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ABSTRACT 

DEVELOPING MACHINE LEARNING MODELS FOR OPTIMAL SELECTION OF 

SOIL SAMPLING SITES 

SRAVANTHI BACHINA 

2024 

     Soil sampling and analyses play a crucial role in optimizing nutrient 

management and enhancing crop productivity. However, collecting representative 

samples across diverse landscapes is challenging due to knowledge gaps about spatial 

variability of soil properties, large fields, multiple samples, and analysis costs. Collecting 

soil samples based on the management zones can help farmers gather precise information 

about soil properties with fewer samples. Recent developments in precision agriculture 

and machine learning. This study aimed to develop machine learning models that can 

learn, analyze, and refine landscape and soil properties data for automated selection of 

soil sampling zones and generating prediction maps. Accordingly, random forest 

regression and classification models were built using data from four individual fields 

each with 12 features and five management zones for each field as target for model 

training and testing. Later a generalized model was developed by combining data from 

seven corn fields and seven soybean fields to improve predictive performance of the 

model which was evaluated on two new fields. The classification model for the four 

fields achieved overall accuracies of 0.71, 0.61, 0.75 and 0.69, kappa scores of 0.69, 0.58, 

0.65 and 0.6, and F-scores of 0.7, 0.58, 0.75 and 0.59, respectively. Regression model 

yielded R2 values of 0.71, 0.67, 0.83 and 0.76 and RMSE values of 6.7, 7.94, 5.45 and 

2.4, respectively. The generalized model achieved overall accuracy of 0.8 and 0.75, 



xii 

 

  

Kappa score of 0.71 and 0.59, F-1 score of 0.93 and 0.95 for soybean and corn field 

respectively. Despite achieving higher results generalized models failed to predict the 

management zones accurately. This could be due to limitation of model transferability 

and adaptability to various field conditions. This demonstrates the need to create and 

utilize high-resolution data with more spatial variability which will provide a 

comprehensive dataset for model training. Addition of other features including 

environmental variables, biomass indices that are more correlated to yield helps to 

improving the predictive performance of the models. Overall, this work establishes a 

foundational framework for novel applications of remote sensing data and machine 

learning techniques in addressing soil sampling challenges. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction  

Soil is an essential component of life on Earth, serving as a major interface 

between agriculture and the environment (Doran, 2002), sustaining human population 

and providing ecosystem services (Meyer & Turner, 2003). Understanding soil 

composition and its dynamic properties contributed to substantial developments in 

modern agriculture (Sengupta & Banerjee, 2012) by increasing crop productivity and 

farm profitability across the globe (Lal, 2008).  

Soil sampling is the underlying tool aiding in a deeper understanding of soil 

properties (Carter & Gregorich, 2007) like nutrient availability, pH, sodium absorption 

ratio, cation exchange capacity (CEC), electrical conductivity (EC) (Corwin & Lesch, 

2005). Although started as a scientific endeavor, by early 1900s both farmers and 

researchers began collecting soil samples and testing them for key plant nutrients (Peck, 

1990). By analyzing the collected samples, researchers were able to gain a profound 

understanding of nutrient movement, uptake, and losses (Havlin, 2020; Sparrow et al., 

1999; Wolf, 1999), while producers benefited from the resulting increase in crop 

productivity.  Nationwide soil surveying in late 20th century further solidified the 

importance of soil sampling (Brevik et al., 2016) among masses. 

Although sampling techniques have not changed significantly over the past 

decades (Knowles & Dawson, 2018), the number and quantity of soil samples required 

for various analyses have increased (D. W. Franzen & Peck, 1995). Modern agricultural 

machinery using precision agriculture practices like variable rate nutrient application 

require detailed information about different soil properties. As a result, the need for 
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collecting soil samples at regular intervals has intensified, with a shrink in the size of 

mapping units (Auernhammer, 2001; Kerry et al., 2010).  

1.2 Soil testing  

Within field variations of soil properties can be attributed to natural soil formation 

processes, environmental variation, and management practices. Factors like landscape 

position and soil parent material significantly impact soil texture, organic matter content, 

drainage, and other properties (Mallarino, 2023) directly influencing plant nutrient 

availability. Management practices affect nutrient levels by crop removal (Mallarino, 

2023) can also be observed, thus requiring periodic soil testing. Modern agricultural 

practices like high density planting and nutrient demanding crops like wheat and corn 

pulls out more nutrients from soil necessitating nutrient addition for subsequent crops. 

Soil fertility refers to the ability of soil to provide adequate amounts of essential 

nutrients for plant growth, thus directly influencing yields (Havlin, 2020). Fertilizers play 

a key role in maintaining soil fertility by replenishing nutrients that are depleted through 

crop uptake, erosion, leaching, anthropological and other natural processes. Under 

application of fertilizers reduces yields, thus directly impacting farm profitability 

(Penuelas et al., 2023). Over application on the other hand leads to runoff and leaching 

that contribute to eutrophication, algal blooms, and other environmental problems apart 

from the economic losses due to increased input costs (Savci, 2012). Therefore, testing 

soil samples for nutrients is essential for informed fertilizer applications, thus minimizing 

economic losses and mitigating environmental risks associated with over application. 
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 Soil testing is crucial for assessing plant nutrient needs as it provides insights into 

the nutrient availability in soil. Apart from this, sampling plays a significant role in the 

process of soil testing and is often the primary source of error. Therefore, it is vital to 

collect soil samples that accurately reflect soil properties in the area of interest 

(Mallarino, 2005). To ensure an effective soil-testing program, several factors (like 

texture, organic carbon, water content, bulk density, EC etc.) with spatial and temporal 

variability must be considered as they influence nutrient concentrations in soils 

(Mallarino, 2005; Tomaz et al., 2022). Tomaz (2022) identified some of the important 

factors (EC, pH and nitrogen) influencing special and temporal variability of soil texture 

and chemical composition. Wang (2012) discussed the importance of spatial 

heterogeneity, spatial and temporal variability while designing sampling protocols. 

Therefore, it is crucial that sampling protocols address the wide range of variability in 

agricultural fields along with avoiding errors during sampling. 

1.3 Representative samples 

Accuracy and reliability of results from a sample depends on how precisely the 

sample represents an area of interest. Obtaining truly representative samples can be 

challenging (Tan, 2005; Wang et al., 2012). If the soil sample analyzed is not 

representative, the soil analysis results may not reflect the properties of the field in 

question (An et al., 2018; Cline, 1944). Instead, they can only describe the specific 

characteristics of the sample that was analyzed, leading to inaccurate or misleading 

information about the soil's nutrient levels, pH, and other important parameters (Tan, 

2005). To ensure accurate soil analysis results, it is important to collect representative 
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samples from multiple optimal locations within the field or area being tested (Nawar & 

Mouazen, 2018; Wang et al., 2012). 

1.4 Sampling techniques and challenges.  

Soil sampling is a vital practice across various disciplines, including geology, 

environmental science, archeology, and agriculture (Brevik et al., 2015). However, 

sampling quantity, type and techniques employed across different disciplines are tailored 

to achieve specific objectives pertaining to those fields. For instance, in geology, soil 

samples are collected before exploring deeper layers, therefore, trenching, rock chip 

sampling, and coring techniques are preferred (Pennock et al., 2008). Grab sampling is 

popular in environmental sciences to assess contamination levels and soil quality from a 

relatively small sample (Mayer et al., 2014). In agriculture, grid sampling, zone sampling, 

random sampling, composite sampling, and depth specific sampling are employed to 

obtain soil samples based on the analysis that needs to be performed (Tan, 2005).  

Random sampling is characterized by its simplicity and unbiased sample 

collection from random locations without following a predetermined pattern. In this 

method each soil core is selected randomly and independently from previously drawn 

units (Dinkins et al., 2008). Random sampling can be broadly categorized into a) simple 

random sampling, b) stratified random sampling (Cochran, 1977), c) systematic sampling 

(Madow & Madow, 1944). These sampling methodologies can be briefly described as 

random selection of sampling points throughout the fields, division of field into relatively 

homogenous areas before random sampling, and the use of grid or pattern for choosing 

sampling locations respectively. Since these methodologies doesn’t require precise 

selection of sampling locations drawing random samples is simple and straightforward to 
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implement (Dinkins et al., 2008). However, the heterogeneity of soil properties across the 

field is disregarded. While random sampling approach may be suitable for homogeneous 

fields, it fails to accurately represent the spatial variability across the field (Flint & Flint, 

2002). Apart from this stratified random sampling needs additional data and expert 

knowledge to validate the results.  

Composite sampling involves combining multiple soil samples taken from 

different locations within the field to create a representative composite sample, thus 

reducing both cost and time. Individual cores are collected in a diagonal or zig-zag 

pattern and combined to produce a composite sample (Lawrence et al., 2020). However, 

the number of samples required to get reliable results varies based on field conditions and 

the type of analysis performed (Lawrence et al., 2020). Past research provided 

recommendations for the number of soil cores necessary to create a representative 

composite sample, with the typical goal to estimate field-scale averages. Between 10 - 20 

soil cores were frequently recommended for a field size of 10 - 20 acres (Hemingway, 

1955; Tisdale et al., 1985), although this varied by nutrient, with nitrate requiring many 

more cores if higher precision was desired (45 cores for an 80% confidence interval 

within 10% of the mean on 75% of sampled areas) (Meisinger, 2015). Moreover zig-zag 

pattern of collecting soil cores is inadequate for log-normally distributed variables since 

there is no sufficient randomization (Lawrence et al., 2020) . Although useful to gain a 

general understanding of field conditions, this method of sampling fail to capture spatial 

and temporal variability of soil characteristics and requires more cores (Boswell & Patil, 

1987) when using precision agricultural technologies.  
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Depth-specific sampling involves collecting soil samples at specific depths within 

the soil profile, typically at intervals such as 0-15 cm, 15-30 cm, and 30-60 cm. This 

method provides insights into nutrient distribution at multiple soil depths, crucial for 

understanding root development and nutrient uptake patterns. Additionally, depth-

specific sampling helps identify nutrient stratification issues, where certain nutrients are 

accumulated or become depleted at specific depths (Reeves & Liebig, 2016). However, it 

requires additional effort and resources to collect and analyze samples from multiple 

depths and do not fully capture the variability present within each depth increment, 

particularly in soils with complex profiles. This method of sampling is less popular for 

sample collection among agricultural producers as it requires more resources and limited 

use cases. 

Grid sampling involves dividing a field into a grid pattern and collecting samples 

within each grid cell or grid point (Clay et al., 2019; Knowles & Dawson, 2018). This 

method provides a systematic approach to assess soil variability across the field and 

obtain decent representative samples (Flint & Flint, 2002). Collecting samples at 

predetermined points allows for precise targeting of sampling locations and nutrient 

management interventions. Assigning the collection of soil samples to a third party is also 

simpler and easier with this method. Previous studies have used different grid sizes 

ranging from one acre grid to three to four-acre grids. The use of smaller grid sizes would 

provide more detailed soils maps that are essential for precision application of fertilizers. 

However, this increases the number of samples required in an acre and would thus 

increase overall cost of analysis. Although effective in fields with relatively uniform soil 

properties, where spatial variations in nutrient levels can be accurately captured, it can be 
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resource-intensive in large fields and may not capture variability present at scales smaller 

than the grid cell size. Therefore, challenges in determining the optimal grid size along 

with the need for a larger number of samples and the costs associated with them make its 

adoption challenging (Flowers et al., 2005).  

Zone sampling entails dividing a field into homogenous sub regions within a field 

called management zones (Khosla et al., 2008; Milne et al.,2012.) based on factors such 

as soil type, topography, historical yield data, and remote sensing information (D. 

Franzen et al., 2000; Mallarino & Wittry, 2004). Delineating management zones can be 

challenging due to the complex relations and spatial variation of soil properties that affect 

crop yields (Park & Vlek, 2002). Although there are many methods to delineate 

management zones, natural breaks used by ArcGIS and ArcView software, diffuse 

conglomerate procedure used by FuzME (Minasny et al., 2007), and management zone 

analyst are the most common methods (Gili et al., 2017). The success or failure of these 

criteria depends on the objectives of management strategies. However, methods that 

incorporate spatial soil data in combination with k-means clustering procedures have 

been found to perform better in the studies conducted by Gili., (2017).  

After delineating management zones, samples are collected randomly from each 

zone to estimate the characteristics of individual zones (Shaner et al., 2008). This method 

tailors sampling and nutrient management strategies to specific field conditions and 

management zones, allowing implementation of site-specific management practices. With 

potential benefits ranging from improving profitability to reducing environmental 

impacts, zones sampling is favorable over other sampling methods. Zone sampling is also 

preferable over other methods due to its resource use efficiency by focusing sampling 
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efforts where they are most needed. However, accurate delineation of management zones 

is crucial for the success of this approach and requires detailed soil surveys or advanced 

mapping techniques. Additionally, zone sampling may overlook variability present within 

individual zones, particularly if they are large or heterogeneous, necessitating careful 

consideration of zone boundaries and sampling density to ensure representative results. 

Choosing the most suitable soil sampling technique can be challenging for 

producers, as each method comes with its own set of merits and drawbacks. Random 

sampling offers simplicity and ease of implementation, providing a broad overview of 

soil variability across the field. However, it is difficult to capture localized variations, 

leading to less representative results. On the other hand, grid sampling offers a systematic 

approach to capturing spatial variability, allowing for precise targeting of sampling 

locations. However, it is resource-intensive, especially in large fields, and may not 

capture variability at smaller scales. Zone sampling, meanwhile, tailors sampling efforts 

to specific field conditions and management zones, offering efficiency and site-specific 

management practices. However, appropriate delineation of management zones is crucial, 

and the method may overlook variability within individual zones if they are large or 

heterogeneous. 

1.5. Soil heterogeneity  

Beyond the choice of sampling technique, spatial distribution and variability of 

soil properties can pose additional challenges for producers (Asare & Segarra, 2018). 

Without proper scientific knowledge about the spatial distribution of soil properties, 

producers struggle to determine the optimal sampling strategy and analysis methods 

(Wang et al., 2012). This leads to suboptimal nutrient management decisions, potentially 
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resulting in reduced crop yields and increased input costs. Therefore, it is important to 

develop a protocol for optimal selection of sampling locations encompassing the 

developments in machine learning models.  

1.6 Topography and its relationship with dynamic soil properties  

  Soil properties are inherently heterogeneous across relatively short distances 

(Webster, 2000). Therefore, comprehending spatial heterogeneity necessitates a 

substantial foundation of scientific knowledge and training, or an exhaustive compilation 

of historical soil datasets pertinent to the area under investigation (Wang et al., 2012). 

Distribution of physical and chemical soil properties is of significant interest due to their 

direct and indirect impact on productivity, particularly for site-specific fertility 

management.  

Topography is one of the five fundamental elements of the soil forming factors 

(Jenny, 1941) that can significantly influence a wide array of soil physical and chemical 

properties (Miller & Schaetzl, 2015). Topography is often characterized by terrain 

attributes such as slope, aspect, and curvature, maintains intricate connections with a 

wide range of soil properties (Ceddia et al., 2009; Kumhálová et al., 2011). Ruhe and 

Walker's 1968 model introduced five major hillslope profile positions, widely applicable 

across different climates, landscape ages, and parent materials (Walker, 1968). This 

framework has been substantiated by subsequent research, becoming a standard reference 

for investigating soil variability across hillslopes and for broader landscape 

characterizations. However, these relationships extend beyond soil, as hillslope position 

serves as a valuable framework in ecological studies, linking soil and vegetation 

dynamics (Miller & Schaetzl, 2015).  
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Soil properties (physical, chemical, and biological) change significantly with 

topography (Ceddia et al., 2009) affecting soil water content and crop responses (Ayele et 

al., 2015). Understanding intricate relationships between topography and various soil 

properties such as texture, soil organic matter (SOM), cation exchange capacity (CEC), 

soil hydrology (SH), water holding capacity (WHC) and aggregate stability aid in making 

better management decisions (Kumhálová et al., 2011; Seibert et al., 2007). Thus, 

separating soil samples by landscape position can provide detailed information for 

precision agricultural practices by informing spatial distributions of soils data (Reza et 

al., 2015).    

Soil texture is one the important soil physical properties influenced by 

topography. In areas with steep slopes, soil texture tends to be coarser due to higher 

erosion rates that remove finer particles leaving behind sandier soils. Conversely in low 

lying areas or depressions where water and finer sediments accumulate, soils are typically 

fine textured, with higher proportions of silt and clay (N. C. Brady & Weil, 2016). This 

variation in soil texture influenced by topography affects soil water retention, nutrient 

availability, and organic matter content, thereby influencing plant growth and yields (N. 

Brady & Weil, 2004).  

The relationship between topography and aggregate stability in soils is well 

documented with multiple studies showing stability varying across the landscape. Pierson 

& Mulla, (1990) found that aggregate stability was higher in depressions and decreased 

towards summit positions, a trend driven by depletion of organic matter in higher 

elevations due to erosion. Jakšík, (2015) observed a similar pattern while studying the 

impact of terrain attributes (slope, curvature, and aspect) on aggregate stability. Overall, 
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variability in aggregate stability across a field is closely tied to material redistribution and 

organic matter content, influenced by terrain attributes. 

Soil water holding capacity is another soil physical property influenced by 

topography. Previous studies have underscored the importance of topography in 

influencing WHC (H. Yang et al., 2021) and therefore being used to accurately predicting 

it (Fathololoumi et al., 2021; Obi et al., 2014). Shape and slope of the land affect runoff, 

infiltration, and depth of soil layers which in turn influence the amount of water retained 

in soil (H. Yang et al., 2021). Steeper slopes make soil more prone to runoff, reducing 

infiltration and consequently the WHC of soils. Conversely flat areas with a gentler slope 

promote water retention as they allow more water to infiltrate through, soil increasing 

WHC. Furthermore, topographical features lead to the formation of microclimates and 

variation in soil composition across different landscapes, affecting the distribution of 

moisture and WHC of soil (H. Yang et al., 2021).  

Spatial heterogeneity of SOM can be better understood by considering 

topographic features like elevation and aspect (Zhu et al., 2019). Aspect influences 

spatial patterns of SOM through altering solar radiation on hill slopes (Lybrand & 

Rasmussen, 2015). However, this trend can only be valid with greater changes in 

elevation across the landscape (Chen et al., 2016). In places with gentle landscapes across 

a wide area, elevation indirectly influences SOM by altering the physical soil properties 

such as soil texture, aggregate stability and WHC as discussed earlier.  

The complexity involved in collecting a representative sample following scientific 

procedures can be challenging for producers (Oliver et al., 2010). Adding to this, the 

quantity of samples to be collected and the cost of analysis are pushing producers to cut 
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back on the quantity of soil samples collected and therefore quality of soils data (Flint & 

Flint, 2002). Results from such sampling cannot be reliably used with precision 

agriculture practices thus making them difficult for adoption. However, dividing soil 

sampling area by management zones and utilizing recent developments in precision 

agriculture and machine learning methods can provide a better alternative to the problem 

of selecting optimal soil sampling locations.  

1.7 Management zones 

Management zones (MZ) are specific areas within a field that are managed 

individually based on their distinctive characteristics like topography, yield data, remote 

sensing data, and other agronomic factors (Chang et al., 2003). Delineating management 

zones based on such factors has been a common practice in multiple studies involving 

site specific precision agricultural practices (Chang et al., 2003; Flowers et al., 2005; 

Nawar et al., 2017). However, delineation of management zones based on yield data 

offers advantages over other factors (Flowers et al., 2005). Yield monitoring systems 

have been in use with most of the producers over the past decades. Yield data from these 

systems can provide reliable information on the performance of various management 

factors influencing yield. Early research found that delineation based on multiyear yield 

data could be related to soils data (Lark & Stafford, 1997; Miao et al., 2018; Nawar et al., 

2017). Subsequent research also suggested that using multiyear average yield maps to 

delineate management zones for soil sampling is promising (Blackmore, 2000; Diker et 

al., 2004; Lark & Stafford, 1998). Therefore, using existing yield data/maps to delineate 

management zones can be an affordable alternative to developing maps based on 

complex interacting factors, but existing yield data doesn’t transfer well between crops. 
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1.8 Machine learning in soil science  

Machine learning is a branch of artificial intelligence and computer science 

involving computational algorithms that are designed to emulate human intelligence (El 

Naqa & Murphy, 2015). With potential to analyze large and complex data sets, use of 

machine learning techniques has been on a raise across diverse fields in the past decade 

(Padarian et al., 2020). Pattern recognition, computer vision, engineering, finance, 

biological and biomedical sciences are a few areas where machine learning techniques 

have been successfully applied (El Naqa & Murphy, 2015). 

In soil science machine learning applications have been used to develop models 

that analyze and estimate various soil parameters like moisture content (Ahmad et al., 

2009), bulk density (Bondi et al., 2018), soil organic carbon, parent material and others 

(Padarian et al., 2020). Among other applications in soil science, prediction of soil types 

and properties using digital soil mapping and pedotransfer functions are prominent (A. 

McBratney et al., 2019; A. B. McBratney et al., 2003). Increasing availability of soil data 

from multiple remote sources alongside the developments in geographical information 

systems and availability of free open-source algorithms have led to increased adoption of 

machine learning techniques in soil science (Padarian et al., 2020).  

Incorporating machine learning models can substantially simplify and enhance the 

process of delineating management zones with the potential to analyze complex datasets. 

Furthermore, multiyear yield data, soil characteristics, and remote sensing information 

can be analyzed to identify patterns and relationships that may not be immediately 

apparent (Pham et al., 2024). Machine learning algorithms also have the potential to 

predict effective management zones, tailor recommendations for each specific area, and 
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refine these suggestions based on new data. This automation reduces the need for 

intensive manual analysis and allows for dynamic adjustment of management zones with 

changing conditions.  

1.9 Review of recent models in soil science  

 Adoption of machine learning techniques in soil science have led to the 

development of multiple models with tailor made algorithms (Padarian et al., 2020) like 

multi objective optimization (Kazemi & Samavati, 2023), maxvol, (Petrovskaia et al., 

2021) convolutional neural networks (CNN) (Pham et al., 2024) etc. These models have 

significantly enhanced our ability to predict soil properties, understand soil composition, 

and optimize agricultural practices. Although dealing with a wide variety of problems, 

the overall approach on developing and deploying these models have been consistent 

across multiple studies (Hengl et al., 2003; Kazemi & Samavati, 2023; Petrovskaia et al., 

2021). However, some models prioritize specific soil parameters (Ahmad et al., 2009; 

Bondi et al., 2018; Padarian et al., 2020) while others emphasize on scalability for large 

geographical areas (Kazemi & Samavati, 2023). Additionally, differences in 

incorporating remote sensing data, landscape data, and approaches in delineating 

management zones highlight the diverse research being done in this area. 

 Using multi objective optimization algorithm, Kazemi & Samavati (2023) were 

able to determine optimal sites for soil sampling. This model has successfully integrated 

remote sensing data (NDVI -normalized difference vegetative index) and digital elevation 

model (DEM) to delineate management zones. Maxvol’s algorithm utilizes the concept of 

D-optimal design, seeking to select sample locations with the most significant 

dissimilarities in topographical features (slope, aspect, topographic wetness index, closed 
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depressions). This aims to capture the variability of soil cover with a considerably smaller 

dispersion in prediction error compared to existing approaches for spatial soil sampling. 

On the other hand, CNN models utilize a deep learning model with encoder-decoder 

architecture, self-attention mechanism and atrous convolutional networks to process input 

data like slope, aspect, flow accumulation, NDVI and yield data in predicting optimal soil 

sampling sites (Pham et al., 2024). 

Most published models rely heavily on topographical characteristics as predictors, 

potentially overlooking other properties that could provide valuable information for 

selecting sampling sites, such as soil properties and satellite imagery with different 

spectral, temporal, radiometric, and spatial resolutions. Moreover, these studies also fail 

to capture remote sensing parameters like short wave infrared band (SWIR), synthetic 

aperture radar bands (Domenech et al., 2020), near infra-red bands (NIR) (Ahmadi et al., 

2021) that are corelated to soil properties (Domenech et al., 2020). Remote sensing 

techniques also have potential for identification and quantification of different soil 

properties that exhibit unique spectral signatures (Abdulraheem et al., 2023). Reflectance 

patterns observed in different wavelength ranges can provide information about soil 

properties. NIR is sensitive to soil moisture content and clay minerology, whereas SWIR 

can be used to estimate soil organic carbon content, (Balaram and Sawant, 2022). 

Additionally, radar sensors can provide information about soil moisture content, surface 

roughness and texture (Petropoulos et al., 2015). Therefore, integrating remote sensing 

parameters alongside topographical characteristics offers a more comprehensive approach 

for selecting sampling sites.  
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Random forest (RF) is often considered more useful compared to multi objective 

optimization, Maxvol, and CNN models due to its robustness, versatility, and 

performance in various applications. According to Motia & Reddy, (2021) RF is one of 

the most commonly used machine learning techniques in soil science and agriculture 

domain. The RF model is useful to perform both classification and regression tasks. RF 

model is a versatile ensemble machine learning algorithm comprises multiple decision 

trees, each built on a random subset of the training data (bootstrapping) and a random 

subset of features (feature randomization) (Breiman, 2001). This ensemble approach 

mitigates overfitting and increases predictive accuracy. During training, each tree 

independently makes predictions, and final prediction is obtained through majority voting 

(for classification) or averaging (for regression). RF model also handles categorical data, 

like hillslope position or geology type, which most other models cannot. RF excels in 

reducing overfitting, delivering high predictive accuracy, and providing feature 

importance insights. For this study random forest was used to perform classification and 

regression tasks. 

 When developing optimal soil sampling locations using machine learning 

approaches, literature (Kazemi & Samavati, 2023; Petrovskaia et al., 2021; Pham et al., 

2024) has revealed a variety of techniques that have been tailored to address specific 

aspects of soil science. Prevailing models, such as multi objective optimization, Maxvol, 

and CNN, have each contributed to the prediction of optimal soil sampling locations. 

Despite their innovative approaches, these models have often emphasized specific 

topographical features, occasionally at the expense of integrating a more holistic view 

that encompasses a variety of remote sensing data, landscape characteristics, and intrinsic 
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soil properties. This oversight presents a gap that our study aims to address by leveraging 

the robustness and versatility of random forest model. 

In this study we aim to develop a comprehensive model that integrates a wide 

spectrum of data, including high-resolution remote sensing imagery, comprehensive 

landscape data, and detailed soil properties. Incorporation of diverse datasets promises to 

enhance the model's sensitivity to the multifaceted nature of data thus providing a more 

nuanced understanding of spatial variation of soil properties across varying landscapes. 

Building upon previous literature highlighting the limitations of solely relying on 

topographical characteristics, our research seeks to achieve several objectives. The 

primary objective of this study is to collect readily available data encompassing soil 

properties, landscape features, and remote sensing imagery for the development of 

random forest models. By harnessing the strengths of Random Forest algorithms, we 

intend to construct a more integrative model that can learn, analyze, and refine the data 

for automated and reliable selection of soil sampling zones. 

The overarching goal of this project is to develop a sophisticated tool capable of 

capturing spatial variations in soil properties across diverse landscapes, thereby 

facilitating more informed decision-making in soil sampling efforts. Through integrating 

multidimensional datasets and utilizing machine learning techniques, we hypothesize that 

our model would aid in optimal selection of soil sampling locations in reliable and cost-

effective manner. Ultimately, our study aims to provide a practical solution to the 

challenge of selecting optimal soil sampling sites by leveraging the full spectrum of 

available data and analytical tools. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Data Collection and Preprocessing 

2.1.1 Study Sites 

The data used in this study were collected from two counties in South Dakota, 

namely Aurora and Davison County (Figure 1), and encompassed a total of 18 field sites, 

each field covers approximately an average of 220 acres area that are mostly used for 

cultivation of corn and soybean. Specific site locations were redacted to protect producer 

privacy. These field sites are managed by local producers who provide access to field 

boundaries, management, and yield data. All the fields are relatively flat (1-3% slope), 

glaciated till plain terrain.  

Figure 1. Map of South Dakota highlighting Aurora and Davison counties.
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2.1.2 Data Collection  

The objective of this study is to develop a machine learning model that can learn, 

analyze, and refine landscape data, soil properties data and remote sensing data from 

readily available sources for automated generation of management zones. To derive 

landscape attributes (slope, aspect, and flow accumulation), digital elevation models 

(DEMs) for each field were acquired from LiDAR (Light Detection and Ranging) dataset 

in South Dakota Geological Survey (https://www.sdgs.usd.edu/ ) with a spatial resolution 

of one meter and were processed in ArcMap 10.8 version (Esri®, ArcGIS, ArcMap 10.8) 

using surface raster function. Soil properties data including water holding capacity 

(WHC), soil texture, cation exchange capacity (CEC), soil hydrology (SH), and soil 

organic carbon (SOC) were obtained from the Soil Survey Geographic Database 

(SSURGO) dataset (Soil Survey Geographic Database (SSURGO) | Natural Resources 

Conservation Service, 2022) .  

Landscape attributes and soil properties data thus obtained were then selected as 

features for training and testing the RF models. Results obtained from using landscape 

and soil properties had very low accuracy levels and the models had difficulty in 

predicting management zones. Variable importance projection plots developed during 

training and testing of RF models showed that soil properties data minimally contributed 

to the predictive performance of models. Soil properties data obtained from SSURGO 

data were of low resolution contributing from low to no variability across the fields, so no 

utility in using it to subdivide the fields. Therefore, given the lower resolution of the 

initial soil properties data, augmentation was performed by using remote sensing data 

sourced from Sentinel-2A satellite imagery from Copernicus Open Hub website with a 

https://www.sdgs.usd.edu/
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spatial resolution of 20 meters. Raw spectral bands such as NIR, and SWIR are obtained 

on June 14 in the year 2022. SAR-C bands were obtained from sentinel 1A on June 14, 

2022, with a spatial resolution of 20 meters. These remote sensing data sources were 

utilized to enhance the precision and granularity of soil information due to their inherent 

correlation with soil properties (Balaram & Sawant, 2022; Petropoulos et al., 2015).  

2.1.3 Creation of management zones  

Management zones delineated from multiyear average yield data were utilized as 

target or dependent variables. Three year’s crop harvests yield data was obtained from 

producers, this yield data was collected based on the crop type. A multiyear average yield 

map was then generated by using multiyear average yield analysis wizard in SMS Ag 

software (Ag Leader®, SMS Advanced). Later this multiyear average yield map was 

divided into 5 management zones by using natural breaks in SMS Ag software. These 

zones were labeled as 1, 2, 3, 4, and 5 ranging from low yielding zones to high yielding 

zones respectively. 

2.1.4 Data Preprocessing   

All the features and target data layers were saved as raster files in TIFF format.  

Subsequently, these raster files were then combined into a single raster stack. To 

facilitate model training and testing, a point shapefile was generated by using raster to 

point conversion tool in Arc Map software for each field. The point shape files were then 

used to extract data from the stacked raster, creating data frames which had all the 

features (8 features-before using remote sensing data and 13 features-after using remote 

sensing data) and target data needed to be used for subsequent model training and testing. 

The entire process of data extraction through point shape file was done by using the 
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“Extract multi values to point” tool in ArcMap 10.8 version (Esri®, ArcGIS, ArcMap 

10.8).  

2.2 Model development  

2.2.1 Classification of management zones 

Classification of a field into different management zones depends on a plethora of 

factors ranging from the distribution of soil properties to target management practices. 

Therefore, the number of management zones are selected based on the practicality of the 

target management operation. To offer flexibility in adoption we generated five 

management zones for each field. 

 Two scenarios were used for classification of management zones. One is 

developing a classifier model for categorical prediction of 5 management zones and in 

scenario two a regressor model is used to predict the multiyear average yield values 

(continuous variables) (Table 1) which are classified later by using “natural breaks” of 

classification function in ArcMap 10.8 version (Esri®, ArcGIS, ArcMap 10.8). 
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Table 1. Multiyear average yield statistics for all fields in the study.  

* Field names were assigned based on a two-letter format used by the producers. 
** Standard deviation 

 2.2.2 Data Splitting 

To facilitate model training and testing, the dataset was divided into two subsets: 

a training set and a testing set. This partitioning was carried out to ensure the model's 

ability to generalize its predictions beyond the training data. The data was split into 

training and testing data sets in 70: 30 ratios randomly for each field. The training set, 

comprising approximately 70% of the data, was designated for model training. The model 

learns from this portion of the data to make predictions. The remaining data points, 

approximately 30% of the dataset, constituted the testing set. This set remained 

Fields* Min yield (bu/ac) Max yield (bu/ac) Mean yield (bu/ac) sd** Crop type 

PO 34.24 69.1 50.86 5.77 Soybean 

MU 29.38 53.65 43.58 3.5 Soybean 

LW 26.87 57.75 48.83 3.84 Soybean 

LN 15.55 58.41 48.13 4.88 Soybean 

LH 22.34 61.39 48.97 4.42 Soybean 

KH 15.00 50.75 39.2 4.45 Soybean 

HI 25.61 46.45 37.89 4.4 Soybean 

CW 17.78 59.42 43.1 4.94 Soybean 

AD 23.45 73.18 60.74 6.72 Soybean 

MU 110.27 188.8 156.23 11.41 Corn 

LS 41.88 197.67 147.66 25.01 Corn 

KS 83.19 193.3 151.81 13.63 Corn 

KM 47.15 175.96 140.88 12.96 Corn 

KE 109.45 172.87 149.25 11.35 Corn 

HT 54.98 144.44 107.23 14.17 Corn 

FN 68.27 195.97 134.71 22.21 Corn 

BS 101.87 169.02 146.03 13.25 Corn 

AT 121.5 171.82 148.27 10.33 Corn 
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untouched during the model training phase and was reserved solely for evaluating the 

model's performance. Testing set serves as an independent validation dataset to assess the 

model's ability to generalize unseen data.  

Table 2 shows the total number of data points used for training and testing the 

models for each field. 

Table 2. Total number of data points used for training and testing the models for selected 

fields. 

Fields Total data points - Training Total data points - Testing 

KM 9289 3981 

KH 6768 2901 

BS 16339 7003 

HT 8161 3497 

Combined Soybean 27243 11675 

Combined Corn 33646 14301 

2.2.4 Data Normalization and Hyperparameter tuning. 

Most machine learning algorithms, including RF, SVM (Support Vector 

Machine), and others, are sensitive to the scale of input features. Features with larger 

scales can dominate those with smaller scales in the model learning process. Data 

normalization is a preprocessing step that scales or transforms features in the dataset into 

a standard range or distribution. The primary goal of data normalization is to ensure that 

different features have similar scales (García et al., 2015). Because of this importance we 

normalized the data used in this study using Min-max scaling process to make sure all 

input variables had the same scale in variability. This scaling process transforms the data 

so that it falls within a specific interval, typically [0,1]. 
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Hyperparameters are settings or configurations that are not learned from the data 

but are set prior to training. Hyperparameter tuning is the process of finding the optimal 

hyperparameters for a machine learning model (Weerts et al., 2020). This tuning process 

serves several essential purposes including maximizing model performance (Diaz et al., 

2017), preventing overfitting and enhancing the overall efficiency of the model (L. Yang 

& Shami, 2020). According to Padarian, (2020) many studies in soil science that have 

employed machine learning techniques have observed a significant improvement in their 

results when hyperparameter tuning was employed. 

In this study hyperparameter tuning was carried out using R programming 

libraries, specifically "randomForest" for Random Forest models within the R Studio 

environment. For random forest regression model basic hyperparameters include feature 

sampling, number of trees and feature subset size. In feature sampling the number of 

features randomly sampled at each split when building decision trees are coded as “mtry” 

in R. The number of decision trees that will be built and aggregated were coded as 

“ntree”, and feature subset size coded as “max_features” in R. In RF classification model, 

hyperparameters were split quality (coded as “criterion”) and tree depth limit (coded as 

“max_depth”). Split quality includes options for measuring impurities (coded as "gini” 

and "entropy" in R). Upon tuning, best parameters (Table 3)were used to fit the model for 

training and testing (Posit team, 2023). 

Table 3. Best parameters obtained after hyperparameter tuning. 

Hyperparameters used Best parameters 

mtry 8 

ntree 200 

max_features log2 

max_depth 10 

criterion gini 
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2.3 Evaluation metrics  

In the evaluation of classification models, a comprehensive set of scientific 

metrics was employed, including overall accuracy (OA), kappa scores (KA), and F-1 

scores, alongside the use of confusion matrices (CM) to gain insights into model 

performance in predicting 5 management zones. For regression models, the assessment 

centered on R2 values and Root Mean Square Error (RMSE), which measured model fit 

and predictive accuracy. Additionally, scatter plots were utilized to visually inspect the 

correspondence between predicted and actual multiyear average yield values. To further 

enhance the analytical depth, variable importance projection (VIP) plots were generated, 

these plots are visual representations that reveal the significance of different features in a 

machine learning model’s prediction, playing a crucial role in both regression and 

classification models (Greenwell et al., 2020). In regression models, metrics like 

“percentage increase in mean squared error” (%IncMSE) and “increase in node purity” 

(IncNodePurity) are employed to gauge the importance of individual features. 

"%IncMSE" quantifies how much each feature influences the model's accuracy in 

predicting numerical values, while "IncNodePurity" assesses their role in improving node 

purity within decision trees, leading to more precise predictions. Higher values for these 

metrics signify greater feature importance, aiding in feature selection and model 

interpretation (González et al., 2015). 

In classification models, "mean decrease Gini" is a vital metric within VIP plots, 

assessing each feature's contribution to reducing impurity and enhancing class separation. 

Features with higher "mean decrease Gini" scores are pivotal in effectively distinguishing 

between different classes, while lower scores indicate less influence (Han et al., 2016). 
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This metric assists in identifying key variables for accurate classification and informs 

model interpretation and feature selection. By ranking features based on their impact, 

these plots aid in model interpretation, feature selection, and identifying influential 

factors (Greenwell et al., 2020). They provide a clear and intuitive way to understand 

which variables contribute most to the model's performance allowing for the exploration 

of key features that significantly influenced model predictions. These rigorous evaluation 

methods, coupled with variable importance analysis, provided a robust and scientifically 

grounded basis for comparing and drawing conclusions about the efficacy and accuracy 

of the models. 

Following a comprehensive evaluation, prediction maps with five management 

zones were generated for each field. Predicted maps were then visually compared to the 

actual maps to identify for any misclassifications. Specific sections of the fields that had 

some degree of misclassification were identified to gain insights into the extent of 

misclassification. This could potentially aid in identifying the zones in which the model 

struggled to make accurate predictions.  

2.4 Workflow 

In initial tests, to achieve the best accuracy levels different covariates were 

assessed. Initially, we selected four random fields (BS, KM, KH, and HT) and conducted 

model training and testing individually using only landscape and soil properties data. 

However, these efforts yielded suboptimal accuracy levels. To address this issue, we 

employed Variable Importance projection plots (VIP), which revealed that soil properties 

data had the lowest contribution to model performance. To enhance accuracy, we 

incorporated remote sensing data, including features like NDVI (Normalized Difference 
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Vegetation Index), NIR bands, SWIR bands, and SAR bands. These remote sensing data 

sources were chosen because of their known relationships with soil properties, backed by 

prior research (Abdulraheem et al., 2023; Balaram & Sawant, 2022; Domenech et al., 

2020; Nawar & Mouazen, 2018; Petropoulos et al., 2015) which improved model 

performance.  

To enhance the models' generalizability, we undertook further steps by 

incorporating a broader dataset. We combined data from seven corn fields (BS, HT, KE, 

KM, KS, LS, and MU) and seven soybean fields (AD, HI, LH, LN, LW, KH, and MU). 

Subsequently, separate models were trained and tested for each crop type. These models 

were then evaluated on two new fields for corn (FN and AT) and soybean (PO and CW) 

to assess model performance. This approach allowed us to ensure that the models were 

capable of generalizing their predictions to different field types, both for corn and 

soybean cultivation. 

Throughout this iterative process, evaluation metrics, VIP Plots, and prediction 

maps at each stage were generated and are further elaborated in results and discussion 

sections. The overall workflow of the project was further illustrated in Figure 2 
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Figure 2. Project workflow diagram 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Classification Model. 

  Using the RF classification model, overall accuracy (OA) levels of four fields 

(HT, KM, KH, BS) before incorporating remote sensing data ranged from 0.38 to 0.49. 

Incorporating remote sensing data into the model improved the OA values by an average 

of 24% across the four fields. Kappa scores (KA) for the same fields ranged from 0.18 - 

0.33 and increased on an average of 33% after including remote sensing data. Whereas F-

1 scores showed a dissimilar pattern with scores ranging from 0.76 – 0.9, decreasing 

between 1-4 percent across all fields with an exception in BS field, while still indicating 

better precision and recall after incorporating remote sensing data (Figure 3). 

Figure 3. Comparison of accuracy levels of RF model before and after adding remote 

sensing data for HT, BS, KM and KH fields.  

*(OA – Overall Accuracy, KA – Kappa Score, F – F-1 Score).

    

    
       

              

       

       * 
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In addition to OA, KA and F-1 scores, CM’s (Table 4) provide crucial insights 

into the performance of classification models using metrics like Producer Accuracies 

(PA) and User Accuracies (UA) for a specific zone within each field. PA and UA values 

aid in uncovering the model's ability to properly classify management zones while 

highlighting false positives and false negatives. Before the incorporation of remote 

sensing data, PA values ranged from 0.22 to 0.62 while UA values ranged from 0.1 to 

0.62 across different zones in the four fields under investigation. A noteworthy 

transformation occurred in the RF model after the inclusion of remote sensing data where 

the PA and UA values increased by an average of 27% and 25% respectively. The 

increase in the accuracies can be attributed to using NIR, SWIR and SAR bands as 

features obtained from remote sensing data. This underscores the value of rich, 

multidimensional feature sets in enhancing model performance.  

On the other hand, data obtained from SSURGO data sets (available for entire 

USA), exhibit very limited variability among soil properties when clipped to the 

individual field levels due to the variation in the scale.  The lack of variation across the 

fields in initial data greatly affects the model performance as there are fewer variations 

across features to learn from. A more robust data set with spatially variable features 

exposes the model to a more comprehensive set of scenarios, enabling it to learn from 

more general patterns across the field. This broad exposure helps in fine tuning model’s 

decision boundaries to handle complex, non-linear relationships more effectively, leading 

to more accurate predictions. 
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Table 4. Confusion matrices for RF classification model.  

Before adding remote sensing data After adding remote sensing data 

BS BS 

Zones 1 2 3 4 5 Total UA** Zones 1 2 3 4 5 Total UA 

1 114 145 66 58 41 424 0.26 1 273 114 16 7 0 410 0.66 

2 103 516 170 173 116 1078 0.47 2 54 819 136 43 14 1066 0.76 

3 45 195 429 401 247 1317 0.32 3 15 138 822 255 96 1326 0.62 

4 34 92 256 1144 595 2121 0.53 4 1 22 147 1599 312 2081 0.76 

5 28 78 145 552 1315 2118 0.62 5 0 7 31 324 1758 2120 0.8 

Total 324 1026 1066 2328 2314 7058  Total 343 1100 1152 2228 2180 7003  

PA** 0.35 0.5 0.4 0.49 0.56   PA 0.79 0.74 0.71 0.71 0.8   

KM KM 

Zones 1 2 3 4 5 Total UA Zones 1 2 3 4 5 Total UA 

1 11 19 27 43 6 106 0.1 1 49 31 12 2 1 95 0.51 

2 19 81 130 166 36 432 0.18 2 8 224 115 22 8 377 0.59 

3 12 101 452 437 138 1140 0.39 3 7 72 707 284 48 1118 0.63 

4 5 57 255 841 249 1407 0.59 4 1 11 166 1126 171 1475 0.76 

5 2 15 149 326 420 912 0.46 5 0 0 41 247 628 916 0.68 

Total 49 273 1013 1813 849 3997  Total 65 338 1041 1681 856 3981  

PA 0.22 0.29 0.44 0.46 0.49   PA 0.75 0.66 0.67 0.66 0.73   

KH KH 

Zones 1 2 3 4 5 Total UA Zones 1 2 3 4 5 Total UA 

1 52 23 6 20 6 107 0.48 1 59 31 3 8 6 107 0.55 

2 27 271 98 142 39 577 0.46 2 14 421 74 57 11 577 0.72 

3 2 94 160 243 68 567 0.28 3 0 98 278 172 19 567 0.49 

4 0 97 126 628 194 1045 0.6 4 0 21 77 817 130 1045 0.78 

5 2 44 51 205 303 605 0.5 5 0 7 4 114 480 605 0.79 

Total 83 529 441 1238 610 2901  Total 73 578 436 1168 646 2901  

PA 0.62 0.51 0.36 0.5 0.49   PA 0.8 0.72 0.63 0.69 0.74   

HT HT 

Zones 1 2 3 4 5 Total UA Zones 1 2 3 4 5 Total UA 

1 50 68 56 54 21 249 0.2 1 103 86 24 15 0 228 0.45 

2 47 219 195 187 50 698 0.31 2 30 378 160 61 7 636 0.59 

3 25 145 329 298 84 881 0.37 3 2 126 505 236 24 893 0.56 

4 13 129 251 490 156 1039 0.47 4 1 28 178 736 116 1059 0.69 

5 19 51 95 278 281 724 0.38 5 0 4 34 178 465 681 0.68 

Total 154 612 926 1307 592 3591  Total 136 622 901 1226 612 3497  

PA 0.32 0.35 0.35 0.37 0.47   PA 0.75 0.6 0.56 0.6 0.75   

**
PA – Producer accuracy, UA – User accuracy
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Moreover, inclusion of remote sensing data adds more layers (with multiple 

bands) to the dataset. The additional data is not only spatially variable but also highly 

relevant to the soil properties as some of the bands (NIR and SWIR) are highly sensitive 

to soil moisture content, clay minerology and soil organic carbon. Whereas SAR band 

data obtained from radar sensors provides information about soil texture. Model 

performance can be thus improved by allowing the model to learn from a diverse set of 

scenarios with multiple bands correcting for any discrepancies or deficiencies in the 

initial dataset.  

3.2 Regression Model 

Similar to the classification model, the regression model also shows an 

improvement in its performance after including remote sensing data. Regression analysis 

for actual and predicted yields provided R2 values ranging from 0.28 (HT) to 0.47 (BS) 

which were increased to 0.67 (HT) to 0.83 (BS) after adding remote sensing data into the 

model (Table 5Table 5). The scatter plots for all fields showed a noticeable 

transformation, with data points more densely clustered around the regression line for 

each field (Figure 4). This visual representation indicates a stronger correlation between 

predicted and actual yields. Additionally, increase in R2 values and decrease in RMSE 

values indicates stronger ability of model to predict yield zones.  

Table 5. R-squared and RMSE values of RF regression model for the four fields before 

(NRS) and after using remote sensing data (RS).  

Field R2 (NRS) RMSE (NRS) R2 (RS) RMSE (RS) 

BS 0.47 9.60 0.83 5.45 

KM 0.3 10.76 0.71 6.7 

KH 0.42 3.36 0.71 2.4 

HT 0.28 11.86 0.67 7.94 
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Figure 4. Scatter plots for actual vs predicted yields of four fields using RF regression model before adding remote sensing data (a-d) 

and after adding remote sensing data (e-h) 
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RF regression model was used by other studies at different scales ranging from 

regional level to global level for yield prediction. Prasad et al., (2021) focused on cotton 

yield prediction utilized long-term agrometeorological and spectral variables, including 

rainfall, vegetation condition index, standardized precipitation index, growing degree 

days, and land surface temperature as predictors. This study reported R² values ranging 

from 0.39 to 0.69. In a similar study Jeong, (2016) incorporated climate and biophysical 

factors such as temperature, evapotranspiration, annual precipitation, soil water content, 

and soil bulk density, reporting R² values between 0.87 and 0.98 while studying crop 

yield responses across various crops. Another study by Everingham, (2016) focused on 

sugarcane, using local climate data and biomass indices as features, and reported R² 

values from 0.67 to 0.79, showcasing the model's strong predictive capability. In 

southeast Australia, an analysis leveraging time series NDVI data along with 

meteorological variables for yield prediction across three paddocks resulted in R² values 

ranging from 0.45 to 0.87 (Pang et al., 2022). Given the wide variability in R2 values 

across multiple studies, the R2 values obtained in our study ranging from 0.67 to 0.83 are 

satisfactory for predicting yield values. From these observations it is worth noting that 

utilization of climate data, biomass data and other environmental data as features 

potentially increases the model performance. It is evident from the aforementioned 

studies and the results of our study that the strategic integration of multidimensional data 

sets not only enriches the model's input but also significantly boosts its performance.
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3.3 Variable importance projection (VIP) plots. 

VIP plots offers insights into the significance of various features in RF models. In each 

plot of the classification model, individual features used in the model are represented on 

the Y- axis and mean decrease gini values on the X- axis (Figure 5).  Whereas in 

regression model, individual features used in the model are represented on Y-axis, 

percent increase in mean squared error (%IncMSE) and increase in node purity 

(IncNodePurity) values are represented on X-axis (Figure 6). In both cases, features with 

higher values on the X-axis in the VIP plots are considered more crucial for the model's 

predictions. 

VIP plots across four fields for RF Classification model demonstrate that the soil 

properties data [soil hydrology, CEC, WHC, SOM, and texture], consistently exhibit the 

lowest values for mean decrease gini across all fields (Figure 5). In contrast, the remote 

sensing features [SWIR, NIR, SAR bands, and NDVI], consistently displayed a higher 

mean decrease in gini values. This suggests that the soil-related features have limited 

influence in reducing impurity and achieving class separation within the decision trees of 

the RF model. Their contribution to accurate classification appears to be relatively minor. 

The limited impact of soil properties on model performance can be attributed to the lack 

of variability across the field. When data extracted from corresponding rasters possess 

uniform pixel values throughout the field, it diminishes the model’s opportunity to learn 

from these features. Consequently, remote sensing data, like SWIR, NIR, NDVI are 

consistently high-ranking features. These variables have high mean decrease gini values, 

which suggests that they are critical in splitting the nodes of the trees within RF model.  
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Figure 5. Variable importance projection plots of RF classification model
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and thus, have a strong influence on classification performance of the model. Greater 

variability in remote sensing data aids in reducing impurity and enhancing the accuracy 

of classification model by accurate categorization of management zones.  

In the case of RF regression model VIP plots show a similar pattern as 

classification model. Features like NDVI, NIR and SWIR being consistently important 

across the fields, as indicate by their %IncMSE and IncNodePurity values (Figure 6). 

Given the significance of these features in predicting yield, exclusion of such features 

deteriorates the model’s predictive power. Whereas soil properties like texture have 

consistently ranked lower among all other features due to their homogeneity within the 

fields. Features like NDVI, NIR and SWIR have direct relevance to the vegetation status 

and are strongly correlated to yield. Using features that have strong correlation with the 

target typically reduces the Mean Square Error (MSE) and often leads to purer nodes in a 

decision tree. Such features also tend to provide clear and distinct separation of data, 

enabling the algorithm to make splits that are highly informative for predicting the target 

leading to more accurate predictions.  
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Figure 6. Variable importance projection plots of RF regression model.
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3.4 Developing generalized models.  

 RF classification and regression models mentioned previously were developed at 

field level for four individual fields (BS, KM, KH, and HT). To develop a generalized 

model, data from seven corn (BS, HT, KE, KM, KS, LS and MU) and seven soybean 

fields (AD, HT, LH, LN, LW, KH and MU) were selected to further analyze and develop 

more generalized classification and regression models. The combined data was then used 

for training and testing the models separately by crop type to ensure reliability in 

predicting management zones. Results from these models are discussed separately below.  

3.4.1 Classification model  

After combining the data for seven fields separately for corn and soybean, OA are 

0.75 and 0.8 respectively reflecting a higher accuracy for the combined data set in 

predicting management zones. Kappa scores are 0.59 for corn and 0.71 for soybean 

suggesting a substantial agreement level.  F-1 scores are 0.93 and 0.95 respectively for 

corn and soybean indicating a good balance between precision and recall in the 

classification process (Table 6). 

Table 6. Confusion matrices for Corn and Soybean combined data  

Soybean Corn 

Zones 1 2 3 4 5 Total UA Zones 1 2 3 4 5 Total UA 

1 217 124 13 10 3 367 0.59 1 260 74 7 39 9 389 0.66 

2 33 1207 291 58 21 1610 0.74 2 36 1054 162 224 37 1513 0.69 

3 3 240 1308 363 99 2013 0.64 3 5 242 521 598 85 1451 0.35 

4 1 25 230 1406 486 2148 0.65 4 5 118 139 6433 836 7531 0.85 

5 0 1 24 217 5295 5537 0.95 5 1 10 6 980 2420 3417 0.7 

Total 254 1597 1866 2054 5904 11675  Total 307 1498 835 8247 3387 14301  

PA 0.85 0.75 0.7 0.68 0.89   PA 0.84 0.7 0.62 0.77 0.71   

OA       0.8 OA       0.75 

KA       0.71 KA       0.59 

F-1       0.93 F-1       0.95 

OA- Overall accuracy; KA- Kappa score; F-1 – F-1 score; PA -Producer accuracy; UA- User 

accuracy.
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3.4.2 Regression model  

The regression model for the combined data set had R2 values of 0.8 for corn and 

0.85 for soybean indicating a strong positive linear relationship between actual and 

predicted yield values (Figure 7). RMSE measures the discrepancy between the values 

predicted by the model and the actual values observed. Overall regression model for corn 

and soybean had high R2 values and lower RMSE values indicating a significant 

reliability in the predictions.  

Figure 7. Scatter plots of actual vs predicted yields for combined corn (left) and soybean 

(right). 

A noticeable increase has been observed in the performance of both classification 

(OA, KA, and F-1) and regression model (R2, RMSE) after integrating data across seven 

fields. Aggregating data from multiple fields introduces a more diverse set of soil 

conditions and plant responses, presenting the models with a broader spectrum of 

scenarios to learn from. The data points for individual fields range between 9,669- 23,342 

points whereas after combining the seven field’s data together, total data points obtained 

for corn and soybean were 47,947 and 38,918 respectively. Increase in data points 

contributes to a more robust learning process, where the models are less likely to overfit 
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to the peculiarities of a single field and are more capable of capturing the underlying 

patterns common across different field conditions. Moreover, developing separate models 

for corn and soybean while combining data from multiple fields allows crop specific 

calibration of features. Since each crop has unique responses to the different features used 

in the model, allowing effective model training. Dataset resulting from the amalgamation 

of multiple fields provides a comprehensive overview, ensuring that the models 

developed are not only trained on a larger volume of data but also encapsulate a wide 

array of field conditions. Such models are inherently more adaptable at providing reliable 

predictions across various locations and conditions.  

When comparing the results of both classification and regression model corn data 

got lower OA, KA, and F-1 score in case of classification and lower R2, higher RMSE 

values compared to soybean data. The inherent difference in the yield ranges across the 

seven corn fields led to inaccurate classification of management zones where the yield 

values within specific management zones are different across the fields. However, 

soybean yield ranges were similar across the seven fields leading to more accurate 

classification of management zones.  

3.5 Visual comparison of all predicted maps 

Prediction maps were generated for visual comparison of the model performance 

at each stage of model development. Figure 8 illustrates the actual map of KM field 

(multiyear yield average map obtained from SMS Ag software) alongside the prediction 

maps produced by both classification and regression models before and after 

incorporating remote sensing data along with the prediction maps generated based on the 

combined corn data. Prediction map generated by classification and regression models 
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before incorporating remote sensing data lacks distinct zone boundaries and misclassifies 

a majority of data points of zones 3 and 4 as zone 5. Conversely, prediction map 

generated by classification and regression models after incorporating remote sensing data 

showcases a significant improvement and more accurate classification of zones, offering 

a clear and more acceptable delineation of different management zones. A similar pattern 

was observed across all the fields. 

Although OA and R2 of combined corn data were higher for both classification 

and regression models compared to the models for individual fields, misclassification of 

multiple management zones was profound in the prediction maps generated. However, 

among the two models, the management zones in the prediction map generated by 

regression model were closer to the actual map in case of KM field (Figure 8).   

Figure 8. Actual and prediction maps for KM field. 

CLM- Classification model   RM – Regression model     
NRS – Before adding remote sensing data  RS – After adding remote sensing data. 

CDC- Combined data for Corn 
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While comparing prediction maps of various fields for both corn [BS (Figure 9), 

KS (Figure 18), LS, MU (Figure 19)] and soybean [KH (Figure 11), AD, HI (Figure 13), 

LH, LN (Figure 15), LW, MU (Figure 16)], it becomes evident that the prediction maps 

generated by regression models exhibit a closer alignment with the actual maps compared 

to classification models. This observation underscores the effectiveness of regression 

models in capturing the spatial variability of yield. From these results it becomes evident 

that continuous prediction of yield values by regression provides better results compared 

to categorical prediction of management zones by classification. 

3.6 Model deployment 

 After training and testing the classification and regression models developed from 

combined corn and soybean data, these models were further evaluated on two new fields 

for corn (FN and AT) and soybean (CW and PO). Upon observing the prediction maps 

(Figure 17 ,Figure 14) generated by these models it can be interpreted that both models 

fail to classify the management zones accurately. This stems from various factors, 

including limitations in model transferability due to differing environmental conditions 

and site-specific factors.  

Addition of high-resolution data with more spatial variability, features that are 

more correlated to yield such as environmental factors, biomass indices would enhance 

the predictive power of models used in agricultural management. These additional 

features offer a more comprehensive representation of the factors influencing crop yield, 

allowing models to capture subtle variations that may significantly impact yield.  By 

integration of environmental variables such as climate data, models gain insights into the 

complex interactions between the environment and crop growth by enabling models to 
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account for spatial heterogeneity under different growing conditions, thus improving their 

ability to accurately predict yield variability across different regions and fields. 

Incorporation of high-resolution data, and correlated features not only enriches 

the input dataset but also facilitates model's ability to learn complex relationships 

between predictor variables and yield outcomes. By training on diverse datasets that 

encompass a wide range of environmental conditions models become more robust and 

adaptable, enhancing their predictive power and generalization capabilities.  
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CHAPTER 4: CONCLUSION 

This study advances the development of comprehensive machine learning models 

that integrate a wide array of data encompassing landscape data, soil properties data and 

remote sensing data for optimal selection of soil sampling locations. This was achieved 

by creating management zones using random forest regression and classification of 

models. The results indicated a substantial improvement in model performance with the 

incorporation of remote sensing data, that can be seen in increased overall accuracy on an 

average of 24%, kappa scores on an average of 33%, and F-1 scores on an average of 1 to 

4% for the classification model across four fields. In case of regression, R² values 

increased from range of 0.28 - 0.47 to 0.67 to 0.83. These enhancements highlight the 

significant role of remote sensing data in capturing spatial variability of soil properties 

and yields. Incorporating remote sensing data including NIR, SWIR, NDVI and SAR 

bands add more layers to the data set and this additional data which is spatially variable 

across the field allowing the model to have a more comprehensive set of scenarios. This 

broader exposure helps to fine tune model’s decision boundaries to handle complex, 

nonlinear relationships more effectively, leading to more accurate predictions. 

Furthermore, increase in accuracy levels and R² values of classification and 

regression analysis of a generalized model developed by combining data from seven corn 

fields and seven soybeans showcased the model’s robustness and adaptability. Upon 

observing prediction maps generated by these models it is worth noting that despite 

having higher accuracies compared to individual fields, the generalized model fails to 

delineate the management zones accurately. This might to due to limitations of model’s 
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transferability, different environmental conditions, and site-specific features across 

different fields or a lack of predictor covariates. 

Overall comparison of prediction maps generated by the models in this study 

reveals that the management zones generated by regression models are closely aligned to 

actual maps. This underscores that prediction of continuous yield values by regression 

provides better results than categorical prediction of management zones by using 

classification model. 

This study acknowledges limitations in model transferability to new fields, 

suggesting the need for incorporating more diverse and spatially variable data to enhance 

predictive power. A diverse dataset provides a comprehensive overview and provides 

more scope for models to learn and capture the underlying patterns, complex relationship 

between the features across the different fields. Moreover, addition of features that are 

more correlated to target such as environmental data, biomass indices, high resolution 

soil properties data and considering the fields that have more landscape variations aids 

the model training on wide array of field conditions which increase the model’s 

adaptability and provides reliable predictions across various location and conditions. 

Future works includes development of more robust models considering wide array 

of data sets including environmental variables, biomass indices, remote sensing data, 

high-resolution soil properties and landscape data for accurate prediction of management 

zones. These management zones can then be utilized to generate sampling points across 

the fields. As these zones are created by considering spatial heterogeneity of soil 

properties across the landscape, the samples collected from across these zones would 

represent the entire field. By providing information about the field conditions in the form 
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of management zones it can aid the producers to improve their resource use efficiency by 

focusing sampling efforts where they are most needed. It also provides various options to 

the producers regarding quantity of samples to be collected from each zone. This study 

has the potential to transform the way sampling is carried out with seamless integration of 

humans, technology, and data. The outcomes from this study will increase the precision 

and efficacy of sampling, which will reduce efforts, expenses, and improves the 

reliability of soil test results. 
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APPENDIX I : PREDICTION MAPS 

 
Figure 9. Actual and prediction maps for BS field. 

CLM- Classification model     RM – Regression model    CDC- Combined data for Corn 

NRS – Before adding remote sensing data   RS – After adding remote sensing data 
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Figure 10. Actual and prediction maps for KM field. 

CLM- Classification model     RM – Regression model    CDC- Combined data for Corn 

NRS – Before adding remote sensing data   RS – After adding remote sensing data 
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Figure 11. Actual and prediction maps for KH field. 

CLM- Classification model     RM – Regression model    CDS- Combined data for Soybean 

NRS – Before adding remote sensing data   RS – After adding remote sensing data 
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Figure 12. Actual and prediction maps for HT field. 

CLM- Classification model     RM – Regression model    CDC- Combined data for Corn 

NRS – Before adding remote sensing data   RS – After adding remote sensing data 
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Figure 13. Actual and prediction maps for AD (top), HI (bottom) fields. 

CLM- Classification model     RM – Regression model    CDS- Combined data for Soybean 

 



 

  

6
8
 

 
 

Figure 14. Actual and prediction maps for CW (top), PO (bottom) fields. 

CLM- Classification model     RM – Regression model    CDS- Combined data for Soybean 
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Figure 15. Actual and prediction maps for LH (top), LN (bottom) fields. 

CLM- Classification model     RM – Regression model    CDS- Combined data for Soybean 
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Figure 16. Actual and prediction maps for LW (top), MU (bottom) fields. 

CLM- Classification model     RM – Regression model    CDS- Combined data for Soybean 
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Figure 17.Actual and prediction maps for AT (top), FN (bottom) fields. 

CLM- Classification model     RM – Regression model    CDC- Combined data for Corn 
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Figure 18. Actual and prediction maps for KE (top), KS (bottom) fields. 

CLM- Classification model     RM – Regression model    CDC- Combined data for Corn 
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Figure 19. Actual and prediction maps for LS (top), MU (bottom) fields. 

CLM- Classification model     RM – Regression model    CDC- Combined data for Corn 
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