South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Electronic Theses and Dissertations

2017

The Analysis of Flavor Compounds in Green Tea Using Ice Concentration Linked with Extractive Stirrer (Icecles)

Abdullah H. Alluhayb South Dakota State University

Follow this and additional works at: https://openprairie.sdstate.edu/etd

Part of the Analytical Chemistry Commons

Recommended Citation

Alluhayb, Abdullah H., "The Analysis of Flavor Compounds in Green Tea Using Ice Concentration Linked with Extractive Stirrer (Icecles)" (2017). *Electronic Theses and Dissertations*. 1161. https://openprairie.sdstate.edu/etd/1161

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

THE ANALYSIS OF FLAVOR COMPOUNDS IN GREEN TEA USING ICE CONCENTRATION LINKED WITH EXTRACTIVE STIRRER (ICECLES)

BY

ABDULLAH H. ALLUHAYB

A thesis submitted in partial fulfillment of the requirements for the

Master of Science

Major in Chemistry

South Dakota State University

2017

THE ANALYSIS OF FLAVOR COMPOUNDS IN GREEN TEA USING ICE CONCENTRATION LINKED WITH EXTRACTIVE STIRRER (ICECLES)

This thesis is approved as a creditable and independent investigation by a candidate for Master of Science in Chemistry degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department.

Brian A. Logue. Ph.D/ Thesis Advisor

Date

Douglas Raynie, Ph.D Head, Department of Chemistry and Biochemistry

Date

Date

This thesis and everything I have achieved in my life is dedicated to my loving parents and my supportive family members. You have given me all the riches that life could offer and without you I would never be where I stand today. I have a special feeling of gratitude to my parents, whose encouragement has continuously provided me the motivation and inspiration in overcoming the obstacles and challenges in life. Thank you for always being there for me!

ACKNOWLEDGEMENTS

Special thanks go to my advisor Dr. Brian A. Logue who has always supported me in completing my research. Thank you for your guidance, patience, and undying efforts! I would like to acknowledge my committee members for always being generous with their expertise and precious time. I would like to thank my friends and all members of LARGE group for supporting me and providing a fun learning environment. Finally, I would like to thank Qassim University for offering my scholarship and South Dakota State University for providing me the opportunity to complete my Master's degree.

CONTENTS

ABBREVIATIONS viii	
LIST OF FIGURES ix	
LIST OF TABLES xi	
ABSTRACT	
1. Chapter 1. Introduction	
1.2. Objective1	
1.3. Extractive sample preparation	
1.3.1. Overview of extractive sample preparation2	
1.3.2. Extraction Methods	
1.3.3. Accelerated Solvent Extraction (ASE)	
1.3.3.1. Basic principle of ASE	3
1.3.3.2. Applications of ASE	5
1.3.4. Supercritical Fluid Extraction (SFE)5	
1.3.4.1. Basic principle of SFE	5
1.3.4.2. Applications of SFE	7
1.3.5. Liquid-Liquid Extraction (LLE)	
1.3.5.1. Basic principle of LLE	8
1.3.5.2. Liquid-Liquid Micro Extraction (LLME)	9
1353 Applications of LLE and its Miniaturized Techniques	11
1.3.6. Solid Phase Extraction (SPE)	
1.3.6.1. Basic principle of SPE	12
1.3.6.2. Applications of SPE	14
1.3.7. Solid-Phase Microextraction (SPME)	
1.3.7.1. Basic principle of SPME	14
1.3.7.2. Applications of SPME	16
**	

1.3.8. Stir Bar Sorptive Extraction (SBSE)	
1.3.8.1. Basic principle of SBSE	17
1.3.8.2. Applications of SBSE	19
1.3.9. ICE Concentration Linked with Extractive Stirrer (ICECLES)20	
1.3.9.1. Basic principle of ICECLES	20
1.3.9.2. Freeze Concentration (FC)	21
1.3.9.3. ICECLES procedure	21
1.3.9.4. Applications of ICECLES	21
2. Chapter 2. The Analysis of Flavor Compounds in Green Tea Using Ice Concentration Linked with Extractive Stirrer (ICECLES)	
2.1. Introduction	
2.2. Materials and Methods	
2.2.1. Materials and standards	
2.2.1.1. Materials	25
2.2.1.2. Standard solutions	26
2.2.2. Green tea sample preparation	
2.2.3. ICECLES sample preparation	
2.2.4. ^m ICECLES sample preparation	
2.2.5. Gas chromatography-mass spectrometry	
2.2.6. Identification of green tea components	
2.3. Results and discussion	
2.3.1. ICECLES sample preparation	
2.3.2. Extraction of green tea components	
2.3.3. Compound identification	

2.3.4. Important flavor compounds detected by ICECLES	35
2.3.5. Important medicinal compounds detected by ICECLES	37
2.4. Conclusion	
3. Chapter 3. Conclusions and Future Work	40
3.1. Conclusions	40
3.2. Future Work	41
4. References	42
APPENDIX AND SUPPORTING MATERIAL	58
Appendix 1	58
A.1.1. Table S1. Green tea components with the corresponding iden	tification, log
Kow, and signal enhancement, and (common names).	58
A.1.2. Table S2. Green tea components extracted only by ICECLES	S with the
corresponding retention time, identification, log Kow, and boiling po	int58

ABBREVIATIONS

ASE	Accelerated solvent extraction
SFE	Supercritical fluid extraction
LLE	Liquid-liquid extraction
LLME	Liquid-liquid microextraction
SDME	Single-drop microextraction
DLLME	Dispersive liquid-liquid microextraction
SPE	Solid phase extraction
SPME	Solid phase micro extraction
SBSE	Stir bar sorptive extraction
ICECLES	Ice concentration linked with extractive stirrer
SDE	Simultaneous distillation and extraction
DHS	Dynamic headspace
UAE	Ultrasound assisted extraction
MAE	Microwave-assisted extraction
^m ICECLES	Multiple-stir bar ICECLES
PDMS	Polydimethylsiloxane
GC-MS	Gas chromatography-mass spectrometry
TDU	Thermal desorption unit
NIST	National Institute of Standards and Technology
5-HMF	5-(hydroxymethyl)furfural

LIST OF FIGURES

Figure 1.1 Analytical chemistry steps for chromatographic analysis2
Figure 1.2 Schematic of an accelerated solvent extraction (ASE) apparatus [11]4
Figure 1.3 Basic schematic diagram of a supercritical fluid extraction (SFE) instrument.
Figure 1.4 Schematic diagram of liquid-liquid extraction (LLE)
Figure 1.5 Schematic of DI-SDME and HS-SDME [24]
Figure 1.6 Schematic diagram of dispersive liquid-liquid microextraction (DLLME)10
Figure 1.7 Schematic diagram of solid phase extraction (SPE)12
Figure 1.8 Schematic diagram of solid-phase microextraction (SPME) [38]16
Figure 1.9 Schematic diagram of stir bar sorptive extraction (SBSE)
Figure 1.10 Schematic diagram of ICE concentration linked with extractive stirrer
(ICECLES)
Figure 2.1 Green tea extraction via ICECLES sample preparation. The schematic and
photographs show sample preparation before (A), during (B), and after (C) ICECLES.
The green tea solution in (A) is clearly concentrated in a small volume of solution as the
solution is progressively frozen from the bottom of the vial $(B + C)$. After performing
ICECLES, green tea components are concentrated in a sorptive stir bar (C) and analyzed
by TD-GC-MS
Figure 2.2 Total ion chromatograms of ICECLES and SBSE prepared green tea samples.
As clearly shown in the first 15-20 minutes, ICECLES extracts the vast majority green
tea components more efficiently than SBSE

Figure 2.3 Example of definitively identified compound. A) GC-MS chromatogram of
furfural extracted via ICECLES and confirmed with its standard, B) mass spectrums of
furfural in green tea sample and furfural standard
Figure 2.4 Examples of green tea components extracted via ICECLES, but undetectable
via SBSE. A) furfural, B) 5-(hydroxymethyl)furfural, C) E,E-2,4-hexadienal, and D)
methylpyrazine

LIST OF TABLES

Table 1.1 Advantages and disadvantages of ASE sample preparation4
Table 1.2 Example applications of ASE sample preparation. 5
Table 1.3 Advantages and disadvantages of SFE. 7
Table 1.4 Comparison of the advantages and disadvantages of LLE, SDME, and
DLLME11
Table 1.5 Advantages and disadvantages of solid phase extraction (SPE)
Table 1.6 Advantages and disadvantages of solid phase microextraction (SPME)16
Table 1.7 Advantages and disadvantages of using stir bar sorptive extraction (SBSE)19
Table 1.8 Advantages and disadvantages of Ice concentration linked with extractive
stirrer (ICECLES)
Table 2.1 Some important green tea components only detected via ICECLES.
Table S0.1. Green tea components with the corresponding identification, log K_{ow} , and
signal enhancement, and (common names)
Table S0.2. Green tea components extracted only by ICECLES with the corresponding
retention time, identification, log K _{ow} , and boiling point70

ABSTRACT

THE ANALYSIS OF FLAVOR COMPOUNDS IN GREEN TEA USING ICE CONCENTRATION LINKED WITH EXTRACTIVE STIRRER (ICECLES)

ABDULLAH H. ALLUHAYB

2017

Sample preparation of target components from food samples is one of the most difficult steps in this type of analysis. Many extraction techniques have been used for this purpose, such as liquid-liquid extraction (LLE), accelerated solvent extraction (ASE), microwave-assisted extraction (MAE), solid-phase extraction (SPE), solid-phase microextraction (SPME), and stir bar sorptive extraction (SBSE). Although each of these techniques works well, they each have a number of disadvantages, including selectivity, relatively high cost, long preparation time, and matrix effects. Ice concentration linked with extractive stirrer (ICECLES) is a promising new sample preparation technique, especially for the extraction of relatively polar compounds, which may prove to have widespread applicability for analytical sample preparation. ICECLES was used to prepare green tea for flavor analysis by gas chromatography-mass spectrometry (GC-MS). ICECLES produce 301 constituents, the vast majority with stronger signal to noise ratios than the 245 components found using SBSE. Therefore, 56 extra constituents were detectable via ICECLES alone, including some very important flavor compounds such as furfural, eugenol, 2-methylpyrazine, phenethyl alcohol, α -terpineol, and 2,6-dimethoxyphenol. Overall, ICECLES sample preparation followed by GC-MS showed higher extraction efficiencies for the vast majority of green tea flavor components, including relatively polar compounds, as compared to SBSE.

1. Chapter 1. Introduction

1.1. Significance

Green tea is one of the most widely consumed beverages in the world due to its beneficial medicinal properties (reduction in serum cholesterol, anti-oxidant properties, and a decreased risk of cancer) as well as its pleasant flavor. About 200 compounds in green tea have been identified and 30 compounds are related to its flavors [1]. Manufacturers of green tea analyze their products for these compounds to ensure the quality and identity of their products. Many techniques have been used to prepare green tea samples for analysis, including liquid-liquid extraction (LLE), solid phase micro extraction (SPME), and stir bar sorptive extraction (SBSE). These techniques generally suffer from low extraction efficiencies for certain compounds, especially those more polar. Moreover, those techniques which are amenable to analysis of more polar compounds (e.g., SPME with polar sorbent phases) only produce good extraction efficiencies for a narrow polarity range. Therefore, there is a critical need to develop a more comprehensive extraction technique to prepare the flavor compounds of green tea for analysis, with the ability to extract compounds with a wide polarity range.

1.2. Objective

The objective of this project was to evaluate the performance of ice concentration linked with extractive stirrer (ICECLES) sample preparation for the flavor analysis of green tea (specifically comparing to SBSE). In order to accomplish this objective, an ICECLES method for the extraction and identification of flavor compounds from green tea using ICECLES-gas chromatography-mass spectrometry (GC-MS) was developed. Moreover, direct comparison between ICECLES and SBSE was performed.

1.3. Extractive sample preparation

1.3.1. Overview of extractive sample preparation

Figure 1.1 shows the general steps involved in analysis of samples via chromatography. All these steps can affect the results [2]. One of the most important steps is sample preparation, where an analyte is separated from the matrix interferences and typically preconcentrated for chromatographic analysis [3, 4].

Figure 1.1 Analytical chemistry steps for chromatographic analysis.

Although scientists have focused much of their attention on analysis techniques [4], numerous sample preparation methods such as filtration or liquid-liquid extraction, have been developed over the years [3]. Most of these techniques are still in use today. Sample preparation techniques should have the following advantages [4]: 1) suitable for trace analysis, 2) safe and environmentally friendly, 3) selective and sensitive, 4) inexpensive, 5) relatively quick, and 6) simple and easy to perform.

1.3.2. Extraction Methods

One of the most common sample preparation concepts is extraction. Extraction methods aim to separate and isolate the target analyte into an immiscible phase from the sample matrix. Many extraction techniques have been used for sample preparation, including accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), microwave assisted extraction (MAE), liquid-liquid extraction (LLE), solid phase extraction (SPE), solid phase microextraction (SPME), and stir bar sorptive extraction (SBSE) [4-6]. These techniques typically utilize a solvent to help to separate the target from the sample matrix [3, 4, 7]. Sample preparation techniques have been developed to be more selective and more sensitive over time for a variety of different applications such as food analysis and environmental applications.

1.3.3. Accelerated Solvent Extraction (ASE)

1.3.3.1. Basic principle of ASE

Accelerated solvent extraction (ASE) is an extraction technique first reported in 1996 by Richter et al. [6] which uses the combination of temperature and pressure to extract an analyte from a matrix. Figure 1.2 shows a schematic of an accelerated solvent extraction (ASE) instrument. ASE uses temperatures between 50-200 °C (i.e., above boiling point of the solvent) and pressures between 500-3000 psi to extract analytes from solid and semisolid samples [6, 8]. The sample is placed into an extraction chamber and pressure and heat are applied. The extraction chamber is filled with solvent which expands its capacity to dissolve more analytes due to the elevated temperatures and pressures [8-10]. Advantages and disadvantages of ASE are listed in Table 1.1 [6, 9, 10].

Figure 1.2 Schematic of an accelerated solvent extraction (ASE) apparatus [11].

-	
Advantages	Disadvantages
- Ole and another ation times	Enteretien is ust a lesting

 Table 1.1 Advantages and disadvantages of ASE sample preparation.

	Advantages		Disadvantages
	Short extraction time	•	Extraction is not selective
•	Low solvent consumption	•	Mainly useful for solids
•	Sample preparation is rapid	•	Expensive
•	High extraction efficiency for solid and semisolid matrix	•	Extract steps sometimes necessary before the final analysis

1.3.3.2. Applications of ASE

Numerous analytes, including volatile and semi-volatiles, have been extracted using ASE. ASE has been mainly applied to environmental analysis. Table 1.2 summarizes some applications of ASE [8, 9, 12].

Compound	Matrix	Extraction conditions	Separation technique	Ref
Phenols	soils/sediments	methanol/ acetone/DCM 50-120 °C/600-1800 psi	HPLC/GC- MS	[12]
PAHs	soils/sediments	acetone-DCM or hexane 50-150 °C/ 1500-2000 psi	GC-MS/FID HPLC	[12]
Terpenes	plant (Thyme)	hexane and dichloromethane 50 °C/ 2030 psi	HPLC	[8, 13]
Flavonolignans	milk	hexane and methanol 100 °C/ 2030 psi	HPLC	[8, 13]
Flavanones	Plant (orange)	dichloromethane 100 °C	LC- photodiode	[14]
Pesticides	Solid waste	acetone-toluene or hexane 100 °C/ 2200 psi	GC-MS	[12]

 Table 1.2 Example applications of ASE sample preparation.

1.3.4. Supercritical Fluid Extraction (SFE)

1.3.4.1. Basic principle of SFE

Supercritical fluid extraction (SFE) is an environment friendly sample preparation technique which uses a supercritical fluid (i.e., a solvent at temperature and pressure above its critical point) to extract analytes from the matrix [3, 7]. The extraction efficiency of SFE depends on the physical properties, density and viscosity, of the supercritical fluid used. Many supercritical fluids have been used in SFE, including nitrous oxide and carbon dioxide [3, 4]. Carbon dioxide (CO₂) is most commonly used due to the high cost of xenon and the hazardous nature of nitrous oxide [4]. Figure 1.3 shows a basic schematic of supercritical fluid extraction (SFE) instrumentation.

Figure 1.3 Basic schematic diagram of a supercritical fluid extraction (SFE) instrument.

SFE is well-suited for solid samples, such as herbal medicines, polymers, and some plants. However, liquid samples are difficult to extract via SFE, but may be achievable by adjusting some solvent parameters [3, 4]. The selectivity of SFE can be improved by adjusting pressure and temperature of the solvent, or by adding chemical modifiers to the solvent. For example, carbon dioxide CO₂ is relatively non-polar and its polarity can be adjusted towards more polar compounds by adding methanol [3, 4]. SFE also has some disadvantages such as the necessity for high pressure, limited polarity range, and it almost exclusively is used for solid samples. Some advantages and

disadvantages of using supercritical fluid extraction (SFE) are reported in Table 1.3 [3,

4, 15].

Table 1.3 Advantages and disadvantages of SFE.

	Advantages		Disadvantages	-
•	Environment friendly	•	Difficult to use	
•	Effective for solid samples	•	Difficult to extract liquid samples	
•	Flexible technique (i.e., improve the	•	Limited solvent types	
	selectivity of extraction to cover a	•	Sometimes high pressure is required	
	wide range of polar and non-polar	•	Generally, only applicable towards	
	compounds)		highly nonpolar analytes	
•	Low solvent consumption			
•	High recovery			

1.3.4.2. Applications of SFE

Supercritical fluid extraction (SFE) has been used in factories for many years to extract kilograms of an analyte from a sample matrix [16]. Although SFE has been applied to several fields, it has found its main application in food and agriculture. One study investigated the antioxidants produced in some plants, such as vegetables and fruits, using SFE compared to other extraction techniques, finding higher antioxidant activities via supercritical fluid extraction versus the hydrodistillation extraction technique (i.e., steam distillation) [17]. Another study used SFE followed by GC-MS and HPLC to investigate phenols in grape seeds. They used SFE in steps: 1) with pure, CO₂ they obtained high yields of antioxidants, 2) with 80% of CO₂ and 20% ethanol, they obtained high yields of agro-chemical compounds [18]. Moreover, SFE has been used in environmental analysis [19]. For example, SFE was applied to analyze pesticides in contaminated soil and obtained high recoveries [20].

1.3.5. Liquid-Liquid Extraction (LLE)

1.3.5.1. Basic principle of LLE

Liquid-liquid extraction (LLE) is one of the most common and simple sample preparation techniques used in analytical chemistry [21]. Liquid-liquid extraction typically uses an immiscible organic solvent to extract an analyte from an aqueous sample solution [3]. The extraction process in LLE is demonstrated in Figure 1.4 and usually consists of a solute (the desired analyte) transferring preferentially from an aqueous layer to organic layer.

Figure 1.4 Schematic diagram of liquid-liquid extraction (LLE).

1.3.5.2. Liquid-Liquid Micro Extraction (LLME)

The isolation of the analyte from the matrix phase into the solvent phase is achieved based on the different solubility of the analyte between these phases. Although LLE is simple, organic solvents are necessary and the process can be time consuming [3, 4, 21]. Micro-liquid-liquid extraction methods have been developed to reduce the drawbacks of LLE. Multiple modes of micro-liquid-liquid-extraction have been suggested such as single-drop microextraction (SDME) and dispersive liquid–liquid microextraction (DLLME) [21, 22].

SDME is a micro LLE technique where a single droplet of an organic solvent is suspended at the end of a syringe needle. The droplet is immersed into the sample solution (DI-SDME) or held in the vial headspace above the sample (HS-SDME) to extract the analyte as illustrated in Figure 1.5. The micro-drop is pulled into the syringe and then injected into an instrument for analysis, such as gas chromatography-mass spectrometry [21-24].

Dispersive liquid–liquid microextraction (DLLME), as demonstrated in Figure 1.6, is another miniaturized type of LLE. The extraction processes in DLLME occurs by injecting microliter volumes of a solvent into a solution and stirring to form a cloudy suspension. The solution is then centrifuged to obtain a small droplet at the bottom of the vail. The analyte is concentrated at the fine droplet that formed and can be analyzed by GC-MS, HPLC, or AAS [21, 25]. Some advantages and disadvantages of using LLE, SDME, and DLLME are given in Table 1.4 [3, 21, 25].

Figure 1.6 Schematic diagram of dispersive liquid–liquid microextraction (DLLME).

Techniques	LLE	SDME	DLLME
Advantages	 Inexpensive Easy to perform Large amount of analyte extracted 	 High extraction efficiency Solvent consumption is negligible Simple 	 Simple and rapid Inexpensive High recovery High preconcentration factors
Disadvantages	 Tedious and time consuming Large amount of solvent used Low selectivity 	 The micro solvent drop sometime unstable and need some treatment Poor reducibility Limited to number of extractants Often deal with liquid samples 	 Not suitable in complex matrix Time and reagents consuming Limited inorganic applications

Table 1.4 Comparison of the advantages and disadvantages of LLE, SDME, and DLLME.

1.3.5.3. Applications of LLE and its Miniaturized Techniques

Liquid-liquid extraction is one of the oldest and most basic extraction techniques. Kula et al. [26] used liquid-liquid extraction at room temperature to separate enzymes and activated proteins from a mixture. Numerous applications have also been shown for miniaturized liquid-liquid techniques. Metals, organometals, and non-metals have been extracted with SDME [27]. For example, Lin et al. [28] used SDME followed by gas chromatography-flame photometric detection (GC-FPD) to extract and determine chromium (III) in water. DLLME has also been applied to extract metals and organometals such as gold, lead, cadmium, and organotin compounds [27]. For example, Rivas et al. [29] used DLLME followed by electrothermal atomic absorption spectroscopy (ETAAS) to extract lead and cadmium from aqueous samples. 1.3.6. Solid Phase Extraction (SPE)

1.3.6.1. Basic principle of SPE

SPE is a common sample preparation technique which was introduced over five decades ago. SPE has some advantages over LLE [30]. In SPE, compounds of interest are concentrated and purified from a matrix solution by partitioning or adsorbing the analytes on a solid phase which is suspended in a small column. The extraction of the analyte from a complex matrix solution is based on the partitioning of the analyte between the liquid sample and the sorbent, similar to LLE. The extraction in SPE typically requires the analytes to have higher affinity toward the solid phase than the liquid phase [30].

Figure 1.7 Schematic diagram of solid phase extraction (SPE).

Once the analyte is partitioned/adsorbed, it can be removed and preconcentrated into a small volume by using an extraction solvent [4, 30]. The basic sample preparation steps of SPE are shown in Figure 1.7. Currently, SPE is one of the most common sample preparation techniques. A variety of solid-phase sorbents have been used in SPE and can be classified in three main types: normal-phase sorbents, reversed-phase sorbents, and ion-exchange sorbents [31].

Normal phase sorbents include silica, alumina, and Florisil. These sorbents can adsorb polar analytes from a mixture and a gradient range of solvents from non-polar to polar are used to elute compounds. Normal phase sorbents can be chemically modified by adding polar groups such as cyano (CN), diol (COHCOH), or amino (NH₂) groups to trap analytes [31, 32]. Reversed phase sorbents include octadecyl (C_{18}), octyl (C_8), cyclohexyl, and phenyl groups bonded to silica. These sorbents can extract non-polar analytes from polar matrices and a gradient of solvents from polar to non-polar is used to elute these compounds [30-32]. Ion-exchange sorbents, including cation and anion exchangers, extract ionic analytes via ionic interactions. Cation exchanger sorbents with carboxylic acid (COOH), sulfonic acid (SO₂OH), and aromatic sulfonic acid (ArSO₂OH) groups can extract negatively charged analytes. Conversely, anion exchange sorbents, such as primary (NH_2) , secondary (NRH), and quaternary amine (NR_2) , can extract negatively charged analytes. These sorbents can extract charged analytes from the matrix and a gradient range of buffers is used for elution [31, 32]. Table 1.5 shows some advantages and disadvantages of solid phase extraction (SPE) [33, 34].

Advantages	Disadvantages
 High extraction efficiency 	 Carryover may occur
 Low volume evaporation 	 Systematic and recovery
 Low organic solvents consumption and 	errors can occur
therefore low solvents disposal	 Sometimes sample stability
 Fast and easy performance 	is a problem
 No emulsions 	 Expensive relative to LLE

Table 1.5 Advantages and disadvantages of solid phase extraction (SPE).

1.3.6.2. Applications of SPE

Solid-phase extraction (SPE) is one of the most accepted extraction techniques for bioanalytical, pharmaceutical, environmental, and food analysis [31, 32]. SPE has been used pharmaceutical science to investigate the effect of drugs and antibiotics in living organisms. Hu et al. [35] used SPE, followed by HPLC, to extract and determine two types of trimethoprim in human urine. Moreover, Boos and Fleischer [36] used SPE followed by HPLC for the determination of the analgesic drug, tramadol, in human plasma. SPE has also been applied in food to extract a variety of compounds. For example, Wang et al. [37] applied SPE, followed by HPLC, for the determination of caffeine and theophylline in green tea.

1.3.7. Solid-Phase Microextraction (SPME)

1.3.7.1. Basic principle of SPME

Solid-phase microextraction (SPME) is a sample preparation technique which was first reported in the 1990s. SPME is a simple and efficient extraction technique that can be used to extract, isolate, and enhance analytes, including volatile and non-volatile analytes from a matrix [3, 4]. The extraction process via SPME is shown in Figure 1.8. It proceeds by extracting a small amount of analyte via extracting phase, generally a polymer that coats the outer or internal surface of a solid-support material within a needle housing [38]. SPME involves two main types of implementations: fiber SPME and intube SPME. The first developed, and most common, technique is fiber SPME. In fiber SPME, the extraction phase is a fiber, externally coated with different types of polymers which vary from non-polar to polar, depending on the analyte matrix, (e.g., polydimethyl siloxane (PDMS), polyacrylate, carboxen, and carbowax). The coated fiber is immersed either directly into the sample or in the headspace above the sample to trap analytes. In case of using direct immersion extraction, analytes are directly partitioned or adsorbed into the sorbent phase from the matrix. However, in case of extracting analytes using headspace SPME, the analytes are delivered to the extraction phase via the headspace. The extracted analytes are back-extracted into a solvent or heat, typically via a hot injection port of a GC [3, 4, 38].

In-tube SPME was developed to be more amenable with liquid chromatography. In-tube SPME consists of an open-tubular fused-silica capillary in which the internal surface is coated with sorbent. Analytes are adsorbed or partitioned into the extracting phase when the sample is drawn into the tube. Two modes are used for in-tube SPME, dynamic and active. For dynamic in-tube SPME, analytes are transported through the capillary tube via a flow of air. Conversely, the extraction of analytes via active in-tube SPME is performed without using air flow. The analytes are transferred in active intube SPME to the extracting phase via the gas phase present inside the system [3, 38, 39]. Table 1.6 lists some advantages and disadvantages of using solid phase microextraction (SPME) [3, 38, 40, 41].

Figure 1.8 Schematic diagram of solid-phase microextraction (SPME) [38].

Fable 1.6 Advantages an	d disadvantages	of solid phase	e microextraction	(SPME).
-------------------------	-----------------	----------------	-------------------	---------

	e	U	1
	Advantages		Disadvantages
•	High extraction efficiency	•	Limited extraction capacity in fiber
•	Low volume usage		SPME
•	The distribution of analytes in a	•	Fiber SPME is not sensitive to some
	multiphase complex can easily b	be	volatile organic sulfur compounds
	studied	•	Fibers can be broken
•	Low solvent consumption	•	The GC injector temperature need to be
•	Fast and easy to perform		below320 °C depending on the fiber
•	High accuracy and precision can	n be	used
	obtained	•	Carryover may be present and hard to
			eliminate

1.3.7.2. Applications of SPME

Solid-phase microextraction (SPME) has been used in various applications

including clinical, environmental, industrial, forensic, pharmaceutical, and food

analysis. For example, Eisert et al. [42] used fiber SPME coated with PDMS followed by gas chromatography and an atomic emission detector (GC-AED) for the ultra-analysis of six organophosphorus pesticides. Furthermore, Eisert and Levsen [43] used a fiber SPME coated with polyacrylate followed by GC-MS for the determination of organophosphorus, triazines and N-heterocyclic pesticides from aqueous samples. In biomedical analysis, Guan et al. [44] used headspace SPME with PDMS and gas chromatography–electron capture detector (GC–ECD) for the determination of dinitroaniline herbicides from blood, urine, and water. Hawthorne et al. [45] and Yang et al. [46] used fiber SPME with polyimide and uncoated SPME followed by GC-MS for the analysis of caffeine and flavor and fragrance components in coffee, tea, and soft drinks.

1.3.8. Stir Bar Sorptive Extraction (SBSE)

1.3.8.1. Basic principle of SBSE

Stir bar sorptive extraction (SBSE) is a simple extraction technique which was first reported by Baltussen et al. in 1999 [47]. In SBSE, the extraction process occurs by transferring the analytes from a liquid phase to an extracting phase coated on a glass magnetic bar. The sorbent is a polymer, typically PDMS (a highly non-polar sorbent). The coated magnetic glass stir bar is introduced into the sample solution and stirred for a certain time to extract the analytes from the matrix, as shown in Figure 1.9. The extracted analytes are then desorbed via back extraction into a solvent or by heat and typically analyzed via liquid chromatography, gas chromatography, capillary electrophoresis, or inductively coupled plasma [5].

Recently, SBSE involves three main types of coatings: polydimethylsiloxane (PDMS), polyacrylate (PA), and ethylene glycol/silicone (EG/silicone). PDMS is

typically used to extract non-polar analytes. For extraction via PDMS-SBSE, an equilibrium occurs between the analyte and the coating which depends on the log K_{ow} of the compound, equilibrium is quickly achieved for non-polar compounds (i.e., compounds with high log K_{ow} reach the equilibrium in a short amount of time while compounds with low log K_{ow} spend longer time). The PA and EG/silicone were developed for the extraction of relatively-polar components [5]. Listed in Table 1.7 are some advantages and disadvantages of SBSE [47, 48].

Figure 1.9 Schematic diagram of stir bar sorptive extraction (SBSE).

Advantages	Disadvantages
 High preconcentration capacity 	 limited to range of polarity
 Simple and easy to perform 	 Need matrix modifiers to overcome the
 High recovery 	extraction of compounds with low Log
 Applied for a large range of organic 	K _{ow}
compounds applications	 Matrix effects are highly affect the
 Environmentally friendly 	extraction
 Use a small volume of sample 	 Time consuming
• Can be coupled with GC, LC, CE, and	 Sorptive stir bar needs to recondition
ICP	after each analysis
 The PDMS -coated bar can be used for several times (hundreds of times) 	

Table 1.7 Advantages and disadvantages of using stir bar sorptive extraction (SBSE).

1.3.8.2. Applications of SBSE

SBSE has been applied to the vast majority of analytical fields, including environmental, soils, food, pharmaceutical, and clinical analysis. SBSE was successfully applied for food analysis by Li et al. [49], who used a PDMS sorptive stir bar followed by GC-ECD for the determination of 12 pyrethroid pesticides in tea samples. In addition, SBSE with PDMS followed by GC-MS has been used to identify 113 organic compounds in vinegars [50]. In the environmental field, SBSE (with PDMS coating) was coupled with HPLC-fluorescence detection (FLD) for the determination of polycyclic aromatic hydrocarbons (PAH) in a complex aqueous matrix [51]. Clinically, Unceta et al. [52] used SBSE with a PDMS sorptive stir bar followed by HPLC-FLD for the analysis of serotonin reuptake inhibitors in plasma, urine and brain tissue samples. 1.3.9. ICE Concentration Linked with Extractive Stirrer (ICECLES)

1.3.9.1. Basic principle of ICECLES

ICE Concentration Linked with Extractive Stirrer (ICECLES) is a new sample preparation technique which was first reported by Maslamani et al. [53] in 2016. ICECLES combines freeze concentration (FC) and stir bar sorptive extraction (SBSE) in one technique. With the inherent advantages of FC and SBSE such as high concentration factors, selectivity, simplicity, and robustness, ICECLES is a promising extraction technique for many analytical fields. The main advantage of ICECLES is that more polar compounds can be easily extracted using the commercially available PDMS coating. The basic procedure of extraction in ICECLES is demonstrated in Figure 1.10. Table 1.8 lists some advantages and disadvantages of ICECLES [53].

Figure 1.10 Schematic diagram of ICE concentration linked with extractive stirrer (ICECLES).

Advantages	Disadvantages
 Solventless 	 Time consuming
 Simple and easy to perform 	 Limited sample volume (i.e.,
 High selectivity 	currently no more than 10 mL
 Applicable over large polarity 	can be used)
range	

Table 1.8 Advantages and disadvantages of Ice concentration linked with extractive stirrer (ICECLES).

1.3.9.2. Freeze Concentration (FC)

Freeze concentration (FC) is a process of separating analytes from a sample water solution by concentrating and crystallizing water products under freezing conditions. FC is widely uses in petroleum, food, and pulp and paper industries [54, 55].

1.3.9.3. ICECLES procedure

The extraction procedure is similar for SBSE and ICECLES, with ICECLES featuring freezing of the sample. In ICECLES, a sorptive stir is placed into the sample solution on a magnetic stir plate to extract analytes. While the sorptive stir bar is stirred, an equilibrium occurs between the analyte and stir bar coating. Freezing the sample leads the analytes to be concentrated into the aqueous solution and into the sorptive stir bar by pushing the equilibrium from the analytes towards the coated stir bar as demonstrated in Figure 1.10 [53].

1.3.9.4. Applications of ICECLES

ICECLES is a new sample preparation technique with the first and only application of ICECLES published on 2016. Maslamani et al. [53] used ICECLES for the analysis of multiple triazine pesticides in aqueous samples. The sample preparation technique performed well, producing up to 474 signal enhancement when compared to SBSE.

2. Chapter 2. The Analysis of Flavor Compounds in Green Tea Using Ice Concentration Linked with Extractive Stirrer (ICECLES)

Abstract

Worldwide, green tea is one of the most popular beverages. It has been proven to promote blood circulation, liver function, and lower the risk of cancer and cardiovascular diseases. This drink is characterized by the distinctive odors and flavors produced by its constituent compounds, with its value predicated on the amount and type of constituent components extracted from the tea leaves during brewing. Ice concentration linked with extractive stirrer (ICECLES) is a novel sample preparation technique, especially applicable for the extraction of relatively polar compounds while retaining excellent extraction efficiencies for non-polar compounds. In this study, ICECLES was used to prepare green tea for analysis of flavor compounds by gas chromatography-mass spectrometry (GC-MS). ICECLES performed very well, revealing 301 constituents as compared to 245 for SBSE. Moreover, ICECLES produced stronger signal to noise ratios for all except 4 of 301 constituents, affording easier identification. Of the 56 constituents which were only detectable using ICECLES, some very important flavor and/or medicinal compounds were easily identified, including furfural, furfural alcohol, maltol, eugenol, 2-methylpyrazine, phenethyl alcohol, 2,6-dimethoxyphenol, and α -terpineol. Overall, we confirmed that ICECLES sample preparation followed by GC-MS consistently allowed more complete green tea flavor analysis, especially for relatively polar compounds, some of which are critical for flavor quality.

2.1. Introduction

Green tea is the second most consumed beverage around the world following water [56, 57]. It is made from the leaves of the *camellia sinensis* plant and has been known since ancient times to exhibit beneficial medicinal properties [58-60]. It promotes blood circulation, improves liver function, promotes metabolism of various toxins, and is more beneficial than beverages that contain large amounts of vitamin C, vitamin E, and β -carotene [57, 61, 62]. In addition, numerous studies have shown that consumption of green tea is linked to the prevention of certain types of skin, lung, and liver cancers and certain cardiovascular diseases [63-67]. The beneficial effects of green tea have been attributed to its rich abundance of antioxidant polyphenolic compounds, mainly flavonoids [68-78]. Furthermore, green tea contains other compounds that promote human health including sterols, vitamins, amino acids, and proteins [58, 70].

The distinctive flavors and aromas of green teas are due to the many volatile and semivolatile compounds extracted from green tea leaves [79-81]. These compounds generally consist of non-terpenoids and terpenoids including alcohols and aldehydes as the main source of green tea aroma [1, 82]. Approximately 200 volatile compounds have been identified and about 30 of these compounds contribute to green tea flavor [1, 83, 84]. These compounds play an important role in determining the quality of individual green teas [57, 81]. Therefore, the comprehensive analysis of green tea flavor compounds is important for researchers and tea producers to understand the makeup, quality, and identity of individual green teas [85, 86].
Various methods have been used to identify green tea flavors, including gas and liquid chromatography (GC and LC, respectively) with mass spectrometric detection (MS). For this type of analysis, sample preparation is vital but sometimes requires lengthy processing times, large sample volumes, and significant organic solvent consumption [87-89]. The objective of sample preparation for flavor analysis is to efficiently extract as many compounds from brewed green tea as possible. Liquid-liquid extraction (LLE), simultaneous distillation and extraction (SDE), dynamic headspace (DHS), supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), solid-phase extraction (SPE), solid-phase microextraction (SPME), and stir bar sorptive extraction (SBSE) have been used to prepare green teas for analysis [1, 90, 91]. Although most of these techniques are excellent for extracting relatively hydrophobic molecules, they generally suffer from low extraction efficiencies for relatively polar compounds. For the few sample preparation techniques which are applicable to more polar compounds, they generally extract compounds in a relatively narrow polarity range [1, 5, 48].

ICE Concentration Linked with Extractive Stirrer (ICECLES) is a novel extraction technique that combines freeze concentration (FC) and SBSE. ICECLES was first reported in 2016 by Maslamani et al. [53] and showed the ability to increase the extraction efficiencies for each compound tested, but works particularly well for more polar compounds (log $K_{ow} < 3$), without sacrificing extraction efficiency for less polar compounds (log $K_{ow} \geq 3$). Furthermore, because ICECLES is performed at the freezing point of the sample, it is excellent for more volatile and thermally labile components. ICECLES proved to be an excellent sample preparation technique for trace analysis of

pesticides in environmental surface waters and other compounds in aqueous solution, producing enhanced LODs and signal enhancements of up to 474 times better than SBSE.

With the inherent advantages of ICECLES (i.e., excellent performance for more polar and more volatile compounds), it appears to be highly complementary to green tea flavor analysis. Therefore, the objective of the current study was to evaluate the performance of ICECLES towards green tea flavor analysis, with direct comparison to SBSE.

2.2. Materials and Methods

2.2.1. Materials and standards

2.2.1.1. Materials

Bigelow green tea classic brand bagged tea (CT, USA) was purchased from a local market. All tea samples in this study were stored in their original tea bags at room temperature before analysis. Acetic acid (C₂H₄O₂, \geq 99.7%), 2-propanol (C₃H₈O, \geq 99.9%), 2-furaldehyde (C₃H₄O₂, 99%), indole (C₈H₇N, 99+%), benzyl alcohol (C₇H₈O, 99%), 2,6-dimethoxyphenol (C₈H₁₀O₃, 99%), eugenol (C₁₀H₁₂O₂, 99%), 2methylpyrazine (C₅H₆N₂, 99+%), phenethyl alcohol (C₈H₁₀O, 99%), α -terpineol (C₁₀H₁₈O, 96%), trans,trans-2,4-hexadienal (C₆H₈O, 95%), and toluene (C₆H₅-CH₃, 99.5%) were purchased from Fisher Scientific (Fair Lawn, NJ, USA). 1-pentanol (C₃H₁₂O, 99%), cis-2-penten-1-ol (C₅H₁₀O, \geq 96%), theobromine (C₇H₈N₄O₂, \geq 98), γ undecalactone (C₁₁H₂₀O₂, \geq 98%), 5-(hydroxymethyl)furfural (C₆H₆O₃, \geq 99%), maltol (C₆H₆O₃, \geq 99%), furfuryl alcohol (C₅H₆O₂, 98%), and benzyladehyde (C₇H₆O, 99.5%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Purified water was obtained from a water PRO PS polisher (Labconco, Kansas City, KS, USA) at a resistivity of 18.2 $M\Omega$ cm. Stir bars (10 mm length) coated with PDMS (0.5-mm film thickness) were obtained from Gerstel, Inc. (Baltimore, MD, USA).

2.2.1.2. Standard solutions

Stock solutions of acetic acid (1 M), benzyl alcohol (1 M), benzyladehyde (1 M), toluene (1M), 1-pentanol (1 M), cis-2-penten-1-ol (1M), γ -undecalactone (1 M), maltol (10 mM), furfuryl alcohol, theobromine (10 mM), and indole (10 mM) were prepared in 10 mL of purified water and stored at room temperature. 2-furaldehyde (1 M), phenethyl alcohol (1 M), eugenol (1 M), trans,trans-2,4-hexadienal (1 M), 2-methylpyrazine (1 M), α -Terpineol (10 mM), 2,6-dimethoxyphenol (10 mM), and 5-(hydroxymethyl)furfural (100 mM) were prepared in 10 mL of purified water and stored at 4 °C. The stock solutions were diluted with purified water to the desired concentration for individual experiments.

2.2.2. Green tea sample preparation

Tea bags were carefully cut and green tea leaves were removed, weighed (1.25 g), and added to 200 mL of boiling water for 5 min. The solution, now yellowish-green, was covered with a watch glass and cooled for one hour at room temperature. The prepared green tea was then divided into four portions, each placed into a 50 mL capped vial, and centrifuged for 5 min at 3000 rpm. Carefully, a 10 mL aliquot of the supernatant was transferred into a 24 mL capped glass vial. Prepared green tea samples were then immediately extracted via ICECLES and SBSE.

2.2.3. ICECLES sample preparation

ICECLES was performed as previously presented [53] with minor modifications. An aliquot (10 mL) of prepared green tea, a standard solution, or blank was added to a 24 mL glass vial along with a PDMS-coated stir bar. The vial was capped and placed into an ICECLES apparatus, as shown in Figure 2.1. ICECLES was performed with coolant temperature (to modify the freezing rate) of -7, -5, and -3 °C, while stirring at 1200 rpm. After optimization of the freeze temperature, -5°C was used for the remainder of the study. The green tea sample froze gradually from the bottom to the top of the vial until the entire solution was frozen. After extraction was complete, the stir bar, now located on top of the ice near the top of the vial, was magnetically removed with a clean Teflon-coated stir bar. Gently, the stir bar was dried using a clean lab wipe and then placed into a glass thermal desorption (TD) tube. It should be noted that care must be used in vial selection or the sorptive stir bars can be damaged if rounded bottom vials are used because of the high stir rate [53].

2.2.4. ^mICECLES sample preparation

In this study, a multiple-stir bar (^mICECLES) method was used to provide stronger signals for some compounds, which afforded easier identification of green tea components. For ^mICECLES, five individual green tea samples were prepared via ICECLES as described above and analyzed via TD-GC-MS in a multi-desorption mode. In ^mICECLES, the extractable green tea components in each stir bar was extracted using thermal desorption (TD) and held into cooled injection system (CIS).

2.2.5. Gas chromatography-mass spectrometry

Each prepared stir bar was extracted using a thermal desorption unit (TDU) equipped with an MPS 2 auto-sampler and a CIS 4 programmed temperature vaporization (PTV) inlet (Gerstel, Baltimore, MD, USA). The Gerstel autosampler was coupled to an Agilent Technologies 7890A gas chromatograph and a 5975C inert XL electron

ionization (EI)/chemical ionization (CI) mass selective detector (MSD) with triple-axis detector. Separation was performed on an HP-5MS capillary column (30 m x 250 µm x $0.25 \,\mu\text{m}$). Following ICECLES, the glass thermal desorption tube containing the stir bar was placed into the thermal desorption unit. All prepared stir bars were thermally desorbed by performing a temperature gradient from 40 °C (held for 1 min) to 250 °C (held for 1.5 min) at 720 °C/min in splitless TDU mode. After desorption, compounds were cryo-trapped onto a deactivated cooled injection system (CIS) glass liner (filled with quartz wool) at -100 °C via liquid nitrogen. The PTV-CIS temperature was increased from -100 °C (held for 0.20 min) to 250 °C (held for 1.5 min) at 12°C/s using PTV solvent-vent mode with a purge flow of 50 mL/min (held for 1.5 min) to transfer compounds to the analytical column. The GC oven was held constant at 40 °C for 1 min and slowly increased to 250 °C (held for 3 min) at 5 °C/min within a 46-min chromatographic runtime. The mass spectrometer was operated in EI mode at 70 eV and a scan range from 35 to 550 m/z. The mass spectrometer source temperature was 230 $^{\circ}$ C and the quadrupole temperature was 150 °C. Helium was used as the carrier gas at a flow rate of 1 mL/min and a pressure of 7.07 psi.

2.2.6. Identification of green tea components

Each peak in the ICECLES chromatogram was analyzed by comparing the mass spectrum of the compound with those of the National Institute of Standards and Technology (NIST) mass spectra reference database (the NIST/EPA/NIH Mass Spectral Library, Version 2.0d, 2005). Where possible, identification was supported by comparison of the mass spectra in ^mICECLES and/or SBSE of components with the same retention time. Furthermore, some green tea compounds were definitively confirmed by ICECLES analysis of an aqueous solution of a spiked standard compound. The retention time and mass spectra of the spiked standards were compared to those of the unknown green tea compounds to confirm their identity. In this study, all standards were prepared and analyzed simultaneously with green tea samples to eliminate day-today differences in retention times. To avoid run-to-run error, bias, and sorptive stir bar variability, green tea sample analysis via both ICECLES and SBSE was performed in nonuplicate under the same conditions and the chromatographic data was averaged. Automated peak selection was performed using MSD chemstation software from Agilent Technologies, Inc by setting the peak threshold to 16.1, initial area reject at 1, peak width to 0.02 minutes, and shoulder detection was off.

To consider a green tea constituent *definitively identified*, the retention time and the ion masses of the target green tea compound and the standard were matched. Moreover, an aqueous standard of the compound, analyzed alongside brewed green tea, was required to produce the same retention time (\pm 0.1s) and identical MS fragmentation. All peaks which were not definitively identified were classified based on their probability of a spectrum match via the NIST reference database as follows: if the probability range was between 0-40, the compound classified was as unknown, if the probability range was between 41-70, the compound was classified as a medium probability, if the probability range was between 71-100 the match was classified as a high probability. Additionally, if the abundance of all mass spectrum fragments for the compound (minus the blank mass spectrum at that retention time) matched within 1% of the experimental mass fragment abundances and all fragments from the experimental mass spectrum at \geq 15% of the base peak were also present in the NIST library, the match was classified as a high probability.

2.3. Results and discussion

2.3.1. ICECLES sample preparation

ICECLES is an elegant sample preparation technique where samples are frozen while rapidly stirred with a sorptive stir bar to concentrate the sample components in the remaining aqueous layer and stir bar for follow-on analysis. As more of the liquid sample is frozen, concentration factors and extraction efficiencies can be become greatly enhanced. The advantages of ICECLES (i.e., higher extraction efficiencies, especially for more polar compounds, and ability to analyze more volatile and thermally labile compounds) are well-aligned with the main goal of green tea flavor analysis, comprehensive identification of green tea components.

In this study, ICECLES successfully preconcentrated the green tea components into a small volume. Before performing ICECLES, the components of green tea, including polar and nonpolar components, were distributed throughout the sample solution (Figure 2.1A). Green tea components initially equilibrate with the PDMS-stir bar, which is the same as with SBSE. The affinity of a PDMS-coated stir bar for nonpolar components leads the hydrophobic components (i.e., generally log $K_{ow} \ge 3$) to prefer the PDMS-coated stir bar over the aqueous green tea solution whereas the more polar components prefer the aqueous environment of the sample. During ICECLES, the sample is concentrated in progressively smaller aqueous volumes (Figures 2.1B and 2.1C). When the sample becomes almost completely frozen, the green tea components, including more polar ones, are concentrated into a very small volume at the top of the vail. This is clearly demonstrated in Figure 2.1 by the dark ring at the top of the prepared green tea sample and the almost clear ice below it in Figure 2.1C. This concentration leads to a change in the equilibrium which encourages green tea components, even more polar ones, to concentrate into the PDMS-coated stir bar.

Figure 2.1 Green tea extraction via ICECLES sample preparation. The schematic and photographs show sample preparation before (A), during (B), and after (C) ICECLES. The green tea solution in (A) is clearly concentrated in a small volume of solution as the solution is progressively frozen from the bottom of the vial (B + C). After performing ICECLES, green tea components are concentrated in a sorptive stir bar (C) and analyzed by TD-GC-MS.

2.3.2. Extraction of green tea components

ICECLES was performed at different temperatures (or freeze rates) to determine

the temperature that produced the best green tea extraction. The extraction efficiency

increased as the temperature increased from -7°C to -3°C. Although -3 °C produced better extraction, sample preparation took 14 hours (overnight). Therefore, since ICECLES sample preparation at -5 °C gave very similar extraction efficiencies to -3 °C, but was complete within 5.5 hrs, -5°C was used for the remainder of the study. Figure 2.2 shows the average total ion chromatograms comparing ICECLES and SBSE from nine samples each. Log Kows of the green tea compounds [48, 53, 92-101], retention times, and signal enhancements are also reported in Table S1. It is evident that signals for most components of the ICECLES prepared samples are larger than for SBSE, especially over the first 15-20 minutes of the chromatograms. Moreover, when using automated integration, the average number of components found with ICECLES was 301 peaks, not counting those peaks attributable to components in the blank, while the average number of peaks for SBSE was 245 peaks. A large number of green tea components observed in ICECLES were not detected in the SBSE prepared sample (i.e., 56). All green tea components that were detected only via ICECLES are reported in the supporting information (Table S2).

Except four components (107, 296, 297, and 300; see supporting information Table S1), signal enhancements were above 1 for each green tea component. As observed in Figure 2.2 and Table S1, high signal enhancements in ICECLES are primarily seen for higher polarity compounds, log $K_{ow} < 3$. When components have low polarity, ICECLES and SBSE show similar extraction efficiencies. It is interesting to note that some green tea components present only in the ICECLES chromatogram have log $K_{ow} \ge 3$ (Table S2). This is likely because of their relatively small concentrations, necessitating the high concentration factors afforded by ICECLES in order to be detected.

Figure 2.2 Total ion chromatograms of ICECLES and SBSE prepared green tea samples. As clearly shown in the first 15-20 minutes, ICECLES extracts the vast majority green tea components more efficiently than SBSE.

2.3.3. Compound identification

Multi-stir bar ICECLES (^mICECLES) can be used to increase signals by preparing samples via ICECLES simultaneously, thermally extracting each in sequence and trapping the extracted compounds in a cooled injection source liner. The ^mICECLES method improved the identification probability of components up to 5 times. Moreover, ^mICECLES allowed detection of some components which were not detectable via a single green tea sample prepared with ICECLES. Where possible, components of ICECLES prepared green tea were definitively confirmed by standards (Table S1). Figure 2.3 shows an example of definitively identified furfural. Both furfural's retention time and mass spectra from the standard match the furfural detected using ICECLES.

Figure 2.3 Example of definitively identified compound. A) GC-MS chromatogram of furfural extracted via ICECLES and confirmed with its standard, B) mass spectrums of furfural in green tea sample and furfural standard.

Table S1 shows the assigned identification probability with 19 compounds definitively identified, 87 compounds with a high probability of identification, and 9 compounds with a medium probability.

2.3.4. Important flavor compounds detected by ICECLES

ICECLES was able to detect many compounds which were not detectable by SBSE (i.e., 56 compounds). Four examples are shown in Figure 2.4. Aldehydes like furfural, 5-(hydroxymethyl)furfural (5-HMF), and (E,E)-2,4-hexadienal (Figure 2.4A, 2.4B, and 2.4C, respectively) make up a major group of compounds which proved difficult to detect via SBSE, but can be readily seen via ICECLES. This group of compounds is important for flavor and likely gives green tea its distinctive flavor [102]. Furfural and 5-HMF have a caramel flavor and are present in the Maillard reaction as an intermediate product, likely adding to the flavor quality of green tea [103, 104]. Furfuraldehydes have been used for assessing food quality to test the misuse of temperature and poor storage conditions in drinks such as juices and infant milks [104-106]. Another aldehyde, (E,E)-2,4-Hexadienal has a citrus odor and is used as a food additive, a fragrance agent, or as a starting material in pharmaceutical industries [107]. Pyrazine derivatives in green tea such as methyl pyrazine (Figure 2.4D) and 2,5dimethylpyrazine are heterocyclic compounds with nutty like odor/flavor. As shown in Table S2 and Table 3, one green tea alcohol that was extracted via ICECLES but was absent in from SBSE was phenylethyl alcohol. This compound is widely consumed in food as a flavor component and is also used as ingredient for perfumes to produce a rose smell [108, 109]. Maltol (Table S2) is another flavor compound which found in green tea which does not have a remarkable odor at small concentration but is used as a potent

flavor enhancer in different types of foods [110].Maltol is widely consumed as a food additive due to its contribution to the fragrance of a variety of foods and beverages. It is also used in combination with other components in synthetic perfumes to produce a caramel smell [111].

Figure 2.4 Examples of green tea components extracted via ICECLES, but undetectable via SBSE. A) furfural, B) 5-(hydroxymethyl)furfural, C) E,E-2,4-hexadienal, and D) methylpyrazine.

2.3.5. Important medicinal compounds detected by ICECLES

Beside components important for flavor, green tea contains medicinal components, including antimicrobial agents and potent antioxidants. Green tea contains several terpenoid and phenolic compounds which were only extracted via ICECLES. Terpenoids such as α -terpineol (i.e., extracted via ICECLES, Table S2) have been shown to have antibacterial effects against periodontal diseases and cariogenic bacteria [112]. Eugenol is a phenolic compound that acts as an antioxidant and an anti-inflammatory agent. It inhibits lipid-peroxidation and can treat many diseases caused by the presence of hydroxyl radicals, such as atherosclerosis, cancer and neurological disorders [113, 114]. In addition, both α -terpineol and eugenol have been used as natural antifungal agents [115, 116]. Syringol is an antioxidant compound which was also detected by ICECLES alone. Syringol is one of the main components of pyroligneous acid complex (i.e., pyroligneous acid is a complex mixture of syringol, sugar, water, aldehydes, ketones, and carboxylic acids) and has been used as sterilizing agent and antimicrobial agent [117]. Although pyrazine derivatives are used as food additives, some medicinal research proved these compounds to have pharmacological actions. For example, methyl pyrazine has been found to have a beneficial pharmacological effect, especially for tuberculosis [118-120]. Phenylethyl alcohol is also effective inhibiting agent for Gram-negative bacteria [121].

Although most green tea components with pharmacological effects are beneficial, some have shown toxicity. For example, according to the Flavor and Extract Manufacturers Association (FEMA) and National Cancer Institute (NIH), (E,E)-2,4hexadienal is carcinogenic (LD₅₀ 270 μ L/kg) [107, 122]. Furthermore, maltol causes several pains including headache and can produce nausea and vomiting, and impacts the functions of liver and kidney at high concentrations (above 200 mg kg⁻¹) [110, 111].

Peak No.	No. Name		Log K _{ow}	B.P ^a (°C)	
Alcohol					
1/	1_Pentanol	Fruit	1 33	137 5	
15	$2_{\text{Penten}} = 1_{-0} (7)$	Rubber	0.0*	137.5	
13	Dhanylathyl Alashal	Rubbel	0.9	219	
04 105	2 Caralaharana 1 mathanal a art	Florel	1.37	210	
103	3-Cyclonexene-1-methanol, α, α 4-	FIOTAI	3.28	218-221	
	trimetnyi				
II	$(\alpha$ -repineor)				
Helerocyclic		NT4	0.40	125	
21	Pyrazine, metnyl (Metnyl pyrazine)	Nut	0.49	135	
38	Pyrazine, 2,5-dimethyl	Nut	1.03	155	
41111	(2,5-dimethylpyrazine)				
Aldehyde		0 1	0.02	171	
22	Furtural	Caramel	0.83	161	
37	(E,E)-2,4-Hexadienal	Citrus	1.37	174	
111	2-Furancarboxaldehyde, 5- (hydroxmethyl)	Caramel	-0.09**	114-116	
	(5-(Hydroxymethyl)furfural)				
Ketone	(* (* -) ****) **** ***) */*******				
82	Maltol	Caramel	0.02	93	
91	2.6.6-Trimethyl-2-cyclohexene-1.4-	Floral	1*	222	
<i>,</i> –	dione (Ketoisophorone)		1		
Ester					
95	Acetic acid, phenylmethylester	Fruit	1 96*	213	
	(Benzvl acetate)		1.90		
66	2-(3H)-Furanone, 5-heptyldihydro	Fruit	0.7^{*}	219	
	(v-Undecalactone)		0.7	-	
Phenol	(/)				
136	Phenol.2.6-dimethoxy	Phenol	1 1*	261	
	(Svringol)		1,1		
138	Eugenol	Clove	2.49	254	

Table 2.1 Some important green tea components only detected via ICECLES.

^a Boiling point

*log K_{ow} values were calculated by using the difference between a logP value of known compound and the query compound then estimated by an additive model with well-defined correction factors [100]. **log K_{ow} values were calculated by using an atom/fragment contribution method via KOWWINTM program [101].

2.4. Conclusion

ICECLES proved to be well-suited for food flavor analysis of green tea and was more efficient for flavor analysis than SBSE for extraction for most green tea components, especially for more polar compounds (log $K_{ow} < 3$). Signal enhancements were above 1 for ICECLES for the vast majority of green tea components. Moreover, ICECLES allowed detection of 56 more constituents than SBSE, some of which were important flavor and/or medicinal compounds.

Acknowledgments

The authors would like to acknowledge Qassim University (QU) and the State of South Dakota for supporting and funding the described project. The authors also would like to thank the U.S. Joint Executive Office for Chem Bio Defense, Joint Program Management Protection Contract W911SR-09-0059, for funding aquisition of the GC-MS instrument used in this work.

3. Chapter 3. Conclusions and Future Work

3.1. Conclusions

In this study, the new sample preparation technique, ICECLES, was used to prepare green tea for analysis of flavor compounds and was compared to SBSE. ICECLES extracted 301 constituents as compared to 245 for SBSE with 56 compounds only detectable via ICECLES. Some of these compounds were very important for flavor or medicinal properties of green tea. For example, 1-pentanol, (E,E)-2,4-hexadienal, furfural, furfural alcohol, maltol, eugenol, 2-methylpyrazine, phenethyl alcohol, 2,6dimethoxyphenol, and α -terpineol were identified via ICECLES where SBSE did not allow detection. Many of these compounds were identified with the help of the National Institute of Standards and Technology (NIST) mass spectra reference database (2005) and, where possible, standards were used for confirmation. Overall, ICECLES proved to be an excellent extraction technique for analysis of green tea due to its multiple advantages, which include the ability to extract relatively polar compounds, simplicity, and high extraction efficiencies. However, ICECLES still has some drawbacks that need to be overcome, including long extraction times (i.e., 5.5 hrs), long conditioning times for the sorptive stir bars, and the sample volume limit of 10 mL.

3.2. Future Work

Green tea is made up of multiple components, and the quality of green tea depends on the identity and concentration of these components. With the inherent advantages of ICECLES, determination of the LOD for some important flavor, medicinal, and toxic compounds in green tea are needed. Moreover, optimization of ICECLES to reduce the total extraction time is necessary.

4. References

- Yang, Z., S. Baldermann, and N. Watanabe, *Recent studies of the volatile compounds in tea*. Food Research International, 2013. 53(2): p. 585-599.
- de Fatima Alpendurada, M., Solid-phase microextraction: a promising technique for sample preparation in environmental analysis. Journal of Chromatography A, 2000. 889(1): p. 3-14.
- Chen, Y., et al., *Sample preparation*. Journal of Chromatography A, 2008.
 1184(1): p. 191-219.
- 4. Smith, R.M., *Before the injection—modern methods of sample preparation for separation techniques*. Journal of chromatography A, 2003. **1000**(1): p. 3-27.
- 5. Camino-Sanchez, F.J., et al., *Stir bar sorptive extraction: recent applications, limitations and future trends*. Talanta, 2014. **130**: p. 388-99.
- 6. Richter, B.E., et al., *Accelerated solvent extraction: a technique for sample preparation*. Analytical Chemistry, 1996. **68**(6): p. 1033-1039.
- Raynie, D.E., *Modern extraction techniques*. Analytical chemistry, 2006. 78(12): p. 3997-4004.
- Kaufmann, B. and P. Christen, *Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction*. Phytochemical analysis, 2002. 13(2): p. 105-113.
- 9. Li, K., et al., *Accelerated solvent extraction (ASE) of environmental organic compounds in soils using a modified supercritical fluid extractor*. Journal of hazardous materials, 2003. **102**(1): p. 93-104.

- Huie, C.W., A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Analytical and bioanalytical chemistry, 2002.
 373(1-2): p. 23-30.
- Poole, C., et al., *Glossary of terms used in extraction (IUPAC Recommendations 2016)*. Pure and Applied Chemistry, 2016. 88(5): p. 517-558.
- Giergielewicz-Możajska, H., Ł. Dąbrowski, and J. Namieśnik, *Accelerated solvent extraction (ASE) in the analysis of environmental solid samples—some aspects of theory and practice*. Critical Reviews in Analytical Chemistry, 2001.
 31(3): p. 149-165.
- Benthin, B., H. Danz, and M. Hamburger, *Pressurized liquid extraction of medicinal plants*. Journal of Chromatography A, 1999. 837(1): p. 211-219.
- Da Costa, C.T., et al., *Comparison of methods for extraction of flavanones and xanthones from the root bark of the osage orange tree using liquid chromatography*. Journal of chromatography A, 1999. 831(2): p. 167-178.
- 15. Ude, M., M. Ashraf-Khorassani, and L. Taylor, *Supercritical fluid extraction of plasticizers in poly (vinyl butyral)(PVB) and analysis by supercritical fluid chromatography*. Chromatographia, 2002. **55**(11-12): p. 743-748.
- Herrero, M., A. Cifuentes, and E. Ibañez, Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food chemistry, 2006. 98(1): p. 136-148.
- 17. Fadel, H., et al., *Effect of extraction techniques on the chemical composition and antioxidant activity of Eucalyptus camaldulensis var. brevirostris leaf oils.*

Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 1999. **208**(3): p. 212-216.

- Zougagh, M., M. Valcárcel, and A. Rios, *Supercritical fluid extraction: a critical review of its analytical usefulness*. TrAC Trends in Analytical Chemistry, 2004.
 23(5): p. 399-405.
- 19. Barnabas, I.J., J.R. Dean, and S. Owen, *Supercritical fluid extraction of analytes from environmental samples. A review.* Analyst, 1994. **119**(11): p. 2381-2394.
- David, F., M. Verschuere, and P. Sandra, *Off-line supercritical fluid extraction-capillary GC applications in environmental analysis*. Fresenius' journal of analytical chemistry, 1992. **344**(10): p. 479-485.
- Silvestre, C.I., et al., *Liquid–liquid extraction in flow analysis: a critical review*.
 Analytica chimica acta, 2009. 652(1): p. 54-65.
- 22. Yang, C., J. Wang, and D. Li, *Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review.* Analytica chimica acta, 2013. **799**: p. 8-22.
- Kokosa, J.M., Recent trends in using single-drop microextraction and related techniques in green analytical methods. TrAC Trends in Analytical Chemistry, 2015. 71: p. 194-204.
- Zhang, P., et al., *Application of ionic liquids for liquid–liquid microextraction*.
 Analytical Methods, 2013. 5(20): p. 5376-5385.
- Al-Saidi, H. and A.A. Emara, *The recent developments in dispersive liquid–liquid microextraction for preconcentration and determination of inorganic analytes*.
 Journal of Saudi Chemical Society, 2014. 18(6): p. 745-761.

- 26. Kula, M.-R., K.H. Kroner, and H. Hustedt, *Purification of enzymes by liquidliquid extraction*, in *reaction engineering*. 1982, Springer. p. 73-118.
- Pena-Pereira, F., I. Lavilla, and C. Bendicho, *Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: a review.* Spectrochimica Acta Part B: Atomic Spectroscopy, 2009. 64(1): p. 1-15.
- 28. Lin, M.-Y. and C.-W. Whang, *Microwave-assisted derivatization and single-drop microextraction for gas chromatographic determination of chromium (III) in water*. Journal of Chromatography A, 2007. **1160**(1): p. 336-339.
- Rivas, R.E., I. López-García, and M. Hernández-Córdoba, *Determination of traces of lead and cadmium using dispersive liquid-liquid microextraction followed by electrothermal atomic absorption spectrometry*. Microchimica Acta, 2009. 166(3-4): p. 355-361.
- 30. Berrueta, L., B. Gallo, and F. Vicente, *A review of solid phase extraction: basic principles and new developments*. Chromatographia, 1995. **40**(7-8): p. 474-483.
- 31. Hennion, M.-C., *Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography*. Journal of chromatography A, 1999.
 856(1): p. 3-54.
- Buszewski, B. and M. Szultka, *Past, present, and future of solid phase extraction: a review.* Critical Reviews in Analytical Chemistry, 2012. 42(3): p. 198-213.
- 33. Scheurer, J. and C.M. Moore, *Solid-phase extraction of drugs from biological tissues—a review.* Journal of analytical toxicology, 1992. **16**(4): p. 264-269.

- 34. Rossi, D.T. and N. Zhang, *Automating solid-phase extraction: current aspecs and future prospekts*. Journal of Chromatography A, 2000. **885**(1): p. 97-113.
- 35. Hu, S.-G., L. Li, and X.-W. He, *Comparison of trimethoprim molecularly imprinted polymers in bulk and in sphere as the sorbent for solid-phase extraction and extraction of trimethoprim from human urine and pharmaceutical tablet and their determination by high-performance liquid chromatography*. Analytica chimica acta, 2005. **537**(1): p. 215-222.
- Boos, K.-S. and C. Fleischer, *Multidimensional on-line solid-phase extraction* (*SPE*) using restricted access materials (*RAM*) in combination with molecular imprinted polymers (*MIP*). Fresenius' journal of analytical chemistry, 2001.
 371(1): p. 16-20.
- Wang, D., S.P. Hong, and K.H. Row, Solid extraction of caffeine and theophylline from green tea by molecular imprinted polymers. Korean Journal of Chemical Engineering, 2004. 21(4): p. 853-857.
- Lord, H. and J. Pawliszyn, *Evolution of solid-phase microextraction technology*. Journal of Chromatography A, 2000. 885(1): p. 153-193.
- 39. Eisert, R. and J. Pawliszyn, *Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography*. Analytical chemistry, 1997.
 69(16): p. 3140-3147.
- 40. Murray, R., *Limitations to the use of solid-phase microextraction for quantitation of mixtures of volatile organic sulfur compounds*. Analytical Chemistry, 2001.
 73(7): p. 1646-1649.

- Prosen, H. and L. Zupančič-Kralj, *Solid-phase microextraction*. TrAC Trends in Analytical Chemistry, 1999. 18(4): p. 272-282.
- Eisert, R., K. Levsen, and G. Wünsch, *Element-selective detection of pesticides by* gas chromatography—atomic emission detection and solid-phase microextraction. Journal of Chromatography A, 1994. 683(1): p. 175-183.
- 43. Eisert, R. and K. Levsen, *Determination of pesticides in aqueous samples by solid-phase microextraction in-line coupled to gas chromatography—mass spectrometry*. Journal of the American Society for Mass Spectrometry, 1995.
 6(11): p. 1119-1130.
- Guan, F., et al., *Headspace solid-phase microextraction and gas chromatographic determination of dinitroaniline herbicides in human blood, urine and environmental water*. Journal of Chromatography B: Biomedical Sciences and Applications, 1998. **714**(2): p. 205-213.
- 45. Hawthorne, S.B., et al., Solventless determination of caffeine in beverages using solid-phase microextraction with fused-silica fibers. Journal of Chromatography A, 1992. 603(1-2): p. 185-191.
- 46. Pawliszyn, J., M.J. Yang, and M.L. Orton, *Quantitative determination of caffeine in beverages using a combined SPME-GC/MS method.* J. Chem. Educ, 1997.
 74(9): p. 1130.
- 47. Baltussen, E., et al., *Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles.* Journal of Microcolumn Separations, 1999. 11(10): p. 737-747.

- 48. Ochiai, N., et al., *Multi-stir bar sorptive extraction for analysis of odor compounds in aqueous samples.* J Chromatogr A, 2013. **1315**: p. 70-9.
- 49. Li, B., et al., *Rapid determination method for 12 pyrethroid pesticide residues in tea by stir bar sorptive extraction-thermal desorption-gas chromatography.*Physics Procedia, 2012. 25: p. 1776-1780.
- 50. Marrufo-Curtido, A., et al., *Characterization and differentiation of high quality vinegars by stir bar sorptive extraction coupled to gas chromatography-mass spectrometry (SBSE–GC–MS)*. LWT-Food science and technology, 2012. 47(2): p. 332-341.
- 51. Krüger, O., et al., *Comparison of stir bar sorptive extraction (SBSE) and liquid– liquid extraction (LLE) for the analysis of polycyclic aromatic hydrocarbons (PAH) in complex aqueous matrices.* Talanta, 2011. **85**(3): p. 1428-1434.
- 52. Unceta, N., et al., Development of a stir bar sorptive extraction based HPLC-FLD method for the quantification of serotonin reuptake inhibitors in plasma, urine and brain tissue samples. Journal of pharmaceutical and biomedical analysis, 2010. 51(1): p. 178-185.
- 53. Maslamani, N., et al., *ICE Concentration Linked with Extractive Stirrer* (*ICECLES*). Anal Chim Acta, 2016. **941**: p. 41-48.
- Williams, P.M., et al., *Technology for freeze concentration in the desalination industry*. Desalination, 2015. **356**: p. 314-327.
- 55. Englezos, P., *The freeze concentration process and its applications*.
 Developments in Chemical Engineering and Mineral Processing, 1994. 2(1): p. 3-15.

- 56. Wang, L., et al., *Column-chromatographic extraction and separation of polyphenols, caffeine and theanine from green tea.* Food Chemistry, 2012. 131(4):
 p. 1539-1545.
- 57. Li, D.W., et al., *Determination and quality evaluation of green tea extracts through qualitative and quantitative analysis of multi-components by single marker (QAMS).* Food Chem, 2016. **197 Pt B**: p. 1112-20.
- Sinija, V.R. and H.N. Mishra, *Green tea: Health benefits*. Journal of Nutritional & Environmental Medicine, 2009. 17(4): p. 232-242.
- Lin, S.-D., E.-H. Liu, and J.-L. Mau, *Effect of different brewing methods on* antioxidant properties of steaming green tea. LWT - Food Science and Technology, 2008. 41(9): p. 1616-1623.
- Hursel, R., W. Viechtbauer, and M.S. Westerterp-Plantenga, *The effects of green tea on weight loss and weight maintenance: a meta-analysis*. Int J Obes (Lond), 2009. 33(9): p. 956-61.
- 61. Vuong, Q.V., et al., *Isolation of Green Tea Catechins and Their Utilization in the Food Industry*. Food Reviews International, 2011. **27**(3): p. 227-247.
- 62. Ho, C.-T., J.-K. Lin, and F. Shahidi, *Tea and tea products: chemistry and health-promoting properties*. 2008: CRC press.
- 63. Liu, J., et al., *Theanine from tea and its semi-synthetic derivative TBrC suppress human cervical cancer growth and migration by inhibiting EGFR/Met-Akt/NFkappaB signaling*. Eur J Pharmacol, 2016. **791**: p. 297-307.
- 64. Vuong, Q.V., *Epidemiological evidence linking tea consumption to human health: a review.* Crit Rev Food Sci Nutr, 2014. **54**(4): p. 523-36.

- 65. Rashidinejad, A., E.J. Birch, and D.W. Everett, *Antioxidant activity and recovery of green tea catechins in full-fat cheese following gastrointestinal simulated digestion*. Journal of Food Composition and Analysis, 2016. **48**: p. 13-24.
- 66. Johnson, R., S. Bryant, and A.L. Huntley, *Green tea and green tea catechin extracts: an overview of the clinical evidence*. Maturitas, 2012. **73**(4): p. 280-7.
- 67. Jin, X., R.H. Zheng, and Y.M. Li, *Green tea consumption and liver disease: a systematic review*. Liver Int, 2008. **28**(7): p. 990-6.
- Cooper, R., *Green tea and theanine: health benefits*. Int J Food Sci Nutr, 2012. 63
 Suppl 1: p. 90-7.
- 69. Jun, X., et al., *Separation of major catechins from green tea by ultrahigh pressure extraction.* Int J Pharm, 2010. **386**(1-2): p. 229-31.
- Sharangi, A.B., *Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) A review.* Food Research International, 2009. 42(5-6): p. 529-535.
- Vuong, Q.V. and P.D. Roach, *Caffeine in Green Tea: Its Removal and Isolation*.
 Separation & Purification Reviews, 2013. 43(2): p. 155-174.
- 72. Clement, Y., *Can green tea do that? A literature review of the clinical evidence.*Prev Med, 2009. 49(2-3): p. 83-7.
- 73. Cho, S.K., et al., Simultaneous multi-determination and transfer of eight pesticide residues from green tea leaves to infusion using gas chromatography. Food Chem, 2014. 165: p. 532-9.
- 74. Mitscher, L.A., et al., *Chemoprotection: a review of the potential therapeutic antioxidant properties of green tea (Camellia sinensis) and certain of its constituents.* Medicinal research reviews, 1997. **17**(4): p. 327-365.

- 75. Martin, L.C. and R. Cooper, *From Herbs to Medicines: A World History of Tea*—*from Legend to Healthy Obsession*. Alternative and Complementary Therapies, 2011. 17(3): p. 162-168.
- 76. Chang, C.J., et al., Separation of catechins from green tea using carbon dioxide extraction. Food chemistry, 2000. 68(1): p. 109-113.
- 77. Momose, Y., M. Maeda-Yamamoto, and H. Nabetani, *Systematic review of green tea epigallocatechin gallate in reducing low-density lipoprotein cholesterol levels of humans*. Int J Food Sci Nutr, 2016. **67**(6): p. 606-13.
- Turkozu, D. and N.A. Tek, *A minireview of effects of green tea on energy* expenditure. Crit Rev Food Sci Nutr, 2017. 57(2): p. 254-258.
- Kumazawa, K. and H. Masuda, *Identification of potent odorants in Japanese* green tea (Sen-cha). Journal of agricultural and food chemistry, 1999. 47(12): p. 5169-5172.
- Baptista, J.A., J.F. da P Tavares, and R.C. Carvalho, *Comparison of catechins and aromas among different green teas using HPLC/SPME-GC*. Food Research International, 1998. **31**(10): p. 729-736.
- 81. Lee, J., et al., Volatile aroma compounds in various brewed green teas.Molecules, 2013. 18(8): p. 10024-41.
- Yener, S., et al., *Rapid and direct volatile compound profiling of black and green teas (Camellia sinensis) from different countries with PTR-ToF-MS*. Talanta, 2016. 152: p. 45-53.

- Katsuno, T., et al., *Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process*. Food Chem, 2014. 148: p. 388-95.
- Zhu, Y., et al., Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Separation and Purification Technology, 2016. 164: p. 146-154.
- 85. Lee, J., D.H. Chambers, and E.t. Chambers, *A comparison of the flavor of green teas from around the world*. J Sci Food Agric, 2014. **94**(7): p. 1315-24.
- 86. Chen, Q., et al., *Recent developments of green analytical techniques in analysis of tea's quality and nutrition*. Trends in Food Science & Technology, 2015. 43(1): p. 63-82.
- Loutfi, A., et al., *Electronic noses for food quality: A review*. Journal of Food Engineering, 2015. 144: p. 103-111.
- 88. Sereshti, H., S. Samadi, and M. Jalali-Heravi, *Determination of volatile components of green, black, oolong and white tea by optimized ultrasoundassisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography.* J Chromatogr A, 2013. **1280**: p. 1-8.
- 89. Xia, T., S. Shi, and X. Wan, *Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion*. Journal of Food Engineering, 2006.
 74(4): p. 557-560.

- 90. Vuong, Q.V., et al., *Improved extraction of green tea components from teabags using the microwave oven*. Journal of Food Composition and Analysis, 2012.
 27(1): p. 95-101.
- 91. Tontul, I., et al., Comparative study on volatile compounds in Turkish green tea powder: Impact of tea clone, shading level and shooting period. Food Research International, 2013. 53(2): p. 744-750.
- 92. Wittmer, I., et al., *Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters*. Water Research, 2010. **44**(9): p. 2850-2862.
- 93. Baker, J.R., et al., *Evaluation of estimation methods for organic carbon* normalized sorption coefficients. Water Environment Research, 1997. 69(2): p. 136-145.
- 94. Dias, N.C., M.I. Nawas, and C.F. Poole, *Evaluation of a reversed-phase column* (Supelcosil LC-ABZ) under isocratic and gradient elution conditions for estimating octanol–water partition coefficients. Analyst, 2003. 128(5): p. 427-433.
- 95. Eom, I.-Y., Estimation of partition coefficients of benzene, toluene, ethylbenzene, and p-xylene by consecutive extraction with solid phase microextraction. Bull.
 Korean Chem. Soc, 2011. 32(5): p. 1463-1464.
- 96. Flores, M. and A. Olivares, *Release of aroma compounds from dry-fermented sausages as affected by antioxidant and saliva addition*. European Food Research and Technology, 2008. **228**(2): p. 283-290.
- 97. Rayne, S. and K. Forest, *Dow and Kaw, eff vs. Kow and K^o aw: Acid/base ionization effects on partitioning properties and screening commercial chemicals*

for long-range transport and bioaccumulation potential. Journal of Environmental Science and Health Part A, 2010. **45**(12): p. 1550-1594.

- 98. Griffin, S., S.G. Wyllie, and J. Markham, *Determination of octanol–water* partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1999. **864**(2): p. 221-228.
- 99. Vreuls, R.J., et al., *Trace-level determination of polar flavour compounds in butter by solid-phase extraction and gas chromatography–mass spectrometry*.
 Journal of Chromatography A, 1999. 844(1): p. 295-305.
- 100. Cheng, T., et al., *Computation of octanol-water partition coefficients by guiding an additive model with knowledge*. Journal of chemical information and modeling, 2007. 47(6): p. 2140-2148.
- Meylan, W.M. and P.H. Howard, *Atom/fragment contribution method for* estimating octanol-water partition coefficients. Journal of pharmaceutical sciences, 1995. 84(1): p. 83-92.
- Ho, C.-T., X. Zheng, and S. Li, *Tea aroma formation*. Food Science and Human Wellness, 2015. 4(1): p. 9-27.
- 103. Saison, D., et al., *Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds*. Food chemistry, 2009. **114**(4): p. 1206-1215.
- 104. Rocha, S.I.M., M.A. Coimbra, and I. Delgadillo, Occurrence of furfuraldehydes during the processing of Quercus suber L. cork. Simultaneous determination of furfural, 5-hydroxymethylfurfural and 5-methylfurfural and their relation with cork polysaccharides. Carbohydrate polymers, 2004. 56(3): p. 287-293.

- 105. Albalá-Hurtado, S., et al., Determination of free and total furfural compounds in infant milk formulas by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 1997. 45(6): p. 2128-2133.
- Palmqvist, E., J.S. Almeida, and B. Hahn-Hägerdal, *Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture*.
 Biotechnology and bioengineering, 1999. 62(4): p. 447-454.
- 107. Program, N.T., NTP toxicology and carcinogensis Studies of 2, 4-hexadienal (89% trans, trans isomer, CAS No. 142-83-6; 11% cis, trans isomer)(Gavage Studies). National Toxicology Program technical report series, 2003(509): p. 1.
- 108. Mo, E.K. and C.K. Sung, *Phenylethyl alcohol (PEA) application slows fungal growth and maintains aroma in strawberry*. Postharvest biology and technology, 2007. 45(2): p. 234-239.
- 109. Fabre, C.E., P.J. Blanc, and G. Goma, *Production of 2-Phenylethyl Alcohol by Kluyveromyces marxianus*. Biotechnology progress, 1998. **14**(2): p. 270-274.
- Alonso, M.S., L.L. Zamora, and J.M. Calatayud, *Determination of the flavor* enhancer maltol through a FIA—direct chemiluminescence procedure. Analytica chimica acta, 2001. 438(1): p. 157-163.
- 111. Ni, Y., G. Zhang, and S. Kokot, *Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks*. Food chemistry, 2005. **89**(3): p. 465-473.
- Park, S.-N., et al., *Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria*. Anaerobe, 2012. 18(3): p. 369-372.

- 113. Kim, S.S., et al., Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264. 7 cells. Life sciences, 2003. 73(3): p. 337-348.
- 114. Chainy, G.B., et al., Anethole blocks both early and late cellular responses transduced by tumor necrosis factor: effect on NF-[kappa] B, AP-1, JNK, MAPKK and apoptosis. Oncogene, 2000. 19(25): p. 2943.
- Jeung, E.-B. and I.-G. Choi, *Antifungal activities of the essential oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their constituents against various dermatophytes.* The Journal of Microbiology, 2007: p. 460-465.
- Park, M., et al., *Effect of citral, eugenol, nerolidol and α-terpineol on the ultrastructural changes of Trichophyton mentagrophytes.* Fitoterapia, 2009. 80(5):
 p. 290-296.
- 117. Loo, A., K. Jain, and I. Darah, *Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata.* Food Chemistry, 2008. 107(3): p. 1151-1160.
- Yanfang, Z. and T. Wenyi, *Flavor and taste compounds analysis in Chinese solid fermented soy sauce*. African Journal of Biotechnology, 2009. 8(4).
- Park, S.-J., et al., *Isothermal vapor–liquid equilibria and excess molar volumes for the ternary mixtures containing 2-methyl pyrazine*. Fluid phase equilibria, 2002. **193**(1): p. 109-121.

- Hawksworth, G. and R.R. Scheline, *Metabolism in the rat of some pyrazine derivatives having flavour importance in foods*. Xenobiotica, 1975. 5(7): p. 389-399.
- 121. Lilley, B. and J. Brewer, *The selective antibacterial action of phenylethyl alcohol*.Journal of the American Pharmaceutical Association, 1953. 42(1): p. 6-8.
- 122. Adams, T., et al., *The FEMA GRAS assessment of α, β-unsaturated aldehydes and related substances used as flavor ingredients*. Food and chemical toxicology, 2008. 46(9): p. 2935-2967.

APPENDIX AND SUPPORTING MATERIAL

Appendix 1.

A.1.1. Table S1. Green tea components with the corresponding identification, $\log K_{ow}$, and signal enhancement, and (common names).

A.1.2. Table S2. Green tea components extracted only by ICECLES with the corresponding retention time, identification, log K_{ow}, and boiling point.

Peak	N	DTa	mp	Log	Signal ^c		CEd	
No.	name	КІ	ID	Kow	ICECLES	SBSE	SE	
1	Propanoic acid, chloro- 2-hydroxy	2.12	MP	0^{*}	326557	0	NA	
2	Threo-4-Hydroxy-L- homoarginine lactone	2.34	HP		594690	174609	3.40	
3	Propane, 2-ethoxy-2- methyl	2.46	HP	1.92**	319468	0	NA	
4	Acetic acid	2.78	DI	-0.17	3062786	603397	5.07	
5		2.86	UK		599352	189323	3.16	
6		3.07	UK		1318266	120612	10.92	
7	Pentanal	3.21	HP	1.31	3522124	185174	19.02	
8		3.65	UK		109103	0	NA	
9		3.77	UK		222513	0	NA	
10		3.87	UK		145901	0	NA	
11	2-Pentanal, (E)	4.04	HP		1779267	155760	11.42	
12		4.14	UK		280330	76079	3.68	
13	Toluene	4.23	DI	2.69	499814	270270	1.84	
14	1-Pentanol	4.26	DI	1.33	632067	0	NA	
15	2-Penten-1-ol, (Z)	4.31	DI	0.9*	605861	0	NA	
16		4.55	UK		342383	0	NA	
17		4.61	UK		295275	123634	2.38	
18	Hexanal	4.85	HP	1.80	6264675	1557444	4.02	
19		5.00	UK		147553	0	NA	
20		5.07	UK		139146	0	NA	
21	Pyrazine, methyl (Methyl pyrazine)	5.40	DI	0.49	212283	0	NA	
22	Furfural	5.53	DI	0.83	652725	0	NA	
23	2,4-Dimethyl-1-heptene	5.71	HP	4.4*	583900	221161	2.64	
24	1-Hexene-3-yne, 2,5,5- trimethyl	5.79	HP	3.8*	241821	152565	1.58	
25	2-Hexenal ^e	5.85	HP	1.5*	173703	48753	3.56	
26	2-Hexenal ^e	6.03	HP	1.5*	4678468	736077	6.35	
27	2-Furanmethanol (Furfural alcohol)	6.14	DI	0.45	640330	0	NA	
28		6.34	UK		104357	0	NA	
29		6.43	UK		368507	102319	3.60	
30		6.72	UK		162838	0	NA	
31		6.81	UK		148768	43603	3.41	
32		6.92	UK		768043	0	NA	
33		7.08	UK		768043	0	NA	
34	4-Heptenal,(Z)	7.20	HP	1.4*	1238977	699318	1.77	

Table 00.1. Green tea components with the corresponding identification, log K_{ow}, and signal enhancement, and (common names).
S1. Continued

Peak	Nama	DTa	mb	Log	g Signal ^c		SEd
No.	Iname	KI	ID	Kow	ICECLES	SBSE	SE
35	Heptanal	7.27	HP	2.29	1136474	475986	2.38
36	1-Pentanone, 1-(3- Furnayl)-4-Hydroxy	7.44	HP		284242	0	NA
37	2,4-Hexadienal, (E,E)	7.49	DI	1.37**	588011	0	NA
38	Pyrazine, 2,5-dimethyl (2,5-dimethylpyrazine)	7.54	HP	1.03	611607	0	NA
39	2-Cyclopentene-1-one, 2-hydroxy	7.87	MP	0.4*	326455	0	NA
40		7.98	UK		134963	59562	2.26
41	2,5-Dimethylhexane-2,5- dihydroperoxide	8.09	HP	0.9*	1000326	237751	4.20
42	2-Heptanone, 4-methyl	8.21	HP	2.3^{*}	613183	275592	2.22
43	5-(3,7-Dimethylocta-2,6- dienyl)-4-methyl-2,3 dihydrothiophene 1,1- dioxide	8.34	MP		138650	0	NA
44		8.70	UK		153050	65213	2.34
45	2-Heptenal, (Z)	8.79	HP	2.1*	553156	287119	1.92
46	Benzaldehyde	8.94	DI	1.48	4404536	493092	8.9
47		9.12	UK		466290	88367	5.27
48		9.19	UK		389617	72116	5.40
49		9.29	UK		346181	0	NA
50		9.38	UK		285813	168240	1.69
51		9.48	UK		882542	130310	6.77
52	5-Hepten-2-one, 6- methyl	9.60	HP	1.9*	2261549	1452586	1.55
53		9.65	UK		2735891	0	NA
54	3-Cyclohexen-1-ol, 1- methyl-4-(1-methylethyl) (1-Terpineol)	9.76	HP		597526	286311	2.08
55	2,4-Heptadienal ^e	9.98	HP	1.6*	9079686	2122570	4.27
56	4-Bromoheptane	10.07	HP	3.6*	709099	298221	2.37
57	Octanal	10.16	HP	2.78	457311	374965	1.21
58	2,4-Heptadienal ^e	10.42	HP	1.6*	9603923	2453768	3.91
59		10.59	UK		992998	0	NA
60	1-Hexanol, 2-Ethyl	10.91	MP	3.1*	1049786	267347	3.92
61	-	10.99	UK		625168	71145	8.78
62	Benzyl Alcohol	11.07	DI	1.1	2179193	211717	10.29
63		11.18	UK		420638	130489	3.22
64	Benzenacetaldehyde	11.35	HP	1.8^{*}	2304409	290558	7.93

S1. Continued

Peak	NI	DTa	mb	Log	Sign	CEd	
No.	Name	KI.	ID.	Kow	ICECLES	SBSE	SE
65	1H-pyrrole-2 carboxaldehyde, 1-ethyl	11.45	HP	0.8^{*}	900733	164244	5.48
66		11.56	UK		386129	0	NA
67		11.63	UK		684595	161833	4.23
68		11.70	UK		463239	98802	4.68
69	2-Octenal, (E)	11.79	HP	2.6^{*}	1433745	808777	1.77
70	Ethanone,1-(1H-pyrrol-2- yl)	11.91	HP	0.9*	1018258	150579	6.76
71	Acetophenone	11.98	HP	1.58^{*}	1358595	242659	5.59
72	3,5-Octadien-2-one	12.11	HP	1.8^{*}	4953909	1726768	2.86
73		12.18	UK		954123	324157	2.94
74	1-3's-Hydroxy-2'R- butoxy(methyl)thymine, 1'ethylhydrogenphosphate	12.30	MP		729470	80187	9.09
75		12.38	UK		980750	170564	5.75
76	Benzaldehyde, 4-methyl (p-Tolualdehyde)	12.52	HP	2.26**	637268	133099	4.78
77	α-Methyl-α(4-methyl- 3pentenyl)oxirane methanol	12.66	HP		487326	106636	4.56
78	3,5-Octadien-2-one(E,E)	12.82	HP	1.8^{*}	1917051	584176	3.28
79	1,6-Octadien-3-ol, 3,7- dimethyl (Linalool)	13.05	HP	3.38	1230696	353165	3.48
80	Ethanone, 1-(2-mehtyl-1- cyclopenten-1-yl)	13.11	HP	1*	3175588	751934	4.22
81	Nonanal	13.18	HP	3.27	1373071	1186906	1.15
82	Maltol	13.25	DI	0.02	520624	0	NA
83	3,4- Dimethylcyclohexanol	13.34	HP	2*	1550458	324494	4.77
84	Penylethyl alcohol	13.39	DI	1.57	2888171	0	NA
85		13.64	UK		354784	94908	3.73
86		13.75	UK		229449	0	NA
87		13.89	UK		366731	67901	5.40
88	2,5-Pyrrolidinedione, 1- ethyl(N-ethylsuccinimide)	13.97	HP	-0.5*	353457	0	NA
89	Benzene, 1-isocyano-2- methyl	14.11	HP		896037	0	NA
90	4H-pyran-4-one, 2,3- dihydro-3,5-dihydroxy-6- methyl	14.26	HP	-0.4*	2074374	0	NA

S1. Continued

Dool				Log	Sign		
No.	Name	RT ^a	ID ^b	Log K _{ow}	ICECLE S	SBSE	SE ^d
	2.6.6-Trimethyl-2-						
91	cyclohexene-1,4-dione	14.34	HP	1*	655810	0	NA
	(Ketoisophorone)						
92	2,6-Nonadienal, (E,E)	14.57	HP	2.2*	429920	235236	1.82
02	2-(1,5-Dimethyl-hexyl)-	14.70			557(04	107004	2.00
93	cyclobutanone	14.70	ΠР		33/084	18/984	2.90
94	2-Nonenal, (E)	14.78	HP	3.1*	530948	314804	1.68
05	Acetic acid, phenylmethyl	14.95	п	1.06*	652691	0	NA
93	ester (Benzyl acetate)	14.65	111	1.90	033084	0	INA
96		14.90	UK		565165	160177	3.52
97		15.01	UK		736826	178426	4.12
98		15.16	UK		864139	218361	3.95
99		15.22	UK		1143442	0	NA
	Cyclohexanol, 5-methyl-2-						
100	(1-mehtylethyl)-,(1R-	15.34	HP	3*	1075905	418752	2.56
	(1α,2β,5α))						
101		15.42	UK		370345	93849	3.94
102		15.51	UK		761125	408761	1.86
103		15.59	UK		292968	0	NA
104	Methylsalicylate	15.72	HP	2.55*	884496	352577	2.50
	3-Cyclohexene-1-methanol,						
105	α , α 4-trimethyl	15.84	DI	3.28	584226	0	NA
	(a-Terpineol)						
	1,3Cyclohexdiene-1-						
106	carboxaldehyde,2,6,6-	15.93	HP	2.1*	700311	339824	2.06
	trimethyl (Safranal)						
107		16.14	UK		666289	816535	0.81
108		16.32	UK		110625	0	NA
109	Benzofuran, 2,3-dihydro	16.41	MP	2.1*	1183997	389996	3.03
	1-Cyclohexene-1-						
110	carboxaldehyde,2,6,6-	16.51	HP	2.4*	943863	625920	1.50
	trimethyl (β-Cyclocitral)						
	2-Furancarboxaldehyde, 5-						
111	(hydroxmethyl)	16.64	DI	-0.09**	1064983	0	NA
	(5(Hydroxymethyl)furfural)						
112	1H-Pyrrole-2,5-dione, 3-	16 84	НР	0.5*	1110710	0	NA
112	ethyl-4-methyl	10.0 1		0.5	1110/10		11/1
113		16.92	UK		581964	170181	3.41

S1. Continued

Peak	Nama	DTa			Signa	SEd	
No.	Name	K I	ID	Kow	ICECLES	SBSE	SE
114	β-D-Glucopyranose, 1-thio- ,1-(N- hydroxybenzenepropanimid ate)	17.00	HP		594384	0	NA
115		17.05	UK		683926	302507	2.26
116	2-Cyclohexen-1-one,2- methyl-5-(1-mehtylethnyl)- ,(s)	17.21	HP	2.5*	2426393	1043790	2.32
117	Benzene, 1,3-bis(1,1- dimethylethyl)	17.31	HP	5.8*	816544	549630	1.48
118	2,6-Octadien-1-ol, 3,7- dimethyl (Geraniol)	17.37	HP	3.56	2067464	699953	2.95
119	Acetic acid, 2 phenylethyl ester(Phenethyl Acetate)	17.47	HP	2.57	1249730	393329	3.17
120		17.57	UK		416422	182322	2.28
121		17.70	UK		870393	462088	1.88
122		17.79	UK		558326	0	NA
123	2,6-Octadienal,3,7- dimethyl (Citral)	17.85	HP	3.45 **	1439562	872031	1.65
124	Nonanoic acid	17.99	HP	3.42	3283367	101698 9	3.22
125	Cyclohhexene, 3-methyl-6 (1- methylethenyl)-,(3Rtrans) ((1R)-(+)-trans- Isolimonene)	18.24	HP	4*	3046178	1603812	1.89
126	Indole	18.49	DI	2.05	2653432	812730	3.26
127	2,4-Decadienal, (E,E)	18.61	HP	3.2*	997011	744643	1.33
128	Azetidine, 1-chloro- 2-phenyl	18.70	HP	2.3*	1148382	303461	3.78
129		18.91	UK		987225	188491	5.23
130		18.98	UK		629342	0	NA
131		19.11	UK		438505	224649	1.95
132		19.25	UK		3574110	230271 6	1.55
133	Furan, 2,3-dihydro-3methyl	19.39	HP	1.1*	1031933	0	NA
134		19.60	UK		230455	0	NA
135		19.78	UK		3211291 1006247		3.19
136	Phenol,2,6-dimethoxy (Syringol)	19.94	DI	1.1*	498756	0	NA

S1. Continued

Peak	Nama	DTa	mb	Log	Sign	al ^c	SEd
No.	name	ĸı	ID	Kow	ICECLES	SBSE	SE
137		20.05	UK		1633174	449165	3.63
138	Eugenol	20.12	DI	2.49	1499645	0	NA
139		20.23	UK		1011734	314468	3.21
140	2(3H)-Furanone, dihydro- 5-propyl (γ-Heptalactone)	20.32	HP	1.1*	1605933	495029	3.24
141	n-Decanoic acid	20.59	HP	4.09^{*}	1614418	482623	3.34
142		20.68	UK		2036914	587289	3.46
143		20.88	UK		1307575	727557	1.79
144		20.98	UK		788196	357363	2.20
145	2-Cyclopenten-1-one, 3- methyl-2-(2-pentenyl)- ,(Z) (cis-Jasmone)	21.22	HP	3.55	1287030	698859	1.84
146		21.32	UK		691415	121391	5.69
147		21.46	UK		771748	202260	3.81
148	2,4,7,9-Tetramethyl-5- decyn-4,7-diol (Surfynol 104)	21.67	HP	2.7*	4398238	1640929	2.68
149		21.86	UK		465316	225800	2.06
150	3-Buten-2-one, 4-(2,6,6- trimethyl-2-cyclohexen- 1-vl) (β-Ionone)	21.98	HP	3.84	1889633	1604913	1.17
151	Megastigmatrienone	22.11	HP	2.6*	1224327	845086	1.44
152	2H-benzopyran-2-one (Coumarin)	22.28	HP	1.51	1086358	302054	3.59
153	Butane, 1,1'-(oxybis(2,1- ethanediyloxy))bis (Butyl diglyme)	22.36	HP	1.9*	819636	350466	2.33
154		22.51	UK		687751	167840	4.09
155		22.61	UK		3225534	2293840	1.40
156		22.72	UK		670998	175181	3.83
157		23.04	UK		732816	317852	2.30
158		23.17	UK		485036	219904	2.20
159		23.33	UK		787210	432129	1.82
160	3-Buten-2-one, 4-(2,6,6- trimethyl-1-cyclohexen- 1-yl) (α-Ionone)	23.41	HP	3.85	4101447	3866645	1.06
161	6-Methyl-6-(5- methylfuran-2-yl)heptan- 2-one	23.49	HP	2.9*	6947821	2744368	2.53
162		23.65	UK		2380989	714319	3.33
163		23.84	UK		757213	296352	2.55

S1. Continued

Peak	Name	RT ^a	ID ^b	Log	Signal ^c		SE ^d
No.				K _{ow}	ICECLES	SBSE	
164		23.97	UK		658129	207821	3.16
165	Phenol,2,4-bis(1,1- dimehtylethyl)	24.11	HP	4.9*	1474134	1234137	1.19
166		24.25	UK		2585816 1762767		1.46
167		24.37	UK		2510834	2170812	1.15
168		24.41	UK		2154569	0	NA
169	2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro- 4,4,7a-trimethyl (Dihydroactinidiolide) ^e	24.64	HP	2.2*	14023403	3621186	3.87
170	2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro- 4,4,7a-trimethyl (Dihydroactinidiolide) ^e	24.72	HP	2.2*	14803638	9163687	1.61
171		24.8	UK		234934	167444	1.40
172		24.94	UK		320857	0	NA
173		25.01	UK		446864	189955	2.35
174		25.06	UK		512241 222187		2.30
175		25.11	UK		580779 253955		2.28
176		25.23	UK		562957 289299		1.94
177		25.29	UK		650833	358660	1.81
178		25.41	UK		5418815	3978197	1.36
179		25.51	UK		2513703	702837	3.57
180	2-(3H)-Furanone, 5- heptyldihydro (γ-Undecalactone)	25.63	DI	0.7*	803114	0	NA
181		25.76	UK		786682	342842	2.29
182	3,5,9-Undecatrien-2- one, 6,10-dimethyl(E,E) (Geranyl acetone)	25.88	HP	3.7*	925394	674011	1.37
183		26.07	UK		521235	295649	1.76
184		26.12	UK		635640	381016	1.66
185		26.23	UK		611241	278611	2.19
186		26.31	UK		386355	230212	1.67
187		26.39	UK		627479	329167	1.90
188		26.43	UK		585097	341268	1.71
189		26.51	UK		437439	247873	1.76
190	1H-3a,7-Methanozulen- 5-ol, octahydro-3,8,8- trimethyl-6-methylene (cedrenol)	26.59	HP		562766	338959	1.66

S1. Continued

Peak	Name	RT ^a	ID ^b	Log	Signal ^c		SE ^d
No.				Kow	ICECLES	SBSE	
191		26.66	UK		563662	188765	2.98
192		26.79	UK		1158898	361815	3.20
193	Benzophenone	26.95	HP	3.18*	608991	356357	1.70
194	1	26.99	UK		654308	232996	2.80
195		27.09	UK		422355	233075	1.81
196	Methyl jasmonate	27.26	HP	2.76**	1492808	638455	2.33
197		27.32	UK		540480	285647	1.89
198		27.41	UK		473576	226675	2.08
199		27.53	UK		535516	180240	2.97
200	3-Oxo-\beta-ionone	27.63	MP		1262551	590540	2.13
201		27.75	UK		381265	0	NA
202		27.86	UK		566052	278802	2.03
203		27.92	UK		460932	262313	1.75
204		28.04	UK		388474	281759	1.37
205		28.21	UK		976963	405207	2.41
206	Sulforidazine	28.49	HP	4.6	8536864	6899045	1.23
207		28.66	UK		537255	333563	1.61
208		28.74	UK		367146	225465	1.62
209		28.89	UK		416555	243678	1.70
	2H-1-Benzopyran-2-						
210	one, 7-methoxy	29.03	HP	1.9*	1287063	713482	1.80
	(7-Methoxycoumarin)						
	3-Methylbut-2-enoic						
211	acid, 3,4-	29.17	HP	2.9^{*}	5792412	2832466	2.04
	nitrophenylester						
212		29.23	UK		577000	331736	1.73
213	9H-Fluoren-9-one	29.34	HP	3.58*	671573	515301	1.30
214		29.50	UK		474041	301740	1.57
215		29.55	UK		430227	261241	1.64
216		29.83	UK		1177507	985815	1.19
217		29.97	UK		668632	311776	2.14
218		30.11	UK		333686	194878	1.71
219		30.29	UK		304399	209822	1.45
220		30.36	UK		469796	386224	1.21
221		30.43	UK		275276	237818	1.15
222		30.46	UK		279767	192733	1.45
223		30.59	UK		314139	227929	1.37
224		30.68	UK		386923	234226	1.65
225		30.77	UK		311175 184435		1.68
226		30.86	UK		485593	281384	1.72
227		30.94	UK		366852	225900	1.62

S1. Continued

Peak	Name	DTa	mb	Log	Signal ^c		SEd
No.	Name	KI	ID	Kow	ICECLES	SBSE	SE
228		31.06	UK		248914	202996	1.22
229		31.23	UK		283907	211414	1.34
230		31.36	UK		275947	196336	1.40
231	Caffeine	31.42	HP	-0.07	15402668	9726892	1.58
232		31.77	UK		561390	301367	1.86
233	1,2-Benzenedecarboxy- -licacid,diundecylester (Diundecyl phthalate)	31.92	MP	11.49**	859941	644393	1.33
234	1H-Purine-2,6-dione, 3,7-dihydro-3,7- dimethyl (Theobromine)	32.01	DI	-0.78*	618206	0	NA
235		32.16	UK		562095	441182	1.27
236		32.23	UK		486416	299418	1.62
237		32.35	UK		551084	385696	1.42
238		32.51	UK		349400	252532	1.38
239	1H-Indole-3-ethanol, acetate (ester) (Ethyl 3-indoleacetate)	32.59	HP	2.1*	503746	0	NA
240	7,9-Di-tert-butyl-1- oxaspiro(4,5)deca-6,9- diene-2,8-dione	32.79	HP	3.8*	1078584	870929	1.23
241		32.96	UK		387211	372783	1.03
242		33.10	UK		220005	194878	1.12
243		33.18	UK		225178	209822	1.07
244		33.37	UK		461233	401050	1.15
245		33.44	UK		357643	311380	1.14
246		33.63	UK		331412	331190	1.00
247	Dibutyl phthalate	33.79	HP	4.13	623851	574032	1.08
248	n-Hexadecanoic acid (Palmitic Acid)	34.00	HP	7.17*	6722363	6144871	1.09
249		34.10	UK		4255600	3170665	1.34
250		34.42	UK		347929	299043	1.16
251		34.56	UK		454659	351704	1.29
252		34.74	UK		270278	154877	1.74
253		34.88	UK		500483	301446	1.66
254		35.08	UK		334714	319615	1.04
255		35.47	UK		1640208 1225099		1.33
256		35.59	UK		374100 292848		1.27
257		35.69	UK		557701 513346		1.08
258		35.83	UK		369740	318757	1.15
259		36.03	UK		596365	364727	1.63

S1. Continued

Peak	Nama	DTa	mb	Log	Sign	SFd	
No.	Iname	KI	ID	Kow	ICECLES	SBSE	SL
260		36.09	UK		602677	468507	1.28
261		36.24	UK		400959	266320	1.50
262		36.45	UK		372745 30682		1.21
263		36.52	UK		277795 240563		1.15
264		36.59	UK		360766	344068	1.04
265		36.62	UK		379226	338198	1.12
266		36.73	UK		283641	249038	1.13
267		36.80	UK		272176	253058	1.07
268	9,12,15-Octadeca- -trienoic acid, (Z,Z,Z)	37.32	HP	5.9*	9130163	8421613	1.08
269	Octadecanoic acid (Stearic Acid)	37.73	HP	8.28*	4265806	3373659	1.26
270		37.96	UK		401774	345431	1.16
271		38.03	UK		538349	359242	1.49
272		38.29	UK		428666	274734	1.56
273		38.38	UK		713800	574090	1.24
274		38.52	UK		728523	503216	1.44
275		38.60	UK		351083	299553	1.17
276		38.78	UK		339341	232951	1.45
277		38.86	UK		316611	250586	1.26
278		39.00	UK		349040	300023	1.16
279		39.14	UK		273998	213703	1.28
280		39.30	UK		376583	0	NA
281		39.56	UK		616871	292144	2.11
282		39.69	UK		458364	343789	1.33
283		39.91	UK		430291	388052	1.10
284		40.15	UK		551601	354386	1.55
285		40.37	UK		338553	280673	1.20
286		40.56	UK		442743	334789	1.32
287		40.70	UK		703042	691431	1.01
288		40.87	UK		298289	240628	1.23
289		41.03	UK		271357	0	NA
290		41.15	UK		256548	230403	1.11
291	2-Propen-1-one, 1-(2,6- dihydroxy-4- methoxyphenyl)-3- phenyl-, (E) (Pinostrobin Chalcone)	41.47	MP	3.5*	379750	299922	1.26
292		41.61	UK		267438	234693	1.13
293		41 76	UK		213890	188173	1 13
294		42.10	UK		202433	124852	1.62
295		42.23	UK		230719	193581	1.19

S1. Continued

Peak	Namo	RT ^a ID ^b Log Signal				al ^c	SFd
No.	Name	N1	ID	Kow	ICECLES	SBSE	SE
296		42.63	UK		173823	241133	0.41
297		42.80	UK		105873	206117	0.51
298		42.91	UK		113212	93372	1.21
299		43.00	UK		115295	105200	1.09
300		43.22	UK		107580	116008	0.92
301		43.79	UK		187102	169299	1.10

^a RT: retention time.

^b ID: identification.

1) DI: definitively identified, 2) HP: high probability, 3) MP: mid probability, and 4) UK: unknown.

^c Signal peak height of ICECLES and SBSE. ^d SE: signal enhancement.

^e Isomers.

* log K_{ow} values were calculated by using the difference between a logP value of known compound and the query compound then estimated by an additive model with well-defined correction factors [100].

*** log K_{ow} values were calculated by using an atom/fragment contribution method via KOWWINTM program [101].

Peak No.	Name	RT ^a	ID ^b	Log K _{ow}	B.P ^c
1	Propanoic acid, chloro-2-hydroxy	2.12	MP	0*	
3	Propane, 2-ethoxy-2-methyl	2.46	HP	1.92**	73 °C
8		3.65	UK		
9		3.77	UK		
10		3.87	UK		
14	1-Pentanol	4.26	DI	1.33	137.5 °C
15	2-Penten-1-ol, (Z)	4.31	DI	0.9*	138 °C
16		4.55	UK		
19		5.00	UK		
20		5.07	UK		
21	Pyrazine, methyl (Methyl pyrazine)	5.40	DI	0.49	135 °C
22	Furfural	5.53	DI	0.83	162 °C
27	2-Furanmethanol (Furfural alcohol)	6.14	DI	0.45	170 °C
28		6.34	UK		
30		6.72	UK		
32		6.92	UK		
33		7.08	UK		
36	1-Pentanone, 1-(3-Furnayl)-4-Hydroxy	7.44	HP		
37	2,4-Hexadienal, (E,E)	7.49	DI	1.37**	174 °C
38	Pyrazine, 2,5-dimethyl (2,5- dimethylpyrazine)	7.54	HP	1.03	155 °C
39	2-Cyclopenten-1-one, 2-hydroxy	7.87	MP	0.4^{*}	244.80 °C
43	5-(3,7-Dimethylocta-2,6-dienyl)-4-methyl- 2,3 dihydrothiophene 1,1-dioxide	8.34	MP		
49		9.29	UK		
53		9.65	UK		
59		10.59	UK		
66		11.56	UK		
82	Maltol	13.25	DI	0.02	93 °C
84	Penylethyl alcohol	13.39	DI	1.57	219-221 °C
86		13.75	UK		
88	2,5-Pyrrolidinedione, 1-ethyl (N- ethylsuccinimide)	13.97	HP	-0.5*	
89	Benzene, 1-isocyano-2-methyl	14.11	HP		

Table S0.2. Green tea components extracted only by ICECLES with the corresponding
retention time, identification, log K_{ow} , and boiling point.

S2. Continued

Peak No.	Name	RT ^a	ID ^b	Log K _{ow}	B.P ^c
90	4H-pyran-4-one, 2,3-dihydro-3,5- dihydroxy-6-methyl	14.26	HP	-0.4*	
91	2,6,6-Trimethyl-2-cyclohexene-1,4- dione (Ketoisophorone)	14.34	HP	1*	222 °C
95	Acetic acid, phenylmethylester (Benzyl acetate)	14.85	HP	1.96*	206 °C
99		15.22	UK		
103		15.59	UK		
105	3-Cyclohexene-1-methanol, α,α4 trimethyl (α-Terpineol)	15.84	DI	3.28	220 °C
108		16.32	UK		
111	2-Furancarboxaldehyde, 5- (hydroxmethyl) (5-(Hydroxymethyl)furfural)	16.64	DI	-0.09**	114-116 °C
112	1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl	16.84	HP	0.5^{*}	253.81 °C
113		16.92	UK		
114	ß-D-Glucopyranose, 1-thio-,1-(N- hydroxybenzenepropanimidate)	17.00	HP		
122		17.79	UK		
130		18.98	UK		
133	Furan, 2,3-dihydro-3-methyl	19.39	HP	1.1*	
134		19.60	UK		
136	Phenol,2,6-dimethoxy (Syringol)	19.94	DI	1.1^{*}	261 °C
138	Eugenol	20.12	DI	2.49	225 °C
168		24.41	UK		
172		24.94	UK		
180	2-(3H)-Furanone, 5-heptyldihydro (γ- Undecalactone)	25.63	DI	0.7^{*}	220 °C
201		27.75	UK		
234	1H-Purine-2,6-dione, 3,7-dihydro-3,7- dimethyl (Theobromine)	32.01	DI	-0.78*	290-295 °C
239	1H-Indole-3-ethanol, acetate (ester) (Ethyl 3-indoleacetate)	32.59	HP	2.1*	164-166 °C
280		39.30	UK		
289		41.03	UK		

^a RT: retention time.

^b ID: identification.

1) DI: definitively identified, 2) HP: high probability, 3) MP: mid probability, and 4) UK: unknown.

^c Boiling point

* log K_{ow} values were calculated by using the difference between a logP value of known compound and the query compound then estimated by an additive model with well-defined correction factors [100].

^{**} log K_{ow} values were calculated by using an atom/fragment contribution method via KOWWINTM program [101].