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Abstract

RADO NUMBERS FOR TWO SYSTEMS OF LINEAR EQUATIONS

ANTHONY GLACKIN

2024

For any positive integer n and any equation E of either the form x1+x2+· · ·+xn = x0

or x1 + x2 + n = x0, the two-color Rado number R2(E) is the least integer such that

any 2-coloring of the natural numbers 1 through R2(E) will contain a monochromatic

solution to E. Let Ek be a system of k equations of the aforementioned form, where

Ei represents the ith equation in Ek and the set I = {1, 2, . . . , k} is the set of indices

of these equations. This thesis shows that the two-color Rado number R2(E) for the

system of equations is R2(E) = R2(Em), where Em is the equation within E that has

the largest Rado number.
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Introduction

In 1916, Issai Schur introduced the concept of a Schur number, which is the least integer

S(r), where r ≥ 1, such that any coloring of the integers 1 through N ≥ S(r) using r colors

will contain a monochromatic solution to the equation x + y = z, meaning that x + y = z

and all three of x, y, z are the same color. Though it isn’t how Schur initially proved the

result, a popular proof uses a method of coloring complete graphs based on work by Frank

Plumpton Ramsey. This method is used to prove Theorem 1.

Theorem 1. For r ≥ 1, there exists a least natural number S(r) such that for all N ≥

S(r), if the integers {1, 2, . . . , N} are colored using r colors, then there exists three numbers

x, y, z ∈ {1, 2, . . . , N} such that x, y, z are all the same color and x+ y = z.

For the proof of this theorem, the author introduces the notation χ(i), where χ represents

a function assigning color values to the natural number i. Define also the Ramsey Number

R(r, k) to be the least integer such that for any coloring of the edges of a complete graph

with r colors, there exists a monochromatic cycle containing k nodes.

Proof. Define χ : N −→ [1, r] to be a coloring of N using r colors, where N ≥ S(r).

Define also a corresponding complete graph with vertices 1, 2, . . . , N , where N ≥ R(r, 3),

by coloring edge (i, j) within the graph with χ(|i− j|). By Ramsey’s Theorem, there exists

a monochromatic triangle. Call the nodes of this triangle i, j, k where i < j < k and let

x = j − i, y = k − j, and z = k − i. Then we have that

x+ y = j − i+ k − j

= k − i

= z

and that χ(x) = χ(y) = χ(z), giving us a monochromatic solution to x+ y = z.

This proof establishes that Schur numbers exist and are bounded above by the corre-

sponding Ramsey numbers. Rado later made contributions to the field [1][2][3].
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Definition 1. For a linear equation x1+x2+ · · ·+xn+ c = x0, the two-color Rado number

is the least integer R(n, c) such that any coloring of the integers {1, 2, . . . , R(n, c)} using

two colors is guaranteed to contain at least one monochromatic solution to the equation

x1 + x2 + · · ·+ xn + c = x0.

Notation 1. Denote a coloring by Ci, where C represents the color, and i represents the

number that is being colored. For example, the string 01 12 03 means “color the numbers 1

and 3 with color 0 and color the number 2 with color 1.”

In 1982, Beutelspacher and Brestovansky [4] proved the following result regarding equa-

tions with n variables and c = 0.

Theorem 2. For a natural number n and equation x1 + x2 + · · ·+ xn = x0, the two-color

Rado number R(n, 0) is equal to n2 + n− 1.

The proof of this type of theorem involves two parts. First, to establish a lower bound on

R(n, 0), one must show that there exists a two-coloring of the integers {1, 2, . . . , n2+n− 2}

that does not contain a monochromatic solution to the given equation. This is done using a

three-block coloring pattern wherein the integers are colored using a block of color 0 (red)

followed by a block of color 1 (blue), followed by another block of red. Second, to establish

an upper bound, it must be shown that any coloring of length n2 + n − 1 must contain

a monochromatic solution. This is done using forced colorings. In other words, the color

of one of the numbers is assumed without loss of generality, which forces a series of other

integers to be colored in a specific manner to avoid monochromatic solutions. Eventually,

this results in a contradiction where an integer cannot be colored either blue or red without

giving rise to a monochromatic solution. Let us consider a simple example to demonstrate

this structure.

Example 0.1. Consider the equation x1 + x2 + x3 = x0 representing the n = 3 case.

Theorem 2 states the Rado number for this equation should be R(3, 0) = 32 + 3− 1 = 11.

We will color the relevant integers using the notation from Notation 1, where color 0 is red

and color 1 is blue.

To establish a lower bound on R(3, 0), we use the following coloring:
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01 02 13 14 15 16 17 18 09 010.

To show this coloring contains no monochromatic solutions, one can look at the red blocks

first. Since the lowest number colored red is 1, we can plug 1 into our equation, giving

1 + 1 + 1 = 3 = x0. Likewise, since the highest number colored red in the first block is

2, we can plug 2 into our equation giving 2 + 2 + 2 = 6 = x0. Since all the integers from

3 through 6 are colored blue, we know there is no monochromatic solution wherein all of

x1, x2, x3 are integers in the first red block. We now turn to the blue block. Again, since

the lowest number in the blue block is 3, we plug in to arrive at 3 + 3 + 3 = 9 = x0. Since

all integers greater than or equal to 9 are either colored red or not a part of our coloring

and any blue solution must contain a number greater than or equal to 9, it follows that

there is no monochromatic solution within the blue block. A similar method will show that

there is no solution containing only numbers in the second red block. Therefore, we need

only to show that there is no solution containing some numbers from the first red block and

some from the second red block. Consider that the lowest value of x0 that can be produced

using numbers from both red blocks is 1 + 1 + 9 = 11 = x0. Since 11 is not included in

our coloring and any solution involving numbers from both red blocks will total at least 11,

we know there is also no red monochromatic solution here. This provides a lower bound;

we can color the integers 1 through 10 while avoiding a monochromatic solution using this

three-block coloring.

To establish an upper bound, assume without loss of generality that 1 is colored red.

It follows that, to avoid a monochromatic red solution, 1 + 1 + 1 = 1 ∗ 3 = 3 must not be

colored red and must instead be colored blue. Thus, 1 is red and 3 is blue. A shorthand

way to write this process that will be used henceforth is

χ(1) = 0 ∧ 1 + 1 + 1 = 3 =⇒ χ(3) = 1.
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Continuing this line of logic gives

1) χ(1) = 0 ∧ 1 + 1 + 1 = 3 =⇒ χ(3) = 1

2) χ(3) = 1 ∧ 3 + 3 + 3 = 9 =⇒ χ(9) = 0

3) χ(9) = 0 ∧ χ(1) = 0 ∧ 1 + 1 + 9 = 11 =⇒ χ(11) = 1

4) χ(9) = 0 ∧ χ(1) = 0 ∧ 4 + 4 + 1 = 9 =⇒ χ(4) = 1

5) χ(3) = 1 ∧ χ(11) = 1 ∧ 3 + 4 + 4 = 11 =⇒ χ(4) = 0

Statements 4 and 5 above contradict each other. We cannot color 4 red without forming a

red monochromatic solution to our equation, but we cannot color 4 blue without forming a

blue monochromatic solution to our equation. Therefore, within the set {1, 3, 4, 9, 11}, we

must have a monochromatic solution. This establishes the upper bound on R(3, 0) as 11.

Because the upper bound on R(3, 0) is 11 and we have demonstrated a coloring of length

10 that does not contain a monochromatic solution, we know that R(3, 0) = 11.

The general proof for this type of problem follows the same pattern, beginning by

establishing a lower bound and then establishing an upper bound by finding a set that must

contain a monochromatic solution. Recall that Theorem 2 states that the two-color Rado

number for x1 + x2 + · · ·+ xn = x0 is R(n, 0) = n2 + n− 1.

Proof of theorem 2. Let n ≥ 1 and define χ : [1, n2+n−2] −→ {0, 1} as a coloring function

on the integers such that χ(i) = 0 means integer i is red and χ(i) = 1 means integer i is

blue. We will exhibit a coloring of the integers 1 through n2 + n− 2 that does not include

a monochromatic solution to x1 + x2 + · · · + xn = x0, thus establishing a lower bound on

R(n, 0). We propose the following coloring with no monochromatic solutions:

01 02 . . . 0n−1 1n 1n+1 . . . 1n2−1 0n2 0n2+1 . . . 0n2+n−2.

As in the example, we first consider the first red block. Using all 1’s gives 1 + 1+ · · ·+1 =

1∗n = n = x0. Likewise, using all n−1’s gives (n−1)+(n−1)+ · · ·+(n−1) = n(n−1) =

n2−n = x0. Since all numbers within the block n through n2−1 are colored blue, it follows

that there is no monochromatic solution using only integers from the first red block. Looking
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next at the blue block, we see that a monochromatic blue solution must contain an integer

at least as large as n+n+ · · ·+n = n∗n = n2 = x0. Since all integers greater than or equal

to n2 are either red or uncolored, it follows that there is no monochromatic blue solution.

The same process easily shows that there are no monochromatic solutions containing only

integers from the second red block. Finally, we use 1 and n2 to establish the lowest possible

value of x0 resulting from numbers in both red blocks, giving n2+1+1+ · · ·+1 = n2+n−1.

Since all integers greater than or equal to n2 + n − 1 are uncolored in our coloring, there

is no monochromatic solution containing integers from both red blocks. This gives a lower

bound coloring with no monochromatic solutions.

We now turn our attention to an upper bound using forced colorings. We may assume

without loss of generality that χ(1) = 0. To avoid a monochromatic solution using 1,

1 + 1 + · · ·+ 1 = n = x0, n must be colored with blue. We follow this process again using

n+ n+ · · ·+ n = n2 = x0 to show χ(n2) = 0. Thus, so far we know

1) χ(1) = 0 ∧ 1 + 1 + · · ·+ 1 = n =⇒ χ(n) = 1

2) χ(n) = 1 ∧ n+ n+ · · ·+ n = n2 =⇒ χ(n2) = 0.

Using a combination of n2 and a string of 1’s, both of which are colored red, we see n2 +

1 + 1 + · · · + 1 = n2 + n − 1 = x0, implying that χ(n2 + n − 1) = 1. Using n2 and 1 in a

different manner, with n2 on the right hand side of the equation, we see 1 + (n+ 1) + (n+

1) + · · ·+ (n+ 1) = n2. Therefore, χ(n+ 1) = 1, resulting in the following forced coloring

so far

1) χ(1) = 0 ∧ 1 + 1 + · · ·+ 1 = n =⇒ χ(n) = 1

2) χ(n) = 1 ∧ n+ n+ · · ·+ n = n2 =⇒ χ(n2) = 0

3) χ(n2) = 0 ∧ χ(1) = 0 ∧ n2 + 1 + 1 + · · ·+ 1 = n2 + n− 1 =⇒ χ(n2 + n− 1) = 1

4) χ(n2) = 0 ∧ χ(1) = 0 ∧ 1 + (n+ 1) + (n+ 1) + · · ·+ (n+ 1) = n2 =⇒ χ(n+ 1) = 1.

However, the fact that χ(n) = 1 and χ(n2 + n− 1) = 1 gives that n and n2 + n− 1 can be

plugged in with n+ 1 as well, n+ (n+ 1) + (n+ 1) + · · ·+ (n+ 1) = n2 + n− 1, to show
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that χ(n+ 1) = 0. Thus, we have

1) χ(1) = 0 ∧ 1 + 1 + · · ·+ 1 = n =⇒ χ(n) = 1

2) χ(n) = 1 ∧ n+ n+ · · ·+ n = n2 =⇒ χ(n2) = 0

3) χ(n2) = 0 ∧ χ(1) = 0 ∧ n2 + 1 + 1 + · · ·+ 1 = n2 + n− 1 =⇒ χ(n2 + n− 1) = 1

4) χ(n2) = 0 ∧ χ(1) = 0 ∧ 1 + (n+ 1) + (n+ 1) + · · ·+ (n+ 1) = n2 =⇒ χ(n+ 1) = 1

5) χ(n) = 1 ∧ χ(n2 + n− 1) = 1 ∧ n+ (n+ 1) + (n+ 1) + · · ·+ (n+ 1) = n2 + n− 1

=⇒ χ(n+ 1) = 0.

Statements 4 and 5 cannot both be true, thus proving that within the set of values {1, n, n+

1, n2, n2+n−1} there must exist a monochromatic solution to the equation x1+x2+· · ·+xn =

x0.

A similar proof structure was used by Burr and Loo [5] to prove another important

result, this time regarding equations with 2 variables and a constant.

Theorem 3. For a natural number c and equation x1 + x2 + c = x0, the two-color Rado

number R(2, c) is equal to 4c+ 5.

A simple example will help demonstrate this result.

Example 0.2. Consider the equation x1+x2+1 = x0, representing the c = 1 case. Theorem

3 states that the Rado number for this equation should be R(2, 1) = 4(1) + 5 = 9. Recall

the notation from Notation 1, where color 0 is red and color 1 is blue. To establish a lower

bound, consider the following three-block coloring:

01 02 13 14 15 16 07 08.

Once again, to show this contains no monochromatic solutions, we look at each block. Once

again, 1 + 1 + 1 = 3 = x0 and 2 + 2 + 1 = 5 = x0 along with the fact that the integers

between 3 and 6 are all colored blue gives no solutions from the first red block. Also,

3 + 3 + 1 = 7 = x0 and the fact that the integers greater than or equal to 7 are not blue

gives no solution from the blue block. The second red block follows the same process, and
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finally the solution 1 + 7+ 1 = 9 = x0 along with the fact that the integers greater than or

equal to 9 are not part of our coloring give that there is no solution using both red blocks.

Thus, this coloring establishes a lower bound. Therefore, the Rado number R(2, 1) is at

least 9.

To arrive at an upper bound, we again turn to forced colorings. Assume without loss of

generality that χ(1) = 0. Plugging 1 into the given equation will force 1 + 1 + 1 = 3 to be

colored using blue. Substituting 3 in the same manner yields 3 + 3 + 1 = 7 and therefore

χ(7) = 0. Now, using 1 and 7, both of which are colored red, we see that 1 + 7+ 1 = 9 and

therefore that χ(9) = 1. With this information and the fact that χ(3) = 1, our equation

gives 3 + 5 + 1 = 9 and thus that χ(5) = 0. However, we can see from χ(1) = 0, χ(7) = 0,

and 1 + 5 + 1 = 7 that χ(5) = 1. Summarizing this with the notation defined in Example

1.1, we have

1) χ(1) = 0 ∧ 1 + 1 + 1 = 3 =⇒ χ(3) = 1

2) χ(3) = 1 ∧ 3 + 3 + 1 = 7 =⇒ χ(7) = 0

3) χ(1) = 0 ∧ χ(7) = 0 ∧ 1 + 7 + 1 = 9 =⇒ χ(9) = 1

4) χ(1) = 0 ∧ χ(7) = 0 ∧ 1 + 5 + 1 = 7 =⇒ χ(5) = 1

5) χ(3) = 1 ∧ χ(9) = 1 ∧ 3 + 5 + 1 = 9 =⇒ χ(5) = 0.

Once again, statements 4 and 5 cannot both be true at once. It follows that somewhere

within the set {1, 3, 5, 7, 9} there is a monochromatic solution to x1 + x2 + 1 = x0. This

shows that the upper bound on R(2, 1) is 9. From our upper and lower bounds we can

gather that R(2, 1) = 9.

The proof of Theorem 3 will follow the same structure. Recall that Theorem 3 claims

that for c ∈ N the Rado number for the equation x1 + x2 + c = x0 is R(2, c) = 5c+ 4.

Proof of theorem 3. Let c ∈ N and consider the proposed lower bound coloring

01 02 . . . 0c+1 1c+2 1c+3 . . . 13c+3 03c+4 03c+5 . . . 04c+4.

To show this contains no monochromatic solutions, we examine each block in the three-block
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coloring. The smallest integer that can be reached using only integers colored red in the first

block is 1+1+ c = c+2, while the largest is (c+1)+(c+1)+ c = 3c+2. Since the integers

between c + 2 and 3c + 2 are all blue, it follows that there is no monochromatic solution

created using only the first block of red integers. Likewise, since the smallest integer value

that can be created using blue integers is (c + 2) + (c + 2) + c = 3c + 4 and all integers

larger than 3c + 4 are either red or uncolored, we know there is no solution containing

only the integers from the blue block. The second red block has a minimum output of

(3c+4)+(3c+4)+c = 7c+8, which is outside the bounds of our coloring. Therefore, there

is no monochromatic solution containing only elements of the second red block. Finally,

we consider a solution created using one input from the first red block and one from the

second red block, which has a minimum output of 1 + (3c + 5) + c = 4c + 6. Since this is

again outside of the bounds of our coloring, we know there is no monochromatic solution

created using both the first and second red blocks. Therefore, this coloring contains no

monochromatic solutions.

To arrive at an upper bound, we again turn to forced colorings. Assume without loss of

generality that χ(1) = 0. Plugging 1 into the given equation will force 1+1+c = c+2 to be

colored blue. Substituting c+2 in the same manner yields (c+2)+(c+2)+ c = 3c+4 and

therefore χ(3c + 4) = 0. Now, using 1 and 3c + 4, both of which were colored red, we see

that 1 + (3c+ 4) + c = 4c+ 5 and therefore that χ(4c+ 5) = 1. With this information and

the fact that χ(c+ 2) = 1, our equation gives (c+ 2) + (2c+ 3) + c = 4c+ 5 and thus that

χ(2c+3) = 0. However, we can see from χ(1) = 0, χ(3c+4) = 0, and 1+(2c+3)+c = 3c+4

that χ(2c+ 3) = 1. Summarizing this with the notation defined in Example 1.1, we have

1) χ(1) = 0 ∧ 1 + 1 + c = c+ 2 =⇒ χ(c+ 2) = 1

2) χ(c+ 2) = 1 ∧ (c+ 2) + (c+ 2) + c = 3c+ 4 =⇒ χ(3c+ 4) = 0

3) χ(1) = 0 ∧ χ(3c+ 4) = 0 ∧ 1 + (3c+ 4) + c = 4c+ 5 =⇒ χ(4c+ 5) = 1

4) χ(1) = 0 ∧ χ(3c+ 4) = 0 ∧ 1 + (2c+ 3) + c = 3c+ 4 =⇒ χ(2c+ 3) = 1

5) χ(c+ 2) = 1 ∧ χ(4c+ 5) = 1 ∧ (c+ 2) + (2c+ 3) + c = 4c+ 5 =⇒ χ(2c+ 3) = 0.
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The contradiction in statements 4 and 5 above shows that somewhere in the set {1, c +

2, 2c + 3, 3c + 4, 4c + 5}, there must exist a monochromatic solution. This indicates that

the upper bound on R(2, c) is 4c + 5. Since we have established that R(2, c) ≥ 4c + 5 and

R(2, c) ≤ 4c+ 5, we know that for this type of equation R(2, c) = 4c+ 5.

The results from Theorem 2 and Theorem 3, in particular the sets generated, will be

used in the following sections to prove that for linear systems of equations taking the form

described in Definition 1, the Rado number for the system will be the same as largest Rado

number for any individual equation in the system.

Main Results

Two Disjoint Equations of the Form x1 + x2 + · · ·+ xn = x0

To begin, recall the set established in Theorem 2, which will henceforth be referred to as

the Beutelspacher-Brestovansky sufficient set (B-B sufficient set). Upon close examination,

one can conclude that for any n ∈ N, one of the following solutions created within the B-B

sufficient set must be monochromatic.

1) 1 + 1 + · · ·+ 1 = n

2) n+ n+ · · ·+ n = n2

3) n2 + 1 + 1 + · · ·+ 1 = n2 + n− 1

4) n+ (n+ 1) + (n+ 1) + · · ·+ (n+ 1) = n2 + n− 1

5) 1 + (n+ 1) + (n+ 1) + · · ·+ (n+ 1) = n2

These five solution options will form the basis for the main result regarding two-equation

systems, but first some new notation and definitions must be introduced.

Notation 2. Let En,m denote a system of two linear disjoint equations, x1+x2+· · ·+xn = x0

and y1+ y2+ · · ·+ ym = y0, where n ≥ m. In such a system, denote x1+x2+ · · ·+xn = x0

as En and y1 + y2 + · · ·+ ym = y0 as Em.
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Definition 2. A monochromatic solution exists to a system of two linear disjoint equations

En,m if there exists a monochromatic solution to both En and Em and both solutions are

monochromatic in the same color.

Notation 3. Let R(En,m) denote the two-color Rado number of a system of two linear

disjoint equations En,m.

Having established the notation and definitions that will be used, it is now time to

introduce the primary theorem for this section. The theorem will then be proved using a

three-block coloring to find a lower bound and forced colorings to find an upper bound.

This process will involve separate cases for each of the five monochromatic solutions to the

B-B sufficient set.

Theorem 4. Let En,m be a system of two disjoint linear equations such that n ≥ m. Then

R(En,m) = R(n, 0) = n2 + n− 1.

Proof. Consider some system of disjoint linear equations En,m where n ≥ m. We begin

by finding a lower bound coloring, recalling that color 0 is red and color 1 is blue. To do

this, note that, since a coloring of the integers 1 through n2 + n − 2 exists that avoids a

monochromatic solution to x1 + x2 + · · · + xn = x0, therefore it is possible to color those

integers without a monochromatic solution to En,m. Thus, it is clear that R(En,m) ≥ R(n) =

n2 + n− 1.

Proceeding to the upper bound, first note that in the case where n = m, the proof is

trivial. Apply the monochromatic solution formed in the B-B sufficient set for x1 + x2 +

· · · + xn = x0 to the equation y1 + y2 + · · · + ym = y0 to form a monochromatic solution

to the entire system. Thus the following will assume that n > m and will show that for a

coloring of length n2 + n− 1, there exists a monochromatic solution to En,m.

Assume there is a coloring of the integers 1 through n2+n− 1. Note that, since n > m,

it is true that n2 + n − 1 > m2 + m − 1. From Theorem 2, it then follows that there

exists a monochromatic solution, without loss of generality in red, to Em and that this

monochromatic solution exists in the B-B sufficient set for Em. Also from Theorem 2, it

is clear that there exists a monochromatic solution to En in the integers from 1 through
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n2+n−1. If these two monochromatic solutions are in the same color the theorem statement

holds, so we will assume that the solution to En is monochromatic in blue. Therefore, to

avoid a monochromatic solution to the system, one must avoid either a monochromatic blue

solution to Em or a red monochromatic solution to En. The following cases are based on

which monochromatic solution to Em exists.

Case 1: The monochromatic red solution to Em is 1 + 1 + · · ·+ 1 = m.

In this case, 1 and m are both colored red. If we plug 1 into En, which yields 1 + 1 +

· · ·+ 1 = n, it becomes apparent that one must color n blue to avoid a red monochromatic

solution to En and thus to the system of equations. Following the same process, but with m

instead of 1, we have thatm+m+· · ·+m = mn, thus implying thatmnmust be colored blue

as well. However, plugging n into Em gives n+n+ · · ·+n = nm, thus implying that either

mn is colored red or there exists a blue monochromatic solution to Em. Therefore, within

the set {1, n,m,mn}, there exists either a red solution to En or a blue solution to Em. In

either case, a monochromatic solution to En,m exists, thus validating the theorem statement.

Note that this argument is symmetric and thus forces 1 and n to be colored differently to

avoid a monochromatic solution. For this case, a set has been found, {1,m, n,mn} that

guarantees a monochromatic solution to the system of equations.

Case 2: The monochromatic red solution to Em is m+m+ · · ·+m = m2.

First, note that case 1 gives that in this scenario, 1 must be blue and n must be red.

Usingm within En givesm+m+· · ·+m = mn, which forcesmn to be colored blue. A similar

process with n will show that n+n+· · ·+n = n2 forces n2 to be blue. Now, plug n2 and mn,

respectively, into Em along with a string of ones to give 1+ 1+ · · ·+1+mn = mn+m− 1

and 1 + 1 + · · · + 1 + n2 = n2 + m − 1, thus forcing both mn + m − 1 and n2 + m − 1

to be red. Now, using En and plugging in m − 1 m’s and n − m + 1 m + 1’s along with

mn+m− 1 gives m+m+ · · ·+m+ (m+ 1) + · · ·+ (m+ 1) = mn+m− 1 which means

m + 1 must be colored blue. Following the same process with n, n + 1, and n2 + m − 1

gives n + n + · · · + n + (n + 1) + · · · + (n + 1) = n2 +m − 1 and thus implies that n + 1

is blue. Using the fact that n + 1 is blue will result in the following substitution for Em:

(n+ 1) + · · ·+ (n+ 1) = mn+m. This implies that mn+m must be colored red. Finally,

use m, 2m, and mn+m in En to give m+ · · ·+m+ 2m = mn+m and to force 2m to be
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blue. However, 1 + 1 + · · ·+ 1 + (m+ 1) = 2m implies that 2m must be red. Thus, within

the set {1,m,m+1, n, n+1, 2m,m2,mn,mn+m− 1,mn+m,n2, n2 +m− 1}, there must

exist either a blue monochromatic solution to Em or a red monochromatic solution to En,

either of which yields a monochromatic solution to the system.

Case 3: The monochromatic red solution to Em is m2 + 1 + 1 + · · ·+ 1 = m2 +m− 1.

Given that in this scenario 1 is red, it follows from case 1 that m and n must be blue.

Likewise, because both m and n are blue, it is clear that mn must be colored red to avoid

a monochromatic solution to the system. Now consider the following substitutions for

Em: m + n + n + · · · + n = m + n(m − 1) = mn + m − n. To avoid a blue solution to

Em, mn + m − n must be colored red. Now using this fact, plug into En with 1, giving

1 + 1+ · · ·+ 1+ (mn+m− n) = 1(n− 1) +mn+m− n = mn+m− 1 and thus implying

that to avoid a monochromatic solution in red, mn + m − 1 must be colored blue. In

conjunction with the fact that n is colored blue, this implies that we can plug into Em to

give n+ (n+ 1) + (n+ 1) + · · ·+ (n+ 1) = n+ (n+ 1)(m− 1) = mn+m− 1 and forcing

us to color n+ 1 red to avoid a monochromatic solution to our system. However, if we use

1, mn, and n + 1 in En, we see that 1 + 1 + · · · + 1 + (n + 1) + (n + 1) + · · · + (n + 1) =

1(n−m+ 1) + (n+ 1)(m− 1) = mn which would give us a monochromatic red solution to

En and thus to our system. Again, it has been shown that there exists a set, in this case

{1,m, n, n+1,m2,mn,mn+m−n,m2+m−1,mn+m−1}, that is guaranteed to contain

a monochromatic solution to the system.

Case 4: The monochromatic red solution to Em is m+(m+1)+(m+1)+ · · ·+(m+1) =

m2 +m− 1.

Since m is colored red in this case, it follows from Case 1 that 1 must be colored blue.

From plugging m into equation En to get m+m+ · · ·+m = mn, it also follows that mn

must be colored blue. Using 1 and mn in Em to give mn+1+1+ · · ·+1 = mn+m−1 then

implies that one must color mn+m− 1 red. However, using m and m+1 in En shows that

m+m+· · ·+m+(m+1+(m+1)+· · ·+(m+1) = m(n−m+1)+(m+1)(m−1) = mn+m−1,

thus forcing a monochromatic solution to En and therefore to En,m.

Case 5: The monochromatic red solution to Em is 1+(m+1)+(m+1)+· · ·+(m+1) = m2.

Once again, the fact that 1 is red means that both m and n must be blue from case 1.
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Using m and n in Em then yields m+ · · ·+m+n = m2+n−m, implying that m2+n−m is

red. However, using 1 and m+1 in En yields 1+· · ·+1+(m+1)+· · ·+(m+1) = m2+n−m,

thus giving a red solution to En and therefore a monochromatic solution to the system.

We see that, in each case, a monochromatic solution is forced to the system of equations.

Thus it has been shown that, regardless of which red solution exists to Em, there exists a

monochromatic solution to the system of equations.

It should be noted that, while this section specifically deals with disjoint equations,

it appears from preliminary investigations using computer programs applied to concrete

examples that the results from this section may apply to non-disjoint equations as well.

The author offers the following conjecture to this effect.

Conjecture 1. The two-color Rado number for a system E of two linear equations x1 +

x2 + · · ·+ xn = z and y1 + y2 + · · ·+ ym = z where n ≥ m is R(E) = R(n, 0) = n2 + n− 1.

Two Disjoint Equations of the Form x1 + x2 + c = x0

Begin by recalling the set established in Theorem 3 which, for ease of reference, will be

referred to as the Burr-Loo sufficient set (B-L sufficient set). As with the B-B sufficient

set, the B-L sufficient set produces a list of potential monochromatic solutions for a given

c ∈ N. This set of solutions is as follows.

1) 1 + 1 + c = c+ 2

2) (c+ 2) + (c+ 2) + c = 3c+ 4

3) 1 + (3c+ 4) + c = 4c+ 5

4) (c+ 2) + (2c+ 3) = 4c+ 5

5) 1 + (2c+ 3) + c = 3c+ 4

The supremum of the values within the B-L sufficient set, 4c+5, will help inform the cases

for the main result regarding two-equation systems of this particular form. However, the

primary component in the main result will be the coloring of 1 and the coloring of whatever
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solution from the B-L sufficient set exists. Once again, some notation must be defined

before proceeding.

Notation 4. Let Lc,k denote a system of two linear disjoint equations, x1+x2+c = x0 and

y1 + y2 + k = y0, where c, k ∈ N, c, k have the same parity, and c > k. In such a system,

denote x1 + x2 + c = x0 as Lc and y1 + y2 + k = y0 as Lk.

The definition of a monochromatic solution to this system is synonymous with the

definition given in Definition 2. The notation for the two-color Rado number to this system

will be the same as the notation described in Notation 4. The remainder of this section

will be designated towards proving that the Rado number for a system of two equations,

Lc and Lk, of the given form will, under specific circumstances, be the same as the larger

of the individual Rado numbers for the equations within the system.

The circumstances mentioned above pertain to the parity of c and k. Note that if c

and k have different parity, for instance if c is odd and k is even, it is possible to color the

integers in such a way that a monochromatic solution to the system is never reached. This

will be explained in greater detail following the main results in this section, which will now

be formally stated and proved.

Theorem 5. The Rado number for a system of linear equations like that defined in Notation

4 is R(Lc,k) = R(Lc) = 4c+ 5 provided that c, k have the same parity.

To establish this result it is first necessary to introduce two lemmas, which will be used

to establish an upper bound on the Rado number for the given system. Lemma 1 will show

what must happen if the integer 1 is the same color as the solution to Lk. Lemma 2 will

establish what happens if the integer 1 is a different color than the solution to Lk. Before

proving these lemmas, we will introduce some new notation for the sake of brevity in the

proofs.

Notation 5. If z∗ ∈ N and the color of z∗ has been established, the notation 2z+k = z∗ or

2z + c = z∗ will be employed where z = y1 = y2 or z = x1 = x2 depending on the equation

being examined. Here, the goal is to use z∗ on the right hand side of the equation to force

a number smaller than z∗ to be colored in a particular way.
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Lemma 1. If Lc,k is defined as in Notation 4 and χ(1) is the same as the color of the

solution to Lk, then there exists a monochromatic solution to Lc,k in the integers from 1

through 4c+ 5.

Proof. Assume without loss of generality that χ(1) = 0. Assume also that the monochro-

matic solution to Lk as forced by Theorem 3 is red. Note at this point that if we color out

to 4c + 5 there must exist a monochromatic solution within the B-L sufficient set for Lc.

If this solution is also red, the lemma statement holds. Thus, we will assume the solution

to Lc is monochromatic in blue. Therefore, we will seek to show a forced blue solution to

Lk or a forced red solution to Lc, either of which will give a monochromatic solution to the

system Lc,k.

Since 1 is red, it then follows from 1 + 1 + c = c + 2 that c + 2 must be colored

blue. Plugging this into the right hand side of Lk using the notation from Notation 6

gives that 2z + k = c + 2 and thus that z = c−k
2 + 1. Since c, k have the same parity,

it follows that z ∈ N and therefore that, χ( c−k
2 + 1) = 0. Using this result in Lc yields

( c−k
2 +1)+ ( c−k

2 +1)+ c = 2c− k+2, which forces 2c− k+2 to be colored blue. Now, plug

c+2 and 2c−k+2 into Lk to give (c+2)+(2c−k+2)+k = 3c+4 and make χ(3c+4) = 0.

From this, we can see 1+(3c+4)+c = 4c+5, implying that χ(4c+5) = 1. Finally, we use 1

with 3c+4 in Lc and we use 2c−k+2 with 4c+5 in Lk to give 1+(2c+3)+ c = 3c+4 and

(2c− k+2)+ (2c+3)+ k = 4c+5. This means that 2c+3 cannot be colored either blue or

red. Therefore, within the set {1, c−k
2 +1, c+2, 2c− k+2, 2c+3, 3c+4, 4c+5} there must

be a monochromatic solution to either Lc in red or Lk in blue, giving us a monochromatic

solution to the system Lc,k.

Lemma 2. If Lc,k is defined as in Notation 4 and χ(1) is not the same as the color of the

solution to Lk, then there exists a monochromatic solution to Lc,k in the integers from 1

through 4c+ 5.

Proof. Assume without loss of generality that χ(1) = 0. Assume also that the monochro-

matic solution to Lk as forced by Theorem 3 is blue. As established in the previous lemma,

coloring to 4c+5 will yield a monochromatic solution to Lc. We will this time assume that
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solution is red and thus we must show a forced red solution to Lk or a forced blue solution

to Lc to give a monochromatic solution to the system.

Because 1 is colored red, it follows from 1 + 1 + k = k + 2 that k + 2 must be colored

blue. Plugging this result into Lc gives (k + 2) + (k + 2) + c = c + 2k + 4 and forces

χ(c + 2k + 4) = 0. Using this along with 1 in Lk yields 1 + (c + 2k + 4) + k = c + 3k + 5

and thus forces c + 3k + 5 to be blue. Plugging in c + 2k + 4 on the right hand side of

Lk so that 1 + y2 + k = c + 2k + 4 gives that y2 = c + k + 3 and thus forces c + k + 3

to be colored blue as well. We now substitute c + 3k + 5 along with k + 2 into Lc, giving

(k+2)+x2+ c = c+3k+5. Therefore, we must color x2 = 2k+3 red. Using c+ k+3 and

k+2 in Lc forces (c+ k+3)+ (k+2)+ c = 2c+2k+5 to be colored red as well, which can

be used along with 1 in Lk to give y1+1+k = 2c+2k+5 and to force y1 = 2c+k+4 to be

colored blue. Using k+2 on the left hand side and plugging in 2c+ k+4 on the right hand

side of Lc gives x1+(k+2)+ c = 2c+k+4. Therefore, we must color x1 = c+2 red. Using

this in Lk gives 2z + k = c + 2 and forces z = c−k
2 + 1 to be colored blue. Plugging this

result into Lc results in ( c−k
2 + 1) + ( c−k

2 + 1) + c = 2c− k + 2 being colored red. However,

we can plug this into Lk along with 2k+3 to give (2c− k+2)+ (2k+3)+ k = 2c+2k+5.

This implies that χ(2c + 2k + 5) = 1, but we previously established that 2c + 2k + 5

cannot be colored blue without resulting in a blue solution to Lc. Therefore, within the set

{1, k+2, c+2k+4, c+3k+5, c+k+3, 2k+3, 2c+2k+5, 2c+k+4, c+2, c−k
2 +1, 2c−k+2},

there exists a monochromatic solution to either Lk in red or Lc in blue. Either solution

results in a monochromatic solution to the system Lc,k.

We now turn our attention to the proof of Theorem 5. This proof will use Lemma 1 and

Lemma 2 to establish an upper bound on the Rado number. It will also reference Theorem

3 to establish the lower bound. Recall that Theorem 5 states that for a system of two

disjoint linear equations Lc,k where Lc is x1+x2+ c = x0 and Lk is y1+ y2+ k = y0, where

c, k ∈ N and c > k, the Rado number for the system is R(Lc,k) = R(Lc) = 4c+ 5.

Proof of Theorem 5. The result from Burr and Loo demonstrated in Theorem 3 gives a lower

bound coloring of the integers 1 through 4c+4 that avoids a monochromatic solution to Lc.

Using this coloring, one avoids a monochromatic solution to the system Lc,k. Therefore, it
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is true that R(Lc,k) ≥ 4c+ 5.

To establish an upper bound, first note that when coloring the integers 1 through 4c+5,

Theorem 3 shows that there is a monochromatic solution within the B-L sufficient set for

both Lc and Lk. If these monochromatic solutions to the individual equations are the same

color, the theorem statement holds. Therefore, we must consider only the case where the

solutions are in different colors. We further break this case down into two sub-cases based

on how the color of the solution to Lk corresponds to χ(1). We may assume without loss

of generality that χ(1) = 0. If the color of the solution to Lk is also red, we may apply

Lemma 1 to show that there is a monochromatic solution to our system within the set

A = {1, c−k
2 + 1, c + 2, 2c − k + 2, 2c + 3, 3c + 4, 4c + 5}. If the color of the solution to Lk

is instead blue, we apply Lemma 2 to show that there is a monochromatic solution to our

system within the set B = {1, k+2, c+2k+4, c+3k+5, c+ k+3, 2k+3, 2c+2k+5, 2c+

k + 4, c+ 2, c−k
2 + 1, 2c− k + 2}. Since 4c+ 5 ≥ i for all i ∈ A ∪B, it is true that in either

case we have a monochromatic solution to our system in the integers from 1 through 4c+5.

Therefore, it is true that R(Lc,k) ≤ 4c+ 5. Since R(Lc,k) ≥ 4c+ 5 and R(Lc,k) ≤ 4c+ 5, it

follows that R(Lc,k) = R(Lc) = 4c+ 5.

Having proved the main result from this section, we will now address one specific case

wherein the prior result would not hold. If c, k have different parity, the Rado number will

be infinite. Consider as an example the case where k = 1 and c = 2. Thus, we look for

solutions to the system where Lc is x1 + x2 + 2 = x0 and Lk is y1 + y2 + 1 = y0. For this

system, the following coloring of infinite length would avoid monochromatic solutions to the

system: Define χ : [1,∞) → {0, 1} so that χ(i) = 0 if i = 2n for some n ∈ N and χ(i) = 1

if i = 2m − 1 for some m ∈ N. Using this method results in an alternating color scheme

where all even numbers are red and all odd numbers are blue.

Given this coloring, consider trying to create a red solution to the system. Plugging

i1 = 2n1 and i2 = 2n2, where n1, n2 ∈ N, into Lk gives 2n1 + 2n2 + 1 = 2(n1 + n2) + 1.

Since n1, n2 ∈ N, it follows that 2n1 +2n2 +1 = 2z+1 where z ∈ N. Since 2z+1 is odd, it

follows that χ(2z+1) = 1 and thus that it is not possible to create a red solution to Lk and

therefore to our system. A similar process will show that it is impossible to create a blue
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solution to Lc. Therefore, there cannot be a monochromatic solution to the entire system,

regardless of the length of the coloring.

Systems of Disjoint Linear Equations

We will now seek to show that the results from sections 2 and 3 can be expanded to cover

systems involving more than 2 equations of the same type. This will be done using induction,

but first we must introduce some new notation.

Notation 6. Let Sn denote a system of disjoint linear equations E1, E2, . . . , En. The Rado

number for this system, if it exists, is the smallest positive integer R(Sn) such that any

coloring of the integers 1 through R(Sn), there exists a monochromatic solution to each

equation in the system Sn and these solutions are the same color.

Notation 7. Let {Ei, Ej} denote a pairing of two equations Ei and Ej forming a subsystem

of Sn.

Theorem 6. Suppose that Sn is a system of equations E1, E2, . . . , En where Rk denotes the

Rado number for Ek. Furthermore, suppose that for any pair of positive integers i, j ≤ n,

the 2-color Rado number for the subsystem {Ei, Ej} is equal to the max of Ri and Rj. Then

the Rado number for the system is R(Sn) = max{R1, R2, . . . , Rn}.

Proof. Consider each possible subsystem of the form {Ei, Ej}. We know that each subsys-

tem of this form contains a monochromatic solution to the subsystem of equations in the

integers 1 through max{R1, R2, . . . , Rn} by the definition of our system. If each of these

solutions are monochromatic in one color, without loss of generality red, then the lemma

statement holds. Therefore, assume that all subsystems of Sn are monochromatic in red

except for some {Ek1 , Ek2} which does not yield a monochromatic red solution. This im-

plies that at least one of Ek1 or Ek2 does not have a monochromatic red solution; assume

without loss of generality that Ek1 is the equation that meets this criteria. We then know

that Ek1 must have a monochromatic blue solution. Therefore, since each subsystem of our

equation yields a monochromatic solution, we know that there must be a blue solution to

{Ek1 , Ej} for all 1 ≤ j ≤ n, giving us a monochromatic blue solution to each equation in
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our system. Therefore, there must be a monochromatic solution to the system of equations

in the integers from 1 through R(EN ).

From this, we know the following corollary statements must be true. Note that these

corollary statements apply our theorem to specific systems involving equations of the B-B

and B-L form.

Corollary 1. For a system of disjoint linear equations Sn where each equation is of the

form x1 + x2 + · · · + xm = x0 for some m ∈ N and where Rk represents the Rado number

for equation k, the Rado number for the system is R(Sn) = max{R1, R2, . . . , Rn}.

Corollary 2. For a system of disjoint linear equations Sn where each equation is of the

form x1 + x2 + c = x0 with c ∈ N, all distinct values of c have the same parity, and Rk

represents the Rado number for equation k, the Rado number for the system is R(Sn) =

max{R1, R2, . . . , Rn}.

We have now established that the results for a two-equation linear system extend to

systems of n equations of like types, both in the case of equations of the form x1 + x2 +

· · · + xn = x0 and for equations of the form x1 + x2 + c = x0. It should be noted that

these systems were addressed separately and no result was established for a mixed system,

although the author believes a result could be established for such systems. The reason for

this will be explained further in the Future Work section.

Future Work

Future problems that can be investigated include similar results for non-disjoint systems as

discussed in Conjecture 1. One could also investigate similar results for different types of

equations that do not fit the forms defined in this paper.
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