
South Dakota State University South Dakota State University 

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional 

Repository and Information Exchange Repository and Information Exchange 

Electronic Theses and Dissertations 

2023 

Adaptive Learning Gain in Asset Pricing Adaptive Learning Gain in Asset Pricing 

Sedealy Juste Lokossou 

Follow this and additional works at: https://openprairie.sdstate.edu/etd2 

 Part of the Behavioral Economics Commons, and the Finance and Financial Management Commons 

https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd2
https://openprairie.sdstate.edu/etd2?utm_source=openprairie.sdstate.edu%2Fetd2%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/341?utm_source=openprairie.sdstate.edu%2Fetd2%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=openprairie.sdstate.edu%2Fetd2%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages


ADAPTIVE LEARNING GAIN IN ASSET

PRICING

by

Juste Lokossou

A thesis submitted in partial fulfilment of the requirements for the

Master of Science

Major in Economics

South Dakota State University

2023



ii 

THESIS ACCEPTANCE PAGE 

This thesis is approved as a creditable and independent investigation by a candidate for 

the master’s degree and is acceptable for meeting the thesis requirements for this degree.  

Acceptance of this does not imply that the conclusions reached by the candidate are 

necessarily the conclusions of the major department. 

 Advisor Date 

    Date 

Nicole Lounsbery, PhD  

Director, Graduate School   Date 

Juste Lokossou

Zhiguang Wang

Joseph Santos

Director



iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Zhiguang Wang, for his 
unwavering support and guidance throughout my research journey in Finance. His passion 
and excellence have inspired me to tackle challenging and relevant research topics in asset 
pricing.

I am also grateful to my committee members, Dr. Nacasius Ujah, Dr. David Davis, and Dr. 
Gary Hatfield, for their invaluable insights and expertise, which have greatly enhanced the 
quality of this paper. Their guidance and feedback have been instrumental in shaping this 
research.

I am deeply appreciative to my mentors, Elizabeth Asiedu and Kagba Kousse, for their valu-
able insights and advice. I would like to extend my love and gratitude to my parents, Rene 
and Cica, whose unwavering support and encouragement have been instrumental in my 
academic pursuits.

I am eternally grateful for the extensive resources and funding provided by the Ness School 
of Management and Economics, including funding for the valuable data science program 
that have enhanced my research.

Lastly, I would like to express my appreciation to all the faculty and administration members 
who have contributed to my growth and learning. Your support and dedication will have a 
lasting impact on my academic and personal development.



iv

ii

iii

iv

v

v

CONTENTS

SIGNATURE 

ACKNOWLEDGEMENTS 

CONTENTS

LIST OF FIGURES 

LIST OF TABLES 

ABSTRACT vi

1 INTRODUCTION 1

2 RELATED LITERATURE 4

3 ADAPTIVE LEARNING GAINS 8

4 EMPIRICAL REGRESSIONS 14
4.1 Return predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Data and variable computations . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.1 Definition of the variables . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 Adjusting for stock-buyback . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Econometric results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 ASSET PRICING MODEL 23
5.1 Consumption in Asset Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Predictive Distribution of Future Consumption Growth Given Current Infor-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Influence of Current Adjusted Expectations on Future Prediction Errors . . . 29
5.4 Asset Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Informative prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.7 Stochastic Discount Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.7.1 Model Solution for ρ = 1 . . . . . . . . . . . . . . . . . . . . . . . . 37
5.8 Evaluation of Consumption-Based Assets Claims . . . . . . . . . . . . . . . 37
5.9 Pricing Dynamics of Dividend Strips . . . . . . . . . . . . . . . . . . . . . . 39

6 CONCLUSION 45

BIBLIOGRAPHY 47

APPENDICES



v

A Deriving the innovation return . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B Derivation of the posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
C Deriving the expression for the standardized unexpected endowment growth 54
D Proving the analytical expressions of the shocks variances σ2

ξ and σ2
ζ . . . . 55

E Proving that K(t), h(t), and σ2
ξ (t) result in a time-t predictive distribution of

∆ct+j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
F Determination of Values ν1 and ν2 . . . . . . . . . . . . . . . . . . . . . . . 57

LIST OF FIGURES

3.1 Learning Gain Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LIST OF TABLES

4.1 Variable Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Predicting Returns with Experienced Real Growth . . . . . . . . . . . . . . 22



vi

ABSTRACT

ADAPTIVE LEARNING GAIN IN ASSET PRICING

JUSTE LOKOSSOU

2023

This paper delves into the complexities of asset pricing, emphasizing the need to go beyond

prevailing paradigms and constant learning gain assumptions. We examine the influence

of personal experiences, adaptive learning processes, and subjective return expectations

on asset pricing. By incorporating the concept of time-varying learning gain, we provide a

more realistic portrayal of asset pricing.

Empirical analysis reveals a consistent negative correlation between experienced real pay-

out growth and subsequent returns, indicating counter-cyclical behavior. Our findings also

support the mean-reversion hypothesis in stock returns, although caution is needed due to

some scenarios lacking statistical significance.

Theoretical exploration uncovers that higher uncertainty or variability compels investors to

seek additional compensation, thus elevating the equity risk premium. Moreover, the infor-

mation structure does not form a filtration, leading to no convergence to a specific value in

the long run. Agents perceive future increments as negatively serially correlated but lack

the memory to effectively exploit this correlation for forecasting. Consequently, the Law of

Iterated Expectations does not hold. We propose the "resale" valuation method as ideal for

agents with adaptive learning gains.

These findings contribute to an innovative asset pricing model with adaptive learning gains,

enhancing our understanding of market dynamics. While this study does not provide cal-

ibration or validation, we outline the model’s theoretical foundations and implications for
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future research. Our work adds to the evolving landscape of asset pricing theory, highlight-

ing the significance of adaptive learning in capturing complex dynamics.
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Chapter 1

INTRODUCTION

The 1970s and 2008 economic crises have propelled behavioral approaches into the main-

stream, driven by the lack of viable alternatives Malmendier and Wachter (2021). While it 

is a fact that early critiques of utility theory and rational expectations had little impact on 

the dominant status of these models, behavioral models gained traction due to empirical 

evidence challenging Bayesian updating and rational expectations.

The notion of rationality holds a crucial position in economics, particularly in asset pric-

ing. It assumes that individuals, as rational agents, are mean-variance optimiser, possess 

complete knowledge of data-generating probabilities and have perfect information about all 

relevant parameters, including the utility function. However, this idealized assumption can 

be seen as delusional, as it overlooks cognitive biases, emotional factors (fear, greed, over-

confidence, l oss aversion, herding b ehavior, anchoring b ias, r egret aversion), and imper-

fect information that affect decision-making. Recognizing these deviations from rationality 

is vital for understanding the complexities of asset pricing and developing more accurate 

economic models. By acknowledging the limitations individuals face in acquiring and pro-

cessing information, we gain a more nuanced understanding of decision-making behavior 

that goes beyond strict notions of rationality.

Although the diagnostic is effective, and novel studies such as those by Nagel and Xu (2019) 

and Wang (2021) have attempted to incorporate lifetime experience through learning gains 

in asset pricing models, to our knowledge, none of these models have yet considered an
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analytical formalism of a subjective model with adaptive learning gain. All the proposed

models have used a constant learning gain, typically 0.018, as a proxy for the learning dy-

namics of individual experience. While this process aligns with the psychological concept of

availability bias, which suggests that individuals are biased towards recent or readily avail-

able information, we consider this approach to add an additional layer of assumption to the

problem at hand. In other words, we believe that utilizing the full potential of the learning

gain series is likely to reveal the true dynamics of pricing an asset beyond the confines of

assumed constraints.

A central concern is that some policy rules can lead to indeterminacy of equilibria, resulting

in multiple rational expectations (RE) solutions, a notion supported by Bernanke and Wood-

ford (1997), Woodford (1999), and Svensson and Woodford (2003). Another key problem is

the questionable performance of these rules if private agents follow adaptive learning rules

rather than rational expectations. Bullard and Mitra (2000) have noted that the stability of

Taylor-type rules cannot be assumed if agents follow adaptive learning rules, extending

Howitt (1992) warning about the potential instability of interest rate pegging and related

rules under learning conditions.

The collective implications of the studies by Campbell and Cochrane (1999), Barberis et al.

(2001) , Evans and Honkapohja (2001), Malmendier and Nagel (2016), Nagel and Xu

(2019), and Wang (2021) have paved the way for this study to offer a more holistic approach

to understanding asset pricing dynamics. This is achieved by considering the importance of

individual’s personal experiences, adaptive learning processes, and their subjective return

expectations in influencing asset pricing.

Some studies such as Wang (2021) have primarily focused on a set of market participants

such as analysts. This paper while using common shares and stocks traded on NYSE,

AMEX, and NASDAQ is more inclusive, considering a broader set of market participants.

This distinction provides a richer context to our study, enabling a more comprehensive un-
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derstanding of asset pricing dynamics, accounting for the diversity of market participants.

Our research addresses a gap in the existing literature by incorporating the concept of

adaptive learning gain into asset pricing dynamics. This variation adds an additional layer

of complexity to the learning behavior of agents, thus providing a more realistic representa-

tion of asset pricing. Additionally, by considering a broader spectrum of market participants,

our study allows for a deeper understanding of market dynamics.

This paper unfolds over seven chapters. In the first, we introduce the global objective of this

research paper. In the second chapter, we survey the established literature on subjective

beliefs, highlighting unexplored areas in the field. In the subsequent section, we explore

the process of deriving the adaptive learning gains. Later, in chapter four, we delve into

empirical hypotheses concerning asset pricing with adaptive learning gains.

In the fifth chapter, our focus shifts to the formulation of a new asset pricing model, which

leverages adaptive learning gains. We articulate its theoretical basis and implications, while

noting that this work doesn’t extend to the model’s calibration or validation - an essential

task we reserve for a future study.

Moving forward, in chapter six, we present a discussion of our findings and their implica-

tions, underscoring how our adaptable learning gains model can contribute to the evolving

landscape of asset pricing theory. The paper concludes with chapter seven where we

present the appendix.
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Chapter 2

RELATED LITERATURE

In the realm of finance, asset p ricing s tands as a  dynamic and forward-thinking process, 

wielding significance for both individual investors and institutions alike. Its fundamental pur-

pose lies in deciphering the drivers that propel asset prices. An amalgamation of factors, 

such as risk levels, anticipated returns, and the timing of their realization, interplay in the 

valuation of assets. Additionally, market conditions, available information, and regulatory 

influences exert their force, further shaping the price dynamics.

Moving forward, the perpetual discussion in asset pricing centers around equity risk premi-

ums’ cyclical behavior. Models like the Capital Asset Pricing Model (CAPM) and the Black-

Scholes model typically assume investor rationality. However, Campbell and Cochrane

(1999) introduced a time-varying ’habit’ into the consumption-based asset pricing model, 

proposing that during economic downturns, as consumption nears this habit, the decrease 

in asset prices and increase in expected returns occur. Interestingly, although their ap-

proach doesn’t fully embrace behavioral finance, i t does serve as a  t ransition f rom purely 

rational models to a more behavioral understanding of asset pricing.

Similarly, in their 2001 paper, Barberis, Huang, and Santos critique the traditional consumption-

based model for explaining aggregate stock market behavior, stating it does not fully ac-

count for observed high market volatility, high average returns, and low correlation with 

consumption growth. Instead, they propose a model where investors derive utility from fluc-

tuations in their financial wealth as well as from consumption. This model incorporates two
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crucial aspects: loss aversion, meaning investors are more sensitive to losses than gains,

and a dependency of this loss aversion on prior investment performance.

Continuing on this theme, the introduction of variable risk aversion, influenced by past mar-

ket movements, helps to generate high mean, high volatility, and low correlation of stock

returns with consumption growth, while maintaining a low, stable riskless interest rate. It

also explains the significant equity premium required to convince the loss-averse investor

to hold stocks. This perspective, influenced by Kahneman and Tversky’s prospect theory

and psychological literature on risk-taking behavior is tightly linked to the position we defend

in this paper as the authors stress that while loss aversion is vital in explaining the equity

premium, the impact of prior outcomes on risk aversion also plays a critical role. Crucially,

ignoring these prior outcomes would diminish an important source of stock price volatility,

leading to less risk and a lower equity premium. We believe that agents update their future

belief upon the formation of their priors.

On another front, Evans and Honkapohja (2001) challenge the oversimplification of ratio-

nal expectations in monetary policy. They propose a rule that incorporates private sector

expectations and economic structure, ensuring stability and convergence to rational expec-

tations. Their findings support considering various indicators, given the potential destabiliz-

ing impact of deviations from rational expectations. The findings ofEvans and Honkapohja

(2001) establish a direct connection with our study. Their emphasis on the role of adaptive

learning in economic behavior and monetary policy formulation provides a robust theoret-

ical foundation for our exploration of heterogeneity in the agents’ expectations, supporting

the notion that individuals’ inflation expectations are significantly shaped by their personal

experiences and adaptive learning processes.

Additionally, it is fair to say that our analysis of how agents perceive how asset pricing

evolves heavily borrow from Malmendier and Nagel (2016) study that investigates how in-

dividuals form their expectations about future inflation, a subject critical to monetary policy

and financial decisions. The authors propose a model where individuals’ expectations are
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heavily influenced by personal experiences, particularly inflation rates they have encoun-

tered during their lifetime.

Following this line of thought, the model is built on adaptive learning algorithms, but with

modifications to account for "learning from experience." That is, inflation experiences have

more influence on people’s forecasts than other historical data. Younger individuals react

more strongly to unexpected inflation due to their shorter history of experiences, leading to

differing inflation outlooks across generations. On the contrary to our position, the study

posits that learning from experience provides a microfoundation for constant-gain learning

and offers an alternative explanation for why older data is often disregarded - a phenomenon

usually attributed to structural shifts and parameter drift. This process aligns with the psy-

chological concept of availability bias, where individuals are biased towards information that

is recent or readily available. However, as shown by Wang (2021) quoted by Malmendier

and Wachter (2021) with the first model of memory in economics, “the long-term effects of

past experiences are front and center of the model setup”.

Progressing further, building on Malmendier and Nagel (2011) and Malmendier and Nagel

(2016), Nagel and Xu (2019) offer empirical findings, introducing novel insights about eq-

uity market returns and subjective stock return expectations. They propose a reduced-form

framework incorporating constant-gain learning about dividend growth rates, leading to eq-

uity premium being counter-cyclical under objective expectations. The belief-updating rule’s

gain parameter significantly influences the volatility, persistence of the price-dividend ratio,

and return predictability strength. In the final analysis, Malmendier and Nagel’s research

indicates a significant role for "learning from experience" in shaping expectations, provid-

ing a new perspective to understand the dispersion in inflation expectations documented in

previous studies.

In contrast toNagel and Xu (2019), our study builds on the same theoretical framework but

introduces a time-varying learning gain instead of a constant one. This significant departure

from their approach potentially provides a more nuanced understanding of asset pricing dy-
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namics. Our model, by allowing the learning gain to evolve over time, captures changes in

agents’ learning behavior more accurately, thus representing real-world asset pricing more

realistically. This work enhances the existing literature by offering a more flexible approach

to learning models in asset pricing.

Lastly, Wang (2021) examines subjective return expectations and their impact on invest-

ment decisions. The study reveals differences between objective and subjective expecta-

tions, with some investors being extrapolative and others contrarian. Extrapolative investors

form their expectations about future asset prices based on recent price trends while con-

trarian investors tend to go against the prevailing market trends. By incorporating imperfect

predictors and the Kalman Filter, the author explains the heterogeneity in return expecta-

tions. Understanding the role of subjective beliefs has implications for investor behavior

and model refinement. Recognizing this heterogeneity has provided insight into different

patterns of market behavior and help us refine our model. In the subsequent chapter, we

delve into the intricacies of deriving the adaptive learning gains, shedding light on the pro-

cess that underpins the core of our research.
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Chapter 3

ADAPTIVE LEARNING GAINS

In the context of this research, adaptive learning refers to a dynamic model of economic be-

havior where agents form expectations based on a continually updated set of information, 

and consequently, revise their predictions or decisions over time in response to new data 

and outcomes. This approach contrasts with models assuming rational expectations, where 

agents are assumed to know the true model of the economy and make decisions accord-

ingly. Here, adaptive learning acknowledges that investors do not possess perfect foresight 

and are constantly learning from their experiences and the evolving economic environment. 

They adjust their expectations and behavior based on the observed performance of assets, 

market trends, and economic indicators, thus creating a feedback loop between their ex-

pectations and actual market outcomes.

Adaptive learning thereby allows for a more realistic representation of investor behavior in 

asset pricing models, capturing the dynamism and uncertainty inherent in financial markets. 

Furthermore, it refers to the weight or significance investors assign to new i nformation. It 

reflects how quickly or slowly they alter their expectations in response to changing market 

conditions, hence playing a critical role in the formation of asset prices.

Nagel and Xu (2019), presents a different approach to modeling learning behavior in fi-

nancial markets when perfect rationality is not assumed. In their framework, the learning 

gain is assumed to be constant, implying that investors assign a fixed weight to new infor-

mation regardless of market conditions or their past experiences. This model simplifies the
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learning process, allowing for more tractable computations and predictions. However, it pre-

supposes that investors’ learning adaptability is invariant over time, which may not always

hold true in reality. In contrast, the "adaptive learning gain" model in this project recognizes

that the weight investors assign to new information can fluctuate over time. This variation

depends on numerous factors, including the nature of the information, its relevance to the

investor’s portfolio, the investor’s confidence in their existing predictions, and the general

economic environment.

As such, the adaptive learning gain model is more responsive and flexible, offering a more

realistic depiction of investor behavior. It allows for variations in learning gain based on both

the external economic environment and the individual’s internal decision-making process,

hence providing a more nuanced understanding of asset price dynamics.

Adaptive learning gains form the foundation for the rest of this master’s thesis, making it a

cornerstone endeavor. In Figure 3.1, we visualize the evolution of the adaptive learning gain

over time, It contrasts actual average survey expectations with the predictions derived from

three distinct forecasting approaches: Learning-from-Experience Forecasts, Constant-Gain

Forecasts, and Sticky Information Forecasts. This comparative perspective illustrates the

dynamic nature of adaptive learning gain and underscores its potential in contributing to

more nuanced asset pricing models. Its examination reveals the pronounced volatility of

the learning gain time series. This evidence points towards the complexity and dynamism

inherent in the learning process. Consequently, the proposition by Nagel and Xu (2019) to

collapse this extensive dynamism into a singular value of 0.018 appears overly simplistic

and potentially detached from the observed reality. Thus, our task in this chapter is to ex-

plore a more nuanced approach that captures the inherent fluctuations and idiosyncrasies

of adaptive learning gains.

In this research, our derivation of the learning gains is heavily influenced by the framework

established in Malmendier and Nagel (2016). In their work, the authors model the perceived
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Figure 3.1: Learning Gain Over Time. This is reproduced from the data and algorithm shared by
Nagel and Xu (2019).

law of motion that individuals are attempting to estimate as an autoregressive process of

order one (AR(1)), given by:

πt+1 = α + ϕπt + ηt+1. (3.1)

This process represents the inflation rate at time t + 1 as a function of a constant term α,

the previous period’s inflation rate πt weighted by a coefficient ϕ, and a random error term

ηt+1.

In order to estimate the parameters b ≡ (α, ϕ)′, individuals use a recursive algorithm based

on past data, according to the following rules:

bt,s = bt−1,s + γt,sR
−1
t,s xt−1(πt − b′t−1,sxt−1), (3.2)

Rt,s = Rt−1,s + γt,s(xt−1x
′
t−1 −Rt−1,s) (3.3)
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where xt ≡ (1, πt)
′.

• R represents a covariance matrix used in the estimation process. It evolves over time

based on past data and the learning gains (γ). The matrix R reflects the uncertainty

or volatility in the parameter estimates.

• xt−1 is a vector containing the relevant variables used for estimation at time t− 1. In

this case, it is a 2-dimensional vector containing a constant term (1) and the inflation

rate at time t− 1 (πt−1).

• bt,s is a vector containing the estimated parameters at time t for cohort s. In this case,

it is a 2-dimensional vector containing the estimates for the constant term (α) and the

coefficient for the previous period’s inflation rate (ϕ). The subscript t indicates the

time period, and the subscript s represents the cohort or group of individuals.

Equations 3.2 and 3.3 describe a recursive learning process where individuals use past

data to update their parameter estimates for the autoregressive inflation process (3.1). The

learning gains (γ) determine how much weight individuals assign to the current inflation

surprise in updating their parameter estimates.

The recursion starts at some point in the distant past, and the sequence of gains γt,s de-

termines how much each cohort s updates their parameter estimates in response to an

inflation surprise at time t. R represents the covariance matrix of the parameter estimates

b, which is being updated over time as new data becomes available.

The learning gain γt,s, represents a departure from the standard adaptive learning frame-

work, where it typically decreases over time as more data becomes available, implying that

agents’ expectations become more stable. However, in our model, following Malmendier

and Nagel (2016), we let the gain γ depend on the age t − s of the members of cohort s,

leading to a decreasing-gain specification as follows:

γt,s =


θ

t−s
if t− s ≥ θ

1 if t− s < θ,

(3.4)



12

Here, θ is a parameter determining the rate of decrease of the learning gain. This specifica-

tion captures the idea that older members of the cohort, having seen more inflation cycles,

are less likely to significantly change their beliefs in response to new data. This approach

provides a robust framework for analyzing the dynamics of learning and expectation forma-

tion in the context of inflation dynamics.

In our research, we propose to utilize a time-adaptable learning gain parameter in the adap-

tive learning framework, a modification that promises to shed more light on how learning

behavior evolves over time and how it might adapt to the changing macroeconomic environ-

ment. The learning gain parameter in our model, denoted as νt, adapts with time according

to the relation

νt = ν1 + (ν2 − ν1)g(t), (3.5)

where ν1 and ν2 are derived from a unique process.

In this equation, ν1 and ν2 represent the lower and upper bound of the learning gain, respec-

tively. They are computed as the minimum and maximum of the estimated gain parameters

(γ1 and γ2) obtained from an econometric analysis of historical inflation data. To ensure

robustness and eliminate outliers, the gain parameters are estimated within rolling windows

of data, with structural breaks identified through a breakpoint analysis. The parameter g(t)

in the equation is a time function, which may capture various temporal influences on the

learning behavior, including demographic shifts, structural changes in the economy, or pol-

icy regime changes. Specifically, we use a linear regression model with breakpoints in

order to detect structural breaks within our time series data. The analysis was focused on

the learning gain time series, which was calculated using the learning gain algorithm from

Nagel and Xu (2019), spanning from 1953 to 2009, resulting in 11250 observations. The

Chow Test served as the technique underpinning our analysis.

In the linear regression model, the learning gain time series functioned as the response

variable, with a constant term serving as the explanatory variable. Upon applying this tech-
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nique, we arrived at values of ν1 = 0.01858007 and ν2 = 0.08162585. These values are

used throughout the paper. Appendix F shows in detail the calculation of these values.

The introduction of this adaptive learning gain is an innovative addition to the adaptive

learning framework. It provides a tool to capture possible non-linearity and time-dependent

shifts in learning behavior, thereby enhancing the richness and the accuracy of the model’s

predictions. Furthermore, it allows for a more nuanced understanding of how different co-

horts adapt their expectations to changing economic conditions. As such, our approach

contributes to the current economic literature (Malmendier and Nagel (2011, 2016), Nagel

and Xu (2019)) by incorporating more flexibility into the learning process, enhancing our

understanding of expectation formation, and ultimately leading to more accurate macroe-

conomic predictions.
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Chapter 4

EMPIRICAL REGRESSIONS

In this chapter, we turn our attention to a crucial empirical question—whether the proposed 

adaptive model indeed replicates the counter-cyclical behavior of the equity premium, a 

phenomenon consistently observed in the field o f asset p ricing. I n a ddition, we consider 

other empirical regularities typically manifested in asset pricing. Undertaking this empirical 

assessment is of paramount importance, as it helps establish the veracity and applicability 

of our adaptive model. If it indeed demonstrates fidelity to these observed patterns, then 

our model could serve as a viable candidate in elucidating the mechanisms through which 

an economic agent prices assets. Consequently, the findings from this chapter will play an 

instrumental role in determining the robustness and relevance of the adaptive learning gain 

framework in the broader asset pricing landscape.

4.1 Return predictability

Let’s assume that investors are learning about the mean growth rate µd of log real stock 

payouts, d:

∆dt = µd + ϵt, epsilon is an IID shock (4.1)
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As individuals in different birth cohorts learn from their life-time experience, their average

belief is described by the two inflation points structure of constant gain learning rule. Thus

we consider that the perceived growth rate µ̃d evolves as:

µ̃d,t+1 = µ̃d,t + [ν1 + (ν2 − ν1)g(t)](∆dt+1 − µ̃d,t) (4.2)

where ν1 and ν2 represent respectively the two inflation points of the gain parameters.

Just as in Nagel and Xu (2019), we can see that the perceived growth rate µ̃d is updated

every period with the observed surprise ∆dt+1 − µ̃d,t.

By applying the Campbell-Shiller Decomposition in Campbell and Shiller (1988) to the re-

turn innovations along with investors’ subjective expectations, denoted Ẽ we obtain

Ẽtrt+1 − rf = θ + [
ρ

1− ρ
(ν1 + (ν2 − ν1)g(t)) + 1](∆dt+1 − µ̃d,t) (4.3)

as g(t) is deterministic at every time t. where the term in parentheses times Delta dt+1−µ̃d,t

represents the subjective growth-rate expectations revision that the econometrician antici-

pates, on average, in the next period, given her knowledge of µd,t. The parameter ρ rep-

resents the coefficient of risk aversion in the investor’s utility function. It quantifies how

sensitive an investor is to risk and influences the impact of investor expectations on asset

pricing dynamics, specifically in the context of the Campbell-Shiller decomposition. It ap-

pears clear that the returns is predictable by the observable surprise.

Having established in Section 4.1 the theoretical predictability of returns based on observ-

able surprises, we now turn to Section 4.2 to put these theoretical underpinnings to the

test. We aim to empirically assess the robustness of our adaptive learning gain asset pric-

ing model, particularly in light of experienced payout growth, serving as a proxy for the

broader concept of dividend surprises.
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4.2 Model estimation

To verify whether the equation derived previously holds, we estimated equations 4.4 and

4.5. To be precise, we estimate a simple version of it, focusing only on experienced payout

growth and not dividend surprise per se. By doing so, we empirically verify whether our

adaptive learning gain asset pricing model is consistent with the counter-cyclical behavior

of asset return or not.

(Excess return) = α0 + α1 × (Experienced payout growth)

+ α2 × (Inflation) + α3 × (Price-dividend ratio) (4.4)

(Experienced returns) = β0 + β1 × (Experienced payout growth)

+ β2 × (Inflation) + β3 × (Price-dividend ratio) (4.5)

Overall, equations 4.2 and 4.3 elucidate the role of adaptive learning in the dynamics of

subjective dividends and the equity risk premium. Meanwhile, equations 4.4 and 4.5 assess

the consistency of the adaptive learning model with well-established empirical paradigms

in asset pricing, such as the counter-cyclical behavior of the equity premium and the mean

reversion of asset returns.

4.3 Data and variable computations

In this project, we draw upon a rich dataset from the Center for Research in Security Prices

(CRSP), featuring 98,253,046 daily observations (from 1926 to 2020) such as stock price,

shares outstanding, returns with and without dividends, various adjustment factors, indus-

try classification factors, and more. Additionally, we utilize the Consumer Price Index and

3-Month Treasury bill rate sourced from the Federal Reserve Bank Of St. Louis website.
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However, the need for a more macroscopic lens prompts us to transition from these granu-

lar daily stock observations to a broader, quarterly level of analysis. This move allows us to

capture the performance and behavior of stocks across distinct timeframes, thereby facili-

tating the identification of larger macroeconomic trends and market-wide patterns. Conse-

quently, after cleaning the data, creating variables of interest, and aggregating the dataset,

we are left with a final sample of 376 quarterly observations.

Moreover, it’s worth noting that the presence of missing values in the 3-month Treasury bill

time series has slightly compromised the completeness of our data. This has resulted in the

final number of observations in subsequent regression analyses being relatively different,

and somewhat reduced from one regression to the other. We have made every effort to

ensure the robustness and validity of our analysis despite these limitations.

4.3.1 Definition of the variables

Table 4.1 provides an overview of the variable definitions used in the empirical part of this

paper.

Table 4.1: Variable Definitions

Variable Denomination Explanation

Dependent variables Excess return Log return of the CRSP value-weighted
index in quarter t+1, in excess of the re-
turn on a 3-month T-bill

Experienced returns An exponentially weighted average of
quarterly log stock market index returns

Main predictor Experienced payout
growth

Exponentially weighted average of over-
lapping quarterly observations of four-
quarter per-capita repurchase-adjusted
real dividend growth rates up to and in-
cluding quarter t

Control variables Inflation The average log CPI inflation rate dur-
ing the four quarters t – 3 to t

Price-dividend ratio Log price-dividend ratio of the CRSP
value-weighted index at the end of quar-
ter t
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4.3.2 Adjusting for stock-buyback

Portfolio Dividends

From the CRSP dataset, we extract dividend payments from the value-weighted portfolio.

Following Bansal et al. (2005), we denote the total return per dollar invested as

Rt+1 = ht+1 + yt+1, (4.6)

where ht+1 denotes the price gain and yt+1 the dividend yield. To be precise, this latter

refers to dividends at date t+ 1 per dollar invested at date t. In CRSP dataset, Rt+1 refers

to the the value-weighted return including dividends and ht+1 the price appreciation refers

to the the value-weighted return excluding dividends. Therefore, yt+1 = Rt+1 − ht+1.

From the dividend yield, we were able to compute the level of the dividends as follows:

Dt+1 = yt+1Vt, (4.7)

where

Vt+1 = ht+1Vt, (4.8)

with V0 = 1. As recalled by Bansal et al. (2005), equation 4.7 suggests that the dividend

series Dt corresponds to the total cash dividends given out by a mutual fund at t that

extracts the dividends and reinvests the capital gains. The ex-dividends value of the mutual

fund is Vt and the per dollar return available for the investors in the mutual fund is

Rt+1 =
Vt+1 +Dt+1

Vt
= ht+1 + yt+1, (4.9)

Equation (??) clearly suggests that Vt is the discounted value of the dividends that we use

in this paper.
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Dividends and Repurchases

Following Bansal et al. (2005) and Nagel and Xu (2019), we account for distortion from

stocks repurchases that significantly affect the number of shares outstanding and thus divi-

dend payout.

The inclusion of share buybacks in the calculation of dividends can create a skewed per-

ception of a company’s regular dividend policy. Since the 1980s, many public companies

have increasingly used share buybacks as a means of returning capital to shareholders.

While this is an important part of a company’s capital distribution strategy, it represents a

distinct approach from the regular distribution of dividends. Share buybacks often reflect

a company’s broader financial strategy and market conditions, rather than its ongoing op-

erational profitability. Therefore, adjusting dividends to account for share buybacks allows

us to better isolate and understand the company’s regular dividend policy. This adjustment

provides a more accurate picture of a company’s recurring income distribution, separate

from strategic capital actions such as buybacks.

The following describes the approach for estimating this alternative measure of payouts to

equity shareholders. Let nt denote the number of shares (after adjusting for stock dividends,

splits, ets. using the CRSP share adjustment factor). For a given firm in the CRSP dataset,

we construct the adjusted capital gain series as follows:

h∗t+1 =

[
Pt+1

Pt

]
min

[(
nt+1

nt

)
, 1

]
(4.10)

4.4 Econometric results

In this analysis, we assess the predictability of the log return of the CRSP value-weighted

index in quarter t+1, in excess of the return on a 3-month T-bill, through two distinct lenses,

namely: experienced real payout growth and experienced returns.

Panel A: Experienced Payout Growth
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For the five periods under consideration, experienced payout growth consistently negatively

correlates with subsequent returns. This suggests a possible counter-cyclical behavior in

which periods of heightened growth are followed by reduced returns. This is an expected

outcome given the pro-cyclical nature of dividends and the tendency of companies to dis-

tribute more dividends during prosperous times, which could result in diminished future

returns. This effect holds true for all time periods, with the p-values indicating statistical

significance in all but the 1927-2020 scenario in column (3).

Interestingly, the effect seems to be more pronounced in the more recent periods from

1980-2020, which could reflect the evolving market dynamics such as share buyback and

the increasing importance of dividends as a predictor of returns. This finding is consistent

with existing literature (Michaely et al. (1995), Jegadeesh and Titman (2001), Fama and

French (2001), Baker and Wurgler (2004), and Baker and Wurgler (2007)) among others ).

Inflation and price-dividend ratio have been included as control variables, though they don’t

appear to exert a significant influence on the predicted returns in most cases, as evidenced

by the higher p-values.

Panel B: Experienced Returns

Panel B considers experienced returns, defined as an exponentially weighted average of

quarterly log stock market index returns. This variable also shows a consistent negative re-

lationship with future returns, with the degree of the relationship seemingly more substantial

than that of experienced payout growth.

This finding supports the mean-reversion hypothesis in stock market returns, which sug-

gests that high past returns are often followed by lower future returns and vice versa (Fama

and French (1988), Campbell and Shiller (1988), Jegadeesh and Titman (1993), Lo and

MacKinlay (2011), and Conrad and Kaul (1998)). However, the p-values indicate a lack of

statistical significance in some scenarios, calling for cautious interpretation of the results.

The inflation and price-dividend ratio again serve as control variables. Their influence re-

mains mostly non-significant, similar to the observations from Panel A.

Implications for Asset Pricing
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These results have significant implications for asset pricing models. They provide empirical

support for the use of adaptive learning measures, such as experienced payout growth and

experienced returns, as predictive variables in asset pricing models.

The observed counter-cyclical behavior of returns following periods of experienced payout

growth might indicate that investors adapt their expectations based on past dividend growth

rates, a behavior which could be incorporated into asset pricing models to better forecast

future returns.

The significant negative relationship between experienced returns and future returns could

indicate mean-reversion in stock returns. This finding provides an empirical basis for incor-

porating mechanisms for capturing mean-reversion behavior in asset pricing models.

However, the inconsistency of the p-values across different time periods and predictor vari-

ables emphasizes the need for careful and context-specific application of these predictors

in practice. This is why we develop in the next sections an asset pricing model with adapt-

able learning gain to pin down the dynamics of related factors.
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Table 4.2: Predicting Returns with Experienced Real Growth.

Dependent variable is the log return of the CRSP value-weighted index in quarter t + 1 in excess of the return on a 3-month T-bill. In Panel A, experienced payout growth denotes a
long-run exponentially weighted average of overlapping quarterly observations of four-quarter per-capita repurchase-adjusted real dividend growth rates leading up to and including
quarter t, constructed with weights implied by constant gain learning with adaptive learning gain νt = 0.01858007 + 0.06304578 · g(t). In Panel B, experienced returns are
constructed analogously as an exponentially weighted average of quarterly log stock market index returns. Inflation is measured as the average log CPI inflation rate during the four
quarters t − 3 to t; p-d refers to the log price-dividend ratio of the CRSP value-weighted index at the end of quarter t. The table shows slope coefficient estimates, with standard
errors in brackets. Intercepts are not shown. p-values are shown in parentheses. The reported R2 and number of observations are also shown.

(1)
1927-2020

(2)
1927-2020

(3)
1927-2020

(4)
1980-2020

(5)
1980-2020

Panel A: Predicting returns with experienced real payout growth

Experienced real payout growth
-0.003
[0.001]
(0.000)

-0.003
[0.001]
(0.001)

-0.002
[0.001]
(0.081)

-0.004
[0.001]
(0.000)

-0.004
[0.002]
(0.046)

Inflation
-0.161
[0.182]
(0.379)

-0.050
[0.032]
(0.120)

-0.200
[-3.774]
(0.332)

-0.042
[0.033]
(0.194)

p - d
0.017
[0.017]
(0.301)

0.005
[0.022]
(0.800)

Observations 201 196 199 159 162
Adjusted R-squared 0.054 0.051 0.060 0.072 0.073
Panel B: Predicting returns with experienced returns

Experienced real returns
-0.217
[0.061]
(0.001)

-0.209
[0.062]
(0.001)

-0.155
[0.100]
(0.123)

-0.282
[0.080]
(0.001)

-0.292
[0.179]
(0.105)

Inflation
-0.156
[0.183]
(0.393)

-0.050
[0.032]
(0.125)

-0.155
0.200
(0.440)

-0.041
[0.033]
(0.216)

p - d
0.015
[0.200]
0.451

-0.002
[0.028]
(0.958)

Observations 201 196 199 159 162
Adjusted R-squared 0.054 0.049 0.057 0.063 0.065
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Chapter 5

ASSET PRICING MODEL

This chapter sets up the theoretical foundation for the research. We offer a holistic perspec-

tive on the interplay between consumption growth, learning, and asset pricing. We provide 

the backdrop for the asset pricing model under study, based on the assumption that agents’ 

consumption growth rates are stochastic. Later, we forecast future consumption growth 

rates based on historical data. This predictive distribution is crucial because it quantifies 

the uncertainty about future consumption growth rates, which is central to decision-making 

in financial m arkets. Moving forward, we develop a method to understand how learning af-

fects agents’ perception of shocks to the endowment process. This section forms the crux of 

the mathematical modelling part of this project and serves to establish the agent’s learning 

mechanism under dynamic learning gains. Utilizing Kalman filtering method, we estimate 

unknown parameters (the expected consumption growth) from the observed data. In other 

words, we estimate the state of the dynamic system based on a series of measurements 

observed over time. We also explore how prior information affects the agent’s learning and, 

in turn, asset pricing. Finally, by determining the stochastic discount factor (SDF), we an-

alyze how the uncertainty about future consumption growth and learning impacts the SDF 

and, ultimately, asset prices.

By unraveling the relationships between consumption patterns and asset prices, this chap-

ter contributes to the evolving landscape of asset pricing theory. It sheds light on the com-

plexities inherent in decision-making processes, moving beyond traditional paradigms of 

rationality and constant learning gain.



24

5.1 Consumption in Asset Pricing

Let assume for simplicity that endowment growth follow a stochastic i.i.d. process

∆ct+1 = µ+ σϵt+1 (5.1)

where µ and σ denote respectively the expected rate of growth and the volatility of growth.

The agent is aware that ∆ct+1 is i.i.d. , and she also knows σ. {ϵt} is a series of i.i.d. stan-

dard normal shocks.

The goal here is to approximate the unknown growth mean µ. To form an estimate of µ, the

agent relies on the history of past endowment growth realizations, Ht ≡ {∆ct,∆ct−1, ...}, .

Though we assume that the agent learns with fading memory, unlike Nagel and Xu (2019),

we assume that she learns with adaptable gains νt = ν1+(ν2− ν1) ∗ g(t). Moreover, unlike

in most standard constant-gain learning models, we retain the modeling of the full posterior

distribution—and hence the agent’s subjective uncertainty—of the Bayesian approach. To

do so, we use a weighted likelihood that has been used in the theoretical biology literature

to model memory decay in organisms Mangel (1990). Nagel and Xu (2019) used almost

the same approach with some nuance to what we did.

Given all these precedents, our representative agent, who has seen an infinite history of

observations on ∆c and possesses adaptable learning gains, forms a posterior as follows:

p(µ | Ht) ∝ p(µ) x p(Ht | µ) (5.2)

with likelihood

p(Ht | µ) ∝

[
l∏

j=0

[
exp

(
−(∆ct+j − µ)2

2σ2

)](1−ν1)j ∞∏
j=l+1

[
exp

(
−(∆ct+j − µ)2

2σ2

)](1−ν2)j
]

(5.3)

and prior
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p(µ) =
1√
2πσ2

0

exp

(
−(µ− µ0)

2

2σ2
0

)
(5.4)

The finding about the variance of the posterior here is interesting with regard to finding

when the agent have full memory from one hand, and when the memory decay occurs at

a constant rate in the second hand. The variance of the posterior is the same as if the

agent had observed, and retained with full memory with adaptive weights in the opposite

of constant weight in the posterior a la Nagel and Xu (2019), S ≡ 1/ν realized growth rate

observations. Though in our scenario the actual number of observed realizations is infinite,

we come to the same conclusion with Nagel and Xu (2019) that the loss of memory implies

that the effective sample size is finite and equal to S.

However, for simplicity, we work with an uninformative prior (σ0 → ∞) that led to a relatively

tractable posterior

µ | Ht ∼ N

(∑∞
j=0∆ct+j [(1− ν1)

j1j≤l + (1− ν2)
j1j>l]∑∞

j=0 [(1− ν1)j1j≤l + (1− ν2)j1j>l]
,

σ2∑∞
j=0 [(1− ν1)j1j≤l + (1− ν2)j1j>l]

)
(5.5)

With the prior assumed uninformative, the posterior mean is updated recursively as

µ̃t = µ̃t−1 + [ν1 + (ν2 − ν1)g(t)](∆ct − µ̃t−1) (5.6)

Starting from Equation (4.2), and replacing ν∗t = ν1 + (ν2 − ν1)g(t) we can rearrange it as:

µ̃t = (1− ν∗t )µ̃t−1 + ν∗t∆ct (5.7)

Now we subtract µ̃t on both sides and divide by σ
√
1 + ν∗t to obtain:

µ̃t − µ̃t−1

σ
√
1 + ν∗t

=
ν∗t

σ
√
1 + ν∗t

(∆ct − µ̃t−1) (5.8)

We recognize the left-hand side as a normalized increment in µ̃t, i.e., µ̃t−µ̃t−1

σ
√

1+ν∗t
= ϵ̃t+1.

Substituting this expression and multiplying both sides by σ
√
1 + ν∗t yields:
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µ̃t+1 = µ̃t + ν∗t+1σ
√
1 + ν∗t+1ϵ̃t+1 (5.9)

with ν∗t = ν1 + (ν2 − ν1)g(t)

µ̃t+1 = µ̃t = (ν1 + (ν2 − ν1)g(t+ 1))σ
√
1 + (ν1 + (ν2 − ν1)g(t+ 1))ϵ̃t+1 (5.10)

Equation (5.10) shows that the posterior mean resulting from weighted-likelihood approach

with uninformative prior is similar to the perceived endowment growth with adaptable gains

scheme we saw in equation (4.1).

Moving forward, equation 5.11 represents the updating rule for the perceived mean con-

sumption growth, denoted by µ̃t. This is just a new way to rewrite equation 4.2 by replacing

the stock payout growth by the consumption growth. At each point in time, agents up-

date their beliefs about the mean consumption growth based on the discrepancy between

their current perceived mean consumption growth µ̃t and the actual observed consumption

growth ∆ct+1. The ν∗t+1 parameter represents the adaptive learning gains, which deter-

mines how heavily agents weigh new information relative to their prior beliefs. The term

(∆ct+1 − µ̃t) represents the prediction error - the difference between the actual consump-

tion growth and the perceived mean consumption growth. In simple terms, if the actual

consumption growth is higher than the expected one, the perceived mean consumption

growth will be adjusted upwards, and vice versa. The speed and magnitude of the adjust-

ment depend on the learning gains ν∗t+1.

Equation 5.12 represents the same updating process as the first one, but it’s reformulated

in terms of standardized units. This equation essentially shows how the standardized per-

ceived mean consumption growth changes in response to the standardized prediction er-

ror. It is useful for comparing the updating process across different scales of consumption

growth and learning gains.

µ̃t+1 = µ̃t + ν∗t+1(∆ct+1 − µ̃t) (5.11)
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µ̃t+1 − µ̃t

σ
√
1 + ν∗t+1

=
ν∗t+1

σ
√

1 + ν∗t+1

(∆ct+1 − µ̃t) (5.12)

5.2 Predictive Distribution of Future Consumption Growth

Given Current Information

To find the predictive distribution of ∆ct+j|Ht, we first recall the model equation:

∆ct+j = µ+ σϵt+1, (5.13)

Since we have the posterior distribution for µ, we can now find the predictive distribution

of ∆ct+j|Ht. We know that ϵt+j is normally distributed with mean 0 and variance 1, so

the predictive distribution will be a convolution of the posterior distribution of µ and the

distribution of σϵt+j .

The posterior distribution of µ is a normal distribution with mean µ∗ and variance σ∗2, as

we found in the previous step. The distribution of σϵt+j is a normal distribution with mean 0

and variance σ2.

The convolution of two normal distributions is also a normal distribution, with the mean

being the sum of the means and the variance being the sum of the variances:

∆ct+j | Ht ∼ N (µ∗, σ∗2 + σ2), j = 1, 2, ..., (5.14)

So, the predictive distribution of ∆ct+j|Ht is a normal distribution with mean µ∗ and variance

σ∗2 + σ2. The predictive distribution of ∆ct+j|Ht is crucial in the sense that its variance can

inform not only on the uncertainty facing future shocks ϵt+j but also the uncertainty about µ.

We denote expectations under the predictive distribution with Ẽ(. ). In the following, we will

rewrite the stochastic dynamics of the endowment process from the subjective viewpoint of

the agent.

But first of all, let’s define ϵ̃t+1 as the standardized unexpected endowment growth:
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ϵ̃t+1 =
∆ct+1 − µ̃t

σ
√
1 + ν1 + (ν2 − ν1)g(t)

(5.15)

From the definition of ϵ̃t+1, we obtain:

ϵ̃t+i =
∆ct+i − µ̃t+i−1

σ
√
1 + ν1 + (ν2 − ν1)g(t+ i− 1)

(5.16)

And the updating scheme is as follows:

µ̃t = µ̃t−1 + (ν1 + (ν2 − ν1)g(t))(∆ct − µ̃t−1) (5.17)

This definition essentially scales the unexpected endowment growth by dividing it by the

standard deviation of the forecast error. This makes ϵt+1 a dimensionless quantity and

allows for easier comparison of forecast errors across different time periods or when en-

dowment growth rates have different levels of volatility.

The factor
√

1 + (ν1 + (ν2 − ν1)g(t)) is used to adjust the scaling for the effect of the learn-

ing mechanism (i.e., constant gain learning) on the forecast error volatility. This adjustment

is necessary because, as the agent learns from new information, the forecast error’s volatil-

ity will be affected by the learning rate, which is represented by ν∗t in this case.

Plugging ∆ct+1 − µ̃t in (5.10) yields µ̃t+1 as a function of ϵt+1 is:

µ̃t+1 = µ̃t + [ν1 + (ν2 − ν1)g(t)]σ
√

1 + (ν1 + (ν2 − ν1)g(t))ϵt+1. (5.18)

Now that we dispose of the analytical form of the standardized error (the standardized un-

expected endowment growth), let’s dive into deriving the properties of ϵ̃t+j , j= 1,2,... under

the time-t predictive distribution.
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5.3 Influence of Current Adjusted Expectations on Future

Prediction Errors

In appendix C, we show that

c̃ovt(ϵ̃t+i, ϵ̃t+i+1) = − (ν1 + (ν2 − ν1)g(t+ i))

σ
√

1 + ν1 + (ν2 − ν1)g(t+ i)
< 0 (5.19)

Thus, we have derived the expression for ˜covt(ϵ̃t+i, ϵ̃t+i+1) in terms of the learning parame-

ters ν1 and ν2, as well as the smooth transition function g(t).

Even if the cross-covariances between the forecast errors and the shocks are zero for all

lags, the gain function can still generate persistence in the cross-covariances between con-

secutive forecast errors, as our demonstration shows. This is because the gain function

depends on the past values of the forecast errors and can be non-zero even if the current

forecast error is uncorrelated with the current shock.

In a scenario where Bayesian learning is subject to constant gain and fading memory, the

agent’s information structure deviates from the conventional filtration. In our model, the

agent’s posterior beliefs are formed based on a weighted likelihood, where more recent

observations are given higher weights. Due to the nature of adaptable gains that result

into fading memory, the posterior beliefs in future periods will be based on a different set of

information that is not necessarily more informative about µ than the information available

to the agent at time t. As a corollary, the information structure does not form a filtration, and

there is no convergence to µ in the long run.

The time-t agent perceives future increments ϵ̃t+j as negatively serially correlated, instead

of martingale differences. However, the agent is unable to exploit this serial correlation to

forecast ϵ̃t+1, as they lack the full memory to compare µ̃t with µ̃t−1. This limitation arises

from the adaptable-gain learning approach, which focuses on more recent data.
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In our model, the predictive distribution of ∆ct+j|Ht is given by ∆ct+j|Ht ∼ N (µ̃t, σ
∗2+σ2).

The agent’s posterior mean, Ẽ[µ̃t+1] = µ̃t, is still the best forecast under the given learning

process.

To various regards, this model illustrates the importance of considering the effects of fading

memory and adaptable gain learning on the agent’s information structure and the resulting

implications for asset pricing. This approach provides a more realistic representation of

learning in financial markets, as agents may not always possess full memory and may

assign different weights to past information. Incorporating this paradigm could significantly

reveals the way agents view and participate on the markets.

5.4 Asset Valuation

The nature of the predictive distribution of ∆ct+j|Ht we derived in the previous section was

a signal that the LIE could no longer be applied. A well-known valuation approach used

in the asset pricing research is the "buy-and-hold" valuation, in which the agent values the

asset based on the stochastically discounted payoff under the time-t predictive distribution

PH,t = Ẽ
[
Mt+1|tMt+2|tCt+2

]
, (5.20)

In this valuation approach, the agent bases her valuation on the expected future cash flows

(e.g., dividends, interest, or other income) and the expected future price of the asset at the

end of the holding period. The valuation takes into account the time value of money by dis-

counting future cash flows to their present value using an appropriate discount rate. This is

possible because she assumes the probabilities and expectations used in the calculations

are based on the same information at each step of the process.

However, when factors such as learning, memory loss, or changing market conditions come

into play, the information structure changes over time, and the consistency required for the

Law of Iterated Expectations (LIE) to hold no longer exists.
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It is fortunate that an alternative valuation does exist: the "resale" valuation. The core

essence of resale valuation is to determine the value of an asset by considering the per-

spective of an investor who anticipates selling the asset in the future, and how that future

investor (or the future self of the current investor) would value the asset based on their ex-

pectations at that time.

In the resale valuation approach, the agent at time t prices the asset based on the time-t

predictive distribution of the stochastically discounted t+ 1 asset value:

PR,t = Ẽt

[
Mt+1|tẼt+1

[
Mt+2|t+1Ct+2

]]
, (5.21)

where Mt+j|t represents the one-period stochastic discount factor (SDF) from t + j − 1 to

t+ j, given the agent’s predictive distribution at t.

The difference in valuation between these approaches arises from the agent’s perception of

the statistical properties of the shock ϵ̃t+2 at times t and t+1. In the buy-and-hold valuation

approach, the investor at time t takes into account the negative serial correlation between

shocks ϵ̃t+1 and ϵ̃t+2. This means the investor acknowledges the relationship between

these shocks when forming their expectations and valuation of the asset. As a result, this

approach considers the predictive nature of these shocks when valuing the asset at time t.

If the asset were priced at time t using the buy-and-hold valuation and the anticipation of a

predictable ϵ̃t+2, the agent would find ϵ̃t+2 unpredictable at time t + 1 due to memory loss.

This time inconsistency is a major blow for this approach of valuation when the process

does not have the properties of a martingale.

On the other hand, in the resale valuation approach, the investor at time t values the asset

based on the expectation that the future investor at time t + 1 (or the investor’s future self)

will perceive the shock ϵ̃t+2 as unpredictable. This is because, in this approach, the investor

anticipates that the future investor will have a different set of beliefs and information, which

may lead them to perceive the shock as unpredictable. As a result, the resale valuation

approach does not incorporate the negative serial correlation between shocks ϵ̃t+1 and ϵ̃t+2
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and the inconsistency raised in buy-and-hold does not occur with the resale valuation. In

choosing the resale valuation approach, real asset resales take place as one generation is

replaced by another.

5.5 Kalman Filtering

In this section, we describe an alternative interpretation of our model, where the agent

perceives a stochastic trend and uses a Kalman filter with a diffuse prior to optimally track

it.

The agent perceives the law of motion for the consumption growth rate, ∆ct, as described

by equations 5.22 shown below. In this interpretation, the agent knows the variances of the

shocks, σ2
ξ and σ2

ζ , but not the actual trend growth rate, µt.

∆ct = µt + ξt, ξt ∼ N (′, σ∈
ξ ), (5.22)

µt+1 = µt + ζt+1, ζt+1 ∼ N (′, σ∈
ζ ) (5.23)

We now describe a steady-state Kalman filter a la Hamilton (1994) that the agent uses to

form predictions about the trend growth rate, µt+1, given an infinite history of observed data,

Ht. The predictive distribution of µt+1 is a normal distribution with mean µ̃t+1|t and variance

ω2 + σ2
ζ . Equation 5.24 illustrates the distribution of these predictions.

µt+1 | Ht ∼ N (µ̃t+1|t, ω
2 + σ2

ζ ), (5.24)

The optimal forecast, µ̂t+1|t ≡ Ê(µt+1 | Ht), evolves according to equation 5.25, with the

Kalman gain, K, defined in equation K.5. Equation 5.27 relates the variance ω2 to the

Kalman gain and the variance of the shock ξ.

µ̂t+1|t = µ̂t|t−1 +K(∆ct − µ̂t|t−1), (5.25)

with
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K =
ω2 + σ2

ζ

ω2 + σ2
ζ + σ2

ξ

, (5.26)

and

ω2 = Kσ2
ξ . (5.27)

The predictive distribution of the consumption growth rate at time t + 1, ∆ct+1, is given by

equation 5.28.

∆ct+1 ∼ N (µ̂t+1|t, ω
2 + σ2

ζ + σ2
ξ ). (5.28)

However, the time-t predictive distribution of ∆ct+1 for j > 1 here is different from the adap-

tive learning gains setting because the agent perceives µ̃ as a martingale (a stochastic

process where the expected value of the next observation is equal to the current obser-

vation) and the predictive distribution inherits these martingale dynamics. In contrast, the

adaptive memory setting has the predictive distribution converging to a stationary one at

long horizons.

Despite this difference in perceived distribution for j > 1, the pricing is the same in both

settings, as under resale valuation, pricing is based on a chain of valuations of one-period

ahead payoffs from selling the asset.

In the case of the time-varying gain learning model, the learning gain is defined as ν(t) =

ν1 + (ν2 − ν1)g(t). To match the time-t predictive distribution of ∆ct+j between the time-

varying gain learning model and the equivalent full-memory model, we need to find expres-

sions for K(t), σ2
ξ (t), and σ2

ζ (t) that depend on the time-varying learning gain ν(t).

We can start by modifying the expressions forK, σ2
ξ , and σ2

ζ from the constant-gain learning

model:
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K(t) = ν(t) = ν1 + (ν2 − ν1)g(t),

σ2
ξ = (1− ν(t)2)σ2 = (1− [ν1 + (ν2 − ν1)g(t)]

2)σ2,

σ2
ζ = (1 + ν(t)2)σ2 = (1 + [ν1 + (ν2 − ν1)g(t)]

2)σ2. (5.29)

5.6 Informative prior

Hamilton (1994) presents a full-memory model with an informative prior, in which the agent

perceives the law of motion for consumption growth, ∆ct, and the latent trend growth rate,

µt. The agent knows the parameters σ2
ξ , σ2

ζ , and h, 0 ≤ h < 1, and uses the Kalman filter

to optimally track the latent trend.

The agent’s perception of the law of motion for consumption growth is given by equations

5.30 and 5.31.

∆ct = µt + ξt, ξt ∼ N (0, σ2
ξ ) (5.30)

µt+1 = (1− h)µ+ hµt + ζt+1, ζt+1 ∼ N (0, σ2
ζ ) (5.31)

The agent’s optimal forecasts are derived using steady-state Kalman filter updating, as

shown in equation 5.32.

µ̂t+1|t = (1− h)µ+ hµ̂t|t−1 +K(∆ct − µ̂t|t−1), (5.32)

where the parameters K and ω2 are defined in equations 5.33 and 5.34.

K = h
σ2
ζ + h2ω2

σ2
ζ + σ2

ξ + h2ω2
(5.33)

ω2 = Kσ2
ξ/h (5.34)
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Equation (K.13) below shows the iterative expression for the agent’s optimal forecast of the

latent trend growth rate

µ̂t+1|t =
1− h

1− h+K
µ+K

∞∑
j=0

(h−K)j∆ct−j. (5.35)

Equations 5.36 and 5.37 represent the agent’s predictive distributions for µt+1 and ∆ct+1,

respectively, given the agent’s information set Ht.

µt+1 | Ht ∼ N (µ̂t+1|t, h
2ω2 + σ2

ζ ), (5.36)

∆ct+1 | Ht ∼ N (µ̂t+1|t, h
2ω2 + σ2

ζ + σ2
ξ ). (5.37)

Finally, equations 5.38 show how to map the informative prior full-memory model into the

time-varying learning memory setup. By choosing the parameters K, h, and σ2
ξ as shown,

the subjective belief dynamics and asset prices are equivalent between the time-varying

learning memory model with an informative prior and the full-memory model.

We can represent the new parameters as follows:

K(t) = ϕν(t)

h(t) = 1− ν(t) + ϕν(t)

σ2
ξ (t) =

1− ν(t)

1− ν(t) + ϕν(t)
(1 + ϕν(t))σ2

σ2
ζ (t) = (1 + ϕ2ν(t))σ2.

(5.38)

With these modified parameters, the time-t predictive distribution of ∆ct+j in the time-

varying gain learning model would match the predictive distribution in the equivalent full-

memory model with an informative prior.

In summary, this section demonstrates how a full-memory model with an informative prior

can be transformed into an equivalent time-varying learning memory model. This trans-
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formation helps in understanding the relationship between the two setups and highlights

the importance of carefully choosing the parameters for the time-varying learning memory

model to maintain the equivalence with the full-memory model.

5.7 Stochastic Discount Factor

Following Nagel and Xu (2019), we are considering a situation where the typical individual

in our model uses a recursive utility framework, as first outlined by Epstein and Zin (1991),

to determine the value of possible future outcomes. This allows us to disentangle risk

aversion and the elasticity of intertemporal substitution.

Vt =

[
(1− δ)C

1− 1
ρ

t + δẼt[V
1−γ
t+1 ]

1− 1
ρ

1−γ

] 1

1− 1
ρ

(5.39)

where δ denotes the time discount factor, ρ the elasticity of intertemporal substitution (EIS),

and γ represents the coefficient of relative risk aversion.

Following Hansen et al. (2008) Hansen et al. (2008), we can write the logarithm of the ratio

of the continuation value to consumption as

vt =
1

1− ρ
log{(1− δ) + δ exp[(1− ρ)Θt(vt+1 + ct+1 − ct)]} (5.40)

where ct denote the logarithm of the ratio of the continuation value (Vt) to consumption(Ct)

and Θt is defined as

Θt(vt+1) =
1

1− γ
logẼ[exp[(1− γ)vt+1]] (5.41)

where Ẽ denote the subjective expectation function.

Using the recursion scheme of Tallarini (1998) in a context of risk-sensitive business cycles

and asset prices study, and solving for the specific case of ρ = 1, we can rewrite vt as the

following
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vt =
δ

1− γ
logẼ≈[e

(1−γ)(vt+1+∆ct+1)] (5.42)

where δ denotes the time discount factor, and γ represents the coefficient of relative risk

aversion.

Hansen et al. (2008) showed that this log-linear stochastic equation has a linear solution for

the continuation value. Therefore, we postulate that vt is linear in the state variable:

vt = µv + Uvµ̃t, (5.43)

5.7.1 Model Solution for ρ = 1

In our scenario, SDF represents the factor by which the agent is willing to exchange future

payoffs for current ones, under uncertainty. We show in appendix E that in the case of

Epstein-Zin preferences, the SDF takes the following form:

mt+1|t = µ̃m,t − µ̃t − ξtσϵ̃t+1, (S1)

As g(t) is a deterministic and known function, the time-varying expressions of the compo-

nent of mt+1|t are as the following:

µ̃m,t = logδ − 1

2
(1− γ)2(ν1 − (ν2 − ν1)g(t)Uυ + 1)2(1 + ν1 − (ν2 − ν1)g(t))σ

2 (5.44)

ξt = [1− (1− γ)(ν1 − (ν2 − ν1)g(t)Uυ + 1)]
√
ν1 − (ν2 − ν1)g(t) (5.45)

5.8 Evaluation of Consumption-Based Assets Claims

Let ζ ≡ Wt/Ct be the consumption-wealth ratio. The return on the consumption claim is

RW,t+1 ≡
Wt+1

Wt − Ct

=
Ct+1

Ct

ζ

ζ − 1
, (5.46)
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The corresponding log return is as follows:

rw,t+1 = ∆ct+1 + log(ζ/(ζ − 1))

= µ̃t + σ
√

1 + ν(t)ϵ̃t+1 + log(ζ/(ζ − 1))

(5.47)

Plugging the return on consumption claim into the Euler equation and taking logs,

log(ζ/(ζ − 1)) = −µ̃m + ξ
√
1 + νσ2 − 1

2
(1 + ν)σ2 − 1

2
σ2ξ2

= −log δ
(5.48)

As shown by Nagel and Xu (2019), the wealth-consumption ratio

ζ =
1

1− δ
(5.49)

In the context of Nagel and Xu’s study, they begin by examining the log of the part of wealth

at time t associated with the one-period ahead endowment flow, wl
t. They relate this to the

consumption at the same period, ct. This relationship is described by:

w1
t − ct = logẼt

[
Mt+1|t

Ct+1

Ct

]
(5.50)

In our case, we’re considering a scenario where the learning gain is time-varying, rep-

resented as νt = ν1 + (ν2 − ν1)g(t). This alters the dynamics of the equation above.

Specifically, the time-varying learning gain changes the representation of the expected util-

ity, yielding:

w1
t − ct = logẼt[exp(µ̃m + (

√
1 + νt − ξ)σϵ̃t+1)] (5.51)

We further simplify this expectation, which gives us:

w1
t − ct = µ̃m +

1

2
(
√
1 + νt − ξ)2σ2. (5.52)

The difference between the wealth and the consumption, wl
t− ct, is no longer constant over

time due to the time-varying learning gain, νt. It results in a more intricate dynamics.
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Proceeding with the valuation equation, we can infer the price of an n-period consumption

strip, which evolves as:

wn
t − ct = nµ̃m +

n

2
(
√
1 + νt − ξ)2σ2. (5.53)

Substituting the expressions for µ̃m and ξ, we get:

wn
t − ct = nlog δ +

n

2
(
√
1 + νt − ξ)2σ2. (5.54)

This equation describes the price of an n-period consumption strip, adjusted for the time-

adaptive learning gain. In this scenario, the price of the consumption strip is subject to

changes over time following the time-varying learning gain.

In conclusion, the inclusion of a time-varying learning gain in the model leads to a more

complex dynamics for the valuation of consumption strips. It enables the model to capture

more nuanced aspects of adaptive learning, making it more suitable for applications in

environments where learning parameters evolve over time.

5.9 Pricing Dynamics of Dividend Strips

We turn our attention to analyzing dividend strips, which are claims to single dividends to

be paid in the future. These help us to transparently analyze the conditions necessary for a

finite price. The price of the n-period dividend strip, denoted as P n
t , is given by:

P n
t ≡ Ẽt[Mt+1|tẼt+1[...Ẽt+n−1[Mt+1|t+n−1Dt+n]]]. (5.55)

here we make use of a time-adaptive learning gain ξt rather than a constant ξ, which intro-

duces an additional layer of dynamism. Evaluating these expectations, we do so by iterating

backwards from the payoff at t+ n, evaluating one conditional expectation at a time.

Taking logs and evaluating, we now have:
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pnt − dt = [1− (1− α)n](ct − dt + µdc +
λ− 1

α
µ̃t) + nµ̃m +

1

2
(An,tσ

2 +Bn,tσ
2
d), (5.56)

where

An,t =
n−1∑
k=0

{
√
1 + νt

[
νt(λ− 1)

1− (1− α)k

α
+ (λ− 1)(1− α)k + 1

]
− ξ}2, (5.57)

and

Bn =
1− (1− α)2n

1− (1− α)2
(5.58)

For large n, approximately,

An,t ≈ n

[√
1 + νt

(
1 + νt

λ− 1

α

)
− ξ

]2
, (5.59)

And Bn, which does not grow with n, becomes very small relative to An. For the price to be

well-defined, we need the terms that grow with n in equation 5.56 to be (weakly) negative.

Using equation (34), this requires:

µ̃m +
1

2

[√
1 + νt

(
1 + νt

λ− 1

α

)
− ξ

]2
σ2 ≤ 0. (5.60)

This condition ensures that the price of consumption strips remains finite even under time-

varying learning gain. The inequality provided is required to ensure that the price of the

dividend strip, P n
t , is well-defined and finite.

In this context, the inequality is designed to limit the growth of the terms in equation 5.60

that are proportional to n. If these terms are not (weakly) negative, then they could grow

without bound as n increases, leading to an infinite price for the dividend strip, which is eco-

nomically nonsensical. Specifically, the term nµ̃m represents the part of the dividend strip

price that grows with n, the number of periods. The term 1
2

[√
1 + νt

(
1 + νt

λ−1
α

)
− ξ
]2
σ2 is

the variance of the dividend strip price that also grows with n. Hence, to prevent the price



41

from exploding as n gets large, the inequality is required.

This inequality is generally a condition for convergence in these types of valuation prob-

lems. It ensures that the infinite sum or product that typically arises when valuing these

kinds of derivative securities converges to a finite value.

Equation 5.61 gives the return of a one-period claim, r1t+1.

r1t+1 = λ∆ct+1 − (λ− 1)µ̃t − µ̃m − 1

2
(
√
1 + νtλ− ξ)2σ2 (5.61)

Subtracting rf,t = −µ̃m + µ̃t − 1
2
ξ2σ2 from the above equation, we get:

r1t+1 − rf,t = λ(∆ct+1 − µ̃t)− µ̃m − 1

2
(
√
1 + νtλ− ξ)2σ2 +

1

2
ξ2σ2 (5.62)

The subjective conditional variance of r1t+1 becomes (1 + νt)λ
2σ2, so taking subjective ex-

pectations of 5.62, we get:

log Et[R
1
t+1]− rf,t = λξ

√
1 + νtσ

2. (5.63)

Now for the objective conditional variance, it will remain λ2σ2, and so taking objective ex-

pectations of 5.62 we get,

log Et[R
1
t+1]− rf,t = λξ

√
1 + νtσ

2 − 1

2
νtλ

2σ2 + λ(µ− µ̃t) (5.64)

Moving on to the infinite-horizon claim. Starting from the general form, we have:

r∞t+1 = ∆ct+1 +
λ− 1

αt

(µ̃t+1 − µ̃t)− µ̃m − 1

2

[√
1 + νt(1 + νt

λ− 1

αt

)− ξ

]2
σ2. (5.65)

After subtracting the risk-free rate, we obtain:
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r∞t+1 − rf,t = ∆ct+1 +
λ− 1

αt

(µ̃t+1 − µ̃t)− µ̃t −
1

2

[√
1 + νt(1 + νt

λ− 1

αt

)− ξ

]2
σ2 +

1

2
ξ2σ2.

(5.66)

Next, we can calculate the subjective expectation and the objective expectation of r∞t+1 using

the same logic as before, adjusting for the time-adaptive learning gain, giving us:

log Ẽt[R
∞
t+1]− rf,t = λξ

√
1 + νtσ

2 − 1

2
νt

(
1 + νt

λ− 1

αt

)2

σ2 (5.67)

and

log Et[r
∞
t+1]− rf,t = λξ

√
1 + νtσ

2 − 1

2
νt

(
1 + νt

λ− 1

αt

)2

σ2 + λ(µ− µ̃t) +
λ− 1

αt

(µ− µ̃t).

(5.68)

Our model aims to numerically compute the price, Pt, of the equity claim to the entire stream

of dividends, with adjustments for time-adaptive learning gain. In this context, P n
t for n > J

and a sufficiently large J , is given by

P n
t ≈ Cte

µdc+
1
2

1
1−(1−α)2

σ2
d+

λ−1
α

µ̃t exp(nµ̃m +
1

2
Anσ

2), n > J, (5.69)

where we approximate

An ≈ Aj + (n− J)[
√

1 + ν(t)(ν(t)
λ− 1

α
+ 1)− ξ]2, n > J. (5.70)

In this context, ν(t) = ν1 + (ν2 − ν1)g(t) is our time-adaptive learning gain, and g(t) is a

smooth function of time.

Then, we can express the total price Pt as

Pt ≈

(
J∑

n=1

P n
t

)
+ CtVJ exp

(
µdc +

1

2

1

1− (1− α)2
σ2
d +

λ− 1

α
µ̃t

)
, (5.71)

with
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VJ =
exp((J + 1)µ̃m + 1

2
AJσ

2 + 1
2
[
√
1 + ν(ν λ−1

α
+ 1)− ξ]2σ2)

1− exp(µ̃m + 1
2
[
√

1 + ν(t)(ν(t)λ−1
α

+ 1)− ξ]2σ2)
(5.72)

We implement this by choosing a large enough J such that the value of Pt obtained is not

sensitive to further changes in J .

For ψ = 1, the wealth-consumption ratio is constant

log
Wt − Ct

Ct

= log
δ

1− δ
, (5.73)

and we only need to solve for the log price-dividend ratio. We express the logP/D ratio as

a function of µ̃ and dt − ct, i.e.,

log
Pt

Dt

= H(µ̃t, dt − ct). (5.74)

Because there are two state variables, we adopt basis functions, ψij , in this form:

ψij(µ̃, dt − ct) ≡ Λi(µ̃)Λj(dt − ct) (5.75)

where Λi denotes the Chebyshev polynomials. We approximate the log P/D ratio as:

Ĥ(µ̃, dt − ct; βm) =

n1−1∑
i=0

n2−1∑
j=0

βm,ijψij(µ̃, dt − ct). (5.76)

We rewrite the subjective Euler equation:

Ẽt[Mt+1Rm,t+1] = 1 (5.77)

as

0 = I(µ̃t, dt − ct)

≡ Ẽt[e
µ̃m−µ̃t−ξσϵt+1+∆dt+1

e
H(µ̃t+1,dt+1−ct+1)+1

eH(µ̃t,dt−ct) ]− 1

= eµ̃m+(λ−1)µ̃t−α(dt−ct−µdc)Ẽt[e
(λ
√

1+ν(t)−ξ)σϵ̃t+1+σdηt+1
e
H(µ̃t+1,dt+1−ct+1)+1

eH(µ̃t,dt−ct) ]− 1

(5.78)
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In our investigation, we have developed a comprehensive model that accounts for the influ-

ence of time-adaptive learning gain in numerically computing the equity claim’s price to the

entire stream of dividends. Our equations give an effective approximation for large J val-

ues, thereby yielding a robust model for Pt. Additionally, our model effectively captures the

effects of two state variables, further enhancing the model’s predictive capacity. By numeri-

cally solving the given system of equations, we are able to draw detailed conclusions about

equity prices and the equity premium in our specific time-adaptive learning gain scenario.

This represents a significant advancement in our understanding of how learning mecha-

nisms and information structures can influence financial market outcomes.

However, the development of this model also points towards several avenues for future

work. The complexity of the equations, as well as the assumptions that underpin our model,

calls for a further exploration. Specifically, we acknowledge that the model’s calibration, an

essential step for verifying its accuracy and applicability in different financial scenarios, has

yet to be accomplished. Our future investigations will focus on model calibration to ensure

the robustness of the model under a variety of conditions.
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Chapter 6

CONCLUSION

In conclusion, this study sheds light on the complexities of asset pricing and challenges the 

prevailing notions of rationality and constant learning gain. The empirical analysis highlights 

the counter-cyclical behavior of returns following periods of experienced payout growth and 

provides support for the mean-reversion hypothesis in stock market returns. These findings 

underscore the significance o f a daptive l earning m easures, s uch a s experienced payout 

growth and experienced returns, in asset pricing models.However, the varying statistical 

significance across different scenarios and predictor variables calls for cautious interpreta-

tion and context-specific application of these predictors.

From the theoretical standpoint, within the adaptive learning gains model, the equity risk 

premium rises in line with increases in consumption change, learning gain, and the risk 

level as depicted by the standard deviation of shocks. Essentially, higher uncertainty or 

variability compels investors to seek additional compensation, thus elevating the equity risk 

premium.

Furthermore, the time-t agent perceives future increments of shocks ϵ̃t+j as negatively se-

rially correlated, instead of martingale differences. However, the agent is unable to exploit 

this serial correlation to forecast ϵ̃t+1, as they lack the full memory to compare µ̃t with 

µ̃t−1. Recognizing the limitations of the traditional "buy-and-hold" valuation approach, this 

research introduces an innovative asset pricing model with adaptable learning gains. The 

theoretical analysis reveals the absence of convergence to a specific value and the break-

down of the Law of Iterated Expectations (LIE) under adaptable learning. It also emphasizes
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the importance of the "resale" valuation method, which considers the time-t predictive dis-

tribution of stochastically discounted future asset values.

The findings presented in this paper contribute to a deeper understanding of asset pricing

dynamics by incorporating personal experiences, adaptive learning processes, and subjec-

tive return expectations. Moreover, the study expands on previous research by considering

a broader set of market participants, providing a more comprehensive context for the anal-

ysis.

Moving forward, we aim in a future research to calibrate and validate the proposed asset

pricing model with adaptable learning gains.

Overall, this research contributes to the evolving landscape of asset pricing theory by em-

bracing the complexities of decision-making and highlighting the importance of adaptive

learning in capturing the intricate dynamics of asset pricing. By incorporating these insights

into economic models, we can gain a more accurate understanding of market behavior and

improve predictions in the field of finance.
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A Deriving the innovation return

By applying the Campbell-Shiller Decomposition in Campbell-Shiller (1988) to the return
innovations along with investors’ subjective expectations, denoted Ẽ we obtain

rt+1 − Ẽtrt+1 = (Ẽt+1 − Ẽt)
∑
s≥0

ρs∆t+1+s − (Ẽt+1 − Ẽt)
∑
s≥1

rt+1+s (1)

In general, µ̃d is an exponential-weighted average of past ∆d observations.
Because investors with subjective beliefs do not revise they return expectations once they
are set, return expectations stay fixed, Ẽt(rt+1) = θ + rf , with θ the constant risk premium
and rf the real constant risk-free rate.

rt+1 − Ẽtrt+1 = (Ẽt+1 − Ẽt)
∑
s≥0

ρs∆t+1+s

= (Ẽt+1 − Ẽt)[∆dt+1 +
∑
s≥1

ρs∆t+1+s]

=
ρ

1− ρ
(µ̃d,t+1 − µ̃d,t) + (∆dt+1 − µ̃d,t)

By replacing (µ̃d,t+1 − µ̃d,t) by the law of motion of the perceived growth rate,

=
ρ

1− ρ
[ν1 + (ν2 − ν1)g(t)](∆dt+1 − µ̃d,t) + (∆dt+1 − µ̃d,t)

= [
ρ

1− ρ
(ν1 + (ν2 − ν1)g(t)) + 1](∆dt+1 − µ̃d,t)

rt+1 = [
ρ

1− ρ
(ν1 + (ν2 − ν1)g(t)) + 1](∆dt+1 − µ̃d,t) + θ + rf

(2)
If we further assume that we know the true growth rate µd when applying econometric
techniques to a large sample of data, we can take expectations of the above final equation.
Under these objective beliefs, we obtain:

Ẽtrt+1 − rf = θ + [
ρ

1− ρ
(ν1 + (ν2 − ν1)Ẽtg(t)) + 1](∆dt+1 − µ̃d,t) (3)

where the term in parentheses times Delta dt+1− µ̃d,t represents the subjective growth-rate
expectations revision that the econometrician anticipates, on average, in the next period,
given her knowledge of µd,t.

Ẽtrt+1 − rf = θ + [
ρ

1− ρ
(ν1 + (ν2 − ν1)g(t)) + 1](∆dt+1 − µ̃d,t) (4)

as g(t) is deterministic at every time t.

B Derivation of the posterior

Combining the prior and the weighted likelihood:
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p(µ | Ht) ∝ exp

(
−(µ− µ0)

2

2σ2
0

)
×

[
l∏

j=0

[
exp

(
−(∆ct+j − µ)2

2σ2

)](1−ν1)j

×
∞∏

j=l+1

[
exp

(
−(∆ct+j − µ)2

2σ2

)](1−ν2)j
] (5)

Now, let’s combine the exponentials:

p(µ | Ht) ∝ exp

(
−(µ− µ0)

2

2σ2
0

−
l∑

j=0

(1− ν1)
j (∆ct+1 − µ)2

2σ2
−

∞∑
j=l+1

(1− ν2)
j (∆ct+1 − µ)2

2σ2

)
(6)

p(µ | Ht) ∝ exp

(
−(µ− µ0)

2

2σ2
0

−
l∑

j=0

(1− ν1)
j (∆ct+1 − µ)2

2σ2
−

∞∑
j=l+1

(1− ν2)
j (∆ct+1 − µ)2

2σ2

)
(7)

p(µ | Ht) ∝ exp

[
−(µ− µ0)

2

2σ2
0

− 1

2σ2

(
l∑

j=0

(1− ν1)
j(∆ct+1 − µ)2 −

∞∑
j=l+1

(1− ν2)
j(∆ct+1 − µ)2

)]
(8)

p(µ | Ht) ∝ exp

[
−(µ− µ0)

2

2σ2
0

− 1

2σ2

(
∞∑
j=0

(∆ct+1 − µ)2
[
(1− ν1)

j1j≤l + (1− ν2)
j1j>l

])]
(9)

where 1condition is an indicator function, which is equal to 1 if the condition inside is true and
0 otherwise.
Now, we can rewrite the expression inside the exponential function as a quadratic function
of µ:

−(µ− µ0)
2

2σ2
0

− 1

2σ2

∞∑
j=0

(∆ct+1 − µ)2
[
(1− ν1)

j1j≤l + (1− ν2)
j1j>l

]
= −1

2
Aµ2 +Bµ− C

(10)
The coefficients A, B, and C will be functions of the data and the parameters. Since the
posterior is proportional to the exponential of this quadratic function, it will have a normal
distribution. To find the mean and variance of this distribution, we need to find the maximum
of the quadratic function (i.e., the value of µ that maximizes the function) and the curvature
of the function at the maximum.
To find the maximum of the quadratic function, we can differentiate it with respect to µ and
set the derivative equal to zero:
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d

dµ

(
−1

2
Aµ2 +Bµ− C

)
= −Aµ+B = 0 (11)

Solving for µ, we get the mean of the posterior distribution:

µ∗ =
B

A
(12)

To find the curvature, we can differentiate the quadratic function again with respect to µ:

d2

dµ2

(
−1

2
Aµ2 +Bµ− C

)
= −A (13)

Since the curvature is constant, the variance of the posterior distribution will be the recipro-
cal of the negative curvature:

σ∗2 = 1

A
(14)

We just need now to derive the expressions for A, B, and C.
Let’s recall the expression for the posterior:

p(µ | Ht) ∝ exp

[
−(µ− µ0)

2

2σ2
0

− 1

2σ2

(
∞∑
j=0

(∆ct+1 − µ)2
[
(1− ν1)

j1j≤l + (1− ν2)
j1j>l

])]
(15)

Now, let’s expand the terms in the exponential:

−(µ− µ0)
2

2σ2
0

− 1

2σ2

∞∑
j=0

(∆ct+1 − µ)2
[
(1− ν1)

j1j≤l + (1− ν2)
j1j>l

]
= −1

2
Aµ2 +Bµ− C

(16)
Expanding the terms and combining similar terms, we have:

− µ2

2σ2
0

+
µµ0

σ2
0

− µ2
0

2σ2

− 1

2σ2

[
∞∑
j=0

((∆ct+j)
2 − 2µ∆ct+j + µ2)[(1− ν1)

j1j≤l + (1− ν2)
j1j>l]

]

= −1

2
Aµ2 +Bµ− C

(17)

Now, we can identify the coefficients A, B, and C:

A =
1

σ2
0

+
1

σ2

[
∞∑
j=0

(1− ν1)
j1j≤l + (1− ν2)

j1j>l

]
(18)

B =
µ0

σ2
0

+
1

σ2

[
∞∑
j=0

∆ct+j

[
(1− ν1)

j1j≤l + (1− ν2)
j1j>l

]]
(19)

C =
µ2
0

2σ2
0

+
1

2σ2

[
∞∑
j=0

(∆ct+j)
2
[
(1− ν1)

j1j≤l + (1− ν2)
j1j>l

]]
(20)
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Another method:

p(µ | Ht) ∝ exp

[
−(µ− µ0)

2

2σ2
0

− 1

2σ2

(
∞∑
j=0

(∆ct+1 − µ)2
[
(1− ν1)

j1j≤l + (1− ν2)
j1j>l

])]

∝ exp

[
− µ2

2σ2
0

+
µµ0

σ2
0

− µ2
0

2σ2
− 1

2σ2

[
∞∑
j=0

((∆ct+j)
2 − 2µ∆ct+j + µ2)

[
(1− ν1)

j1j≤l + (1− ν2)
j1j>l

]]]

∝ exp

[
−1

2
Aµ2 +Bµ− C

]
∝ exp

[
−1

2
A

(
µ− B

A

)2
]

∝ exp

[
−1

2

1

1/A

(
µ− B

A

)2
]

(21)
We made use of the fact that in the second line, the constant term does not depend on µ,
and it will be absorbed into the proportionality constant for the posterior distribution.
Starting with prior µ ∼ N (µ′, σ′) before seeing any data, the agent finally form a posterior
as follows:

µ | Ht ∼ N

 µ0

σ2
0
+ 1

σ2

[∑∞
j=0 ∆ct+j [(1− ν1)

j1j≤l + (1− ν2)
j1j>t]

]
1
σ2
0
+ 1

σ2

[∑∞
j=0(1− ν1)j1j≤l + (1− ν2)j1j>l

] ,

1

1
σ2
0
+ 1

σ2

[∑∞
j=0(1− ν1)j1j≤l + (1− ν2)j1j>l

]
 (22)

As stated in the section 5.1 , for simplicity, we work with an uninformative prior (σ0 → ∞)
that led to a relatively tractable posterior

µ | Ht ∼ N

(∑∞
j=0∆ct+j [(1− ν1)

j1j≤l + (1− ν2)
j1j>l]∑∞

j=0 [(1− ν1)j1j≤l + (1− ν2)j1j>l]
,

σ2∑∞
j=0 [(1− ν1)j1j≤l + (1− ν2)j1j>l]

)
(23)
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C Deriving the expression for the standardized unexpected
endowment growth

Starting with equation (29) and using equation (30), we have:

ϵ̃t+i =
∆ct+i − µ̃t+i−1

σ
√

1 + ν1 + (ν2 − ν1)g(t+ i− 1)

=
∆ct+i − (µ̃t+i−2 + (ν1 + (ν2 − ν1)g(t))(∆ct+i−1 − µ̃t+i−2))

σ
√
1 + ν1 + (ν2 − ν1)g(t+ i− 1)

=
∆ct+i − µ̃t+i−2 − (ν1 + (ν2 − ν1)g(t))(∆ct+i−1 − µ̃t+i−2)

σ
√

1 + ν1 + (ν2 − ν1)g(t+ i− 1)

=
∆ct+i − µ̃t+i−2

σ
√

1 + ν1 + (ν2 − ν1)g(t+ i− 1)
− (ν1 + (ν2 − ν1)g(t+ i− 1))(∆ct+i−1 − µ̃t+i−2)

σ
√
1 + ν1 + (ν2 − ν1)g(t+ i− 1)

= ϵ̃t+i−1 −
(ν1 + (ν2 − ν1)g(t+ i− 1))(∆ct+i−1 − µ̃t+i−2)

σ
√

1 + ν1 + (ν2 − ν1)g(t+ i− 1)
(24)

so

ϵ̃t+i+1 = ϵ̃t+i −
(ν1 + (ν2 − ν1)g(t+ i))(∆ct+i − µ̃t+i−1)

σ
√
1 + ν1 + (ν2 − ν1)g(t+ i)

˜covt(ϵ̃t+i, ϵ̃t+i+1) = Ẽt[ϵ̃t+iϵ̃t+i+1]− Ẽt[ϵ̃t+i]Ẽt[ϵ̃t+i+1]

= Ẽt

[
ϵ̃t+i

(
ϵ̃t+i −

(ν1 + (ν2 − ν1)g(t+ i))(∆ct+i − µ̃t+i−1)

σ
√
1 + ν1 + (ν2 − ν1)g(t+ i)

)]
− Ẽt[ϵ̃t+i]

2

= Ẽt[ϵ
2
t+i]−

(ν1 + (ν2 − ν1)g(t+ i))Ẽt[(∆ct+i − µ̃t+i−1)ϵ̃t+i]

σ
√
1 + ν1 + (ν2 − ν1)g(t+ i)

− Ẽt[ϵ̃t+i]
2

= − (ν1 + (ν2 − ν1)g(t+ i))

σ
√

1 + ν1 + (ν2 − ν1)g(t+ i)
.Ẽt[(∆ct+i − µ̃t+i−1)ϵ̃t+i]

= − (ν1 + (ν2 − ν1)g(t+ i))

σ
√

1 + ν1 + (ν2 − ν1)g(t+ i)
< 0

(25)
where we used the fact that Ẽt [(∆ct+i − µ̃t+i−1)ϵt+i] = Ẽt[∆ct+i − µ̃t+i−1]Ẽt[ϵt+i] = 0 due
to the orthogonality of the forecast error and the realized shock. The justification is that
even if Ẽt [(∆ct+i − µ̃t+i−1)ϵ̃t+i] = 0 for all i = 0, the term − ν1+(ν2−ν1)g(t+i)

1+ν1+(ν2−ν1)g(t+i)
in the expres-

sion of ˜covt(ϵ̃t+ i, ϵ̃t+i+1) does not necessarily vanish. This is because this term is the
product of the gains ν1 and ν2, which are constants, with the time-varying smooth transition
function g(t+ i). As long as g(t+ i) is not constant and different from zero, this term will not
collapse to zero even if the cross-covariances Ẽt [(∆ct+i − µ̃t+i−1)ϵ̃t+j] are all equal to zero.

The reason why the entire ˜covt(ϵ̃t+i, ϵ̃t+i+1) does not collapse to zero, even if Ẽt[(∆ct+i −
µ̃t+i−1)ϵ̃t+i] = 0 for all i, is due to the persistence of the perception shocks. Even though
the current and future shocks may not be correlated with the current perceived consump-
tion growth, the shocks will still affect the future perceived consumption growth through their
persistence.
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In other words, the perception shocks have a persistent effect on the perceived consumption
growth, and this persistence is captured by the auto-covariance structure of the standard-
ized unexpected endowment growth. As a result, the shocks will affect the future perceived
consumption growth even if they are uncorrelated with the current perceived consumption
growth. This is why the entire auto-covariance structure of the standardized unexpected
endowment growth does not collapse to zero, even if Ẽt[(∆ct+i − µ̃t+i−1)ϵ̃t+i] = 0 for all i.

D Proving the analytical expressions of the shocks vari-
ances σ2ξ and σ2ζ

Now, to confirm that these expressions result in a time-t predictive distribution of ∆ct+j in the
time-varying gain learning model that matches the predictive distribution in the equivalent
full-memory model, we need to substitute these expressions into the full-memory model’s
predictive distribution:
But we need to find the expression for ω2. Using (K.5) and (K.6), we get:

ω2(t) = K(t)(σ2
ζ + σ2

ξ )− σ2
ζ . (26)

Now we can substitute K(t), σ2
ξ (t), and σ2

ζ into the equation for ω2(t):

ω2(t) = [ν1 + (ν2 − ν1)g(t)]σ
2 − [ν1 + (ν2 − ν1)g(t)]

2σ2. (27)

Now, we can substitute our expressions for ω2(t), σ2
ζ , and σ2

ξ (t) into the predictive distribu-
tion (K.7):

∆ct+1 ∼ N
(
µ̂t+1|t, [ν1 + (ν2 − ν1)g(t)]σ

2

− [ν1 + (ν2 − ν1)g(t)]
2σ2 + (1 + [ν1 + (ν2 − ν1)g(t)]

2)σ2

+ (1− [ν1 + (ν2 − ν1)g(t)]
2)σ2

)
. (28)

Now, we simplify the variance part:

∆ct+1 ∼ N (µ̂t+1|t, σ
2). (29)

So, the expressions for K(t), σ2
ξ (t), and σ2

ζ result in a time-t predictive distribution of ∆ct+j

in the time-varying gain learning model that matches the predictive distribution in the equiv-
alent full-memory model.

E Proving that K(t), h(t), and σ2ξ (t) result in a time-t pre-
dictive distribution of ∆ct+j

To confirm that the expressions for K(t), h(t), and σ2
ξ (t) result in a time-t predictive distribu-

tion of ∆ct+j in the time-varying gain learning model that matches the predictive distribution
in the equivalent informative prior full-memory model, let’s substitute these expressions into
the full-memory model’s predictive distribution.
Recall the predictive distribution for the informative prior full-memory model (K.15):

∆ct+1 | Ht ∼ N (µ̂t+1|t, h
2ω2 + σ2

ζ + σ2
ξ ).
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Now, we can substitute our expressions for h(t), ω2(t), σ2
ζ , and σ2

ξ (t) into the predictive
distribution:

∆ct+1 | Ht ∼ N (µ̂t+1|t, h(t)
2ω(t)2 + σ(t)2ζ + σ(t)2ξ).

This distribution represents the time-t predictive distribution of ∆ct+j in the time-varying
gain learning model. By substituting the expressions for the parameters, we have derived
a distribution that matches the predictive distribution in the equivalent informative prior full-
memory model, which confirms that the expressions for K(t), h(t), and σ2

ξ (t) result in the
desired time-t predictive distribution.
Following Hansen, Heaton, and Li (2008), we start with value function iteration

vt =
δ

1− γ
logẼt[e

(1−γ)(vt+1+∆ct+1)], (30)

where vt = log(V t/Ct) and Vt is the continuation value. We conjecture the solution to be
linear in the state variable, i.e.

vt = µυ + Uυµ̃t. (31)

Plugging in the conjectured solution we get

µυ + Uυµ̃t =
δ

1− γ
logẼt[e

(1−γ)(µυ+Uυµ̃t+1+µ̃t+σ
√
1+νt+1ϵ̃t+1)] (32)

µυ + Uυµ̃t =
δ

1− γ
logẼt[e

(1−γ)(µυ+Uυµ̃t+1+µ̃t+σ
√
1+νt+1ϵ̃t+1)]

=
δ

1− γ
logẼt

[
e(1−γ)(µυ+Uυ(µ̃t+νt+1σ

√
1+νϵ̃t+1)+µ̃t+σ

√
1+νt+1ϵ̃t+1

]
=

δ

1− γ
logẼt

[
e(1−γ)(µυ+(1+Uυ)µ̃t+νt+1σ

√
1+νt+1ϵ̃t+1Uυ+σ

√
1+νt+1ϵ̃t+1)

]
=

δ

1− γ
logẼt

[
e(1−γ)(µυ+(1+Uυ)µ̃t+(1+νt+1Uυ)σ

√
1+νt+1ϵ̃t+1)

]
= δ[µυ + (1 + Uυ)µ̃t] +

δ

1− γ
logẼt[e

(1−γ)(1+νt+1Uυ)σ
√
1+νt+1ϵt+1)]

= δµυ +
δ

1− γ
logẼt[e

(1−γ)(1+νt+1Uυ)σ
√
1+νt+1ϵt+1)] + δ(1 + Uυ)µ̃t

(33)

By identification,

Uυ = δ(1 + Uυ)

Thus, we get: Uυ =
δ

1− δ

(34)

µυ = δµυ +
δ

1− γ
logẼt[e

(1−γ)(1+νt+1Uυ)σ
√
1+νt+1ϵ̃t+1)]

µυ =
1

1− δ

δ

1− γ
logẼt[e

(1−γ)(1+νt+1Uυ)σ
√
1+νt+1ϵ̃t+1)]

µυ =
1

2
(1− γ)Uυ(νt+1Uυ + 1)2(1 + νt+1)σ

2.

(35)
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Now, let’s turn to the stochastic discount factor (SDF). In our scenario, it represents the
factor by which the agent is willing to exchange future payoffs for current ones, under un-
certainty. In the case of Epstein-Zin preferences, the SDF takes the following form:

mt+1|t = log

(
δ
Ct

Ct+1

V 1−γ
t+1

Ẽt[(Vt+1)1−γ]

)
= logδ −∆ct+1 + (1− γ)log(Vt+1)− logẼt[(Vt+1)

1−γ]

= logδ −∆ct+1 + (1− γ)(vt+1 + ct+1)− logẼt[e
(1−γ)(vt+1+ct+1)]

= µ̃m,t − µ̃t − ξtσϵ̃t+1,

(36)

As g(t) is a deterministic and known function, the time-varying expressions of the compo-
nent of mt+1|t are as the following:

µ̃m,t = logδ − 1

2
(1− γ)2(ν1 − (ν2 − ν1)g(t)Uυ + 1)2(1 + ν1 − (ν2 − ν1)g(t))σ

2 (37)

ξt = [1− (1− γ)(ν1 − (ν2 − ν1)g(t)Uυ + 1)]
√
ν1 − (ν2 − ν1)g(t) (38)

F Determination of Values ν1 and ν2

The objective of our analysis was to ascertain two specific values, ν1 and ν2, associated
with inflation data by scrutinizing various data windows and pinpointing breakpoints. The
methodology is delineated below:

1. Initial Setup:

• To ensure reproducibility, a seed of 602 is fixed.

• A window size of 40 observations is set, complemented by a minimum segment
size of 10 for internal segments.

2. Preparation for Iterative Data Analysis:

• Vectors are initialized to accumulate the computed gamma values for each data
segment and their associated dates.

3. Window-Based Analysis:

• The dataset is looped iteratively, taking 40 observations in each window.

• Within each window, a simple linear regression model is employed:

Learning Gain = γ0 + ϵ

• As we are primarily interested in detecting structural breaks in the data, this
simple regression with just a constant is adequate. The goal in this context is
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not to explain variations in the dependent variable but rather to identify points
where the mean level of the series shifts. By focusing on the constant, we are
targeting changes to the average value over different windows, making it easier
to spot these shifts.

• Within this model, breakpoints are discerned, segmenting the data to reveal
distinct behavioral patterns.

• If breakpoints are absent, have missing data, or are invalid, the iteration skips
forward.

• If valid breakpoints are present, the gamma (coefficient) values for each segment
are extracted and stored.

4. Consolidation of Findings :

• Gamma values, paired with their relevant dates, are combined into a dataframe.

• Entries with absent gamma values are purged from this dataframe.

5. Identification of Extreme Gamma Points:

• The gamma values of utmost significance, which correspond to the highest and
lowest values, are identified within the dataframe.

• These distinct values represent our sought-after ν1 and ν2.

Upon completion of this methodology, we established that ν1 = 0.01858007 and ν2 =
0.08162585.
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