dakota cow-calf operators who send their calves for feeding outside the state is not reflected in the survey findings. It is generally known that several South Dakota producers retain ownership in calves that are fed to the south (e.g., in Nebraska). Furthermore, "retained ownership" also can be used to characterize feedlot managers who feed home-raised cattle (14% of the surveyed cattle placed on feed in 1988). This is not reflected in the data reported in the text.

36An overview of the findings from the survey on feeding practices is covered in Taylor et al (1989).
are somewhat greater than those normally recommended by Extension Service beef specialists. At the long end of the ranges, 26% of the feedlots keep both steer and heifer calves on feed for 275 days or longer (Table 10). About 20% of feedlots keep yearling steers and 14% of feedlots keep yearling heifers on feed for 180 days or longer (Table 11). The surveyed cull cows are on feed for an average 66 days and cull bulls for 63 days.

In general, feeding periods vary inversely with size-of-feedlot. For both yearling steers and yearling heifers, differences in the average feeding period among sizes-of-feedlot are statistically significant. The greatest differences are between "small" feedlots (average days on feed exceed 190) and the "Intermediate II" feedlots (average days on feed are less than or equal to 125) (Fig 14). While the days steer and heifer calves are on feed appear to be inversely related to size-of-feedlot, differences in the feeding period lengths for the calves among size-of-feedlot categories are not statistically significant.

Weight targets

Closely related to days on feed is the targeted finishing weight. The average targeted finishing weights for steers and heifers in the reporting feedlots are 1,230 lb and 1,105 lb.

37 These feeding periods are generally longer than the average feeding period for all steers of 138-151 days reported by Hoelscher (1990) for the High Plains, 134 days reported by Madsen and Gee (1986) for Colorado, and 149 days by Dietrich et al (1985) for Texas. The steer-heifer feeding period differential is about the same as that reported by Hoelscher and Dietrich et al. Madsen and Gee report an average days on feed for heifers 1 day greater than the 134 day average for steers.

38 Much larger proportions of cull cows and cull bulls are fed for 60-69 days than for any other 10-day range.

Table 10. Days steer and heifer calves are on feed.

<table>
<thead>
<tr>
<th>Feeding period (days range)</th>
<th>Percent of reporting feedlots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steer calves</td>
</tr>
<tr>
<td>Less than 125</td>
<td>8.3</td>
</tr>
<tr>
<td>125 - 149</td>
<td>2.8</td>
</tr>
<tr>
<td>150 - 174</td>
<td>7.4</td>
</tr>
<tr>
<td>175 - 199</td>
<td>14.8</td>
</tr>
<tr>
<td>200 - 224</td>
<td>18.5</td>
</tr>
<tr>
<td>225 - 249</td>
<td>8.3</td>
</tr>
<tr>
<td>250 - 274</td>
<td>13.9</td>
</tr>
<tr>
<td>275 - 299</td>
<td>5.6</td>
</tr>
<tr>
<td>300 - 324</td>
<td>10.2</td>
</tr>
<tr>
<td>325 or more</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 11. Days yearling steers and heifers are on feed.

<table>
<thead>
<tr>
<th>Feeding period (days range)</th>
<th>Percent of reporting feedlots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yearling steers</td>
</tr>
<tr>
<td>Less than 100</td>
<td>5.3</td>
</tr>
<tr>
<td>100 - 119</td>
<td>16.0</td>
</tr>
<tr>
<td>120 - 139</td>
<td>34.7</td>
</tr>
<tr>
<td>140 - 159</td>
<td>21.3</td>
</tr>
<tr>
<td>160 - 179</td>
<td>2.7</td>
</tr>
<tr>
<td>180 - 199</td>
<td>13.3</td>
</tr>
<tr>
<td>200 and more</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

Fig 14. Average days on feed, by cattle type and size-of-feedlot.

Table 12. Targeted average daily gain and final finishing weights, by type of cattle.

<table>
<thead>
<tr>
<th>Type of cattle</th>
<th>Targeted daily rate of gain (lb./day)</th>
<th>Targeted final finishing weight (lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growing steers</td>
<td>2.36</td>
<td>n/a</td>
</tr>
<tr>
<td>Growing heifers</td>
<td>2.17</td>
<td>n/a</td>
</tr>
<tr>
<td>Finishing steers</td>
<td>3.05</td>
<td>1,230</td>
</tr>
<tr>
<td>Finishing heifers</td>
<td>2.82</td>
<td>1,105</td>
</tr>
<tr>
<td>Cull cows</td>
<td>3.15</td>
<td>1,265</td>
</tr>
<tr>
<td>Cull bulls</td>
<td>3.18</td>
<td>1,685</td>
</tr>
</tbody>
</table>

Table 13. Targeted final finishing weights, by type of cattle.a

<table>
<thead>
<tr>
<th>Target weight (lb.)</th>
<th>Percent of reporting feedlots with indicated finishing weights, by type of cattle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steers</td>
</tr>
<tr>
<td>Less than 1,050</td>
<td>0.8</td>
</tr>
<tr>
<td>1,050 - 1,099</td>
<td>27.9</td>
</tr>
<tr>
<td>1,100 - 1,149</td>
<td>38.5</td>
</tr>
<tr>
<td>1,150 - 1,199</td>
<td>13.5</td>
</tr>
<tr>
<td>1,200 - 1,249</td>
<td>11.5</td>
</tr>
<tr>
<td>1,250 - 1,299</td>
<td>1.9</td>
</tr>
<tr>
<td>1,300 - 1,349</td>
<td>1.0</td>
</tr>
<tr>
<td>1,250 - 1,399</td>
<td>4.7</td>
</tr>
<tr>
<td>1,400 and more</td>
<td>100.0</td>
</tr>
</tbody>
</table>

A direct and statistically significant relationship exists between the targeted daily rates of gain for both finishing steers and finishing heifers and size-of-feedlot, with the targeted rates of gain for cattle in "large" feedlots 13-18% greater than for those in "small" feedlots (Fig 15).

39 These targeted finishing weights are roughly consistent with the average liveweight of 1,222 lb for cattle slaughtered in South Dakota during 1989 (S.D. Ag Stat Serv, 1990b). This weight is considerably greater than the 1,134 lb reported on average for the U.S. The 1989 South Dakota survey weights also are considerably greater than those reported elsewhere in the literature: 1,168 lb for steers and 999 lb for heifers for farmer feedlots in the Midwest (Van Arsdall and Nelson 1983); 1,115 lb for steers and 1,002 lb for heifers in Colorado (Madsen and Gee 1986); 1,129 lb for Iowa (Loy et al 1986); and 1,108 lb for the Corn Belt and 1,130 lb for the High Plains (Trapp 1984).

40 Actual daily rates of gain for steers covered in survey reports are as follows: 2.79 - 2.93, High Plains (Hoelscher 1990); 2.80 for calves and 3.22 for yearlings, Kansas (Schroeder and Blair 1989); 2.87, Kansas (Kuhl 1990); and 2.87, Colorado (Madsen and Gee 1986).
The average targeted final finishing weights for the surveyed cull cows and bulls are 1,265 and 1,685 lb, respectively (Table 12). Average targeted daily rates of gain for both cull cows and cull bulls are 3.2 lb. The average targeted daily rate of gain for 88% of the reporting feedlots for cull cows is 3.0 lb/day or more.

Feed rations

Grain versus roughage. Feedlot managers report an average of 39% grain--relative to total dry matter--in the diets of cattle during the growing period. At the extremes, 10% of the feedlots feed less than 20% grain during the growing period, and 11% feed more than 60% grain.

A direct relationship appears to exist between size-of-feedlot and percent of grain in growing cattle diets (Fig 16). However, the relationship is not statistically significant.

During the finishing period, the average percentage of grain in cattle diets is 80% of total feed intake. At the extremes, 12% of the feedlots feed less than 60% grain and 20% of the feedlots 90% or more grain. The apparent direct relationship between size-of-feedlot and percent of grain in finishing cattle diets is not statistically significant (Fig 16).

Types of grain fed. About 92% of the surveyed cattle receive corn, followed by 4% barley, 3% milo, 0.5% oats, and 0.3 wheat. Only 60% of feedlot managers, however, reported corn as the only grain used in the cattle rations. Nearly 40% of feedlots feed at least one grain other than corn. The exclusive use of corn in cattle rations appears more common in larger than smaller feedlots.

Other grains represent more than 40% of total grains fed in only two situations: 3% of the feedlots for milo and 2% for barley. At the other extreme, the following percentages of feedlot managers reported using none of the following grains in their rations: 79% barley, 83% oats, 94% milo, and 97% wheat.

Types of roughage fed. The following percentages of feedlot managers reported feeding the respective types of roughages: 91% hay, 85% corn silage, 40% haylage, 17% grazing pasture, 8% grazing residues, and 13% other (oolage and milo/sorghum/sudan silage).42

Fig 16. Importance of grain in cattle rations, by size-of-feedlot.

Corresponding data for heifers are as follows:

2.54 - 2.64, High Plains (Hoelscher 1990);
2.58 for calves and 2.91 for yearlings, Kansas (Schroeder and Blair 1989);
2.43, Iowa (Loy et al 1986);
2.46, Kansas (Kuhl 1990); and
2.60, Colorado (Madsen and Gee 1986).

41Madsen and Gee (1986) report the following average growing and finishing rations for yearlings:
Growing: 31% grain, 39% silage, 23% alfalfa hay, 5% protein, and 2% other supplements; and
Finishing: 75% grain, 13% silage, 5% alfalfa hay, 5% protein, and 2% other supplements.
The percentage of feedlots feeding hay differs significantly among size-of-feedlot categories, but not with a clear pattern relative to size-of-feedlot: 100% for "small" and "large" feedlots and 84-86% for "Intermediate I" and "Intermediate II" feedlots (Fig 17).

The percentage of feedlots feeding corn silage differs significantly among size-of-feedlot categories, but again without a clear pattern relative to size-of-feedlot: 70% for "small" feedlots, 91% for "Intermediate I" feedlots, 100% for "Intermediate II" feedlots, and 67% for "large" feedlots.

Possible reasons for fewer small and large feedlots feeding corn silage are as follows: Small feedlots tend to more commonly home-raise their feeders and hence may have less time to raise corn silage. Large feedlots tend to be located farther west where corn silage is less common.

Source of grains and roughages. The average proportions of cattle receiving feedstuffs typically home-raised (i.e., raised on the farm/ranch that has the feedlot) are as follows: 99% corn silage; 97% haylage; 58% hay; 53% high moisture grain; and 43% dry grain.

Statistically significant differences exist between the home-raised percentages of hay, high moisture grain, and dry grain and size-of-feedlot (Fig 18). The relationship is clearly inverse for hay (43 percentage points higher for "small" than for "large" feedlots) and generally inverse for both dry and high moisture grain.

The percentages of feedlots that home-raise 100% of their feedstuffs are as follows: 95% corn silage, 94% haylage, 70% hay, 54% high moisture grain, and 40% dry grain. At the other extreme, the percentages of feedlots that home-raise none of their feedstuffs are as follows: 15% dry grain, 7% high moisture grain, 4% both haylage and hay, and 2% corn silage.

Forms of feed fed to cattle. About 90% of the managers reported feeding dry grain and 58% high moisture grain. The relationship between the percentage of high

43Madsen and Gee (1986) report the following percentages of commercial feedlots in Colorado to home-raise the following feedstuffs: 23% corn silage, 15% alfalfa, and 7% corn grain. Van Arsdale and Nelson (1983) report the following percentages of farmer feedlots in the Midwest to home-raise the following feedstuffs: 100% silage, 99% hay, 95% corn, and 84% of the other grains.

44Van Arsdale and Nelson (1983) report the following percentages of farmer feedlots in the Midwest to feed the following types of grain: 68% dry and 32% high moisture.
moisture grain and size-of-feedlot is
direct and statistically significant,
with the relative importance of high
moisture grain 67 percentage points
greater for "large" than "small" feed-
lots (Fig 19). Less than 12% of
"small" and "intermediate I" feedlots
use both dry and high moisture
grain, whereas 87-89% of "interme-
diate II" and "large" feedlots do.

The following percentages of feedlot
managers report feeding dry grain
in the indicated forms: 59%
cracked, 44% ground, 36% whole
kernel, 3% steam flaked, 1% recon-
stituted, and 3% other (ear corn,
earlage, and corn screenings). Only
for cracked grain do the percentages
differ significantly for different
sizes-of-feedlots. Cracked grain
tends to be more common in larger
feedlots: 26% "small," 66% "inter-
mediate I," 84% "intermediate II,"
and 80% "large" (Fig 20). Ground
grain appears to be somewhat
inversely related to size-of-feedlot,
but the relationship is not statisti-
cally significant.

The following percentages of feedlot
managers reported feeding hay in
the following forms: 67% ground,
49% unprocessed, and 4% other
(haylage, green chop). For both
ground and unprocessed hay, the
percentages differ significantly for
different sizes-of-feedlots. Ground
hay tends to be more common with
larger feedlots: 26% "small," 78%
"intermediate I," 96% "intermediate
II," and 90% "large" (Fig 21). The
converse tends to hold with unpro-
cessed hay: 84% "small," 46%
"intermediate I," 7% "intermediate
II," and 30% "large."

The following percentages of feedlot
managers reported feeding protein
supplements in the following forms:
66% dry only, 18% liquid only, and
16% both dry and liquid. An
inverse and statistically significant
relationship exists between the per-
centage of feedlots that feeds only

45No one reported feeding "pelleted" hay.
dry protein supplement and size-of-feedlot: 88% of "small" feedlots and 40% of "large" feedlots feed dry protein supplement (Fig 22). On the other hand, a direct and statistically significant relationship exists between the percentage of feedlots that use both dry and liquid protein supplement and size-of-feedlot: 5% of "small" feedlots and 50% of "large" feedlots. In general, larger feedlots tend to more commonly feed only liquid protein supplement.

Feed additives and growth promotants. About 73% of the feedlot managers reported the continuous use of ionophores (e.g., Rumensin and Bovatec) that alter fermentation in the rumen; 59% continuously use growth implants (e.g., Ralgro, Compudose, Synovex) (Table 14). Fewer than 14% of the feedlots reported not using either ionophores or growth implants at any time.

About 45% to 69% of the feedlot managers reported using, at selected times only, each of (1) coccidiosis control (e.g., Deccox, Bovatec, Amprollium), (2) antibiotics sub-therapeutically, and (3) antibiotics therapeutically. About 47% of the feedlot managers reported not using antibiotics sub-therapeutically, 39% not controlling coccidiosis, and 30% not using antibiotics therapeutically.

Incidences of usage do not differ significantly by area of the state for any of the various feed additives and growth promotants. In several cases, however, usage levels are significantly related to size-of-feedlot:

Continuous use of:
Ionophores, a direct relationship, with 53 percentage points more for "large" than "small" feedlots ($P < 0.01$); and
Growth implants, a direct relationship, with 65 percentage points more for "large" than "small" feedlots ($P < 0.01$).

Use at selected times only:
Growth implants, a generally inverse relationship, with 46% for "small," 21% for "intermediate I," 31% for "intermediate II," and 0 for "large" feedlots ($P < 0.05$); and Antibiotics therapeutically, a direct relationship, with 43 percentage

Table 14. Use of feed additives and growth promotants.

<table>
<thead>
<tr>
<th>Feed additive and growth promotant</th>
<th>Percent of reporting feedlots indicating feed additives and growth promotants:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Used continuously</td>
</tr>
<tr>
<td>Ionophores (e.g., Rumensin, Bovatec)</td>
<td>72.9</td>
</tr>
<tr>
<td>Growth implants (e.g., Ralgro, Compudose, Synovex)</td>
<td>59.1</td>
</tr>
<tr>
<td>Coccidiosis control (e.g., Deccox, Bovatec, Amprollium)</td>
<td>15.7</td>
</tr>
<tr>
<td>Antibiotics sub-therapeutically</td>
<td>8.3</td>
</tr>
<tr>
<td>Antibiotics therapeutically</td>
<td>0.9</td>
</tr>
</tbody>
</table>

*a The term "rumen stimulants," rather than "ionophores," was used in the survey questionnaire.

Fig 22. Form of protein supplement fed to cattle, by size-of-feedlot.

![Form of protein supplement fed to cattle, by size-of-feedlot.](image)

*Rumensin is a product of Elanco Products Company, Indianapolis, IN; Bovatec is a product of Roche Animal Nutrition, Nutley, NJ.

*Ralgro is a product of Pitman-Moore, Terre Haute, IN; Compudose is a product of Elanco; and Synovex is a product of Syntex Animal Health, West Des Moines, IA.

*Deccox is a product of Rhone Poulenc, Atlanta, GA and Amprollium is a product of MSDAGVET-Merck, Rahway, NJ.
points more for "large" than "small" feedlots (P < 0.01); and

Not used:
Ionophores, an inverse relationship, with 29 percentage points more for "small" than for "intermediate II" and "large" feedlots (P < 0.01); and
Antibiotics therapeutically, an inverse relationship with 43 percentage points more for "small" than for "intermediate II" and "large" feedlots (P < 0.01).

Marketing practices in 198849

Means of selling slaughter cattle

About 55% of the slaughter cattle from the reporting feedlots go directly to the packer. The cattle are most often sold "in the beef," followed by liveweight and grade/yield.50

Almost as many of the reporting feedlots (51%) sell through public stockyards. About 23% sell through order buyers at the feedlot, again with "in the beef" being most common, followed by liveweight and grade/yield. About 6% of the feedlots sell at least some cattle directly to consumers.51

A statistically significant and inverse relationship exists between selling slaughter cattle through the public stockyards and size-of-feedlot: 71% of "small" feedlots and only 20% of "large" feedlots (Fig 23).

On the other hand, the relationship between selling slaughter cattle directly to the packer and size-of-feedlot is generally direct and statistically significant. The percentages are as follows: 23% "small," 57% "intermediate I," 87% "intermediate II," and 80% "large".52 Except for the "small" feedlots, the relationship between selling through on-farm

Dakota in 1970: 64% auction markets, 12% directly to packers, 12% public stockyards, and 12% farm-to-farm and other. Similar data for cattle feedlots in two other states are as follows: (a) Texas in 1980-81, 93% direct liveweight, 4% grade and carcass weight, and 3% rail or carcass weight (Dietrich et al 1985) and (b) Kansas in 1987, 88% liveweight, 9% packer contract, 2% in the beef, and 1% other (Schroeder and Blair 1989). Van Arsdall and Nelson (1983) report the following sales pattern for farmer feedlots in the Midwest in 1980: 53% direct to packer, 28% terminals, 11% country commission firm, and 8% regular auction. Johnson et al (1989) report feedlots nationally selling 90% of their cattle directly to packers, 5% through auction markets, 2% in terminal cash markets, and 4% through internal transactions (vertical integration).

52The extent to which direct-to-packer sales may result in higher prices received by producers is a topic for further research.

Fig 23. Means of selling fed cattle, by size-of-feedlot.

49For two recent insightful reviews of issues concerning U.S. beef cattle marketing, pricing, and international trade, see Ward (1988) and Johnson et al (1989).

50With "in the beef," a packer-buyer bids a carcass price to the feeder. No adjustments are made to accord with the actual quality and yield grades of the carcasses. With "grade and yield," on the other hand, a feeder is offered a base price for choice and Yield Grades 2 and 3 carcasses of a particular weight. Price adjustments are made for any differences in the actual carcasses in quality, yield grade, and weight from that prescribed in the offer.

51Gaarder (1972) reports a quite different pattern of slaughter cattle sales in South
order buyers and size-of-feedlot is inverse.53

Slaughter cattle are sold as weighed on feedlot scales by 13\% of the reporting feedlots. A direct and statistically significant relationship exists between this practice and size-of-feedlot: 5\% for "small" and 60\% for "large" feedlots (Fig 24). About 90\% of the reporting feedlots indicated that they sell their slaughter cattle on the basis of buyers' scales.

53Van Arsdall and Nelson (1983) indicate the "largest" farmer feedlots in the Midwest to sell a much above-average percentage (81\%) of their slaughter cattle directly to packers and those with the "fewest cattle" to extensively use terminal and auction markets.

Fifty-three percent of those who sell slaughter cattle on the basis of feedlot scale weights indicated receiving a 3\% "pencil shrink." The next most common "pencil shrink" is 4\% (29\% of feedlots), followed by 2\% (12\% of feedlots) and 3.5\% (6\% of feedlots).54

Of the reporting feedlots, 17\% indicated the use of futures markets (hedging), 15\% contracting for future delivery (forward contracts), and 12\% the options market.55 Only one feedlot (0.8\%) sells all its slaughter cattle through any one of these means.

By far the most common situation, however, is for feedlots to make no use of these marketing tools, as illustrated by the following percentages of feedlots who sell no cattle via these means: 82\% hedging, 86\% forward contracting, and 91\% options market.

Generally positive and statistically significant relationships exist between the use of both hedging and forward contracting and size-of-feedlot (Fig 25). For example, 67\% and 33\% of the "large" feedlots use hedging and forward contracts, respectively. On the other hand, no "small" feedlots use either of these tools—a likely reason being that they individually have too few cattle to fill a futures contract.

Of the 22 feedlots (15\% of all feedlots) that custom feed cattle,56 16

54Schroeder and Blair (1989) report the most common pencil shrink in surveyed custom feedlots in Kansas to be 4\%.

55In a report several years ago, Van Arsdall and Nelson (1983) report 2\% of farmer feedlots in the Midwest to hedge their slaughter cattle on the futures market and 1\% to forward price their cattle. Murra (personal communication, May 1990) states that our study's reported use of these marketing tools is greater than that generally in South Dakota.

56Far higher percentages of feedlots are reported to custom feed cattle in other states: 73\% in Colorado (Madsen and Gee 1986) and 83\% in Texas (Dietrich et al 1985).
reported that marketing decisions are made jointly by the feedlot manager and cattle owner. For 4 feedlots, decisions are made by the cattle owner, for 2 by the feedlot manager, and for 1 by a private consultant.

Market destination of slaughter cattle

Of the total surveyed cattle slaughtered in 1988, 23% were sold in South Dakota, 38% to Nebraska, 25% to Minnesota, 12% to Iowa, and 2% to other states (Colorado, North Dakota, Montana).57 Statistically significant relationships exist between size-of-feedlot and selling in South Dakota, Nebraska, and Minnesota.

The relationship for slaughter cattle sold in South Dakota is inverse, with as many as 84% from "small" feedlots and as few as 15% from "large" feedlots sold in the state (Fig 26). On the other hand, the percentages of slaughter cattle sold in both Nebraska and Minnesota tend to vary directly with size-of-feedlot: 3% from "small" feedlots and 48% from "large" feedlots are sold in Nebraska.

Slightly less than 38% of the reporting feedlots sell all their slaughter cattle in South Dakota. Nearly 8% sell all their cattle in Nebraska, 6% in Iowa, and 2% in Minnesota. On the other hand, the following percentages of feedlots indicate selling no cattle in the following states: 34% South Dakota, 62% Nebraska, 66% Minnesota, and 72% Iowa.

Sources of market information

The most common source of pricing and other market information on fed cattle is radio, with 85% of man-

The use of information sources varies significantly by size-of-feedlot as follows:
A clear, inverse relationship for newspapers: 45% of "small" and no "large" feedlots rely on them;
A generally inverse relationship for radio; and
A clear, direct relationship for electronic communication: 2% of "small" and 70% of "large" feedlots use such electronic sources as Data Transmission Network (DTN) and Dataline (Fig 27).

Dietrich et al (1985), on the other hand, report over 90% of Texas-fed cattle were sold in Texas.

Of the total slaughter cattle exported from South Dakota, Clauson (1983) reports 95% going to Iowa, Minnesota, and Nebraska in 1972 and 94% in 1980. Bau (1987) reports 78% of South Dakota's cattle outshipments in 1985 went to these three states.

Clauson (1983) reports the two most important sources of South Dakota producer information on marketing and purchasing cattle were radio and television, followed by sales bills/reports and local papers.

Fig 26. State in which fed cattle were sold, by size-of-feedlot.

Other feedlot management practices

The following percentages of feedlot managers indicated their use of various additional management practices:

- 64% test feeds for nutrient composition at least once a year;
- 63% have grain storage facilities to take advantage of price drops in purchased feed grains;
- 57% use feed scales to monitor and control feeding rates;
- 35% keep feed records for separate pens of cattle; and
- 21% check cattle weights periodically to track performance.

For all except the fifth practice, direct and statistically significant relationships exist between following the practice and size-of-feedlot (Fig 28).

Feedlot managers formulate cattle rations as follows: 68% by a feed company, 47% by the feedlot man-

Table 15. Sources of price and market information on cattle, by area in South Dakota.

<table>
<thead>
<tr>
<th>Information source</th>
<th>Percent of reporting feedlots, by area</th>
<th>West</th>
<th>North Central</th>
<th>South Central</th>
<th>Northeast</th>
<th>Southeast</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td></td>
<td>75.0</td>
<td>87.5</td>
<td>80.0</td>
<td>77.3</td>
<td>87.7</td>
<td>84.6</td>
</tr>
<tr>
<td>Television</td>
<td></td>
<td>25.0</td>
<td>43.8</td>
<td>55.0</td>
<td>36.4</td>
<td>61.7</td>
<td>53.8</td>
</tr>
<tr>
<td>Newspapers</td>
<td></td>
<td>0</td>
<td>37.5</td>
<td>30.0</td>
<td>27.3</td>
<td>30.9</td>
<td>30.1</td>
</tr>
<tr>
<td>Electronic communication</td>
<td></td>
<td>25.0</td>
<td>18.8</td>
<td>20.0</td>
<td>22.7</td>
<td>18.5</td>
<td>19.6</td>
</tr>
<tr>
<td>Private consultants</td>
<td></td>
<td>75.0</td>
<td>18.8</td>
<td>5.0</td>
<td>22.7</td>
<td>16.1</td>
<td>17.5</td>
</tr>
<tr>
<td>Newsletters</td>
<td></td>
<td>0</td>
<td>18.8</td>
<td>10.0</td>
<td>36.4</td>
<td>13.6</td>
<td>16.8</td>
</tr>
<tr>
<td>Independent market agencies</td>
<td></td>
<td>0</td>
<td>25.0</td>
<td>20.0</td>
<td>4.6</td>
<td>15.9</td>
<td>15.3</td>
</tr>
<tr>
<td>Farm magazines</td>
<td></td>
<td>50.0</td>
<td>0</td>
<td>20.0</td>
<td>13.6</td>
<td>9.9</td>
<td>11.9</td>
</tr>
<tr>
<td>Extension service</td>
<td></td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.6</td>
<td>1.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>

a Since some feedlots use more than one information source, the respective column percentages do not total to 100.

b Other reported sources of information are "brokers", USDA, other feeders, and sales representatives.

c Differences in responses among areas are not statistically significant at the 0.05 level. The most commonly reported electronic communication sources are DTN and Dateline.

d Differences in responses among areas are statistically significant at the 0.05 level. However, 50% of the Chi Square cells have expected counts of less than 5.

e Differences in responses among areas are not statistically significant at the 0.05 level. The most commonly reported newsletters are Pro Farmer and Doanes. Less common newsletters are Cattle Fox, Kiplinger, Anca, FGL, and NCA.
ager, 5% by a private consultant, and 2% by the Extension Service. Ration formulators do not vary significantly with size-of-feedlot except for private consultants ($P < 0.05$). In this case, the relationship is direct, with no "small" feedlots, 4% of "intermediate I" feedlots, 10% of "intermediate II" feedlots, and 20% of "large" feedlots using private consultants to formulate their rations.

Slightly over 21% of the reporting feedlots indicated use of a microcomputer. Use of micros is directly and significantly related to size-of-feedlot: 4% of "small" and 56% of "large" feedlots use micros (Fig 29).

The most common use of micros (61%) is in determining feedlot production costs/profitability (Table 16). The next most common uses are for projecting cattle performance (77%), formulating rations (65%), keeping feed records (65%), and keeping weight gain records (48%).

Variation in management uses of micros among different sizes of feedlots tend to be rather limited, except for "small" feedlots that appear to make relatively more use of micros for determining production costs/profitability and formulating rations and "large" feedlots that appear to make relatively less use of micros in formulating rations.

Nearly 88% of reporting feedlots indicated hiring veterinarians. This is by far the most common outside professional service hired in connection with feedlots. Next most common, however, are consultants for ration formulation (27% of feedlots), legal/accounting matters (22%), and marketing (14%). Of the outside professional services covered in the questionnaire, the least commonly used ones are non-veterinarians for health care (6%) and consultants for overall management of the feedlot (2%).

Hiring of veterinarians does not vary significantly by size-of-feedlot. Clearly direct relationships between size-of-feedlot and the hiring of consultants for both marketing and legal/accounting matters do exist, however (Fig 30). Generally direct

Table 16. Management uses of microcomputers.

<table>
<thead>
<tr>
<th>Management use</th>
<th>Percent of micro-computer-users, by size-of-feedlot, with various management uses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
</tr>
<tr>
<td>Determine production costs/profitability</td>
<td>100.0</td>
</tr>
<tr>
<td>Project cattle performance</td>
<td>50.0</td>
</tr>
<tr>
<td>Formulate rations</td>
<td>100.0</td>
</tr>
<tr>
<td>Keep feed records</td>
<td>0</td>
</tr>
<tr>
<td>Keep weight gain records</td>
<td>0</td>
</tr>
<tr>
<td>Keep medication/health records b</td>
<td>0</td>
</tr>
<tr>
<td>Other c</td>
<td>0</td>
</tr>
</tbody>
</table>

a Since the feedlots make more than one use of microcomputers, the column percentages do not total to 100.

b This is the only management use of microcomputers that is significantly (0.05 level) related to size-of-feedlot.

c Other reported management uses of the computer are "billing", "accounting", and "hedging".
relationships exist between size-of-feedlot and hiring consultants for both ration formulation and overall management of the feedlot.

Readers are encouraged to return to the first section of the report to find the summary and conclusions.

Fig 29. Use of microcomputers as a management tool, by size-of-feedlot.

Fig 30. Use of outside consultants, by size-of-feedlot.
References

CATTLE FEEDER SURVEY
SOUTH DAKOTA STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION

FEEDLOT

1. In what county is your feedlot located? ______________________

2. Which of the following features are part of your feedlot?
 (please check as many as apply)
 - Confinement barn
 - Covered protection from wind and snow
 - Fence windbreak
 - Shelter-belt windbreak
 - Mounds
 - Completely paved with concrete
 - Partially paved with concrete
 - Pollution control facilities (if so, please briefly describe: ______________________)

3. This question concerns the design capacity of your feedlot.
 About how many feet (to the nearest 25) of feed banks do you have at 100% feedlot utilization? _______ feet. Of this total footage, how many feet are designed for feeding from:
 a. One side (fenceline) _______ feet
 b. Two sides (portable) _______ feet

4. On the average during each quarter of 1988, about what percent of this design capacity was actually used?
 - Jan-Mar _______ July-Sept _______
 - Apr-June _______ Oct-Dec _______

5. How does this 1988 utilization generally compare with the typical use of your feedlot over the past 5 years (1984-1988)?
 (please check one)
 - About the same
 - Lower utilization in 1988 than typically in past 5 years
 - Greater utilization in 1988 than typically in past 5 years

FEEDER CATTLE PLACEMENT (in 1988)

6. In 1988, approximately what percentage of the following types of cattle--by each of age, gender, and breed--did you place on feed?
 a. Age
 - Calves (<9 mo) _______
 - Yearlings (10 mo-2yr) _______
 - Cattle >2 yr _______
 - 100%
 b. Gender
 - Steers _______ Heifers _______
 - Cows _______ Bulls _______
 - 100%
 c. Breed
 - Exotic European beef breeds/crosses _______
 - English beef breeds _______
 - Beef-dairy crosses _______
 - Dairy _______
 - 100%

7. For each of steers and heifers in 1988, approximately what percent of the cattle placed on feed were in the following weight ranges?

<table>
<thead>
<tr>
<th>Pounds</th>
<th>Steers</th>
<th>Heifers</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 400</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>400-499</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>500-599</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>600-699</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>700-799</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>800-899</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>over 900</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

8. Approximately what percentage of the cattle you placed on feed in 1988 originated from each of the following places?
 - South Dakota: raised on your own farm/ranch _______
 - South Dakota: not raised on your farm/ranch _______
 - Other states (please specify which states) _______
 - 100%

9. Approximately what percentage of the cattle you fed in 1988 were placed on feed during each of the following quarters?
 - Jan-Mar _______ July-Sept _______
 - Apr-June _______ Oct-Dec 100%

10. Do you use the futures market in buying feeders? __yes __no

11. Of the calves you purchased to place on feed in 1988, about what percentage was pre-conditioned (S.D. Green Tag Program) __%
12. Of the non-home raised calves you placed on feed in 1988, about what percentage was purchased in each of the following ways?

- Purchased private treaty from cow-calf producers (if any, were these cattle mixed with other cattle in your feedlot? __ yes __ no)
- Purchased at on-ranch auction
- Purchased through an order buyer
- Purchased at a sale barn
- Custom fed for someone else
- Other (please specify: ________________________) 100%

13. Who owns the cattle in your feedlot? (please show approximate percentages)

- Feedlot owner
- Feedlot owner in partnership with someone else
- Rancher(s) that raised the feeders
- Packer or retailer
- Outside investors
- Other (please specify: ________________________) 100%

FEEDING PRACTICES

14. For about how many days do you typically feed each of the following types of cattle? (please show 'n/a' if not applicable)

- Steer calves __
- Heifer calves __
- Yrlg steers __
- Yrlg heifers __
- Cull bulls __
- Cull cows __

15. To what targeted daily rates of gain (nearest 0.1 lb/day) and final finishing weights (nearest 25 lb) do you most commonly feed each of the following types of cattle (please show 'n/a' if not applicable)

<table>
<thead>
<tr>
<th>Daily rate of gain</th>
<th>Finish weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growing</td>
<td>Finishing</td>
</tr>
<tr>
<td>Steers</td>
<td>___________</td>
</tr>
<tr>
<td>Heifers</td>
<td>___________</td>
</tr>
<tr>
<td>Cull cows</td>
<td>n/a</td>
</tr>
<tr>
<td>Cull bulls</td>
<td>n/a</td>
</tr>
</tbody>
</table>

16. This question concerns the types of feed you most commonly feed your growing and finishing cattle. Please show below the approximate percentages of grain and roughage (rough dry matter basis) that you feed, on the average, over each of the growing and finishing periods.

Percentages of
Grain Roughage Total
Growing period __ __ 100%
Finishing period __ __ 100%

a. What is the form of the grain that you feed? (please check one or both) __ Dry __ High moisture

b. What roughages do you feed? (please check as many as apply)

- Hay
- Grazing pasture
- Corn silage
- Grazing crop residues
- Haylage
- Other (please specify: __________)

17. About what percent of each of the following types of feed used in your feedlot do you typically raise on your farm (rather than purchase it)?

- Dry grain
- Corn silage
- High moisture grain
- Haylage
- Hay

18. Of the grains you feed, about what percent is represented by each of the following grains?

- Corn __ Oats __
- Barley __ Wheat __
- Milo __ Other (please specify: __________) 100%

19. In what form(s) is the grain that you feed your cattle? (please check as many as apply)

- Whole kernel
- Cracked
- Steam flaked
- Ground
- Reconstituted
- Other (please specify: __________)

20. In what form(s) is the hay that you feed your cattle? (please check as many as apply)

- Unprocessed
- Ground
- Pelleted
- Other (please specify: __________)

21. In what form(s) are the protein supplements that you feed your cattle (please check one or both)

- Dry
- Liquid
22. What feed additives and growth promotants do you generally use, and is the use continuous over the feeding period or at selected times only? (please check one blank for each additive or promotant)

<table>
<thead>
<tr>
<th>Additive or promotant</th>
<th>Use continuously</th>
<th>Use at selected times only</th>
<th>Not used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics at sub-therapeutic levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotics at therapeutic levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth implants (e.g., Ralgro, Compudose, Synovex)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumen stimulants (e.g., Rumensin, Bovatec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccidiosis control (e.g., Deccox, Bovatec, Amprol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (please specify:)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MARKETING PRACTICES (in 1988)

23. By which means did you sell your slaughter cattle in 1988? (please check as many as apply)

- Direct to packer
- Order buyer at your farm
 - Liveweight
 - Grade and yield
 - "In the beef"
 - Public stockyards
 - Direct to consumer
 - Other (please specify: ____________)

24. On whose scales is the sale weight of your slaughter animals determined? (please check one or both)

- Feedlot scales (if so, what is the most common pencil shrink? ___%)
- Buyers' scales

25. About what percentages of your slaughter cattle in 1988 were priced using the following additional tools? (please show "0" if none)

- Contracting for future delivery (forward contracts)
- Futures market (hedging)
- Options market
- Other (please specify: ____________)

26. About what percentage of your slaughter cattle in 1988 did you sell in the following states?

- South Dakota
- Other states (please specify which states)
- Nebraska
- Iowa
- Minnesota

27. Do you custom feed cattle? ___ yes ___ no. If yes, who makes the marketing decisions on these custom fed cattle? (please check as many as apply)

- You
- You and cattle owner
- Private consultant
- Other (please specify: ____________)

28. Please check your 2 or 3 most important sources of pricing and other market information on fed cattle.

- Radio
- Newspapers
- Television
- Extension service
- Private consultants
- Independent market agencies
- Farm magazines (please specify: ____________)
- Newsletters (please specify: ____________)
- Electronic communication (please specify: ____________)
- Other (please specify: ____________)

OTHER MANAGEMENT PRACTICES

29. Please place a check before each of the practices that you follow:

- Feeds are tested for nutrient composition at least once a year
- Have grain storage facilities to take advantage of price drops in purchased feed grains
- Feed records are kept for separate pens of cattle
- Cattle weights are checked periodically to track performance
- Feed scales are used to monitor and control feeding rates

30. Who formulates your rations? (please check as many as apply)

- Feedlot
- Feed company
- Extension service
- Private consultant
- Other (please specify: ____________)

38
31. Do you use a microcomputer as a management tool? __ yes __ no. If yes, for what purposes(s) do you use the micro? (please check as many as apply)
 - Formulate rations
 - Keep feed records
 - Keep medicine/health records
 - Keep weight gain records
 - Project cattle performance
 - Determine production costs/profitability
 - Other (please specify: __)
32. What types of outside professional services do you hire in connection with your feedlot? (please check as many as apply)
 - Veterinarians for health care
 - Other consultants for health care
 - Consultants for ration formulation
 - Consultants on marketing
 - Consultants for legal/accounting matters
 - Consultants for the overall management of the feedlot
 - Other (please specify: __)
33. Approximately what percentage of the labor required in your feedlot operation is provided by the following sources?
 - Family labor
 - Hired labor
 - 100%

FEEDLOT MANAGER

34. How much schooling have you completed? (please check the highest level attained)
 - Elementary School
 - High School
 - Vo Tech School
 - University Bachelors degree
 - Beyond Bachelors degree
35. Under what type of organization is your feedlot operated? (please check one)
 - A single-family proprietorship
 - A partnership
 - A family held corporation
 - Other (please specify: __)
36. Approximately what percent of your gross farm income over the past five years has typically been from the sale of slaughter cattle? __ %
37. In 1988, what were the approximate gross farm sales from your farm operation? (please check one)
 - Less than $100,000
 - $100,000-$249,999
 - $250,000-$499,999
 - $500,000-$1,000,000
 - More than $1,000,000
38. What are the sources of your borrowed operating and long-term capital used in your feedlot? (for each type of capital, please check as many as apply)
<table>
<thead>
<tr>
<th>Operating capital</th>
<th>Long-term capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Credit Services</td>
<td>.__</td>
</tr>
<tr>
<td>FHA</td>
<td>.__</td>
</tr>
<tr>
<td>In-state commercial bank</td>
<td>.__</td>
</tr>
<tr>
<td>Out-of-state commercial bank</td>
<td>.__</td>
</tr>
<tr>
<td>Insurance company</td>
<td>.__</td>
</tr>
<tr>
<td>Feed supplier</td>
<td>.__</td>
</tr>
<tr>
<td>Packers</td>
<td>.__</td>
</tr>
<tr>
<td>Private individuals</td>
<td>.__</td>
</tr>
<tr>
<td>Private lender groups</td>
<td>.__</td>
</tr>
<tr>
<td>Other (please specify: ________________________)</td>
<td>.__</td>
</tr>
</tbody>
</table>
39. Please share any specific suggestions that you may have concerning extension and research needs on cattle feeding.
40. Thank you very much for taking the time to complete this questionnaire. If you would like to receive a copy of the results of this survey, please check below and a copy will be sent to you. __
 Annex B

Procedures for computing "head-day" and "feedlot" average percentages.

Two types of averages for various feedlot characteristics and management practices were calculated: (1) "head-day" averages, in which the unit of analysis was the estimated average number of cattle on feed in each feedlot during the four quarters of 1988, and (2) "feedlot" averages, in which the unit of analysis was the individual feedlot. Procedures for calculating these two types of averages are illustrated with an example in which the average percentage of calves for two feedlot managers with assumed 80% and 60% calves (versus older cattle), respectively, is calculated.

<table>
<thead>
<tr>
<th>Feedlot A</th>
<th>Feedlot B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent calves</td>
<td>80</td>
</tr>
<tr>
<td>Design capacity (head)</td>
<td>50</td>
</tr>
<tr>
<td>Percent utilization</td>
<td></td>
</tr>
<tr>
<td>Jan-Mar</td>
<td>80</td>
</tr>
<tr>
<td>Apr-June</td>
<td>80</td>
</tr>
<tr>
<td>Jul-Sept</td>
<td>60</td>
</tr>
<tr>
<td>Oct-Dec</td>
<td>100</td>
</tr>
</tbody>
</table>

1. In computing the "head-day" average, the first step is to determine the average number of cattle on feed in each feedlot during the four quarters of 1988. For Feedlot A, the numbers of cattle during the respective quarters are 40, 40, 30, and 50, or an average of 40 for the year. For Feedlot B, the corresponding figures are 600, 600, 200, and 1,000, or an average of 600 for the year. Thus, the estimated total "average" (across quarters) number of cattle on feed in the two feedlots in 1988 is 640.

The second step in computing the "head-day" average is to determine a "weighted average" percentage of calves for the two feedlots. To do this, the respective percentages of calves in the two feedlots (80% and 60% for A and B, respectively) are weighted by the estimated average number of cattle on feed in 1988 in the respective feedlots (40 and 600 for A and B, respectively). The weighted "head-day" average percentage of calves is:

\[
0.80 \times 40 \text{ head} + 0.60 \times 600 \text{ head} = 32 + 360 = 0.6125 \text{ or } 61.3\%.
\]

\[
\frac{640 \text{ head in total}}{640} = 0.6125 = 61.3\%.
\]

The analogous "head-day" average calculated for the 145 responding feedlots can be interpreted to represent the percent of the total surveyed cattle in South Dakota that are calves.

2. In computing the "feedlot" average, i.e., in computing an average with the individual feedlot as the unit of analysis, the average percentage of calves fed by these two feedlots is simply the average of 80% and 60%, or 70%.
The analogous "feedlot" average for the 145 responding feedlots can be interpreted as the average percentage of cattle fed in the reporting feedlots that are calves. The "feedlot" average—with equal weight to each of the surveyed feedlots—provides a picture of the average relative importance of calves in the state's individual feedlots. The "head-day" average, on the other hand, provides a picture of the relative importance of calves in the state's feedlots collectively.

The two averages are used in the report as follows. The state-level data reported in the text are "head-day" averages for all the cattle covered in the survey. The average values for the various size-of-feedlot categories (reported in the figures), on the other hand, are "feedlot" averages. By using "feedlot" averages, in which the unit of analysis is the individual feedlot, we were able to employ statistical tests to determine whether the "feedlot" averages for the feedlots comprising each of the respective size-of-feedlot categories differed significantly from one another. If "head-day" data had been used in the size-of-feedlot analysis, the testing of the statistical significance of the values for particular variables among size-of-feedlot categories would have been precluded.