
South Dakota State University South Dakota State University 

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional 

Repository and Information Exchange Repository and Information Exchange 

Electronic Theses and Dissertations 

2024 

Contrastive Learning, with Application to Forensic Identification of Contrastive Learning, with Application to Forensic Identification of 

Source Source 

Cole Ryan Patten 
South Dakota State University, colepatten@outlook.com 

Follow this and additional works at: https://openprairie.sdstate.edu/etd2 

 Part of the Mathematics Commons, and the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
Patten, Cole Ryan, "Contrastive Learning, with Application to Forensic Identification of Source" (2024). 
Electronic Theses and Dissertations. 972. 
https://openprairie.sdstate.edu/etd2/972 

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research 
Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses 
and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional 
Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu. 

https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd2
https://openprairie.sdstate.edu/etd2?utm_source=openprairie.sdstate.edu%2Fetd2%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=openprairie.sdstate.edu%2Fetd2%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=openprairie.sdstate.edu%2Fetd2%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd2/972?utm_source=openprairie.sdstate.edu%2Fetd2%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu


BY

COLE RYAN PATTEN

A thesis submitted in partial fulfilment of the requirements for the 

Master of Science

Major in Mathematics

Specialization in Statistics South Dakota State University

2024

CONTRASTIVE LEARNING, WITH APPLICATION TO FORENSIC

IDENTIFICATION OF SOURCE



THESIS ACCEPTANCE PAGE 

Cole Patten 

This thesis is approved as a creditable and independent investigation by a candidate for 

the master's degree and is acceptable for meeting the thesis requirements for this degree. 

Acceptance of this does not imply that the conclusions reached by the candidate are 

necessarily the conclusions of the major department. 

11 

Michael Puthawala 

Advisor 

Kurt Cogswell 

Department Head 

Nicole Lounsbery, PhD 
Director, Graduate School 

Date 

Date 

Date 



iii

“Thinking is learning all over again to see, to be attentive, to focus

consciousness; it is turning every idea and every image, in the manner

of Proust, into a privileged moment.”

–Albert Camus

“I want to learn more and more to see as beautiful what is necessary in

things; then I shall be one of those who make things beautiful. Amor fati:

let that be my love henceforth! I do not want to wage war against what

is ugly. I do not want to accuse; I do not even want to accuse those who

accuse. Looking away shall be my only negation. And all in all and on

the whole: some day I wish to be only a Yes-sayer!”

–Friedrich Nietzsche
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ABSTRACT

CONTRASTIVE LEARNING, WITH APPLICATION TO FORENSIC

IDENTIFICATION OF SOURCE

COLE RYAN PATTEN

2024

Forensic identification of source problems often fall under the category of

verification problems, where recent advances in deep learning have been made by

contrastive learning methods. Many forensic identification of source problems deal with a

scarcity of data, an issue addressed by few-shot learning. In this work, we make specific

what makes a neural network a contrastive network. We then consider the use of

contrastive neural networks for few-shot learning classification problems and compare

them to other statistical and deep learning methods. Our findings indicate similar

performance between models trained by contrastive loss and models trained by

cross-entropy loss. We also perform an ablation study to investigate the effects of different

contrastive loss functions, metric functions, and margin values within contrastive learning.

To test contrastive networks on real forensic data, we use the NBIDE cartridge casing

dataset. Results are promising, as contrastive learning competed with older statistical

methods while taking significantly less data preprocessing. Finally, we detail the desired

invariance properties of embedding functions learned by contrastive networks in hopes

that future work can enforce them through model architecture.
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1 INTRODUCTION

Deep learning, the use of multi-layer neural networks to obtain meaningful

representations of data, has made substantial advances within the last decade. The rate of

progress has been so great that it has been scarcely possible for specialized fields of

application to keep up with the latest technologies in deep learning. Because of this, time

must often be taken to consider the best ways to implement deep learning in specific

fields. Forensic science, defined as “the use of scientific methods or expertise to

investigate crimes or examine evidence that might be presented in a court of law” [18], is

one such field. The importance of accurately answering questions such as “Was this

cartridge found at the crime scene fired from the suspect’s firearm?” and “Were cartridge

A and cartridge B fired from the same firearm?” cannot be understated.

Contrastive neural networks (contrastive networks) are a deep learning technique

that was first proposed in Bromley et al. [2] (then called siamese networks) as a way to

utilize deep learning techniques to quantify the similarity between two objects. The fact

that contrastive networks learned similarities between objects allowed them to attend to a

broader class of problems than extant deep learning techniques. Today, contrastive

networks are among the state-of-the-art for computer vision tasks [20].

Contrastive networks operate by taking multiple objects as inputs and calculating

some metric between the embeddings of the objects. For example, when trying to identify

which firearm a cartridge casing was fired from, if the objects are expended cartridge

casings, a contrastive network learns an embedding function where casings fired from

different firearms are embedded further from each other than casings fired from the same

firearm according to the metric.

The goal of this work is to address both the subject of contrastive networks in

themselves and their application to forensic science. Through modern deep learning

techniques, this work strives to embrace the scientific virtues of thoughtfulness and rigor
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in the investigation of forensic evidence.

1.1 PRELIMINARY KNOWLEDGE

We will begin with some definitions.

When humans look at images of cats or dogs, we can tell the difference between

the two. Unfortunately, the task is not such a simple one for a computer. Consider the task

of programming a computer to distinguish between 200*200 pixel black-and-white

images of cats and dogs.

Definition 1 (Object, Data space).

An object, x, is an element of some space, X , called the data space. A

sample S ⊆ Z is defined to be a list of objects.

In our example, the data space X = [0, 255]200∗200 and any object x ∈ X can be

represented as an image. Only some of these images will be of cats and dogs, others may

be horses or random static. Our sample S will only contain images of cats and dogs.

This manuscript always refers to objects as x∗ and differentiates them with

subscripts. Likewise, a data space is always referred to as X and samples as S.

To communicate the difference between objects, we need a notion of class.

Definition 2 (Class, Label).

A class of objects shares some characteristic. A label y∗ refers an object x∗ to

a class.

For a sample, S, the labels corresponding to the objects x∗ ∈ S are denoted y∗, and

the set of labels for the sample S is the list Y = {y∗ : x∗ ∈ S}. This manuscript always

denotes the label of an object x∗ as y∗. The connection between the two is denoted by

matching subscripts.

In our example, we have the class of cats and the class of dogs. Each object in our

sample is labeled as either a cat or a dog. We want to define a method for a computer to
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distinguish between cats and dogs. One naive –yet decent– method is the K-nearest

neighbor classifier.

Definition 3 (Metric, Semimetric).

For a set M , a function d : M2 → R is a metric on M , forming the metric

space (M,d) if it exhibits the following four properties. For all m1,m2,m3 ∈ M

1. Reflexive: d(m1,m1) = 0

2. Positive: m1 ̸= m2 ⇒ d(m1,m2) > 0

3. Symmetric: d(m1,m2) = d(m2,m1)

4. Triangle Inequality: d(m1,m2) ≤ d(m1,m3) + d(m3,m2)

A function d is a semimetric on M if it violates the triangle inequality, yet satisfies

the other three properties. Then (M,d) is a semimetric space.

The word metric will sometimes be used generically in this manuscript to refer to

either a metric or semimetric. In Section 3.2, the distinction between the two will be

relevant and made explicit.

Distance in the usual sense, Euclidean distance, forms the metric space

(R, dEuclidean) on the real number line. The angle between points on a circle, angular

distance, forms a metric space (S2, dangular) on the unit circle.

Definition 4 (K-Nearest Neighbor (KNN) Classification).

Let xu be a query object, and x1, . . . , xk be the K closest neighbors to xu

w.r.t. some metric. K-nearest neighbors assigns xu the label that occurs the most

out of the labels y1, . . . , yK of its K nearest neighbors.

By using a KNN classifier, we have a method that can be used for a computer to

classify images as either a cat or a dog. This method relies on an assumption that within

the data space, X , images of cats are closer to other images of cats than to images of dogs,
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and vice versa. For the KNN classifier to be effective on our images of cats and dogs, we

need the images of cats to be closer to other images of cats than to images of dogs, and

vice versa. If we had a function to map our images to a new space, where the images of

cats are indeed closer to other cats than to dogs, then in this space the KNN classifier

would be useful.

Definition 5 (Embedding Function, Parameters, Embedding Space, Embeddings).

We call f(·; θ) : X → Z embedding function with parameters θ and Z the

embedding space. An object x∗ ∈ X has embedding z∗ = f(x∗; θ).

The parameters, θ, of an embedding function are what determine how f embeds an

object. If θ is changed, the value of the embeddings produced by f are changed. The

parameters of a function are always denoted as θ.

In this manuscript, f refers to an embedding function in the sense described here.

Note that our use of the word embedding differs from the use of the word in, for example,

topology. An embedding space is always referred to as Z, and the embedding of an object,

x∗, is denoted z∗, sharing its subscript.

If we were to possess an embedding function, f , which embedded images of cats

within one area, and images of dogs within another distant area, then our KNN classifier

would be able to accurately distinguish between images of the two animals. The purpose

of this paper is to explore the field of contrastive learning, in which we attempt to “learn”

the best f for a given problem and a chosen metric.

1.2 BACKGROUND

1.2.1 IDENTIFICATION OF SOURCE

Forensic identification of source (source ID) problems, within the field of forensic science,

are concerned with a query object, xu, and its unknown label, yu. With the presence of a

gallery sample, Sgallery = {x1, . . . , xn}, and their known labels, Ygallery = {y1, . . . , yn},
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we can utilize statistical techniques to make a well-informed inference about the value of

yu.

Source ID problems can generally be distinguished into two classes, those of

classification and those of verification.

Definition 6 (Classification, Verification).

Classification problems assume the Sgallery and their known labels Ygallery

contain an exhaustive list of possible labels for xu

• E.g., For a fired cartridge casing from one of five guns: which of the five guns

fired the cartridge?

Verification problems relax the assumption of an exhaustive list of possible

labels being present in the Sgallery.

1. E.g., For a fired cartridge casing and a specific gun: was this cartridge fired

from this gun?

2. E.g., For a fired cartridge casing and five possible guns which fired it: which of

the five guns, if any, fired the cartridge?

3. E.g., For two fired cartridge casings: were these cartridges fired by the same

gun?

Classification problems are known as closed-set problems. Example 1 is a type of

verification problem called a specific source problem [19, Sec. 5]. Example 2 is an open

set problem, which in some ways generalizes both the closed set problem and the specific

source problem. Example 3 is a common source problem [19, Sec. 4].

Because verification problems are generalizations of classification problems,

methods addressing verification problems are more versatile than classification problems.

Consider the verification problem “How similar is the cartridge casing found on the crime

scene to cartridge casings fired from these ten firearms?” This can be easily specified to a
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classification problem by selecting the firearm with the most similar cartridge casings to

the query object. The classification form of this problem might be presented as, “Which of

these ten firearms was the cartridge casing found on the crime scene fired from?”

1.2.2 DEEP LEARNING

Machine learning is the practice of using algorithms to learn how to perform a task on

some training data, Strain, with the hope of generalizing to unseen data, Stest.

Supervised learning is a sub-field of machine learning where the training data,

Strain, has known labels, Ytrain. The labeled data can be leveraged to improve

performance. This is as opposed to unsupervised learning, where labels, Ytrain, are either

unknown or irrelevant. Classification is an example of a supervised learning task, where

for each object, we wish to predict a label for that object.

Definition 7 (Deep Learning).

Deep learning is a sub-field of machine learning concerned with the use of

multi-layered (deep) neural networks to learn a useful representation of data.

The archetypal deep neural network is a multi-layer perceptron (MLP) which is

illustrated in Figure 1. In general, MLPs have construction

f(x; θ) = ϕ ◦ fL(·; θL) ◦ ϕ ◦ fL−1(·; θL−1) ◦ ... ◦ ϕ ◦ f2(·; θ2) ◦ ϕ ◦ f1(x; θ1), (1)

where the functions fi, called the layers of the network, are affine. The function, ϕ, is a

nonlinear function and is called an activation function because it acts element-wise upon

its inputs. Neural networks of arbitrary width are proven to be universal approximators of

continuous functions [11].

In deep learning, we want to train a network to perform a specific task. This

learning process can be conceived as learning an embedding function, f , which serves as a

feature extractor for objects. To measure the network’s performance, we use the concept
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Input Layer

Hidden Layers

Output Layer

Figure 1: Depiction of a 4-layer MLP. Each column of arrows represents a component
affine function fi of the network, f (see Equation 1). The columns of circles are
successive hidden representations of the data and the final column of squares is the
final output vector. In a network trained by cross-entropy loss (Definition 9), an
element za,i of the output corresponds to the probability that xa belongs to class i.

of a loss function.

Definition 8 (Loss Function).

A loss function L(f(S; θ)) is a measure of the goodness of f . A low loss

indicates f is a good embedding function.

In deep learning, the parameters, θ, of f are optimized to decrease the loss

function with respect to a sample, Strain, called the training data. The process known as

training refers to repeatedly passing objects through the network, computing the loss

function, and updating the network’s parameters to reduce the loss function.

The idea is that as the loss function is decreased, f will be better suited for

performing some task. For this to be effective, the decreasing of the loss function must

correspond with increased proficiency in the given task.

Image classification is a supervised learning task, and deep learning is typically

used for classification by optimizing a network with respect to cross-entropy loss.

Definition 9 (Cross-Entropy Loss, Cross-Entropy Network).
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For a problem with C classes, an object x∗ ∈ X belonging to class j has label

y∗ ∈ Y ⊆ RC which is a unit vector along the jth axis. The embedding space of the

network is Z = Rn.

L(S, Y ; f) = −
∑
xi∈S

yi · log zi (2)

Then the cross-entropy loss for a single object belonging to class c is the negative

log of the jth component of z∗ = f(x∗).

We call a neural network a cross-entropy network if it is trained by

cross-entropy loss.

To train a cross-entropy network, our embedding space Z equals RC where C is

the number of unique classes to which an object may belong. Each unique class is

assigned a point of distance one from the origin along an axis in RC, which we will call its

class point. We predict a query object xu to belong to the class whose class point it is

nearest. The cross-entropy loss measures how far an object’s embedding is from its

correct class point. The cross-entropy loss is then minimized where the predicted labels of

a dataset are the correct labels.

In the previous cats and dogs example, to use a network trained by cross entropy

our embedding space Z would equal R2 since we have two classes. Any object xc which is

an image of a cat would be assigned label yc = (0, 1) and any object xd which is an image

of a dog would be assigned label yd = (1, 0) (the assignment of cats to (0, 1) and dogs to

(1, 0) is arbitrary). The cross-entropy loss measures how close the embeddings zc = f(xc)

of cats are to (0, 1) and the embeddings zd = f(xd) of dogs are to (1, 0). (See figure 2).

Cross-entropy loss works well for the task of classification. Other loss functions

are used for other tasks, but most are measured by the distance between a predicted label

and a true label.
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Figure 2: To use a cross-entropy network to classify an image as a cat or dog, we
assign the points (0, 1) and (1, 0) to cats and dogs respectively. The elements of
the embeddings must sum to 1. The cross-entropy loss measures how close the cat
embeddings are to (0, 1) and dog embeddings are to (1, 0).

1.2.3 CONTRASTIVE LEARNING

Definition 10 (Contrastive Loss Functions, Contrastive Neural Networks,

Contrastive Learning).

A contrastive loss function measures the goodness of an embedding function

f by its ability to embed objects of the same class close together and embed objects

of different classes far apart with respect to some metric, d.

A contrastive neural network (contrastive network) is a neural network that

is trained by optimizing a contrastive loss function.

Contrastive learning is the subfield of deep learning which uses contrastive

networks.

The goal of contrastive learning is to learn the parameters for an embedding

function, f , which maps objects from X to Z in such a way that a chosen d meaningfully

demonstrates the similarity between two objects (see figure 3).

Networks using contrastive loss functions are fundamentally different from

networks using loss functions such as cross-entropy loss. In the latter case, an object, x∗,

is passed through the embedding function, f , and the loss is calculated as a function of a
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Figure 3: A contrastive network using the triplet loss function (Definition 15). Mul-
tiple objects (xa, xp, xn) are passed through the same embedding function, f . Their
embeddings (za, zp, zn) are contrasted by using a metric function, d, to measure the
distances dp = d(za, zp) and dn = d(za, zn). The triplet loss decreases when dp is
decreased relative to dn.

distance between an embedding z∗ = f(x∗) and its label, y∗. Loss is reduced by

decreasing the distance between z∗ and y∗. In contrastive networks, multiple objects

simultaneously pass through the embedding function and then the distances between them

are computed. The loss is reduced by decreasing the distance between objects of the same

class and increasing the distance between objects of different classes.

We return to the cats and dogs example to illustrate what makes a neural network a

contrastive network. Any object, xc, which is an image of a cat would be assigned label

yc = “cat” and any object, xd, which is an image dog would be assigned label yd = “dog”

(these labels are completely arbitrary. All that matters is that all cats share a label, all dogs

share a label, and these labels are distinct). A contrastive network embeds multiple objects

and computes the distances between these objects with a chosen metric function, d.

Contrastive loss is calculated based on the closeness of objects which share a class, and

the distance of objects of different classes.

Contrastive loss functions differ from cross-entropy loss because in order to use
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Figure 4: In contrastive networks, objects are embedded in such a way to keep objects
within a class close together and objects in different classes far apart. Where in the
embedding space Z the embeddings lie does not matter.

cross-entropy loss, we must first decide where in some embedding space we want each

class to be mapped. To use cross-entropy loss in a network with some data, we must first

perform one-hot encoding on the data, which effectively chooses a point in Euclidean

space that objects of each class should map to. With contrastive loss, the contrastive

network learns an embedding function where objects of each class should be close

together and far apart from objects of different classes. Where, in the embedding space,

particular classes are embedded is irrelevant, all that matters is that similar objects are

clustered together. What makes contrastive loss functions special, is that they evaluate

embeddings in this way, and not based on their distance from a predetermined, desired

embedding.

Contrastive learning can be used to obtain a representation of a dataset wherein

distances between objects accurately reflect their similarity. This representation can then

be parleyed into further deep learning techniques, or traditional statistical methods, to

solve a given problem. The use of contrastive learning for this purpose becomes attractive

within the first steps of application, as machine learning techniques have long been

favored over humans in the task of feature selection. Having an automated, mathematical

procedure relieves doubt instilled by humans choosing what data is relevant, and deep



12

learning is heralded for its ability to detect complex –not humanly discoverable– patterns

inherent to a dataset.

After training a contrastive network, there is no standard way to implement the

newly obtained embedding function. Part of the appeal of contrastive networks is their

agnosticism toward implementation. It could be used in standard statistical methods; such

as K-nearest neighbors for classification, or hierarchical clustering to assess the similarity

of different objects. For verification problems, appropriate positive or negative error rates

can be chosen to set a threshold for classification based on the metric function. For

forensic identification of source problems, the dissimilarities between objects could also

be used in likelihood ratios. Further deep learning could also be implemented.

1.3 RELATED WORK

In this section, we review literature relevant to the theory and application of contrastive

neural networks. One goal of this work is to tie together some scattered ideas within the

field of contrastive learning. Among them are various methods of implementing the

contrastive learning paradigm, different applications of contrastive networks, as well as

general ideas within the field of deep learning that could be applied in contrastive learning.

The history of contrastive networks is not well documented, but we attempted to

piece it together. Contrastive networks first appeared in Bromley et al. [2] under the name

of “Siamese Networks”. Pairwise contrastive loss was later defined in Chopra et al. [5]. In

pairwise contrastive loss, an object is contrasted with one other object at a time. Triplet

loss first appeared in Weinberger et al. [30]. In triplet loss, an object is contrasted with one

object from the same class and one object from a different class at the same time. N-pair

loss [22] was proposed as an extension of triplet loss in which an object is contrasted with

one object from the same class and multiple objects from different classes. A variant of

N-pair loss was later popularized in van den Oord et al. [26] [20, Sec. 2.3]. To our

knowledge, SupCon loss was introduced in Khosla et al. [13] and can be seen as an



13

extension of N-pair loss which allowed an object to be contrasted with multiple objects

from the same class and from different classes at once.

The lack of adequate labeled datasets deters supervised deep learning techniques

from being deployed on some problems. Self-supervised learning, as proposed in De Sa

[6], is a method for using prior knowledge to exploit data from multiple modalities to

create pseudo-labels for unlabeled data. Contrastive networks have been used to learn a

shared embedding space for objects from multiple modalities [15]. The self-supervised

approach has been used in contrastive learning [26, 9] or unimodal data and more recently

for multimodal data in Radford et al. [20] and Wang et al. [29]. In 2022, Yu et al. [32]

achieved new state-of-the-art performance on the ImageNet data by building on the

contrastive multimodal learning work by Radford et al. [20].

Small datasets can limit the effectiveness of machine learning techniques. The

few-shot learning (FSL) problem is formally defined, and multiple approaches to FSL are

given in Wang et al. [28]. Few-shot learning can be approached by using contrastive

networks for self-supervised learning [9]. A unique approach to FSL, with global class

representations, is given in Li et al. [14].

Contrastive learning can be made more efficient and effective by properly

choosing objects to contrast, known as batch-mining. The effectiveness of batch-mining is

demonstrated in Schroff et al. [21, Sec. 2] and Hermans et al. [10]. In recent scholarship,

Mitrovic et al. [16] has shown that including the maximal amount of negative examples

does not produce the best results. Furthermore, Tian et al. [25] explores how contrastive

learning is possible without any negative examples at all.

Identifying relevant geometric priors for a deep learning problem can have a

significant impact on sample complexity [1]. In Bronstein et al. [3], a procedure is

outlined for implementing these geometric priors into deep learning architectures.

A major motivation for this work is the application of deep learning techniques to

forensic identification of source problems. An encouraging example of the use of deep
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learning for forensic identification of source is given in Mookiah et al. [17]. Forensic

identification of source problems either fall under the category of classification or

verification. Contrastive networks can be used to address both categories of problems,

which is why we consider them for the task of forensic identification of source. The joint

training of a neural network for classification (by cross-entropy loss) and verification (by

contrastive loss) problems is demonstrated to be effective in Sun et al. [24]. There are

nuances to properly posing a forensic identification of source problem, which are

identified and made clear in Ommen and Saunders [19].

A detailed statistical analysis of the NBIDE data is given in Vorburger et al. [27].

Also mentioned in Hénaff et al. [9, Sec. 4.1] is that batch normalization appears to

exert a negative effect on the model accuracy. We found this to be true for our studies.

1.4 ORGANIZATION

As an initial proof of concept, we will demonstrate a contrastive network’s ability to learn

a useful representation. Our experiments indicate that contrastive networks perform

strongly at classification on small datasets; however, their use is not limited to the domain

of classification. We provide some insight into alternative uses for contrastive networks.

To maximize the potential of contrastive networks, we will review different

methods of constructing contrastive networks in an effort to find which produces the best

results.

Within contrastive learning, there are multiple choices of loss function. This study

examines three: pairwise contrastive loss, triplet loss, and supervised contrastive loss.

The relevant notion of “distance” is also a choice to be made, as any metric

function will suffice. This study examines five metric functions: angular dissimilarity,

cosine dissimilarity, Chebyshev distance, Euclidean distance, and arctangent dissimilarity.

In contrastive learning, it is common to not only stipulate that the distance between

objects of different classes is greater than the distance between objects of the same class
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but to stipulate that the former distance must be greater than the latter plus some

additional distance, called the margin value, m∗. This study examines the effect of the

choice of margin value on the training of a network.

Relevant to the broader field of deep learning is whether contrastive networks learn

a representation of a dataset that possesses desirable invariance properties. For example,

that embeddings of the same class are all within some distance from one another, and

roughly the same distance from embeddings of different classes. This would affirm the

usefulness of contrastive networks, as their implementation would effectively increase the

size of a dataset.

To best use contrastive learning for forensic science, or any application, these

foundational questions must be attended to. The goal of this work is to address them and

to organize the various ideas within the field of contrastive learning.

2 PROOF OF CONCEPT

Contrastive networks are optimized only to learn an embedding function of a dataset.

Therefore, they can be used for a variety of applications, especially considering they can

be used for either supervised or self-supervised learning. If the goal of “...deep learning is

to meaningfully transform data: in other words, to learn useful representations of the input

data” [4, Sec. 1.1.3], then contrastive networks are easy to endorse because this is their

only stated goal. Other networks, such as those utilizing cross-entropy loss, learn

representations merely as a byproduct while synthesizing a classifier. This section

advocates for contrastive networks by first illustrating their ability to learn desirable

embeddings and then demonstrating their potential for classification problems and

few-shot learning.

In this section and the proceeding Section 3, we use the MNIST dataset, illustrated

in Figure 5, to display the effectiveness of contrastive learning, and study different

methods of contrastive learning. The MNIST dataset is comprised of 70,000 28 ∗ 28 pixel
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images of handwritten digits. In both Sections 2 and 3 we use contrastive networks to

learn an embedding function, f : R28∗28 → R16, which maps the data to an embedding

space where the KNN classifier can be effectively used.

Figure 5: Examples of images in the MNIST dataset. Image sourced from Wikipedia
contributors [31].

To display the general efficacy of contrastive networks, Figure 6 displays three

2-dimensional principle component analyses (PCAs) of the MNIST dataset, with different

digits represented by different colors. We performed a 2-dimensional PCA of the raw

dataset, meaning the MNIST data in its data space, R28∗28. This process reduces the data

down to R2, but in such a way that the maximum amount of variability between the data is

retained in two dimensions. The first plot shows only a random sample of the data for

clarity. In this plot, all of the classes are jumbled together, which makes it difficult to

distinguish between classes.

To produce the second plot in Figure 6, a contrastive network was trained on

thousands of MNIST images, to find an embedding function f : R28∗28 → R16. A PCA

was then performed on the embeddings of the training data, and a random sample of them

is shown in the second plot. Here, there is a much higher degree of separation between

objects of different classes. Given a random point from this plot, we could have a good
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idea about which class it belongs to based on its location.

Deep learning practitioners must be cautious of overfitting the training data,

meaning that the model learns to only be effective on the training data and will not

generalize well to new data. However, in the third plot of Figure 6, we performed a

2-dimensional PCA on the validation data used to train our model. This plot shows that

the model has not overfit and does generalize well, which is encouraging. Since we used

thousands of MNIST images and it is not especially surprising that the network performs

well; the inclusion of Figure 6 is purely to assure the reader that contrastive networks can

produce their promised results.

Figure 6: On the left is a PCA of the raw MNIST dataset. In the middle is a PCA
of the training data embedded by learned f . On the right is a PCA of the validation
data embedded by learned f . Different colors correspond to different digits, indicated
by the legend on the right side of the figure.

To test the efficacy of contrastive networks in few-shot learning classification

problems, we again used the MNIST dataset. We randomly sampled 5 images of each

digit for training data, Strain, and 5 more for validation data, Svalidation, resulting in 10

images of each digit to be used for the training process. In few-shot learning, this is

referred to as a 10-shot 10-way classification problem. With our sample, we tested three

different classification methods.

First, we trained a 1-nearest neighbor classifier on the training data, Strain, in the

data space R28∗28 (the 1-nearest neighbor classifier is the K-nearest neighbor classifier

when K = 1, see Definition4). We also trained a cross-entropy network (Definition 9)
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using Strain and stopped training when maximum accuracy on Svalidation was achieved.

Lastly, we trained a contrastive network on Strain. Throughout the training we monitored

our progress by training a 1-nearest neighbor classifier on the embeddings of the training

data, Etrain = {zi : zi = f(xi), ∀xi ∈ Strain}, and testing our accuracy on the embeddings

of the validation data, Evalidation = {zi : zi = f(xi),∀xi ∈ Svalidation}. We stopped

training when maximum accuracy on Evalidation was achieved.

We then randomly sampled 1000 new MNIST images, Stest, and used them to test

the classification accuracy of the 1-nearest neighbor classifier on the raw data, the

cross-entropy network, and the 1-nearest neighbor classifier on their embeddings

Etest = {zi : zi = f(xi),∀xi ∈ Stest} produced by the contrastive network.

This process was repeated 100 times, and the results are shown in the form of a

boxplot in Figure 7. The 1-nearest neighbor classifier was outperformed by both deep

learning techniques. The cross-entropy model achieved a slightly higher accuracy and

lower standard deviation than the contrastive network.

Figure 7: Boxplot of accuracies achieved by the 1-nearest neighbor classifier on Stest,
by the cross-entropy network, and by a 1-nearest neighbor classifier on the embeddings
Etest.

Classification tasks are not the only use of contrastive networks. Verification is

perhaps the more natural way to implement the embedding function from contrastive
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learning.

Dissimilarity scores, which measure the dissimilarity between objects, can be

obtained by passing two objects through the embedding function and then taking the

distance between them. We can then set a threshold of positive or negative classification

based on the chosen error rate(s). In the setting of forensics for criminal prosecution, we

might find a high false negative error rate is a worthy trade-off for a low false positive

error rate, to avoid false incrimination.

This manuscript specifically studies contrastive networks for use in supervised

learning. However, much ongoing research in contrastive learning focuses on

unsupervised learning, where for the training dataset Strain, the labels Ytrain are unknown.

The essence of these methodologies is to consider each object x∗ ∈ S as in a class of its

own. To use contrastive learning, objects are augmented to produce x+
∗ . Contrastive

learning is then used to embed each x∗ and its augmentation(s) x+
∗ closer together. Studies

[26, 9] have found that this often results in an embedding space where objects that have

the same class are embedded closer together than objects from different classes.

For this research, a major motivating use case for contrastive networks was in

attaining similarity scores to be used in score-based likelihood ratios.

Theorem 1 (Neyman-Pearson Lemma). Suppose we have a sample S, a simple null

hypothesis, H0, and a simple alternative hypothesis, Ha. Then for any given

probability α of falsely rejecting H0, the test with the highest probability of accurately

rejecting H0 is given by rejecting H0 when L(S|H0)
L(S|Ha)

< k for k determined by chosen α.

Suppose we can use contrastive networks to learn an embedding function f with

certain invariance properties (Section 4), namely that intra-class distances have the same

distribution for all classes, and inter-class distances have the same distribution between all

classes. Consider a specific source problem (see Definition 6) with query object xu,

objects from our suspected source xi ∈ Ssuspect, and objects from various other classes

Salternative. If our hypotheses are H0: that our query object shares a class with objects in
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Ssuspect, and Ha : that xu comes from a different class than the objects in Ssuspect, then we

can use our embedding function, f , to model the numerator of the likelihood ratio as the

likelihood of distances between the embedding of our query object, zu = f(xu), and

embeddings, Esuspect = {zi : zi = f(xi),∀xi ∈ Ssuspect}, under an empirical distribution

function given by distances between embeddings within Esuspect. We can model the

denominator as the likelihood of distances between zu and embeddings zi ∈ Esuspect under

an empirical distribution function given by distances between embeddings in Esuspect and

embeddings in Ealternative = {zi : zi = f(xi), ∀xi ∈ Salternative}.

In this way, the Neyman-Pearson Lemma can be used to attain, for any chosen

false negative rate, the test with the highest true negative rate. For example, with a

fingerprint found on a crime scene and a suspect, this method allows us to choose a

probability of falsely acquitting the suspect, and retain the maximum probability of

accurately acquitting them.

3 ABLATION STUDY

Different contrastive networks can be constructed by changing particular aspects of the

network. Examples include the loss function, the metric function, and the margin value. In

this section, we perform an ablation study, where we change one of these factors at a time

while holding the other two constant. Through this experiment, we hope to gain a better

understanding of the roles played by the choice of loss function, metric function, and

margin value in contrastive learning.

3.1 LOSS FUNCTIONS

In deep learning, networks are trained by optimization with respect to a loss function. A

loss function must be chosen concerning the task at hand. For example, a loss function

used for a classification model will not apply regression.

Contrastive learning refers to the use of models that are trained with loss functions
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of a general type, which take multiple inputs and “contrast” them.

Definition 11 (Positive Pair, Negative Pair).

A positive pair is defined to be a pair of objects (xa, xb) such that ya = yp.

A negative pair is defined to be a pair of objects which is not a positive pair.

Note that if a pair of objects in a data space form a positive pair, then their

embeddings in the embedding space also form a positive pair. The same is true for

negative pairs.

Definition 12 (Positive Distance, Negative Distance).

A positive distance is to be defined as d(za, zp) such that za and zp, form a

positive pair.

A negative distance is to be defined as d(za, zn) such that za and zn, form a

negative pair.

When we refer to positive distances and negative distances we will always be

referring to the distances between the embeddings of a pair, not of the objects in data

space.

A contrastive loss function calculates positive and negative distances then

combines these values in some way to yield a loss. Cross-entropy loss differs from

contrastive loss because it requires all classes to be pre-assigned to a point, and then

calculates loss based on how far objects are from the point corresponding to their class. In

some sense, contrastive loss functions allow the model to learn the embedding points of

each class, acting as a generalization of cross-entropy loss.

Within the domain of contrastive loss, there are different contrastive loss functions.

Understanding the differences between these loss functions and the results they produce

will allow for more effective application of contrastive learning.
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3.1.1 PAIRWISE CONTRASTIVE LOSS

The pairwise contrastive loss function is, in some sense, the most naive contrastive loss

function. Pairwise contrastive loss was first introduced in Chopra et al. [5].

Definition 13 (Pairwise Contrastive Loss).

We define the pairwise contrastive loss, denoted as Lpair as

Lpair(S, f) =
∑
xa∈S

 1

|P (xa)|
∑

xp∈P (xa)

d(za, zp) +
1

|N(xa)|
∑

xn∈N(xa)

max(m∗ − d(za, zn), 0)


(3)

=
∑
xa∈S

1

|P (xa)|
∑

xp∈P (xa)

d(za, zp) +
∑
xa∈S

1

|N(xa)|
∑

xn∈N(xa)

max(m∗ − d(za, zn), 0)

(4)

where P (xa) is the set of objects in the same class as xa, N(xa) is the set of objects

in a different class than xa. The margin value, m∗, is a hyperparameter that

prevents certain undesired behaviors in training (see Section 3.3).

The second form of pairwise contrastive loss provides valuable intuition into what

makes a neural network a contrastive network. In the first summation for Equation 4,

∑
xa∈S

1

|P (xa)|
∑

xp∈P (xa)

d(za, zp),

the average positive distance within the dataset, S, is calculated. This term decreases

when the average positive distance decreases.

The second summation of Equation 4,

∑
xa∈S

1

|N(xa)|
∑

xn∈N(xa)

max(m∗ − d(za, zn), 0),

is slightly more complicated. We call the term max(m∗ − d(za, zn), 0) the hinge and it
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operates as the hinge loss in support vector machines. By the inclusion of the hinge, the

summation above decreases as negative distances increase, but only until they reach the

margin value, m∗. The significance of the hinge will be further explored in Section 3.2.1.

As the number of classes and number of objects per class grows, the number of

positive pairs will be eclipsed by the number of negative pairs. For example, with MNIST

data there are 10 classes corresponding to the 10 digits. If we take S to be a sample

comprised of two images from each class, then there are 10 positive pairs and 180

negative pairs, a ratio of 1/18. As we move the sample to 10 images from each class there

are 450 positive pairs and 9000 negative pairs, a ratio of 1/20. Once we sample 1000

images of each digit we have 4,995,000 positive pairs and 900,000,000 negative pairs, a

ratio of 1/180. This is not even the entire MNIST dataset.

This leads to a major drawback of pairwise contrastive loss. The network is

rewarded more for moving all the negative embeddings apart than it is penalized for

moving the positive pairs apart. Because of this, there is often a need to weigh the

contributions of positive pairs and negative pairs to the loss function. Thus in Equation 3,

the version of pairwise contrastive loss implemented in our study, an average loss is

computed for positive pairs, and another for negative pairs, and then the two averages are

added to create the pairwise contrastive loss. This way the model cannot arbitrarily

increase all distances to decrease loss and must pay equally as much attention to reducing

positive distances as to increasing positive distances.

3.1.2 TRIPLET LOSS

Triplet loss was first introduced in Weinberger et al. [30], although it was not termed so at

that time. The triplet loss function takes a “triplet” of objects as input, hence the name.

Definition 14 (Triplet).

A triplet, T = (xa, xp, xn), is composed of an anchor object xa, a positive

object xp, and a negative object xn in such a way that the anchor and positive
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object share a class label, while the negative object has a different label.

Definition 15 (Triplet Loss Function).

For the set T of all triplets formed by a sample S and its labels Y

Ltriplet(T ; f) =
∑

(xa,xp,zn)∈T

max(0, d(za, zp) +m∗ − d(za, zn)). (5)

The presentation of this function is different from that of the pairwise contrastive

loss function (Equation 3). Before, we shared the loss pairwise contrastive loss function

with respect to a given object xu. Here, for clarity, we show the triplet loss function with

respect to a triplet.

A hinge term is again included in triplet loss, this time as

max(0, d(za, zp) +m∗ − d(za, zn)).

The purpose of the hinge in triplet loss is the same as in pairwise contrastive loss;

however, it is implemented slightly differently. The hinge in triplet loss allows the loss to

decrease as negative distances increase, but only until the negative distance reaches the

positive distance plus the margin.

Triplets are characterized by the relative magnitudes of the positive distances, the

negative distances, and the margin. They fall into three different categories which are

relevant for a process known as batch-mining. In batch-mining, before every epoch, the

network selects which triplets to use for training. Furthermore, they help to make sense of

the triplet loss function.

Definition 16 (Easy Triplets, Semihard Triplets, Hard Triplets).

• Easy triplets are those such that the negative distance is greater than the

positive plus the margin: d(za, zp) +m∗ < d(za, zn).
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• Semi-hard triplets are triplets where the negative distance is greater than the

positive distance, but less than the positive distance plus the margin:

d(za, zp) < d(za, zn) < d(za, zp) +m∗.

• Hard triplets are those in which the negative distance is less than the positive

distance: d(za, zn) < d(za, zp).

In the case of easy triplets, the loss is a constant 0, therefore the gradient will be a

constant 0. Because of this, easy triplets can be considered a nuisance to training, and

batch-mining techniques seek to avoid them.

Semi-hard triplets are sometimes, but not always sought after during batch-mining.

An individual semi-hard triplet contributes a maximum of m∗ to the loss and therefore has

a non-zero but potentially less drastic effect on the gradient than hard triplets.

Hard triplets are always desired in batch-mining, and they are the exclusively

relevant triplets in hard batch-mining. A hard triplet contributes a minimum of m∗ to the

loss and therefore has the potential to greatly affect the gradient. A dataset with no hard

triplets is a dataset in which the 1-nearest-neighbor classifier will yield 100% accuracy.

The hard-batch-mining may yield perfect performance.

Triplet loss has been implemented with various batch-mining techniques, which

can produce different results. These techniques were not a focus of this study, but Schroff

et al. [21] found that hard batch-mining can increase the effectiveness of triplet loss.

An advantage of triplet loss is that it avoids the problem of too many negative pairs

by instead using triplets which ensure a positive and negative pair are always being

considered together. Perhaps because of this property, triplet loss typically outperforms

pairwise contrastive loss.

3.1.3 N-PAIRS LOSS

Over time the N-pairs, loss was introduced [22] as an extension of triplet loss. In N-pairs

loss, the network trains on an N-pair instead of a triplet. An N-pair still consists of the
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anchor and its positive counterpart, but instead of just one negative object, it contains N-1

negative objects. Therefore an N-pair is a generalization of a triplet, and a triplet is simply

a 2-pair.

N-pair loss is not considered in this study. It is relevant to the reader because it has

been found to outperform triplet loss [22], and it is relevant to the evolution of contrastive

learning.

3.1.4 SUPCON LOSS

The last loss function considered in this study is the SupCon (short for Supervised

Contrastive) loss. The SupCon loss function was first proposed in Khosla et al. [13].

Definition 17 (SupCon Loss).

Lsupcon(S, f) =
∑
xa∈S

−1

|P (xa)|
∑

xp∈P (xa)

log
exp(zx · zp/τ)∑

xn∈N(xa)
exp(zx · zn)/τ)

(6)

where τ is a hyperparameter called the temperature.

In our study, we kept τ = 0.1 as per the findings of Khosla et al. [13, Sec. 4]. The

metric, d, has been replaced by a dot product, which is a measure of similarity. Similarity

is seen as the opposite of distance. By L2 normalizing the embeddings, the dot product

becomes the cosine similarity, which is 1 minus the cosine dissimilarity (see Equation 11).

Other metric functions can be similarly adapted to product similarities instead of

distances.

The SupCon loss function was conceived as an extension of the self-supervised

contrastive loss used in van den Oord et al. [26] and Hénaff et al. [9]. However, the

authors of Khosla et al. [13] point out that it can also be considered a generalization of the

N-pairs loss. In SupCon loss, the network “contrasts” each embedding with all of its

associated positive and negative embeddings. This is similar to how N-pairs loss extended

the triplet loss to be used with multiple negative embeddings.
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The SupCon loss function is very similar to the pairwise contrastive loss function.

It is more similar in composition to pairwise contrastive loss (Equation 3) than to N-pair

loss [22] or to triplet loss (Equation 5). Positive and negative distances are entangled in the

latter two loss functions, while completely separable from one another in the former two.

By separable we mean that the loss functions can be written in two distinct parts, the first

only considering positive distances, and the second considering only negative distances.

In Equations 7 through 10, we demonstrate how to separate the positive and

negative distances in SupCon loss.

Lsupcon(xa, f) =
−1

|P (xa)|
∑

xp∈P (xa)

log
exp(za · zp/τ)∑

xn∈N(xa)
exp(za · zn/τ)

(7)

=
−1

|P (xa)|
∑

xp∈P (xa)

log (exp(za · zp/τ))− log
∑

xn∈N(xa)

exp(za · zn/τ)


(8)

=
−1

|P (xa)|
∑

xp∈P (xa)

za · zp/τ +
1

|P (xa)|
∑

xp∈P (xa)

log
∑

xn∈N(x)

exp(za · zn/τ)

(9)

= log
∑

xn∈N(xa)

exp(za · zn/τ)−
1

|P (xa)| τ
∑

xp∈P (xa)

za · zp (10)

This formulation of the SupCon loss function looks very similar to the pairwise

contrastive loss. In this form, the average positive similarity is subtracted from the

weighted average of negative pair similarities. In pairwise contrastive loss, the average

positive distance is added to the average negative distance.

Our early experiments indicated that triplet loss performed better than pairwise

contrastive loss. The authors of Khosla et al. [13] consider SupCon loss as a generalization

of triplet loss; however, the triplet loss that they consider is different from the one used in

this study (the hinge term is absent there). The current portion of this study is dedicated to

comparing the performance of different contrastive loss functions directly to one another.
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B) Triplet C) N-pair D) SupConA) Pairwise Contrastive

Figure 8: Demonstration of how different loss functions approach contrasting embed-
dings: A) Pairwise contrastive loss selects a red and a blue object then pushes them
apart, B) Triplet loss selects two blue objects and moves them closer, but further
from a red object, C) N-pair loss selects two blue objects and moves them closer
together while moving them away from all red and green objects, D) SupCon loss
selects all blue objects and moves them closer together while moving all the red and
green objects away from them.

3.1.5 RESULTS

For each loss function, we trained 100 models. Each model was trained on a randomly

generated training and validation dataset, each comprised of 10 images of each MNIST

digit. Models were then evaluated by their accuracy with a 1-nearest-neighbor classifier on

randomly generated testing data of 1000 MNIST images. Our study used the same model

architecture for all three loss functions, and computed distances via cosine similarity.

In Figure 9, triplet loss performs better than both pairwise contrastive loss, and

SupCon loss. In Section 3.1.4, we showed that the pairwise contrastive loss function and

the SupCon loss function are more similar to one another than they are to triplet loss. This

finding is supported by similar results obtained from models trained via pairwise

contrastive loss and models trained via SupCon loss.
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Figure 9: Boxplot depicting 1-nearest neighbor accuracies obtained by networks
trained with three different contrastive loss functions. One hundred models were
trained with each loss function. The mean and standard deviations of the accura-
cies from each model are displayed next to their corresponding boxplot. Triplet loss
performed better than pairwise contrastive loss and SupCon loss. The latter two
performed similarly, consistent with our derivation in Equation 7.

3.2 METRIC FUNCTIONS

In contrastive learning, we learn an embedding function, f , which maps our dataset from

its native domain, X , to an embedding space, Z . We choose a metric function, d, on our

embedding space which computes the distances between embedded objects

z∗ = f(x∗) ∈ Z . We then optimize a contrastive loss function (Definition 1.2.3) with

respect to the parameters of our embedding function, f , in hopes of decreasing positive

distances and increasing negative distances computed by the metric, d.

3.2.1 DISTANCE AND DISSIMILARITY

Notably, some metric functions are bounded, while others are not. Therefore we separate

metric functions into two distinct categories, distance functions and dissimilarity

functions.

Definition 18 (Distance Function, Dissimilarity Function).
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A distance function is an unbounded metric function.

A dissimilarity function is a bounded metric function.

This notation is not a common convention, but adopting it will allow greater clarity

in communicating our findings.

In contrastive learning, if a loss function, such as pairwise contrastive loss

(Definition 13) is used in conjunction with a distance function, then the loss function can

be infinitely decreased by infinitely increasing the distances between all embedded

objects, including object from the same class. This is a problem because the purpose of

contrastive learning is to render objects only from different classes distant while keeping

objects from the same class close. The solution to this problem is to introduce a “hinge

term”.

We pointed out the hinge term in Section 3.1 when describing the pairwise

contrastive loss (Definition 13) and triplet loss (Definition 15). The hinge term in both loss

functions serves the purpose of setting a maximum attainable negative distance. For

example, in pairwise contrastive loss, if the hinge term, max(m∗ − d(za, zn), 0), were

removed in favor of using the unaltered negative distance, −d(za, zn), then the pairwise

contrastive loss could be reduced by increasing negative distances infinitely instead of

ever decreasing positive distances. By bounding the negative distance, the hinge term

effectively renders any choice metric function as a dissimilarity function.

There are theoretical and philosophical justifications for the use of dissimilarity

functions over distance functions. On the theoretical side, consider the use of a distance

function in pairwise contrastive loss. The contrastive network could update the embedding

function every epoch to increase the distance between every object –including positive

pairs– while decreasing the loss function. The loss function would have no minimum, and

the embedding function would practically be useless.

Philosophically, it makes little sense to allow embedded objects to become

infinitely distant. In contrastive learning, our goal is to learn an embedding function that,
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along with our metric function, allows us to characterize the similarity/dissimilarity

between objects. There is an obvious case in which two objects are maximally similar,

which is when they are the same. This is reflected in a metric function by the reflexive

property d(x, x) = 0. The difference between using a distance function and a dissimilarity

function is equivalent to the philosophical question of whether objects can be maximally

similar, or whether, for a given object, increasingly dissimilar objects can be found ad

infinitum.

It is the opinion of the author that there exists a notion of maximal dissimilarity,

which corresponds to the use of a dissimilarity function. For example, in comparing

images of handwritten digits from the MNIST dataset, any two images of different digits

should be considered maximally dissimilar. Therefore, the use of dissimilarity functions,

over distance functions, is rationally justified.

Different metric functions can and have been used in all types of deep learning,

and indeed within contrastive learning. In this experiment, we analyzed the use of five

metric functions for contrastive loss.

3.2.2 COSINE DISSIMILARITY

Cosine dissimilarity (usually referred to as cosine distance), is a semimetric function. It is

popular within deep learning and has the property that it is easy to compute.

Definition 19 (Cosine Dissimilarity).

dcosine(z1, z2) = 1− z1 · z2
∥z1∥∥z2∥

. (11)

Cosine dissimilarity forms the semimetric space (Sn, dcosine).

The cosine dissimilarity is equivalent to one minus the cosine similarity of two

vectors. One drawback to cosine distance is that fails to satisfy the triangle inequality,

therefore it is not a formal metric function.
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3.2.3 ANGULAR DISSIMILARITY

Definition 20 (Angular Dissimilarity).

dangular(z1, z2) =
arccos(1− dcos(z1, z2))

π

=
arccos

(
z1·z2

∥z1∥∥z2∥

)
π

.

(12)

Angular dissimilarity forms the metric space (Sn, dangular)

The angular dissimilarity (commonly referred to as angular distance) is the

arccosine of the cosine similarity between two vectors, divided by π. The angular distance

satisfies the triangle inequality which makes it a formal metric function.

3.2.4 CHEBYSHEV DISTANCE

The Chebyshev distance between two vectors is their greatest dimension-wise difference.

Definition 21 (Chebyshev Distance).

dChebyshev(z1, z2) = max
i

(|z1,i − z2,i|) (13)

where z∗,i refers to the ith element of the vector z∗.

The Chebyshev distance forms the metric space (Rn, dChebyshev) and is some

times written as ∥z1 − z2∥∞.

3.2.5 EUCLIDEAN DISTANCE

Definition 22 (Euclidean Distance).

dEuclidean(z1, z2) =

√∑
i=1

(z1,i − z2,i)2 (14)

where z∗,i refers to the ith element of the vector z∗.
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The Euclidean distance forms the metric space (Rn, dEuclidean) and is usually

times written as ∥z1 − z2∥2.

3.2.6 ARCTANGENT DISSIMILARITY

The arctangent dissimilarity is novel and created for experimental purposes. It is an

extension of the Euclidean distance.

Definition 23 (Arctangent Dissimilarity).

darctan(z1, z2) =
2

π
arctan(dEuclidean(z1, z2))

=
2

π
arctan

√√√√ n∑
i=1

(z1,i − z2,i)2

 .
(15)

The arctangent dissimilarity forms the metric space (Rn, darctan) (see Remark 1).

The arctangent function is used to bound the Euclidean distance below π
2
, which is

then scaled by 2
π

to bound the function on [0, 1).

Remark 1. Suppose a, b, c ∈ R+ such that a+ b ≥ c. We want to show that

arctan(a) + arctan(b) ≥ arctan(c).

Proof. Suppose a, b ∈ R+. The derivative of the arctangent function,

d arctan

da
=

1

1 + a2
,

is positive for all a ≥ 0. Therefore the arctangent function is strictly increasing for

a ≥ 0.

Define g(a, b) = arctan(a) + arctan(b)− arctan(a+ b). Then

∂g

∂a
=

1

1 + a2
− 1

1 + (a+ b)2
(16)

≥ 0 (17)
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and in the same manner ∂g
∂b

≥ 0.

Also, for g(0, 0) = arctan(0) + arctan(0)− arctan(0 + 0) = 0. Because g(a, b)

equals 0 at a = b = 0, and is nondecreasing as a and b increase, we have ∀a, b ∈ R+,

g(a, b) ≥ 0.

Now suppose c ∈ R+ such that c ≤ a+ b. We can show

arctan(a) + arctan(b)− arctan(c) ≥ arctan(a) + arctan(b)− arctan(a+ b)

because the arctangent function is a nondecreasing function. Then

arctan(a) + arctan(b)− arctan(c) ≥ g(a, b) (18)

≥ 0 (19)

=⇒ arctan(a) + arctan(b) ≥ arctan(c) (20)

Therefore we have shown that if a, b, c ∈ R+ and a+ b ≥ c, then

arctan(a) + arctan(b) ≥ arctan(c).

3.2.7 RESULTS

For each metric function, we trained 100 models, each on a randomly generated training

dataset and validation dataset, both comprised of 10 images of each MNIST digit. Models

were evaluated by their accuracy with a 1-nearest-neighbor classifier on randomly

generated testing data of 1000 MNIST images. Our study used the same model

architecture for all five metric functions, and all models were trained with the triplet loss

function.

Figure 10 shows that most all metrics performed similarly except for the

Chebyshev distance, which was slightly worse. We theorize that the choice of metric

function has little to no effect on the accuracy of a model because the network is capable

of learning a change of metric.
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Figure 10: Boxplot depicting 1-nearest neighbor accuracies obtained by networks
trained with five different metric functions. One hundred models were trained with
each metric function. The mean and standard deviations of the accuracies from
each metric function are displayed next to their corresponding boxplot. All metric
functions performed similarly, with Chebyshev distance performing slightly worse
than the other four metric functions.

Suppose we have a contrastive network fbase : X → Za which was trained on a

metric d1 : Z2
a → R. Let x1, x2 ∈ X and denote their embeddings z1 = fbase(x1) and

z2 = fbase(x2). Now, suppose we have a second metric, d2 : Z2
b → R. We theorize that it

is possible to learn a neural network fshift : Za → Zb such that

d1(z1, z2) ≈ d2(fshift(z1), fshift(z2)).

To us, this statement would imply that the choice of metric does not matter to the

contrastive network, because it can learn to incorporate a change of metric into itself.

3.3 MARGIN VALUE

In Section 3.2.1, we explored what we called the hinge term, which is used in some

contrastive loss functions to set a maximum negative distance. This is to prevent a

contrastive network from increasing negative distance while neglecting positive distances.
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The margin value m∗ within the hinge term serves as this maximum negative distance (see

Equations 13 and 15).

The implementation of the hinge term into contrastive loss functions can be

straightforward, as in pairwise contrastive loss, where the maximum distance is set to m∗.

In the case of triplet loss, implementation is slightly more nuanced, and the maximum

negative distance is defined with respect to a triplet, as d(xa, xp) +m∗ (the positive

distance plus the margin value) which will converge to m∗ as the triplet loss converges to

0.

If a dissimilarity function is used as a metric, the use of a hinge is no longer

necessary, as there is already a maximum distance. However, hinge terms are often used

regardless.

The question addressed in this section is whether the specific value of the margin,

m∗ has any effect on model accuracy. To this end, we trained models with margin values

ranging from 0.000 to 0.995 at increments of 0.005, for a total of 200 models. Each model

was trained on randomly generated training and validation data, both comprised of 10

images of each MNIST digit. Models were evaluated by their accuracy with a

1-nearest-neighbor classifier on randomly generated testing data of 1000 MNIST images.

Our study used the same model architecture for all five metric functions, and all models

were trained with the triplet loss function and cosine dissimilarity.

Figure 11 indicates that the value of m∗ does not have an obvious effect on the

accuracy of the model. This is in some ways unsurprising, considering that for two models

using different values of m∗, the calculated dissimilarities they produced can be scaled to

the same range (see Figure 12).

When the dimension of the embedding space is small relative to the number of

classes, the values of m∗ will, in turn, have to be sufficiently small for the model to be

capable of learning a function with a desirable property of specific-class invariance (see

Definition 25). For example, if a dataset has 5 classes, and a model uses cosine
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Figure 11: Scatterplot of model accuracies obtained by training contrastive networks
on a multitude of margin values, spanning from 0.000 to 0.995

Figure 12: Examples of learned embeddings from contrastive networks with different
margin values m∗. In this example, there are only two classes, blue circles and red
squares. The network which produced the embeddings on the left had the smaller
margin value and thus the two classes are not as distant as they are in the embeddings
on the right. However, the two classes were already distinguishable in the embeddings
on the left, and pushing them further apart does not provide any benefit.
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dissimilarity in R2 with no margin value, there is simply not enough room in the

embedding space to learn an embedding function, f , which negative pairs to be maximally

dissimilar.

4 INVARIANCE PROPERTIES

The study of geometry has contributed to an unimaginably vast array of human

achievements. From Einstein’s general theory of relativity in physics to the use of

perspective and proportions in the art of Leonardo da Vinci, geometry has been involved

in many human activities. One of its most recent applications has been to deep learning, in

a new field referred to as geometric deep learning. The principle object of importance in

geometric deep learning is identifying the symmetries of a given dataset.

Deep learning can be informally defined as the use of deep neural networks to

obtain an approximation, f̂ : X → Z , of a target function, f : X → Z , by optimization of

a loss function L(f(S), f̂(S; θ)) with respect to the parameters θ ∈ Θ. The process of

training the network can be understood as traversing a function space

F = {f̂(·; θ) : ∀θ ∈ Θ} in search of the best approximation f̂ of f , using the training

dataset, Strain as fuel for the journey (note the target function, f , may not be unique).

Deep neural networks are universal approximators of continuous functions [11],

which makes the function space F massive, often too massive to traverse with given

training data. Making progress in the face of this issue is the fundamental concern of

few-shot learning. By leveraging symmetries, invariances, and equivariances, geometric

deep learning provides a method to approach few-shot learning problems.

Definition 24 (Symmetry, Invariance, Equivariance).

If an object x ∈ X possesses a property p, then a symmetry of x is to be

defined as a transformation g : X → X such that g(x) somehow preserves property

p.

A function f : X → Z is invariant under symmetry g if f(g(x)) = f(x).
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A function f : X → Z is equivariant under symmetry g if f(g(x)) = h(f(x))

for some h : Z → Z which represents the action of g on a different space.

Suppose objects x ∈ X are images, and let gleft be the transformation of shifting

an image leftward. Then if x is an image of a cat, the transformation gleft does not affect

that the image is of a cat. Thus function, f , which classifies objects as a cat must be

invariant to that symmetry of shifting.

For machine learning practitioners, large-scale image classification has historically

been “notoriously difficult” [4, Sec 1.2.5]. The success of convolutional neural networks

brought a massive performance increase in image classification among other areas of deep

learning. The use of convolutional networks has geometric justifications: they are made of

shift-equivariant convolutional layers and an eventual global pooling layer which makes

them shift-invariant. A dense neural network could learn to become shift-invariant with

masses of pixel-shifted data, but this wonderful solution is hard to find amidst the

network’s vast function space.

In summary, for deep-learning image classification, the target function, f ,

possesses the property of shift-invariance. We recognize this and restrict the function

space –to convolutional networks– accordingly. When the function space is reduced, less

data is needed to reach a sufficient approximator [1]. Until the recent success of

transformers, almost all state-of-the-art image classification models were convolutional

networks [7, 23].

For deep learning applications other than image classification, a dataset may

possess symmetries under transformations other than shifts. The target function for any

application should reflect the symmetries of its respective dataset through invariance or

equivariance. The formal characterization of equivariance and invariance properties

implicit in contrastive learning could lead to similarly large increases in model

performance and adoption.

Suppose we want a contrastive network, f̂ : X → Z , which can be used with a
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dissimilarity function, d : Z2 → [0,m∗], to determine the dissimilarities between

fingerprints. If we consider all pairs of fingerprints from the same person symmetric and

all pairs of fingerprints from different people symmetric, then the target function, f , when

used with d, possesses a couple of interesting invariance properties that we would want to

be mimicked by our contrastive network.

Definition 25 (Specific-Object Invariance, Specific-Class Invariance).

Let C be the set of all classes, then for all Ci, Cj ∈ C such that Ci ̸= Cj, and

x1, x2 ∈ Ci, x3 ∈ Cj.

Specific-Object Invariance (SOI): d(z1, z2) = 0 (21)

Specific-Class Invariance (SCI): d(z1, z3) = m (22)

for some m ∈ R.

Recall embeddings are denoted as z∗ = f(x∗).

Specifc-object invariance refers to the distance between embeddings from the

same class being invariant under the transformation of swapping objects out for different

objects within the same class. Specific-class invariance refers to the distances between

embeddings from different classes being invariant under the transformation of selecting a

different class.

In the fingerprint example, the distances between embeddings from our contrastive

network, f̂ , would ideally possess both of these invariance properties. This means that any

two fingerprints from the same person are embedded to the same point, and the distance

between the embeddings of any fingerprints from any two different people is the same.

These properties also apply to the target function to be learned by cross-entropy

loss. Recall the illustration of the embeddings of a cross-entropy network in Figure 2. In

this example, the cross-entropy loss (Definition 9) is minimized when all images of cats,

xc, are mapped as zc = (0, 1) and all images of dogs, xd, are embedded as zd = (1, 0).
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Therefore the target function of a cross-entropy network satisfies these invariance

properties with respect to Euclidean distance (Definition 22).

Specific-object invariance describes the property of the target function mapping all

objects from the same class to the same point. Such a function would not be injective, and

therefore limited in usefulness. We can instead aim for specific-object stability, which

requires only that all objects from the same class be within a certain distance, c0, from one

another.

Definition 26 (Specific-Object Stability).

Let C be the set of all classes, then for all Ci ∈ C, for x1, x2 ∈ Ci, and

c0 ∈ R+.

Specific-Object Stability (SOS): 0 ≤ d(z1, z2) ≤ c0. (23)

Specific-class invariance describes the property of the target function which retains

equal distance between the embeddings of any two objects from different classes.

Likewise to the specific-object case, we propose to seek specific-class stability, rather than

invariance.

Definition 27 (Specific-Class Stability).

Let C be the set of all classes, then for all Ci, Cj ∈ C such that Ci ̸= Cj, for

x1 ∈ Ci, x2 ∈ Cj, and c1,m ∈ R+.

Specific-Class Stability (SCS): m− c1 ≤ d(z1, z2) ≤ m. (24)

If we view our objects as signals, using a notion of stability instead of invariance

can account for signal deformations [3, Sec. 3.3].

Describing the desired invariance/stability properties for contrastive networks is

the first step in designing a network that enforces them. This is just as in the case of
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convolutional networks being designed to enforce translation invariance. Unlike the case

of convolutional networks, there is no obvious network architecture that possesses these

properties.

Further analysis of these questions could lead to influential results for the field of

deep learning, especially within the subset of few-shot learning. Because many forensic

problems must grapple with small datasets, a greater understanding of these algorithms

may prove unequivocally useful to forensic scientists.

5 APPLICATION TO FORENSIC BALLISTIC TOOLMARK DATA

5.1 NBIDE DATASET

The NBIDE (NIST Ballistics Imaging Database Evaluation) was created for the study

Vorburger et al. [27]. Within the NBIDE dataset, there are 144 images of the backs of fired

cartridge casings. When a gun fires a cartridge, it leaves impressions on the casing. The

firing pin impression is caused by the firing pin striking the primer on the casing. The

breech face impression is caused by the cartridge being forced back against the breech

face of the gun. The ejector mark is caused by a gun’s ejector mechanism which dispels a

fired cartridge casing (see Figure 13 for reference).

The NBIDE study used twelve 9mm handguns. Each gun was one of three models;

each model contributed four guns; and each gun fired twelve cartridges. The fired

cartridges were one of four models, and each gun fired each model of cartridges three

times. This amounts to a total of 144 cartridges fired, and thus 144 cartridges casings to

analyze. However, the NBIDE study only analyzed the cartridges of 3 of the brands of

cartridges, for a reduced total of 108 cartridge casings. To maintain a direct comparison,

we omitted the same 36 cartridges from our study. Images were taken of the back of all

fired cartridges, as well as 3-D topography scans. In this work, we focus on the images

and do not analyze the scans.

In the NBIDE study, casing images were compared using the I-2D correlation.
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Figure 13: Image showing the A) firing pin impression, B) ejector mark, and C)
breech face impression. Photo from Forensic Technology, Inc. [8].

Definition 28 (I-2D Correlation).

The I-2D correlation between two images is computed by an Integrated

Ballistic Identification System (IBIS) using BrassCatcher Software Version 3.4.5.

IBIS is a proprietary technology developed by Forensic Technology.

Before computation for the I-2D correlations between images of casings, the

images were preprocessed into three regions corresponding to the three impressions on the

casing (see Figure 13). The I-2D correlations between images were computed separately

for each of the three regions of the images. The NBIDE study found the region containing

the breech face impression to be the most powerful in identifying the handgun that left the

impression.

In our study, we cropped the images down to square regions roughly

encompassing both the breech face region and the firing pin region. Part of the motivation

for applying deep learning to forensic identification of source problems is to reduce the

amount of human preprocessing, instead delegating this task to the neural network –a

purely mathematical procedure.
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5.2 RESULTS

The NBIDE used a standard [27, Sec. 1] measure of performance for their method, called

the “TopTen” accuracy. For each xu in the set S of 108 analyzed cartridges, they

computed the I-2D correlation between xu and the remaining 107.

Definition 29 (TopTen Accuracy).

For xu ∈ S with label yu, let Stop be the set of the 10 x∗ ∈ S \ {xu} which are

most similar to xu. For xi ∈ Stop, let yi be its class label.

TopTen =
1

|S|
∑
xu∈S

∑
xi∈Stop

1yu(yi) (25)

where 1yu is the indicator function of label yu.

For example, in the NBIDE study using the I-2D correlation, the inner sum

represents, for a given cartridge casing image, xu, fired from gun, yu, and the 10 cartridge

casing images, Stop, which have the highest I-2D correlation with xu, the number of

x∗ ∈ Stop which were also fired from gun yu. The TopTen accuracy is therefore the

average across all xu ∈ S.

For our tests, we built contrastive networks by using the DenseNet121 [12]

architecture, pre-trained on the ImageNet database with its weights frozen. On top, we

added a convolutional layer and a densely connected layer.

For each xu ∈ S, we created a set Strain with 8 cartridges from each gun, and a set

Svalidation with the remaining 11 cartridges. We then trained a contrastive network with

triplet loss on Strain. At the end of every epoch we computed the average TopTen

accuracy for xv ∈ Svalidation. We ended training when the average TopTen accuracy for

the validation data stopped improving. Finally, we used the model to procure the 10

x∗ ∈ Strain ∪ Svalidation most similar to xu. By repeating this process for each xu ∈ S, we

attained our average TopTen score.
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Table 1: Table showing the ”TopTen” and Top-1 accuracies of the three analyzed
approaches. No Top-1 accuracy was provided for the I-2D correlation.

I-2D Correlation Contrastive KNN

TopTen 5.57 4.28 2.11
Top-1 N/A 0.45 0.49

We also computed the Top-1 accuracy for our contrastive network, which is a more

popular measure of accuracy in deep learning image classification. The Top-N accuracy

of a model is the probability that the true class of yu of xu is one of the top N predictions

of class by the model. Thus the Top-1 accuracy is a model’s accuracy in correctly

classifying an object.

We used the 1-nearest neighbor classifier to perform classification on the

embeddings z∗ = f(x∗) obtained from our contrastive network. We also computed the

1-nearest neighbor classifier on the raw images for comparison. Future work can compare

itself to these methods by the Top-1 accuracy.

The results of our experiment are summarized in Table 1. The I-2D correlation

method outperformed the contrastive network, and both outperformed the 1NN classifier

on the raw image data. Interestingly, the 1NN classifier slightly outperformed the

contrastive network in Top-1 accuracy.

Although the contrastive network failed to outperform the I-2D correlation, the

result is still promising for the technology. The first part of our contrastive network,

DenseNet121, is pre-trained on the ImageNet dataset of images with classes such as

“vending machine” and “bald eagle”. DenseNet121 serves as a sort of preprocessing

phase of feature extraction. It is likely the features that DenseNet121 selects are not

well-suited for analyzing impressions on cartridge casings. The result obtained using

DenseNet121 could probably be improved by instead using a network pre-trained on a

larger corpus of cartridge casings besides the NBIDE data.

DenseNet121 also required the images to be compressed from 1500 ∗ 1500 pixels
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(their size after cropping) to 224 ∗ 224 pixels. Because the casing impressions are very

finely detailed, it may be that valuable information is lost during this compression. This

further motivates the use of a novel pre-trained network, one trained on similar data and

with a larger input size.

Furthermore, our analysis failed to account for rotations in the images. It is

common to perform data augmentation in deep learning, especially in few-shot learning

problems [28, Sec. 3]. Future work could improve this result by rotating the training

images during training. Alternatively, as in Section 4, we could attempt to construct a

network invariant to image rotations.

6 CONCLUSION

In this work, we focused on the use of contrastive networks for classification problems in

forensic sciences. Our analysis showed that neural networks trained by cross-entropy loss

slightly outperformed contrastive networks for few-shot classification.

To support our experiments, we found it necessary to unify some of the disparate

terms used across the contrastive learning literature. We hope that this unification will be

useful for future researchers in the field. We analyzed the individual effect on model

accuracy of different contrastive loss functions, metric functions, and margin values. We

found triplet loss to be the best-performing loss function, and that the metric function and

margin value have little to no effect on accuracy.

The embedding functions learned from contrastive networks ideally exhibit certain

invariance properties concerning the class of objects. We detailed these properties with the

belief that further examination could provide insight to train contrastive networks more

efficiently and with better results.

Because they are an auspicious method for few-shot learning and verification,

contrastive networks can be used for many forensic identification of source problems. We

found contrastive learning to be competitive with other statistical methods for the task of
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identification of the source firearm for a fired cartridge casing. Furthermore, our methods

spent significantly less time on data preprocessing and did not account for rotations of

cartridge casing images. We also did not perform batch-mining in this study, which has

been found to improve accuracies. We believe that by tending to these factors, future work

may be able to achieve state-of-the-art performance.



48

REFERENCES

[1] Bietti, A., Venturi, L. and Bruna, J. [2021], ‘On the sample complexity of learning
under geometric stability’, Advances in neural information processing systems
34, 18673–18684.
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