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unit (Richardson et al., 2014b; Cheng et al., 2009; Kovalcik, 2013; Li et al., 2011). The 

system requires a CO2 supply as a carbon source for cyanobacteria and to control culture 

pH (Kunjapur and Eldridge, 2010). In this system, a CO2-enriched air flow will be 

applied for agitation and also to provide gas exchange by stripping out dissolved oxygen 

and limonene. 

 

 

Figure 9.1: Process flow diagram for a cyanobacteria limonene production facility. 

 

H: heat streams (red lines); W: clean water streams (blue lines); S.S: superheated steam; Nut: nutrients 

required for BG11 medium; Eva: evaporation; AC: activated carbon; Dashed lines: gas streams; Units 

with dot-pattern: solid fraction recovery unit; Units with diagonal-line pattern: limonene recovery unit. 
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Table 9.1: Limonene production inputs and parameters for Scenario 1 and Scenario 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a: Based on 1 t/d biomass production; b: Considering a 50 kg/yr cut-off; c: Energy required for pumping is 

included; d: Biomass concentration in the broth: 6 g/L.  

 

Process Value (Scenario 

1) 

 

Value (Scenario 2) Unit Reference 

Adsorption unit     

Limonene production capacity 32433 

 

1000000 L/yr  

Required electricity for condensation 128  3968 kWh/yr [50] 

Electricity for adsorber unit 

(Adsorption) 

7.2 223.2 MWh/yr  

Microwave power consumption  41.6 1289.6 MWh/yr [72] 

Cultivation     

Biomass production 14350 14350 kg biomass/batch-1  

Required electricity in PBRsa 31.9 31.9 MWh/yr   

Log phase days per cultivation cycle 12 12 days   

Nutrientsb required for cultivation    [58] 

Sodium nitrate 87003 87003 kg/yr  

Ferric ammonium citrate 348 348 kg/yr  

Potassium phosphate dibasic 

anhydrous 

2319 2319 kg/yr  

Magnesium sulfate 2119 2119 kg/yr  

Calcium chloride 2085 2085 kg/yr  

Citric acid 349 349 kg/yr  

Sodium carbonate  1160 1160 kg/yr  

Manganese chloride 105 105 kg/yr  

Boric acid 164 164 kg/yr  

EDTA 56 56 kg/yr  

Water consumption for cultivation 2391000 

 

2391000 L/batch  

Energyc required in PBR’s 283 283 MWh/yr [70] 

Theoretical required CO2 87903 87903 kg/yr  

Energy required for pumping CO2 12.9 12.9 MWh/yr [70] 

Harvesting     

Cultivation brothd 159439 

 

159439 L day-1  

Electricity required for mixing 20 20 kWh per 1000 m3 of 
broth 

[51] 

Energy required in DAF unit 0.250 0.250 kWh kg− 1 of biomass [29] 

Energy required in EC unit 0.039 0.039 kWh kg− 1 of biomass [74] 

Anaerobic digestion     

Methane, 96 vol% 7175 
 

7175 m3/batch [85] 

Total electricity consumption 0.2162 0.2162 kWh/kg algae biomass [86] 

Total electricity produced from biogas 943.338 943.338 MWh/yr  

Total heat produced from biogas 628.892 628.892 MWh/yr  
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In this study, both scenarios were defined assuming the PBRs can utilize solar 

light as their primary source. Biogas produced in the AD unit is directed to the gas 

turbine and electricity produced from biogas is assumed to compensate for the electricity 

consumption of this process. In Scenario 1, electricity produced by the gas turbine is 

greater than the electricity consumption of the entire process and the excess electricity 

produced is assumed to be sold to the grid. In Scenario 2, electricity produced by the gas 

turbine is slightly less than the electricity consumed in the process. It is also assumed that 

hot gases from the gas turbine in both scenarios will be sent to a neighboring ethanol 

plant for energy recovery to be utilized in distillation processes. This is commonly 

calculated as negative heat consumption in chemical industries.  

9.2.2 Cultivation 

A genetically engineered, limonene producing strain of Anabaena sp. PCC 7120 

(herein referred to as Anabaena sp. 7120) (Halfmann et al. 2014b), was considered in this 

system. The PBRs used in this system are tubular bubble columns with a pump used for 

gas circulation (Sobczuk et al., 2000; Kunjapur and Eldridge, 2010), and will be cleaned 

via CIP units. 

9.2.3 Limonene recovery 

From an economic standpoint, limonene recovery from dilute fermentation 

streams via gas-stripping may be preferred (Kiyota et al., 2014). However, the gas stream 

exiting the PBRs would be very dilute and present a challenge for limonene recovery by 

simple condensation. To overcome this challenge, the gas stream is first passed through a 

column packed with activated carbon (AC) to absorb the limonene. After saturation, the 
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adsorption column is heated to regenerate the AC and release the limonene into a much 

smaller volume of gas, which is then condensed via cold water (Cao et al., 2015). 

Microwave regeneration of AC is considered in this study as it is believed to reduce 

downstream expenses for limonene recovery (Coss and Cha, 2000). 

9.2.4 Biomass harvesting unit 

A low-energy and low-cost method of harvesting cell biomass is essential to 

establish an economically feasible process. The harvesting unit should be integrated with 

cultivation facilities to reduce energy demands for the system. It should also have low 

environmental impacts and low carbon or water footprints (Udom et al., 2013). In this 

study, solid biomass will be recovered by the technology proposed by Richardson and 

Johnson, (2013). Cultivation broth will be passed through the mixer and the settling tank 

that initially concentrates the cyanobacteria via autoflocculation (Davis et al., 2011). The 

medium will then enter the dissolved air flotation (DAF) unit followed by the 

electrocoagulation (EC) unit which concentrates the slurry to a final concentration of 160 

g/L (Gebreslassie et al., 2013; Kovalcik, 2013). It has been suggested that this 

combination will minimize downstream costs (Grima et al., 2003). 

9.2.5 Anaerobic digestion 

In the proposed system, an AD unit is used to manage the large quantities of 

residual biomass produced and to improve the economic and energetic balance of the 

system. It is believed that conversion of cyanobacteria biomass into methane will allow 

for substantial energy recovery in the system (Sialve et al., 2009). Thus, in this process 

the majority of cyanobacterial biomass residue will undergo anaerobic digestion for 
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energy recovery. This energy is considered the primary energy source in the system 

(Chisti, 2008a; Ehimen et al., 2011), and the surplus of energy produced in the system 

can be sold to the grid. 

9.3 LCA methodology 

9.3.1 Notable assumptions 

LCA modeling was carried out using SimaPro 8 software (Pré Consultants, 2001) 

This considers all four interrelated steps of an LCA including: “Goal and scope”, “Life 

cycle inventory”, “Life cycle impact assessment” and “Interpretation” according to ISO 

14000 series (ISO 14041-43) (Finkbeiner et al., 2006). Inventory data was collected from 

different sources, including Greet 2014 (Wang et al., 2014), Ecoinvent 3.2 LCA database 

(Weidema et al., 2013), technoeconomic reports (Celenza, 1999; DOE, 2015; Kovalcik, 

2013; Lee and Palsson, 1994; Shareef et al., 1995; Shepherd, 2001; Vatavuk et al., 1999), 

and the literature (Allen and Stanier, 1968; Cogne et al., 2005; Davis et al., 2011; 

Gebreslassie et al., 2013; Halfmann et al., 2014c; Halfmann et al., 2014a; Johnson et al., 

2016a; Richardson and Johnson, 2013, 2015). In this study, a well-to-pump strategy was 

considered to investigate the overall sustainability and net energy balance of the limonene 

production system. This LCA will also provide baseline information for typical next-

generation biofuel processes (Sander and Murthy, 2010). A well-to-pump strategy is 

often used for LCAs of transportation fuel production processes and it includes processes 

from the extraction of resources to delivery of fuel at refueling stations. The functional 

unit (FU) is a measure of function of the system and provides a reference to relate inputs 

and outputs to a common measure of function in order to compare different systems 
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(Sander and Murthy, 2010). In this study, a FU of 1 L of limonene was considered. The 

objective of this study was to perform a comparative study on the environmental profile 

of the two scenarios, and to determine which one is better from an environmental 

standpoint. The future use of limonene is not considered, thus this is not considered a 

complete LCA study and the well-to-pump strategy was used. 

9.3.2 Notable assumptions 

Table 9.2 provides a list of notable assumptions that were considered in the 

different boundaries provided in Figure 9.1. The energy required in the process units for 

Scenario 1 was calculated based on 32,727 liters per year limonene production and a 

limonene productivity of 1.8 mg/L/h. This productivity was calculated based on a claim 

from Joule Unlimited, Inc. that cyanobacteria can be engineered to produce 10 mg/L/h 

ethanol (Green et al., 2015). Ethanol’s molecular weight is 46 g/mole, while ethylene is 

28 g/mole. Thus, the equivalent hydrocarbon productivity of 10 mg/L/h ethanol would be 

6 mg/L/h, and we chose a more conservative value of 1.8 mg/L/h (Johnson et al., 2016a). 

In Scenario 2, energy required by the process units was calculated based on proposed 

limonene production by Halfmann et al. of 1,000,000 liters per year limonene and a 

limonene productivity of 55 mg/L/h (Halfmann et al., 2014b). While it is unlikely that 55 

mg/L/h limonene production will ever be accomplished by cyanobacteria, this will allow 

us to determine the effect of increased limonene production on the environmental profile 

of the theoretical production facility described in this study. For cyanobacterial 

cultivation, a lag phase of 3 days was considered in which the microbes become 

accustomed to the growth medium followed by 10 days of production. Afterwards, the 
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medium is sent for harvesting and energy recovery. Thus, a growth cycle of 15 days (22 

batches per year) was considered for the production system. 
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Table 9.2: Notable assumptions used in this study. 

 

Process Assumptions Reference 

Adsorption 

unit 

  

 Annual limonene production: 32,433 L/yr (Scenario 1) and 1,000,000 L/yr 

(Scenario 2). 

[28] 

 Condenser efficiency: 90% [50] 

 Adsorption unit efficiency: 85%. Adsorption/Desorption period: 8:8 h/h.  [54] 

 Carbon make up: 10% 

Carbon adsorption capacity: 30 % 

Carbon bed density: 480.554 kg m3 

 

[53] 

 

Cultivation   

 Nutrient demands for cyanobacterial cultivation: BG11 medium [58] 

 chemical composition of Cyanobacteria: CH1.575O0.459N0.173S0.006P0.006 [57] 

 Productivity of strain: 1.25 kg. m-3 day-1 [40] 

 limonene productivity: 1.8 mg.L-1 day-1 (Scenario 1) and 55.5 mg.L-1 day-1 

(Scenario 2) 

[25, 56] 

 Cyanobacteria growth cycle: 15 days. Log phase 12 days.  

 Wastewater taken after secondary treatment  

 Air enriched with 1% CO2  

Harvesting   

 Biomass concentration send for harvesting: 6 g L-1 [52, 87] 

 Settling tank: Autoflocculation: concentrates the cyanobacteria to 1% [40] 

 Dissolved air flotation (DAF): concentrates the cyanobacteria to 10%. 

Electrocoagulation unit concentrates the slurry to 16%. 

[31, 41] 

 Dry biomass density: 1 kg L-1 [60] 

Energy 

recovery 

  

 Anaerobic digester: 0.5 m3 methane per kg of residual biomass [85] 
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9.3.3 System boundary 

In LCA studies, a boundary around the system must be defined which is 

determined by the scope of the study. In this study, 3 different boundaries are defined 

including the boundary between the product system and the environment system, the 

boundary between the relevant and irrelevant processes (cut-off), and the boundary 

between the system under consideration and other product systems (allocation) 

(Goedkoop et al., 2010; Guinée, 2002). Here, the system boundary is considered from 

cradle-to-gate as a first order, where only the production of materials and transportations 

are included. In some LCA studies, satisfactory results can still be obtained when 

excluding capital goods (Hsu, 2012). Figure 9.1 illustrates the boundaries defined in this 

study. However, capital goods may contribute up to 30% of the total environmental 

impacts and in modern data bases (i.e. Ecoinvent and the USA Input-Output data bases) 

capital goods are included (Goedkoop et al., 2010; Lehtinen et al., 2011). 

9.4 Data sources 

9.4.1 Data collection and relating data to unit processes 

Data for the unit processes were gathered from the Farm-level Algae Risk Model 

(FARM) and other similar technologies. The FARM, formerly known as the Algae 

Income Simulation Model (AISIM), is a Monte Carlo firm level simulation model 

designed to simulate the annual cultivation, harvesting, extraction, and 

financial/economic activities of an algae farm (Richardson and Johnson, 2012). The 

similarities between algae and cyanobacteria allows for the model to be used for 

production facilities which use cyanobacteria. The main difference between an algae and 
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a cyanobacteria production facility is that algal systems typically produce oil which must 

subsequently be converted into biofuels, while cyanobacteria can be engineered to 

directly produce the biofuel which is excreted from the cell and volatilized into the 

culture headspace with minimal cell disruption. The data structure used in this study is 

composed of cultivation data, limonene recovery data, harvesting data, and data regarding 

energy recovery units presented in this system. For this LCA, information is considered 

for 5 different areas, including: process information, materials information, equipment 

information, water treatment, and energy content recovery information (Shepherd, 2001). 

In this study, data regarding cyanobacterial cultivation and growth were obtained 

from recent studies in which strains of filamentous cyanobacteria have been genetically 

engineered to produce limonene (Halfmann et al., 2014b). For the cultivation phase, 

modified and updated data from the National Alliance for Advanced Biofuels and 

Bioproducts (NAABB) and the National Renewable Energy Laboratory (NREL), which 

were integrated into FARM, were the primary sources (Davis et al., 2012; DOE, 2015; 

Richardson and Johnson, 2015). Other supplementary data on unit operations was 

adapted from studies on algal biodiesel production and similar technologies, including 

pyrolysis and water treatment facilities (Chen et al., 2011; Delrue et al., 2012; Fernandes 

et al., 2015; Khoo et al., 2011). For limonene recovery, data was obtained from different 

sources for adsorbers (Coss and Cha, 2000; Shepherd, 2001; Vatavuk et al., 1999) 

(design factors, capacities and energy demands), a microwave regeneration unit (energy 

demands) (Price and Schmidt, 1998), and the energy required for condensers (Shareef et 

al., 1995). For biomass harvesting, dewatering, and drying, supplementary data for 

energy consumption was obtained for mixing (Celenza, 1999), the DAF unit (Richardson 
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et al., 2014b; Rubio et al., 2002), and the EC units (Gebreslassie et al., 2013; Murdock 

and Lacey, 2010). 

9.4.2 Software  

Previously, FARM has been used to evaluate the annual cultivation, harvesting, 

extraction, and financial/economic activities of an algae farm (Richardson and Johnson, 

2012). Different scenarios were assessed to determine the preferred strategy for algal 

biofuel production facilities (Richardson and Johnson, 2014, 2015; Richardson et al., 

2014b; Richardson et al., 2012), and the most successful scenarios based on FARM were 

used in this LCA study. LCA software packages used in this study include Simapro 8.0 

and GREET 1 2014 (for algal biodiesel and transportation) (Wang, 2014). 

9.5 Coproduct allocation and displacement 

In this proposed system, allocation is not a challenge as the number of coproducts 

from the unit operations is limited. In energy recovery units, steam, electricity, and 

residual biomass from the AD are typical co-products. The produced steam, biogas, and 

electricity can provide the energy required for the operations and the excess electricity 

can be sold to the grid. Excess steam was considered to be sold to a neighboring ethanol 

plant. There are different approaches to distributing the emissions produced from this 

operation. The allocation of energy and emissions of these products can be determined 

based on mass, economy, or produced energy. As the produced steam, biogas, and 

electricity can be substituted for fossil fuels in this study, the allocation based on 

economic value was utilized. Thus, the energy and emissions from these sources will 
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replace the energy and emissions associated with fossil fuel energy for the production of 

steam and electricity in the corresponding operations (González-García et al., 2010). 

In this study, 3.815 kg and 0.123 kg dry biomass retentate was considered to be 

produced per liter of limonene for Scenarios 1 and 2, respectively. It is assumed that the 

dry biomass retentate has the same economic value as dry wood chips. Conservatively, 

limonene is considered to have a similar economic value as diesel. Based on the 

economic value in the United States market (DOE, 2011; EIA, 2016), 64% of the 

environmental load is allocated for limonene and 36% is allocated for biomass retentate 

for Scenario 1. In Scenario 2, 98% of the environmental load is allocated for limonene 

and 2% is allocated for solid residues from anaerobic digestion. Allocation for water 

replacing fresh water was considered to be 0% as the clean water from the water 

treatment facility was assumed to replace fresh water for cyanobacteria cultivation. 

Lastly, flue gas from the incinerator was assumed to replace pure CO2 for cultivation. 

9.6 Results and discussions 

9.6.1 Overall energetic analysis 

Table 9.3 summarizes the overall energy demand for unit processes, co-product 

allocations, net energy demand per FU of limonene. Overall energetics of the process can 

be described as total energy input, net energy input, net energy balance, and net energy 

ratio as described below: 

Total energy = Ʃ sub-process energy inputs 

Net energy input = Total energy input – by-product allocations 
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Net energy balance = Net energy input – energy in FU of main product 

Net energy ratio = Net energy input / energy in FU of main product 

 

Table 9.3: Energy demand for unit processes, co-product allocations, net energy 

demand per FU of limonene, and CO2 emissions allocated for limonene. 

 

 

 

Total energy and net energy input for the FU of limonene for Scenario 1 were 

calculated as -32.148 and -20.575 kWh, respectively. Considering the limonene heat 

value of 10.508 kWh/L (Růžička Jr and Domalski, 1993), the net energy balance was 

calculated as -31.083 kWh/FU. This is much higher than the value reported by Sander 

 Energy input 

(kWh/FU) 

By-product 

allocation 

(kWh/FU) 

Net energy  

input 

(kWh/FU) 

Energy for PBRs 8.726 6.108 

 

2.618 

Electricity for PBRs 0.982 0.687 

 

0.295 

Energy for pumping CO2 in PBRs 0.397 

 

0.278 

 

0.119 

Electricity for absorption unit 0.222 0.156 

 

0.067 

Electricity for microwave AC 

regeneration 

1.283 0.899 

 

0.385 

Electricity for condensation unit 0.004 0.003 

 

0.001 

Electricity for mixing broth for 

harvesting 

0.033 0.023 

 

0.010 

Electricity for DAF unit 2.447 

 

1.713 

 

0.734 

Electricity for EC unit 0.382 

 

0.267 

 

0.114 

Electricity for anaerobic digestion 2.116 

 

1.481 

 

0.635 

Electricity from methane gas 

turbine 

-29.243 

 

-20.470 

 

-8.773 

Steam from methane gas turbine -19.496 

 

-13.647 

 

-5.849 

Total -32.148 

 

-22.503 

 

-9.644 
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and Murthy for algal biodiesel production (-6.7 kWh/FU) (Sander and Murthy, 2010). 

The net energy ratio of Scenario 1 was -1.95. Huo et al., (2008), reported a net energy 

ratio of 0.15 for soybean biodiesel production. These data provide evidence that limonene 

production from cyanobacteria will be substantially more environmentally favorable than 

algal and soybean biodiesel production.  

Total energy and net energy input for the FU of limonene for Scenario 2 were 

0.423 and 0.414 kWh, respectively. The net energy balance was calculated as -10.094 

kWh/FU, which is higher than the value reported for algal biodiesel production (-6.7 

kWh/FU) by Sander and Murthy, (2010). The net energy ratio of Scenario 2 was 0.04, 

which is substantially higher than Scenario 1 (-1.95). However, it is still lower than the 

value reported by Huo et al., (2008) (0.15). This shows that Scenario 2 will consume 

electricity in the process, but its electricity consumption is lower compared to algal 

biodiesel production technologies. These data provide evidence that by increasing 

limonene productivity of cyanobacteria, the overall environmental profile of the system is 

worsened. The main reason for this is that the downstream processes of limonene are 

much more energy intensive compared to the downstream processes of the biomass 

production and by increasing the ratio of limonene to biomass, the overall energy 

consumption of the system increases. 

Figures 9.2 and 9.3 show the environmental load of each process stage based on 

Eco-indicator 99 for both scenarios (Goedkoop and Spriensma, 2001). For Scenario 1, 

even though no artificial lighting was assumed, the electricity needed for the PBRs was 

the most significant individual contributor to the total environmental load. It was 

responsible for ~42% of the total energy consumption. In this technology, other 
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downstream processes were considerably less energy intensive compared to processes 

which already exist in lipid based algal biodiesel production technologies. This superior 

energetic balance for downstream processes is the result of eliminating the process of oil 

extraction from the biomass, which is quite energy intensive. Thus, in this technology 

there is no need for energy intensive oil extraction processes as the limonene will be 

continuously volatilized into the headspace during cultivation.  

 

 

Figure 9.2: Environmental load of each process stage of Scenario 1.  

(Method: Eco-indicator 99 V2.10 / Single score / Excluding infrastructure processes).  
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Figure 9.3: Environmental load of each process stage of Scenario 2.  

(Method: Eco-indicator 99 V2.10 / Single score / Excluding infrastructure processes.) 

Figure 9.3 shows that the negative eco-points (positive environmental load) 

assigned to the production of electricity and heat from biogas per FU of limonene has 

been drastically reduced in Scenario 2 compared to Scenario 1. Although the overall heat 

and electricity production of the facility remained almost identical to Scenario 1, it has 

been divided by a larger amount of limonene (~31-fold increase), and the environmental 

load allocated to limonene was increased from 64% to 98%. This translates into a ~20-

fold reduction in the energy produced per FU allocated to limonene. This is similar to 

what occurs to the environmental loads caused by nutrients and electricity consumed by 

the PBR and biogas production units. “Allocation” of 64% for limonene in Scenario 1 

means that 64% of the environmental load per FU of limonene caused by each input-

output category was attributed to 1 L of limonene. Using the same method in Scenario 2, 

~98% of environmental load per FU was attributed to 1 L of limonene. Although the 
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environmental load caused by the consumption of AC and electricity for recovery unit 

per 1 L of limonene was identical for both scenarios, the amount allocated to 1 L of 

limonene was increased ~1.5-fold in Scenario 2. 

Figure 9.4 shows the comparison of various categories of environmental loads on 

3 scenarios: Scenario 1, Scenario 2, and diesel from fossil fuels. Each category was 

normalized to 100%. These results provide evidence that limonene production via both 

scenarios would be more environmentally favorable than fossil based diesel. Scenario 1 

was substantially more environmental friendly than Scenario 2 due to the environmental 

profile of the system becoming worse due to increased limonene production. 
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Figure 9.4: Comparison of various categories of environmental loads for production 

of 1 L of limonene for Scenario 1 and 2 and 1 L 'Diesel, at refinery/L/US'.  
(Method: Eco-indicator 99 V2.10 / Characterization / Excluding infrastructure processes). 

(Each category is normalized to 100%. Orange columns represent Scenario 1, blue 

columns represent Scenario 2 and grey columns for Diesel, at refinery/L/US.)  

 

Single score comparisons of environmental loads for the 3 scenarios is shown in 

Figure 9.5. This comparison provides more evidence that limonene production in 

Scenario 1 causes a substantially lower overall environmental load compared to Scenario 

2. In Scenario 2, overall electricity consumed by PBRs, the production of biomass, and 

electricity produced from biomass remains virtually identical to Scenario 1, yet the 

production of biomass and electricity produced from biomass and electricity produced 
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energy recovery unit, reducing the proportion of biomass production of the whole system 

dramatically affects the energy balance.  

   

 

Figure 9.5: Damage assessment comparison of the environmental loads of 

production of 1 L of limonene for Scenario 1 and 2 and 1 L 'Diesel, at 

refinery/L/US'.  

(Method: Eco-indicator 99 V2.10 / Single score / Excluding infrastructure processes). 

Figure 9.6 compares the global warming potential of different scenarios based on 

Greenhouse Gas Protocol v1.01 (Weidema et al., 2013). Results show CO2 equivalent 

emissions allocated to 1 L of limonene in Scenarios 1 and 2 are equal to -16.81 and -

0.435 kg/L limonene, respectively. For fossil-based diesel, it is 0.449 kg/L. The negative 

CO2 equivalent emissions in Scenarios 1 and 2 indicates that in both scenarios, the 

amount of prevented greenhouse gas emissions (caused by electricity generation and 

fixing CO2 in limonene and biomass) were higher than greenhouse gas emissions caused 
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by the consumption of electricity and nutrients. This also provides evidence that the 

production of limonene from Scenarios 1 and 2 is more environmentally favorable than 

fossil-based diesel. Also, this provides evidence that the global warming potential of 

Scenario 1 is better than Scenario 2. 

 

 

Figure 9.6: Comparison of global warming potential of production of 1 L of 

limonene for Scenario 1 and 2 and 1 L 'Diesel, at refinery/L/US'.  

(Method: Greenhouse Gas Protocol V1.01/CO2 eq). 

9.7 Conclusions 

This LCA study showed that production of limonene by genetically engineered 

filamentous cyanobacteria is less energy intensive than both fossil fuel based diesel and 

3rd generation biodiesel production. Algal biodiesel production is more energy intensive 

due to the additional steps of drying biomass, separation of lipids, and conversion of 
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lipids into biodiesel. Scenario 1 was found to be more environmentally friendly compared 

to Scenario 2 because Scenario 1 has a higher ratio of biomass to limonene production 

(produced biomass per 1 L limonene in the system). This biomass can be later converted 

to biogas and consequently, its energy can be recovered in a gas turbine that produces 

electricity and steam. This energy can then be substituted for fossil fuel based energy that 

is required by the system. Thus, produced energy per FU was higher in Scenario 1 than 

Scenario 2. Also, the surplus electricity and steam produced can be sold to the grid or a 

neighboring ethanol plant.  

Although higher cyanobacterial productivities are more economically favorable 

for the production of limonene, the results of this study show that higher productivities do 

not necessarily improve the environmental profile of the process. This occurs because 

biomass production is substantially more environmental friendly than limonene 

production. Therefore, by increasing the ratio of limonene to biomass, the overall 

environmental profile of the system became worse. This study also strongly suggests that 

a limonene production facility using filamentous cyanobacteria that can use CO2 emitted 

from coal-fired power plants and/or ethanol production plants as its carbon source could 

be a future sustainable solution for producing next-generation biofuels. Finally, this study 

also shows evidence that as the cyanobacterial productivity of next-generation biofuels, 

such as limonene are increased, that the result will be a decrease in the environmental 

profile for the entire process.   
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Chapter 10 - Summary and Conclusions 

 

Cyanobacteria are photosynthetic prokaryotes present in diverse habitats, ranging 

from the tropics to polar regions (Hasunuma et al., 2013; Katoh, 2012; Moreno et al., 

1998). Although, they utilize an identical photosynthesis process as higher plants 

(Lindblad, et al., 2012), cyanobacteria are capable of significantly higher photosynthetic 

and growth rates (Hasunuma et al., 2013) as they are inherently more efficient solar 

collectors (Dismukes et al., 2008). Cyanobacteria hold a great deal of potential as 

industrial microbes due to their potential to be genetically engineered to produce high-

value chemicals and next-generation biofuels (Gu et al., 2012; Halfmann et al., 2014a; 

Halfmann et al., 2014b; Kiyota et al., 2014; Lan and Liao, 2011) from CO2 and solar 

energy (Machado and Atsumi, 2012). 

 The first objective in this project was to develop a method of monitoring growth 

of filamentous cyanobacteria. Because of their filamentous morphology, standard 

methods of quantifying viability are not possible. Thus, a dual-fluorescence assay based 

upon the LIVE/DEAD® BacLight™ Bacterial Viability Kit was evaluated for its ability 

to quantify the percent viability of filamentous cyanobacteria using a microplate reader in 

a high-throughput 96-well plate format. It was determined via the microplate reader, as 

well as confocal and wide-field epi-fluorescence microscopy, that the assay did not work 

properly with filamentous cyanobacteria. This was due to the non-viable cell indicator, 

propidium iodide (PI), binding non-specifically to both non-viable and viable cells 

(Chapter III). While PI did not work as expected with filamentous cyanobacteria, other 
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fluorochromes were identified that could potentially be used to selectively stain non-

viable cells.  

 In Chapter IV, a dual-stain assay using SYTO® 9 and SYTOX® Blue was 

investigated for its ability to accurately quantify viable and non-viable filamentous 

cyanobacterial cells. A strong correlation again existed between SYTO® 9 and viable 

cells. However, SYTOX® Blue did not work as a non-viable cell indicator due to non-

specific binding in both viable and non-viable cells, similar to what was observed with PI 

in Chapter III. Autofluorescence from light harvesting pigments was also evaluated as a 

viable cell indicator of filamentous cyanobacteria. It was determined that this method was 

not practical because cyanobacteria pigments have several emission peaks that can’t be 

captured by a single emission filter. Also, some light harvesting pigments continued to 

fluoresce after the cell became non-viable. SYTO® 9 as a viable cell indicator in 

filamentous cyanobacteria was compared to absorbance and chlorophyll α content in a 

chemical inhibition testing protocol. At the low cell densities required for chemical 

inhibition tests, SYTO® 9 was superior to absorbance and chlorophyll α content in 

quantifying viability. It was then concluded that fluorescence from SYTO® 9 is an 

accurate, reliable indicator of viability of filamentous cyanobacteria and can be used in a 

high-throughput manner via a microplate reader. 

 Many next-generation biofuels are toxic to cells, thus developing cyanobacteria 

strains with increased tolerance to these chemicals is essential to achieve commercially 

feasible productivities and yields. Strain development techniques, such as directed 

evolution, require exposure of the microorganism to the chemical to develop resistance 

by selection of tolerant mutants. Since many of these chemicals are highly volatile, 
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directed evolution trials must take place in a sealed environment to maintain stable 

chemical titers. In Chapter V, cyanobacterial growth conditions were optimized in a 

sealed test tube environment using BG11 as the basal medium. Since it was not possible 

to provide carbon dioxide by sparging, I determined that 0.5 g/L NaHCO3 was optimal 

for cultivating cyanobacteria in a sealed environment. Adding NaHCO3 in a fed-batch 

mode only marginally improved growth, but increased the risk of contamination and loss 

of volatile chemicals. 

In Chapter VI, a directed evolution study was conducted to increase cyanobacteria 

tolerance to next-generation biofuels. Directed evolution is a process in which a microbe 

is grown under a selective pressure that forces rapid evolution in order to tolerate that 

pressure. This technique has been used to improve production of a range of microbial 

products (Labrou, 2010). The study herein led to three confirmed cyanobacterial mutants 

with increased tolerance to specific biofuels: An Anabaena 7120 strain with a 220% 

increase in tolerance to farnesene, as well as an A. variabilis ATCC 29413 strain and a N. 

punctiforme ATCC 29133 strain with increased tolerance to linalool (60% and 20% 

increase in tolerance, respectively). This work served as proof-of-concept that directed 

evolution is a valid methodology to increase the tolerance of filamentous cyanobacteria to 

biofuels. These strains could then be genetically engineered to produce the chemicals for 

which they are tolerant. One might anticipate that the increased tolerance could also lead 

to increased productivity.  

For any large-scale process involving filamentous cyanobacteria to become 

economically feasible, the cost of the cultivation medium must be minimized. As there 

was not a clear consensus in the literature regarding the optimal nitrogen source for 
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cultivating filamentous cyanobacteria, I evaluated various fixed nitrogen sources 

compared to atmospheric N2 (Chapter VII). Of the nitrogen sources evaluated, sodium 

nitrate and ammonium chloride yielded 65% more cyanobacterial growth compared to 

the other nitrogen sources evaluated. An environmental comparative study was then used 

on a theoretical large-scale production process to down select the best nitrogen source, 

which was determined to be ammonium chloride as it had a substantially more favorable 

environmental impact than sodium nitrate. For example, sodium nitrate had a ~3-fold 

greater negative impact in human health, ecosystem quality, and resources categories.  

In Chapter VIII, the economic feasibility of a theoretical facility that uses 

genetically engineered Anabaena 7120 to produce the cyclic hydrocarbon limonene in 

25,162 m2 of PBRs was analyzed using the Farm-level Algae Risk Model (FARM). 

FARM is an integrated systems compilation of numerous technoeconomic models that 

has been used previously in several algal production scenarios. FARM simulated 10 years 

of operation for the theoretical production facility. The process consisted of PBRs, gas 

stripping and limonene recovery units, a solid fraction recovery unit, an anaerobic 

digestion unit, a wastewater treatment unit, and a gas cleaning unit. CO2 was directly 

transferred into the PBRs via internal sparging. Activated carbon (AC) was used for 

limonene collection in the adsorbing systems. The analysis determined that the average 

probability of success of the limonene production facility at year 5 using the current 

productivity rate (0.018 mg/L/h) of a genetically engineered strain of filamentous 

cyanobacteria was 0%. The average net present value at year 5 of this scenario was -588 

M$s. A second scenario was evaluating assuming productivity can be increased 100-fold 

by future genetic and metabolic modifications. At year 5, this scenario had an average 
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probability of success of 100% and an average net present value of 392 M$s. This study 

shows strong evidence that a next-generation biofuel production facility utilizing 

genetically engineered strains of filamentous cyanobacteria could become economically 

feasible in the future if productivity can be improved.  

In Chapter IX, a life cycle analysis was conducted on the theoretical production 

facility described in Chapter VIII. Two scenarios for limonene production were evaluated 

in the LCA. In scenario 1, limonene productivity from the genetically engineered 

cyanobacteria was 1.8 mg/L/h and in scenario 2, the productivity was 55.5 mg/L/h. This 

study showed that the production of limonene by genetically engineered filamentous 

cyanobacteria is less energy intensive than both fossil fuel based diesel and 3rd generation 

biodiesel production. The major environmental burdens associated with this facility are 

from the nutrient supply and electricity consumed by the PBRs. Electricity produced 

from the gas turbine can be used to offset some of the burden. Higher limonene 

productivities do not improve the environmental profile of the process due to biomass 

production being more environmentally friendly than limonene production. Of the two 

scenarios evaluated for limonene production, the environmental load caused by the 

consumption of activated carbon (AC) an electricity for recovery unit per 1 L of limonene 

was identical for both scenarios, but the amount allocated to 1 L of limonene was 

increased ~3-fold in scenario 2. Thus, by increasing the ratio of limonene to biomass, the 

overall environmental profile of the system became worse. Even considering this, the 

theoretical limonene production facility described in this project holds great potential as a 

future sustainable solution for producing next-generation biofuels. 
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