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A CENTURY OF CHANGE 
in Black Hills Forest and Riparian Ecosystems 

The U.S. Forest Service has recently embraced 

the type of land management termed "ecosystem 

management." Goals are set and then met by inte­

grating ecosystem principles into management plan­

ning and implementation (Overbay 1992). 

Managing ecosystems for the present and future 

requires that we understand the ecology of the past. 

An analysis of changes in ecosystems, for example, is 

the recent work on disturbed forest communities of 

the Inland West (Covington et al. 1994). The pon­

derosa pine (Pinus ponderosa) ecosystem evolved in 

dynamic equilibrium with recurrent disturbances, 

especially fire, insects, and short- and long-term cli­

matic cycles. 

However, people have not always recognized the 

importance of these processes. 

Early in this century, society viewed forest 

resources in a utilitarian context and considered 

"preventable" tree losses to be forfeited economic 

opportunities. Consequently, an objective of the 

early U.S. Forest Service was to increase timber pro­

ductivity in susceptible ecosystems, primarily through 

fire suppression and silviculture techniques. 

This method of forest management achieved its 

goal of increasing tree survival to merchantable size. 

Achievement came with a price, however. 

Throughout the Inland West, conifer population 

explosions are commonplace (Covington et al. 1994). 

As a result, forested landscapes are vulnerable to 

large-scale insect epidemics and conflagrations. The 
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recent insect epidemics in eastern Oregon and 

Washington forests, the Yellowstone fires of 1988, 

and the tragic western fires of 1994 are examples. 

Thousands of forested acres have succumbed to 

unnaturally large disruptions. Tree mortality of this 

magnitude may indicate that management has 

altered the dynamic equilibrium of these ecosystems. 

Managers and scientists now better understand 

fundamental ecosystem processes. Recognizing the 

processes and "natural variability'' of an ecosystem 

(Swanson et al. 1994) is critical in creating and car­

rying out a management plan. Recent research has 

given us a clearer understanding of ecosystem 

dynamics in the East Slope forests of Oregon and 

Washington prior to Euro-American settlement 

(Everett et al. 1994). Temperate coniferous forests, 

grasslands, and riparian communities all evolved 

under the influence of recurrent physical and biotic 

disturbances whose frequency and intensity may be 

predictable if we have enough historical information. 

Given this information, we may have options to con­

serve the integrity of an ecosystem and limit undesir­

able events. 

Conversion of an ecosystem back to natural or 

historical conditions may not be a societal objective. 

But managing within the constraints of an ecosystem 

can be crucial to long-term sustained health. Several 

forest scientists, including Covington and Moore 

(1994), Covington et al. (1994), and Bonnicksen 

(1993) have championed a process of forest restora­

tion ecology. These researchers realize that many 

forest ecosystems may require corrective actions to 



retain desirable characteristics such as late succes­

sion, commercial productivity, and forest, prairie, or 

savanna landscapes. In the absence of management, 

large-scale disturbance may be inevitable. 

This paper summarizes changes in forests, 

riparian areas, and wildlife of the Black Hills since 

Euro-American settlement in the 1870s. Specific 

objectives were to: 

1) Document conditions of forests, riparian 

ecosystems, and associated wildlife prior to 

Euro-American settlement in the 1870s through 

historical references; and, 

2) Compare historical and current conditions to 

ascertain ecosystem shifts incurred during the 

past 120 years. 

Hopefully, this work will provide land man­

agers with an ecological perspective for resource 

management activities and will spur research to 

more completely quantify natural ecological condi­

tions. 

FINDINGS 

Reports from early expeditions to the Black 

Hills such as Warren (Hayden 1862), Custer (Ludlow 

1875), and Dodge (1965) were the principal sources 

for historical resource information. 

These sources tend to be impressionistic and 

subjective. However, their descriptions of the Black 

Hills prior to significant modification by Euro­

Americans were relatively consistent. 

FOREST ECOSYSTEMS 

PONDEROSA PINES 
The Black Hills are an isolated montane region 

in western South Dakota and northeastern Wyoming 

surrounded by prairie ecosystems (Fig 1). The 
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Lakota Nation referred to the area as "paha sapa," 

meaning literally "hills that are black." The conifer 

forests appear dark when viewed from almost any 

direction on the adjacent plains (Froiland 1990). 

Economic potential was the focus of forest 

resource descriptions by early visitors to the Black 

Hills. They described a landscape dominated by 

extensive ponderosa pine forest. Other tree species 

were minor in comparison (Donaldson 1914, Dodge 

1965, Mclaird and Turchen 1974). 

Generally, they referred to the ponderosa pine 

forests in glowing terms; although most authors 

qualified these impressions by noting recurrent signs 

of widespread forest fires, small tree size, and unre­

alized commercial possibilities (Donaldson 1914; 

Dodge 1965). All of these documents provide a gen­

eral view that the ponderosa pine forests were wide­

spread but that disturbances, especially from fire, 

limited the number and extent of coniferous trees 

across the landscape. 

The first extensive quantification of forest 

resources was a report to Congress entitled "Black 

Hills Forest Reserve, South Dakota and Wyoming" 

(Graves 1899). This report not only described forest 

conditions at the end of the nineteenth century but 

also provided insight for the period leading up to ini­

tial Euro-American settlement in 1874. Attached to 

the report were landscape-level maps of mer­

chantable ponderosa pine volumes. According to 

Graves, "14 inches in the stump is about the mini­

mum limit of merchantable timber .... " These maps 

display merchantable timber volumes existing 

between 1874 and 1894 for most of the Black Hills. 

They also appear to delineate the extensive timber 

harvests on the eastern portion of the Black Hills that 

took place between 1874 and the mid 1890s as an 

overlay of pre Euro-American conditions. 

Graves (1899) described th� ponderosa pine 

forest as being composed of all age classes. Large, 

old ponderosa pines, 250 to 300 years old, were 

grouped into three classes of "old trees" or "original 

forest" with different developmental and structural 

characteristics. 



Fig 1. Black Hills vicinity. 
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Stands of the first class were on productive soils 

that, in Graves' opinion, had been nearly devoid of 

fires, insects, diseases, and other mortality (Graves 

1899). These stands undoubtedly experienced dis­

turbance but were still able to develop relatively high 

volumes. The trees averaged 20 inches in diameter 

and 80 feet in height. Graves estimated average den­

sity, which we interpret to be canopy cover based on 

his description, to be 80%. He referred to trees of 

this class as crowded stands of timber and, based on 

location descriptions, depicted them on the accompa­

nying maps as the category 5,000-10,000 board mea­

sure (board feet) per acre. 

The two largest stands, about 15,000 to 20,000 

acres, were west of Spearfish Canyon. The remain­

ing patches, primarily in the northwestern and east­

ern portions of the Black Hills, ranged from about 80 

to 10,000 acres in size, averaging approximately 

1,000 acres. In total, these stands comprised about 

59,000 acres of the land base in the South Dakota 

portion of the Hills and made up the smallest 

amount of the "original forest" in terms of areal 

extent. 

The second class was the most abundant type 

of "original forest" ranging over most of the Black 

Hills (Graves 1899). Diameters were similar to the 

first class, but the trees averaged 65 to 70 feet in 

height. These areas were not as dense as the first 

class due to the influences of fire and other mortali­

ty. Average density (canopy cover) was 50%. 

The third class was restricted to ridges and steep 

slopes. Trees in these stands were shorter (average of 

60 feet) and smaller (14 to 17 inches in diameter) 

than the previous classes, possibly due to poorer site 

conditions. 

Graves' (1899) "original forest" discussion prob­

ably was designed to give Congress a sense of the 

commercial timber potential. But we can interpret 

this same information to develop a concept of late­

succession landscapes in the Black Hills. 

The second and third classes had low densities 

of old trees typical of other ponderosa pine ecosys-
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terns (Weaver 1961, Amo 1988, Covington and 

Moore 1994, Covington et al. 1994, Everett et al. 

1994). If we use southwestern ponderosa pine as a 

model (Covington and Moore 1994), second and 

third classes may have consisted of individuals or 

groups of old trees intermixed with pine of all ages. 

Spacing between tree clumps was likely variable with 

a wide array of stand sizes. Although the pine popu­

lation structure was diverse, synchronous reproduc­

tion may have produced clumps across the landscape 

with similar age-class distributions. 

The lowest volume levels (less than 2,000 

board measure feet per acre) depicted on the Graves 

(1899) maps comprised about 75% of the Black Hills 

landscape. These volume estimates lend insight into 

stand densities. His 2,000 board feet per acre vol­

ume equates to about five 20-inch dbh (diameter at 

breast height) trees per acre. In contrast, 11 20-inch 

dbh trees contain about 5,000 board feet per acre, 

the highest volumes mapped. 

Graves (1899) also noted that the forest 

appeared "irregular and broken." From this descrip­

tion it appears that the natural pattern of ponderosa 

pine across much of the forest compares favorably 

with other conspecific ecosystems (Covington and 

Moore 1994, Covington et al. 1994). 

Graves (1899) also described the abundance 

and distribution of age classes not ready for harvest. 

Trees that were 150 to 160 years old were scattered 

throughout the forest. Considerable numbers of 

young poles, 40 to 50 years old, occurred in the 

northern and southern Hills. Trees in the 100-year­

old age class apparently were abundant. A "great 

belt," composed almost entirely of these "second 

growth" trees, covered an area from the mouth of 

Bear Butte Canyon west to Spearfish Canyon and 

down the western Limestone Plateau (Fig 1) to the 

headwaters of Hell and Gillette canyons. Much of 

the northeastern portion of this belt had been har­

vested by 1899, but the western Limestone Plateau 

remained essentially untouched. 

Progulske (1974) provided photographic evi­

dence supporting the premise that Black Hills forests 
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have undergone considerable change. In his study, 

sites photographed during the Custer Expedition of 

1874 were relocated and photographed in 1974. 

Throughout the pictorial series, the 197 4 ponderosa 

pine forest appears to be much denser and cover 

more of the landscape (Figs 2 and 3). The author 

attributed these shifts to a century of fire suppres­

sion. Similar trends in fire-dominated ecosystems 

have been photo-documented elsewhere in the West 

(Gruell 1983, USDA Forest Service 1993). 

Ponderosa pine mortality in the pre-Euro­

American forest (Figs 2 and 3) was conspicuous and 

noteworthy (Ludlow 1875, Graves 1899, Donaldson 

1914, Dodge 1965). The most common causes of 

mortality appear to have been fire and mountain 

pine beetles (Dendroctonus ponderosae) . Early 

explorers frequently noted evidence of forest fires 

such as burned trees and treeless meadows with 

residual stumps (Ludlow 1875, Dodge 1965). 

Graves (1899) reported fire scar dates. 

Although dating techniques were primitive, he dis­

cussed evidence for a number of fires prior to 1875. 

On the basis of his estimates, a fire or series of fires 

burned much of the Black Hills between 1730 and 

1740. Fires of that magnitude burned again between 

1790 and 1800. He also identified smaller-scale fires 

in 1842 and 1852. 

It appears, from the historical information, that 

widespread, stand-replacing fires may have swept 

parts of the Black Hills periodically, although the fre­

quency is unknown. Cooper (1960) and Weaver 

(1961) regarded these fires as rare or nonexistent in 

southwestern and northwestern ponderosa pine. 

Although they were uncommon, Weaver (1951) 

described conditions that could lead to intense fires 

in ponderosa pine. 

Low-intensity ground fires also were important 

in the Black Hills. However, discussions by explorers 

are scanty because these fires left behind little obvi­

ous evidence. Instead of leaving charred tree 

remains, these fires actually stimulated growth or 

regeneration in many deciduous trees, shrubs, and 

herbaceous plants. 
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Graves (1899) seems to be the first author to 

recognize that fires of different intensities burned in 

the Hills. Large, hot bums were thought to be rela­

tively rare. In contrast, cooler surface fires had a nat­

ural thinning effect on seedlings and saplings. Graves 

felt that the greatest damage to the forest from fires 

was the destruction of young pines. These interpreta­

tions coincide with later analyses of the Black Hills 

(Gartner and Thompson 1973, Progulske 1974) and 

descriptions of low-intensity fires in other ponderosa 

pine ecosystems (Weaver 1955, Cooper 1960, 

Covington and Moore 1994, Covington et al. 1994). 

The only quantitative information available for 

low-intensity fires in the region comes from research 

at Devils Tower National Monument, Wyoming, west 

of the Bearlodge District. In this study, Fisher et al. 

(1987) found, for the years before 1770, a 27-year 

mean period between regional fires that were hot 

enough to scar many mature trees without inflicting 

mortality. After 1770 and continuing until 1900, fire 

return intervals decreased to 14 years. 

This change corresponded with the move of the 

Lakota into the Black Hills area from the outlying 

plains. The authors theorized that the Lakota may 

have driven game into rivers or over breaks with fire. 

Assuming no significant change in lightning patterns, 

Fisher et al. (1987) concluded that increased fire fre­

quencies corresponded with Lakota settlement. 

After 1900, fire return intervals at Devils Tower 

extended to 42 years (Fisher et al. 1987) due to fire 

suppression. This was an era of dynamic change for 

Black Hills ecosystems. Although natural fire-igni­

tion frequencies probably did not change from the 

pre-Euro-American period, successful suppression 

reduced ponderosa pine mortality. Instead of young 

pine regeneration undergoing natural thinning by 

fire, as documented in other ponderosa pine ecosys­

tems (Weaver 1955, Covington et al. 1994), dense 

pine thickets developed. As suppression became 

more sophisticated, fewer fires escaped containment. 

The result has been a population explosion of pon­

derosa pine in the Black Hills that appears to be com­

mon throughout other coniferous communities in the 

West (Covington et al. 1994). 



Figure 2. Duplicate 

photographs of Castle 

Creek (1874 and 1974). 

The 1874 photograph (top) 

shows sparse forest 

uplands in foreground, 

extensive quaking aspen 

across Castle Creek, and 

an extensive willow com­

munity along the drainage. 

By 1974 (bottom) the pon­

derosa pine forest in the 

foreground is more dense 

and extensive, the white 

spruce has encroached into 

the historic aspen, and the 

riparian area is drier as evi­

denced by the road and 

lack of willows and spruce 

on the bottom. 
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Figure 3. Duplicate 

photographs of 

Tenderfoot Creek 

(1874 and 1974). 

The 1874 picture (top) 
shows a sparse ponderosa 

pine forest on the hills in the 

background and a decidu­

ous shrub community along 

the creek in the foreground. 

In 197 4 the ponderosa pine 

community is denser and 

the historic willow communi­

ty has been replaced by 

herbaceous plants and 

coniferous trees indicating 

drier site conditions. 



Significant differences between the Devils 

Tower area and the Black Hills preclude direct 

extrapolation of the Fisher et al. (1987) study. Devils 

Tower did not experience the tremendous influx of 

settlers that came to the Black Hills in the late 1800s. 

These new residents undoubtedly influenced fire 

regimes, although no data are currently available. 

The Black Hills also shows considerable ecologi­

cal diversity due to variations in temperature, mois­

ture, and evaporation/transpiration gradients. 

Intuitively, fires should have been less frequent and 

more intense in the cooler and more mesic northern 

Hills, the Harney Peak range, and on north-facing 

slopes, although no comparative data are available. 

Reduced fire frequencies achieved the objective 

of more merchantable timber but altered forest struc­

ture and natural ecosystem processes. Ultimately, 

increased fuel loads due to reduced fire frequencies 

can result in more intense fires (Covington and 

Moore 1994) that influence the ecosystem differently 

than low-intensity fires. The more obvious effects of 

intense burns include a reduction in forested areas, 

alterations to soil chemical and physical properties, 

increases in stream sediments, and higher levels of 

atmospheric particulates. 

FOREST INSECTS 

Endemic insects and diseases are a common 

cause of tree mortality and increase the likelihood of 

fire (Weaver 1955). Mountain pine beetles are prob­

ably the most significant biotic mortality agent on 

Black Hills pine. These native beetles have coexisted 

with pine for millions of years (Knight 1994). Under 

normal conditions, individual beetles survive in 

weakened or recently fallen trees (as reviewed by 

Knight 1994), creating small infection loci. The 

duration and intensity of infestations is a function of 

the number of trees in the stand between 7 .1 and 

13.0 inches dbh (Lessard 1986). Widespread epi­

demics are limited to landscapes dominated by these 

conditions. 

The history of mountain pine beetles in the 

Black Hills is basically a chronicling of epidemics. 
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The first documented episode also provides an 

interesting glimpse at a sequence of events that may 

have been part of a natural cycle shaping the pon­

derosa pine forest. Graves (1899), Murdoch (1910), 

and Dodge (1965) provided information used to syn­

thesize this scenario. 

In the 1890s, an extensive and relatively dense 

second growth of ponderosa pine grew on the west­

ern Limestone Plateau. Graves (1899) attributed this 

second growth to the aftermath of a large fire or 

series of fires during the 1790s. Following the 

fire(s), prolific seed crops were produced by the sur­

viving trees under good germinating conditions, a 

relatively common situation in most of the Black 

Hills. 

For unknown reasons this large area escaped 

significant mortality and developed into a relatively 

dense forested landscape. Trees reached the 10- to 

14-inch diameter class in the 1890s and, due to their 

high densities, became susceptible to mountain pine 

beetles. A widespread beetle epidemic swept the 

western Limestone Plateau from about 1895 to 1906, 

killing 90% of the trees in some areas. Without 

human intervention a large-scale, cataclysmic fire 

likely would have reset the area back to the initial 

1790s condition. 

Modern silviculture has attempted to reduce 

beetle impacts by thinning stands below vulnerable 

densities. However, there have been a number of 

beetle episodes during the twentieth century. The 

last outbreak occurred in the Bear Mountain area 

during the early 1990s. Following a beetle outbreak, 

affected areas have typically been salvage-harvested 

to reduce fire potential and limit outbreak extent. 

There has been no research designed to evalu­

ate mountain pine beetle epidemics in the pre-Euro­

Arnerican forests or how these outbreaks may have 

affected fire regimes. Nor is the beetle/fire history of 

the past 120 years clear. 

It is reasonable to deduce that where stand 

densities were high, outbreaks were a natural event 

and were commonly followed by fire. However, 



because most of the Black Hills now is available for 

timber harvest, contemporary epidemics may be less 

extensive and ensuing fires less common. 

FOREST UNDERSTORY 
Changes in Black Hills forest communities have 

also had a significant impact on understory vegetation. 

Research indicates that understory plant bio­

mass and species diversity are both inversely related 

to pine canopy density (Pase 1958, Uresk and 

Severson 1989, Wrage and Gartner 1993). Early 

explorers remarked about the prodigious herbaceous 

vegetation throughout the Hills and the excellent 

potential for livestock grazing (Newton and Jenney 

1880, Dodge 1965). 

Frequent recurring disturbances, characteristic 

of the Black Hills (as reviewed by Sieg 1992), main­

tained a generally open, mature forest canopy with a 

productive and diverse understory over much of the 

forest. Exceptions, with depauperate understories, 

may have included the first class of timber (described 

earlier) and the dense second growth of the northern 

Hills and western Limestone Plateau. 

Following a century of fire suppression and for­

est management, ponderosa pine is more dense and 

more extensive. This leads to diminished understory 

productivity, reduced interior prairies and meadows, 

and a simplification of community diversity (Pase 

1958, Gartner and Thompson 1973, Progulske 1974, 

Uresk and Severson 1989, Wrage and Gartner 1993). 

This pattern appears to be consistent with other pon­

derosa pine ecosystems (Weaver 1955, Covington 

and Moore 1994). 

At the tum of the century the combination of 

widespread pine mortality on the western Limestone 

Plateau due to mountain pine beetles and the inten­

sive logging on the eastern half of the forest reduced 

mature, overstory pine and increased potential 

understory productivity and diversity. Quite likely, 

the understory potential during this period was high, 

although large numbers of domestic livestock proba­

bly limited standing crops and diversity. 
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Introductions of exotic plants, beginning in the 

late 1800s, had a substantial impact on understory 

vegetation. Aggressive, strongly competitive plants 

such as Canada thistle (Cirsium arvense) became 

established, especially where there was soil distur­

bance or changes in site conditions. 

Undesirable weeds continue to be a problem on 

the Forest; at least 29,000 acres were affected in 

1994 (unpublished data, Black Hills National Forest). 

Control programs such as chemical spraying and bio­

logical agents are effective but labor intensive and 

costly. Many weed species are now common compo­

nents of the Black Hills flora, adversely affecting the 

abundance and diversity of native species. 

OTHER FOREST TREES 
Although ponderosa pine is the dominant forest 

community in the Black Hllls, other tree species are 

worth mentioning. Quantitative historical informa­

tion is limited for noncommercial species, but some 

general trends during the past century are apparent. 

White spruce (Picea glauca), dominant at high 

elevations and in cool canyon bottoms (Hoffman and 

Alexander 1987) has probably increased in range 

since 1874. Spruce, typically with limbs at ground 

level and a thin bark, is more susceptible to fire than 

ponderosa pine. This species is also more shade tol­

erant than pine. Fewer fires have reduced spruce 

mortality and produced favorable conditions, such as 

increased ground shading, for regeneration. The 

result has been an expansion in spruce populations, 

leading to more dense and extensive stands at higher 

elevations and on north-facing slopes. 

Quaking aspen (Populus tremuloides) is the most 

abundant deciduous tree in the Black Hills. Aspen is 

generally seral to conifers but in rare situations can 

be a potential natural community (Severson and 

Thilenius 1976). Aspen abundance is historically a 

function of fire that stimulates reproduction by root 

suckers (Mueggler 1988, Jones and DeByle 1985a) 

and creates conditions suitable for seed germination. 

Seed production, however, appears to have been very 

rare (McDonough 1985, Kay 1993). 



The reduced influence of fire affects aspen 

stands in two ways. First, stands not harvested or 

burned have aged and become more susceptible to 

insects and disease. Second, without treatments to 

retard succession, later seral stage conifers have 

encroached into aspen stands and will eventually 

replace them (Fig 2). 

Herbivore grazing patterns have also influenced 

aspen communities .  Aspen shoots and associated 

understory vegetation provide palatable forage for 

livestock and wildlife. Continued overuse of regener­

ating shoots until the existing clone dies has convert­

ed some aspen stands to a grassland type dominated 

by Kentucky bluegrass (Poa pratensis) (Severson and 

Thilenius 1976). 

Since existing aspen clones may be 8,000 to 

10,000 years old (Jones and DeByle 1985b) and suc­

cessful reproduction by seed is rare (McDonough 

1985, Kay 1993), loss of individual clones during the 

past century may have reduced this species' genetic 

diversity in the Black Hills . 

Paper birch (Betula papyrifera) and bur oak 

(Quercus macrocarpa) also tend to be seral to 

conifers in the Hills, and the same general succes­

sional relationships pertain to them. It is reasonable 

to conclude that the acreage of the upland deciduous 

forest was greater prior to 1874 than it is today, 

although no data are available. 

RIPARIAN ECOSYSTEMS 

Early settlers in the Black Hills cared mainly 

about the ability of riparian ecosystems to support 

placer mining, farming, and grazing (Rydberg 1896). 

Limited information from early authors such as 

Hayden (1862), Grinnell (included in Ludlow 1875), 

Donaldson (1914), and Dodge (1965) provide a gen­

eral historical background of riparian areas. 

Over the thousands of years before Euro­

American settlement, erosional and depositional peri-
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ods combined to form channel configurations and 

valley profiles (White and Hannus 1985) in the Hills. 

In the period leading up to Euro-American set­

tlement, 1500 to 1874, the climate was relatively sta­

ble, producing stream flows generally within the 

capacities of the drainage systems. Floods that 

realigned stream channels certainly occurred but 

were not documented by early explorers . Prior to 

1874, stream systems were probably in dynamic 

equilibrium as defined by Heede and Rinne (1990). 

The historical range of riparian plant communi­

ties probably was a function of elevation and, more 

specifically, of moisture and light gradients (Thoreson 

1988), geology, soil, valley bottom width, and slope 

gradient. Lower elevation riparian zones probably 

supported deciduous hardwoods such as green ash 

(Fraxinus pennsylvanica), boxelder (Acer negundo), 

and American elm (Ulmus americana), while white 

spruce was characteristic of the higher Hills. Riparian 

communities typically supported abundant shrubs 

(Figs 2 and 3) such as willows (Salix spp.), birches 

(Betula spp.), and red-osier dogwood (Camus 

stolonifera) (Froiland 1990). These shrubs are char­

acteristic of the wet meadow conditions described by 

explorers (Ludlow 1875, Dodge 1965). 

INFLUENCE OF BEAVERS 

Beavers (Castor canadensis) may have been the 

most important biological influence on the Black 

Hills riparian ecosystems, particularly in low-gradient 

drainages that supported abundant deciduous woody 

species. Olson and Hubert (1994) arrived at the 

same conclusion for montane streams in Wyoming. 

Early authors commented on the abundance of 

beavers (Ludlow 1875, Donaldson 1914, Dodge 

1965). This furbearer was especially noteworthy at 

the time because pelts were a valuable commodity. 

Beavers primarily used low-gradient riparian 

areas (Munther 1981) with ample forage and dam 

building materials such as willow and aspen. 

Impounded, water-saturated soils increased the 

width of riparian zones (Munther 1981) and created 

habitat for plants adapted to wet soils. Suspended 



sediments were trapped behind dams and filtered out 

of solution by the riparian vegetation. Thus, valley 

bottom alluvial volume probably increased in the 

presence of beaver dam complexes (Munther 1981, 

Olson and Hubert 1994). 

Beavers not only influenced riparian vegetation 

composition. They also changed stream flows. 

In streams without beaver colonies, much of the 

runoff came as a pulse during spring snow melt and 

warm-season precipitation. A complex of beaver 

dams with associated wet meadow soils and vegeta­

tion functioned like a sponge, discharging lower vol­

umes in the spring and, especially in small streams, 

extending flows to later in the summer. 

Consequently, beaver could convert intermittent 

drainages to perennial flows. 

Beavers were not permanent fixtures in a 

stream reach (as reviewed by Olson and Hubert 

1994). Overuse of woody forage would trigger a 

move to a different stream reach. The untended 

dams eventually breached during high flows, and the 

stream downcut into the accumulated sediments.  As 
the water table lowered, especially at the periphery 

of a meadow, plants that were adapted to drier soils 

increased in abundance. 

Intermittent streams that the beavers had 

changed to perennial flows by slow release from 

beaver dam complexes reverted back to seasonal 

drainages with runoff occurring only during snow 

melt and rain storms. 

Recovery of overused woody plants was typical­

ly rapid because plants such as willow resprout fol­

lowing browsing. The bare, fertile sediments 

exposed behind breached dams made ideal sites for 

seed germination of woody species. 

Beavers eventually recolonized a stream reach 

once the woody species recovered. This cycle was 

probably typical for small, low-gradient streams. 

In the Black Hills, beavers were heavily exploit­

ed during the latter part of the 1800s. They were val-
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ued for their pelts and were abundant and easily 

trapped. In a short time, unregulated harvest caused 

a drastic population reduction. Bailey (as reviewed 

by Turner 1974) noted that by 1888 beaver numbers 

were low and restricted to remote portions of the 

Hills . Riparian ecosystem degradation following 

beaver removal was probably rapid (Munther 1981), 

so eradication from a drainage could have had sub­

stantial long-lasting effects. 

During the 1930s, in an effort to increase the 

Black Hills beaver population, the state of South 

Dakota imposed harvest regulations and supplement­

ed the population with transplants from the eastern 

part of the state. Populations have fluctuated during 

the past 60 years but have not attained their original 

numbers due to the reduction in suitable habitat. 

Land managers now recognize the significant 

ecological role of beavers.  Currently, a beaver har­

vest moratorium on the South Dakota portion of the 

Black Hills National Forest is designed to increase 

population levels in areas with ample habitat. As 
beaver numbers rise they should become a key ingre­

dient in riparian restoration. 

INFLUENCE OF HUMANS 

Human alterations of riparian ecosystems coin­

cided with the discovery of gold. 

Recent paleoenvironmental evidence indicates 

that fires burned through riparian vegetation (unpub­

lished data, Dr. Jeff Saunders, Illinois State 

Museum), although their frequency and intensity are 

unknown. Fire in mesic riparian areas must have 

been an infrequent event but undoubtedly was an 

important ecosystem process.  Riparian vegetation, 

like the upland forest, probably was more susceptible 

to fire during droughts . Fire has a rejuvenating 

effect on riparian plants such as willow. Fire sup­

pression this century has reduced frequencies, 

although there are no data available on extent or 

consequences of the reduction. 

The first prospectors were placer miners. 

Placer mining required excavation of the stream bot-



tom and floodplain substrate, disrupting riparian veg­

etation. The intensity of mining was severe in some 

areas (Parker 1981), but it was not the sole human 

impact on riparian areas. 

Early settlers also established communities and 

transportation routes along streams. Many residents 

owned livestock which tended to graze in riparian 

areas because of the palatable forage and proximity 

to water. Effluent from mining, milling, and domes­

tic sources was dumped directly into streams. Water 

was diverted from streams for milling, domestic use, 

or to drain meadows for cultivation. 

Cumulatively, these impacts took a toll on 

riparian ecosystems. 

Stream meander configurations were altered, 

especially in those channelized for mining or farm­

ing. Higher water velocities downcut into the alluvi­

um, causing water tables to drop. Riparian vegeta­

tion eventually converted to drier-site plants, result­

ing in less diverse communities . Kentucky bluegrass 

and smooth brome (Bromus inermis) , both drier-site 

constituents, replaced diverse, native, wet-meadow 

complexes. Western snowberry (Symphoricarpos 

occidentalis) probably also increased under these cir­

cumstances. 

Most of these impacts have moderated during 

the twentieth century under improved management. 

Localized impacts from grazing, mining, and 

effluent discharges still occur but are less significant 

than in the late 1800s . However, the legacy of that 

earlier period still exists in the form of drier sites, 

altered plant communities, modified stream courses, 

and toxic leachates . 

Two influences more in evidence this century are 

road developments and water yields. 

Road densities have increased substantially, giv­

ing access to timber harvests, private lands, grazing 

allotments, recreational areas, etc. As was the case 

with initial road and rail sitings, riparian areas were 

commonly selected for modem construction. 
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Transportation corridors in riparian zones replace 

riparian habitat, relocate channels, increase sediment 

loads, and reduce channel meander potential. 

Reduction in water yields and perennial stream 

mileage during this century has generated substantial 

concern. Monitoring by the U.S. Geological Survey 

(Driscoll and Zogorski 1990) and historical fish 

stocking records (Stewart and Thilenius 1964) both 

indicate that there are fewer miles of perennial 

stream flow than earlier in the century. 

The most commonly cited reason for declines in 

water yields and stream mileage has been a higher 

evapo-transpiration rate associated with larger pon­

derosa pine populations (Stewart and Thilenius 

1964). Other factors include the reduction in active 

beaver dam complexes that regulated water flow 

throughout the year, plus increases in consumption 

for domestic, industrial, and agricultural purposes. 

Combined, all these factors have reduced perennial 

stream flows and decreased the extent of true ripari­

an habitats . 

WILDLIFE 

Resident wildlife at the time of Euro-American 

exploration primarily reflected the plant communities 

that had reached the Black Hills and survived the 

fluctuating climate since the last glacial period. 

Presettlement plant communities and associated 

wildlife included northern boreal forests [northern 

flying squirrel (Glaucomys sabrinus) and three-toed 

woodpecker (Picoides tridactylus) ], eastern deciduous 

forests [ovenbird (Seiurus aurocapillus) and ruffed 

grouse (Bonasa umbellus) ], western coniferous 

forests [mule deer (Odocoileus hemionus) and pygmy 

nuthatch (Sitta pygmaea) ], and the Great Plains 

[sharp-tailed grouse (Tympanuchus phasianellus) and 

bison (Bison bison) ]. 

Early accounts of the Black Hills noted native 

wildlife, although much of the focus was on large 

conspicuous species, especially those hunted and 

trapped (e.g., Dodge 1965, Donaldson 1914). More 



extensive lists for the Black Hills and adjacent 

prairies came from the observations and collections 

of naturalists Ferdinand V. Hayden (1862) and 

George B. Grinnell (included in Ludlow 1875). 

Euro-Americans influenced wildlife in the Black 

Hills in four ways: 

(1) Some species were harvested for food or 

fur or killed because they were perceived to be a 

threat to settlers and their livestock. 

These included bison, Manitoban elk (Cervus 

elaphus manitobensis), Audubon bighorn sheep (Ovis 

canadensis auduboni), wolf (Canis lupus), grizzly bear 

(Ursus arctos horribilis), and blue grouse 

(Dendragapus obscurus) (Over and Churchill 1941, 

Thomson 1968, Turner 1974, South Dakota 

Ornithologists' Union 1991). All of these species 

were extirpated from the Black Hills as a direct result 

of overharvesting. 

Others such as the beaver, black bear (Ursus 

americanus), and white-tailed (Odocoileus 

virginianusJ and mule deer were nearly eliminated by 

the early 1900s. 

Regulated harvests restored the deer popula­

tions, and transplants successfully reestablished elk 

(Cervus elaphus canadensis), bighorn sheep (Ovis 

canadensis canadensis), and beaver, although the first 

two are different subspecies than the original popula­

tions (Turner 197 4). There have been unsuccessful 

attempts to reintroduce blue grouse (South Dakota 

Ornithologists' Union 1991). 

(2) Other species, including nearly all of the 

current wildlife, were influenced by habitat modifi­

cations. 

Fire suppression and logging changed the pon­

derosa pine communities. These landscapes, once 

dominated by relatively sparse stands of multi-aged 

trees with diverse productive understories, are now 

broad, contiguous expanses of higher density, medi­

um-aged trees 70 to 120 years old with abundant 

pine regeneration and relatively depauperate under-
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stories. These shifts may have increased habitat for 

species that prefer dense mid-aged forests while 

decreasing habitat for open forest wildlife. 

The abundance of deciduous forest wildlife has 

probably declined as preferred habitat was lost. In 

particular, wildlife species associated with aspen such 

as ruffed grouse and red-naped sapsuckers 

(Sphyrapicus nuchalis) have declined as a result of 

succession to conifers. 

On the other side of the spectrum, there may be 

more abundant habitat for species that utilize late-suc­

cession white spruce such as golden-crowned kinglets 

(Regulus satrapa), three-toed woodpeckers, and north­

ern flying squirrels. 

The impact of fire, mountain pine beetles, and 

other mortality factors in the pre-Euro-American for­

est may have produced relatively high dead tree 

(snag) densities. Newton and Jenney (1880), 

Donaldson (1914), and Dodge (1965) commented on 

the large number of fire-killed trees but did not pro­

vide estimates. Graves (1899) published the first 

quantification of snag densities based on 69 plots 

(one-half and one acre in size) distributed across the 

Forest Reserve. Snag densities, based on this data, 

averaged 273 per 100 acres, and diameters ranged 

from 9 to 19 inches in the sampled area. 

Again, it is important to realize that the objec­

tive of the Graves (1899) report was to justify inclu­

sion of the Black Hills in the Forest Reserve System 

based on forest productive potential. The plots select­

ed may have represented good timber areas. It may 

be logical to assume that areas with high snag densi­

ties and open, park-like situations with low snag den­

sities were omitted from his report. Graves (1899) 

stated that in some areas up to 50% of the timber 

was defective and 3 to 4% was dead throughout the 

original forest. 

Snags are probably fewer in number in the 

1990s. 

Silvicultural management reduced the abun­

dance of "defective" trees that could eventually 



become snags and reduced forest vulnerability to 

mountain pine beetle epidemics. Fire suppression 

efforts limited tree mortality from fires. Salvage har­

vesting operations following burns and epidemics 

typically removed a considerable proportion of dead 

trees. Fuelwood collection, primarily near communi­

ties and along forest roads, may have reduced snag 

densities. 

In these situations, potential nest sites for snag­

dependent species such as woodpeckers have 

undoubtedly declined. Remote portions of the Hills 

not intensively harvested and areas with limited 

access may have densities more like those reported 

by Graves (1899). 

Habitat modification also occurred in riparian 

areas. The loss of beaver dam complexes and 

declines in perennial stream mileage converted ripar­

ian ecosystems to drier communities (as previously 

mentioned). These modifications reduced available 

habitat for species such as beaver, waterfowl, 

amphibians, and fish. Shifts in habitat also may have 

eliminated some aquatic invertebrates; however, 

since early naturalists did not survey these animals, 

no comparative information is available. 

Developments also influenced available habi­

tats. Reservoirs behind dams added lacustrine habi­

tats, naturally absent from the Black Hills . Recently, 

ospreys (Pandion haliaetus) successfully nested in the 

Black Hills for the first time in recorded history near 

Pactola Reservoir (South Dakota Ornithologists' 

Union 1991). Without reservoirs there would be lit­

tle suitable habitat for this bird. 

Extensive mining during the past century has 

left numerous abandoned mine shafts and adits. 

These have supplemented the historical habitat for 

cave dwelling species, such as bats, originally limited 

to natural caves found primarily in the limestone for­

mations. 

Community and rural housing developments 

have supplanted many acres of prime winter range 

for elevational migrants such as deer and sharp­

tailed grouse. In the aggregate, these low-elevation 
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plant community conversions may limit winter habi­

tat availability during critical periods of the year for 

some wildlife species. 

The extensive road network in the Black Hills 

area has had multiple effects upon habitat. The first 

is direct conversion of habitat to roads. Historically, 

road construction in riparian areas and meadows was 

common. Second is collisions with vehicles (up to 

1,400 deer per year in the 1990s), which have 

become an important mortality factor for some 

species. Third is increases in vehicular traffic which 

reduces habitat quality for some wildlife. Elk are a 

good example because they tend to avoid areas near 

roads with traffic (Lyon and Ward 1982). 

(3) The third impact of Euro-Americans on 

native wildlife has been the introduction of other 

species into the Black Hills. The Merriam's turkey 

(Meleagris gallopavo merriami), mountain goat 

(Oreamnos americanus), and all existing game fish 

were successfully introduced to enhance recreation. 

Another group of introductions includes the 

house sparrow (Passer domesticus), European starling 

(Sturnus vulgaris), common pigeon (Columba livia) , 

Norway rat (Rattus norvegicus), feral dogs (Canis 

familiaris), and cats (Felis catus) which accompanied 

or followed settlement during the past century. 

Each of these species successfully occupied a 

niche and may have altered the composition of 

native fauna. For example, starlings are aggressive 

secondary cavity nesters that can displace other cavi­

ty-dependent species. Feral dogs and cats inevitably 

become predators on a wide variety of native 

wildlife. 

There is, however, no clear understanding of the 

direct and cumulative impacts of exotics on the native 

fauna. 

(4) The fourth category of impacts of Euro­

Americans on wildlife in the Black Hills consists of 

species documented in the Black Hills but, for a vari­

ety of reasons other than hunting, are no longer part 

of the fauna. These include the peregrine falcon 



(Falco peregrinus), raven (Corvus corax), and purple 

martin (Progne subis) . 

The peregrine falcon probably disappeared 

from the Hills during world-wide declines induced by 

exposure to chlorinated hydrocarbons (USDI, Fish 

and Wildlife Service 1984). Only one attempt was 

made to reintroduce this bird, and it was unsuccess­

ful (Sharps and O'Brien 1984). Ravens, once com­

mon throughout South Dakota, were associated with 

large bison herds (South Dakota Ornithologists' 

Union 1991). The extirpation of these herds also led 

to the disappearance of ravens. Purple martins his­

torically inhabited the Black Hills (Ludlow 1875) but 

today are essentially absent in the western third of 

South Dakota (South Dakota Ornithologists' Union 

1991). No reason for this change in distribution was 

found, although it may be related to isolation of the 

Black Hills caused by reductions in prairie floodplain 

forests and snag abundance throughout the western 

portion of the state. 

SUMMARY AND CONCLUSIONS 

FOREST ECOSYSTEMS 

Black Hills forest ecosystems prior to Euro­

American influence appear to have been similar to 

other forest ecosystems in the Inland West 

(Covington et al. 1994). Recurrent disturbances 

from fires, insects, and storms governed ponderosa 

pine structural attributes, densities, age class distrib­

ution, and population size. As a result, much of the 

Black Hills was probably a patchy forest mosaic com­

posed of fire resistant older ponderosa pine over 

multiple age classes. Frequent low-intensity fires 

thinned out dense stands of seedlings and saplings. 

Historical accounts appear to indicate that the 

Black Hills did not fit the description of a "typical" pre­

settlement ponderosa pine forest ecosystem in every 

way. 

First, limited numbers of large-scale (80 to 

10,000 acre) patches of relatively dense late-succes-

sion ponderosa pine (250 to 300 years old) may have 

been present in 1874. Dense stands that were this 

large have not been documented in other ponderosa 

pine ecosystems. 

This information about the Black Hills should 

be viewed cautiously because there were insufficient 

data to accurately determine stand densities. The 

influence of external factors such as soil, landform, 

elevation, aspect, and precipitation on stand location 

and development also was unclear. 

Second, dense second growth pine was docu­

mented across a large, contiguous area of the north­

ern Hills and western Limestone Plateau. Such sec­

ond growth was rare in other regions of the West 

because of high mortality incidence. 

This situation was recorded only once in the 

Black Hills, and it was of a limited duration (about 

100 years) . There was no information available to 

determine how often an area this large might escape 

significant disturbance, and it did not tell us if a 100-

year gap in landscape level mortality was normal. 

Third, early explorers recorded an abundance 

of charred logs and snags, attributing these to 

intense stand-replacing fires. However, based on 

other ponderosa pine ecosystems. (Covington et al. 

1994), the conclusions of early Black Hills explorers 

that crown fires were common is suspect. 

These three situations would represent rare 

phenomena in ponderosa pine ecosystems, and fur­

ther analyses are warranted. 

One factor that may play a role in making the 

Black Hills distinct from other ponderosa pine 

ecosystems is the timing of precipitation. 

Precipitation comes at a favorable time for seed ger­

mination, making ponderosa pine regeneration in the 

Black Hills extremely successful. 

Other tree species have responded to changes 

in ways based, to a large extent, on their succession­

al position. White spruce, a late successional species, 

has probably increased in abundance and extent 



under a century of management. In contrast, early 

successional deciduous trees, such as quaking aspen, 

may have become less abundant due to conifer 

encroachment. 

RIPARIAN ECOSYSTEMS 

Changes in Black Hills riparian ecosystems are 

similar to those noted for other western montane 

regions. 

Historically, beaver dam complexes and wet 

meadow conditions were abundant on low-gradient 

streams. Livestock grazing, reduced water yields, 

farming, road construction, and placer mining have 

all contributed to the conversion of historical wet 

meadows to drier sites . 

These changes in site conditions have converted 

many diverse riparian bottoms to areas composed 

primarily of Kentucky bluegrass and smooth brome 

with substantially reduced shrub communities and 

transitional deciduous trees. 

WILDLIFE 

Compositional changes in wildlife during the 

past century were primarily due to overharvesting, 

reductions in habitat, and introductions of exotic 

species. 

Generally speaking, most vertebrates encoun­

tered by early naturalists still inhabit the Black Hills. 

The documented wildlife extirpations were usually 

linked to overharvest or habitat loss. Less informa­

tion was available for invertebrate populations. 

The extensive habitat modifications in decidu­

ous hardwoods, forest understory communities, and 

riparian ecosystems logically may have resulted in 

species extinctions in the Black Hills; however, little 

historical data for invertebrates is available. 

LITERATURE CITED 

Arno, S.F. 1 988. Fire ecology and its management implica­
tions in ponderosa pine forests. p. 133-140 In: D.M. 
Baumgartner and J.E. Lotan (eds), Ponderosa pine : 
the species and its management. Symposium Proc., 
Washington State University, Spokane. 

Bonnicksen, T.M. 1 993. Analysis of a plan to maintain old­
growth forest ecosystems. In: Comments on the draft 
environmental impact statement on management of 
habitat for late-successional and old-growth forest 
related species within the range of the northern spot­
ted owl. Texas A&M University, College Station. 

Cooper, C.F. 1 960. Changes in vegetation, structure, and 
growth of southwestern pine forest since white settle­
ment. Ecol Monogr 30: 1 29-164. 

Covington, W.W. and M.M. Moore. 1 994. Southwestern 
ponderosa forest structure : Changes since Euro­
American settlement. J Forest 92: 39-47. 

Covington, W.W., R.L. Everett, R.W. Steele, L.L. Irwin, T.A. 
Daer, and A. Auclair. 1 994. Historical and anticipated 

1 8  

changes in forest ecosystems of the Inland West of the 
United States. J Sustainable Forest 2: 13-63. 

Dodge, R.I. 1 965. The Black Hills. Ross and Haines, Inc., 
Minneapolis, Minn. 

Donaldson, A.B. 1 9 1 4. The Black Hills expedition. South 
Dakota Historical Collections VII :554-570. 

Driscoll, D.G. and J.S. Zogorski. 1 990. Basin characteris­
tics, history of stream gaging, and statistical summary 
of selected stream flow records for the Rapid Creek 
Basin, western South Dakota. Open File Report 90-
1 20., U.S. Geo! Survey, Rapid City, S.D. 

Everett, R., P. Hessburg, J. Lehmkuhl, M. Jensen, and P. 
Bourgeron. 1 994. Old forests in dynamic landscapes: 
Dry-site forests of eastern Oregon and Washington. J 
Forest 92: 22-25. 

Fisher, R.F., M.J. Jenkins, and W.F. Fisher. 1 987. Fire and 
the prairie-forest mosaic of Devils Tower National 
Monument. Amer Midi Natur 1 1 7: 250-257. 



Froiland, S.G. 1990. Natural history of the Black Hills and 
Badlands. The Center for Western Studies. Augustana 
College, Sioux Falls, S.D. 

Gartner, F. R. and W. W. Thompson. 1973. Fire in the Black 
Hills forest-grass ecotone. p 37-68 In: Proc Ann Tall 
Timbers Fire Ecol Conf, Lubbock, Texas. 

Graves, H.S. 1899. The Black Hills Forest Reserve. p 67- 1 64 
In: 1 9th annual report of the survey, 1897-98. Part V, 
Forest Reserves. Dept of the Interior, U.S. Geol Surv, 
Washington, D.C. 

Gruell, G.E. 1 983. Fire and vegetative trends in the Northern 
Rockies: Interpretations from 1 8 7 1 - 1 982 photographs. 
USDA Forest Service, Intermountain Forest and Range 
Exp Sta, Ogden, Utah. Gen Tech Rep INT- 1 58. 

Hayden, F.V. 1 862. On the geology and natural history of 
the Upper Missouri; with a map. Trans Amer Phil Soc 
1 2 : 1 38-209. 

Heede, B.H. and J.H. Rinne. 1 990. Hydrodynamic and flu­
vial morphologic processes: Implications for fisheries 
management and research. North Amer J Fisheries 
Manage 10 :249-268. 

Hoffman, G.R. and R.R. Alexander. 1987. Forest regetation 
of the Black Hills National Forest of South Dakota and 
Wyoming: a habitat type classification. USDA Forest 
Service, Rocky Mtn Forest and Range Exp Sta, Fort 
Collins, Colo., Res Pap RM-276. 

Jones, J.R. and N.V. DeByle. 1985a. Fire. p 77-81 In: N.V. 
DeByle and R.P. Winokur (eds), Aspen: ecology and 
management in the western United States. USDA Forest 
Serv, Rocky Mtn Forest and Range Exp Sta, Fort 
Collins, Colo. Gen Tech Rep RM-1 19 .  

Jones, J.R. and N.V. DeByle. 1985b. Genetics and variation. 
p 35-39 In: N.V. DeByle and R.P. Winokur (eds), Aspen: 
ecology and management in the western United States. 
USDA Forest Serv, Rocky Mm Forest and Range Exp 
Sta, Fort Collins, Colo. Gen Tech Rep RM- 1 1 9. 

Kay, C.E. 1 993. Aspen seedlings in recently burned areas of 
Grand Teton and Yellowstone National Parks. 
Northwest Sci 67:94- 104. 

Knight, D.H. 1 994. Mountains and plains the ecology of 
Wyoming landscapes. Yale University Press, New 
Haven, Conn. 

Lessard, G. 1 986. Mountain pine beetle mortality in pon­
derosa pine, Black Hills of South Dakota and Wyoming. 
USDA, Forest Serv Rocky Mtn Region, Biological 
Evaluation R2-86-2. Lakewood, Colo. 

Ludlow, W. 1875. Report of a reconnaissance of the Black 
Hills of Dakota. U.S. Govt Printing Office, Washington, 
D.C. 

1 9  

Lyon, L.J. and A.L. Ward. 1 982.  Elk and land management. 
p 443-478 In: J.W. Thomas and D.E. Toweill (eds), Elk 
of North America: ecology and management. 
Stackpole Books, Harrisburg, Penn. 

McDonough, W.T. 1985.  Sexual reproduction, seeds and 
seedlings. p 25-28 In: N.V. DeByle and R.P. Winokur 
(eds), Aspen: ecology and management in the western 
United States. USDA Forest Serv, Rocky Mountain 
Forest and Range Exp Sta. Fort Collins, Colo. Gen 
Tech Rep RM- 1 19.  

McLaird, J .D.  and L.V. Turchen. 1 974. The scientist in 
western exploration: Ferdinand Vandiveer Hayden. 
South Dakota State Histor Soc and Board of Cult 
Preservation Quart 4 : 1 62-197.  

Mueggler, W.F.  1 988. Aspen community types of  the 
Intermountain Region. USDA Forest Serv. 
Intermountain Forest and Range· Exp Sta, Ogden, 
Utah. Gen Tech Rep INT-250.  

Munther, G.L. 1 98 1 .  Beaver management in grazed ripari­
an ecosystems. p 234-241 In: Proc wildlife-livestock 
relationships symposium, Cour d' Alene, Idaho. USDA 
Forest Serv and University of Idaho, Moscow. 

Murdoch, J. 1 9 1 0 .  Brief history of Dendroctonus ponierosa 
Gopk. in the Black Hills National Forest. Black Hills 
National Forest. Custer, S.D., unpubl rep. 

Newton, H. and W.P. Jenney. 1 880. Report on the geology 
and resources of the Black Hills of Dakota. USDI, U.S. 
Geog and Geol Survey of the Rocky Mtn Region. U.S. 
Gov Printing Office, Washington, D.C. 

Olson, R. and W.A. Hubert. 1 994. Beaver: water resources 
and riparian habitat manager. University of Wyoming, 
Laramie. 

Over, W.H. and E.P. Churchill. 1941 . Mammals of South 
Dakota. University of South Dakota, Vermillion. 

Overbay, J.C. 1 992. Ecosystem management. p 3-26 In: 
USDA Forest Serv, Proc national workshop, Taking an 
ecological approach to management, WO-WSA-3 . Salt 
Lake City, Utah. 

Parker, W. 1 98 1 .  Deadwood the golden years. University of 
Nebraska Press, Lincoln. 

Pase, C.P. 1958.  Herbage production and composition 
under immature ponderosa pine stands in the Black 
Hills. J Range Manage 1 1 : 238-243 . 

Progulske, D.R. 1974. Yellow ore, yellow hair, yellow pine. 
A photographic study of a century of forest ecology. 
South Dakota Agr Exp Sta Bull 6 1 6, Brookings. 

Rydberg, P.A. 1 896. Flora of the Black Hills of South 
Dakota. USDA Div of Botany. Contribution from the 



U.S. National Herbarium 111 : 463-536. U.S. Govt 
Printing Office, Washington, D.C. 

Severson, K.E. and J.F. Thilenius. 1 976. Classification of 
quaking aspen in the Black Hills and Bear Lodge 
Mountains. USDA Forest Serv Rocky Mtn Forest and 
Range Exp Sta Gen Tech Rep RM- 1 66. 

Sharps, J.C. and D. O'Brien. 1984. Peregrine falcon reintro­
duction in the Black Hills, South Dakota, 1 977-1 908. 
S.D. Dep Game, Fish and Parks, Pierre. Completion 
Rep 85-10. 

Sieg, C. 1 992. Ecology of bur oak woodlands in the 
foothills of the Black Hills, South Dakota. Ph.D. disser­
tation. Texas Tech University, Lubbock. 

South Dakota Ornithologists' Union. 1991.  Birds of South 
Dakota, 2nd ed. Northern State University Press, 
Aberdeen, S.D. 

Stewart, R.K. and C.A. Thilenius. 1964. Stream and lake 
inventory and classification in the Black Hills of South 
Dakota. S.D. Dep Game, Fish and Parks, Pierre. 

Swanson, F.J., J.A. Jones, D.O. Wallin, and J.H. Cissel. 
1 994. Natural variability implications for ecosystem 
management. p 89-103 In: M.E. Jensen and P.S. 
Bourgeron (eds), Eastside forest ecosystem health 
assessment, vol II, Ecosystem Management: Principles 
and applications. USDA Forest Serv Pacific Northwest 
Station Forest and Range Exp Sta, Portland, Ore. 

Thomson, F. 1 968. Last buffalo of the Black Hills: a study. 
Denver Westerners Roundup, Denver, Colo. 

Thoreson, K.J. 1 988. Comparative study of riparian vegeta­
tion in two drainage areas of the Black Hills. M.S. the­
sis, South Dakota State University, Brookings. 

20 

Turner, R.W. 1974. Mammals of the Black Hills of South 
Dakota and Wyoming. University of Kansas Museum of 
Nat Hist Misc Pub! 60, Lawrence. 

Uresk, D.W. and K.E. Severson. 1 989. Understory-overstory 
relationships in ponderosa pine forests, Black Hills, 
South Dakota. J Range Manage 42: 203-208. 

USDA Forest Service. 1 993. Snapshot in time: repeat pho­
tography on the Boise National Forest 1 870-1 992. 
Boise National Forest. Boise, Idaho. 

USDI Fish and Wildlife Service. 1 984. American peregrine 
falcon recovery plan (Rocky Mountain/Southwest pop­
ulation). Denver, Colo. 

Weaver, H. 1 9 5 1 .  Fire as an ecological factor in the south­
western ponderosa pine forests. J Forest 49 : 93-98. 

Weaver, H. 1 955. Fire as an enemy, friend, and tool in for­
est management. J Forest 5 3 : 499-504. 

Weaver, H. 1961.  Implications of the Klamath fires of 
September 1959. J Forest 59:569-572. 

White, E.M. and L.A. Hannus. 1 985. Holocene alluviation 
and erosion in the White River Badlands, South 
Dakota. South Dakota Acad Sci Proc 64: 82-94. 

Wrage, K.J. and F.R. Gartner. 1 993. Pine canopy effects on 
biotic and abiotic parameters in the Black Hills. p 1 54-
158 In: N.H. Granholm (ed), Proc stress symposia: 
mechanisms, responses, management. South Dakota 
State University, Brookings. 


	South Dakota State University
	Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange
	2-1-1996

	A Century of Change in the Black Hills and Riparian Ecosystems
	J. B. Parrish
	D. J. Herman
	D. J. Reyher
	F. R. Gartner
	Recommended Citation


	AES B-722 001
	AES B-722 002
	AES B-722 003
	AES B-722 004
	AES B-722 005
	AES B-722 006
	AES B-722 007
	AES B-722 008
	AES B-722 009
	AES B-722 010
	AES B-722 011
	AES B-722 012
	AES B-722 013
	AES B-722 014
	AES B-722 015
	AES B-722 016
	AES B-722 017
	AES B-722 018
	AES B-722 019
	AES B-722 020
	AES B-722 021

