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ABSTRACT 

IMPACTS OF LAND USE AND CLIMATE CHANGES ON HYDROLOGICAL 

PROCESSES IN SOUTH DAKOTA WATERSHEDS  

MANASHI PAUL 

2016 

This study aims to evaluate the impacts of climate and land use change on the hydrology 

of South Dakota’s watersheds using the Soil and Water Assessment Tool (SWAT). The 

study analyzed the hydrologic impacts of climate and land use changes in two ways. The 

first aspect consists of characterizing hydrological changes between two recent decades 

in three representative watersheds – Bad River watershed, Skunk Creek watershed and 

Upper Big Sioux River watershed. Two historical land use maps (NLCD 1992 and 2011) 

were used to represent land use change on these watersheds, and two historical climate 

datasets (1981-1990 and 2005-2014) were used to create SWAT models for each 

watershed. Results showed that due to historical land use and climate variations the 

annual water balance components mostly increased in the 2000s compared to 1980s. 

Between the 1980s and 2000s, seasonal variation in hydrology mostly increased during 

the wet season (i.e., May to October) in all three watersheds. Spatial analysis revealed 

that the hydrological components increased with a decrease in grassland in the 

watersheds, except in Skunk Creek watershed. The second aspect was to quantify the 

influence of future climate and land use changes on hydrological processes in the James 

River Watershed located in South and North Dakotas. A set of 42 scenarios of future 

projected land use and climate changes were developed under three emission scenarios 

(A1B, A2 and B1) to represent mid (2046-2065) and end (2080-2099) of the 21st century. 
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Corresponding land use maps (2055 and 2090) were derived from the FOREcasting 

SCEnarios (FORE-SCE) model to represent land use conditions for mid and end of the 

century. Projected climate data were used from three general circulation models 

(CGCM3.1, GFDL-CM2.1, and HADCM3) for the mid-century (2046-2065) and end of 

the century (2080-2099). The scenarios were designed in a way that (1) land use was 

changed while climate conditions remained constant, (2) land use remained constant 

under a changing climate, and (3) both land use and climate were changed 

simultaneously. Results showed that future climate change will likely have more 

influence on hydrology compared to future land use change. The combined effects of 

land use and climate changes would intensify changes in hydrological processes of the 

region in the near future. 
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CHAPTER 1: INTRODUCTION 

1.1  Background 

Land use and climate are determinant factors that influence the global energy and 

water cycle (Dale, 1997; El-Khoury et al., 2015; Mahmood et al., 2010; Mishra et al., 

2010). Land use and climate influences on the water cycle are usually reflected in the 

long-term spatial and temporal variation of water balance components such as surface 

runoff, soil moisture, evapotranspiration, groundwater and streamflow (e.g., Deng et 

al., 2015; Fang et al., 2013; Li et al., 2009; Memarian et al., 2014). Recent studies 

show that intense land use changes affect local, regional, and global ecosystems and 

environmental processes (DeFries et al., 2004; Ellis and Pontius, 2007; Lambin and 

Meyfroidt, 2011; Sleeter et al., 2013; Turner et al., 2007). Over the past few decades, 

in the Midwestern United States, land use change intensified with high grain prices 

(Omega-Research, 1997; Reitsma, 2014), economic development (Rashford et al., 

2011), and increasing demand for biofuel feedstocks following  the Energy 

Independence and Security Act (EISA) of 2007 (Wu et al., 2012). In the Western 

Corn Belt (WCB), land use changes are mainly characterized by the conversion of 

rangeland, pastureland, and grassland to agricultural land uses. Claassen et al. (2011) 

found that almost 31,444 km2 (7,770,000 acres) of rangeland were converted to 

cultivated crops between 1997 and 2007 in the northern Great Plains. From 2001 to 

2009, a total of 0.24 million km2 grassland were converted to cropland in the 

conterminous US (Singh, 2013). Meanwhile, climate change led to more frequent 

extreme events. Higher temperature induces higher amount and intensity of 

precipitation which affects hydrology (Huntington, 2006; Johnson et al., 2015; 

Melillo et al., 2014; Pervez and Henebry, 2015). Variation in precipitation was found 



2 

 

influential in streamflow trends in various regions across the United States (Changnon 

and Kunkel, 1995; Chien et al., 2013; Hall et al., 2006; Jha et al., 2006; Lins and 

Slack, 2005; Novotny and Stefan, 2007; Small et al., 2006). Changes in precipitation 

pattern affected the magnitude and frequency of floods in the Upper Midwest between 

1920 and 1990 (Changnon and Kunkel, 1995; Douglas et al., 2000; Groisman et al., 

2001; Kunkel, 2003). Increased precipitation also led to increases in water yield, ET 

and surface runoff in the region (e.g., Ficklin et al., 2009; Jha et al., 2006; Lirong and 

Jianyun, 2012). 

1.2  Problem Statement 

In the past 150 years, the Great Plains underwent extensive land use and land cover 

changes (Sohl et al., 2012). The land conversion occurred mainly from grassland and 

wetlands to agricultural lands (Sohl et al., 2012). According to Wright and Wimberly 

(2013), 1 to 5% of grassland is converted to corn and soybean annually across the 

WCB region. Among the WCB states, from 2006 to 2011, the estimated net grassland 

loss was about 1,820 km2 in South Dakota, which was higher compared to the 

neighboring states (Singh, 2013; Wright and Wimberly, 2013). Future scenario-based 

modeling revealed that natural land cover may be lost, while agricultural and urban 

areas may expand considerably (Sohl et al., 2012). Concurrently, since the early 20th 

century, the global average temperature increased by approximately 1.4°F (NOAA, 

2010). According to the Intergovernmental Panel on Climate Change (IPCC)’s 

Special Report on Emission Scenarios (SRES), the air temperature will increase 

approximately 1 to 5°C by 2100 throughout the US (IPCC, 2013; Johnson et al., 

2015).  
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In South Dakota, the temperature increased between 0.4 to 0.8 °F per decade and total 

annual precipitation increased between less than 0.6 to more than 1 inch over the last 

70 years (DOI, 2015). Under these circumstances, water resources in South Dakota 

may be adversely affected. Although several regional studies have evaluated 

hydrologic responses to climate and land use change across the Midwest region (e.g. 

Wu et al., 2012; Wu et al., 2013; Schilling et al., 2008; Schilling et al., 2014), there is 

no study that exclusively focuses on South Dakota watersheds to account for local 

trends in land use change (i.e. loss of grassland to other uses), climate variability, and 

potential climate change scenarios. Therefore, a thorough understanding of 

hydrological processes under changing climate and land use in watersheds of various 

sizes is needed for developing sustainable water resources management in the state.  

1.2  Objectives 

The objectives of this research were to: 

1. Characterize hydrological changes between two recent decades in three 

representative watersheds. 

2. Evaluate the effects of projected land use change with existing climate conditions 

and projected climate change scenarios with existing land use conditions on 

hydrologic processes. 

3. Assess the combined effects of potential land use and climate changes on 

hydrologic processes. 

1.3  Significance of Thesis 

This study provides insight into hydrologic responses to climate and land use changes 

in South Dakota’s watersheds in recent the past and in years to come. Understanding 

how land use and climate changes affect hydrology in the state would help watershed 
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managers, agricultural producers, policy makers, and the general public make 

informed assessments of the effects of land use and climate on hydrology. This is an 

important step toward development of strategies for sustainable water resources 

management.  

1.4  Thesis Organization   

This thesis is organized in four chapters. Chapter 1 provides the background, problem 

statement and objectives of the study. Chapter 2 provides a literature review related to 

the effects of land use and climate change on watershed hydrology. This chapter also 

provides information on hydrologic modeling and future emissions scenarios for 

climate and land use changes. Chapter 3 presents the methodology, results, and 

outcomes of objective 1 of the study, and it is titled “Spatial and Temporal Evaluation 

of Hydrological Response to Climate Variability and Land Use Change in Three 

South Dakota Watersheds”. Chapter 4 contains the methodology, results, and 

outcomes of objectives 2 and 3, and it is titled “Impacts of Land Use and Climate 

Change on Hydrological Processes in James River Watershed”.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Land Use Change Impacts on Hydrology 

Land use and land cover (LULC) changes influence hydrological processes (Wu et al., 

2013; Zhang et al., 2014) by altering interception rates, soil water, evapotranspiration 

(ET), infiltration, and groundwater, leading to changes in surface runoff, streamflow 

and flood frequency (e.g., Baker and Miller, 2013; Deng et al., 2015; Fang et al., 

2013; Li et al., 2009; Memarian et al., 2014). 

2.1.1 ET and Soil Moisture 

LULC plays an important role in influencing the water cycle through changes in ET, 

soil water holding capacity, and the vegetation’s ability to intercept precipitation 

(Chen and Li, 2004; Li et al., 2009; Mao and Cherkauer, 2009; Mishra et al., 2010; 

Zhang et al., 2014). ET is one of the most significant components of the hydrologic 

budget, which is a combination of two sub-processes - evaporation and transpiration 

(Hanson, 1988). Evaporation is water loss from open water bodies, wetlands, bare 

soil, snow cover, etc., while transpiration is water loss from living plant surfaces 

(Hanson, 1988). Therefore, land-surface characteristics influence the process of ET. 

Studies revealed that changes in land use, land cover, crop rotation and crop types 

mainly influence ET in a watershed. Zhang and Schilling (2006) found that land 

conversion from perennial vegetation to seasonal row crops led to a reduction in ET 

between 1940s-2003 in the Upper Mississippi River. Baker and Miller (2013) 

reported that a decrease in forest area also caused a reduction in ET. Forest areas 

promote elevated ET because of low albedo, deep roots and water interception (Lull 

and Sopper, 1969). Similar results were shown in the midwestern US (Roy et al., 

2009), Georgia (Rose and Peters, 2001) and China (Liu et al., 2008); where ET 
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decreased in the study watersheds due to urban expansion. ET is also affected by crop 

density which controls rainfall interception, leaf area index, canopy resistance and 

plant-available water capacity (Zhang et al., 2001). As an example, dense vegetation 

cover (e.g., perennial grassland) has higher crop density, leaf area index, and 

permeable soils compared to agricultural land (e.g., row crops) (Kim et al., 2013a). 

Thus, land use conversion from native vegetation (grassland) to agricultural or 

developed land would result in a decrease in ET and soil water content (Wu et al., 

2013). However, other research efforts reported that woodland and grassland 

conversion to agricultural land led to increases in ET (Deng et al., 2015; Fang et al., 

2013). ET is a complex process with a combination of evaporation and transpiration. 

These two sub-processes can be non-linear in nature (Ghaffari et al., 2010; Pai and 

Saraswat, 2011). As an example, with land cover conversion from plant cover to 

impervious areas, transpiration can be decreased while evaporation can be increased 

(Pai and Saraswat, 2011).  

2.1.2 Surface Runoff and Groundwater 

LULC changes alter vegetation cover and surface roughness that affect the timing and 

magnitude of surface runoff and groundwater discharge, leading to changes in 

streamflow, and magnitude and frequency of floods (Jones and Post, 2004; Mao and 

Cherkauer, 2009; Niehoff et al., 2002; Pai and Saraswat, 2011; Schilling et al., 2014). 

Land use changes, such as urbanization and agricultural activities cause, greater 

surface runoff (Pai and Saraswat, 2011; Tong et al., 2009). Urban areas have large 

paved areas in the landscape that increase impervious surfaces. Therefore, little 

rainfall can soak into the soil profile, which produces greater surface runoff 

(Jacobson, 2011).  Similar results were shown in the Cedar River basin, in which 

suface runoff was predicted to increase due to projected urban expansion (Wu et al., 
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2013). Intensive agricultural activities can reduce surface roughness (Baker and 

Miller, 2013) that contribute to lower interception (Ghaffari et al., 2010) and less pore 

space availability in the soil to store water (Busman and Sands, 2002), leading to 

greater runoff generation. Deforestation may also cause greater runoff. In East Africa, 

Baker and Miller (2013) reported that due to land conversion from forest to 

agricultural land increased surface runoff. Ghaffari et al. (2010) showed that 

decreasing grassland and increasing agricultural land decreased groundwater recharge 

and baseflow in the semi-arid Zanjanrood basin in Iran. Nie et al. (2011) also reported 

that grassland replacement with woodland contributed to lower percolation rate and 

reduced baseflow in the upper San Pedro watershed in Arizona.  

2.2.3 Streamflow and Flood 

Increasing land use conversion (especially for urbanization, deforestation, grassland 

depletion) can potentially lead to an increase in streamflow and flood frequency 

(Brath et al., 2006; Guo et al., 2008; Mao and Cherkauer, 2009; Matheussen et al., 

2000; Schilling et al., 2014; VanShaar et al., 2002; Zhang and Schilling, 2006). 

During storm events, greater surface runoff can exceed the flow carrying capacity of 

the stream within the watershed which may increase the risk of potential flooding. 

Mao and Cherkauer (2009) studied hydrologic response to land use changes in the 

Great Lakes states (Minnesota, Wisconsin, and Michigan) and showed that greater 

risk of flooding was caused by deforestation. A similar study in China found that 

increasing forest land can reduce flood potential while depletion of forests may 

increase flood potential the in wet season and drought severity in the dry season (Guo 

et al., 2008). In addition, grassland expansion can reduce flood potential due to a 

decrease in streamflow. Grassland has higher ET compared to agricultural land, and 

may promote higher infiltration, leading to a reduction of flood potential in the 
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watershed. Schilling et al. (2014) reported that cropland conversion to grassland 

reduced the occurrence and frequency of flooding in the Raccoon River watershed in 

Iowa. 

 

2.2 Climate Change Impacts on Hydrology 

Global climate change is one major factor that directly affects hydrological processes 

(Khoi and Suetsugi, 2014; Kim et al., 2013b; Zhang et al., 2016), and global warming 

is identified as an important issue regarding climate change during the coming century 

(Chien et al., 2013; IPCC, 2007). Potential impacts of changes in climate (e.g., 

precipitation and temperature) may cause variations in hydrological processes 

including ET, surface runoff, timing and magnitude of streamflow, and flood events 

(Neupane and Kumar, 2015; Zhang et al., 2005; Zierl and Bugmann, 2005). Variation 

in precipitation was found influential in streamflow trends in various regions across 

the United States (Changnon and Kunkel, 1995; Hall et al., 2006; Novotny and 

Stefan, 2007; Small et al., 2006). Temperature variation and wind speed affect 

evaporation and transpiration sub-processes, which influence surface and subsurface 

water budgets (Hanson, 1988; Hu et al., 2005; Schmid et al., 2000).    

2.2.1 ET 

Evaporation is the sub-process of ET which varies by season of the year, time of the 

day and availability of soil water. Evaporation rate is influenced by solar radiation, air 

temperature, humidity, and wind speed (Hanson, 1988). Solar radiation and air 

temperature provide the energy to evaporate the water from open water bodies such as 

a lake, reservoir and stream, while the air humidity and wind speed controls 

evaporation processes. Another sub-process the transpiration depends on the water 
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availability in the soils and plants. The plant root takes water and transfers it into the 

atmosphere. As a consequence, temperature and precipitation increases result in 

increased ET (Ficklin et al., 2013; LaFontaine et al., 2015; Zhang et al., 2016). For 

example, Guo et al. (2008) reported that during dry seasons, lower temperature and 

higher humidity resulted in decreased ET in the Poyang Lake Basin in China. Ficklin 

et al. (2013) noticed that in California, projected increased temperature and decreased 

precipitation may result in an increase in ET. The researchers noticed that seasonal 

trends in ET also follow seasonal trends in solar radiation and air temperature. In 

China, due to potential higher temperature and increased precipitation, increased 

trends in ET were observed in wet season (June to September) (Zhang et al., 2016). 

During summer, increased temperature caused a temporal shift in plant growth 

patterns and decreased ET in the San  Joaquin watershed in California (Ficklin et al., 

2009). Studies also revealed that lower annual precipitation produced lower annual 

ET (Ficklin et al., 2009; Kim et al., 2013a; Neupane and Kumar, 2015).   

2.2.2 Surface Runoff 

As previously stated, precipitation is the source of water in the watershed and the 

available water is calculated by precipitation minus water loss by ET. Available water 

contributes to surface runoff and streamflow (Oki and Kanae, 2006). Therefore, 

increased precipitation may lead to an increase in surface runoff, while a decrease in 

precipitation can result in the opposite effects (e.g., Ficklin et al., 2009; Jha et al., 

2006; Lirong and Jianyun, 2012). Wang et al. (2014) showed that under future climate 

change scenarios (A1B, A2 and B1), the Wolf Bay watershed in coastal Alabama 

would experience increases in precipitation and temperature, leading to surface runoff 

increase. Previous studies also linked global warming to snowmelt processes, 

especially to shifts in surface runoff timing (e.g., Johnson and Stefan, 2006; Novotny 
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and Stefan, 2007; Wu et al., 2012a). For example, in Minnesota’s river (Red River, 

Mississippi River and Minnesota River) the spring surface runoff has occurred 0.3 

days/year earlier during 1964-2000 and a direct correlation was found between 

surface runoff and air temperature changes (Novotny and Stefan, 2007). 

2.2.3 Streamflow and Flood 

Many studies have revealed that climate change is expected to accelerate the global 

hydrological cycles and affect streamflow (e.g., Driessen et al., 2010; Ficklin et al., 

2013; Jha and Gassman, 2014; Novotny and Stefan, 2007; Oki and Kanae, 2006; Tu, 

2009). These studies revealed that streamflow variability is closely related to climate 

changes. For example, Ficklin et al. (2013) noticed that for projected higher 

temperature and precipitation, annual streamflow may decrease in the Californian 

Mono Lake Basin. Wang et al. (2014) reported that increased trends in monthly 

streamflow were examined in the Wolf Bay watershed of coastal Alabama as a result 

of higher precipitation and higher temperature.  

Studies showed that due to climate change, precipitation will increase on average, 

while globally ET may not increase as much as precipitation because elevated CO2 

concentration may induce stomata closure and reduce transpiration (Gedney et al., 

2006; Oki and Kanae, 2006). At the global scale, streamflow will increase due to 

increased precipitation and reduced transpiration (Milly et al., 2005; Oki and Kanae, 

2006). Ficklin et al. (2009) showed that in summer months increasing temperature and 

precipitation caused a temporal shift in plant growth patterns that decreased ET and 

irrigation water demand, leading to increase in streamflow in the highly agricultural 

San Joaquin watershed, California. Similar results were found for the Great Plains 

region, where the upward trend in precipitation led to a large increase in streamflow 

and a comparatively lower increase in ET (Garbrecht et al., 2004). Future climate 
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change may also impact annual streamflow increase (Neupane and Kumar, 2015; 

Whitfield and Cannon, 2000) and earlier spring snowmelt occurrence (Regonda et al., 

2005). A study in Southern Alberta of Canada revealed that higher temperature and 

precipitation resulted in an increase in winter and spring streamflow and a reduction 

of summer and fall streamflow under future climate scenarios (A1, B2, and A1T) 

(Forbes et al., 2011). Studies also showed that due to increased precipitation, the 

Upper Midwest experienced higher streamflow, especially in the warmer season 

(Groisman et al., 2001; Novotny and Stefan, 2007; Small et al., 2006; Villarini et al., 

2015; Zhang and Schilling, 2006). Jha et al. (2006) reported that the Upper 

Mississippi River Basin is very sensitive to projected future climate changes.  

Climate change studies by potential climate variability may increase flood risk around 

the world. Examples include Kay et al. (2009) and Kay et al. (2006) in England, Burn 

and Whitfield (2016) in Canada, Brath et al. (2006) in Italy, Mirza et al. (2003) in 

Bangladesh, and Zhai et al. (2005) in China. In the United States Midwest, flood 

events mainly occur in spring (March to May) as snow melts and in summer months 

due to heavy rainfall (May to July) (Villarini et al., 2011).  

 

2.3 Future Emissions Scenarios for Climate and Land Use Changes 

The Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions 

Scenarios (SRES) published projections of future greenhouse gas emissions in 2000 

(IPCC, 2000). According to this report, “a set of scenarios was developed to represent 

the range of driving forces and emissions in the scenario literature so as to reflect 

current understanding and knowledge about underlying uncertainties”. Four narrative 

storylines represent different demographic, economic, social, environmental and 
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technological developments. These storylines are grouped into four scenario families: 

A2, B1, B2 and A1 (which include A1B, A1FI, A1T) (Arnell, 2004; IPCC, 2000). 

A1: The world will have very rapid growth with increasing globalization and rapid 

technological changes. Wealth will increase with reduced differences in regional per 

capita income. Based on energy sources, this family scenario includes three variants: 

fossil intensive (A1FI), non-fossil fuels (A1T) or a balance across all sources (A1B). 

A2: This scenario describes a heterogeneous world. Economic development is 

primarily region-oriented and per capita economic growth. This scenario represents 

less growth than A1. Technological changes are slower than other storyline scenarios 

with continuously increasing population growth.   

B1: Development will be environmentally sustainable in this scenario but with the 

same population growth as in A1. This scenario emphasizes global solutions to 

achieve economic, social and environmental sustainability. 

B2: Population growth is less than in A2 but higher than A1 and B1, with a locally-

oriented development and emphasis on environmental, economical, and social 

sustainability.  

2.3.1 Future Land Use Model 

The FOREcasting SCEnarios (FORE-SCE) model was developed by the United States 

Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center 

to provide spatially explicit detailed projections of plausible future land use and land 

cover (LULC) change for the conterminous United States (Sohl et al., 2014; Sohl et 

al., 2012). Four scenarios (A1B, A2, B1 and B2) of LULC were developed based on 

the IPCC-SRES (Sohl et al., 2014). The FORE-SCE model produced projected land 

use maps for each year from 1992 through 2100 using 1992 National Land Cover 
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Dataset (NLCD) (Sohl et al., 2014; Vogelmann et al., 2001; Wu et al., 2013). These 

are the first national-scale, moderate resolution and thematically detailed LULC 

projections that represent the IPCC storylines which are available for the 

conterminous United States (Sohl et al., 2014). The LULC maps are applicable to a 

variety of ecological applications (Sohl et al., 2014). 

2.3.2 Future Climate Model 

The General Circulation Models (GCMs) are published by the IPCC 4th Assessment 

Report (AR4) (Meehl et al., 2007) to represent future climate conditions. According 

to IPCC (2007), fossil fuel consumption has caused an increase in anthropogenic 

emissions of carbon dioxide and other greenhouse gases in the atmosphere. GCMs 

predict that for all IPCC scenarios, an increase in atmospheric greenhouse gas 

concentration will elevate surface air temperature. Moreover, GCMs are considered to 

be the most adopted approach to assess information on climate change. However, the 

spatial resolution of GCMs is often coarse and does not match with regional scales 

(Chu et al., 2010). Thus, bias corrected multimodel ensembles are commonly used to 

quantify uncertainty in climate change predictions. Appropriate downscaling is 

important to improve the coarse resolution and poor representation of precipitation 

and temperature in global climate models (Chu et al., 2010; Maraun et al., 2010; 

Pervez and Henebry, 2015). It is also necessary to consider realistic future hydrologic 

scenarios (Deidda et al., 2013; El-Khoury et al., 2015; Serpa et al., 2015). Several 

studies reported that different downscaled precipitation led to varying hydrologic 

response estimates, giving conflicting trends (Bastola et al., 2011; Chiew et al., 2010; 

Jha and Gassman, 2014; Xu et al., 2013). There are two approaches to meet the need 

for finer spatial resolution (Hewitson and Crane, 1996). 1) Process-based techniques 
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(e.g., downscaling approach) and 2) Empirical techniques that use identified 

relationships derived from the observed data.   

2.4 Hydrologic Modeling 

To assess the environmental impacts on hydrological processes, three methods are 

generally used. These are paired catchments approach, time series analysis or 

statistical methods, and hydrological modeling (Li et al., 2009). The purpose of a 

model is to represent a complex system in a simplified way. There is a wide variety of 

models to represent the complex hydrologic dynamics of the earth system. Various 

hydrologic models can be classified into categories as described by Singh (1988). 

 Lumped hydrologic models – Lumped models assume the complete basin as a 

homogenous system without considering the spatial distribution of processes 

(Xu, 2002). Examples include the Stanford watershed model (Crawford and 

Linsley, 1966), HBV model (Bergstrom, 1976), and Sacramento Soil Moisture 

Accounting (SAC-SMA) model (Burnash et al., 1973). 

 Semi-distributed hydrologic models – These types of model calculate flow 

contribution from separate subbasins, considering that the subbasins are 

homogenous (Xu, 2002). Examples of semi-distributed hydrologic models are 

the TOPMODEL (Beven and Kirkby, 1979) and Soil and Water Assessment 

Tool (SWAT) (Arnold et al., 2012; Neitsch et al., 2011). 

 Distributed hydrologic models – In distributed models, the whole basin is 

divided into elementary units (i.e. areas are divided as a grid net where water 

flows from one grid point to another when water drains through the basin) 

(Xu, 2002). Examples of distributed hydrologic models are the SHE (Abbott et 
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al., 1986) and the Institute of Hydrology Distributed Model (IHDM) (Beven et 

al., 1987). 

The Soil and Water Assessment Tool (SWAT) is a semi-distributed, continuous-time 

step, process-based river basin model (Arnold et al., 2012). SWAT has been widely 

used to analyze hydrological processes at watershed scales.  

This model was developed to evaluate the impact of climate and land management 

practices on water in large and complex watersheds with varying soils, land use, and 

management conditions over long periods of time (Arnold et al., 1998). The 

hydrological component of the model is based on a water balance equation with 

processes that include precipitation, surface runoff, water yield, ET, lateral flow, 

percolation and groundwater flow (Arnold et al., 1998; Neitsch et al., 2005). The 

water balance equation of the model (Neitsch et al., 2011) is as follows: 

𝑆𝑊𝑡 = SW𝑜 +  ∑(𝑃 −

𝑡

𝑛=𝑖

Qsurf − ET − Wseep − Qgw) 

where, SW is the change in soil water storage, P is the daily precipitation, ET is the 

ET, Qsurf is the surface runoff flow, Qgw the groundwater flow and Wseep is the deep 

aquifer recharge. Surface runoff is determined through a modified Soil Conservation 

Service (SCS) curve number (CN) method (Arnold et al., 1998; Neitsch et al., 2011; 

Wu et al., 2012b). The Penman-Monteith method (Monteith, 1965)  was used to 

estimate the potential ET.  

For water budget, SWAT differentiates the solid and liquid precipitation based on 

near-surface air temperature. If the air temperature is lower than snowfall 

temperature, then the precipitation is considered solid (i.e. snow), which will 
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accumulate until melt (Grusson et al., 2015). In SWAT, snowmelt in the model is 

estimated through mass balance approach: 

𝑆𝑁𝑂 = SNO +  Rday − Esub − SNOmlt 

where, SNO is the total amount of water in snowpack on a given day (mm H2O), Esub 

is the amount of sublimation (mm H2O), and SNOmlt is the amount of snowmelt (mm 

H2O). Changes in snowpack volume depend on additional snowfall or release of 

meltwater in the basin. A more comprehensive description of the equations used by 

SWAT can be found in Neitsch et al. (2011).   

2.5 SWAT Applications in Hydrologic Assessment in the Upper Midwest 

SWAT model was developed to predict the impacts of land management practices on 

water resources, sediment, and agricultural chemical yields in large, complex 

watersheds (Arnold et al., 2012; Neitsch et al., 2011). SWAT  has extensively been 

used for land use and climate change impact assessment studies in various parts of the 

world, including the Upper Midwest (Chien et al., 2013; Jha et al., 2006; Jha and 

Gassman, 2014; Johnson et al., 2015; Neupane and Kumar, 2015; Schilling et al., 

2014; Schilling et al., 2008; Wu et al., 2012b; Wu et al., 2013). Researchers often 

applied SWAT to evaluate changes in watershed hydrology due to land use changes 

by increasing cultivated crop acreages, assigning different crop rotations, and creating 

a conversion of one land use to another (Schilling et al., 2014; Schilling et al., 2008; 

Wu et al., 2012b). For example, Wu et al. (2013) examined implications of projected 

land use for hydrological processes in the Cedar River Basin watershed in Iowa. This 

study showed that due to projected urban expansion, surface runoff would increase 

and baseflow would decrease because of reduction in infiltration. Wu et al. (2012b) 

studied a series of biofuel production scenarios in the James River watershed where 



23 

 

water yield decreased for different crop rotations. Schilling et al. (2008) also reported 

that increased perennial vegetation increased annual ET and decreased water yield in 

the Racoon River watershed. Another study reported that increases in perennial 

vegetation reduced flood events and frequency of severe floods in this watershed 

(Schilling et al., 2014).  

The SWAT model has also been widely applied to analyze climate change effects on 

hydrological processes using future climate projections. Neupane and Kumar (2015) 

used projected temperature and precipitation data of the Special Report on Emissions 

Scenarios (SRES) to estimate climate change effects on hydrologic processes for the 

Big Sioux River watershed, South Dakota. In this watershed, for all the emission 

scenarios examined (A1B, A2, and B1), higher average annual streamflow, water 

yield, groundwater, percolation and lower ET were estimated compared to the 

baseline scenario. Jha and Gassman (2014) reported that, for A1B scenario, surface 

runoff would decrease by 16%, baseflow by 18%, and total water yield by 17%, 

which overall would result in a decrease in streamflow in the Racoon River 

watershed. Chien et al. (2013) studied the effects of climate change under SRES 

scenarios (A1B, A2, and B1) in Midwestern watersheds, for which the authors 

reported streamflow increase in winter and decrease in summer. This study found that 

future annual streamflow varied from -61% to 27% in the Rock River, Illinois River, 

and Kaskaskia River watersheds in Illinois.   
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CHAPTER 3: SPATIAL AND TEMPORAL EVALUATION OF 

HYDROLOGICAL RESPONSE TO CLIMATE VARIABILITY AND 

LAND USE CHANGE IN THREE SOUTH DAKOTA WATERSHEDS 

 

ABSTRACT: This study analyzed changes in hydrology between two recent decades 

(the 1980s and 2010s) with the Soil and Water Assessment Tool (SWAT) in three 

representative watersheds in South Dakota: Bad River watershed (BRW), Skunk 

Creek watershed (SCW) and Upper Big Sioux River watershed (UBSRW). Two 

SWAT models were created over two discrete time periods (1981-1990 and 2005-

2014) for each watershed. National Land Cover Database 1992 and 2011 were 

respectively used into 1981-1990 and 2005-2014 models, along with corresponding 

weather data, to enable comparison of annual and seasonal runoff, soil water content, 

evapotranspiration, water yield, and percolation between these two decades. 

Simulation results based on the calibrated SWAT models showed that surface runoff, 

soil water content, water yield, and percolation increased in all three watersheds. 

Elevated evapotranspiration was also apparent, except in SCW. Differences in annual 

water balance components appeared to follow changes in land use more closely than 

variation in precipitation amounts, although seasonal variation in precipitation for the 

two time periods was reflected in the seasonal surface runoff. Sub-basin scale spatial 

analyses revealed noticeable increases in water balance components mostly in 

downstream parts of BRW and SCW, and the western part of UBSRW. Results 

presented in this study provide some insight into changes in hydrological processes in 

South Dakota watersheds in recent past decades. 
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3.1 Introduction 

Long-term spatial and temporal variation of water balance components such as 

surface runoff, soil moisture, evapotranspiration (ET), groundwater and streamflow 

can be influenced by many factors within a watershed, including  land use and climate 

change (e.g., Deng et al., 2015; Fang et al., 2013; Li et al., 2009; Memarian et al., 

2014). As such, evaluation of land use and climate change effects on hydrology has 

been a long-standing research topic in studying agricultural management, flood 

forecasting and inundation mapping, soil degradation, nutrient losses, and biodiversity 

conservation practices (e.g., Heller and Zavaleta, 2009; Morton and Olson, 2014; 

Principe and Blanco, 2012; Schilling et al., 2014). Variation in precipitation was 

found influential in streamflow trends in various regions across the United States 

(Changnon and Kunkel, 1995; Novotny and Stefan, 2007). In the Upper Midwest, 

changes in precipitation pattern resulted in increased magnitude and frequency of 

floods (Changnon and Kunkel, 1995). Increased precipitation may lead to increase in 

water yield, ET and surface runoff, while a decrease in precipitation could result in 

the opposite effects (e.g., Ficklin et al., 2009; Jha et al., 2006; Lirong and Jianyun, 

2012). Besides precipitation, previous studies have linked global warming to snow 

melt processes and shift in runoff timing in five major watersheds in Minnesota 

(Johnson and Stefan, 2006; Novotny and Stefan, 2007). While climate, along with 

land use change, have been widely acknowledged as major drivers of variation in 

watershed hydrology, comprehensive studies on hydrologic impacts of climate and 

land use change at local levels with detailed characterization of land use conversions 

is needed to support watershed management strategies.  

Land use change is usually driven by various anthropogenic activities such as 

urbanization, afforestation, deforestation and expansion of agricultural lands (Öztürk 
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et al., 2013). In recent decades, land use change in the Midwest United States 

intensified with high grain prices (Omega-Research, 1997; Reitsma, 2014), economic 

development (Rashford et al., 2011), and increasing demand for biofuel feedstocks 

following  the Energy Independence and Security Act (EISA) of 2007 (Wu et al., 

2012). Land use change in this region, especially in the Western Corn Belt (WCB), is 

mainly characterized by conversion of rangeland, pastureland and grassland to 

agricultural land uses (Claassen et al., 2011; Wright and Wimberly, 2013). According 

to Wright and Wimberly (2013), 1 to 5% of grassland is converted to corn and 

soybean annually across the WCB region. In South Dakota alone, the net loss of 

grassland was about 1,820 km2 between 2006 and 2011 (Wright and Wimberly, 

2013). Singh (2013) also identified South Dakota as one of the states with highest 

grassland conversion rates in the WCB region. This increasing land use conversion 

can potentially lead to changes in surface runoff, flood frequency, water yield, soil 

moisture and evapotranspiration (ET) (Mao and Cherkauer, 2009; Schilling et al., 

2014; Schilling et al., 2008; Wu et al., 2012; Wu et al., 2013). Under these 

circumstances, water resources in South Dakota may be adversely affected. Although 

several regional studies evaluated hydrologic response to climate and land use change 

across the Midwest region (e.g. Wu et al., 2012; Wu et al., 2013; Schilling et al., 

2008; Schilling et al., 2014), there is no study that exclusively focuses on South 

Dakota watersheds, taking into account local trends in land use change (i.e. loss of 

grassland to other uses). Therefore, the objective of this study was to characterize 

hydrologic changes that occurred in South Dakota between two recent decades (the 

1980s and 2010s) in three representative watersheds. 

Evaluation of climate and land use change impacts on water balance often requires 

application of physically-based hydrological models. With the advancement of 
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computational resources, computer models can discretize geospatial heterogeneity of 

watershed characteristics at fine resolution and generate sound simulations of the 

hydrologic cycle. Out of numerous watershed models with varying levels of 

complexity, the Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012; 

Gassman et al., 2007; Neitsch et al., 2011) has extensively been used for land use and 

climate change impact assessment studies in various parts of the world (Goldstein and 

Tarhule, 2015; Guo et al., 2008; Li et al., 2015; Mango et al., 2011; Natkhin et al., 

2013; Pervez and Henebry, 2015; Wang et al., 2014; Wang et al., 2008). However, 

most of these studies involve scenario testing by varying climate input data or 

adjusting proportions of land use classes in the model to determine watershed 

sensitivity and response to these changes (e.g., Gassman et al., 2007; Hernandez et al., 

1998; Pervez and Henebry, 2015; Schilling et al., 2014). In the Midwest United 

States, researchers often applied SWAT using the same technique to evaluate changes 

in watershed hydrology and water quality through hypothetical climate and land use 

changes. Typical scenario constructions include increasing cultivated crop acreage, 

assigning different crop rotations, creating cases to represent land use conversion, and 

applying future land use and climate projections in the model (Schilling et al., 2014; 

Schilling et al., 2008; Wu et al., 2012). Wu et al. (2013) for example examined the 

implications of projected land use change for hydrology in the Cedar River watershed 

in Iowa. Neupane and Kumar (2015) used projected temperature and precipitation 

data from the Special Report on Emission Scenarios to estimate climate change 

effects on hydrologic processes for a watershed located in eastern South Dakota. 

SWAT was also used in this study to provide a quantitative assessment of changes in 

watershed hydrology under climate variability and land use change in South Dakota. 

The contribution of this study, however, is to demonstrate how SWAT can be used to 
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document changes in watershed hydrology based on historical climate and land use 

data of two distinct time periods.  

 

3.2  Study Area  

Three study watersheds were selected from different hydro-climatic and 

geographic settings in South Dakota (Table 3.1). The Bad River watershed is the 

largest of the three, located in the semi-arid region of the state, where grassland is the 

dominant land use (more than 80% in this watershed) followed by agricultural land 

use. Characterized by isolated buttes and absence of large trees, this watershed 

receives approximately 460 mm precipitation per year, of which 80% generally falls 

during the growing season (i.e. April to September). Average daily temperature 

ranges from a minimum of -12°C in January to a maximum of 31°C in July. Average 

annual snowfall varies between 650 and 1500 mm in the East, and between 650 and 

5000 mm in the West. The principal soils in the watershed are deep Promise-Opal 

association, and minor soils are dominated by poorly drained Kolls (SDDENR, 2004). 

The west part of the state, known as “West River,” lies west of the Missouri River. It 

is predominantly ranching with dry land farming compared to eastern South Dakota or 

“East River”, which is prone to intensive agricultural uses.  

Largely covered by glacial till and rich loamy soils, East River is predominantly 

a corn- and wheat-growing region, with substantial pig and poultry production. East 

River is lower in elevation and receives over 550 mm precipitation per year, of which 

76% generally falls during April to September, with an average daily temperature 

which varies from a minimum of -13°C to a maximum of 29°C in January and July, 

respectively (SDSU, 2003). The region is heavily glaciated, covered by glacial 

https://en.wikipedia.org/wiki/Ranching
https://en.wikipedia.org/wiki/Dryland_farming
https://en.wikipedia.org/wiki/Glacial_till
https://en.wikipedia.org/wiki/Loam
https://en.wikipedia.org/wiki/Maize
https://en.wikipedia.org/wiki/Wheat
https://en.wikipedia.org/wiki/Pig
https://en.wikipedia.org/wiki/Poultry
https://en.wikipedia.org/wiki/Glacier
https://en.wikipedia.org/wiki/Glacial_till
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till and fertile loamy soil. Skunk Creek watershed is located in southeast East River, 

in Minnehaha County. It covers the majority of urban developments including Sioux 

Falls, the largest city in the state. This watershed is an agriculture-dominated 

watershed (64%) followed by grassland (22%; Table 1). Geologically, Skunk Creek 

watershed is composed of Cretaceous formations, consisting of a heterogeneous 

mixture of silt, clay, sand, gravel and large rocks (SDDENR, 2004). 

The Upper Big Sioux River watershed is located northeast of the East River in the 

Coteau des Prairies region, where the presence of wetlands is a noteworthy 

geophysical feature. In this watershed, grassland (37%) and agriculture land (41%) 

are both prominent (Table 3.1). Soils in this watershed are dominated by glacial till 

Mollisols over Cretaceous shales (SDDENR, 2004). From semi-arid northwest to 

semi-humid southeast, the general climate across the state is continental with cold 

winters and hot summers. Each of these watersheds has United States Geological 

Survey's (USGS) streamflow gauge stations at their respective outlet (Table 3.1). 

Table 3. 1: Major Characteristics of the Study Watersheds. 

 

3.3  Data and Methodology 

3.3.1 SWAT Input Data 

In order to analyze hydrologic changes in response to historical climate and land 

Watershed 
Drainage 
area (km2) 

USGS 

streamflow 

gauge station ID 

Dominant  
land usea  

Number of weather 
stations used in modeling 

  
Maximum streamflow 
(annual average) m3/s 

    1981-1990 2005-2014  1981-1990 2005-2014 

Bad River  8119 06441500 Grassland 7 8   363 (1560) 462 (1846) 

Skunk Creek  1605 06481500 Agriculture 4 6  214 (1435) 113 (1718) 

Upper Big 

Sioux River  
3804 06479525 

Agriculture 

and 
Grassland 

4 5   57 (580) 57 (1274) 

aBased on National Land Cover Database 1992 and 2011 

https://en.wikipedia.org/wiki/Glacial_till
https://en.wikipedia.org/wiki/Loam
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use, two SWAT models were created for each of the study watersheds with two 

discrete time periods (1981-1990 and 2005-2014). Creation of the SWAT models in 

ArcSWAT 2009 requires topography, soil texture, land use and climate data. These 

data were extracted as follows: 30 m digital elevation model (DEM) from USGS 

National Elevation Dataset (USGS-NED, 2013); 30 m land use data from the National 

Land Cover Database (NLCD) 1992 and 2011 (USGS-NLCD, 2013); and 1:250,000 

scale State Soil Geographic Data (STATSGO) included in SWAT 2009 database. 

Climate and land cover input data were selected to represent the two periods of 

simulation while creating the models. In other words, NLCD 1992 land cover data 

were used to create the model corresponding to 1981-1990 period and NLCD 2011 

land cover data were input in the model for 2005-2014 period.  

Total daily precipitation, and minimum and maximum daily temperature data for 

the respective time periods were obtained from the National Climatic Data Center 

(NCDC) for the stations that fall within or are adjacent to the watershed boundary 

(Table 3.1). All other related climatic data (e.g. solar radiation and relative humidity) 

were developed with the internal weather generator within ArcSWAT. Penman-

Monteith equation was selected for computing potential evapotranspiration (PET), 

and observed daily streamflow time series for model calibration and validation were 

obtained from the USGS streamflow stations located at each watershed’s outlet 

(Figure 3.1). This study assumed that NLCD land cover and NCDC climate data were 

developed and archived with negligible errors. 
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Figure 3.1: Location of Study Watersheds in South Dakota, with Selected Weather 

Stations and the United States Geological Survey's Streamflow Gauge Stations at 

Respective Watershed Outlets. 

3.3.2 Watershed Spatial Discretization and Modeling 

The study watersheds were first divided into sub-basins using 1% flow 

accumulation area threshold, and all sub-basins were further discretized into 

Hydrologic Response Units (HRUs) using a 10% threshold for land use, soil and 

slope. A 10% HRU aggregation threshold was used in this study to reduce the 

simulation time; a smaller (or zero) threshold value leads to higher number of HRUs, 

therefore, requiring excessive computational demand. Curve Number and Variable 

Storage methods (Neitsch et al., 2011) were selected for surface runoff generation and 

channel routing simulation, respectively. A common set of 19 parameters involving 
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surface, subsurface and channel hydrologic responses were used for calibrating all six 

models (Table 3.2). The selection of parameters and their initial ranges were based on 

the review of existing literature on adjacent areas (e.g., Schilling et al., 2008; Wu et 

al., 2013) and suggestions from model developers presented in SWAT 2009 manual  

(Neitsch et al., 2011).  

Calibration was performed in SWATShare (https://mygeohub.org/groups/water-

hub/swatshare; Rajib et al., 2016a), which is a cyber-infrastructure (CI) for sharing, 

simulation, and visualization of SWAT models. SWATShare provides high-

performance computational (HPC) facilities through which all the six models were 

calibrated in parallel, saving resources and time. The current version of SWATShare 

uses the Parameter Solution (ParaSol) algorithm to perform Latin Hypercube 

Sampling and subsequent parameter optimization. No prior parameter sensitivity 

analysis was performed in this study; rather a comprehensive list of 19 parameters 

(common to all six models; Table 3.2) representing the land surface, sub-surface, 

channel routing and snowmelt processes were directly included in the parameter 

optimization process. SWAT parameters and their initial value ranges (see Tables 3.2 

and 3.3) were selected based on the review of existing literature on nearby 

Midwestern agricultural watersheds (e.g., Jha et al., 2007; Neupane and Kumar, 2015; 

Schilling et al., 2008; Wu et al., 2013) and suggestions from model developers 

(Neitsch et al., 2011). Nash-Sutcliffe Efficiency (NSE) was used as objective function 

to measure the agreement between simulated and observed streamflow hydrographs. 

The durations of calibration and validation were different from one watershed to 

another and even between the two periods for the same watershed (Table 3.3). Such 

uneven model evaluation periods were chosen by visual inspection of the observed 

streamflow hydrographs such that watershed conditions, both during the high and low 

https://mygeohub.org/groups/water-hub/swatshare
https://mygeohub.org/groups/water-hub/swatshare
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flow events, can be captured while optimizing the parameters.  

After evaluating the performance of the 6 models during the discrete calibration and 

validation time periods, the models were run with the best parameter estimates for the 

two study periods (i.e. 1981- 1990 and 2005- 2014), excluding the first year of each 

period, which was set for model warm-up in each case (Table 3.3). This post-

calibration full-scale simulation provides continuous daily time-series of hydrologic 

fluxes. The uncalibrated SWAT models were made publicly available in the 

SWATShare system. Detailed information on accessing these models and model 

outputs are provided in SWATShare user manual (Rajib and Merwade, 2015).  

3.3.3 Statistical Analysis 

Nonparametric Wilcoxon test (Koch, 1972) was used to determine differences in 

medians of precipitation, surface runoff, water yield, evapotranspiration, soil water 

content, water yield, and percolation between the two study periods (i.e. 1981-1990 

and 2005-2014). A significance level of α = 0.05 was used to compute statistics with 

the statistical computing software, R (R Development Core Team, 2008). The 

magnitudes of water budget components such as lateral flow and groundwater flow 

were relatively small so were not intensively discussed in the study.     

Table 3. 2: List of Parameters Used for Model Calibration for the Study Watersheds. 

No. Parameter Definitiona 
Scale of 

input 

Initial 

range 
Adjustmentb 

1 ALPHA_BF Baseflow recession constant (days) Watershed 0.01-1 1 

2 CANMX Maximum canopy storage (mm H2O) HRU 0.01-25 1 

3 CH_K(2) Main channel hydraulic conductivity (mm/hr) Reach 5-100 1 

4 CH_N(2) Main channel Manning's n  Reach 
0.01-

0.15 
1 

5 CN2 Curve number for moisture condition II HRU -20-20 3 

6 EPCO Plant uptake compensation factor HRU 0.75-1 1 

7 ESCO Soil evaporation compensation factor HRU 0.75-1 1 

8 GW_DELAY Groundwater delay (days) Watershed -10-10 2 

9 GW_REVAP Groundwater "revap" coefficient Watershed 0.01-0.2 1 

10 GWQMN 
Threshold groundwater depth for return flow (mm 

H2O) 
Watershed 

0.01-

5000 
1 
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11 REVAPMN Re-evaporation threshold (mm H2O) Watershed 0.01-500 1 

12 SFTMP Snowfall temperature (oC) Watershed 0-5 1 

13 SMFMN 
Melt factor for snow on December 21 (mm H2O/ oC-

day) 
Watershed 0-10 1 

14 SMFMX Melt factor for snow on June 21 (mm H2O/ oC-day) Watershed 0-10 1 

15 SMTMP Snow melt base temperature (oC) Watershed -2-5 1 

16 SOL_K Soil saturated hydraulic conductivity (mm/hr) HRU -15-15 3 

17 SOL_AWC Available soil water capacity (mm  H2O/mm soil) HRU -15-15 3 

18 SURLAG Surface runoff lag coefficient (days) Watershed 0.05-24 1 

19 TIMP Snow pack temperature lag factor Watershed 0-1 1 

 

 

Table 3. 3: Time Periods Used for Model Calibration and Validation for 1981-1990 

and 2005-2014 Study Periods. 

Watershed Calibrationa Validation 

Bad River  
(1981)1982-1986 1987-1990 

(2009) 2010-2014 2005-2009 

Skunk Creek  
(1985) 1986-1990 1981-1985 

(2005) 2006-2011 2012-2014 

Upper Big Sioux River  
(1985) 1986-1990 1981-1985 

(2005) 2006-2010 2011-2014 
aValues in the parentheses show model warm-up years. Simulated streamflow output for the warm-up year 

was not considered in calculating goodness statistics shown in Table 3.5. 

 

3.4  Results and Discussion 

3.4.1 Historical Land use Change  

A GIS-based analysis of NLCD 1992 and NLCD 2011 clearly identified grassland 

depletion as the common feature of land use change in all three study watersheds 

(Table 3.4), with some differences in the conversion outcomes between the two 

decades. Grassland, in both Bad River and Skunk Creek watersheds (3% reduction in 

both cases), was directly impacted anthropogenically and was mostly converted into 

urban and agricultural areas (Table 3.4). With 5% increase, a trend of urbanization 

was noticeable in the Skunk Creek watershed. In the Upper Big Sioux River 

watershed, urban areas also increased along with wetlands (5% and 4%, respectively). 

Expansion of wetlands in this watershed has been a typical characteristic of the 
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Coteau des Prairies region in northeastern South Dakota for the past several years 

(Johnson et al., 2004; Kahara et al., 2009).  

3.4.2 Climate Variation  

Climate change is a much slower process which is often not precisely measurable 

within a short span of 10 years. Such a short-term quantitative assessment is 

insufficient to detect the true nature of climate change for a region, which eventually 

hinders correlating climate effects to changes in hydrologic processes. However, 

comparison between the two study periods provides an approximate indication of 

climate change effects. In South Dakota and the Midwest region, long-term 

temperature barely increased between 1941 and 2005 (0.4 - 0.8 °F) (Department of 

the Interior, 2015). Thus,  climate analysis in this study primarily focused on changes 

in precipitation amounts, not how and why precipitation intensities varied between the 

two decades. As observed from similar average annual precipitation amounts during 

1981-1990 and 2005-2014 (Table 3.4), change in precipitation is rather less 

pronounced in contrast to the noticeable pattern of land use alterations in the selected 

watersheds. While incident precipitation amounts in Bad River and Upper Big Sioux 

River watersheds is slightly increased by 7% and 6.5%, respectively, precipitation 

seemed to decrease slightly in Skunk Creek watershed (2.5%) between the two time 

periods (Figure 3.2).  

An examination of trends in precipitation within the two study periods revealed a 

decreasing trend for the three watersheds, except for the Bad River watershed where 

precipitation seemed to increase slightly in 2005-2014 period (Figure 3.2). Other 

researchers also reported no significant change in historical precipitation for 

watersheds in the Midwest region (Xu et al., 2013). There was no trend in maximum 

and minimum daily temperature within and across the two study periods in Bad River 
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and Upper Big Sioux River watersheds. In Skunk Creek watershed, both maximum 

and minimum temperatures showed a slightly decreasing trend in 2005-2014 period 

(Figure 3.2). While the difference in incident precipitation between the two study 

periods in all three watersheds is not statistically significant (Figure 3.4), the observed 

climate trends allow estimating the effects of climate variability on hydrological 

processes in the study watersheds. 
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Table 3. 4: Summary of Land Use Categories and Proportions, and Average Annual Precipitation in The Three Study Watersheds. 

 Land usea 

 

Bad River watershed  Skunk Creek  watershed  Upper Big Sioux River  watershed 

Grassland Agriculture  Water Urban  Grassland Agriculture  Water Urban   Grassland Agriculture  Wetland Urban 

NLCD 1992  

(1981-1990) 
85.04  13.5 0.7  0.75 

 
  26 64.3 7.8 1.3 

 
39.4 46.7 11.9    1.1 

NLCD 2011  

(2005-2014) 
81.72 14.8 1.5   2.1 

 
22.2 64.3 5.9 6.5 

 
36.8 41.3 16.6 4.7 

Differenceb      -3.3   1.4 0.8   1.3  -3.3  0.03 -1.8 5.2  -2.6 -5.3  4.8 3.6 
aValues indicate percentage of the total watershed area 
bObtained by subtracting NLCD 1992 values from NLCD 2011 values 
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Figure 3. 2: Annual Values of Precipitation and Daily Mean Temperature (Maximum 

and Minimum) Along With the Trends (Dashed Line) and Average Values (Straight 

Line) of a) Bad River, b) Skunk Creek and c) Upper Big Sioux River Watershed. 
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3.4.3 Evaluation of SWAT Performance 

To ascertain that the calibrated models are representative of the hydrological 

response in the watershed, simulated daily streamflow hydrographs were compared 

with observed streamflow data at respective watershed outlets (Figure 3.3). Based on 

model calibration criteria discussed by Moriasi et al. (2007), SWAT simulations 

matched well with the observed, except for few high flow events (Figure 3.3). This is 

comparable to  findings from many past studies across different regions, reporting 

imprecise performance of the SWAT model in extreme flow conditions (e.g., Arabi et 

al., 2006; Larose et al., 2007; Oeurng et al., 2011; Qiu and Wang, 2013; Rahman et 

al., 2013; Rahman et al., 2014; Rajib and Merwade, 2015; Vazquez-Amábile and 

Engel, 2005; Wang et al., 2008). The goodness of fit scores (R2, NSE, and PBIAS) are 

presented in Table 3.5, separately for calibration, validation and the entire study 

periods. R2 and NSE range from 0.4 to 0.75, except the case of validation for Bad 

River watershed during the first study period (i.e., 1981-1990). Although the SWAT 

models performed reasonably well according to the evaluation guidelines from 

Moriasi et al. (2007) the uncertainty in precipitation input data cannot be totally 

disregarded while performing modeling studies on South Dakota, since the state is not 

well covered by a dense network of weather observatory stations with long-term data. 

In addition, an inspection of the data revealed frequent snow melt flash flows during 

spring were evident in all the three watersheds, combined with the prevalence of low 

flow condition throughout the rest of the year. These are the probable causes for high 

negative PBIAS in some of the cases reported in Table 3.5, even with reasonably high 

R2 and NSE values. In those particular cases, the calibrated SWAT models are 

capable of capturing the time response of the watersheds, both during dry and wet 

conditions, but slightly deficient in simulating the total volume of flow being actually 
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generated. Overall, considering the complexity of daily simulation in a data-scarce 

area, the calibration and validation results shown in Figure 3.3 and Table 3.5 can be 

considered satisfactory. Table 3.6 reports the optimized parameter values (best 

estimates) for all 6 SWAT models created in this study.  

 

Figure 3. 3: Comparison of Observed and Simulated Streamflow Hydrographs in Daily 

Time Steps For The Two Study Periods (i.e. 1981-1990 and 2005-2014) for (a) Bad 

River Watershed, (b) Skunk Creek Watershed, and (c) Upper Big Sioux River 

Watershed. 
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Table 3. 5: Goodness-of-Fit Scores for Model Simulation with Observed Daily 

Streamflow at Respective Watershed Outlets. 

   Statistics Calibration Validation Study period 

Bad River 

watershed 

1981-1990 
R2 0.59 0.38 0.50 
NSE 0.59 0.38 0.50 
PBIAS - 0.3 15.6 5.7 

2005-2014 
R2 0.47 0.67 0.5 
NSE 0.47 0.55 0.48 
PBIAS - 20.4 - 46.5 - 37.9 

Skunk Creek 

watershed 

1981-1990 

R2 0.57 0.65 0.63 

NSE 0.55 0.63 0.62 

PBIAS - 20.8 0.85 - 11.2 

2005-2014 

R2 0.56 0.75 0.52 

NSE 0.56 0.48 0.5 

PBIAS - 7.6 - 42.6 - 21.6 

Upper Big 

Sioux River 

watershed 

 

1981-1990 
R2 0.48 0.55 0.50 
NSE 0.48 0.54 0.50 
PBIAS - 17.2 - 6.1 - 13.2 

2005-2014 

R2 0.43 0.73 0.60 
NSE 0.40 0.72 0.59 

PBIAS - 23.9 - 11.4 - 17.8 

 

Table 3. 6:  Best Estimates of Parameters Obtained From Model Calibration for the 

Three Study Watersheds. 

No. Parameter Best parameter values 

  Bad River watershed  Skunk Creek watershed  
Upper Big Sioux River 

watershed 

  1981-1990 2005-2014  1981-1990 2005-2014  1981-1990 2005-2014 

1 ALPHA_BF 0.94 0.49  0.389 0.13  0.179 0.867 

2 CANMX 24.4 8.9  13.29 14  15.24 15.09 

3 CH_K(2) 80.79 36.9  22.59 32.5  80.43 42.51 

4 CH_N(2) 0.04 0.145  0.016 0.13  0.023 0.097 

5 CN2 -11.2 -9.4  10.72 14.3  -2.7 -11.86 

6 EPCO 0.72 0.76  0.86 0.82  0.854 0.815 

7 ESCO 0.68 0.91  0.84 0.98  0.774 0.995 

8 GW_DELAY -5.2 1.47  -1.65 -0.8  5.250 4.116 

9 GW_REVAP 0.13 0.079  0.137 0.04  0.017 0.185 

10 GWQMN 4429 2885  720 3636  3142 1689 

11 REVAPMN 427 410  331 324  408 125 

12 SFTMP 2.8 0.413  1.73 1.1  4.03 2.26 

13 SMFMN 0.93 9.04  7.27 5.29  8.77 1.93 

14 SMFMX 4.2 1.36  7.881 5.38  5.73 4.40 

15 SMTMP 2.07 1.15  4.652 -1.3  0.55 3.4 

16 SOL_AWC -12.98 10.67  -13.05 -0.1  -11.01 10.7 

17 SOL_K 10.9 12.39  4.02 -15  13.62 -7.16 

18 SURLAG 14.9 6.26  0.20 1.2  1.19 0.057 

19 TIMP 0.71 0.43  0.51 0.653 0.016 0.134 
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3.4.4 Assessment of Annual Water Balance 

Figures 3.4 and 3.5 compare the average annual water balance components and 

their relative changes at the watershed outlets between the two time periods (i.e. 

1981-1990 and 2005-2014). Significance (p-values) from the calculated changes in 

hydrology between the two periods is also shown in Figure 3.4. Average annual soil 

water content in the Bad River watershed shows an increase of 31 mm during 2005-

2014, which is about 127% higher than that of the 1981-1990 period. This watershed 

is located in the semi-arid part of the state and requires irrigation to support additional 

water demands with the expansion of agricultural land (1.4% corresponding to 24 

km2; Table 3.4), leading to increased soil water content. Western South Dakota 

mostly consists of sandy soil having short-grass and weed-based rangelands (Janssen 

and Pflueger, 2004). With shorter roots in the sandy soil, this type of vegetation tends 

to deplete soil water from top soil through transpiration while sufficient water content 

may still exist in the deeper layers. Although precipitation slightly increased in the 

watershed between the two time periods, transformation of these rangelands, 

predominantly for wheat production (Janssen and Pflueger, 2004), could reduce 

moisture loss from the top soil and lead to additional water demands (i.e. irrigation) as 

mentioned earlier. High soil water content would lower infiltration capacity, thereby 

increasing surface runoff volume by 34% (Figures 3.4 and 3.5). Besides the slight 

increase (1.3%) in urban land cover (Table 3.4), growth in agricultural operations in a 

previously undisturbed grassland such as the Bad River watershed can potentially 

reduce soil permeability, which can be regarded as a contributing factor for runoff 

intensification (e.g., Pai and Saraswat, 2011). In addition, crop cultivation tends to 

promote additional plant transpiration from root zone. Slightly higher precipitation 

during the 2005-2014 study period compared to 1981-1990 and increased availability 
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of soil water in the Bad River watershed likely contributed to increase in ET (Figures 

3.4 and 3.5). Research showed that ET is correlated (R2 = 0.66; p = 0.001) with 

precipitation in semi-arid rangelands (Nagler et al., 2007; Wu et al., 2012).  

In Skunk Creek watershed, increased impervious land cover associated with 

urbanization and agricultural operations amplified surface runoff volume from 92 mm 

in 1981-1990 period to 122 mm (33% increase) in 2005-2014 period. This percentage 

increase in surface runoff is comparable to that of the Bad River watershed. While 

increase in average annual surface runoff is 7 mm between the two time periods in 

Bad River watershed, it is 30 mm in Skunk Creek watershed. The 30 mm increase in 

average annual runoff between the two 10-year periods is quite substantial, 

considering the average daily precipitation the watershed usually receives and given 

that total rainfall in this watershed was less in the second study period (Figure 3.4). 

As a result, the simulated water yield was 108% higher in 2005-2014 than in 1981-

1990. Cropland in this part of the state is mostly rain-fed. With only slight increase in 

incident precipitation amounts between the two time periods, water content in the soil 

profile in Skunk Creek watershed does not show considerable increase as in the Bad 

River watershed (Figure 3.4). In contrast to the general cause-effect relationship of ET 

increasing with crop production (more plants transpiring water) and elevated soil 

moisture storage (e.g., Wu et al., 2012), average annual ET in Skunk Creek watershed 

decreased by 49 mm (8.5%) during 2005-2014 (Figure 3.4). Although urbanization in 

this watershed is mostly localized, significant expansion rate (Table 3.4) might have 

lowered average ET at the watershed scale because of the paucity of vegetation over 

urban impervious surfaces, reducing the amount of available water for ET (Barnes et 

al., 2001). 

Due to the gradual expansion of wetlands in the Upper Big Sioux River 



58 

watershed, the most significant hydrological changes were observed in soil water 

content and ground water percolation (Figure 3.4). SWAT simulations based on 

NLCD 2011 show an extensive increase in average annual soil water content by 174% 

during 2005-2014 relative to 1981-1990 (p < 0.001; Figure 3.4). Evaluation of HRU-

scale outputs (not shown here) reveals that soil water content in the recent time period 

(i.e. 2005-2014) stayed nearly at field capacity all year round, except at the peak of 

growing season when moisture depletion is the highest. The resultant saturation 

excess flow from the lowest layer of the soil profile to the shallow aquifer is reflected 

in the Upper Big Sioux River watershed in terms of increased percolation (Figure 

3.4). Higher soil water storage allows less precipitation water to infiltrate, leading to 

high runoff potential in the watershed during 2005-2014 period, even with the 

depletion of both grassland and croplands beside a 4% increase in urban areas (Table 

3.4). Under these circumstances, it is unlikely that soil evaporation and plant 

transpiration increased in this watershed. The 2% increase in ET as shown in Figure 

3.4, could be extraction from wetlands which expanded in the watershed (Johnson et 

al., 2004; Kahara et al., 2009). 

Across watersheds and study periods, ET had the highest proportion of water 

budgets, followed by runoff, and percolation, except in Upper Big Sioux River 

watershed where percolation was higher than runoff during 2005-2014 period (Figure 

3.4). Overall, surface runoff increased while ET decreased between 1981-1990 and 

2005-2014 in all three watersheds under the influence of land use change and climate 

variability (Figure 3.4). Ghaffari et al. (2010) found that grassland replacement by 

other land uses caused increase in mean annual surface runoff in Northwest Iran.  

Similar results were also reported for the Niger River Basin and Lake Chad Basin in 

Africa (Li et al., 2007). The researchers explained that the increased surface runoff  
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and water yield followed replacement of rangeland/grassland with rain-fed agriculture 

and bare ground (Ghaffari et al., 2010; Li et al., 2007). As mentioned earlier, 

agricultural activities and urbanization in Skunk Creek watershed resulted in higher 

magnitude of surface runoff and water yield compared to the other two watersheds. 

Previous studies indicated that small watersheds such as Skunk Creek watershed are 

sensitive to high intensity rainfall in producing surface runoff (Baker and Miller, 

2013; Hernandez et al., 1998). Runoff increase might also be due to precipitation 

intensity but was not explicitly analyzed in this study. Results from the present study 

were comparable to findings from other parts of the world (Pai and Saraswat, 2011; 

Wu et al., 2012; Zhao et al., 2016). In the Midwestern Raccoon River watershed, 

modeling results showed that average annual ET decreased under increasing corn 

acreage, and increased under increasing grass acreage (Schilling et al., 2008). Despite 

the fact that there was no significant change in precipitation and temperature, soil 

moisture appears to increase in all three watersheds (Figures 3.4 and 3.5). An increase 

in precipitation will result in increased soil moisture as shown by Ballard et al. (2014) 

through future climate predictions for the Prairie Pothole Region of the northern Great 

Plains.  
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Figure 3. 4: Average Annual Values and Percent Change of Precipitation (PREC), 

Evapotranspiration (ET), Surface Runoff (SURQ), Soil Water Content (SW), Water 

Yield (WYLD) and Percolation (PERCO) for Two Study Periods (1981-1990 and 

2005-2010) in (a) Bad River Watershed, (b) Skunk Creek Watershed, and (c) Upper 

Big Sioux River.Watershed. Differences were Calculated by Subtracting the Values of 

1981-1990 Period from Those of 2005-2014 Period. Statistically Significant 

Hydrological Changes were Determined by Wilcoxon Test. 

 

Difference (mm) % change p- value

Precipitation 31.5 7.5 0.605

Surface Runoff 7 .0 34 0.546

Soil Water Content 31.0 127 0.008

ET 15.0 4 0.605

Water Yield 7.0 36 0.436

Percolation 3.5 331 0.001

Difference (mm) % change p- value

Precipitation -16.7 -2.5 0.730

Surface Runoff 30.0 32.5 0.222

Soil Water Content 18.0 19.5 0.436

ET -49.0 -8.5 0.050

Water Yield 62.0 108 0.003

Percolation 4.5 63 0.546

Difference (mm) % change p- value

Precipitation 36.0 6.5 0.436

Surface Runoff 16.0 101 0.114
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Figure 3. 5: Average Annual Water Budget for Two Study Periods (1981-1990 and 

2005-2010) in (a) Bad River Watershed, (b) Skunk Creek Watershed, and (c) Upper 

Big Sioux River Watershed. 

3.4.5 Seasonal Variation in Water Balance Components  

Figure 3.6 shows seasonal variation in hydrologic components between the two 
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2005-2014 relative to 1981-1990. A comparative assessment on the relative 

magnitude of the changes among the three watersheds can also be deduced from 

Figure 3.6. The values presented here are respective monthly averages for the two 

time periods, calculated over the entire watershed. Seasonal variation in surface 

runoff, soil water and ET (especially) seems to follow variation in precipitation in all 

three watersheds. This is indicative that seasonal variation in the studied hydrologic 

processes is likely driven by variation in climate, although changes in annual 

hydrologic fluxes were found to correspond to land use change, specifically to 

grassland loss. Water budget components followed relatively the same patterns in all 

three watersheds for the two time periods (Figure 3.6).  

Runoff generally increased from April to August (i.e. warmer months) and 

decreased in winter months when the ground is frozen (Figure 3.6). Occurrence of 

elevated surface runoff can be linked to increase in soil water level, and decline in soil 

water content can be associated with increased ET in summer months (May to 

August; Figure 3.6). Intensification of surface runoff in Skunk Creek and Upper Big 

Sioux River watersheds even with no increase in monthly precipitation, especially in 

late spring and early summer (March-May) during 2005-2014, could be the effects of 

spring snow melt (Kahara et al., 2009). Mao and Cherkauer (2009) also reported 

elevated spring runoff for the Upper Midwest states due to snow melt processes. 

Changes in the timing of snow melt may have caused shifts in elevated runoff events 

in these two watersheds. For example, high runoff events occurred in June during 

1981-1990 period, while the month of April experienced the highest runoff events 

during 2005-2014 period in the Skunk Creek. Although the SWAT models developed 

in this study considered snow melt parameters, the analysis did not explicitly account 

for patterns in snow melt between the two time periods.  
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For all three watersheds, soil water content decreased during frost-free seasons, 

while surface runoff, ET, and precipitation increased (Figure 3.6). During the growing 

season, rainfall and temperature support high plant canopy activities, leading to 

decreased water content in the soil profile and increased ET (Figure 3.6). For 

example, the lowest seasonal soil water content shown in Figure 3.6 corresponds to 

the highest ET values at the peak of summer season (May to August). Soil water 

content and ET in the Bad River watershed are the lowest of all three watersheds, 

likely due to its location in the semi-arid region. Increase in soil water in the Upper 

Big Sioux River watershed from 1981-1990 to 2005-2014 can be explained by the 

effects of wetland expansion on soil moisture level (Table 3.4 and Figure 3.6). 

Increase in ET during summer is also observable with little difference between the 

two time periods in all three watersheds, with the highest ET values in Skunk Creek 

watershed (Figure 3.6). This elevated summer ET could be linked to land use change. 

Research indicated that land use change (e.g. grassland depletion and agricultural land 

expansion) considerably influenced surface runoff and ET, mainly during summer 

months for watersheds in China (Deng et al., 2015; Fang et al., 2013). Monthly 

precipitation appears to fluctuate more noticeably between July and December than 

the first part of the year (i.e. January to June), especially in the Bad River and Skunk 

Creek watersheds during 2005-2014. However, there was little difference in the 

timing of the highest average monthly precipitation between the two time periods. In 

these two watersheds, average monthly precipitation was high in May-June, with June 

being the wettest month during 2005-2014 period (Figure 3.6). In the Upper Big 

Sioux watershed, there was a shift in high precipitation season from June for 1981-

1990 period to August for 2005-2014 period (Figure 3.6). Changes in ET for all three 

watersheds are distinctive only during the summer growing season, while the 
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variations throughout rest of the year and for the two study periods are quite minimal.  

 

Figure 3. 6: Seasonal Variation in Surface Runoff, Soil Water Content, and ET over 

1981-1990 and 2005-2014 Time Periods for (a) Bad River Watershed, (b) Skunk 

Creek Watershed, and (c) Upper Big Sioux River Watershed. 

 

3.4.6 Hydrological Response at Sub-basin Scale 

Sub-basin scale average annual outputs for surface runoff, soil water content and 

ET from the two model configurations (i.e. 1981-1990 and 2005-2014 time periods) 

are shown in Figures 3.7-3.9. Surface runoff in the Bad River watershed increased in 

the recent time period (i.e. 2005-2014) in almost all the sub-basins, especially 
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downstream of the watershed in accordance with conversion of grassland to 

agricultural and urban areas (Figure 3.7). Accordingly, increase in soil water content 

and ET during 2005-2014 is relatively high in the downstream sub-basins and the 

pattern of their spatial variation is equally consistent, supporting the expected 

relationship of high soil moisture imparting great surface runoff potential and elevated 

ET demand.  
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Figure 3. 7:  Spatial Distribution of Land Use Classes and Water Balance Components 

and Their Percent Change in Individual Sub-Basins in Bad River Watershed for The 

Two Study Periods. 

Land use conversion in Skunk Creek watershed, either from grassland to cropland 

or conversion of both grassland and cropland to urban land use, likely contributed to 

surface runoff increase in the watershed during 2005-2014, with a tendency of soil 
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the watershed is sub-basin 14 that houses the City of Sioux Falls. According to NLCD 

2011, massive losses in grassland (-75%) and cropland (-60%) to expansion of urban 

developments occurred in this particular sub-basin, potentially contributing to surface 

runoff increase by 219% during 2005-2014 with substantial lowering of ET (Figure 

3.8). A similar pattern was observed in sub-basins with reduced ET during 2005-2014 

compared to 1981-1990 because of high expansion rate of urban areas that would 

have led to the lowering of average ET values in the watershed. Sub-basins with 

minimal change in land use showed the least changes in surface runoff and soil 

moisture.  
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Figure 3. 8: Spatial Distribution of Land Use Classes and Water Balance Components 

and Their Percent Change in Individual Sub-Basins in Skunk Creek Watershed for the 

Two Study Periods. 
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Changes in the Upper Big Sioux River watershed showed a very distinctive spatial 

pattern, which is likely due to the expansion of wetlands all over the western part of 

the watershed (Figure 3.9). For example, wetlands in sub-basin 3 have expanded from 

3% in 1981-1990 (NLCD 1992) to 17% of the total sub-basin area in 2005-2014 

(NLCD 2011). Accordingly, surface runoff, soil water content, and ET exhibit 

noticeable increase in the sub-basins over the western part of the watershed. 

Figure 3. 9: Spatial Distribution of Land Use Classes and Water Balance Components 

and Their Percent Change in Individual Sub-Basins in Upper Big Sioux River 

Watershed for The Two Study Period. 
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Figure 3.7-3.9 show how the hydrology within a particular watershed changed 

between the two discrete time periods. To evaluate the relative magnitude of 

hydrologic changes in all  three watersheds, sub-basin scale average annual values of 

the hydrologic components were mapped using the same color code to describe these 

variations (Figure 3.10). Having the largest percentage of expansion in urban land use 

from the first to the second time period, Skunk Creek watershed shows the highest 

surface runoff potential among the three watersheds. Changes in soil water and ET are 

noticeable in the Upper Big Sioux River watershed, with the distinctive spatial pattern 

of relatively intensive changes around the wetlands in the western part of the 

watershed. Changes in surface runoff in the Bad River watershed are comparable with 

that of the Upper Big Sioux River watershed. Even though a similar amount of 

grassland was converted in the Bad River watershed, soil water and ET appear to be 

less altered compared to the other two watersheds (Figure 3.10).  

In general, the spatial pattern of increased surface runoff conformed to the spatial 

distribution of land use modifications in all three watersheds. In Minnesota, 

Wisconsin, and Michigan, Mao and Cherkauer (2009) found strong correlations 

between spatial and seasonal water balance variations and changes in land use type, 

while Nie et al. (2011) found no correlations between ET and land use in the San 

Pedro watershed in Mexico. In all three watersheds, there were small changes in ET at 

sub-basin scale (Figures 3.7-3.10). Evapotranspiration is a combination of evaporation 

and transpiration; these sub-processes can be non-linear in nature (Ghaffari et al., 

2010). Pai and Saraswat (2011) reported that transpiration decreased while 

evaporation increased in the Illinois River drainage area of Arkansas between 1997 

and 2008. 

The spatial and temporal changes in water budget components discussed are 
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indicative of the need to develop sustainable watershed management strategies to 

mitigate the effects of climate and land use changes. The sustainable water resources 

management plan should carefully consider competing interests of water use 

allocation to support local economies, protect the environment, and maintain and 

enhance land productivity. This can be achieved through policy empowerment of the 

collective efforts of producers, local decision-makers, and the general public.
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Figure 3. 10: Spatial Comparison of Watershed Balance Components between 1981-1990 and 2005-2014 Study Periods for (a) Bad River 
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3.5  Conclusions 

This study evaluated hydrologic changes under historical land use and climate 

observations in three watersheds (Bad River, Skunk Creek, and Upper Big Sioux River) 

in South Dakota. This study showed useful application of SWATShare, a cyber-enabled 

platform suitable for parallel execution of multiple large-scale SWAT models and intense 

computational tasks such as model calibration. Results obtained in this study provide 

some insight into hydrological response to variation in climate and land use change in 

South Dakota in recent decades. Based on the comparison of historical land use, climate 

and corresponding SWAT simulated hydrologic outputs for 1981-1990 and 2005-2014 

time periods; the following conclusions can be drawn: 

1. Bad River and Skunk Creek watersheds experienced grassland loss with 

subsequent expansion in agricultural and urban areas (1.4% and 5.2%, 

respectively); whereas, land use change in the Upper Big Sioux River watershed 

was mostly derived from expansion of wetlands (4.8%), rather than from direct 

land conversion as in the case of the other two watersheds. Gradual decrease in 

grassland is the common characteristic of land use change in all three watersheds.  

2. Although climate change is not obvious from the precipitation analysis, climate 

variability appears with a slight precipitation increase in Bad River and Upper Big 

Sioux River watersheds during 2005-2014 relative to 1981-1990, while 

precipitation slightly decreased in the Skunk Creek watershed.  

3. Comparison of watershed-scale average annual water budget components between 

the two decades indicates significant increase in soil water content and 

percolation along with slight increase in surface runoff and ET in Bad River and 
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Upper Big Sioux River watersheds. Higher water yield in Skunk Creek watershed 

during 2005-2014 compared to 1981-1990 corresponds to reduction in ET and 

substantial increase in surface runoff volume. Changes in water balance 

components shown in this study are likely driven by the combined effects of 

climate and land use change.  

4. Analysis of seasonal variability pointed out a notable shift in elevated surface 

runoff in Skunk Creek and Upper Big Sioux River watersheds from June to 

March and from March to April, respectively, between the two time periods. 

Changes in ET for all three watersheds were distinctive in the summer growing 

season, while there was no significant variation between the two study periods 

(especially in Bad River and Upper Big Sioux River watersheds). 

5. Based on the sub-basin scale spatial evaluation, downstream parts of both Bad 

River and Skunk Creek watersheds experienced increases in water balance 

components compared to upstream parts, while the increases were more evident in 

the western part of Upper Big Sioux River watershed.  

Although loss of grassland and subsequent increase in agriculture area, urban 

development and wetland has been found as the common trend of land use change in 

South Dakota, this finding might be specific to the watersheds considered in this study. 

Similar analyses to include more watersheds or a large watershed covering the state 

would lead to a thorough understanding of changes in hydrologic processes in South 

Dakota. Considering the importance of agriculture and grassland in South Dakota’s 

economy, this study can be extended to examine the effects of grassland depletion and 

climate variability/change on water resources, including water quality, water footprint, 
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future water security and sustainable water resources management.  
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CHAPTER 4: IMPACTS OF LAND USE AND CLIMATE CHANGES ON 

HYDROLOGICAL PROCESSES IN JAMES RIVER WATERSHED  

 

Abstract 

This study evaluated the hydrological response to land use and climate changes in the 

James River watershed, using the Soil and Water Assessment Tool (SWAT) model. 

Calibration and validation of SWAT were performed using monthly streamflow for 1981-

2000 and 2001-2014, respectively. The performance of the model was evaluated with 

Nash-Sutcliffe efficiency (NSE), determination of coefficient (R2), and Percent Bias 

(PBIAS) which were 0.59, 0.59, and -2.64 during the calibration period, and 0.75, 0.81, 

and -12.1 during the validation period. Future land use and climate changes were 

investigated under three emission scenarios (A1B, A2, and B1) for the mid-century 

(2046-2065) and end of the century (2080-2099). Corresponding land use maps (2055 

and 2090) were derived from the FOREcasting SCEnarios (FORE-SCE) model which 

showed noticeable agricultural expansion and grassland depletion compared to the 

baseline condition (National Land Cover Dataset 1992). Land use change projections 

showed an increase in streamflow (5.82% - 8.3% in 2055 and 11.9% - 18.5% in 2090) 

and surface runoff (6% - 8.8% in 2055 and 12.3% - 19.3% in 2090), and a decrease in 

evapotranspiration (about -0.16% in 2055 and from -0.5% to -0.1% in 2090), except 

under B1 scenario where evapotranspiration increased by 0.05% in 2055. Three emission 

scenarios of three general circulation models (CGCM3.1, GFDL-CM2.1, and HADCM3) 

were employed to generate future possible climatic conditions. Compared to the baseline 

condition, climate change scenarios showed an increase in precipitation (0.36% to 22.7%) 

and temperature (1.81°C to 4.46°C) for the three emission scenarios. Under climate 
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change conditions, changes in hydrology were noticeable; however, varying responses 

were observed across GCMs. For future possible climate changes, average annual 

streamflows vary from -14.5%  to +96% in the mid-century and from -21.5% to +75% at 

the end of the century; surface runoff from -13.8% to +97% in 2046-2065, and from -

20% to +75%  in 2080-2099. Average annual ET can vary between 0.1% and 17.3%, and 

3.6% and 17.1% in 2046-2065 and 2080-2099, respectively. The combination of potential 

climate and land use changes led to an increase in the streamflow (-9.9% - 104.5% in 

2046-2065 and -12.9% - 96.7% in 2080-2090), surface runoff (-8.8% - 106.8% in 2046-

2065 and -11.7% - 99.3% in 2080-2090), and evapotranspiration (0.2% - 17.3% in 2046-

2065 and 3.4% - 16.8% in 2080-2090), where climate changes play a dominant role in 

impacting hydrology. The results highlight that climate and land use changes would 

influence hydrology in the James River watershed.   
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4.1  Introduction: 

Land use and climate are both determinant factors that influence the global energy and 

water cycle (Dale, 1997; El-Khoury et al., 2015; Mahmood et al., 2010; Mishra et al., 

2010). Over the years, global population, economy and energy consumption are 

increasing, and consequently driving changes in land use, land cover and climate 

(Lambin et al., 2001; Meyer and Turner, 1992). Theses changes affect the spatial and 

temporal distribution of water and water balance components within a watershed (Deng 

et al., 2015; Fang et al., 2013; Li et al., 2009; Memarian et al., 2014). 

In the conterminous United States, land use changes due to government policy, economic 

conditions, technological innovation, and population movements (Arnell et al., 2004; 

Jacobson, 2011; Sohl et al., 2014; Wu et al., 2012c; Wu et al., 2013). During the last few 

decades, notable agricultural land use change in the Great Plains region has mainly been 

driven by increased global food demand, crop prices, biofuel demand and  climate 

conditions (Babcock et al., 2007; Claassen et al., 2011; Schilling et al., 2008; Singh, 

2013; Tilman et al., 2011; Wright and Wimberly, 2013). The major land use change in 

the Midwest states after mid-20th century consisted of grassland conversion to cultivated 

cropland for biofuels and biomass energy production (Schilling et al., 2008; Wu et al., 

2012c). Xu et al. (2013a) assessed potential impacts of biofuel production on water 

resources based on long-term (1930s to 2010) streamflow analysis in 55 unregulated 

Midwest watersheds. The study revealed that watersheds with no significant trends in 

climate showed significant trends in streamflow, which indicates that land use changes 

may have an effect on streamflow processes.  
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Meanwhile, climate change has led to more frequent extreme events. Since the early 20th 

century, the global average temperature has increased approximately 1.4°F (NOAA, 

2010). In South Dakota for example, temperature increased between 0.4 to 0.8 °F per 

decade and total annual precipitation increased between less than 0.6 to more than 1 inch 

over the last 70 years (DOI, 2015). According to future climate predictions, the air 

temperature will increase approximately from 1 to 5°C by 2100 throughout the US 

(IPCC, 2013; Johnson et al., 2015). Many studies have shown that global warming has 

led to an intensification of the global hydrological cycle  (Huntington, 2006; Johnson et 

al., 2015; Melillo et al., 2014; Pervez and Henebry, 2015; Sample et al., 2015; Thodsen et 

al., 2016). These studies found that future climate changes may lead to alteration in both 

magnitude and frequency of streamflow. For example, Johnson et al. (2015) studied the 

effects of climate change on streamflow for 20 watersheds throughout the contiguous 

U.S. and Alaska; the results showed a decreasing pattern of streamflow in the central 

Rockies and Southwest, and an increasing pattern in the East Coast and Northern Plains.  

Scenario-based simulation is commonly used by researchers to assess future land use and 

climate impacts on water resources (Kopytkovskiy et al., 2015; Li et al., 2015; Pervez 

and Henebry, 2015). A large number of studies evaluated hydrologic response to land use 

and climate change at global to regional scales (Chen and Yu, 2015; Driessen et al., 2010; 

Johnson et al., 2015; LaFontaine et al., 2015; Neupane and Kumar, 2015; Serpa et al., 

2015; Wu et al., 2013; Zhang et al., 2016). These studies revealed that anticipated 

hydrologic changes may differ in different areas due to future shifts in precipitation and 

temperature. For example, surface runoff would decrease in semiarid regions and 

increased in wet tropical areas, while in northern and mountainous areas, an early spring 
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and greater winter surface runoff is anticipated due to future changes in both precipitation 

and evapotranspiration (ET) (IPCC, 2014; Johnson et al., 2015; Melillo et al., 2014). 

Furthermore, surface runoff is expected to decrease as a result of lower precipitation, 

higher soil water deficits, and higher potential evapotranspiration under projected climate 

changes in the Mediterranean Basin (IPCC, 2013; IPCC, 2007; Serpa et al., 2015). In the 

Midwestern region, modeling studies were also conducted to investigate the impacts of 

land use and climate changes on  hydrology (e.g., Jha and Gassman, 2014; Neupane and 

Kumar, 2015; Villarini et al., 2015; Wu et al., 2012b; Wu et al., 2012c). These studies 

used different methods, models and scenarios, including subjective land use and climate 

change scenarios. Recently, in climate change impact assessment studies, the General 

Circulation Models (GCMs) projections have been used for future climate change 

scenarios  (Jha and Gassman, 2014; Neupane and Kumar, 2015; Zhang et al., 2016). 

GCMs predict climate changes based on greenhouse gas emission scenarios. These 

scenarios are based on different social, economic, technological and environmental 

development aspects which are known as -A1B, A2, B1, and B2. According to different 

emission scenarios, it is evident that increase in predicted temperature is consistent, but 

changes in predicted precipitation can vary (Jha and Gassman, 2014).  For example, 

future projected precipitation increased in the Racoon River watershed in Iowa (Villarini 

et al., 2015), and Minnesota River in Minnesota (Johnson et al., 2015), while in the Big 

Sioux River watershed, annual precipitation decreased under all future scenarios modeled 

(Neupane and Kumar, 2015). This potential precipitation variability would have 

significant implications on water budgets and may lead to hydrological changes within 

the study watersheds. In the Raccoon River watershed, under A1B (medium emission), 
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compared to the baseline condition (1996-2004), a net increase in future precipitation 

(0.7%) and temperature (2.78°C)  resulted in decrease in baseflow (18%), surface runoff 

(16%), and water yield (17%), and rise in ET (8%) by the mid-21st century (Jha and 

Gassman, 2014). While under A2 (high emission) scenario, increased precipitation may 

lead to an increase in streamflow by the mid-21st century in the Northern Midwest 

(Minnesota River and Maumee River) (Johnson et al., 2015). A similar study in the Big 

Sioux River watershed found that despite decreasing trends in future precipitation, annual 

streamflow was estimated higher in all emission scenarios (A1B, A2, and B1). The study 

mentioned that potential higher groundwater may contribute to streamflow by routing a 

shallow aquifer storage component to the river (Neupane and Kumar, 2015).  

While scenario analysis based on assumed land use and climate changes provides useful 

information about how these changes affect hydrology, estimation of the effects of 

potential land use and climate changes that are physically derived on hydrology is a 

superior technique for understanding the relation between regional hydrology, land use, 

and climate. Therefore, additional hydrologic impact studies that account for potential 

land use and climate changes are needed to support decision making for sustainable water 

management in the region. The objectives of this study were to 1) evaluate the effects of 

projected land use change with existing climate condition, 2) evaluate the effects of 

projected climate change scenarios with existing land use condition, and 3) assess the 

combined effects of future land use and climate projections on hydrological processes in 

a large watershed.  
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4.2  Materials and Methodology 

4.2.1 Study Area 

The James River is a tributary of the Missouri River that begins in North Dakota and 

flows into South Dakota (Figure 4.1). The James River watershed outlet (USGS gauge 

number 06478500) is situated near Scotland, SD. The watershed has a drainage area of 

approximate 53443 km2 (USGS Hydrologic Unit Code 10160011).  Based on NLCD 

1992, the land use is primarily dominated by agricultural land (51.7%); the remaining 

area consists of hay, grassland, water, forest, and urban (Table 4.7).  The James River 

watershed is located in the semiarid Northern Great Plains ecoregion, where average 

annual temperature is 6.9 °C with minimum and maximum of -16.1 and 30.8 °C during 

January and July months, respectively (SDSU, 2003). Annual precipitation varies from 

500 to 660 mm in this watershed with an average of 457 mm (18 inches) (SDSU, 2003). 

Geologically, the James River watershed is composed of glacier till over Cretaceous 

Pierre Shale and sandstone of Niobrara formations in lowland and Fox Hills formation in 

drift plains. Soils in the watershed are mainly mollsoils and consists of a heterogeneous 

mixture of silt, clay, sand and gravel (USDA, 2009). 
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Figure 4. 1: Location of the James River watershed with selected weather stations and 

United States Geological Survey’s Streamflow Gauge Stations. 

4.2.2 Hydrologic Model 

In this study, the Soil and Water Assessment Tools (SWAT; Arnold et al., 1998) model 

was used to assess the climate and land use change impacts on hydrology. SWAT was 

developed to evaluate the impact of climate and land management practices on water in 

large and complex watersheds with varying land use, soils and management conditions 

over long periods of time (Arnold et al., 1998). The hydrological parts of the model are 

based on the water balance equation in the soil profile with processes including 
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precipitation, surface runoff, water yield, ET, lateral flow, percolation, and groundwater 

flow (Arnold et al., 1998; Neitsch et al., 2005). The water balance equation of the model 

(Neitsch et al., 2011) is as follows: 

𝑆𝑊𝑡 = SWo + ∑(

𝑡

𝑛=𝑖

P − 𝑄𝑠𝑢𝑟𝑓 − ET − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)  

where SW is the change in soil water storage, P is the precipitation, ET is the 

evapotranspiration, Qsurf  is the surface runoff flow, Qgw is the groundwater flow, and 

wseep is the deep aquifer recharge. Surface runoff is determined through the modified Soil 

Conservation Service (SCS) Curve Number (CN) method (Arnold et al., 1998; Neitsch et 

al., 2011; Wu et al., 2012c). The Penman-Monteith method (Monteith, 1965)  was used to 

estimate the potential evapotranspiration (PET).  

For water budget, SWAT differentiates the solid and liquid precipitation based on near-

surface air temperature. If the air temperature is lower than snowfall temperature, then 

the precipitation is considered solid (i.e. snow), which will accumulate until melt 

(Grusson et al., 2015). In SWAT, snowmelt in the model was estimated through mass 

balance approach: 

𝑆𝑁𝑂 =  𝑆𝑁𝑂 + 𝑅𝑑𝑎𝑦   – 𝐸𝑠𝑢𝑏 – 𝑆𝑁𝑂𝑚𝑙𝑡 

where SNO is the total amount of water in snowpack on a given day (mm H2O), Esub is 

the amount of sublimation (mm H2O), and SNOmlt is the amount of snowmelt (mm H2O). 

Changes in snowpack volume depend on additional snowfall or release of meltwater in 

the basin. A more comprehensive description of the equation used by SWAT can be 

found in Neitsch et al. (2011).  
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4.2.3 Input Data 

The SWAT model requires data for topography, land use, soil, weather/climate and 

stream discharge. In this study, a 30 m resolution digital elevation model (DEM) data 

derived from the USGS National Elevation Dataset (USGS-NED, 2013) was used to 

delineate the watershed boundary. Daily precipitation, daily maximum temperature, and 

daily minimum data for a period of 1978-2014 were obtained from the National Climatic 

Data Center (NCDC) website for 47 weather stations (Figure 4.1). A 30 m land use 

dataset from the National Land Cover Database (NLCD) 1992 was used. The multiple 

Hydrological Response Unit (HRU) option was used to represent the soil and land uses 

types, where a single HRU represents a unique combination of land use and soil type. 

This watershed was discretized into 6041 HRUs in 86 subbasins.  

4.2.4 Calibration and Validation 

The SWAT model was calibrated based on NLCD 1992 and observed monthly 

streamflow at the USGS 06478500 near Scotland, SD for 1978-2000 period, where the 

initial 3 years (1978-1980) were used as a warm-up period. A set of 19 parameters 

representing the land surface, sub-surface, channel routing and snow melt processes was 

used to calibrate the base model parameters; their initial value ranges (Tables 4.1) were 

selected based on the review of existing literature on nearby Midwestern agricultural 

watersheds (e.g., Folle, 2010; Jha et al., 2007; Neupane and Kumar, 2015) and 

suggestions from model developers (Abbaspour et al., 2015; Neitsch et al., 2011). After 

model calibration, an additional 14 years (2001-2014) were used for model validation. 

The SWAT-CUP (Abbaspour et al., 2007; Abbaspour, 2007) was used to calibrate and 

validate the model. Nash-Sutcliffe Efficiency (NSE), percentage of bias (PBIAS) and 
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coefficient of determination (R2) were used as objective function to assess the agreement 

between simulated and observed streamflow hydrographs.  

NSE =  1 −  
∑(𝑌𝑜𝑏𝑠 −  𝑌𝑠𝑖𝑚)2

∑(𝑌𝑜𝑏𝑠 −  𝑌𝑚𝑒𝑎𝑛)2
 

PBIAS =
∑(𝑌𝑜𝑏𝑠 − 𝑌𝑠𝑖𝑚

∑ 𝑌𝑜𝑏𝑠
x 100 

R2 = (
∑(𝑌𝑜𝑏𝑠 −  𝑌𝑚𝑒𝑎𝑛) ∑(𝑌𝑠𝑖𝑚 −  𝑌𝑚𝑒𝑎𝑛)

√(𝑌𝑜𝑏𝑠 −  𝑌𝑚𝑒𝑎𝑛)2√(𝑌𝑠𝑖𝑚 −  𝑌𝑚𝑒𝑎𝑛)2
)2 

where Yobs is the observed data, Ysim is the simulated output, and Ymean is the mean of 

observed data. A NSE value that falls between 0 and 1 is considered an acceptable level 

of  performance (Moriasi et al., 2007). The PBIAS is used to measure the average 

deviation of simulated outputs from observed values and 0 is considered as ideal value 

(Gupta et al., 1999). A positive PBIAS value shows an underestimation of the simulated 

variables compared to the observed variables and vice versa. Moreover, R2 was used to 

analyze the goodness of fit of the calibration, with 1 as the ideal value. The mode 

performance is considered as satisfactory when NSE > 0.5 and PBIAS < ±15% (Moriasi 

et al., 2007).  
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Table 4. 1: List of Parameters Used for Model Calibration for the Study Watershed. 

No. Parameter Definitiona 
Scale of  

input 
Adjustmentb Initial 

range  

Optimal 

Values 

1 ALPHA_BF Baseflow recession constant (days) Watershed 1 0.01-1 0.581 

2 CANMX Maximum canopy storage (mm H2O) HRU 1 0.01-25 19.877 

3 CH_K(2) Main channel hydraulic conductivity (mm/hr) Reach 1 5-100 51.266 

4 CH_N(2) Main channel Manning's n  Reach 1 0.01-0.15 0.114 

5 CN2 Curve number for moisture condition II HRU 3 -20-20 -0.023 

6 EPCO Plant uptake compensation factor HRU 1 0.75-1 0.791 

7 ESCO Soil evaporation compensation factor HRU 1 0.75-1 0.575 

8 GW_DELAY Groundwater delay (days) Watershed 2 -10-10 -8.420 

9 GW_REVAP Groundwater "revap" coefficient Watershed 1 0.01-0.20 0.059 

10 GWQMN Threshold groundwater depth for return flow (mm H2O) Watershed 1 0.01-5000 1494.6 

11 REVAPMN Re-evaporation threshold (mm H2O) Watershed 1 0.01-500 446.6 

12 SFTMP Snowfall temperature (oC) Watershed 1 0-5 2.336 

13 SMFMN Melt factor for snow on December 21 (mm H2O/ oC-day) Watershed 1 0-10 9.662 

14 SMFMX Melt factor for snow on June 21 (mm H2O/ oC-day) Watershed 1 0-10 7.602 

15 SMTMP Snow melt base temperature (oC) Watershed 1 -2-5 4.195 

16 SOL_K Soil saturated hydraulic conductivity (mm/hr) HRU 3 -15-15 0.334 

17 SOL_AWC Available soil water capacity (mm  H2O/mm soil) HRU 3 -15-15 0.202 

18 SURLAG Surface runoff lag coefficient (days) Watershed 1 0.05-24 6.444 

19 TIMP Snow pack temperature lag factor Watershed 1 0-1 0.240 
a Source: Neitsch et al., 2001 
bType of change to be applied to the existing parameter value: ‘1’ means the original value is to be replaced by a value from the range, ‘2’ means a value 

from the range is added to the original value, ‘3’ means the original value is multiplied by the adjustment factor (1+ given value within the range). 
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4.2.5 USGS Land use model 

This study used the FOREcasting SCEnarios (FORE-SCE) model to generate the future 

land use scenarios. The FORE-SCE model was developed by the United State Geological 

Survey (USGS) Earth Resources Observation and Science (EROS) Center to provide 

spatially explicit detailed projections of plausible future land use and land cover (LULC) 

change for the conterminous United States (Sohl et al., 2014; Sohl et al., 2012). Four 

scenarios of LULC were developed based on the Intergovernmental Panel on Climate 

Change (IPCC) Special Repot on Emission Scenarios (SRES) (Sohl et al., 2014). The 

FORE-SCE model produced the scenarios from 1992 through 2100 using 1992 National 

Land Cover Datasets (NLCD) (Sohl et al., 2014; Vogelmann et al., 2001; Wu et al., 

2013). In this study, future LULC for A1B, A2 and B1 scenarios of 2055 and 2090 were 

extracted from http://landcover-modeling.cr.usgs.gov/. The LULC raster datasets were 

reclassified into 13 classes at 30 m spatial resolution to maintain the consistency with 

baseline NLCD 1992 datasets. 

4.2.6 Future Climate Scenarios 

It is documented that future climate impact analysis involves large uncertainties (e.g., 

Bastola et al., 2011; Chiew et al., 2010; Jha and Gassman, 2014; Teng et al., 2012; Xu et 

al., 2013b; Zhang et al., 2016). These uncertainties are due to several factors including 

different types of GCMs, different emission scenarios, different downscaling methods 

and bias correction method, hydrologic modeling setup, etc. (Forbes et al., 2011; Jha and 

Gassman, 2014; Jha et al., 2015; Jin and Sridhar, 2012). Therefore, three emission 

scenarios (A1B, A2, and B1) were selected under three GCMs (CGCM3.1, GFDL-

CM2.1, and HADCM3) from different sources (Tables 4.2 and 4.3) to assess possible 

http://landcover-modeling.cr.usgs.gov/
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future climate change and its impacts on hydrological processes. The climate change 

projections considered in this study were obtained from the Intergovernmental Panel on 

Climate Change (IPCC) 4th Assessment Report (AR4) (Meehl et al., 2007). The GCMs 

selected in this study are: a) CGCM3.1 from the Canadian Centre for Climate Modeling 

and Analysis version 3.1 (Flato et al., 2000; Scinocca et al., 2008), b) GFDL-CM2.1 from 

the Geophysical Fluid Dynamics Laboratory version CM2.1 (Delworth et al., 2006; 

Delworth et al., 2012; Stouffer et al., 2006), and c) HadCM3 from the Hadley Centre for 

Climate Prediction and Research/ Met Office (Gordon et al., 2000; Mitchell et al., 1998; 

Pope et al., 2000) (Table 4.2). These three GCMs were selected based on their ability to 

represent: (1) fine and coarse spatial grid resolution, (2) realistic regional precipitation, 

and (3) variable sensitivity to greenhouse gases (Shamir et al., 2015; Sinha and 

Cherkauer, 2010). Under each GCM, three emissions scenarios were considered, which  

are B1, A1B, and A2 based on the Special Report on Emission Scenarios (SRES) (Table 

4.3) (Nakicenovic and Swart, 2000). 

The bias corrected monthly precipitation and temperature, available at 1/8th degree 

spatial scale (~12 km by 12 km), for the three selected GCMs were obtained from the 

Lawrence Livermore National Laboratory (LLNL)-Reclamation-Santa Clara University 

(SCU) downscaled climate projections which were originally derived from the World 

Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 

3 (CMIP3) multi-model dataset, stored and served at the LLNL Green Data Oasis 

(Maurer et al., 2007). To implement the SWAT hydrologic model, monthly precipitation 

and temperature time series were statistically disaggregated to daily series using the 

Kernel-Nearest Neighbor (KNN) algorithm (Prairie et al., 2007). The details of the 
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disaggregation scheme are described in Sinha and Sankarasubramanian (2013), but a 

brief description is provided for clarity. The K-NN scheme classifies future climate 

monthly time series into daily time series by assigning different weights to similar 

monthly conditions in the historical time period based on the Lall and Sharma kernel 

(Lall and Sharma, 1996). Thus, higher weights were given to the daily time series of the 

statistically closest neighbors to obtain a single daily time series (Sinha and 

Sankarasubramanian, 2013). 
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Table 4. 2: CMIP3 model description and origins. 

Model Center Country 
Spatial Resolution 

Reference 
Latitude        Longitude 

CGCM3.1 Canadian Centre for Climate Modeling 
and Analysis Canada 3.75°                3.7° Flato et al., 2000; Scinocca et al., 2008 

GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory USA ~2°                   2.5° Stouffer et al., 2006; Delworth et al., 2006, 2012 

HadCM3 Hadley Centre for Climate Prediction and 
Research/ Met Office UK  2.5°                  3.75° 

Mitchell et al., 1998; Gordon et al., 2000; 

Pope et al., 2000 

 

Table 4. 3: Description of the scenarios considered in the study (Nakicenovic, et al., 2000). 

Emission scenarios Data set Description of scenario 

B1 
550 ppm CO2 

maximum 

A convergent world with the same global population but with rapid changes in economic structures towards a service and 

information economy with reductions in material intensity, and the introduction of clean and resource-efficient technologies 

A1B 
720 ppm CO2 

maximum 

A future world of very rapid economic growth, global population that peaks in mid-century and declines thereafter, and 

rapid introduction of new and more efficient technologies with the development balanced across energy sources 

A2 
850 ppm CO2 

maximum 

A very heterogeneous world with continuously increasing global population and regionally oriented economic growth that 

is more fragmented and slower than in other storylines 
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4.2.7 Simulation Scenarios 

In this study, 42 scenarios were defined and used to examine hydrological variations 

resulting from future climate and land use changes. All future land use and climate 

change scenarios were developed to represent mid (2046-2065) and end (2080-2099) of 

the 21st century. Three emission scenarios A1B (medium), A2 (high) and B1 (low) were 

selected based on the different concentration of CO2 gas emission. In SWAT, four 

baselines were defined with NLCD 1992 land use data along with historical climate data 

for a period of 1981-2000 that covers the baseline land use map. One baseline model was 

constructed with historical climate data obtained from NCDC website and the other three 

were constructed with GCM’s historical data (1981-2000). Each baseline model was used 

to analyze the corresponding future GCMs outputs (Table 4.4a).  

To examine the land use change impact on hydrology, land use data were changed under 

a constant climate condition (Table 4.4b). Three emission scenarios (A1B, A2, and B1) 

under two FORE-SCE land use (2055 and 2090) were used to represent six future land 

use conditions. Each simulation was conducted independently while keeping the 

hydrological parameters of the baseline model unchanged, and model outputs were 

generated on a yearly basis.  

Similarly, future climate change scenarios were developed for the mid-century (2046-

2065) and end of the century (2080-2099) to represent two discrete future conditions. 

Projected and downscaled precipitation and temperature from each GCMs (Table 4.2) 

and emission scenarios (Table 4.3) were used in SWAT model under a constant land use 

(NLCD 1992) condition while the remaining of the model configuration (i.e., HRUs and 

subbasin parameters) was kept constant. Thus, 18 scenarios in total were developed for 
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future climate change impact assessment (Table 4.4c).  The results were then compared 

with the baseline condition of each GCM (Table 4.4a).   

To assess the combined effects of future land use and climate changes, future land use 

data were used under corresponding climate condition and the remaining of the model 

configuration  (i.e., HRUs and subbasin parameters) was kept constant (Table 4.4d). The 

scenarios were designed in a way that, land use scenarios followed the same storylines as 

climate change scenarios (Table 4.4d). As an example, for the mid-century, 2055 land use 

was used with (2046-2065) projected climate within the same emission scenarios (e.g., 

A1B). This approach ensured the consistency between land use and climate changes, and 

a total of 18 scenarios were evaluated.  

Table 4. 4a:  Baseline scenarios for future land use and climate change conditions.  

Baseline Scenario 

Simulation Period Climate Data Land Use Data Remarks 

1981-2000 

 

NCDC Observed data 

NLCD-1992 

 

Baseline model for future land use 

scenarios 

GCM-1 data 

Baseline model for future climate change 

scenarios 
GCM-2 data 

GCM-3 data 

 

 

Table 4. 4b: Scenarios for the future projected land use change evaluation with existing 

climate condition. 

Land Use Scenarios (constant climate and variable land use) 

Simulation Period Climate Data Land Use IPCC-SRES 

1981-2000 
NCDC Observed 

data 
USGS-2055 

A1B 

A2 

B1 
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USGS-2090 

A1B 

A2 

B1 

 

Table 4. 4c: Scenarios for the future projected climate change evaluation with existing 

land use condition. 

Climate Scenarios (constant land use and variable climate ) 

Simulation Period Climate Data Land Use IPCC-SRES 

2046-2065 

GCM-1 data 

NLCD-1992 

 

A1B 

A2 

B1 

2080-2099 

A1B 

A2 

B1 

2046-2065 

GCM-2 data 

A1B 

A2 

B1 

2080-2099 

A1B 

A2 

B1 

2046-2065 

GCM-3 data 

A1B 

A2 

B1 

2080-2099 

A1B 

A2 

B1 

 

Table 4d: Scenarios for the assessment of combined effects of future projected climate 

and land use changes. 

Future Scenarios (combined land use and climate change) 

Simulation Period Climate Data Land Use IPCC-SRES 

2046-2065 

GCM-1 data 

USGS-2055 

A1B 

A2 

B1 

2080-2099 USGS-2090 

A1B 

A2 

B1 

2046-2065 GCM-2 data USGS-2055 A1B 
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A2 

B1 

2080-2099 USGS-2090 

A1B 

A2 

B1 

2046-2065 

GCM-3 data 

USGS-2055 

A1B 

A2 

B1 

2080-2099 USGS-2090 

A1B 

A2 

B1 

 

4.3  Results and Discussions 

4.3.1 Hydrological Model Calibration and Validation 

During model calibration, hydrologic parameters were varied within their recommended 

ranges to match the simulated streamflow with the observed streamflow. The optimum 

parameter values are listed in Table 4.1. The simulated average monthly streamflow of 

29.02 m3/s was close to the observed monthly average (32.85 m3/s). Performance 

evaluation (R2, NSE and PBAIS values) of the SWAT model for monthly and annual 

simulations are shown in Table 4.5. The monthly R2 and NSE at the outlet were 0.59 and 

0.59 during the calibration period; while the values were 0.52 and 0.50 for R2 and NSE, 

respectively during the validation period. The hydrographs of observed and simulated 

streamflow for calibration and validation indicate that the SWAT model can simulate 

both the monthly and annual streamflow of the James River watershed very well (Figure 

4.2). The SWAT model showed better performance on annual basis during the calibration 

period with 0.81, 0.75, and -12.1 for R2, NSE, and PBIAS, respectively (Table 4.5). Over 

the calibration period (1981-2000), the simulated average annual streamflow was 33.9 
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m3/s, which was close to observed values (39.3 m3/s) at the watershed outlet. All the 

statistical results (Table 4.5) showed a good correlation based on model calibration 

criteria suggested by Moriasi et al. (2007). 

Table 4. 5: Calibration and validation statistics at the outlet of James River watershed. 

  Simulation period R2 NSE PBIAS 

Monthly 
Calibration for (1981-2000) 0.59 0.59 -2.64 

Validation  for (2001-2014) 0.52 0.5 29.1 

Annual 
Calibration for (1981-2000) 0.81 0.75 -12.1 

Validation  for (2001-2014) 0.87 0.76 16.51 

 

Figure 4. 2: Comparison of observed and simulated a) monthly and b) annual streamflow 

during the calibration and validation periods at the outlet of James River watershed. 
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4.3.2 Baseline Scenario 

The calibrated model was used to simulate water budget components for the baseline 

condition (i.e. 1981-2000 period) with observed (i.e. NCDC) data (Figure 4.3 and Table 

4.6). Annual precipitation varied from 400.7 mm to 707.1 mm, and annual streamflow 

varied between 0.4 m3/s and 113.2 m3/s, with an average of 32.72 m3/s (Table 4.6). The 

years 1995 and 1997 had the highest streamflow (90.1 m3/s and 113.2 m3/s, respectively) 

and surface runoff (24.1 mm and 53.4 mm, respectively) due to high precipitation. From 

1988 to 1992, incident precipitation was relatively lower (400.4 - 581.7 mm) than 

precipitation in the rest of the study period, resulting in comparatively low  streamflow and 

surface runoff,  which varied from 5.5 mm to 53.4 mm. Annual ET varied from 373.3 in 

1988 mm to 664.6 mm in 1986, with a pattern that followed variation in precipitation 

(Figure 4.3). 
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Figure 4. 3: Annual precipitation, ET, streamflow (a), and surface runoff (b) for the 

baseline condition (1981-2000 period). Values were computed with NCDC data. 
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Table 4. 6: Predicted water budget components (computed with NCDC data) of the James River watershed for the baseline condition 

(1981-2000 period). 

Year 
Precipitation 

(mm) 
Streamflow 

(m3/s) 
Surface Runoff 

(mm) 
Lateral Flow 

(mm) 
Groundwater 
flow (mm) 

Percolation 
(mm) 

Soil Water 
(mm) 

ET 
(mm) 

Water 
Yield (mm) 

1981 465.3 0.4 4.6 0.5 0.0 0.7 34.1 449.1 4.9 

1982 575.4 7.3 19.7 0.6 0.0 1.3 80.8 517.0 19.7 

1983 494.4 19.7 8.6 0.5 0.3 0.9 30.0 530.0 9.1 

1984 570.3 47.9 13.4 0.7 0.5 1.8 37.0 557.6 14.1 

1985 508.4 11.6 8.4 0.4 0.5 0.7 30.8 476.8 9.0 

1986 676.1 57.8 20.9 0.9 0.8 3.1 57.0 664.6 21.9 

1987 437.3 28.1 8.3 0.4 0.3 0.7 13.9 467.6 8.7 

1988 400.7 4.4 10.4 0.4 0.4 0.7 29.5 373.3 10.8 

1989 450.7 9.1 18.2 0.5 0.5 0.8 25.2 451.1 18.5 

1990 498.1 1.6 5.5 0.5 0.6 0.9 13.7 501.9 6.3 

1991 581.7 6.0 11.2 0.7 0.7 1.2 36.0 557.2 12.0 

1992 497.3 4.1 6.5 0.4 0.4 0.7 31.8 488.8 7.0 

1993 707.1 55.5 18.9 1.0 0.8 8.0 51.8 641.5 20.0 

1994 558.9 47.3 24.1 0.7 0.6 2.0 71.6 541.0 24.7 

1995 652.4 90.1 18.3 0.8 0.7 5.7 64.8 633.3 19.1 

1996 569.0 39.8 15.0 0.5 0.5 1.2 83.7 490.9 15.5 

1997 527.9 113.2 53.4 0.5 0.4 2.2 37.6 574.4 53.4 

1998 662.4 34.9 17.4 0.8 0.7 1.5 94.9 585.7 18.2 

1999 577.0 55.4 13.4 0.9 0.6 2.0 37.2 624.8 14.4 

2000 575.7 20.1 10.7 0.5 0.6 1.0 55.7 503.2 11.4 

Average 549.3 32.7 15.3 0.6 0.5 1.9 45.9 531.5 15.9 
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4.3.3 Future Land use Changes  

Projected LULC for 2055 and 2090 from the FORE-SCE model was used to assess the 

potential land use change impacts on the hydrology of LULC changes by mid-century 

and end of the century under the IPCC-SRES A1B, A2, and B1 scenarios. The absolute 

(km2) and relative (%) changes in each land use class for 2055 and 2090 for A1B, A2, 

and B1 scenarios are listed in Table 4.8. The future land use (2055 and 2090) projections 

and changes under different emission scenarios were evaluated (Figure 4.4) compared to 

the baseline land use condition (Table 4.7). Under the A1B scenario, which represents 

strong fuel demand and high technological innovation, agricultural land showed an 

increasing trend by 11.6% (320043.9 km2) and 19.5 % (538617.3 km2) in 2055 and 2090, 

respectively. B1 scenario also showed an agricultural land use expansion (Figure 4.4) but 

with lower magnitude (Table 4.8) compared to the other two scenarios due to less food 

demand in B1 scenario (Sohl et al., 2012). The highest agricultural land use expansion 

(26.1%) was projected under A2 emission scenario by 2090. A2 scenario assumptions of 

higher population pressure and lower biofuel demand compared to A1B scenario (Sohl et 

al., 2012) resulted in more agricultural land use expansion. As a result, A2 scenario 

showed a hay/pasture depletion by -0.3% (4,674 km2) and -2.9% (63,901 km2) while 

A1B scenario showed an expansion of hay/pasture by 7.4% (108,664.9 km2) and 10.6% 

(155,368.8 km2) in 2055 and 2090, respectively. Maximum hay/pasture depletion was 

found under more environmentally oriented B1 scenario by -4.4% (63,901.2 km2) and -

8.6% (125,629 km2) in 2055 and 2090, respectively (Figure 4.4). Additionally, a 

substantial decrease in grassland was projected under all emission scenarios mainly due 

to its conversion to agricultural land use and hay/pasture (Table 4.8) (Sohl et al., 2012; 
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Wu et al., 2013). Maximum grassland depletion was predicted to be 48.9% (407922 km2) 

and 78.6% (655194 km2) for A1B scenario in 2055 and 2090, respectively.  

Other land use classes (water, forest, and urban) cover less than 5.5% of the watershed in 

baseline condition and remain almost unchanged in the future (2055 and 2090). A1B and 

A2 scenarios showed a small decreasing trend in water and wetlands, while B1 scenario 

showed expansion in both 2055 and 2090 (Figure 4.4). Similar to water and wetlands, 

forest area slightly decreased in A1B and A2 scenarios and increased in B1 scenario in 

both 2055 and 2090 (Table 4.8).  Forest area covered 0.9% of the watershed area in the 

baseline condition and remains nearly unchanged under different scenarios by mid-

century and end of the century (Table 4.8 and Figure 4.4). Urban area covered only 0.4% 

of the watershed area in the baseline condition and expanded under all emission 

scenarios, but greater expansion was clearly noticeable for the highly populated A2 

scenario with a maximum increase of 54.2% and 100% in 2055 and 2090, respectively. 

Overall, according to the FORE-SCE model predictions, all the scenarios showed similar 

patterns for agricultural land, urban area, and grassland although the magnitude of losses 

and gains differed with the scenarios.   

 

Table 4. 7: Land use classes in the study watershed based on NLCD 1992 (Baseline 

scenario). 

Land Use Area (103 km2)  % of Watershed Area 

Agricultural land 27.65  51.7 

Hay/ Pasture 14.65  27.4 

Grassland 8.33  15.6 

Water 2.17  4.1 

Forest 0.5  0.9 

Urban 0.2  0.4 
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Table 4. 8: Relative (%) and absolute (103 km2) changes from baseline under A1B, A2 

and B1 scenarios for 2055 and 2090. 

Land use 
Agricultural 

land  
Hay/ Pasture Grassland Water  Forest  Urban 

2055 (A1B) 11.6 % (3.2) 7.4 % (1.1) -48.9 % (-4.1) -13.9 % (-0.3) -1.4 % (-0.007) 31.5% (0.07) 

2055 (A2) 7.6 % (2.1) -0.3 % (-0.05) -23 % (-1.9) -12.6 % (-0.29) -1.6% (-0.007) 54.2% (0.12) 

2055 (B1) 6.8 % (1.9) -4.4 % (-0.6) -25.6 % (-2.1) 38 % (0.8) 1.6 % (0.007) 11 % (0.02) 

2090 (A1B) 19.5 % (5.4) 10.6 % (1.6) -78.6 % (-6.6) -23.9 % (-0.5) -3.1% (-0.01) 52.6 % (0.1) 

2090 (A2) 26.1 % (7.2) -2.9 % (-0.4) -75.1 % (-6.3) -36.3 % (-0.8) -6.7 % (-0.03) 100 % (0.2) 

2090 (B1) 20.5 % (5.7) -8.6 % (-1.3) -65.5 % (-5.5) 45 % (1) 1.2% (0.005) 17% (0.04) 

 

 

Figure 4. 4: Major land use areas for 1) 2055 and 2) 2090 and their relative changes from 

baseline (NLCD 1992) under the A1B, A2, and B1 scenarios. 
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illustrated through boxplots in Figure 4.5, 4.6a and 4.6b. Each boxplot was created with 

the median, the lower (25%) and the upper (75%) quartile, and the minimum and 

maximum values of the data. The absolute differences of minimum, median and 

maximum values between baseline and future scenarios are listed for annual precipitation 

and daily maximum and minimum temperature in Table 4.9, 4.10a and 4.10b. Each 

boxplot is based on the 20 years simulation period for each scenario. 

4.3.5 Future Precipitation Projections 

Variation of GCM projections clearly demonstrated that climate predictions were not 

uniform in the direction and magnitude of changes for both future study periods (2046-

2065 and 2080-2099) (Figure 4.5). The statistical distribution of average annual 

precipitation of the baseline scenarios (observed and three GCMs) varied across the 

GCMs compared to the observed condition (Figure 4.5-i). The mean annual precipitation 

of the GCMs showed a deviation range from -70 mm to 11 mm from the observed 

condition (NCDC 1981-1990) (Figure 4.5-i). Since precipitation determines water 

availability in a watershed, precipitation variation may affect the average annual 

discharge, and thus, causes change in the water balance components compared to the 

baseline hydrological model prediction. Variation in precipitation was observed among 

the GCMs in each emission scenario (Figure 4.5-ii and 4.5-iii). Increased average annual 

precipitation was predicted with all GCMs under the three emission scenarios, except 

under B1 scenario in HADCM3 (Table 4.9). Under the A1B emission scenario, mean 

annual precipitation increased from 8 mm to 125 mm in the mid-century and from 41 mm 

to 102 mm at the end of the century compared to the baseline condition (Table 4.9). 

Similarly, under A2 emission scenario, mean annual precipitation may vary between 114 
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mm to 30 mm and 103 mm to 11 mm in the mid-century and end of the century, 

respectively. However, compared to the baseline condition, minimum precipitation 

change was demonstrated under B1 scenario with a range of -12 mm to 44 mm in 2046-

2065, and 21 mm to 97 mm in 2080-2099. Although there is no clear pattern of average 

annual precipitation among the emission scenarios, all future projections indicate an 

increasing trend of different magnitude, except for the HADCM3 in B1 scenario for the 

2046-2065 period (Table 4.9). Among the three GCMs, the maximum increase in 

precipitation (from 44 to 125 mm) was estimated by the CGCM3.1, while the minimum 

precipitation change (from -12 to 41 mm) was projected by the HADCM3 under all 

emission scenarios for both study periods (Table 4.9).  
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Figure 4. 5: Boxplots of projected precipitation in the study area for i) baseline (1981-2000), ii) mid-century (2046-2065) and iii) end 

century (2080-2099) under the a) A1B, b) A2 and c) B1 scenario. 
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Table 4. 9: Absolute differences of average annual precipitation from the baseline for three GCMs under the A1B, A2, and B1 

scenarios. 

 

 2046-2065 

  A1B    A2    B1  

 CGCM3.1 GFDL-CM2.1 HADCM3  CGCM3.1 GFDL-CM2.1 HADCM3  CGCM3.1 GFDL-CM2.1 HADCM3 

minimum 116 -73 -38  85 -66 -70  -5 77 26 

median 125 39 8  114 60 30  44 24 -12 

maximum 165 51 180  223 11 109  59 108 12 

 2080-2099 

  A1B    A2    B1  

 CGCM3.1 GFDL-CM2.1 HADCM3  CGCM3.1 GFDL-CM2.1 HADCM3  CGCM3.1 GFDL-CM2.1 HADCM3 

minimum 32 125 22  -7 8 -32  86 3 -34 

median 102 51 41  103 33 11  79 97 21 

maximum 63 -106 96  188 32 68  64 38 67 
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4.3.6 Future Temperature Projections 

Similar to precipitation, all three GCMs showed an increasing trend in temperature across 

all emission scenarios. All three GCMs predicted an increase in average maximum 

temperature, ranging from 1.57°C to 3.21°C in the mid-century and 1.81°C to 4.46°C at 

the end of the century (Table 4.10a). According to CGCM3.1, the highest “maximum 

temperature” was projected to increase from 4.26 C to 4.91 C in 2046-2065, and from 

4.19°C to 4.45°C in 2080-2099 (Table 4.10a). Unlike the “maximum temperature”, the 

“minimum temperature” showed slight changes under all emission scenarios (Table 

4.10b). Compared to the baseline condition, a decrease in minimum temperature was 

shown under B1 emission scenario in the mid-century (2046-2065) for all three GCMs. 

All future projections indicate an increasing trend in precipitation and temperature but 

with different magnitudes (Figures 4.5, 4.6a, 4.6b, and Tables 4.9, 4.10a, and 4.10b).  

Although air temperature is not a direct component of water balance, it affects 

precipitation variation and winter hydrological processes including snowfall and 

snowmelt (Yoshiyukiishii and Nakamura, 2004). Air temperature is an important 

meteorological parameter for snow melt and rainfall (Yoshiyukiishii and Nakamura, 

2004). If the air temperature is lower than snowfall temperature, then the precipitation 

accumulates on the ground as snow (Grusson et al., 2015). The snow melting process and 

timing of surface runoff are influenced by air temperature (Johnson and Stefan, 2006; 

Novotny and Stefan, 2007) in early winter and early spring (Neupane and Kumar, 2015). 

In addition, air temperature is also an important driving factor for ET processes, which in 

turn influence surface and subsurface water budget (Hanson, 1988; Hu et al., 2005; 

Yoshiyukiishii and Nakamura, 2004). Therefore, temperature variations lead to variations 
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in the hydrological components (surface runoff, ET, soil water content etc.) among the 

GCMs. 
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Figure 4. 6a: Projected maximum temperature for 1) baseline (1981-2000), 2) mid-century (2046-2065) and 3) end century (2080-

2099) under the a) A1B, b) A2 and c) B1 scenarios. 
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Figure 4. 6b: Differences of projected minimum temperature for 1) baseline (1981-2000), 2) mid-century (2046-2065) and 3) end century 

(2080-2099) under the a) A1B, b) A2 and c) B1 scenarios. 
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Table 4. 10a: Absolute differences of maximum temperature from the baseline for three GCMs under A1B, A2, and B1 scenarios. 

  2046-2065   

 A1B      A2      B1     

  CCCMA GFDL2.1 HADCM3  CCCMA GFDL2.1 HADCM3  CCCMA GFDL2.1 HADCM3 

minimum 4.26 3.99 3.78  4.91 3.15 1.58  4.91 0.08 4.03 

median 2.75 2.35 3.21  2.87 1.56 2.17  2.87 1.58 3.05 

maximum 0.21 1.23 0.36  0.21 1.23 0.36  0.21 1.23 0.36 

  2080-2099   

 A1B      A2      B1     

  CCCMA GFDL2.1 HADCM3  CCCMA GFDL2.1 HADCM3  CCCMA GFDL2.1 HADCM3 

minimum 4.19 7.34 2.62  4.45 3.69 4.25  4.45 3.12 0.21 

median 3.35 2.53 4.46  4.1 3.21 4.37  4.1 1.81 3.82 

maximum 0.21 1.23 0.36  0.23 1.23 0.36  0.23 1.23 0.36 

  

 

 

 

 

 

 



121 

 

 

Table 4. 11b: Absolute differences of minimum temperature from the baseline for three GCMs under A1B, A2, and B1 scenarios. 

                                                      2046-2065   

 A1B   A2  B1 

  CGCM3.1 GFDL-CM2.1 HADCM3  CGCM3.1 GFDL-CM2.1 HADCM3  CGCM3.1 GFDL-CM2.1 HADCM3 

minimum 5.61 0.00 0.00  6.08 -0.03 -3.16  6.08 -0.91 -0.55 

median 1.46 0.00 0.00  1.56 -0.47 -0.26  -7.70 -10.44 -10.63 

maximum 0.09 0.00 0.00  0.09 0.00 0.00  -6.80 -6.96 -6.90 

                                                        2080-2099   

 A1B  A2  B1 

  CGCM3.1 GFDL-CM2.1 HADCM3  CGCM3.1 GFDL-CM2.1 HADCM3  CGCM3.1 GFDL-CM2.1 HADCM3 

minimum 4.89 4.04 -0.41  4.83 0.15 -1.66  4.83 -0.80 -5.15 

median 1.65 0.06 0.62  1.92 0.30 0.52  1.92 -0.34 0.46 

maximum 0.12 0.00 0.00  0.15 0.00 0.00  0.15 0.00 0.00 
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4.3.7 Hydrologic Response to Land Use Change 

Future land use change (2055 and 2090) impacts on long-term average annual 

hydrological variables including streamflow, surface runoff, and ET with NLCD 1992 

land use (baseline) were evaluated under A1B, A2 and B1 emission scenarios (Figure 

4.7). Simulation outputs indicated that average annual surface runoff increased due to 

LULC changes under all emission scenarios; the annual relative changes varied from 

6% to 8.8% for 2055 and from 12.3% to 19.4% for 2090 land use. Based on the land 

use projections, agricultural land use will cover more than 55% (2055) and 62% 

(2090) of the watershed. Intensive agricultural activities can reduce surface roughness 

(Baker and Miller, 2013), available soil water storage (Busman and Sands, 2002), and 

canopy ability to intercept precipitation (Ghaffari et al., 2010). Therefore, excess 

water yield may produce higher surface runoff in the watershed (Busman and Sands, 

2002; Ghaffari et al., 2010). In contrast, ET decreased for both 2055 and 2090 land 

uses under all emission scenarios, except B1 in 2055. ET is the combination of 

evaporation and transpiration processes  (Hanson, 1988; Pai and Saraswat, 2011). 

Evaporation is the water loss from water bodies, wetlands, and bare soil, and 

transpiration is the loss from living plant surfaces (Hanson, 1988). In 2055, the B1 

emission scenario showed expansion of water and wetlands (38%), and agricultural 

land (6.8%) which may result in an increase in ET (0.05%). The maximum decrease 

in annual ET may occur under A1B (-0.17%) and under A2 (-0.5%) scenario in 2055 

and 2090 land use, respectively. Agricultural land has less crop density and lower leaf 

area index (LAI) than grassland (Kim et al., 2013), therefore, a decrease in ET can be 

explained by land conversion from perennial vegetation to seasonal row crops (Figure 

4.4), causing a reduction in ET (Schilling et al., 2008; Zhang and Schilling, 2006). 

The 0.5% percent appears to be negligible, but the absolute annual reduction of 3 mm 
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(in A2 for 2090) may not be negligible. In a semi-arid region like the James River 

watershed where water resources are limited (Wu et al., 2012a), ET evaluation is 

important for understanding of water stress (Rana et al., 1997).  

For both 2055 and 2090 land uses, grassland decreased while agricultural land 

increased under all emission scenarios (Figure 4.4), causing an increase in streamflow 

(Figure 4.7). Results showed that annual ET in the watershed would decrease due to 

land conversion from grassland to agricultural land. As a result, a large fraction of 

precipitation would be delivered into nearby streams (Schilling et al., 2008). Annual 

streamflow increased up to 8.29% under A1B scenario, and 18.5% under A2 scenario 

for 2055 and 2090 land uses, respectively. Similar results were also found in the 

Raccoon River watershed, where agricultural land conversion from mixed perennial 

grassland to row crops resulted in an increase in streamflow in the watershed.  
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Figure 4. 7: Average annual changes in a) streamflow, b) surface runoff and c) ET 

from the baseline (NLCD 1992) for i) 2055 and ii) 2090 land use scenarios. 

The results indicate slight increase in streamflow and surface runoff. Due to extensive 

agricultural land increase and grassland decrease, annual streamflow and surface runoff 

may increase in the future. However, the slight changes in streamflow, surface runoff, 

and ET indicate that land use changes would not considerably impact hydrology. These 

relatively small changes can occur due to the small affected areas. 

4.3.8 Hydrologic Response to Climate Change 
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range of 0.4 to 22.7% in 2046-2065 and 4% to 20.2% in 2080-2099 compared to the 

baseline condition (Figure 4.8-a). Similarly, future average annual snowfall varies 

from -13% to 22.6% and from -10.6% to 16.9% in (2046-2065) and (2080-2099), 

respectively (Figure 4.8-b). As a consequence, future average annual snowmelt also 

showed a similar pattern and magnitude of changes (Figure 4.8-c). 

Across the three emission scenarios, A1B scenario showed the maximum average 

annual precipitation (2.8% to 22.7%), followed by A2 (7.2% to 19.4%) and B1 (0.4% 

to 7.3%) scenarios in the mid-century (Figure 4.8-i-a). However, at the end of the 

century, A2 scenario showed the highest average annual precipitation (4.1% to 

20.2%), followed by B1 (4.7% to 17.6%) and A1B (10.8% to 13.4%) scenarios 

(Figure 4.8-i-b). Maximum average annual precipitation increase was estimated for 

CGCM3 under A1B scenario (22.8%) in 2046-2065 and A2 scenario (20.2%) in 

2080-2099. HADCM3 showed much less precipitation change among all the GCMs 

for both future periods under all emission scenarios (Figure 4.8-a).  

Future annual snowfall and snowmelt showed a large variation of changes across the 

three emission scenarios (Figure 4.8-b and c); particularly A1B and B1 scenarios 

showed a large variation in average annual snowfall and snowmelt with a range of -

7.2% to 22.6%, and -13.1% to 12.8%  in the mid-century, and -5.2% to 12.2% and -

10.6% to 14.7% at the end of the century. According to all GCMs, maximum average 

snowfall and snowmelt may increase in A2 scenario with a range of 5.8% to 22.4% in 

2046-2065 and 17% to 22.2% in 2080-2099. Compared to the baseline condition, 

HADCM3 showed a decreasing trend for both snowfall and snowmelt under A1B and 

B1 emission scenarios (Figure 4.8-b and c). HADCM3 showed higher temperature 

and less precipitation increase (Figure 4.5-4.6b) compared to the other two GCMs 

(i.e., CGCM3 and GFDL-CM2.1). This increased temperature may lead to a decrease 
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in snow water equivalent (water stored in snowpack) and volume of snowmelt 

(Neupane and Kumar, 2015). These potential climate variations will likely lead to a 

water stress in this watershed (Tavernia et al., 2013). 

 

Figure 4. 8: Average annual changes in a) precipitation, b) snowfall, and c) snowmelt 

from baseline for i) (2046-2065) and ii) (2080-2099) in the James River watershed. 
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Due to the potential variations in future precipitation (Figure 4.8-a), surface runoff 

0

5

10

15

20

25

A1B A2 B1

%
 c

h
an

g
e 

fr
o

m
 b

as
el

in
e 

0

5

10

15

20

25

A1B A2 B1

-15

-5

5

15

25

A1B A2 B1

%
 c

h
an

g
e 

fr
o

m
 b

as
el

in
e

-15

-5

5

15

25

A1B A2 B1

%
 c

h
an

g
e 

fr
o

m
 b

as
el

in
e

-15

-5

5

15

25

A1B A2 B1

i (a) ii (a)

i (b) ii (b)

i (c) ii (c)

-15

-5

5

15

25

A1B A2 B1

CGCM3.1 GFDL-CM2.1 HADCM3



127 

also varied from -13.8% to 97% in 2046-2065 and from -20% to 75% in 2080-2099. 

Unlike land use change scenarios, future simulation output of climate changes showed 

an increased pattern in ET under all emission scenarios (Figure 4.9-c). The average 

annual ET can vary between 0.1% to 17.3% and 3.6% to 17.1% in 2046-2065 and 

2080-2099, respectively.  

Across the three emission scenarios, A1B scenario showed the maximum average 

annual streamflow (-4.5% to 96.1%), followed by A2 (14.8% to 50.8%) and B1 (-

14.8% to 35.7%) scenarios in the mid-century (Figure 4.8-i-a). However, at the end of 

the century, A2 scenario demonstrated the maximum average annual streamflow (5.4 

to 74.3%), followed by B1 (-21.5% to 75.2%) and A1B (11.4% to 24.7%) scenarios 

(Figure 4.8-i-b). These results indicate that streamflow increases are related to the 

increase in projected precipitation. Similar results were reported for the Raccoon 

River watershed in Iowa where future projected increases in precipitation resulted in 

an increase in streamflow (Villarini et al., 2015).  

For all GCMs, A2 scenario showed higher surface runoff in both future periods 

(Figure 4.9-b). Despite higher precipitation, B1 and A1B scenarios showed smaller 

changes in surface runoff in the mid-century (-13.8% to 35.8%), and at the end of the 

century (15.3% to 25.3%). Across all emission scenarios, average annual ET may 

increase with a maximum change of 17% under A1B in 2046-2065 and A2 in 2080-

2099 period (Figure 4.9-c). The increased ET rate could be induced by increased 

precipitation (Huntington, 2006), due to more water availability for transpiration 

(LaFontaine et al., 2015). Moreover, an increase in air temperature causes an increase 

in evaporation, which can also influence ET (Abbaspour et al., 2009; Chattopadhyay 

and Jha, 2014; LaFontaine et al., 2015; Setegn et al., 2011). A similar study in North 
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Carolina with CGCM3 and HADCM3 also projected higher ET, which was correlated 

with temperature than precipitation (Chattopadhyay and Jha, 2014). 

 

 

Figure 4. 9: Average annual changes in a) streamflow, b) surface runoff, and c) ET 

from baseline for i) (2046-2065) and ii) (2080-2099) in different climate change 

scenarios. 
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responsible for the inconsistency in streamflow estimation among the different GCMs 

and emission scenarios.   

Overall, from this study, an increasing trend of streamflow was predicted due to 

potential wetter climate conditions. Based on historical data, an increasing trend in 

streamflow and in flood events was observed in the Midwest (Lenhart et al., 2011; 

Mallakpour and Villarini, 2015). These findings were consistent with the observations 

of wetter climate (i.e., heavy rainfall) across the United States (Groisman et al., 2001; 

Lins and Slack, 1999, 2005). Other global climate model analyses also confirm the 

increasing trend in precipitation for this region (e.g., Basche et al., 2016; Daniel, 

2015; Winkler et al., 2012). Similarly, in this study a general increasing trend of 

projected precipitation was found for the three GCMs (CGCM3, GFDL-CM2.1, and 

HADCM3), but with different magnitudes (Figure 4.8-a). This precipitation 

variability induced a large variation in hydrological processes (Figure 4.9). Therefore, 

it is difficult to assess the potential hydrological changes due to uncertainties in the 

approach and source of these GCM data. As an example, according to HADCM3 

projections, low precipitation, and high temperature can be projected a very few 

streamflow compared to baseline in this watershed. Thus, if the projected result of this 

study actually occurs, then in the future severe water stress may happen in this semi-

arid region (Wu et al., 2012a). On the other hand, CGCM3.1 and GFDL-CM2.1 

showed higher annual streamflow compared to HADCM3 in future annual streamflow 

due to higher precipitation. This higher precipitation may also have an adverse impact 

on agricultural activities of the James River watershed where the crop is mostly rain-

fed. As an example, waterlogged soils can delay the spring planting and decrease crop 

productivity (Al-Kaisi et al., 2013; Basche et al., 2016).  
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Similar uncertainties were also found in the Northeast and Midwest region (Chien et 

al., 2013; Jha et al., 2006; Tavernia et al., 2013). For example, Jha et al. (2006) and 

Chien et al. (2013) studied the effects of climate change on streamflow with various 

GCM projections in the Upper Mississippi River basin, and Illinois and Indiana 

watersheds; the authors observed similar ranges in model outputs. Therefore, it is 

necessary to select multiple scenarios and GCMs to assess the impacts of climate 

change on hydrology (Zhang et al., 2016) to have an idea about the range of plausible 

future conditions.  

 

4.3.9 Hydrologic Response to Land Use and Climate Changes  

To analyze the combined effects of potential land use and climate changes, annual 

streamflow, surface runoff and ET under the three future scenarios (A1B, A2, and B1) 

for 2046-2065 and 2080-2099 were compared to the baseline (1981-2000) (Figure 

4.10). Similar to climate changes, the combination of potential climate and land use 

changes would lead to an increase in streamflow (-9.9% - 104.5% in 2046-2065 and -

12.9% - 96.7% in 2080-2090), surface runoff (-8.8% - 106.8% in 2046-2065 and -

11.7% - 99.3% in 2080-2090), and ET (0.2% - 17.3% in 2046-2065 and 3.4% - 16.8% 

in 2080-2090). 

Combined land use and climate change scenarios showed that the increase in 

streamflow caused by climate changes was intensified by the increase caused by land 

use changes. For example, the combined effects of land use and climate changes 

showed +2.5% to +8% more in 2046-2065, and +8.6% to +22.5% more in 2080-2090 

for streamflow compared to climate change scenarios only. Average annual surface 

runoff also increased compared to baseline condition due to higher precipitation and 



131 

agricultural activities (Figure 4.10-b). Similarly,  runoff under the combined effects of 

land use and climate changes would be +4% to +9.6% more in 2046-2065, and +8.3% 

to +24.9% more in 2080-2090 compared to the climate change scenarios only (Figure 

4.10-b). The slight decrease in ET caused by the land use changes did not affect ET, 

leading to similar results when compared to climate change scenarios (Figure 4.10-c). 

 

Figure 4. 10: Average annual changes in a) streamflow, b) surface runoff, and c) ET 

from baseline for i) (2046-2065) and ii) (2080-2099) in different land use and climate 

change scenarios. 

 

The analysis of hydrological effects of land use and climate changes under three 
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climate changes indicate that both land use and climate changes will intensify 

hydrological changes where climate changes will play a dominant role in hydrology 

of the James River watershed. A similar study revealed that the magnitude of 

projected water stress (water demand/water supply) was more sensitive due to climate 

changes than land use changes in Midwest (Tavernia et al., 2013). Wu et al. (2012a) 

also found similar results and mentioned that this watershed is relatively more 

sensitive to climate change when compared to the neighboring Upper Mississippi 

River Basin.      

 

4.3.10 Seasonal Analysis of Future Hydrological Variables 

Seasonal streamflow, surface runoff and ET were analyzed based on long-term 

monthly simulations. Among the three emission scenarios, A1B represents the 

medium emission with emphasis on balanced energy policies. GFDL-CM2.1 showed 

average precipitation and temperature increase compared to the other two GCMs. 

Thus, A1B emission scenario with GFDL-CM2.1 climate data was selected to analyze 

climate impacts on seasonal variation.   

Land use changes showed a minor impact on average monthly streamflow (Figure 

4.11-a). Due to both land use and climate changes, peaks of streamflow may occur in 

March-April in 2046-2065, but in 2080-2099 these peaks would shift to May-June 

(Figure 4.11-a). At the end of the century, fluctuations in monthly streamflow can be 

observed from March to July (Figure 4.11-a). Compared to 2080-2099, the largest 

increase (34.8 m3/s) and decrease (-9 m3/s) in monthly streamflow were projected for 

the 2046-2065 period (Figure 4.11-a). In 2080-2099, snowfall and snowmelt showed a 

decreasing trend under A1B emission scenario compared to 2046-2065 due to higher 



133 

temperature increase (Figure 4.8-b and c). These potential decreases in snowfall can 

produce less monthly streamflow in spring. Moreover, a decreased streamflow may 

occur in dry conditions (July to September) due to a higher temperature and less 

precipitation availability by the end of the century (Figure 4.11-ii-a).   

Fluctuations in monthly surface runoff also showed a similar pattern to streamflow 

(Figure 4.11). Under the combined effects of land use and climate changes, higher 

snowmelt and reduced surface roughness may elevate monthly surface runoff in 

winter months by the mid-century (Figure 4.11-i-b), while by the end of the century, 

peaks of surface runoff may occur in late spring (April-May). (Figure 4.11-ii-b). 

Similar to streamflow, monthly surface runoff showed a decreasing trend in summer 

(June to August) in 2080-2099. Overall, by the end of the century, monthly surface 

runoff may decrease in March due to less snowfall and snowmelt, and in June due to 

less incident precipitation in the watershed (Figure 4.11-b-ii). 

Average monthly ET also showed an increasing trend for climate changes compared 

to land use changes, especially in growing season (April to July) in both mid and end 

of the century. This increasing trend can be driven by higher temperature and 

precipitation in A1B scenario compared to the baseline condition. The monthly 

variation in ET suggested that less ET can occur in fall (September to November) and 

in winter (December to February) due to less water use in the dormant season (Figure 

4.11-c). Between the two time periods (mid and end of the century), there will be no 

difference in monthly precipitation based on GFDL-CM2.1 model (46.3 mm in 2046-

2065 and 46.4 mm in 2080-2099), while  monthly ET would be higher in 2080-2099 

period compared to 2046-2065 period (Figure 4.11-c).  This high monthly ET can be 

explained by expansion of hay/pasture land in the end of the century compared to 

mid-century. In this watershed, more than 90% of the precipitation contributes to ET 
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(Table 4.6). Thus, less monthly streamflow may be produced due to the increased 

trend of monthly ET (Zhang et al., 2016).  

 

Figure 4. 11: Changes in average monthly a) streamflow, b) surface runoff and c) ET 

from baseline for i) (2046-2065) and ii) (2080-2099) under A1B emission scenario 

using GFDL-CM2.1 climate data. 

 

4.4  Conclusions 

The hydrologic responses to land use and climate changes were evaluated using 

SWAT in the James River watershed.  Potential land use and climate change 

conditions were examined under A1B, A2, and B1 emission scenarios for the mid-

century (2046-2065) and end of the century (2080-2099). Land use maps for the year 

2055 and 2090 were derived from the FOREcasting SCEnarios (FORE-SCE) model 
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and future projected climate data were used from three general circulation models 

(CGCM3.1, GFDL-CM2.1, and HADCM3). The following conclusions can be drawn 

from this study: 

1) The SWAT model was successfully applied to assess potential land use and 

climate change effects on hydrologic processes in the James River watershed. 

2) Future land use change scenarios showed that a large amount of agricultural 

land expansion (6.8% - 11.6% in 2055 and 19.5% - 26.1% in 2090 land use) 

and grassland depletion (from -48.9% to -23% in 2055 and from -78.6% to -

65.5% in 2090 land use) are expected.  

3) Due to land use change, higher streamflow (5.82% - 8.3% in 2055 and 11.9% - 

18.5% in 2090) and surface runoff (6% - 8.8% in 2055 and 12.3% - 19.3% in 

2090) were estimated compared to the baseline condition. A decrease in ET 

occurred in 2055 (about -0.16%) and 2090 (from -0.5% to -0.1%), except 

under B1 scenario where ET increased by 0.05% in 2055. 

4) According to three GCMs, the study watershed may experience higher 

precipitation (0.36% - 22.7%) and temperature (1.8°C - 4.5°C) under all 

emission scenarios but in different magnitude compared to the baseline 

condition (1981-1990).  

5) For future climate changes, average annual streamflows vary from -14.5% to 

+96% in the mid-century and from -21.5% to +75% at the end of the century; 

and surface runoff from -13.8% to +97% in 2046-2065 and from -20% to 

+75% in 2080-2099. The average annual ET vary between 0.1% and 17.3% 

and 3.6% and 17.1% in 2046-2065 and 2080-2099, respectively. 

6) The combination of potential climate and land use changes led to an increase 

in the streamflow (-9.9% - 104.5% in 2046-2065 and -12.9% - 96.7% in 2080-
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2090), surface runoff (-8.8% - 106.8% in 2046-2065 and -11.7% - 99.3% in 

2080-2090), and ET (0.2% - 17.3% in 2046-2065 and 3.4% - 16.8% in 2080-

2090), where climate changes play a dominant role in impacting hydrology. 

7) The analysis of both land use and climate change impacts on hydrology 

showed intensification of the hydrological changes where climate changes 

play a dominant role in impacting streamflow and hydrological extremes.  

8) Future changes in land use and climate may result in a wide range of 

hydrological variations. 

Understanding the impacts of potential land use and climate changes is important for 

sustainable water resource management. The findings of this study can be useful for 

decision makers and planners to design adaptive measures to land use and climate 

changes. This study also has valuable implications for informing watershed modeling 

in the region. 
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CHAPTER 5: CONCLUSIONS 

5.1 Summary 

In this study, SWAT was used to assess the impacts of land use and climate changes on 

hydrology in South Dakota’s watersheds. Existing land use and climate data of two 

distinct time periods were used to characterize hydrologic changes in three watersheds 

(Bad River, Skunk Creek, and Upper Big Sioux River). Results indicated that changes 

in hydrology occurred in the study watersheds between the two time periods. Potential 

land use and climate change data were also used under A1B, A2, and B1 emission 

scenarios to evaluate land use and climate change impacts on hydrology in the James 

River watershed. Simulation results revealed that land use and climate changes would 

influence hydrology in this watershed.  

The following specific conclusions can be drawn from this study: 

1. Historical land use change and climate variation resulted in a noticeable increase 

in water balance components in the Bad River, Skunk Creek and Upper Big Sioux 

River watersheds. 

a. Between 1980s and 2000s, a gradual decrease in grassland is the common 

characteristics of land use change in all three watersheds. According to NLCD 

2011, in all three watersheds, more than 3% grassland was depleted compared 

to grassland losses in NLCD 1992. 

b. The watersheds experienced variable climate changes between the two study 

periods (1981-1990 and 2005-2014). However, there was no statistically 

significant change in either precipitation or temperature.  

c. Based on the historical land use and climate data, annual water balance 

components increased in the 2000s compared to 1980s. Significant increases 
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in soil water  content and percolation were examined in Bad River and Upper 

Big Sioux River watersheds, and water yield in Skunk Creek watershed.  

d. Between 1980s and 2000s, seasonal variation in hydrology mostly increased 

during the wet season (i.e., May to October) in all three watersheds.  

e. Spatial analysis revealed that the hydrological components increased with a 

decrease in grassland in the watersheds, except in Skunk Creek watershed.  

2. Land use and climate change projections generally showed an increase in 

streamflow and surface runoff but a decrease in evapotranspiration in the James 

River watershed, suggesting that climate and land use changes will likely 

influence hydrological processes in the watershed.  

a. Among the three emission scenarios simulated, A1B scenario showed higher 

agricultural (11.6% in 2055) and hay/pasture land expansion (7.4% in 2055 

and 10.6% in 2090) and higher grassland depletion (-48.9% in 2055 and -

78.6% in 2090) compared to the other two scenarios (i.e. A2 and B1). 

b. Due to this land use change, an increase in streamflow (5.8% - 8.3% in 2055 

and 11.9% - 18.5% in 2090) and surface runoff (6% - 8.8% in 2055 and 

12.3% - 19.3% in 2090), was predicted compared to the baseline condition 

(1981-2000). A slight decrease in evapotranspiration was evident in 2055 

(about -0.16%) and 2090 (from -0.5% to -0.1%), except under B1 scenario 

where evapotranspiration increased by 0.05% in 2055.  

c. Based on the three GCMs, the study watershed may experience higher 

precipitation (0.36% - 22.7%) and temperature (1.8°C - 4.5°C) under all 

emission scenarios but with different magnitude compared to the baseline 

condition (1981-1990).  
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d. The GCMs also showed that average annual streamflow may vary from -

14.5% to 96% in the mid-century and from -21.5% to 75% at the end of the 

century; and surface runoff from -13.8% to 97% in 2046-2065, and from -

20% to 75% in 2080-2099. Average annual ET can vary between 0.1% and 

17.3% and 3.6% and 17.1% in 2046-2065 and 2080-2099, respectively.  

e. The combination of potential climate and land use changes led to an increase 

in the streamflow (-9.9% - 104.5% in 2046-2065 and -12.9% - 96.7% in 

2080-2090), surface runoff (-8.8% - 106.8% in 2046-2065 and -11.7% - 

99.3% in 2080-2090), and evapotranspiration (0.2% - 17.3% in 2046-2065 

and 3.4% - 16.8% in 2080-2090), where climate changes play a dominant 

role in impacting hydrology. 

f. Different GCMs may result in different hydrological responses, due to 

differences in data development and archiving protocols. 

5.2 Recommendations 

Recommendations for possible future studies include:  

1) In this study, NLCD land use was used to evaluate the impacts of land use 

change on hydrology. All row crops and cultivated cropland were assumed 

agricultural land without any distinction between the crop types. Various crop 

types and rotations should be taken into consideration for future assessment of 

hydrologic impacts of land use change. Incorporating crop data layer (CDL) 

into NLCD should also be considered for future studies.  

2) National Land Cover Dataset 1992 and National Land Cover Database 2011 

were used in this study. NLCD 1992 is a 21-class land cover classification 

scheme, while NLCD 2011 is a 16-class land cover classification scheme. 
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Thus, NLCD 1992 and 2011 were not developed in the same way. Future 

work should consider land uses that are developed with the same classification 

method.  

3) Precipitation and snowmelt intensity were not explicitly considered in this 

study. Further analysis should assess rainfall intensity to identify the relative 

contribution of individual precipitation events in altering the distribution of 

surface runoff in the watershed. 

4) Seasonal analysis and detailed spatial (e.g. HRU levels) should be considered 

in future land use and climate change impacts on hydrology to  highlight 

potential dry and wet seasons, and sensitive areas  that would experience 

extreme climate events.  

5) This study used three GCMs with three scenarios each. Future modeling 

efforts should use multiple GCMs/RCMs and their combinations to assess 

potential climate change impacts on hydrology in South Dakota watersheds.  

6) This study focused only on hydrology. Further studies are needed to evaluate 

climate and land use change impacts on water quality in South Dakota 

watersheds.
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