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ABSTRACT

ENHANCING NITROGEN USE EFFICIENCY THROUGH AI-POWERED IMAGE

ANALYSIS AND INNOVATIVE N-RICH SPOT METHOD

BOBBY AZAD

2023

This study conducted in 2023 aimed to enhance nitrogen use efficiency (NUE) in

wheat and corn grown in South Dakota. Based on dynamic weather conditions and other

factor interactions, conventional nitrogen (N) recommendations need to be improved. Soil

properties information, including electrical conductivity, was used to create management

zones. In each zone, three N-rich spots were established as biosensors. Drones and

satellites collected imagery data, and an AI-driven approach assessed the crop response to

applied N. A dynamic N application approach, integrating aerial data with historical

records, was developed and evaluated. Our methodology, at a 95% confidence level,

resulted in a 12.4% higher yield in wheat and a potential 4.77% increase in corn yield

compared to conventional approaches, with a 16.2% and 10% reduction in N application

in wheat and corn fields, respectively. This led to cost savings and environmental benefits.

The financial outcomes revealed cost savings of $7.87 per acre in wheat and $3.62 per

acre in corn. The wheat yield increased to 75.09 bu/ac compared to 66.61 bu/ac in control

plots, generating an additional revenue of $57.82 per acre. The corn yield increased to

173.75 bu/ac compared to 165.84 bu/ac, indicating a potential increase of 6.89 bu/ac and

additional revenue of approximately $34.11 per acre. Moreover, there was a 16.2%

increase in NUE in wheat and a 4.3% improvement in corn compared to traditional

methods. The findings from this study will be applicable for farmers as a decision-making

tool, providing a straightforward approach to enhance NUE while increasing their farm

profit.
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1 Introduction

1.1 Background of the problem

Throughout history, agriculture has shaped societies, influencing global economic

development and societal evolution, beyond providing sustenance [29]. The growing

global population created a demand for innovative approaches in the expanding industry

[120]. The inception of Precision Agriculture integrates technology with traditional

farming to boost crop yields and uphold environmental sustainability [72]. Wheat and

corn play a crucial role in global agriculture, transcending cultural and geographical

boundaries [99], [106]. They are essential for meeting dietary needs, providing calories,

and essential nutrients [15]. Additionally, these grains are widely used in animal feed,

biofuels, bioplastics, and various industries [93], [107], highlighting their indispensable

role in the global economy. In wheat and corn crop, one of the primary hurdles in

maximizing their yield and quality is the efficient and sustainable use of nitrogen.

However, the goal is not to minimize nitrogen application, but to find the optimum rate for

plant uptake. Figure 1.1 provides a visual representation of this principle. From the

leftmost to the rightmost illustration, as the application of nitrogen increases, the yield

correspondingly rises. Yet, as Figure 1.2 represent, there is a critical point where, even

with additional nitrogen, the yield reaches a plateau. This halt in growth signifies a stage

where plants become limited by the availability of other essential nutrients. Thus,

over-applying nitrogen past this point does not enhance plant growth. Instead, it can lead

to wasted resources, economic drawbacks, and various environmental repercussions such

as water body eutrophication, greenhouse gas emissions, and groundwater contamination.

The excessive nitrogen application depicted in Figure 1.2 underscores the need for

precision in managing nutrients, especially as we face a growing global population. By

2050, the expected rise to 9.7 billion people will require more efficient nitrogen use to

boost crop yields and secure food supply, particularly for key staples like wheat and corn
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Figure 1.1: Balancing plant nutrient needs. This visual illustrates the relation be-
tween increased nitrogen application and yield, emphasizing the critical point beyond
which other nutrients limit growth.

Figure 1.2: Plant growth is limited by various factors; excessive nitrogen fails to
enhance growth and leads to economic costs and environmental risks.

[75]. Additionally, with climate change affecting the nitrogen cycle, innovative and

adaptable nitrogen management strategies become crucial [22]. These approaches will

ensure steady crop production and help maintain a balance between meeting food

demands and protecting the environment [109].

Reflecting on the importance of efficient nitrogen management, the practices of
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U.S. corn growers from 2013 to 2019 provide a clear example. They applied an average of

92 lbs. of nitrogen per acre annually from manure [115]. Reducing the unnecessary

portion of this nitrogen application to match plant needs without excess can bring

significant benefits. This adjustment aligns with the goals of sustainable farming practices

from both economic and environmental perspectives [105].

1.2 Statement of the problem

Nitrogen’s role in agriculture has given rise to challenges that span economic,

environmental, and societal dimensions. Beyond the immediate economic and

environmental impacts, the broader implications on global food provision and

sustainability cannot be overlooked [45].

• Economic Issues:

– Steady rise in nitrogen fertilizer prices.

– Financial strain on small and medium-sized farms.

– Increased consumer food prices impacting food security and widening

socioeconomic disparities.

• Environmental Challenges:

– Volatilization leading to air pollution.

– Denitrification resulting in release of nitrous oxide, a potent greenhouse gas.

– Eutrophication in water bodies causing harmful algal blooms.

• Societal Implications:

– Global food supply at risk due to rising costs leading to inefficient fertilizer

use.

– Impact on fisheries from eutrophication, affecting protein sources.
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– Weather unpredictability, intensified by global warming, threatens consistent

food provision.

In essence, a holistic approach, integrating agronomy, soil science, economics, and

environmental knowledge, is crucial to address these multifaceted challenges surrounding

nitrogen use in agriculture.

1.3 Advancements in precision agriculture and technology integration

Modern agricultural practices have embraced a blend of both innovative techniques and

technological advancements. Specifically, these include precision agriculture tools like

Site-Specific Management (SSM), variable rate nitrogen application, and ramp

application, as well as cutting-edge technologies like Artificial Intelligence (AI) and

remote sensing. These tools and technologies aim to optimize nitrogen application,

enhancing both its economic and environmental efficiencies.

1.4 Site-specific management

The first approach to address the challenges of nitrogen usage is adopting SSM, a

prospective solution tailored to specific demands of varied agricultural zones. It

emphasizes managing agricultural inputs, such as water, seeds, and fertilizers, on a

site-specific basis [78]. By understanding the spatial variability within a field, which

arises from variations in soil properties, topography, and other microclimatic factors, SSM

offers a refined method to optimize resource use, streamline costs, and enhance

productivity. Importantly, this strategy aims at curtailing the environmental footprint of

farming practices [94].

Instead of using a uniform application of nitrogen fertilizer across an entire field,

SSM and variable rate application enables farmers to customize the amount of fertilizer

used based on the specific requirements of different field sections. This is usually

determined through advanced technologies, like soil conductivity mapping, remote



5

sensing, and Geographic Information System (GIS), which can provide detailed and

precise information about the spatial variability of nutrient requirements within a field

[14].

Variable rate nitrogen application revolutionizes the traditional fertilizer process,

aligning the nitrogen supply directly with crop needs, thereby enhancing Nitrogen Use

Efficiency (NUE) and reducing environmental impacts, including nitrogen leaching and

atmospheric emissions [84]. This approach not only optimizes yields but also bolsters

farm profitability by efficiently allocating resources, leading to reduced fertilizer costs and

improved crop returns [92], [108]. SSM, with strategies like variable rate application,

exemplifies a sustainable, data-driven farming method that marries economic benefits with

environmental responsibility [102].

1.5 Nitrogen-rich strip and ramp application

After exploring SSM and its specialized strategies, we now transition to other techniques

that address nitrogen use challenges. The Nitrogen-rich (N-rich) strip and the ramp

application are the methods offer distinct approaches to assessing in-season nitrogen

needs, ensuring timely and efficient application in diverse agricultural contexts.

The Nitrogen-rich strip provides an overview of the field’s nitrogen requirements

by covering an extensive area. The expansive nature of the strip allows for an enhanced

understanding of the variability in nitrogen needs across the field.

The ramp application adjusts nitrogen fertilizer applications based on the specific

growth stages of crops. This approach focuses on the temporal dimension, ensuring that

crops receive the right amount of nitrogen when they need it most. Instead of applying

nitrogen uniformly throughout the crop’s life cycle, the ramp application tailors the

amount and timing to coincide with crucial growth phases, thereby optimizing nitrogen

absorption. Tools like the GreenSeeker, which quantifies plant greenness, offer a more

objective and reliable measure for estimating a plant’s nitrogen uptake.
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1.6 Technological solutions

While tailored agricultural strategies such as N-rich strip and ramp applications lay the

groundwork for optimized nitrogen usage, the merger of AI and remote sensing

technologies augments their reach. These modern tools herald a transformative approach

to surmounting the challenges associated with nitrogen use in agriculture, especially when

supplementing traditional strategies [33]. An epitome of these technological

advancements is deep learning models, like the Faster R-CNN (Region-based

Convolutional Neural Network) model [40], which has displayed proficiency in various

applications.

The Faster R-CNN, an exemplary object detection algorithm, is particularly

pivotal for our study. While GPS data offers invaluable localization in aerial imagery, it

occasionally grapples with inconsistencies. In contrast, the Faster R-CNN can detect and

pinpoint objects within aerial images. In this research, these detected objects, become

reference markers, notably the tiled areas mentioned in section 3.3.

Furthering our technological arsenal, we amalgamate the AI-driven image analysis

powered by Faster R-CNN with other remote sensing instruments. Satellite imagery,

particularly from sources like Sentinel, harmonizes with our AI techniques, accentuating

the granularity and acuity of our conclusions. Such a holistic approach epitomizes the

synergistic potential of AI and remote sensing in pioneering precise nitrogen management

strategies.

This section primarily provides a glimpse of the Faster R-CNN model’s

significance. The ensuing methodology chapter will delve deeper into its nuances,

juxtaposed with other technological instruments and methods.

1.7 Research questions

The complexity nature of nitrogen application in agriculture and the advent of

technological and strategic advancements, this research aims to answer the following
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questions:

• NUE through precision agriculture: what specific strategies and tools in precision

agriculture are most effective in enhancing the NUE of wheat and corn?

• Optimization of nitrogen-rich areas: how can the identification and management

of areas with elevated nitrogen levels be utilized to effectively measure plant

responses to varied nitrogen concentrations?

• Bio-sensing efficacy: how effective is the N bio-sensing system in maintaining crop

yields while conserving nitrogen, and what are its broader impacts on economic,

environmental, and societal dimensions?

• In-season monitoring: in what ways can AI-driven image processing, as opposed

to traditional practices, contribute to in-season and precise monitoring of crop

conditions for optimal nitrogen application?

• Advanced image processing: how do advanced, AI-based image processing

techniques compare to basic methods in terms of accuracy and depth of analysis for

agricultural needs?

• AI and remote sensing synergy: how does the integration of AI with remote

sensing tools, such as drones and satellites, offer advantages over standalone

methodologies in understanding and managing crop nitrogen needs?

• AI-Driven nitrogen application system: how can AI-driven systems,

incorporating advanced image processing techniques, optimize variable rate

nitrogen application, and how do these systems compare to traditional practices?

• AI tailoring: how can AI models, specifically tailored for agriculture, improve the

accuracy and efficacy of nitrogen management when compared to generic AI

models?
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• Data integration and analysis: how does consolidating data from diverse sources

like drone imagery, satellites, and historical records provide enhanced insights into

nitrogen application strategies over traditional singular data sources?

1.8 Purpose of the study

This study aims to improve NUE in wheat and corn production in US, a path toward

sustainable and resilient farming systems. Improvement of NUE can enhances crop yield

and quality, addressing global food demands, and has the potential to alleviate

environmental issues related to excessive nitrogen use, such as water eutrophication and

increased greenhouse gas emissions

This research focuses on the role of technology in improving NUE in wheat and

corn production. By applying Precision Agriculture and Site-Specific Management

techniques, such as variable rate nitrogen application and soil conductivity mapping,

along with advanced tools like remote sensing, image analysis, and AI, the study aims to

create a more precise, sustainable, and environmentally friendly agricultural system.

1.9 Research locations

This study was conducted in South Dakota, United States, focusing on wheat and corn

crops. It encompassed a 3.36-acre plot at the South Dakota State University (SDSU)

Agricultural Experiment Station in Brookings for wheat trials and a 135.54-acre on-farm

research site for corn in Mount Vernon, SD. In both fields, the preceding crop was

soybean, setting a consistent pre-cultivation condition for our research. While this chapter

introduces our research locations. Detailed discussions on soil features and relevant data

will be in Chapter 4.
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1.10 Organization of this thesis

The organization of this thesis is structured to provide a logical flow of information and

analysis. The chapters are organized as follows:

Chapter 1: Introduction This chapter presents a broad overview of the research

topic, delineating the background and statement of the problem, research questions, and

the purpose of the study. The chapter serves as a roadmap to the thesis, setting the stage

for the subsequent in-depth analysis and discussion.

Chapter 2: Literature Review In this chapter, we offer a review of existing

literature on factors influencing NUE and the potential of SSM in improving NUE. This

systematic review will provide a robust understanding of the current state of knowledge

and reveal gaps that this study aims to address.

Chapter 3: Research Methodology This chapter details the methodological

approach adopted in this study. The research design, data collection procedures, and

analytical techniques are all meticulously laid out. This will ensure the study’s reliability

and validity, allowing for the results to be rigorously examined and evaluated.

Chapter 4: Experimental Results In this chapter, we present the findings of the

research, analyzed and discussed in the context of the research questions. This

examination will offer valuable insights into the factors influencing NUE and the potential

of SSM, guiding the recommendations and implications drawn in the final chapter.

Chapter 5: Conclusion The final chapter summarizes the key findings and

discusses their practical implications. It also points out potential avenues for future

research, providing guidance for both scholars and practitioners.
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2 Literature review

2.1 Introduction to the literature review

This chapter builds upon the foundational understanding of nitrogen’s role in agriculture,

delving into strategies for enhancing NUE and examining the impact of AI and Remote

Sensing in modernizing nitrogen management. It aims to integrate traditional agricultural

practices with technological advancements, providing a view of current nitrogen

management approaches.

2.2 Purpose and scope of the review

This literature review sets out to provide a broad perspective on the existing body of

research surrounding nitrogen use in crops such as wheat and corn. Through a critical

examination of methodologies, insights, and existing challenges found in prior studies, we

aim to contextualize our research endeavors and elucidate their relevance in the larger

academic dialogue surrounding nitrogen management.

2.3 Overview of the main themes to be covered

This review traces the development of nitrogen management in agriculture, from early

methods to current advanced techniques. It focuses on the evolution of best practices and

addresses current challenges. The review also highlights technological advances,

especially in remote sensing and AI, like the Faster R-CNN model, which improves the

selection of drone images for precise analysis. The impact of these innovations on NUE,

particularly for wheat and corn, will be emphasized.

2.4 Nitrogen application in modern agriculture

Building on our previous discussions, it is evident that nitrogen’s role in agriculture is

multifaceted, bridging both its foundational importance for crop growth and the challenges
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tied to its application. As the modern agricultural landscape evolves, the intricacies of

nitrogen application must be keenly understood to harness its benefits fully [24].

Predominantly, agricultural systems utilize nitrogen (N) in two primary forms

[122]: ammonium (NH4
+) and nitrate (NO3

−). These forms are supplied to crops via

bio/chemical fertilizers and organic manure. While these applications are crucial for

sustaining crop growth, the art and science of nitrogen application go beyond mere

addition to the soil.

The contemporary challenges arise from optimizing the amount, timing, and

method of nitrogen application. Over-application or inappropriately timed application can

lead to various environmental and economic inefficiencies. In response to these

challenges, the agricultural sector has implemented measures like NUE to more effectively

assess and improve nitrogen application. NUE stands as a crucial tool in optimizing

nitrogen efficiency, addressing both environmental and economic concerns in agriculture.

2.5 An overview of NUE

Modern agriculture seeks to balance the dual objectives of increasing productivity and

environmental conservation [9]. NUE is key in this effort, as it measures how effectively

crops use nitrogen to grow and yield. This efficiency is vital for both economic viability

and environmental sustainability in farming [60]. However, it’s crucial to support this

definition of NUE with authoritative sources that specifically state its role in quantifying

crop growth and yield from nitrogen application. Research underscores NUE’s importance

in enhancing crop yields and reducing negative environmental impacts of nitrogen loss

[59], [61].

NUE comprises two key metrics: Agronomic Efficiency (AE) and Recovery

Efficiency (RE) [43]. AE measures the yield increase obtained for each unit of nitrogen

applied, essentially reflecting how effectively nitrogen contributes to crop production [44].

It is a critical measure for understanding how nitrogen application translates into actual
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yield gains. On the other hand, RE quantifies the proportion of applied nitrogen that is

actually absorbed and utilized by the crop. This metric is important for assessing how

much of the applied nitrogen is being taken up by the plant, as opposed to being lost to the

environment. Together, AE and RE provide a comprehensive picture of nitrogen’s role in

crop yield and its utilization efficiency [19], [70].

2.5.1 Assessing NUE: different perspectives

Traditionally, NUE is determined by the ratio of crop yield (Y) to nitrogen inputs (N), as

depicted in Equation 2.1:

NUE =
Y

N
(2.1)

However, this formulation has provoked scholarly debate due to the varied

interpretations of ’yield.’ Fageria and Baligar [34] proposed multiple methodologies to

account for these nuances. The equations below further detail the calculation

methodologies for AE, Physiological Efficiency (PE), Agro-physiological Efficiency

(APE), Apparent Recovery Efficiency (ARE), and Utilization Efficiency (UE):

AE =
Gf −Gu

Na
(2.2)

where (Gf) represents grain yields of the fertilized, (Gu) refers to unfertilized plots, and

(Na) shows the applied nitrogen rate (Na).

PE =
Y f − Y u

Nf −Nu
(2.3)

This equation uses the total above-ground biomass of the crop in fertilized (Yf) and

unfertilized plots (Yu), and the nitrogen contents of the above-ground biomass in the

fertilized (Nf) and unfertilized plots (Nu).



13

APE =
Gf −Gu

Nf −Nu
(2.4)

ARE =
Nf −Nu

Na
(2.5)

UE =
Y f − Y u

Na
(2.6)

As the equations indicate, NUE’s interpretation can vary based on the metric in

use. The complexity of NUE is further accentuated by innovative definitions such as the

”biologically significant” NUE proposed by Berendse and Aerts [12]:

Biologically Significant NUE =
An

Ln
(2.7)

This broader perspective on NUE, while addressing limitations of previous

definitions, emphasizes the need to consider external factors like climate change, crop

management techniques, and new biotechnologies. It highlights the importance of

comprehensive methods that include both native soil plant-available nitrogen (PAN) and

potential PAN balances, along with traditional fertilizer inputs. Given the impact of

changing climate conditions, such as increased atmospheric CO2 and temperature, on

nitrogen dynamics, a deeper understanding of NUE is crucial. This involves exploring

genetic, physiological, and environmental influences on NUE and developing innovative

strategies to improve it.

2.5.2 Factors influencing NUE

NUE is a complex subject; however, four key elements are of particular importance: the

type of soil, climate conditions, the variety of crop, and the site-specific management

strategies [32], [44], [60].
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Firstly, it is essential to consider that the various characteristics of the soil, Soil

texture, organic matter content, electrical conductivity, pH and so on are all crucial

determinants in understanding NUE. The reason is that significantly influences of soil

properties on the bioavailability and potential loss of nitrogen [79]. More specifically, the

soil texture impacts the way in which water and nitrogen move through the soil profile.

Fine texture soils for example loamy and clay soil retain nitrogen more effectively than

sandy soils. In the last soil, nutrients can be more easily leached away. The soil organic

matter can also determine soil nitrogen amount and availability for crop [65]. Higher

organic matter content often leads to a greater nitrogen supply. Finally, the soil pH plays a

vital role in dictating nitrogen chemical states in soil solution, affecting its availability for

crop. Therefore, soil characteristics can effectively determine the NUE [32], [42].

Climate factors, especially precipitation and temperature, are another crucial group

of factors influencing NUE [69]. These environmental parameters not only affect the loss

of nitrogen via various processes such as volatilization, leaching, and denitrification but

also directly impact the nitrogen uptake ability of crops. For example, high rainfall levels

can lead to increased nitrogen leaching, while extremely high or low temperatures can

inhibit biological nitrogen fixation and uptake by crops. Therefore, understanding the

climatic influences can offer valuable insights into the ways of improving NUE [39], [60].

Agronomic management strategies also play a pivotal role in determining NUE.

For example, right source, right rate, right place, and right time of nitrogen application as

agronomic management strategies can influence the NUE [118]. For instance, a

well-coordinated nitrogen delivery strategy that aligns with the periods of peak plant

demand (i.e., right time) can significantly enhance NUE [118]. Timing nitrogen

application to coincide with critical growth stages can help maximize crop uptake and

reduce losses to the environment. Similarly, choosing the right place and rate of

application can also make a considerable difference. For example, with practices like split

application and use of controlled-release fertilizers can be a beneficial strategy for
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optimizing NUE [43].

Lastly, the specific genotype of the crop is an integral part of the NUE equation

[67]. This involves the crop’s inherent efficiency in nitrogen uptake, assimilation, and

remobilization. Crop genotypes vary in their ability to absorb nitrogen from the soil,

assimilate it into organic forms, and remobilize it to the grains during the reproductive

stage. Thus, plant breeding and genetic improvement programs can contribute

significantly to enhancing NUE, offering a sustainable and long-term approach to improve

nitrogen use in agriculture [44].

While the genotype of the crop plays a pivotal role in determining its nitrogen

uptake efficiency, it is equally crucial to comprehend the other side of the equation: how

nitrogen, once applied, can be lost from the soil. This understanding is paramount

because, irrespective of a crop’s genetic predisposition to utilize nitrogen efficiently,

significant losses from the soil can undermine the overall NUE. By grasping the pathways

through which nitrogen escapes, we can devise strategies that not only optimize its use by

crops but also minimize its wastage and environmental impact.

2.6 Understanding nitrogen loss pathways

Nitrogen, being a vital nutrient, has a transient nature in the soil [79]. It is susceptible to

rapid migration from its application point, leading to losses through several mechanisms.

These mechanisms, encompassing processes like nitrification, volatilization,

denitrification, leaching, and surface runoff, can have profound impacts on the

environment and the economy [8], [101]. Not only do they influence the potential yield

and profitability of crops, but they also pose threats to ecosystems, water resources, and

the health of animals and humans.

The nitrogen balance equation, represented by Equation 2.8, effectively describes

the quantity of mineral nitrogen present in the soil at any specific moment [27].
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N = Np +Nb +Nf +Nu +Nm −Npl −Ng −Ni −Nl −Ne (2.8)

where:

• Np is the precipitation and dry deposition,

• Nb is the biological fixation,

• Nf is the nitrogen from fertilizer application,

• Nu is the nitrogen return to the soil through urine and dung,

• Nm is the nitrogen from mineralization,

• Npl is the nitrogen taken up by plants,

• Ng is the nitrogen loss through gaseous emissions,

• Ni is the nitrogen loss through immobilization,

• Nl is the nitrogen loss through leaching,

• Ne is the nitrogen loss through erosion and surface runoff.

The nitrogen balance equation provides a holistic view of the various factors

influencing the nitrogen content in the soil. However, to truly optimize nitrogen

management, it is essential to delve deeper into the specific processes that lead to nitrogen

loss. Each of these processes, from nitrification to leaching, plays a unique role in

determining how nitrogen moves and transforms within the soil ecosystem. In the

following sections, the mentioned pathways are explored in more details, shedding light

on their mechanisms, implications, and significance in the broader context of NUE.
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2.6.1 Nitrification process

Nitrification is a key microbial process involving two stages, in which ammonium (NH4
+)

is oxidized to nitrate (NO3
−) [119]. This process begins with ammonia oxidizing bacteria,

specifically Nitrosospira and Nitrosomonas, which oxidize (NH4
+) to nitrite (NO3

−).

Subsequently, Nitrobacter bacteria oxidize (NO2
−) to (NO3

−) [51]. Nitrification mainly

occurs in well-aerated soil environments with optimal soil moisture levels. The rate of

nitrification can be influenced by various factors, including soil temperature, pH,

NH4
+/NH3 concentration, and the density of the microbial population [98]. Nitrate

produced through nitrification process can be utilized by crops, immobilized by soil

microorganisms, or leached from the soil.

2.6.2 Volatilization

Volatilization is a significant pathway of nitrogen loss where ammonium (NH4
+) is

transformed into ammonia gas (NH3), which can then be further converted to atmospheric

nitrogen (N2) [55]. This process is principally facilitated by the enzyme urease, which

catalyzes the conversion of urea to ammonium and carbon dioxide.

Under alkaline soil conditions, a significant proportion of the ammonium can be

lost to the atmosphere as ammonia gas, which can then be transported away by wind

currents [17]. As such, mitigating volatilization is particularly crucial in regions where

urea-based fertilizers are widely utilized.

2.6.3 Denitrification

Denitrification is an anaerobic microbial process wherein nitrate (NO3
−) is reduced to

nitrogen gas (N2) [41]. This reduction involves the formation of intermediate products

such as nitrogen dioxide (NO2), nitric oxide (NO), and nitrous oxide (NO2) [38], [83].

Notably, the production of (NO2) is a significant environmental concern due to its potent

greenhouse gas potential [41]. The extent of nitrogen loss through denitrification is
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influenced by several factors, including soil water content, the availability of soluble

carbon, the presence of nitrate, temperature, and the duration of the process [16].

Traditional management strategies aimed at preventing denitrification losses have

focused on inhibiting soil nitrification, thereby preventing the formation of nitrate from

ammonium [76]. Various chemicals, including nitrapyrin, thiourea, thiophosphoryl

triamide, 3,4-dimethyl pyrazole phosphate (DMPP), and dicyandiamide (DCD), are

utilized for this purpose [5], [68]. It is worth noting, however, that these compounds can

inadvertently increase nitrous oxide production and release from soils. As such, the

exploration of Biological Nitrification Inhibition (BNI) strategies, involving both

plant-derived compounds and indirect mechanisms, offers promising alternatives to

mitigate nitrogen losses [24], [73].

2.6.4 Soil erosion and runoff

Soil erosion and runoff contribute significantly to the global loss of nitrogen, particularly

from surface soil that is typically laden with high concentrations of nitrogen and organic

matter [53], [64]. This process can be particularly harmful in agriculturally intensive

regions where the soil is routinely disturbed and exposed to weather elements, thereby

increasing the risk of erosion. The lost nitrogen from soil erosion and runoff not only

reduces the fertility of the land but also pollutes downstream water bodies, contributing to

eutrophication and diminished water quality [30].

Effective management of cropping systems can substantially curb these losses.

Practices such as reduced tillage or no-tillage, cover cropping, contour tillage, terracing,

and grassed waterways have been widely recommended [13], [35]. Reduced tillage and

no-tillage practices, for instance, minimize the disruption of soil, preserving its structure

and reducing [95]. On the other hand, cover cropping enhances the soil organic matter

content, thereby improving its structure, increasing its water holding capacity, and

decreasing runoff [25].



19

Cover crops also enhance NUE through various mechanisms [47]. These include

reducing soil erosion, fixing atmospheric nitrogen into plant-available form, and

scavenging nitrogen from soils to prevent leaching [26], [85]. Through these actions,

cover crops not only retain the soil fertility but also mitigate the environmental impacts

associated with nitrogen losses.

2.6.5 Nitrogen mineralization and immobilization

Nitrogen mineralization, the microbial-mediated process that transforms organic nitrogen

forms into inorganic forms, mainly ammonium (NH4
+), plays an essential role in the

nitrogen cycle. This process, influenced by various biotic and abiotic factors, plays a key

role in making nitrogen available in forms that plants can utilize [20]. However, the

mineralization process is not always beneficial for the plant nitrogen supply, particularly

when the carbon to nitrogen (C:N) ratio of the organic matter is high (e.g., ¿30:1) [48].

Under such conditions, mineralization is inhibited due to insufficient nitrogen

content, and a process known as nitrogen immobilization dominates instead.

Immobilization is a phenomenon where soil microorganisms, requiring nitrogen for

protein synthesis and reproduction, incorporate nitrogen into their biomass, thereby

reducing plant-available nitrogen [80], [121]. As a result, the short-term supply of

nitrogen to plants can be negatively impacted.

Although nitrogen immobilization initially reduces the availability of nitrogen to

plants, this does not mean the nitrogen is permanently removed from the soil ecosystem

[77]. Over time, immobilized nitrogen can re-enter the cycle through microbial activities.

As microbes die and decompose, the nitrogen within their biomass becomes available

again, a process referred to as remineralization [123]. This remineralization is a key

aspect of the soil’s nitrogen cycle, where dead microbial biomass is broken down,

releasing nitrogen back into the soil in forms accessible to plants. This dynamic interplay

between immobilization and remineralization ensures a continual, albeit fluctuating,
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supply of nitrogen within the soil system [100].

2.6.6 Leaching

The overuse of animal manure or nitrogen fertilizers can significantly intensify the

leaching of nitrate (NO3
−), especially following an upsurge in the concentration of

available N within the soil solution [63]. Nitrate is highly prone to leaching because its

negative charge prevents it from associating with the negatively charged soil colloids.

Conversely, ammonium (NH4
+) is electrostatically bound to colloids, making it resistant

to leaching [113].

Rainfall and irrigation can effectively wash out nitrate from the system,

exacerbating its loss [57]. This loss is most significant during periods of heavy rainfall and

during periods of slow crop growth when the plant nitrogen uptake is reduced [49]. As a

result, leaching is a significant contributor to the global loss of nitrogen from soils,

accounting for an estimated 2%–60% of applied nitrogen [49].

Studies on irrigated wheat fields in Northern Mexico, where farmers apply 250 kg

N ha−1 in two split applications, estimated the nitrogen loss through leaching to be

between 5 and 12.5 kg N ha−1 [91]. It is noteworthy that the texture and structure of soil

can influence nitrate leaching. For instance, clay soil, due to its low hydraulic

conductivity, typically experiences less nitrate leaching compared to sandy soil.

Therefore, soil testing, particularly in clay soils, can assist in optimizing nitrogen fertilizer

recommendations and reducing leaching losses [36].

In conclusion, nitrogen loss from soils via various mechanisms has far-reaching

implications on the environment and human health. Hence, a comprehensive

understanding of these processes and the development of efficient strategies for nitrogen

management are critical in promoting sustainable agriculture and protecting our

environment.
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2.7 Strategies to improve NUE

This section presents an array of strategies, ranging from tailored site-specific

management to the integration of cutting-edge technologies, all aimed at bolstering NUE.

Each subsection delves deeper into particular methodologies, offering insights into their

efficacy and broader significance.

2.7.1 SSM and its evolution into precision agriculture

Enhancing NUE fundamentally depends on recognizing and addressing the varied

requirements of different agricultural landscapes. SSM, approach in agricultural practices

is the first step toward implementing PA. SSM provides recommendations for variable rate

application (VRA) of nitrogen fertilizers based on the needs within a field, VRA

enhancing NUE while minimizing environmental degradation [2], [92].

Several studies illuminate the promise of SSM [18], [31], [71], [103]. [31]

investigated the use of site-specific nitrogen fertilization techniques. They employed a

mechanical sensor designed to estimate the biomass of cereal plants. This sensor’s data

was then used to guide the application of nitrogen fertilizer, tailoring it to the specific

needs of different areas within a field. This system yielded a notable 10-12% reduction in

calcium ammonium nitrate use, without compromising grain yield or quality. Meanwhile,

[18] assessed the economic viability of variable rate nitrogen application in wheat.

Although conventional treatments yielded the highest, the cost efficiency of VRT made it

a profitable choice. [103] tackled the challenge of soil nitrogen variability by

implementing a VRA system equipped with Crop Circle ACS-430 sensors. These sensors

were used to assess the nitrogen needs of crops in real time, allowing for precise and

variable application of nitrogen fertilizer across different parts of a field. This

technology-enabled approach led to a significant reduction in the total amount of nitrogen

fertilizer used, while still maintaining high NUE and not compromising crop yield. [71]

amalgamated proximal sensing, weather forecasting, and crop modeling to refine nitrogen
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application in durum wheat. Their integrative method diminished nitrogen consumption

and yield variability compared to traditional treatments.

The evolution of SSM into precision agriculture integrates advanced technologies

such as remote sensing, GIS, and soil conductivity mapping. These tools enhance the

robustness of the approach by offering detailed insights into field variability, thereby

optimizing agricultural operations [2], [14]. [124] explored the applications of remote

sensing and UAVs (Unmanned Aerial Vehicles) for crop monitoring and management.

They identified a significant enhancement in the ability to detect early stress in crops,

enabling more efficient water and nutrient applications. Furthermore, [56] emphasized the

role of GIS in site-specific soil property and yield mapping. Their work showcased that

integrating GIS with other technologies such as yield monitors can assist farmers in

understanding spatial yield variability. On the front of soil health, [1] discussed the

potential of soil electrical conductivity as an indirect measure for soil properties. Their

research suggested that farmers can use this measure to adjust their soil management

practices, leading to better nutrient and moisture management.

These studies underscore the transformative potential of integrating technology

into precision agriculture. By harnessing these advanced tools, farmers can make more

informed decisions, enhancing the productivity and sustainability of their operations.

2.7.2 Innovative techniques: N-rich strips and ramp application

N-rich Strip method: aim Strip trials are designed to determine the collective nitrogen

needs of a field. By comparing different nitrogen application rates across various strips

within the same field, they offer a comprehensive evaluation of the field’s overall nitrogen

requirement [86].

[62] conducted a study that underscores the efficiency of optical sensors combined

with N-rich strips in managing nitrogen for winter wheat. Their research demonstrated

that this sensor-based approach resulted in grain yields comparable to conventional
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methods. However, it notably excelled in achieving higher NUE and reduced

environmental impact, highlighting its effectiveness in precise nitrogen management.

Ramp Application: This method involves creating a strip in the field where

nitrogen is applied at varying levels. Specifically, a Ramp calibration strip is a pass in the

field with different nitrogen rates, typically involving at least five different rates, each

extending at least 40 feet long, applied in addition to the normal starter nitrogen

application [104]. It allows farmers to observe the crop’s response to these different

nitrogen levels, which aids in determining the optimal nitrogen application rate for the

entire field [28]. [110] investigated multiple techniques for determining the nitrogen status

of crops, highlighting the significance of real-time assessment to optimize nitrogen

application. This research included methods such as Chlorophyll Meter (CM), Dualex

Instrument, and remote sensing techniques, demonstrating a range of tools for accurate

nitrogen management. Among these methods, the potential of ramp application was also

acknowledged as an effective approach for assessing nitrogen needs Jones et al. [52] delve

into nitrogen management for wheat, emphasizing the role of ramp application to optimize

grain protein without compromising yield. The research underscores the importance of

adaptive nitrogen techniques in dryland farming, and promotes tools like the MSU Small

Grains Nitrogen Economic Calculator and strategies such as flag-leaf nitrogen

concentration assessment to inform fertilization choices.

The integration of methods like N-rich strips and Ramp application with modern

precision agriculture techniques can further optimize nitrogen application, ensuring that

crops receive the right amount of nutrients at the right time.

2.7.3 AI, remote sensing, and their potential in NUE

The integration of AI and remote sensing technologies into precision agriculture has

proven to be a watershed moment in the realm of modern farming [82]. These innovative

technologies hold remarkable potential for advancing NUE by harnessing machine
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learning algorithms and high-resolution remote sensing data [4]. The integration of these

technologies has resulted in a more precise and efficient approach to nitrogen

management, significantly enhancing the accuracy of nitrogen application and overall

farm productivity.

AI, with its intrinsic capacity to handle vast datasets and model complex

interactions, has become a potent tool in the hands of agriculturalists [4]. Specifically,

machine learning (ML), a subset of AI, has shown immense promise due to its ability to

predict outcomes with high accuracy. Various machine learning algorithms, such as

Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Random

Forests, have found utility in nitrogen management [50]. These innovative algorithms,

through a learning process that relies on historical and current agricultural data, can

predict crop yield, nutrient uptake, and optimize nitrogen application rates with

considerable precision.

Further advancing the possibilities of ML in crop yield prediction, a study by [117]

explored the application of five distinct machine learning algorithms, including linear

regression (LR), decision tree (DT), SVM, ensemble learning (EL), and Gaussian process

regression (GPR) in predicting the yield and dry matter of winter wheat in the North

China Plain. The study found that the GPR model surpassed all other models in accuracy,

with the prediction errors for maximum yield and dry matter being only 5.8% and 1.1%,

respectively. This study gives credence to the idea that AI and ML can provide more

precise predictions, informing the optimal application of water and nitrogen to achieve

maximum yield and dry matter, thereby increasing NUE.

Research has been conducted to examine how different soil properties, such as

water-holding capacity and organic matter content, affect NUE within smaller, specific

areas of a field. These studies aim to understand NUE’s variability at a more localized or

subfield level. [46] quantified NUE in dryland winter-wheat fields in Montana following

several years of variation in experimental N fertilizer applications. Through a comparison
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of six candidate models, they developed a model capable of predicting NUE at a subfield

scale. The results of their study showed that a random forest regression model provided

the least error in predicting NUE. Thus, their work highlights the potential of AI in

enhancing our understanding of soil dynamics and optimizing nitrogen fertilizer use,

thereby improving NUE.

Lastly, a compelling demonstration of the synergistic potential of AI and remote

sensing technologies can be seen in the work of [58]. This study combined the use of

UAV-based Vegetation Indices (VIs) and ML models to predict corn field yield at different

growth stages. Notably, the study revealed that support vector regression (SVR) and

k-Nearest Neighbor (KNN) models outperformed other ML models in yield prediction.

Importantly, this study showed that these technologies could make accurate yield

predictions, even with a limited number of training data, reinforcing the scalability and

robustness of these AI and remote sensing-based approaches.

The convergence of AI and remote sensing technologies, as seen in these studies,

offers promising ways to advance NUE, underscoring the potential of these technologies

in optimizing nitrogen management and bolstering sustainable agricultural practices.

2.7.4 Applied nitrogen management in wheat and corn

Considering the global importance of wheat and corn, targeted nitrogen management

strategies for these crop hold special significance [114]. Integrating techniques from SSM,

precision agriculture, and AI can significantly enhance NUE in the cultivation of these

staples [2], [10], [114].

In wheat cultivation, a comprehensive study [50] was undertaken to develop an

efficient nitrogen management strategy based on multi-source data. The researchers

collected data from UAV multi-spectral images, plant sampling, weather, and field

management to establish and validate the strategy. Machine learning methods, particularly

the Random Forest algorithm, were utilized to integrate the multi-variate information to
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determine the optimal parameters in the nitrogen regulation algorithm. This innovative

strategy enhanced energy use efficiency and net profit while decreasing nitrogen input,

energy input, and CO2 emissions, all without any reduction in yield.

Another unique approach [116] was developed which combined crop growth

modeling, active canopy sensing, and machine learning for an in-season nitrogen

management strategy in corn production. The strategy enabled accurate prediction of the

in-season economic optimal side-dress nitrogen rate (EOSN). The recommended EOSN

demonstrated a high correlation with measured values, thus showing the promising

potential of the combination of crop growth modeling, active canopy sensing, and

machine learning for in-season site-specific nitrogen management.

Furthermore, a detailed study [6] focused on understanding the relationship

between data derived from an unmanned aerial vehicle (UAV) platform and the crop’s

temporal and spatial variability in small wheat fields. The variable rate nitrogen

application strategy implemented in this study led to an overall decrease in nitrogen

fertilizer application between 5 and 40%, depending on the field heterogeneity. In the

majority of case studies, NUE was improved by approximately 10% by redistributing and

reducing the amount of nitrogen fertilizer applied.

These studies underline the effectiveness and promising potential of integrating

sensor-based precision agriculture techniques and machine-learning algorithms into

nitrogen management strategies for wheat and corn.

2.8 Research gap

Research on NUE has been extensively conducted, yet several unexplored avenues

remain. Addressing these gaps is imperative, especially for crucial crops such as wheat

and corn, as this can promote sustainable and efficient agricultural practices.

1. Broadening the Scope: Many current studies are predominantly confined to

precision agriculture and NUE for specific crops and locations [37]. To maximize
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the benefits of precision agriculture techniques, there is a need to expand research to

a wider range of agricultural settings.

2. AI Integration: Though there is an increasing interest in integrating AI into

nitrogen management, its full potential remains underutilized. A large number of

studies use generic AI models without tailoring them to address the specific

challenges of agriculture [54]. There is a clear demand for AI models that are

fine-tuned to the nuances of nitrogen management.

3. Real-time Monitoring with Image Processing: Traditional agricultural practices

often rely on data sources like soil sensors and past yield data, which can be

influenced by unpredictable factors [81]. AI-driven image processing can offer

continuous, real-time monitoring and analysis of crop conditions, enhancing the

accuracy of nitrogen needs assessment.

4. Advanced Image Processing: Many image processing techniques in agriculture

still employ basic methods or automated software like Pix4d. The limitations, such

as stitching inaccuracies, necessitate a shift towards advanced, AI-based image

processing techniques that offer in-depth analysis.

5. AI and Remote Sensing Synergy: The integration of AI with remote sensing tools,

including drones and satellites, remains a largely unexplored area. This combination

can offer comprehensive insights into crop nitrogen needs, optimizing management

practices.

2.9 Research objectives

In response to the above-mentioned research gaps, this study aims to deepen our

understanding of NUE practices, particularly for wheat and corn. The research objectives

were:
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1. To evaluate the crop response to nitrogen application by implementing N-rich

reference spots within different management zones in a field.

2. To improve the NUE in wheat and corn production.

3. To design and implement an AI-based image processing techniques to analysis

remote sensing data.

4. To develop an approach that integrates AI-derived imagery analysis with historical

field data to generate N prescription map.
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3 Methodology

3.1 Overview of the methodology

18.23.2 This chapter outlines the research methodology for wheat and corn NUE

strategies in South Dakota. Detailed information about the experimental sites is provided

in Section 1.9. We have employed a multi-faceted approach, combining precision

agriculture practices with AI and remote sensing technologies, to examine and optimize

nitrogen application. A simplified overview of the research methodology is illustrated in

Figure 3.1.

Figure 3.1: An overview of the research methodology employed in optimizing NUE
for wheat and corn cultivation.

This visual representation provides a snapshot of the stages and processes

undertaken, from initial field scanning and planting to the analysis of aerial and satellite

images, and eventually to analyzing the harvesting data. The following sections will offer

exploration of each component of the methodology, techniques, materials, and analyses



30

that strengthen outcomes of this study.

3.2 Creating management zones

In this research, we start with creating management zones to categorize different areas of a

field based on their potential productivity. Creating these management zones is crucial as

it allows for tailored agronomic practices that match the specific needs of each zone,

optimizing inputs like fertilizers for enhanced efficiency and yield. To achieve this, Soil

Electrical Conductivity (EC) Scanning is employed, followed by soil analysis. These

methods complement each other for defining management zones, which optimize

agricultural practices.

3.2.1 Soil EC scanning

To begin with, we utilized Soil EC scanning as a method to create management zones for

precision farming. For this purpose, we used the EM38-MK2 Ground Conductivity Meter

to conduct the scanning. This efficient and non-invasive technique measures the soil’s

ability to conduct electrical current, thereby revealing the spatial variability of soil

properties. Through EC scanning, we identified variations in soil conditions that informed

the creation of tailored management zones to address these specific conditions.

Zone maps, generated from EC scanning data, served as visual guides for soil

property distribution across the field. These maps were instrumental in guiding localized

management decisions and ensuring representative sampling for further detailed analysis.

Before we began the scanning, it was essential to calibrate the EC scanner device

to ensure accurate and reliable data collection. The calibration of EC machines is a pivotal

step that involves contrasting the machine’s readings with a known standard and requires

ongoing attention to ensure the accuracy of the measurements. The calibration process, as

delineated in the device’s manual, is summarized as follows:

Calibration procedure for the EM38-MK2 Ground Conductivity Meter
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1. Initial Setup:

• Situate the EM38-MK2 in the air, ensuring its operation in the horizontal

dipole mode.

• Neutralize the Q/P readings to zero to ascertain a standardized starting point.

2. Adjusting the Q/P Zero Control:

• Preset the Q/P zero control to a predetermined arbitrary value, for instance,

H=10 mS/m, as a foundational reference.

• Transition the instrument to the vertical dipole mode.

• Record the indicated reading, which might hypothetically be V=16 mS/m.

• Derive the difference between the vertical and horizontal readings, e.g.,

V −H = 6 mS/m in the provided hypothetical scenario.

3. Final Adjustments:

• While in the horizontal dipole mode, modify the Q/P zero control until the

display showcases a value double of that deduced in the prior step, making it

12 mS/m in our illustrative example.

4. Validation:

• Elevate the instrument to a minimum of 1.5 meters from the ground. The

resulting Q/P reading or conductivity must invariably align with the equation:

V = 2H .

5. Coil Separation Setting (if required):

• If utilizing a 0.5 m coil separation, adjust the MODE to the corresponding 0.5

m setting.

• Redo steps 1 through 3 under this configuration.
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• Notably, when the 0.5 m setting is active, procedures demanding a 1.5 m

elevation can be substituted by a mere 0.75 m height.

Figure 3.2 shows a researcher calibrating the device. Regular recalibrations, as

outlined, are essential for optimal performance and accurate assessments of soil

properties. Before each scanning session, we performed a calibration to ensure the

reliability of the data collected. After calibration, we initiated the scanning process,

covering a swath of 10 meters (approximately 32.8 feet) in each pass across the field.

Figure 3.2: A researcher calibrating the EM38-MK2 Ground Conductivity Meter.

Upon completing the scanning process, we utilized SMS software to create

management zones based on the data gathered. In our methodology, we delineated five

distinct zones. Subsequent to the creation of these zones, we conducted soil sampling to

gather supporting data that further validated and enriched our understanding of the
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established zones.

3.2.2 Soil sampling and analysis

Soil sampling refines the broader overview offered by EC scanning, working in synergy to

yield a thorough comprehension of soil attributes and further enhancing the credibility of

zone maps.

Our soil sampling strategy, guided by standard protocols for agricultural soil

analysis, incorporated directed sampling based on EC data [23]. This approach allowed us

to target specific areas within the field that exhibited varying EC levels, ensuring a more

precise and representative analysis of soil characteristics.

• Sampling was conducted at 0-12 inches depth, and multiple samples from the same

spot were combined to form a composite sample, ensuring a holistic representation

of that location

• A soil auger, facilitating the collection of soil samples from specific depths, as

shown in Figure 3.3, ensuring accurate analysis of varying soil properties at

different layers

Figure 3.3: Soil Sampling Process. On the left, a researcher is shown in the field,
actively using the auger for soil sampling. On the right, a soil auger is depicted with
a freshly extracted soil sample.
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After collection, soil samples were analyzed and essential features for our research

were extracted and quantified.

In our methodology, we synthesized EC data and soil sampling results to craft

precise management zones. This process entailed aligning EC readings with soil texture

and fertility data obtained from various depths to define distinct zones based on soil

characteristics.

3.3 Establishing N-rich spots

The N-rich spots are designed as circular areas with a diameter of 18 meters

(approximately 59 feet), ensuring they are small enough to use less nitrogen in the test

phase and big enough to be discernible in satellite imagery. In this methodology, three

spots are established within each zone with a tile positioned at the center of every spot.

These tiles serve as markers for identifying spot centers in aerial images and as reference

points for bio-sensing nitrogen application. These spots serve as biological (bio) sensors,

gauging plant responses to nitrogen application across different areas. This approach

offers several advantages over methods such as the N-rich strip, which involves applying

nitrogen to large strips across the field. The small size of these spots allows for their

repeated placement within a zone, ensuring a comprehensive understanding of the entire

area. Additionally, the minimal nitrogen required for these spots makes this approach

cost-effective. The adaptability in positioning circular spots proves advantageous,

especially in fields with irregular zones. Figure 3.4 illustrates N-rich spots on a field with

tiles positioned at their centers.
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Figure 3.4: Schematic representation of the field showing N-rich spots with tiles
positioned at their centers.

After establishing N-rich spots, nitrogen is applied across all designated spots

using a manual fertilizer spreader, a compact, two-wheeled device pushed across the field,

as shown in Figure 3.5. For each application, 27 pounds of urea, containing 46% nitrogen,

are used per spot. This equates to 11.5 lbs. of nitrogen per spot, translating to an

application rate of approximately 397.46 lbs. of urea or 182.8 lbs. of nitrogen per acre.

Figure 3.5: Nitrogen Application Process. The image showcases a researcher using a
manual fertilizer spreader to apply nitrogen to one of the N-rich test spots.
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3.4 Field monitoring

After establishing the N-rich spots, continuous field monitoring was initiated and

maintained until the end of the harvesting period to ensure the integrity of the experiment.

Regular checks were conducted to identify growth inconsistencies, prevent diseases, and

validate data using tools such as the GreenSeeker device and tape measures. These

measures ensured that observed differences in growth or yield were attributed to

experimental variables, thereby enhancing the reliability and validity of our findings.

Figure 3.6: Measuring the height of wheat plants in different zones using a tape
measure.

3.5 Drone-based multi-spectral imaging

After applying nitrogen to the designated spots, we transition to the next phase of our

methodology: capturing aerial images to analyze the plants’ response to the nitrogen

application. Drone imagery is integral to our approach, facilitating the collection and

analysis of field data. This stage is timed to coincide closely with the top-dress period of
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wheat, which is typically between 400 to 600 growing degree days [112], allowing for an

optimal assessment of the plants’ nitrogen uptake efficiency. For the corn field, being a

dedicated plot provided by a local farmer, the decision regarding the optimal timing for

side-dressing was determined by the farmer based on their time window.

We utilized a drone (DJI Phantom 4 pro) equipped with a multi-spectral camera,

featuring a 12-megapixel lens with a focal length of 5.4 mm and an aperture value of F1.5.

The camera is capable of capturing images in five distinct bands: Red, Green, Blue

(RGB), Red Edge, and Near-Infrared (NIR). These bands were selected for their ability to

provide valuable insights into plant health and soil properties.

To initiate the process, we prepared a Keyhole Markup Language (KML) file

outlining the precise boundaries of the field of interest. This file was uploaded to the

drone’s flight control software, guiding the drone to follow a flight path over the field.

This ensured coverage of the area while minimizing overlaps. The drone flew at an

altitude of 200 feet (60.96 meters) over the wheat field and 400 feet (121.92 meters) over

the corn field.

The resulting imagery comprised two separate files, each with a resolution of 4000

x 3000 pixels, capturing the aforementioned five bands.

3.5.1 Image calibration

Aerial images can display variations in brightness and other visual attributes due to

various external factors such as time of capture, cloud coverage, shadows, and more. Such

inconsistencies, if not addressed, can introduce errors in subsequent analyses, especially

when comparing images from different times or conditions.

To address this challenge, we employ a calibration procedure using a reflectance

panel. The primary function of this calibration panel is to provide a consistent reference

point across all captured images. As the drone flies over the field, it also captures images

of the calibration panel. Figure 3.7 displays a drone flying over our calibration panel,
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which is vital for this calibration process.

Figure 3.7: A drone, equipped with a multispectral camera, captures imagery over a
calibration panel, ensuring precision in data on the image acquisition day.

Our chosen calibration panel, provided by Sentera, has specific reflectance values

for each band, as detailed in Table 3.1.

Table 3.1: Reflectance values of the Sentera calibration panel for different bands. The
values, ranging between 0 and 1, represent the fraction of light reflected by the panel
relative to the incoming light.

Bands: Blue Green Red Red-Edge NIR
Reflectance: 0.1059 0.1054 0.1052 0.1052 0.1055

3.5.2 Calibration procedure

Image calibration is a cornerstone in ensuring data consistency and eliminating possible

deviations due to external factors. Leveraging Python for this task allows for an



39

automated, efficient, and reproducible calibration process. Here’s a step-by-step

breakdown of how we’ve approached this crucial stage using Python:

Load Images: Import captured images into a Python environment using PIL

library. Convert images to a 16-bit format if they are in 8-bit, ensuring a higher precision

during the processing phase.

Preprocess Images: Apply a Gaussian blur to diminish high-frequency noise,

aiding in more robust calibration panel detection. Resize and normalize images to ensure a

uniform scale and intensity distribution, which aids in consistent processing across

different images.

Identify Calibration Panel: Utilize advanced object detection models for precise

detection of the calibration panel within the images. Specifically, the model based on the

Faster R-CNN architecture, as detailed in section (3.7), is employed for this purpose.

Validate detected regions using shape analysis, confirming the calibration panel’s presence

based on its characteristic form.

Extract Reflectance Values: Define the Region of Interest (ROI) from the

detected calibration panel to measure reflectance values for each band. Use spectral

unmixing techniques to derive pure reflectance values, particularly beneficial in

overlapping spectral regions.

Radiometric Calibration: Compute a calibration factor by comparing the

reflectance values obtained from the images to the standardized values from the Sentera

calibration panel. Apply this factor across all pixels in the bands to achieve radiometric

calibration of the images.

Atmospheric Correction: Implement the Dark Object Subtraction method to

further refine the reflectance values by accounting for atmospheric interferences, ensuring

the images’ accuracy.

Adjustment: Normalize image histograms for maintaining consistent brightness

and contrast across all images, especially if captured under varying conditions. If multiple
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images are being analyzed, ensure their alignment using image registration techniques,

which guarantees accurate comparisons.

Save Calibrated Images: Opt for lossless formats like TIFF when saving images

to retain the integrity and precision of the calibrated data. Accompany the images with

metadata, encapsulating calibration factors, parameters, and other pertinent information

for future references.

This calibration process ensures that our aerial images are consistent and accurate,

allowing for a reliable comparison and subsequent analyses. Using standardized

reflectance values and adjusting the images accordingly guarantees that the information

derived from them is dependable and actionable for our study’s objectives.

3.6 Satellite imagery

To ensure the continuity and robustness of our study, we complement our drone-based

image collection with satellite imagery from the Sentinel satellite, part of the European

Space Agency’s Copernicus Programme. The Sentinel satellite provides high-resolution,

multi-spectral imagery that enhances our understanding of field conditions over time,

offering a broader perspective and complementing the detailed insights from our

drone-based images. This approach acts as a contingency plan, offering backup data for

our analysis when drone flights are hindered by unfavorable weather conditions,

unavailability of the drone, or inaccessible fields. It also enables us to compare analyses

based on both satellite and drone data. We chose the Sentinel-2 satellite for its superior

spatial resolution of up to 10 meters, cost-free data access, and extensive geographical

coverage, which ensures detailed analysis and consistent data collection. Additionally, the

Sentinel-2 satellites offer a revisit frequency of 10 days for each individual satellite, but

with the combined constellation, this interval is reduced to 5 days. This frequent revisit

capability allows for more timely and accurate monitoring, making it highly suitable for

our study’s needs.
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3.7 Faster R-CNN model

The prevalent methods for analyzing aerial photos in agriculture involve merging

numerous images into one cohesive image using software such as Pix4D, followed by

computing the NDVI or other spectral indices using the same or similar software. While

this approach has its advantages, it also harbors certain drawbacks. Merging images can

lead to a loss of resolution, as the process essentially averages the information from

multiple photos, reducing the detail visible in the final image. Moreover, areas where

images overlap can cause shadowing effects or misinterpretations of the spectral

information, skewing the resulting analysis. These challenges can limit the precision and

effectiveness of traditional image analysis.

To circumvent these challenges, we propose a novel approach that leverages the

power of deep learning. By forgoing the merging of images, we retain the original image

quality and avoid the issues associated with overlapping areas. Specifically, we employ

the Faster R-CNN model [88], a state-of-the-art object detection algorithm that offers key

benefits for our task. This model is adept at detecting and localizing tiles within the

high-resolution, individual aerial images of the field, negating the need for image merging.

Considering we potentially have hundreds of images to process, the efficiency of the

Faster R-CNN in handling large datasets, along with its high accuracy in object detection

and localization, makes it an ideal tool for our approach. By preserving the original image

quality and leveraging precise object detection, our methodology aims to enable a more

accurate and reliable analysis of field conditions and crop health. The structure of Faster

R-CNN is illustrated in Figure 3.8.

Faster R-CNN features a two-part design. The first part is the RPN that scans the

image and generates potential bounding boxes that could contain an object. The second

part is a Fast R-CNN network that takes these proposed regions and classifies them,

determining what object, if any, they contain.

This two-step process offers several advantages. Firstly, it allows for high



42

Figure 3.8: Schematic representation of the Faster R-CNN architecture, showing the
Region Proposal Network (RPN) for candidate regions and the Fast R-CNN for object
classification and bounding box refinement.

precision in detecting objects as the network can learn to propose regions that are likely to

contain objects of interest and ignore irrelevant areas. This not only improves accuracy

but also increases speed as fewer regions need to be processed. Secondly, the use of

convolutional layers enables the model to handle input images of any size and aspect ratio,

a flexibility that is highly desirable in practical applications. Lastly, because the network

is fully differentiable, it can be trained end-to-end with backpropagation, which simplifies

the training process and often results in better performance.

For our task, the Faster R-CNN model offers some key benefits. It can efficiently

detect and localize the tiles and calibration panel in the aerial images of the field. Given

that we have potentially hundreds of images to process, the efficiency of Faster R-CNN in

handling large datasets is highly beneficial. Moreover, its accuracy in detecting and

localizing objects will enable us to precisely identify the tiles and measure their size in the

image, which is crucial for our analysis.
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3.7.1 Training process

Training the Faster R-CNN for our specific task involves the following steps:

Image Annotation: First, we need to manually annotate a subset of our images by

identifying both tiles and calibration panels. This involves drawing bounding boxes

around each object and assigning it the appropriate class label, either as a ’tile’ or a

’calibration panel’. These annotated images serve as the ground truth.

Model Training: We used a total of 500 labeled images for training without

employing any data augmentation techniques. These images were fed into the Faster

R-CNN model without using any pre-trained weights. The model was configured with a

batch size of 4, optimizing the learning process for our dataset size. An adaptive learning

rate strategy was employed, starting at 0.001 and gradually increasing to adapt to the

model’s learning progress. This approach enhanced the training effectiveness, especially

given the limited size of our dataset. The training was conducted over 100 epochs,

ensuring comprehensive learning and adaptation by the model. During training, the model

learned to recognize tiles and calibration panels based on their visual features, proposing

regions likely to contain these objects (using the Region Proposal Network, RPN) and

classifying these regions (using the Fast R-CNN).

Model Evaluation: During the training process, we periodically evaluated the

model’s performance on a validation set of 100 images that it had not seen before.

Model Testing: Once training was finalized, we conducted a rigorous test using a

distinct set of 100 images.

Model Deployment: Finally, we deploy the trained model to detect and localize

tiles in the remaining images. The model’s outputs, including the bounding boxes and

class predictions, are used in further analysis.

In conclusion, the Faster R-CNN model, with its ability to efficiently and

accurately detect and localize objects in images, provides a robust solution for our task.

By training the model on our specific task, we can fine-tune its capabilities to our specific
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needs, ensuring high performance in detecting the tiles in the aerial images.

3.8 Converting image measurements to real-world dimensions

Following the identification of tiles within drone-captured images by the Faster R-CNN

model, our methodology proceeds with calculating the size of these detected tiles and

assessing the coverage of the spot. These steps are critical in quantifying the effectiveness

of nitrogen application. The detailed procedures are as follows.

3.8.1 Calculation of tile dimensions in images

The primary step in this process entails determining the size of the tile as detected within

the image. This calculation leverages the dimensions of the bounding box—namely, its

height and width—delivered by the Faster R-CNN model. The pixel area of the tile within

the image, represented as Atile pixel, can be quantified through equation 3.1.

Atile pixel = widthbbox × heightbbox (3.1)

Here, widthbbox and heightbbox correspond to the bounding box’s width and height,

respectively.

However, this computed pixel area does not directly mirror the real-world

dimensions of the tile. To bridge this gap, we employ a conversion process using known

physical dimensions of the tiles, which are 12 inches by 12 inches (or equivalently, 30.48

cm by 30.48 cm).

The image scale plays a pivotal role in this conversion. It is affected by the drone’s

altitude and camera specifications. Our drone flights were conducted at altitudes of 200

feet (60.96 meters) over wheat fields and 400 feet (121.92 meters) over corn fields. The

camera specifications, including a 12-megapixel lens with a focal length of 5.4 mm, an

aperture value of F1.5, and sensor size of 1/2.9” CMOS, also influence the image scale.

This scale, defined as the ratio of a distance on the ground to its representation in the



45

image (in pixels), is crucial for converting pixel measurements to real-world dimensions.

To calculate this scale, we first determined the camera’s horizontal Field of View

(FoV), which was found to be approximately 60.43◦, based on the focal length and sensor

size as shown in Equation 3.2. Then, we calculated the Ground Sample Distance (GSD) –

the distance between the centers of two consecutive pixels as represented on the ground.

At 200 feet, the GSD was approximately 0.01775 meters per pixel, and at 400 feet, it was

about 0.0355 meters per pixel. Consequently, the scale factor – representing how many

meters in the real world are depicted by each pixel in the image – was calculated as

approximately 17.17 meters per pixel at 200 feet and 8.59 meters per pixel at 400 feet.

These scale factors were then used to accurately convert the tile dimensions from the pixel

measurements in the images to their real-world sizes, ensuring precise and reliable data

for our analysis.

FoV = 2× arctan

(
sensor width

2× focal length

)
(3.2)

With the known scale, we can calculate the real-world area of the tile, denoted as

Atile real, using equation 3.3.

Atile real =
Atile pixel

scale
(3.3)

In this equation, ’scale’ acts as the conversion factor that translates pixel-based

measurements into real-world dimensions.

In a case where the scale is not directly known, it can be determined using the

known physical dimensions of the tile and its size in the image, represented as Atile physical

and Atile pixel, respectively. The scale can then be expressed as equation 3.4.

scale =
Atile physical

Atile pixel
(3.4)

This calculated scale is consistently applicable across images taken at the same
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altitude and with identical camera settings, facilitating reliable conversion of tile sizes for

various images.

Through these calculations, we effectively translate the tile dimensions detected in

images into real-world dimensions, laying a solid foundation for accurate determination of

spot coverage.

3.8.2 Assessment of spot coverage

Upon successfully converting the tile size from the image to its real-world dimensions, we

advance to the critical process of determining the spot coverage. This stage involves

contrasting the real-world size of the identified tile, represented as Atile real, with the

predetermined size of the spot, denoted as Aspot. Aspot is gleaned from the field layout and

is an important parameter for the task at hand.

Given the circular nature of the spots, the spot’s area can be computed using the

known diameter size (Dspot) input from the field layout. We set the radius of each spot at a

minimum of 8 meters to ensure full visibility in the satellite images. This is due to the

resolution of the Sentinel satellite images, where a single pixel can cover approximately

10x10 meters on the ground, or sometimes, this may vary depending on the satellite’s

altitude. Hence, by setting the radius at 8 meters or more, we can ensure that each spot

occupies at least one full pixel in the satellite image. Utilizing the formula for the area of a

circle, we can calculate the spot’s real-world area as equation 3.5.

Aspot real = π

(
Dspot

2

)2

(3.5)

Here, π approximates to 3.14159, and Dspot

2
gives the radius of the circular spot.

The comparison of Atile real and Aspot real is not to equate them but rather to assess

the position of the tile within the spot. The tile, placed in the center of the spot, acts as a

marker for the spot center in the images captured. If Atile real is smaller than Aspot real and is

centrally located in the image, it implies that the entire spot is within the frame of the
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image. Mathematically, this coverage condition can be represented as:

if Atile real < Aspot real and tile is centrally located: image is deemed acceptable

The determination of whether the tile is centrally located can be done using the bounding

box’s position information provided by the Faster R-CNN model.

The comprehensive nature of this methodology, involving both tile size

measurement and spot coverage determination, underpins the robustness of the ensuing

phases of the analysis. By ensuring only images truly representative of entire spots are

selected, the reliability and validity of the nitrogen application effectiveness evaluation are

significantly enhanced.

This meticulous approach, therefore, underpins the reliability of the overall study,

ensuring accurate and trustworthy results in the quest for sustainable and effective

nitrogen application practices.

3.9 Nitrogen response analysis using image processing

Understanding plant responses to nitrogen application is pivotal for optimizing its use in

farming. In the preceding section, we utilized object detection models to identify best

candidate for each spots in the field. Now, with the most representative image for each

spot identified, our focus shifts to discerning the differences between areas where nitrogen

was applied and areas where it was not. The ultimate goal is to determine zones where

nitrogen application spurred growth, indicating that nitrogen was previously a limiting

factor, and zones where growth remained stunted post-application, implying the limitation

stemmed from factors other than nitrogen. As we delve deeper, image normalization

becomes an indispensable step, letting us tap into the rich insights various normalized

images present.
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3.9.1 Utility of NDVI

The NDVI is a fundamental tool in remote sensing used to gauge the density and health of

live green vegetation in an image. Representing a dimensionless index, NDVI values

oscillate between -1 and 1, with values nearing 1 indicating healthier vegetation.

Derived from the near-infrared (NIR) and red bands of an image, the NDVI is

calculated as equation 3.6.

NDVI =
NIR − Red
NIR + Red

(3.6)

Here, NIR denotes the near-infrared band value, while Red signifies the red band

value. The preference for these bands stems from their correlation with plant health.

Healthy plants with abundant chlorophyll absorb more red light for photosynthesis, while

their cell structure reflects near-infrared light. Consequently, image areas exhibiting

healthy vegetation usually showcase higher NDVI values.

Leveraging normalized indices like NDVI offers distinct advantages. NDVI, in

comparison to singular spectral bands, exhibits reduced sensitivity to alterations in

atmospheric factors and illumination conditions. Additionally, it furnishes a more direct

metric of vegetation health and vigor.

3.9.2 Utility of Excess Green Index (ExG)

ExG or Excess Green Index is another significant measure in remote sensing employed to

identify vegetation within images. The ExG, as the name suggests, emphasizes the

greenness of an image, providing a clear distinction between vegetation and

non-vegetation areas. It is a straightforward and effective method for segmenting plants in

digital images.

The ExG Index is calculated as Equation 3.7.
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ExG = 2× Green − Red − Blue (3.7)

Where Green, Red, and Blue represent the respective color channels of an image.

ExG is particularly beneficial when analyzing areas with dense vegetation. In

combination with NDVI, it provides a comprehensive understanding of vegetation health,

density, and overall vigor.

3.9.3 In-spot vs. Out-spot analysis

After determining the NDVI and ExG values for each spot, we proceed to sample specific

areas from both in-spot (where nitrogen was applied) and out-spot (without nitrogen

application) for a comparative analysis of their NDVI and ExG distributions. The primary

objective of this comparison is to ascertain the extent of plant response to the applied

nitrogen in the designated areas.

As depicted in Figure 3.9, the in-spot area is identified and a sample consisting of

250x250 pixels is extracted. To ensure accuracy in our calculations, any tile present within

the sampled area (used to indicate the center of the spot) is replaced by the average pixel

values from the surrounding in-spot area. This ensures the tile does not influence

subsequent calculations.

Additionally, four distinct samples, each of the same size as the in-spot, are taken

from the out-spot where no nitrogen was applied. An average image is constructed from

these four samples, creating a single representative image. Both the in-spot and averaged

out-spot images are then processed by the Wasserstein algorithm to evaluate the extent of

their differences.

To verify the uniformity of the out-spot samples, which serve as our controls for

the in-spot center, we selected three separate locations within the zone. By comparing

their standard deviations to the average of the original four out-spot samples, we assess

consistency across the zone. If the variance is minimal (a standard deviation close to
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Figure 3.9: Visual representation highlighting the central ’in-spot’ where N was ap-
plied, juxtaposed with four ’out-spot’ regions, the areas without N application.

zero), this indicates that the forthcoming comparison is unbiased and unaffected by

potential variations in the zone. Figure 3.10 conceptually illustrates this comparison

across different parts of a given zone.

Figure 3.10: Schematic representation highlighting the three sampled locations within
a nitrogen-deprived zone, juxtaposed against the four control spots.
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3.9.3.1 Wasserstein distance

To draw a quantitative comparison between the in-spot and out-spot distributions, the

Wasserstein distance is employed. Also dubbed as the Earth Mover’s Distance, this

measure metaphorically denotes the ’work’ required to morph one distribution into

another.

The Wasserstein distance can be conceptually imagined as the effort necessary to

shape one distribution pattern into another, as demonstrated in Figure 3.11.

Figure 3.11: Visualization of the Wasserstein distance between two distributions,
illustrating the shift needed to transform one distribution into the other one

For two probability distributions Pin and Pout epitomizing the in-spot and out-spot

NDVI or ExG distributions, the Wasserstein distance W (Pin, Pout) can be ascertained as

equation 3.8.

W (Pin, Pout) = inf

∫
|x− y| dπ(x, y) (3.8)

Here, inf stands for the infimum over all joint distributions π(x, y) with marginals

Pin and Pout.

The determined Wasserstein distance provides an adept measure of the collective

difference in vegetation vitality between the nitrogen-fertilized (in-spot) and non-fertilized

(out-spot) areas. A larger Wasserstein distance signifies that the application of nitrogen

has a more pronounced impact on vegetation health and growth. Conversely, a smaller
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distance indicates that the nitrogen application’s effects are subtle or potentially

overshadowed by other limiting factors. In essence, this metric aids in quantifying the

tangible benefits of nitrogen application, allowing for more informed and sustainable

agricultural decisions in the future.

Through this detailed analysis, we will identify which zones of the field have the

most substantial response to nitrogen application, guiding future decisions on variable rate

nitrogen application. This contributes towards the overarching goal of improving crop

productivity, reducing nitrogen losses, and promoting sustainable agricultural practices.

3.10 Variable rate nitrogen application

With the in-depth comparison of in-spot and out-spot areas for each zone, we can now

move towards the formulation of variable rate nitrogen application strategies. The zones

demonstrating a more significant difference in their comparative analysis—meaning,

where the in-spot showcased superior growth or a more positive response to nitrogen—are

the ones that could benefit from an increased nitrogen rate during the top-dressing phase.

3.10.1 Utilization of comparative analysis information

The results of the comparative analysis, specifically the Wasserstein distance, serve as an

effective indicator of each zone’s responsiveness to nitrogen. Zones with a larger

Wasserstein distance demonstrated a more profound growth improvement in the in-spot

(where nitrogen was applied) compared to the out-spot (where nitrogen was not applied).

Thus, these zones are more likely to benefit from additional nitrogen in the top-dressing

phase.

3.10.2 Conversion of response indicator to nitrogen application rate

The next step is to translate this responsiveness indicator into a practical nitrogen

application rate. For this purpose, we propose a linear scaling approach. The scaling



53

approach is intuitive and maintains the relative differences in responsiveness across zones.

In our analysis, we assign the symbol Wi to represent the Wasserstein distance for

each specific zone, with ’i’ serving as an index for the different zones. To establish a

common scale, we identify Wmin and Wmax as the minimum and maximum Wasserstein

distances observed across all zones. This allows us to normalize these distances into a

uniform range of [0, 1], which is detailed in equation 3.9

W ′
i =

Wi −Wmin

Wmax −Wmin
(3.9)

where W ′
i represents the normalized Wasserstein distance for zone i.

The normalized Wasserstein distances, W ′
i , now provide a relative measure of each

zone’s responsiveness to nitrogen application, ranging from 0 (least responsive) to 1 (most

responsive).

To ensure a balanced distribution of nitrogen across the zones, we further

normalize the W ′
i values using L1 normalization. This step adjusts the normalized values

such that the sum of all W ′
i across the zones equals 1. The L1 normalization is achieved as

follows:

W ′′
i =

W ′i∑
jW ′

j

(3.10)

where W ′′
i represents the L1-normalized Wasserstein distance for zone i, and the

denominator is the sum of all W ′
i values across the zones.

This L1 normalization is crucial as it ensures that the total weight allocated to all

zones sums up to 1, maintaining a proper proportional balance in nitrogen distribution. It

ensures that the nitrogen application rates are not only reflective of each zone’s

responsiveness but also proportionate to the overall field requirements. This approach

guarantees a more efficient and effective allocation of resources, optimizing nitrogen use

across the entire field.
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After obtaining the L1-normalized Wasserstein distances, W ′′
i , for each zone, the

next step is to translate these relative responsiveness measures into concrete nitrogen

application rates. This conversion is crucial for practical implementation in the field.

We achieve this by considering two key factors: the percentage area of each zone

within the field and the total amount of nitrogen planned for application across the entire

field. Essentially, each zone’s final nitrogen application rate is a product of its relative

responsiveness, its area proportion in the field, and the total nitrogen allocation for the

field.

The calculation is as follows:

Ri = W ′′
i × Area Percentagei × Total Nitrogen (3.11)

In this equation: Ri represents the final nitrogen application rate for zone i.

Area Percentagei is the proportion of the total field area that zone i occupies.

Total Nitrogen is the overall quantity of nitrogen designated for application across the

entire field.

This method ensures that each zone receives a nitrogen application rate tailored to

its specific needs and proportional to its area, aligning with the overall nitrogen budget for

the field. It facilitates precise and efficient allocation of nitrogen, optimizing crop yield

and minimizing waste or environmental impact.

3.11 Generating prescription maps

In parallel with drone-based image analysis, a similar process is applied to the satellite

images obtained from the Sentinel platform. Here, the high-resolution multispectral

images are subjected to the same analysis to calculate a separate nitrogen application rate.

These satellite-derived rates, while generally less localized and detailed than the

drone-derived rates, still provide an invaluable macroscopic perspective on nitrogen

application.
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Upon obtaining nitrogen application rates from drone imagery, satellite imagery,

and historical field data, the next stage involves an integration process that weights these

rates according to their relevance and reliability. This process involves assigning different

importance weights to each of the three rates.

For instance, the drone-based analysis rate might be given a weight of 60%,

recognizing the high level of detail, precision, and localization it offers. The historical

field data, capturing long-term field responses, could be assigned a weight of 20%, while

the satellite-derived rate could also receive a weight of 20%, reflecting its broader

geographical perspective.

The weighting scheme, however, is not static and may need to be adjusted based

on various situations. These could include the time of the season (early vs. late), the

quality of the images obtained (cloud cover, shadows), the consistency between the drone

and satellite rates, or the extent of deviations from the historical field data.

For instance, if cloud cover compromises the quality of satellite images, more

weight might be given to the drone data and historical field data. On the other hand, if

drone operations are interrupted due to technical issues, the weights might be adjusted to

rely more on satellite data and historical records.

By dynamically adjusting these weights, we can ensure that the final nitrogen

application rate reflects the best available information at any given time. This integrated

and adaptive approach takes full advantage of the complementary strengths of drone

imaging, satellite imaging, and historical data. It maximizes the precision and reliability

of nitrogen application rates, paving the way for truly optimized, sustainable, and resilient

crop production.

3.12 Harvesting and statistical analysis

Following the experiments, including procedures such as field scanning with EC, soil

sampling, aerial photography, and image analysis, the subsequent phase involved
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harvesting. This phase aimed to collect tangible samples from the field, providing

evidence of our interventions’ effects and highlighting contrasts among the various zones.

3.12.1 Sample collection and analysis

For each zone, samples are collected systematically to ensure the data is representative.

The primary objective of this collection process is to understand the effects of

interventions on yield and other essential metrics. Subsequent to collection, these samples

undergo statistical analyses, facilitating the derivation of meaningful conclusions from the

experimental data.

3.12.2 Graphical comparisons

To visualize the impact of the interventions, graphical comparisons are constructed. These

comparisons aim to highlight disparities in yield and other essential metrics between the

different zones and the control. Employing such visual aids provides a preliminary

assessment tool for understanding the outcomes of the study.

3.12.3 Statistical tests

The t-test is a statistical method employed to determine if the means of two groups are

statistically distinct from each other. This method aids in deciphering the probability that

observed differences between groups are due to random variations. Within the scope of

our study, the t-test is used to establish whether the variations discerned between the

control and other zones are statistically significant, thereby strengthening the reliability of

our outcomes.

The t-test operates on the following hypotheses:
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Null Hypothesis (H0): µ1 = µ2 (The means of the two groups are equal)

Alternative Hypothesis (Ha): µ1 ̸= µ2 (The means of the two groups are not equal)

Where:

• µ1 represents the mean of group 1 (for example, the Control zone).

• µ2 stands for the mean of group 2 (such as any other zone).

The t-statistic, which measures the size of the difference relative to the variation in

the data, is determined using Equation 3.12.

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

(3.12)

Here,

• x̄1 and x̄2 denote the sample means of the two groups.

• s21 and s22 are the sample variances for the two groups.

• n1 and n2 are the sample sizes for the two groups.

The p-value, which is the probability of observing a t-statistic as extreme as, or

more extreme than, the statistic computed from the sample, given that the null hypothesis

is true, is then procured from the t-distribution. A commonly used threshold is p < 0.05; if

the p-value is below this, the null hypothesis is rejected in favor of the alternative

hypothesis, signifying a significant difference between the two groups.

It merits emphasis that while statistical significance corroborates the existence of a

distinction, it doesn’t quantify the magnitude or direction of this variance. To bridge this

gap, effect sizes were deduced using Cohen’s d, a standardized metric designed to
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measure the magnitude of differences between two groups. Cohen’s d is derived as per

Equation 3.13:

d =
X̄1 − X̄2

spooled
(3.13)

Here, X̄1 and X̄2 signify the means of the two groups under comparison, while

spooled represents the pooled standard deviation, a weighted mean of the standard

deviations of the two groups. This pooled standard deviation is derived via Equation 3.14.

spooled =

√
(n1 − 1) · s21 + (n2 − 1) · s22

n1 + n2 − 2
(3.14)

In the equation, n1 and n2 stand for the sample sizes of the groups, while s1 and s2

indicate their respective standard deviations.

The values for Cohen’s d can be interpreted as:

• Magnitude:

– Small: —d— = 0.2

– Medium: —d— = 0.5

– Large: —d— = 0.8

• Direction:

– A positive value of d suggests that the mean of the first group (e.g., the control

group) is larger than the mean of the second group (e.g., a particular zone).

– A negative value of d indicates that the mean of the second group (e.g., a

particular zone) is larger than the mean of the first group (e.g., the control

group).
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3.12.3.1 Calculation of NUE based on protein content

The methodology for calculating NUE in wheat and corn production systems is predicated

on the protein content of the grain yield. Protein content is a vital determinant of crop

value and reflects the nitrogen assimilation efficiency of the plant, as proteins are

composed of amino acids that contain nitrogen. The conversion of nitrogen to amino

acids, and consequently to proteins, is indicative of the plant’s ability to utilize applied

nitrogen fertilizers for its growth and yield formation.

To compute the NUE based on protein content, the following formula is employed:

NUE =

(
(PC × Y )

AN + CN
×Nc

)
× UEF

where:

• PC is the Protein Content, given as a percentage of the harvested grain for each

zone.

• Y represents the Yield, measured in pounds per acre (lbs/ac).

• AN denotes the Applied Nitrogen, the quantity of nitrogen fertilizer applied to the

crop in lbs/ac.

• CN is the Credit Nitrogen, which accounts for the residual nitrogen available from

the previous cultivation. In our wheat and corn fields, we consider the Credit

Nitrogen to be 15 pounds per acre (lbs/ac), reflecting the typical nitrogen

contribution of a soybean crop to the subsequent crop in the rotation.

• Nc is the Nitrogen Content factor in protein, which is typically 0.16 for wheat and

corn, reflecting the nitrogen percentage in the protein [66], [74].

• UEF denotes the Utilization Efficiency Factor, which represents the fraction of

nitrogen that is effectively utilized for grain protein production as opposed to other
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plant growth aspects. While this factor can vary, for our analysis, we have

considered a UEF of 50% for wheat and 35% for corn, based on established

agricultural research and practices [7], [21], [87], [90]. .

This calculation framework allows for the assessment of the efficiency with which

applied nitrogen is converted into the protein content of the grain. It forms the basis for

comparing the effectiveness of nitrogen use across different agricultural zones.
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4 Experimental results

4.1 Introduction

This chapter presents the experimental results obtained from studies conducted at two

distinct fields in South Dakota. The first field, located at the SDSU Agricultural

Experiment Station in Brookings, was cultivated with spring wheat. The second field,

situated in Mount Vernon, was used for corn cultivation.

In the following sections, for each field, we will present:

• Field information: General information about the field.

• Zones’ Map: A visualization obtained from soil EC scanning and sampling,

demarcating the different zones.

• Soil Features Breakdown: An analysis of the inherent soil characteristics,

particularly those pertinent to nitrogen dynamics.

• AI-based Image Processing Insights: Valuable findings extracted from drone and

satellite imagery that mirror the actual field conditions.

• Harvesting Sampling Insights: Data procured from harvest samples, shedding

light on crop health and yield.

• Statistical Analyses: Rigorous application of various statistical methods to the

samples, reinforcing the validity of our results while also offering profound insights.

• NUE Analysis: An evaluation of the NUE in the crops, assessing how effectively

the applied nitrogen contributes to the overall yield and productivity.

4.2 SDSU Agricultural Experiment Station

The SDSU Agricultural Experiment Station, located in Brookings, SD, is situated at

coordinates 96°47’48.21”W longitude and 44°22’1.33”N latitude. In 2023, spring wheat
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was planted at this location. In the following subsections, will provide a detailed

exploration of our soil scanning results, image analysis, and various other experimental

findings pertaining to this specific station.

Figure 4.1 complements our exploration by charting key experimental milestones

alongside daily precipitation and temperature data for 2023. This includes critical phases

like planting, EC scanning, soil sampling, establishing N-rich spots, drone imagery,

top-dressing, and harvest times, offering insights into the environmental context of our

research.

Figure 4.1: Experimental Timeline and Environmental Data: Illustrates key ex-
perimental events in 2023 at the SDSU Agricultural Experiment Station, including
planting, EC scanning, soil sampling, N-rich spot establishment, drone imagery, top-
dressing, and harvest. The chart juxtaposes these activities with daily precipitation,
temperature, and Growing Degree Days (GDD) data, gathered from the Mesonet
station in Brookings.
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4.2.1 Soil EC and analysis results

Soil samples collected from this site underwent an analysis, revealing a combination of

loam, clay loam, and silt clay loam soil types. The predominant clay loam presence

highlights the field’s ability to conserve moisture, bolster crop growth, and deter erosion.

The presence of silt loam and loam further amplifies the field’s fertility, creating prime

conditions for crop cultivation. The zone map for this field, derived from EC scans and

soil feature analysis, using the methodology described in section 3.2, is depicted in Figure

4.2. The soil sampling results focusing on Nitrate, Phosphate (P), Potassium (K), Organic

Matter (OM), pH, and CEC can be found in table 4.1. Additionally, details about sand,

silt, clay, and texture are presented in table 4.2.

Figure 4.2: Zone Map of SDSU Agricultural Experiment Station field, extracted using
EC scanning and soil features from soil analysis.
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Table 4.1: Soil sampling results (part I) for SDSU Agricultural Experiment Station,
Brookings, SD. The table provides details on the Nitrate, Phosphate, Potassium,
Organic Matter, pH, and Cation Exchange Capacity of the soil samples.

Zone Nitrate P K OM pH CEC

Number Name ppm ppm ppm % - cmol(+)/kg

1 Green 47 14 162 4.8 7.6 29.2

2 L-Green 190 20 145 4.4 6.5 3.6

3 Yellow 160 18 129 4.6 6.5 28.5

4 Orange 150 19 139 4.2 5.9 32.3

5 Red 110 15 117 4.4 6.5 22.5

Table 4.2: Soil sampling results (part II) for SDSU Agricultural Experiment Station,
Brookings, SD: Soil Texture Information. The table provides details on the sand, silt,
clay percentages, and soil texture.

Zone Sand Silt Clay Texture

Number Name % % % -

1 Green 20 58 22 Silty clay loam

2 L-Green 26 45 29 Clay loam

3 Yellow 27 45 28 Clay loam

4 Orange 30 43 27 Clay loam

5 Red 31 46 23 Loam

4.2.2 Nitrogen response analysis

After analyzing the soil’s intrinsic characteristics at the SDSU site, and establishing

N-rich spots, the next critical component of our study involved studying the plant’s

response to nitrogen through image-derived techniques, as elucidated in the upcoming

section. Utilizing the methodologies described in sections 3.5 to 3.11, we analyzed the

plant’s response to nitrogen application across different zones. The drone aerial photos

were gathered on May 16, 2023, and satellite images gathered on May 27, 2023. Our
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utilization of the Wasserstein distance method yielded quantitative measures of the

differences in plant responses. This method ensured a nuanced understanding of how each

zone reacted to different nitrogen application rates.

Table 4.3 presents a detailed breakdown of the results obtained:

• The area covered by each zone.

• The corresponding percentage of the field that each zone occupies.

• The normalized nitrogen response for each zone, derived from the Wasserstein

distance method.

• The calculated percentage of nitrogen recommended for each zone based on our

analysis.

Table 4.3: Detailed breakdown of nitrogen response in different zones obtained
through image processing and the Wasserstein distance method, illustrating area
coverage, normalized responses, and calculated nitrogen percentages.

Zone Area Area N Response Response*Area Dedicated N

Number Name (ac) % % - %

1 Green 0.52 15.45 41.4 639.5 32.96

2 L-Green 0.811 24.10 31.3 754.9 38.94

3 Yellow 0.7 20.81 12.2 254.3 13.11

4 Orang 0.633 18.81 11.7 220.7 11.38

5 Red 0.7 20.81 3.4 69.7 3.7

4.2.2.1 Satellite data analysis

In addition to drone-based imagery, satellite data was also collected to analyze the field’s

response to nitrogen application. Two satellite images were captured on 5/27/2023 and

8/15/2023, respectively. Figures 4.3 and 4.4 present these satellite images.
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Figure 4.3: Satellite image captured on 5/27/2023 showing the early stages of plant
growth across different management zones in the field.

Figure 4.4: Satellite image taken on 8/15/2023 illustrating the matured plant growth
and the discernible patterns across the management zones.

Comparing the satellite images with the drone-based images taken earlier on

05/16/2023, certain distinctions become evident. Despite the satellite images being

captured at a later date, the drone images demonstrated superior results in terms of

detailing the field’s response. Specifically, the satellite images began to show the growth
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pattern almost precisely only by 08/15/2023.

The limited resolution of the satellite images, at 10 meters, posed a challenge in

differentiating between zones that did not exhibit highly distinguishable growth rates.

This limitation is particularly pronounced due to the small size of the zones under

observation. Considering these limitations, and after validating the drone imagery against

the satellite data, it was determined that while both sources were utilized, greater

emphasis was placed on the drone images due to their higher quality and detail.

4.2.2.2 Uniformity analysis of out-spot samples

As a natural extension of our image-derived analysis, we aimed to ascertain the uniformity

of our out-spot samples, which serve as the control for the in-spot center. The results

indicated a consistency across samples, marked by consistently low standard deviations.

Such findings bolster the credibility of our control spots. Table 4.4 systematically catalogs

the standard deviation values by zone for both NDVI and ExG metrics.

Table 4.4: Standard Deviation Values for Zone-Based Samples Compared with Con-
trol Spots.

Zone NDVI ExG

Number Name Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

1 Green 0.02 0.03 0.03 0.01 0.02 0.03

2 L-Green 0.03 0.02 0.02 0.02 0.01 0.03

3 Yellow 0.03 0.03 0.02 0.02 0.03 0.01

4 Orange 0.02 0.03 0.01 0.03 0.03 0.02

5 Red 0.03 0.01 0.02 0.01 0.02 0.03

4.2.3 Data integration and prescription map generation

Using the plant response patterns identified from image processing, we integrated these

insights with historical data. This comprehensive analysis was designed to produce a



68

recommendation map for optimal nitrogen use in crops. This integration was essential in

formulating a precise prescription map for nitrogen application. Our comparison with

historical data allowed us to determine nitrogen application rates that optimize crop yields

while maintaining environmental sustainability.

Table 4.5 outlines the synthesis of our findings with historical data for each zone:

• The historical nitrogen recommendation rates (HRR).

• Our AI-based computed rates, which were determined by multiplying the final

nitrogen percentage (derived from image analysis) by the total nitrogen planned for

field application.

• The integration of our findings with historical recommendations, given an 80-20

weighting. This weighting signifies that our image-derived rates were given 80%

importance, while historical rates were attributed 20% importance.

• A final proposed nitrogen application rate, reduced by 16.2% from traditional

recommendations, was determined based on our analytical findings. The decision to

adjust the nitrogen application rates stemmed from a multifaceted consideration:

– Potential Yield Limitations: After calculating the rates from our analysis, we

juxtaposed them against the potential yield of each zone. Where the computed

rates surpassed the zone’s yield potential, we chose not to exceed the zone’s

natural limitation. By adhering to these potential yield thresholds, we ensure

optimized resource allocation without overburdening the plants.

– Economic Considerations: Applying nitrogen beyond the crop’s absorption

capacity does not just become futile in terms of yield improvement; it also

leads to financial wastage. Oversupply of nitrogen does not correlate with a

proportional increase in yield. Thus, maintaining rates that match the crop’s

actual needs ensures cost-effectiveness.
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– Environmental Impact: Excess nitrogen that remains unabsorbed by crops

can leach into the groundwater or runoff into nearby water sources. This not

only poses a risk of water pollution but can also contribute to eutrophication, a

process where water bodies receive excess nutrients leading to reduced oxygen

and harm to aquatic life.

Considering the potential nitrogen uptake by plants, we have implemented a

strategic reduction in nitrogen application by 16.2%. This adjustment entails a 20%

decrease in application rates across all zones, with the exception of Zone 5. Due to

its initially low rate, Zone 5 received an increase of 8 lbs./ac to meet the plants’

nitrogen requirements adequately. Our approach balances the twin objectives of

achieving optimal crop yields and minimizing environmental impact, while also

being economically viable.

Table 4.5: Nitrogen application rates for different zones, comparing past recommen-
dations with current rates adjusted for a 16.2% overall reduction in line with plant
uptake potential. While a 20% decrease is uniformly applied to most zones, Zone 5
stands as an exception; it benefits from an additional 8 lbs./ac to satisfy plant nitro-
gen demands, highlighting our method’s effectiveness in optimizing yields, ensuring
sustainability, and maintaining economic efficiency.

Zone HRR Drone-based rate Data integration Final rate

Number Name (lbs./ac) (lbs./ac) (20%-80%) (lbs./ac)

1 Green 80 98.88 95.1 76.08

2 L-Green 70 116.82 107.4 85.92

3 Yellow 60 39.33 43.46 34.77

4 Orang 50 34.14 37.31 29.85

5 Red 40 11.1 17 25.03

By converging our image analysis insights with field historical data, we derived a

recommendation prescription map. This map suggests specific nitrogen application rates

for each zone, epitomizing the outcome of our exhaustive analysis.
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For this field, we utilized urea nitrogen labeled as 46-0-0. Given that this fertilizer

comprises 46% nitrogen, the recommended rates, which are initially provided in lbs./ac of

nitrogen, were adjusted. We divided the suggested amounts by 0.46 to calculate the

appropriate quantity of actual nitrogen. Subsequently, to determine the actual quantity of

urea nitrogen 46-0-0 required, we multiplied these adjusted numbers by the area of each

respective zone. Additionally, the field’s previous crop, soybean, has contributed a

nitrogen credit of 15 lbs./ac to the soil.

4.2.4 Harvest data analysis

Upon developing a prescription map based on our analysis, we proceeded to evaluate the

effectiveness of our nitrogen application strategies. The harvesting stage, described below,

marked the conclusion of our study and provided an opportunity to observe the direct

impact of our recommendations.

The harvesting stage began with a sampling strategy, shown in Figure 4.5. We

designed our approach to collect a variety of samples from each zone while intentionally

avoiding the N-rich spots. This was important as these areas had received a higher dose of

nitrogen, and sampling them could bias our results.

Figure 4.5: Sampling strategy for harvesting time, illustrating the distribution of
samples taken from each zone while avoiding N-rich spots. The design also highlights
the uniform sampling approach employed in the control field across its various zones.
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Building on the described approach, five samples were taken from each zone.

Additionally, five unique samples were collected from the control section, where nitrogen

was applied uniformly across the field. These samples were chosen to represent all the

different zones within the control field. The combine harvester was instrumental in this

phase, extracting samples from stripes each 24 feet (7.32 meters) long. As depicted in

Figure 4.6, precision in the stripe length was maintained during the harvesting process,

with an on-site researcher ensuring measurement accuracy.

Figure 4.6: Photograph of the combine machine in action during the sampling process,
accompanied by a researcher ensuring the precise measurement of the 24-foot length
sample stripe.

Following the sampling, the wheat samples were cleaned to remove impurities.

Next, the samples were weighed to find out the yield. We then used a Foss Near-Infrared

Spectroscopy (NIRS) analyzer to check the protein and moisture levels in the wheat

samples.
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Table 4.6: Average Wheat Yield Analysis by Zone: Comparing Weight (lb), Protein
Content, Moisture Levels, Total Weight per Acre (lbs/ac), and Bushels per Acre
(bu/ac) at SDSU’s Seed Lab.

Zone Weight (lb) Protein Moisture Yield Yield

Number Name (lbs.) % % (lbs./ac) (bu/ac)

0 Control 18.56 11.34 13.93 3502.64 58.39

1 Green 29.76 13.18 15.58 5610.34 93.44

2 L-Green 24.91 12.7 16.66 4697.32 78.29

3 Yellow 23.90 13.47 15.7 4510.64 75.25

4 Orange 22.74 12.72 15.02 4291.84 71.54

5 Red 19.34 12.34 14.66 3652.48 60.87

The total average yield for the entire field was 4505.25 lbs./ac or 75.09 bu/ac,

assuming 60 lbs./bu for wheat. In contrast, the entire control field, which includes both the

control spots and other areas, yielded about 66.61 bu/ac. Following the guidelines from

SDSU Extension, the values were adjusted to a standard moisture content of 13%,

ensuring it did not surpass 13.5% [11]. The complete analysis results can be found in

Table 4.6.

4.2.5 Yield and protein content analysis

Following the harvesting and samples collection, we proceeded to a comparative analysis.

This phase was imperative for evaluating the experimental zones in relation to a

predetermined control, offering significant insights into the efficiency of our proposed

approach.

4.2.5.1 Comparative analysis

A direct comparison between the experimental zones and the control reveals noteworthy

differences. Zone 1 stands out with remarkable improvements. Other zones also exhibited
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higher yields compared to the control, showcasing the effectiveness of the techniques

applied. Zone 5 displayed results that were nearly identical to the control, showing a

similar yield.

4.2.5.2 Graphical representation

To provide a clearer visual understanding of our findings, the next section presents a

graphical representation. These visualizations are instrumental in accentuating the

performance variations across zones. Figures 4.7 to 4.11 offer a graphical portrayal of the

dataset, underscoring the disparities between the zones and the control. The visualizations

reveals the performance of the zone 1 across the board, further corroborating the findings

from the comparative analysis. Inclusion of the control zone in the visualizations (depicted

in gray color) provides a direct visual baseline, making the discrepancies more palpable.

Delving deeper into the dataset, we observe the following relative to the control

zone:

• zone 1: Showcases a remarkable increase in both protein content (approximately

16.23% higher) and yield (around 60.16% higher).

• zone 2: Exhibits approximately 12% higher protein content and 34.18% elevated

yield.

• zone 3: While its protein content is about 18.78% more than the control zone, its

yield sees a rise of roughly 28.74%.

• zone 4: Presents a protein content and yield that is approximately 12.18% and

22.50% higher than the control, respectively.

• zone 5: Even though its improvement in protein content is about 8.82% more than

the control, the yield shows a modest increase of 4.17%.
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Figure 4.7: Comparison of sample weights in pounds across different zones in relation
to the control. The error bars represent the standard deviation, highlighting the
variation in sample weights from the control zone.

Figure 4.8: Comparison of yield measured in pounds per acre across different zones.
The error bars denote the standard deviation, illustrating the discrepancies in yield
(measured in pounds per acre) from the control zone.
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Figure 4.9: Comparison of yield measured in bushels per acre across different zones.
The error bars showcase the standard deviation, indicating the variation in yield
(measured in bushels per acre) from the control zone.

Figure 4.10: Comparison of Protein Content by Zone with Control: This figure illus-
trates the protein content variations in different zones relative to the control. Error
bars indicate the standard deviation, emphasizing the extent of protein content vari-
ability from the control.



76

Figure 4.11: Comparison of moisture content across various zones with the control.
The error bars represent the standard deviation, emphasizing the differences in mois-
ture levels from the control zone.

4.2.5.3 Statistical significance via t-test

Building upon the comparative insights gleaned from the previous section, we further

sought to assess the statistical significance of the observed differences between zones. To

achieve this, a series of t-tests were conducted.

From the results, Zone 1 consistently demonstrated significant differences across

all metrics when compared to the control. Specifically, weight metric revealed p-values

that surpassed multiple levels of statistical significance.

Zone 2 also exhibited notable differences in weight metric, reaching levels of

significance. Zone 3 showed significant disparities in weight metrics. In contrast, Zone 4

and 5 did not demonstrate any significant difference in weight metric when compared to

the control.

In addition to the zonal analysis, a t-test comparison between the whole field and

the control was conducted. The results indicate that the yield from our entire field was
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75.09 bu/acre, while the control’s yield was 58.39 bu/acre. Under a 95% confidence

interval, our field’s yield is approximately 28.28% higher than the control’s yield.

The analysis reveals that under a 95% confidence interval, the yield from Zone 1

remains statistically distinct even when the control zone’s yield increases by 22%.

Similarly, for Zone 2, a yield increase in the control zone up to 12% still results in a

statistically significant difference. For Zone 3, the threshold is a 7% increase in the control

zone’s yield. This indicates that, relative to the control zone, Zone 1 outperforms by 22%,

Zone 2 by 12%, and Zone 3 by 7% in terms of yield.

Table 4.7 presents the p-values for each metric across different zones in

comparison to the control zone. Various levels of significance are indicated with asterisks:

p < 0.001 with ”***”, p < 0.00 with ”**”, and p < 0.05 with ”*”. These thresholds

correspond to extremely significant, very significant, and significant levels, respectively,

providing a nuanced understanding of the statistical outcomes.

Table 4.7: P-values and Confidence Levels for Zone Metrics Compared to Control:
The p-values are denoted with significance codes — ” for a confidence level of 99.9%
(p ¡ 0.001), ” for 99% (p ¡ 0.01), and ” for 95% (p ¡ 0.05).

Zone
Protein Moisture Weight Yield (lbs./ac)

Number Name

1 Green 0.0106** 0.0279* 0.0011*** 0.0011***

2 L-Green 0.0757 0.0511 0.0052** 0.0052**

3 Yellow 0.2231 0.0123* 0.0134* 0.0135*

4 Orange 0.0097** 0.0064*** 0.0569 0.0560

5 Red 0.1044 0.4206 0.5252 0.5152

To assess the magnitude and direction of the observed differences, we utilized

Cohen’s d as a measure of effect size, the results of which are detailed below.

Results: The effect sizes (Cohen’s d) for the metrics with significant differences

between zones and the control zone are as follows:
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• Green Zone:

– Weight: d = −2.276

– Protein: d = −1.634

– Moisture: d = −1.356

– Lbs/ac: d = −2.276

– Moisture-Normalized metrics: d values ranging from -2.281 to -2.293

• L-Green Zone:

– Weight: d = −2.388

– Lbs/ac: d = −2.388

– Moisture-Normalized metrics: d values ranging from -2.406 to -2.407

• Yellow Zone:

– Weight: d = −2.004

– Moisture: d = −2.035

– Lbs/ac: d = −2.004

– Moisture-Normalized metrics: d values ranging from -1.987 to -1.999

• Orange Zone:

– Protein: d = −2.135

– Moisture: d = −2.318

Interpretation: The magnitude of the effect size, regardless of its sign (positive or

negative), indicates the extent of the difference between the groups. Specifically, a large

effect size, as denoted by the absolute value of Cohen’s d, signifies a substantial difference

between the groups. In the context of our study, the zones mentioned previously showed
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pronounced differences in their respective metrics compared to the control zone. While

the sign of the Cohen’s d value provides directionality of the difference, the magnitude

offers a more immediate sense of its importance. These specific Cohen’s d values,

therefore, provide a quantifiable measure of the magnitude of these differences,

highlighting the significance of integrating both p-values and effect sizes for a holistic

interpretation of the results.

These statistical outcomes, in conjunction with our comparative and graphical

findings, further reinforce the efficacy and potential of our proposed method.

4.2.5.4 Comparative analysis of NUE across different zones

Following the methodology outlined in Section 3.12.3.1, we calculated the NUE for each

of the five zones and entire field. The calculations were based on the protein content of the

grain yield, the applied nitrogen, and the credit nitrogen from previous cultivation. These

computations provide insight into the nitrogen conversion efficiency of each zone. The

results of the NUE calculations are tabulated in Table 4.8.

Table 4.8: Comparison of NUE based on protein content for each zone and the entire
field. The NUE variation values indicate the efficiency of nitrogen applied in con-
tributing to the grain’s protein content compared to the control zone.

Zone NUE NUE variation from control

Number Name

1 Green 0.649 0.160

2 L-Green 0.472 -0.015

3 Yellow 0.976 0.488

4 Orange 0.973 0.485

5 Red 0.90 0.412

- Control 0.488 -

- Entire Field 0.650 0.162
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From the results, it is evident that the nitrogen application strategy significantly

impacted the protein content and thus the NUE across different zones. Most zones

outperformed the control in terms of NUE, indicating a more efficient conversion of

applied nitrogen into protein content in the grain. Zone 2 (L-Green), however, exhibited a

lower NUE compared to the control. This anomaly can be attributed to the highest rate of

nitrogen application within this zone, suggesting that a portion of the nitrogen may not

have been effectively utilized in synthesizing protein within the grain. The entire field’s

NUE closely mirrored that of the control, reflecting an overall balanced nitrogen usage

when considering all zones collectively.

4.3 Mount Vernon, SD

The second field under consideration is situated in Mount Vernon, SD, at coordinates

98°18’41.99”W longitude and 43°44’59.27”N latitude.This field spans 135.54 acres. In

2023, this field, provided by a local farmer, was selected for the cultivation and study of

corn. The subsections below will detail our findings.

Figure 4.12 presents a crucial timeline charting the 2023 experimental activities in

the Mount Vernon field. This visualization helps contextualize the environmental

conditions during key phases like planting, EC scanning, soil sampling, establishing

N-rich spots, and drone imagery capture.
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Figure 4.12: Experimental Timeline and Environmental Data: Illustrates key experi-
mental events in 2023 at the corn field, including planting, EC scanning, soil sampling,
N-rich spot establishment, drone imagery, and side-dressing. While harvest day on
November 1 is not depicted in the chart for readability, its timing is critical in un-
derstanding the study’s outcomes. The chart juxtaposes these activities with daily
precipitation, temperature, and Growing Degree Days (GDD) data, gathered from
the Mesonet station in Mount Vernon, SD.

4.4 Soil EC and analysis results

The soil in this region is composed of silty loam, loam, and sandy loam. The soil exhibits

diverse nitrate and phosphate levels, underscoring the necessity for precise nutrient

management. Figure 4.13 displays the zone maps of Mount Vernon, derived from EC

scans and soil features represented in Table 4.9 and Table 4.10.
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Figure 4.13: Zone Map of Mount Vernon field, extracted using EC scanning and soil
features from soil analysis.

Table 4.9: Soil Sampling Results (Part I) for Mount Vernon field. The table provides
details on the Nitrate, Phosphate, Potassium, Organic Matter, pH, and Cation Ex-
change Capacity of the soil samples.

Zone Nitrate P K OM pH CEC

Number Name ppm ppm ppm % - cmol(+)/kg

1 Green 250 12 180 2.7 7.4 26.3

2 L-Green 150 11 203 2.4 7.5 22.3

3 Yellow 220 40 313 2.7 5.1 40.8

4 Orange 93 24 220 2.8 5.3 28.5

5 Red 71 21 417 3.9 5.5 23.2
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Table 4.10: Soil Sampling Results (Part II) for Mount Vernon field: Soil Texture
Information. The table provides details on the sand, silt, clay percentages, and soil
texture.

Zone Sand Silt Clay Texture

Number Name % % % -

1 Green 27 56 17 Silty loam

2 L-Green 46 35 19 Loam

3 Yellow 43 39 18 Loam

4 Orange 47 37 16 Loam

5 Red 57 35 8 Sandy loam

4.4.1 Prescription map generation

Following the methodology applied at the SDSU site, we first established management

zones and N-rich spots in the Mount Vernon field, which are depicted in Figure ??.

Subsequently, we analyzed the plant’s response to nitrogen through AI-based image

processing techniques. We integrated the analysis results from drone and satellite images,

and historical recommendation rates to generate the final prescription map, as outlined in

Table 4.11 and Table 4.12.In the data integration process, the historical nitrogen

application rate of the field was weighted at 20%, while recommendations from

drone-based image analysis were given a 70% weight, and results from satellite-based

image analysis were accounted for at 10%. Considering plant’s N uptake and growth

potential, we decided to reduce nitrogen application by 10% for this field.
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Figure 4.14: Zone Map of the Mount Vernon Field Highlighting Established N-Rich
Spots. Three spots are placed within each zone to ensure representation of field
conditions.

Table 4.11: Nitrogen application rates by zone, detailing historical recommendations
and computed rates from drone and satellite image analysis.

Zone HRR Satellite-based Rate Drone-based Rate

Number Name (lbs./ac) (lbs./ac) (lbs./ac)

1 Green 75.9 29.9 50.78

2 L-Green 64.4 64.4 43.64

3 Yellow 52.9 52.9 60.03

4 Orange 41.4 41.4 57.19

5 Red 29.9 75.9 51.84
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Table 4.12: Results of data integration and proposed nitrogen application rate reduc-
tion for optimization.

Zone Data integration (20-10-70) 10% Reduction

Number Name (lbs./ac) (lbs./ac)

1 Green 53.71 48.34

2 L-Green 49.86 44.88

3 Yellow 57.89 52.10

4 Orange 53.15 47.83

5 Red 49.85 44.87

Contrary to expectations based on historical data and zone maps, our approach

revealed some surprising findings. While zone 5 was anticipated to exhibit the lowest

growth rate and consequently the lowest yield, our analysis indicated a

higher-than-expected growth rate in this zone. A similar trend is observed in other zones

as well. This discrepancy could be attributed to various factors such as the zone’s drainage

capability, rainfall, among others. Notably, our approach identified this deviation, unlike

traditional methods that rely solely on historical data. Figure 4.15 illustrates this inversion,

showcasing an image that represents the growth rate in different parts of the field. The

image, with varying shades of green, indicates the plants’ response to nitrogen, with more

vibrant green signifying better growth and a positive response to nitrogen application.
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Figure 4.15: Comparison of plant response to nitrogen and traditional expectations.
On the left, the computed growth rate, indicated by varying shades of green (with
darker green signifying better growth), showcases the plant’s response to nitrogen
based on our analysis. On the right, the management zones depict expectations from
traditional approaches.

As indicated in Table 4.12, due to the collaborative nature of this project with a

local farmer and the constraints in operational farming, we incorporated the field’s

historical nitrogen application data alongside our analytical findings into the nitrogen

management strategy. To validate our approach, we established replicated test strips across

the field. Each strip was divided into four plots, with each plot receiving a distinct nitrogen

application rate that blends the farmer’s historical practices with our recommendations.

This approach allowed us to observe the impact of varying nitrogen rates on crop

performance. These replicated strips were designed to represent the variability within each

zone adequately. The specific nitrogen application rates for each plot within the strips are

detailed in Table 4.13, and the layout of these test strips is depicted in Figure 4.16.
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Figure 4.16: Layout of the nitrogen application test strips in the Mount Vernon field.
Each strip is segmented into four plots, with each plot receiving a unique nitrogen
application rate to assess the impact on crop performance. The strips are replicated
across each zone to ensure representation of the field’s variability.

Table 4.13: Nitrogen application rates for each plot within the test strips, applicable
to all zones.

Plot N application rate

Number Name (lbs./ac)

1 Green 57

2 L-Green 46.5

3 Yellow 43.8

4 Red 34.5
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4.4.1.1 Uniformity analysis of out-spot samples

Similar to the analysis conducted for the SDSU field, we assessed the uniformity of

out-spot samples in the Mount Vernon field. These samples acted as controls for the

in-spot centers in analyzing plans’ response to N application. Our findings showed

uniformity, with low standard deviations across samples, reinforcing the reliability of our

control spots. The uniformity data, including standard deviation values for NDVI and ExG

metrics by zone, is detailed in Table 4.14.

Table 4.14: Standard Deviation Values for Zone-Based Samples Compared with Con-
trol Spots.

Zone NDVI ExG

Number Name Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

1 Green 0.03 0.04 0.02 0.05 0.03 0.01

2 L-Green 0.02 0.02 0.04 0.02 0.02 0.02

3 Yellow 0.02 0.04 0.02 0.02 0.03 0.01

4 Orange 0.02 0.02 0.03 0.04 0.01 0.02

5 Red 0.04 0.01 0.02 0.03 0.02 0.01

4.4.2 Yield data analysis

In contrast to the sampling approach employed at the SDSU field, the Mount Vernon field

benefited from the use of a high-tech combine harvester equipped with yield monitoring

capabilities. This allowed for real-time yield data collection during the harvest, providing

precise yield measurements for each management zone and individual strip plot.

4.4.2.1 Comparative analysis

Table 4.15 details the yield data, standardized to a moisture content of 15%, and displays

the applied nitrogen rates for each zone and plot. Prior to analysis, the yield data

underwent a thorough data cleaning process to ensure accuracy and reliability of the

results.
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Table 4.15: Yield and Applied Nitrogen Rates for Each Zone and Plot, Adjusted for
15% Moisture Content.

Zone Strip Applied N Yield

Number Name - (lbs./ac) (bu/ac)

Zone 1 Green

control 48.34 164.4

strip 1 57 166.71

strip 2 46.5 163.9

strip 3 43.8 163.5

strip 4 34.5 159.19

Zone 2 L-Green

control 44.88 165.69

strip 1 57 171.12

strip 2 46.5 166.55

strip 3 43.8 166.47

strip 4 34.5 165.45

Zone 3 Yellow

control 52.1 168.36

strip 1 57 173.75

strip 2 46.5 173.85

strip 3 43.8 165.27

strip 4 34.5 160.53

Zone 4 Orange

control 47.83 167.19

strip 1 57 175.37

strip 2 46.5 170.46

strip 3 43.8 173.69

strip 4 34.5 165.21

Zone 5 Red

control 44.84 167.46

strip 1 57 182.14

strip 2 46.5 178.54

strip 3 43.8 171.99

strip 4 34.5 158.48
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The yield analysis across the zones, excluding the strip areas, demonstrates varied

productivity levels. Zone 3 yielded the highest at 168.36 bu/ac, while Zone 1 had the

lowest yield at 164.4 bu/ac. The aggregated data from these zones resulted in an average

field yield of 166.86 bu/ac.

4.4.2.2 Graphical representation

To visually compare the yield across different zones and test strips, we first juxtaposed

each zone and its strips against the field’s average yield. Figure 4.17 includes error bars

that reflect the variance of each zone/strip from the field’s average yield. Additionally,

Figures 4.18 through 54.22 individually illustrate the yields of each zone with their

respective strips, where error bars represent the yield deviation between the zone’s control

and its strips.

Figure 4.17: Yield comparison across five agricultural zones with varying nitrogen
strip treatments. Each zone is represented by a series of bars, each color-coded to
denote a different strip treatment: control (gray), strip 1 (green), strip 2 (light green),
strip 3 (yellow), and strip 4 (red). The yield values are measured in bushels per acre
(bu/ac) and presented along the y-axis. T-shaped error bars indicate the deviation of
each strip’s yield from the reference value of 166.86 bu/ac which represents averaged
field yield.
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Figure 4.18: Illustrating the yield results for Zone 1, identified as the Green zone,
displaying the yield variations across five different strip treatments. Error bars rep-
resent the deviation of each strip’s yield from the control within this zone.

Figure 4.19: Presenting the yield performance in Zone 2, the L-Green zone, with each
bar representing one of five strip treatments. The error bars indicate the difference
in yield compared to the zone’s control strip.
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Figure 4.20: Depictsing the yield comparison within Zone 3, known as the Yellow
zone, highlighting the yield outcomes for each strip treatment relative to the control.
Error bars provide a measure of each strip’s yield fluctuation from the control.

Figure 4.21: Showing the yield data for Zone 4, termed the Orange zone, with each
bar denoting the yield for a specific strip treatment. The error bars visualize the yield
variance of each strip from the control’s yield within the zone.
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Figure 4.22: Displaying the yield analysis for Zone 5, designated as the Red zone,
comparing the yield across different strip treatments. The error bars reflect how much
each strip’s yield deviates from that of the control strip in the zone.

4.4.3 Comparative yield estimations

In this section, we evaluate the outcomes of different nitrogen application strategies to

determine the most effective approach for yield and nitrogen optimization. Specifically,

we compare the average field yield resulting from adherence to the farmer’s historical

recommendations against yields derived from our AI-based drone and satellite image

analyses. To facilitate this comparison, we utilized linear regression to interpret the data

collected from our field experiments.

Our field experiment was designed with four strips per zone, each replicated to

enhance the reliability of our findings. Within each strip, four distinct plots were treated

with different nitrogen application rates, as shown in Figure 4.16. This design allowed us

to isolate the effects of nitrogen application based on our AI-driven image analysis,

independent of the farmer’s historical recommendations.

The regression analysis, based on the nitrogen application rates outlined in Table
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4.11, shows distinct yield outcomes as follows:

• Adhering strictly to the farmer’s historical rates would result in an average yield of

165.84 bushels per acre.

• Following only the drone-based image analysis recommendations would lead to an

average yield of 173.75 bushels per acre.

• Relying solely on satellite-based image analysis would yield an average of 172.54

bushels per acre.

These results are compared against an actual yield of 166.86 bushels per acre,

achieved by integrating all three approaches (historical, drone-based, and satellite-based).

Interestingly, each individual method projects higher yields than farmer’s historical based

approach. Specifically, the deviations from the integrated yield are -0.61% for the farmer’s

rate, +4.13% for the drone-based, and +3.40% for the satellite-based method. This

comparison highlights that our AI-based approaches are more effective than farmer’s rate.

After conducting a t-test to compare each approach with the baseline integrated

yield of 166.86 bushels per acre, we found significant statistical differences. Notably, the

drone-based approach, with an average yield of 173.75 bushels per acre, demonstrated a

statistically significant difference from the baseline (p ¡ 0.05). This suggests that the

drone-based method’s yield improvement is not due to random variation but is a reliable

deviation from the integrated approach. In contrast, the farmer’s and satellite-based

methods did not show a statistically significant difference from the baseline yield.

4.4.3.1 Comparative analysis of NUE for different methodologies

Following the steps in Section 3.12.3.1, we calculated the NUE for different fertilization

strategies in our field study. These strategies included the farmer’s usual nitrogen

application, analysis from drone and satellite images, and the integrated approach, which

served as our baseline for comparison. Lacking specific protein content data for this field,
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we used the average corn grain protein content of 8.5% as cited by the SDSU Extension

[97]. The calculated NUE values, listed in Table 4.16, represent the effectiveness of each

strategy as a percentage relative to our baseline, the integrated method, taking into account

the total field yield and the differing amounts of nitrogen applied per strategy.

Table 4.16: NUE comparison across fertilization strategies relative to the integrated
approach, considering total field yield and applied nitrogen. NUE percentages demon-
strate the effectiveness of each strategy in improving grain protein content taking into
account the amount of nitrogen applied.

Fertilization Strategy NUE NUE Variation from Baseline

Integrated approach (baseline) 0.926 -

Farmer’s usual nitrogen application 0.921 - 0.005

Satellite images-based 0.958 0.031

Drone images-based 0.965 0.038

The table provides a clear comparison of NUE variations among different

fertilization strategies, with the integrated approach serving as a reference standard.

Notably, the farmer’s usual nitrogen application method resulted in a negative NUE

variation of -0.005. This suggests that the farmer’s method did not translate into a

proportional increase in yield’s protein content. In contrast, strategies based on satellite

and drone images showed positive NUE variations, at 0.031 and 0.038 respectively,

demonstrating that these AI-driven methods surpassed the yield achieved by the farmer’s

traditional approach. This highlights the potential of technology-enhanced practices to

optimize resource use and improve crop outcomes.

4.5 Faster R-CNN model performance evaluation

After the training process, our model achieved a high level of performance. Specifically,

the model reached a training accuracy of 98.5%. The slight inaccuracies primarily arose

from images taken from higher altitudes, where the tiles appeared smaller and less
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distinct. Further, variations in tile color due to wear and occasional occlusions from

shadows or debris also contributed to these minor errors.

During the validation phase, the model demonstrated a validation accuracy of

97.2%. This assessment was crucial to ensure that the model was generalizing well,

beyond merely memorizing the training data.

Finally, in the testing phase, the model exhibited a testing accuracy of 96.8%. This

performance provides a robust indication of the model’s capabilities, confirming its

preparedness for real-world applications and deployment.

In addition to accuracy, we evaluated the model using Precision, F1 Score, and

Intersection over Union (IoU). Table 4.17 summarizes these metrics across different

phases of the model evaluation:

Table 4.17: Performance metrics of the Faster R-CNN model

Metric Training Validation Testing

Accuracy (%) 98.5 97.2 96.8

Precision (%) 96.7 95.4 94.9

F1 Score (%) 97.6 96.3 95.8

IoU (%) 92.3 90.5 89.7

4.6 Outcomes

4.6.1 Environmental outcomes

In a research conducted on wheat and corn fields, nitrogen was variably applied to distinct

management zones, customized to match the plants’ nitrogen uptake capacity.

Over-application of N may result in leaching nitrogen into groundwater, while

under-application can reduce the production efficiency. This research demonstrated a

strategy that optimize the application rate with plant requirements considering

environmental sustainability.
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4.7 Financial outcomes

The study implemented a method that tailored the application of nitrogen fertilizer to the

plant’s needs in different management zones, leading to a 16.2% reduction in usage on a

3.36-acre wheat field. With the nitrogen price of $0.68 per pound of nitrogen content [96],

this reduction resulted in a cost saving of $26.45 for the entire 3.36-acre field, or

potentially $7.87 per acre. If this approach were applied to a larger field of 1,000 acres,

the estimated savings could potentially be $7,870.00. In the corn field, spanning 135.54

acres, our method reduced nitrogen application by 10%, equating to a decrease of 5.33

lbs./ac of nitrogen. Given the same nitrogen prices, this reduction translates to a savings of

potentially $3.62 per acre. For the entire 135.54 acres, the total cost savings would be

$491.25. Extrapolating these savings to a 1,000-acre corn field, the method could

potentially save $3,624.40 in nitrogen costs.

Concurrently, the study examined wheat yields from both a test field and a control

field. The test field, utilizing the novel agricultural methodology, yielded 75.09 bu/ac,

while the control field yielded 66.61 bu/ac. Statistical analysis at a 95% confidence

interval indicated that the yield from the test field was potentially 12.40% higher

compared to the control field. In a similar vein, the research extended to a corn field where

an integrated method served as the baseline. This method, a combination of farmer’s rate,

satellite-based rate, and drone-based rate as described in Table 4.12, yielded 166.86 bu/ac.

The farmer’s approach yielded slightly less at 165.84 bu/ac, representing a minor decrease

of approximately 0.61% from the baseline yield of 166.86 bu/ac, rather than an increase.

The satellite-based approach, on the other hand, resulted in a yield of 172.54 bu/ac,

surpassing the baseline by approximately 3.4%. Even more impressive was the

drone-based method, which achieved the highest yield of 173.75 bu/ac, marking an

increase of about 4.13% over the integrated method. These results underscore the efficacy

of precision agriculture techniques in enhancing crop yields beyond traditional farming

methods.
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The financial implications of the observed yield enhancement are significant. For

the wheat field size of 3.36 acres, the methodology led to an additional revenue of

potentially $194.27, given the prevailing market price of $7 per bushel of wheat [111].

This translates to a savings of potentially $57.82 per acre, highlighting the economic

efficacy of the approach. When extrapolating these findings to a larger scale, such as a

field spanning 1,000 acres, the projected additional revenue is estimated to be potentially

$57,817.48. This consistent per-acre savings further emphasizes the potential financial

benefits and scalability of the methodology.

In the case of the corn field, the integrated method’s baseline yield was 166.86

bu/ac. With the field size of 135.54 acres and a market price of $4.95 per bushel of corn

[3], [89], the alternative strategies yielded the following increases: the farmer’s approach,

with a yield of 165.84 bu/ac, actually produced 1.02 bu/ac less than the baseline, not an

increase, the satellite-based approach an extra 5.68 bu/ac, and the drone-based method a

further 6.89 bu/ac over the baseline. These increases equate to additional revenues of

potentially $28.11 for the satellite-based approach, and $34.11 per acre for the

drone-based approach. For the entire corn field, the total additional revenues are estimated

at $3,808.47 for the satellite-based approach, and $4,615.72 for the drone-based method.

If these methods were applied to a 1,000-acre field, the estimated additional revenues

could reach $10,080.00, $28,110.00, and $34,110.00, respectively, showcasing the

considerable financial gains that can be achieved with precision agriculture techniques.

In conclusion, this study highlights the benefits of adopting the novel agricultural

methodology, including cost savings from reduced nitrogen applications, increased

revenue from enhanced wheat yields, and positive environmental implications.
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5 Conclusion

5.1 Summary of findings

This research explored a new agricultural method to optimize nitrogen use in wheat and

corn farming. Key findings are summarized below:

• Wheat Field Findings (3.36 acres):

– Nitrogen Reduction: Achieved a 16.2% reduction in nitrogen application.

– Cost Savings: Resulted in a saving of $26.45 for the field. Extrapolated to a

1,000-acre field, the savings could be potentially $7,870.00.

– Yield Increase: Observed a yield of 75.09 bu/ac compared to 66.61 bu/ac in the

control field, a 12.40% increase.

– Revenue Increase: This increased yield led to an additional revenue of $194.27

for the field, equating to $57.82 per acre. For a 1,000-acre field, this could

mean an additional $57,817.48.

– Statistical Significance: T-tests and Cohen’s d effect sizes indicated

statistically significant differences, particularly in Zone 1 (Green zone).

– NUE: The NUE showed a 16.2% increase compared to the control field,

demonstrating the effectiveness of the optimized nitrogen application strategy.

• Corn Field Findings (135.54 acres):

– Nitrogen Reduction: A 10% reduction in nitrogen application was

implemented.

– Cost Savings: Resulted in a saving of $491.25 for the field. Extrapolated to a

1,000-acre field, the savings could be potentially $3,624.40.
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– Yield Increase: The approach suggested a yield of 173.75 bu/ac, compared to

the traditional yield of 165.84 bu/ac, indicating a potential increase of 7.91

bu/ac, which is approximately a 4.77% increase.

– Financial Impact: This yield increase could lead to an additional revenue of

approximately $39.15 per acre, significantly enhancing the overall profitability.

– NUE: Our approach suggests a 4.3% higher NUE in the corn field compared to

the farmer’s traditional nitrogen application rate, indicating a more efficient

use of nitrogen in our methodology.

5.2 Implications and contributions

The findings contribute to discussions on sustainable and efficient agricultural practices.

The method aligns with precision agriculture goals and suggests a need to re-evaluate

traditional nitrogen application practices.

5.3 Considerations and future directions

This study has demonstrated that a precise determination of plants’ nitrogen needs can

lead to increased yield while reducing fertilizer usage, offering both cost savings and

environmental benefits. Looking ahead, an important area of future work involves the

development of an accessible digital tool. Envisioned as a mobile app, web service, or

computer software, this tool would act as a recommendation system. It would take into

account various factors such as field information, soil characteristics, and other relevant

data to establish management zones, identify optimal locations for N-rich spots, and

utilize remote sensing data (either provided by the farmer or automatically sourced from

satellites) to create prescription maps for optimizing NUE. This proposed solution aims to

translate the research findings into a practical application, making it accessible and easy to

use for farmers without a scientific background, thus enabling them to enhance nitrogen

use efficiency in their fields.
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Continuing this line of research, it is crucial to explore the effects of this nitrogen

optimization method on different crops and in diverse geographical settings. Furthermore,

understanding its long-term impact on soil health, crop quality, and environmental

sustainability remains a vital component of future studies. This approach not only aligns

with the goals of sustainable agriculture but also opens up new possibilities for

technological integration in farming practices.

5.4 Conclusion

This thesis introduced a novel agricultural method that brings both economic and

environmental benefits, aligning with sustainable practices. The research lays the

groundwork for future investigations and applications in precision agriculture,

emphasizing the importance of considering both economic gains and environmental

well-being.
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