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ABSTRACT 

THE ANALYSIS OF FLAVOR COMPOUNDS IN GREEN TEA USING ICE 

CONCENTRATION LINKED WITH EXTRACTIVE STIRRER (ICECLES) 

ABDULLAH H. ALLUHAYB 

2017 

Sample preparation of target components from food samples is one of the most 

difficult steps in this type of analysis. Many extraction techniques have been used for 

this purpose, such as liquid-liquid extraction (LLE), accelerated solvent extraction 

(ASE), microwave-assisted extraction (MAE), solid-phase extraction (SPE), solid-phase 

microextraction (SPME), and stir bar sorptive extraction (SBSE). Although each of 

these techniques works well, they each have a number of disadvantages, including 

selectivity, relatively high cost, long preparation time, and matrix effects. Ice 

concentration linked with extractive stirrer (ICECLES) is a promising new sample 

preparation technique, especially for the extraction of relatively polar compounds, which 

may prove to have widespread applicability for analytical sample preparation. ICECLES 

was used to prepare green tea for flavor analysis by gas chromatography-mass 

spectrometry (GC-MS). ICECLES produce 301 constituents, the vast majority with 

stronger signal to noise ratios than the 245 components found using SBSE. Therefore, 

56 extra constituents were detectable via ICECLES alone, including some very 

important flavor compounds such as furfural, eugenol, 2-methylpyrazine, phenethyl 

alcohol, α-terpineol, and 2,6-dimethoxyphenol. Overall, ICECLES sample preparation 

followed by GC-MS showed higher extraction efficiencies for the vast majority of green 

tea flavor components, including relatively polar compounds, as compared to SBSE. 
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1. Chapter 1. Introduction 

1.1. Significance 

Green tea is one of the most widely consumed beverages in the world due to its 

beneficial medicinal properties (reduction in serum cholesterol, anti-oxidant properties, 

and a decreased risk of cancer) as well as its pleasant flavor. About 200 compounds in 

green tea have been identified and 30 compounds are related to its flavors [1]. 

Manufacturers of green tea analyze their products for these compounds to ensure the 

quality and identity of their products. Many techniques have been used to prepare green 

tea samples for analysis, including liquid-liquid extraction (LLE), solid phase micro 

extraction (SPME), and stir bar sorptive extraction (SBSE). These techniques generally 

suffer from low extraction efficiencies for certain compounds, especially those more 

polar. Moreover, those techniques which are amenable to analysis of more polar 

compounds (e.g., SPME with polar sorbent phases) only produce good extraction 

efficiencies for a narrow polarity range. Therefore, there is a critical need to develop a 

more comprehensive extraction technique to prepare the flavor compounds of green tea 

for analysis, with the ability to extract compounds with a wide polarity range. 

1.2. Objective 

The objective of this project was to evaluate the performance of ice 

concentration linked with extractive stirrer (ICECLES) sample preparation for the flavor 

analysis of green tea (specifically comparing to SBSE). In order to accomplish this 

objective, an ICECLES method for the extraction and identification of flavor 

compounds from green tea using ICECLES-gas chromatography-mass spectrometry 
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(GC-MS) was developed. Moreover, direct comparison between ICECLES and SBSE 

was performed. 

1.3. Extractive sample preparation 

1.3.1. Overview of extractive sample preparation 

Figure 1.1 shows the general steps involved in analysis of samples via 

chromatography. All these steps can affect the results [2]. One of the most important 

steps is sample preparation, where an analyte is separated from the matrix interferences 

and typically preconcentrated for chromatographic analysis [3, 4].  

 

 

Although scientists have focused much of their attention on analysis techniques 

[4], numerous sample preparation methods such as filtration or liquid-liquid extraction, 

have been developed over the years [3]. Most of these techniques are still in use today. 

Sample preparation techniques should have the following advantages [4]: 1) suitable for 

Sample 
Collection

Sample 
Preparation

Analytical 
Chromatography

Data Processing

Figure 1.1 Analytical chemistry steps for chromatographic analysis. 
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trace analysis, 2) safe and environmentally friendly, 3) selective and sensitive, 4) 

inexpensive, 5) relatively quick, and 6) simple and easy to perform. 

1.3.2. Extraction Methods 

One of the most common sample preparation concepts is extraction. Extraction 

methods aim to separate and isolate the target analyte into an immiscible phase from the 

sample matrix. Many extraction techniques have been used for sample preparation, 

including accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), 

microwave assisted extraction (MAE), liquid-liquid extraction (LLE), solid phase 

extraction (SPE), solid phase microextraction (SPME), and stir bar sorptive extraction 

(SBSE) [4-6]. These techniques typically utilize a solvent to help to separate the target 

from the sample matrix [3, 4, 7]. Sample preparation techniques have been developed to 

be more selective and more sensitive over time for a variety of different applications 

such as food analysis and environmental applications. 

1.3.3. Accelerated Solvent Extraction (ASE) 

1.3.3.1. Basic principle of ASE 

Accelerated solvent extraction (ASE) is an extraction technique first reported in 

1996 by Richter et al. [6] which uses the combination of temperature and pressure to 

extract an analyte from a matrix. Figure 1.2 shows a schematic of an accelerated solvent 

extraction (ASE) instrument. ASE uses temperatures between 50-200 oC (i.e., above 

boiling point of the solvent) and pressures between 500-3000 psi to extract analytes 

from solid and semisolid samples [6, 8]. The sample is placed into an extraction 

chamber and pressure and heat are applied. 
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The extraction chamber is filled with solvent which expands its capacity to dissolve 

more analytes due to the elevated temperatures and pressures [8-10]. Advantages and 

disadvantages of ASE are listed in Table 1.1 [6, 9, 10]. 

     Figure 1.2 Schematic of an accelerated solvent extraction (ASE) apparatus [11]. 

 

Table 1.1 Advantages and disadvantages of ASE sample preparation. 

 

Advantages Disadvantages 
§ Short extraction time 
§ Low solvent consumption 
§ Sample preparation is rapid 
§ High extraction efficiency for solid 

and semisolid matrix 

§ Extraction is not selective 
§ Mainly useful for solids 
§ Expensive 
§ Extract steps sometimes necessary 

before the final analysis 

Extraction	cell

Valve

Oven

Extracts	solution

Valve

Valve

PumpNitrogen
(N2)

Solvent Extract	 solution
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 1.3.3.2.  Applications of ASE 

Numerous analytes, including volatile and semi-volatiles, have been extracted 

using ASE. ASE has been mainly applied to environmental analysis. Table 1.2 

summarizes some applications of ASE [8, 9, 12]. 

 

Table 1.2 Example applications of ASE sample preparation. 

 

1.3.4. Supercritical Fluid Extraction (SFE) 

1.3.4.1. Basic principle of SFE 

Supercritical fluid extraction (SFE) is an environment friendly sample 

preparation technique which uses a supercritical fluid (i.e., a solvent at temperature and 

pressure above its critical point) to extract analytes from the matrix [3, 7]. The extraction 

efficiency of SFE depends on the physical properties, density and viscosity, of the 

supercritical fluid used. Many supercritical fluids have been used in SFE, including 

nitrous oxide and carbon dioxide [3, 4]. Carbon dioxide (CO2) is most commonly used 

Compound Matrix Extraction conditions Separation 
technique Ref 

Phenols soils/sediments methanol/ acetone/DCM 
50-120 oC/600-1800 psi 

HPLC/GC-
MS [12] 

PAHs soils/sediments acetone-DCM or hexane 
50-150 oC/ 1500-2000 psi 

GC-MS/FID 
HPLC [12] 

Terpenes plant (Thyme) 
hexane and 

dichloromethane 
50 oC/ 2030 psi 

HPLC [8, 13] 

Flavonolignans milk hexane and methanol 
100 oC/ 2030 psi HPLC [8, 13] 

Flavanones Plant (orange) dichloromethane 
100 oC 

LC-
photodiode [14] 

Pesticides Solid waste 
acetone-toluene or 

hexane 
100 oC/ 2200 psi 

GC-MS [12] 
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due to the high cost of xenon and the hazardous nature of nitrous oxide  [4]. Figure 1.3 

shows a basic schematic of supercritical fluid extraction (SFE) instrumentation. 

 

 

Figure 1.3 Basic schematic diagram of a supercritical fluid extraction (SFE) instrument. 

 
 

SFE is well-suited for solid samples, such as herbal medicines, polymers, and 

some plants. However, liquid samples are difficult to extract via SFE, but may be 

achievable by adjusting some solvent parameters [3, 4]. The selectivity of SFE can be 

improved by adjusting pressure and temperature of the solvent, or by adding chemical 

modifiers to the solvent. For example, carbon dioxide CO2 is relatively non-polar and its 

polarity can be adjusted towards more polar compounds by adding methanol [3, 4]. SFE 

also has some disadvantages such as the necessity for high pressure, limited polarity 

range, and it almost exclusively is used for solid samples. Some advantages and 
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disadvantages of using supercritical fluid extraction (SFE) are reported in Table 1.3 [3, 

4, 15]. 

 

 Table 1.3 Advantages and disadvantages of SFE. 

 
 

1.3.4.2. Applications of SFE 

Supercritical fluid extraction (SFE) has been used in factories for many years to 

extract kilograms of an analyte from a sample matrix [16]. Although SFE has been 

applied to several fields, it has found its main application in food and agriculture. One 

study investigated the antioxidants produced in some plants, such as vegetables and 

fruits, using SFE compared to other extraction techniques, finding higher antioxidant 

activities via supercritical fluid extraction versus the hydrodistillation extraction 

technique (i.e., steam distillation) [17]. Another study used SFE followed by GC-MS 

and HPLC to investigate phenols in grape seeds. They used SFE in steps: 1) with pure, 

CO2 they obtained high yields of antioxidants, 2) with 80% of CO2 and 20% ethanol, 

they obtained high yields of agro-chemical compounds [18]. Moreover, SFE has been 

used in environmental analysis [19]. For example, SFE was applied to analyze pesticides 

in contaminated soil and obtained high recoveries [20]. 

                  Advantages Disadvantages 
§ Environment friendly 
§ Effective for solid samples  
§ Flexible technique (i.e., improve the 

selectivity of extraction to cover a 
wide range of polar and non-polar 
compounds) 

§ Low solvent consumption 
§ High recovery 

§ Difficult to use 
§ Difficult to extract liquid samples  
§ Limited solvent types 
§ Sometimes high pressure is required  
§ Generally, only applicable towards 

highly nonpolar analytes 



 8 

1.3.5. Liquid-Liquid Extraction (LLE) 

1.3.5.1.  Basic principle of LLE 

Liquid-liquid extraction (LLE) is one of the most common and simple sample 

preparation techniques used in analytical chemistry [21]. Liquid-liquid extraction 

typically uses an immiscible organic solvent to extract an analyte from an aqueous 

sample solution [3]. The extraction process in LLE is demonstrated in Figure 1.4 and 

usually consists of a solute (the desired analyte) transferring preferentially from an 

aqueous layer to organic layer. 

 

 

 

 

 

 

 

Figure 1.4 Schematic diagram of liquid-liquid extraction (LLE). 
 
 

Aqueous	 layer

Organic	layer

x

An
aly

te
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 1.3.5.2. Liquid-Liquid Micro Extraction (LLME) 

The isolation of the analyte from the matrix phase into the solvent phase is 

achieved based on the different solubility of the analyte between these phases. Although 

LLE is simple, organic solvents are necessary and the process can be time consuming [3, 

4, 21]. Micro-liquid-liquid extraction methods have been developed to reduce the 

drawbacks of LLE. Multiple modes of micro-liquid-liquid-extraction have been 

suggested such as single-drop microextraction (SDME) and dispersive liquid–liquid 

microextraction (DLLME) [21, 22].  

SDME is a micro LLE technique where a single droplet of an organic solvent is 

suspended at the end of a syringe needle. The droplet is immersed into the sample 

solution (DI-SDME) or held in the vial headspace above the sample (HS-SDME) to 

extract the analyte as illustrated in Figure 1.5. The micro-drop is pulled into the syringe 

and then injected into an instrument for analysis, such as gas chromatography-mass 

spectrometry [21-24].  

    

Figure 1.5 Schematic of DI-SDME and HS-SDME [24]. 

Microsyrange

Extractant
phase

Sample	solution

Magnetic	stirrerMagnetic	stirrer
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Dispersive liquid–liquid microextraction (DLLME), as demonstrated in Figure 

1.6, is another miniaturized type of LLE. The extraction processes in DLLME occurs by 

injecting microliter volumes of a solvent into a solution and stirring to form a cloudy 

suspension. The solution is then centrifuged to obtain a small droplet at the bottom of 

the vail. The analyte is concentrated at the fine droplet that formed and can be analyzed 

by GC-MS, HPLC, or AAS [21, 25]. Some advantages and disadvantages of using LLE, 

SDME, and DLLME are given in Table 1.4 [3, 21, 25]. 

Figure 1.6 Schematic diagram of dispersive liquid–liquid microextraction (DLLME). 
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Table 1.4 Comparison of the advantages and disadvantages of LLE, SDME, and DLLME. 

 
 

1.3.5.3.  Applications of LLE and its Miniaturized Techniques 

Liquid-liquid extraction is one of the oldest and most basic extraction techniques. 

Kula et al. [26] used liquid-liquid extraction at room temperature to separate enzymes 

and activated proteins from a mixture. Numerous applications have also been shown for 

miniaturized liquid-liquid techniques. Metals, organometals, and non-metals have been 

extracted with SDME [27]. For example, Lin et al. [28] used SDME followed by gas 

chromatography-flame photometric detection (GC-FPD) to extract and determine 

chromium (III) in water. DLLME has also been applied to extract metals and 

organometals such as gold, lead, cadmium, and organotin compounds [27]. For example, 

Rivas et al. [29] used DLLME followed by electrothermal atomic absorption 

spectroscopy (ETAAS) to extract lead and cadmium from aqueous samples.

 

Techniques             LLE           SDME              DLLME 

 
Advantages 

§ Inexpensive 
§ Easy to perform 
§ Large amount 

of analyte 
extracted 

§ High extraction 
efficiency 

§ Solvent consumption 
is negligible 

§ Simple 

§ Simple and rapid 
§ Inexpensive 
§ High recovery 
§ High preconcentration 

factors 

Disadvantages 

§ Tedious and 
time consuming 

§ Large amount 
of solvent used 

§ Low selectivity 
 
 
 
 

 

§ The micro solvent 
drop sometime 
unstable and need 
some treatment 

§ Poor reducibility 
§ Limited to number 

of extractants 
§ Often deal with 

liquid samples 
 
 

§ Not suitable in 
complex matrix 

§ Time and reagents 
consuming 

§ Limited inorganic 
applications 

All techniques are limited to non-polar compounds.  
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1.3.6. Solid Phase Extraction (SPE) 

 1.3.6.1. Basic principle of SPE 

SPE is a common sample preparation technique which was introduced over five 

decades ago. SPE has some advantages over LLE [30]. In SPE, compounds of interest are 

concentrated and purified from a matrix solution by partitioning or adsorbing the analytes 

on a solid phase which is suspended in a small column. The extraction of the analyte 

from a complex matrix solution is based on the partitioning of the analyte between the 

liquid sample and the sorbent, similar to LLE. The extraction in SPE typically requires 

the analytes to have higher affinity toward the solid phase than the liquid phase [30].  

          Figure 1.7 Schematic diagram of solid phase extraction (SPE). 
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Once the analyte is partitioned/adsorbed, it can be removed and preconcentrated 

into a small volume by using an extraction solvent [4, 30]. The basic sample preparation 

steps of SPE are shown in Figure 1.7. Currently, SPE is one of the most common sample 

preparation techniques. A variety of solid-phase sorbents have been used in SPE and can 

be classified in three main types: normal-phase sorbents, reversed-phase sorbents, and 

ion-exchange sorbents [31]. 

Normal phase sorbents include silica, alumina, and Florisil. These sorbents can 

adsorb polar analytes from a mixture and a gradient range of solvents from non-polar to 

polar are used to elute compounds. Normal phase sorbents can be chemically modified by 

adding polar groups such as cyano (CN), diol (COHCOH), or amino (NH2) groups to trap 

analytes [31, 32]. Reversed phase sorbents include octadecyl (C18), octyl (C8), 

cyclohexyl, and phenyl groups bonded to silica. These sorbents can extract non-polar 

analytes from polar matrices and a gradient of solvents from polar to non-polar is used to 

elute these compounds [30-32]. Ion-exchange sorbents, including cation and anion 

exchangers, extract ionic analytes via ionic interactions. Cation exchanger sorbents with 

carboxylic acid (COOH), sulfonic acid (SO2OH), and aromatic sulfonic acid (ArSO2OH) 

groups can extract negatively charged analytes. Conversely, anion exchange sorbents, 

such as primary (NH2), secondary (NRH), and quaternary amine (NR2), can extract 

negatively charged analytes. These sorbents can extract charged analytes from the matrix 

and a gradient range of buffers is used for elution [31, 32]. Table 1.5 shows some 

advantages and disadvantages of solid phase extraction (SPE) [33, 34]. 
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Table 1.5 Advantages and disadvantages of solid phase extraction (SPE). 

 
 

 1.3.6.2. Applications of SPE 

Solid-phase extraction (SPE) is one of the most accepted extraction techniques for 

bioanalytical, pharmaceutical, environmental, and food analysis [31, 32]. SPE has been 

used pharmaceutical science to investigate the effect of drugs and antibiotics in living 

organisms. Hu et al. [35] used SPE, followed by HPLC, to extract and determine two 

types of trimethoprim in human urine. Moreover, Boos and Fleischer [36] used SPE 

followed by HPLC for the determination of the analgesic drug, tramadol, in human 

plasma. SPE has also been applied in food to extract a variety of compounds. For 

example, Wang et al. [37] applied SPE, followed by HPLC, for the determination of 

caffeine and theophylline in green tea. 

1.3.7. Solid-Phase Microextraction (SPME) 

 1.3.7.1. Basic principle of SPME 

Solid-phase microextraction (SPME) is a sample preparation technique which was 

first reported in the 1990s. SPME is a simple and efficient extraction technique that can 

be used to extract, isolate, and enhance analytes, including volatile and non-volatile 

analytes from a matrix [3, 4]. The extraction process via SPME is shown in Figure 1.8. It 

proceeds by extracting a small amount of analyte via extracting phase, generally a 

polymer that coats the outer or internal surface of a solid-support material within a needle 

Advantages Disadvantages 
§ High extraction efficiency 
§ Low volume evaporation 
§ Low organic solvents consumption and 

therefore low solvents disposal 
§ Fast and easy performance 
§ No emulsions 

§ Carryover may occur 
§ Systematic and recovery 

errors can occur 
§ Sometimes sample stability 

is a problem 
§ Expensive relative to LLE 
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housing [38]. SPME involves two main types of implementations: fiber SPME and in-

tube SPME. The first developed, and most common, technique is fiber SPME. In fiber 

SPME, the extraction phase is a fiber, externally coated with different types of polymers 

which vary from non-polar to polar, depending on the analyte matrix, (e.g., polydimethyl 

siloxane (PDMS), polyacrylate, carboxen, and carbowax). The coated fiber is immersed 

either directly into the sample or in the headspace above the sample to trap analytes. In 

case of using direct immersion extraction, analytes are directly partitioned or adsorbed 

into the sorbent phase from the matrix. However, in case of extracting analytes using 

headspace SPME, the analytes are delivered to the extraction phase via the headspace. 

The extracted analytes are back-extracted into a solvent or heat, typically via a hot 

injection port of a GC [3, 4, 38]. 

In-tube SPME was developed to be more amenable with liquid chromatography. 

In-tube SPME consists of an open-tubular fused-silica capillary in which the internal 

surface is coated with sorbent. Analytes are adsorbed or partitioned into the extracting 

phase when the sample is drawn into the tube. Two modes are used for in-tube SPME, 

dynamic and active. For dynamic in-tube SPME, analytes are transported through the 

capillary tube via a flow of air. Conversely, the extraction of analytes via active in-tube 

SPME is performed without using air flow. The analytes are transferred in active in-

tube SPME to the extracting phase via the gas phase present inside the system [3, 

38, 39]. Table 1.6 lists some advantages and disadvantages of using solid phase 

microextraction (SPME) [3, 38, 40, 41]. 
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Figure 1.8 Schematic diagram of solid-phase microextraction (SPME) [38].  

 
 
 Table 1.6 Advantages and disadvantages of solid phase microextraction (SPME). 

 

1.3.7.2. Applications of SPME 

Solid-phase microextraction (SPME) has been used in various applications 

including clinical, environmental, industrial, forensic, pharmaceutical, and food 

Advantages Disadvantages 
§ High extraction efficiency 
§ Low volume usage 
§ The distribution of analytes in a 

multiphase complex can easily be 
studied   

§ Low solvent consumption 
§ Fast and easy to perform 
§ High accuracy and precision can be 

obtained 

§ Limited extraction capacity in fiber 
SPME 

§ Fiber SPME is not sensitive to some 
volatile organic sulfur compounds 

§ Fibers can be broken 
§ The GC injector temperature need to be 

below320 °C depending on the fiber 
used 

§ Carryover may be present and hard to 
eliminate 

Analyte
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analysis. For example, Eisert et al. [42] used fiber SPME coated with PDMS followed by 

gas chromatography and an atomic emission detector (GC-AED) for the ultra-analysis of 

six organophosphorus pesticides. Furthermore, Eisert and Levsen [43] used a fiber SPME 

coated with polyacrylate followed by GC-MS for the determination of organophosphorus, 

triazines and N-heterocyclic pesticides from aqueous samples. In biomedical analysis, 

Guan et al. [44] used headspace SPME with PDMS and gas chromatography–electron 

capture detector (GC–ECD) for the determination of dinitroaniline herbicides from blood, 

urine, and water. Hawthorne et al. [45] and Yang et al. [46] used fiber SPME with 

polyimide and uncoated SPME followed by GC-MS for the analysis of caffeine and 

flavor and fragrance components in coffee, tea, and soft drinks. 

1.3.8. Stir Bar Sorptive Extraction (SBSE) 

 1.3.8.1. Basic principle of SBSE 

Stir bar sorptive extraction (SBSE) is a simple extraction technique which was 

first reported by Baltussen et al. in 1999 [47]. In SBSE, the extraction process occurs by 

transferring the analytes from a liquid phase to an extracting phase coated on a glass 

magnetic bar. The sorbent is a polymer, typically PDMS (a highly non-polar sorbent). 

The coated magnetic glass stir bar is introduced into the sample solution and stirred for a 

certain time to extract the analytes from the matrix, as shown in Figure 1.9. The extracted 

analytes are then desorbed via back extraction into a solvent or by heat and typically 

analyzed via liquid chromatography, gas chromatography, capillary electrophoresis, or 

inductively coupled plasma [5].  

Recently, SBSE involves three main types of coatings: polydimethylsiloxane 

(PDMS), polyacrylate (PA), and ethylene glycol/silicone (EG/silicone). PDMS is 
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typically used to extract non-polar analytes. For extraction via PDMS-SBSE, an 

equilibrium occurs between the analyte and the coating which depends on the log Kow of 

the compound, equilibrium is quickly achieved for non-polar compounds (i.e., 

compounds with high log Kow reach the equilibrium in a short amount of time while 

compounds with low log Kow spend longer time). The PA and EG/silicone were 

developed for the extraction of relatively-polar components [5]. Listed in Table 1.7 are 

some advantages and disadvantages of SBSE [47, 48]. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 1.9 Schematic diagram of stir bar sorptive extraction (SBSE). 
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Table 1.7 Advantages and disadvantages of using stir bar sorptive extraction (SBSE). 

 
 

1.3.8.2. Applications of SBSE 

SBSE has been applied to the vast majority of analytical fields, including 

environmental, soils, food, pharmaceutical, and clinical analysis. SBSE was successfully 

applied for food analysis by Li et al. [49], who used a PDMS sorptive stir bar followed by 

GC-ECD for the determination of 12 pyrethroid pesticides in tea samples. In addition, 

SBSE with PDMS followed by GC-MS has been used to identify 113 organic compounds 

in vinegars [50]. In the environmental field, SBSE (with PDMS coating) was coupled 

with HPLC-fluorescence detection (FLD) for the determination of polycyclic aromatic 

hydrocarbons (PAH) in a complex aqueous matrix [51]. Clinically, Unceta et al. [52] 

used SBSE with a PDMS sorptive stir bar followed by HPLC-FLD for the analysis of 

serotonin reuptake inhibitors in plasma, urine and brain tissue samples. 

 

 

Advantages Disadvantages 
§ High preconcentration capacity 
§ Simple and easy to perform 
§ High recovery 
§ Applied for a large range of organic 

compounds applications 
§ Environmentally friendly 
§ Use a small volume of sample  
§ Can be coupled with GC, LC, CE, and 

ICP 
§ The PDMS -coated bar can be used 

for several times (hundreds of times) 

§ limited to range of polarity 
§ Need matrix modifiers to overcome the 

extraction of compounds with low Log 
Kow 

§ Matrix effects are highly affect the 
extraction 

§ Time consuming 
§ Sorptive stir bar needs to recondition 

after each analysis 
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1.3.9. ICE Concentration Linked with Extractive Stirrer (ICECLES) 

1.3.9.1. Basic principle of ICECLES 

ICE Concentration Linked with Extractive Stirrer (ICECLES) is a new sample 

preparation technique which was first reported by Maslamani et al. [53] in 2016. 

ICECLES combines freeze concentration (FC) and stir bar sorptive extraction (SBSE) in 

one technique. With the inherent advantages of FC and SBSE such as high concentration 

factors, selectivity, simplicity, and robustness, ICECLES is a promising extraction 

technique for many analytical fields. The main advantage of ICECLES is that more polar 

compounds can be easily extracted using the commercially available PDMS coating. The 

basic procedure of extraction in ICECLES is demonstrated in Figure 1.10. Table 1.8 lists 

some advantages and disadvantages of ICECLES [53]. 

 
Figure 1.10 Schematic diagram of ICE concentration linked with extractive stirrer 
(ICECLES). 

Sorptive stir	bar

Sample	solution

Analytes

ICE

Extracted	analytes
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Table 1.8 Advantages and disadvantages of Ice concentration linked with extractive 
stirrer (ICECLES). 

 

1.3.9.2. Freeze Concentration (FC)  

Freeze concentration (FC) is a process of separating analytes from a sample water 

solution by concentrating and crystallizing water products under freezing conditions. FC 

is widely uses in petroleum, food, and pulp and paper industries [54, 55]. 

1.3.9.3. ICECLES procedure 

The extraction procedure is similar for SBSE and ICECLES, with ICECLES 

featuring freezing of the sample. In ICECLES, a sorptive stir is placed into the sample 

solution on a magnetic stir plate to extract analytes. While the sorptive stir bar is stirred, 

an equilibrium occurs between the analyte and stir bar coating. Freezing the sample leads 

the analytes to be concentrated into the aqueous solution and into the sorptive stir bar by 

pushing the equilibrium from the analytes towards the coated stir bar as demonstrated in 

Figure 1.10 [53]. 

1.3.9.4. Applications of ICECLES 

ICECLES is a new sample preparation technique with the first and only 

application of ICECLES published on 2016. Maslamani et al. [53] used ICECLES for the 

analysis of multiple triazine pesticides in aqueous samples. The sample preparation 

technique performed well, producing up to 474 signal enhancement when compared to 

SBSE. 

Advantages Disadvantages 
§ Solventless 
§ Simple and easy to perform 
§ High selectivity 
§ Applicable over large polarity 

range 

§ Time consuming 
§ Limited sample volume (i.e., 

currently no more than 10 mL 
can be used) 
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2. Chapter 2. The Analysis of Flavor Compounds in Green Tea Using Ice 
Concentration Linked with Extractive Stirrer (ICECLES) 

Abstract 

Worldwide, green tea is one of the most popular beverages. It has been proven to 

promote blood circulation, liver function, and lower the risk of cancer and cardiovascular 

diseases. This drink is characterized by the distinctive odors and flavors produced by its 

constituent compounds, with its value predicated on the amount and type of constituent 

components extracted from the tea leaves during brewing. Ice concentration linked with 

extractive stirrer (ICECLES) is a novel sample preparation technique, especially 

applicable for the extraction of relatively polar compounds while retaining excellent 

extraction efficiencies for non-polar compounds. In this study, ICECLES was used to 

prepare green tea for analysis of flavor compounds by gas chromatography-mass 

spectrometry (GC-MS). ICECLES performed very well, revealing 301 constituents as 

compared to 245 for SBSE. Moreover, ICECLES produced stronger signal to noise ratios 

for all except 4 of 301constituents, affording easier identification. Of the 56 constituents 

which were only detectable using ICECLES, some very important flavor and/or 

medicinal compounds were easily identified, including furfural, furfural alcohol, maltol, 

eugenol, 2-methylpyrazine, phenethyl alcohol, 2,6-dimethoxyphenol, and α-terpineol. 

Overall, we confirmed that ICECLES sample preparation followed by GC-MS 

consistently allowed more complete green tea flavor analysis, especially for relatively 

polar compounds, some of which are critical for flavor quality. 
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2.1. Introduction 

Green tea is the second most consumed beverage around the world following 

water [56, 57]. It is made from the leaves of the camellia sinensis plant and has been 

known since ancient times to exhibit beneficial medicinal properties [58-60]. It promotes 

blood circulation, improves liver function, promotes metabolism of various toxins, and is 

more beneficial than beverages that contain large amounts of vitamin C, vitamin E, and 

β-carotene [57, 61, 62]. In addition, numerous studies have shown that consumption of 

green tea is linked to the prevention of certain types of skin, lung, and liver cancers and 

certain cardiovascular diseases [63-67]. The beneficial effects of green tea have been 

attributed to its rich abundance of antioxidant polyphenolic compounds, mainly 

flavonoids [68-78]. Furthermore, green tea contains other compounds that promote 

human health including sterols, vitamins, amino acids, and proteins [58, 70]. 

The distinctive flavors and aromas of green teas are due to the many volatile and 

semivolatile compounds extracted from green tea leaves [79-81]. These compounds 

generally consist of non-terpenoids and terpenoids including alcohols and aldehydes as 

the main source of green tea aroma [1, 82]. Approximately 200 volatile compounds have 

been identified and about 30 of these compounds contribute to green tea flavor [1, 83, 

84]. These compounds play an important role in determining the quality of individual 

green teas [57, 81]. Therefore, the comprehensive analysis of green tea flavor compounds 

is important for researchers and tea producers to understand the makeup, quality, and 

identity of individual green teas [85, 86]. 
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Various methods have been used to identify green tea flavors, including gas and 

liquid chromatography (GC and LC, respectively) with mass spectrometric detection 

(MS). For this type of analysis, sample preparation is vital but sometimes requires 

lengthy processing times, large sample volumes, and significant organic solvent 

consumption [87-89]. The objective of sample preparation for flavor analysis is to 

efficiently extract as many compounds from brewed green tea as possible. Liquid-liquid 

extraction (LLE), simultaneous distillation and extraction (SDE), dynamic headspace 

(DHS), supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), 

microwave-assisted extraction (MAE), solid-phase extraction (SPE), solid-phase micro-

extraction (SPME), and stir bar sorptive extraction (SBSE) have been used to prepare 

green teas for analysis [1, 90, 91]. Although most of these techniques are excellent for 

extracting relatively hydrophobic molecules, they generally suffer from low extraction 

efficiencies for relatively polar compounds. For the few sample preparation techniques 

which are applicable to more polar compounds, they generally extract compounds in a 

relatively narrow polarity range [1, 5, 48]. 

ICE Concentration Linked with Extractive Stirrer (ICECLES) is a novel 

extraction technique that combines freeze concentration (FC) and SBSE. ICECLES was 

first reported in 2016 by Maslamani et al. [53] and showed the ability to increase the 

extraction efficiencies for each compound tested, but works particularly well for more 

polar compounds (log Kow < 3), without sacrificing extraction efficiency for less polar 

compounds (log Kow ≥ 3). Furthermore, because ICECLES is performed at the freezing 

point of the sample, it is excellent for more volatile and thermally labile components. 

ICECLES proved to be an excellent sample preparation technique for trace analysis of 



 

 

25 

pesticides in environmental surface waters and other compounds in aqueous solution, 

producing enhanced LODs and signal enhancements of up to 474 times better than SBSE. 

With the inherent advantages of ICECLES (i.e., excellent performance for more 

polar and more volatile compounds), it appears to be highly complementary to green tea 

flavor analysis. Therefore, the objective of the current study was to evaluate the 

performance of ICECLES towards green tea flavor analysis, with direct comparison to 

SBSE. 

2.2. Materials and Methods 

2.2.1. Materials and standards 

   2.2.1.1. Materials 

Bigelow green tea classic brand bagged tea (CT, USA) was purchased from a 

local market. All tea samples in this study were stored in their original tea bags at room 

temperature before analysis. Acetic acid (C2H4O2, ≥99.7%), 2-propanol (C3H8O, 

≥99.9%), 2-furaldehyde (C5H4O2, 99%), indole (C8H7N, 99+%), benzyl alcohol (C7H8O, 

99%), 2,6-dimethoxyphenol (C8H10O3, 99%), eugenol (C10H12O2, 99%), 2-

methylpyrazine (C5H6N2, 99+%), phenethyl alcohol (C8H10O, 99%), α-terpineol 

(C10H18O, 96%), trans,trans-2,4-hexadienal (C6H8O, 95%), and toluene (C6H5-CH3, 99.5 

%) were purchased from Fisher Scientific (Fair Lawn, NJ, USA). 1-pentanol (C5H12O, 

99%), cis-2-penten-1-ol (C5H10O, ≥96%), theobromine (C7H8N4O2, ≥98), γ-

undecalactone (C11H20O2, ≥98%), 5-(hydroxymethyl)furfural (C6H6O3, ≥99%), maltol 

(C6H6O3 , ≥99%), furfuryl alcohol (C5H6O2, 98%), and benzyladehyde (C7H6O, 99.5%) 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). Purified water was obtained 

from a water PRO PS polisher (Labconco, Kansas City, KS, USA) at a resistivity of 18.2 



 

 

26 

MΩ cm. Stir bars (10 mm length) coated with PDMS (0.5-mm film thickness) were 

obtained from Gerstel, Inc. (Baltimore, MD, USA). 

 2.2.1.2. Standard solutions 

Stock solutions of acetic acid (1 M), benzyl alcohol (1 M), benzyladehyde (1 M), 

toluene (1M), 1-pentanol (1 M), cis-2-penten-1-ol (1M), γ-undecalactone (1 M), maltol 

(10 mM), furfuryl alcohol, theobromine (10 mM), and indole (10 mM) were prepared in 

10 mL of purified water and stored at room temperature. 2-furaldehyde (1 M), phenethyl 

alcohol (1 M), eugenol (1 M), trans,trans-2,4-hexadienal (1 M),  2-methylpyrazine (1 M), 

α-Terpineol (10 mM), 2,6-dimethoxyphenol (10 mM), and 5-(hydroxymethyl)furfural 

(100 mM) were prepared in 10 mL of purified water and stored at 4 ◦C. The stock 

solutions were diluted with purified water to the desired concentration for individual 

experiments. 

2.2.2. Green tea sample preparation 

Tea bags were carefully cut and green tea leaves were removed, weighed (1.25 g), 

and added to 200 mL of boiling water for 5 min. The solution, now yellowish-green, was 

covered with a watch glass and cooled for one hour at room temperature. The prepared 

green tea was then divided into four portions, each placed into a 50 mL capped vial, and 

centrifuged for 5 min at 3000 rpm. Carefully, a 10 mL aliquot of the supernatant was 

transferred into a 24 mL capped glass vial. Prepared green tea samples were then 

immediately extracted via ICECLES and SBSE. 

2.2.3. ICECLES sample preparation 

ICECLES was performed as previously presented [53] with minor modifications. 

An aliquot (10 mL) of prepared green tea, a standard solution, or blank was added to a 24 
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mL glass vial along with a PDMS-coated stir bar. The vial was capped and placed into an 

ICECLES apparatus, as shown in Figure 2.1. ICECLES was performed with coolant 

temperature (to modify the freezing rate) of -7, -5, and -3 oC, while stirring at 1200 rpm. 

After optimization of the freeze temperature, -5oC was used for the remainder of the 

study. The green tea sample froze gradually from the bottom to the top of the vial until 

the entire solution was frozen. After extraction was complete, the stir bar, now located on 

top of the ice near the top of the vial, was magnetically removed with a clean Teflon-

coated stir bar. Gently, the stir bar was dried using a clean lab wipe and then placed into a 

glass thermal desorption (TD) tube. It should be noted that care must be used in vial 

selection or the sorptive stir bars can be damaged if rounded bottom vials are used 

because of the high stir rate [53]. 

2.2.4. mICECLES sample preparation 

In this study, a multiple-stir bar (mICECLES) method was used to provide 

stronger signals for some compounds, which afforded easier identification of green tea 

components. For mICECLES, five individual green tea samples were prepared via 

ICECLES as described above and analyzed via TD-GC-MS in a multi-desorption mode. 

In mICECLES, the extractable green tea components in each stir bar was extracted using 

thermal desorption (TD) and held into cooled injection system (CIS). 

2.2.5. Gas chromatography-mass spectrometry  

Each prepared stir bar was extracted using a thermal desorption unit (TDU) 

equipped with an MPS 2 auto-sampler and a CIS 4 programmed temperature vaporization 

(PTV) inlet (Gerstel, Baltimore, MD, USA). The Gerstel autosampler was coupled to an 

Agilent Technologies 7890A gas chromatograph and a 5975C inert XL electron 
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ionization (EI)/chemical ionization (CI) mass selective detector (MSD) with triple-axis 

detector. Separation was performed on an HP-5MS capillary column (30 m x 250 µm x 

0.25 µm). Following ICECLES, the glass thermal desorption tube containing the stir bar 

was placed into the thermal desorption unit. All prepared stir bars were thermally 

desorbed by performing a temperature gradient from 40 ◦C (held for 1 min) to 250 ◦C 

(held for 1.5 min) at 720 ◦C/min in splitless TDU mode. After desorption, compounds 

were cryo-trapped onto a deactivated cooled injection system (CIS) glass liner (filled 

with quartz wool) at -100 ◦C via liquid nitrogen. The PTV-CIS temperature was 

increased from -100 ◦C (held for 0.20 min) to 250 ◦C (held for 1.5 min) at 12◦C/s using 

PTV solvent-vent mode with a purge flow of 50 mL/min (held for 1.5 min) to transfer 

compounds to the analytical column. The GC oven was held constant at 40 ◦C for 1 min 

and slowly increased to 250 ◦C (held for 3 min) at 5 ◦C/min within a 46-min 

chromatographic runtime. The mass spectrometer was operated in EI mode at 70 eV and 

a scan range from 35 to 550 m/z. The mass spectrometer source temperature was 230 ◦C 

and the quadrupole temperature was 150 ◦C. Helium was used as the carrier gas at a flow 

rate of 1 mL/min and a pressure of 7.07 psi.  

2.2.6. Identification of green tea components 

Each peak in the ICECLES chromatogram was analyzed by comparing the mass 

spectrum of the compound with those of the National Institute of Standards and 

Technology (NIST) mass spectra reference database (the NIST/EPA/NIH Mass Spectral 

Library, Version 2.0d, 2005). Where possible, identification was supported by 

comparison of the mass spectra in mICECLES and/or SBSE of components with the 
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same retention time. Furthermore, some green tea compounds were definitively 

confirmed by ICECLES analysis of an aqueous solution of a spiked standard compound. 

The retention time and mass spectra of the spiked standards were compared to those of 

the unknown green tea compounds to confirm their identity. In this study, all standards 

were prepared and analyzed simultaneously with green tea samples to eliminate day-to-

day differences in retention times. To avoid run-to-run error, bias, and sorptive stir bar 

variability, green tea sample analysis via both ICECLES and SBSE was performed in 

nonuplicate under the same conditions and the chromatographic data was averaged. 

Automated peak selection was performed using MSD chemstation software from Agilent 

Technologies, Inc by setting the peak threshold to 16.1, initial area reject at 1, peak width 

to 0.02 minutes, and shoulder detection was off. 

To consider a green tea constituent definitively identified, the retention time and 

the ion masses of the target green tea compound and the standard were matched. 

Moreover, an aqueous standard of the compound, analyzed alongside brewed green tea, 

was required to produce the same retention time (±0.1s) and identical MS fragmentation. 

All peaks which were not definitively identified were classified based on their probability 

of a spectrum match via the NIST reference database as follows: if the probability range 

was between 0-40, the compound classified was as unknown, if the probability range was 

between 41-70, the compound was classified as a medium probability, if the probability 

range was between 71-100 the match was classified as a high probability. Additionally, if 

the abundance of all mass spectrum fragments for the compound (minus the blank mass 

spectrum at that retention time) matched within 1% of the experimental mass fragment 

abundances and all fragments from the experimental mass spectrum at ≥15% of the base 
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peak were also present in the NIST library, the match was classified as a high probability.  

2.3. Results and discussion 

2.3.1. ICECLES sample preparation 

ICECLES is an elegant sample preparation technique where samples are frozen 

while rapidly stirred with a sorptive stir bar to concentrate the sample components in the 

remaining aqueous layer and stir bar for follow-on analysis. As more of the liquid sample 

is frozen, concentration factors and extraction efficiencies can be become greatly 

enhanced. The advantages of ICECLES (i.e., higher extraction efficiencies, especially for 

more polar compounds, and ability to analyze more volatile and thermally labile 

compounds) are well-aligned with the main goal of green tea flavor analysis, 

comprehensive identification of green tea components.  

In this study, ICECLES successfully preconcentrated the green tea components 

into a small volume. Before performing ICECLES, the components of green tea, 

including polar and nonpolar components, were distributed throughout the sample 

solution (Figure 2.1A). Green tea components initially equilibrate with the PDMS-stir 

bar, which is the same as with SBSE. The affinity of a PDMS-coated stir bar for nonpolar 

components leads the hydrophobic components (i.e., generally log Kow ≥3) to prefer the 

PDMS-coated stir bar over the aqueous green tea solution whereas the more polar 

components prefer the aqueous environment of the sample. During ICECLES, the sample 

is concentrated in progressively smaller aqueous volumes (Figures 2.1B and 2.1C). When 

the sample becomes almost completely frozen, the green tea components, including more 

polar ones, are concentrated into a very small volume at the top of the vail. This is clearly 

demonstrated in Figure 2.1 by the dark ring at the top of the prepared green tea sample 
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and the almost clear ice below it in Figure 2.1C. This concentration leads to a change in 

the equilibrium which encourages green tea components, even more polar ones, to 

concentrate into the PDMS-coated stir bar. 

Figure 2.1 Green tea extraction via ICECLES sample preparation. The schematic and 
photographs show sample preparation before (A), during (B), and after (C) ICECLES. 
The green tea solution in (A) is clearly concentrated in a small volume of solution as the 
solution is progressively frozen from the bottom of the vial (B + C). After performing 
ICECLES, green tea components are concentrated in a sorptive stir bar (C) and analyzed 
by TD-GC-MS. 
 

2.3.2. Extraction of green tea components 

ICECLES was performed at different temperatures (or freeze rates) to determine 

the temperature that produced the best green tea extraction. The extraction efficiency 
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increased as the temperature increased from -7◦C to -3◦C. Although -3 ◦C produced better 

extraction, sample preparation took 14 hours (overnight). Therefore, since ICECLES 

sample preparation at -5 ◦C gave very similar extraction efficiencies to -3 ◦C, but was 

complete within 5.5 hrs, -5◦C was used for the remainder of the study. Figure 2.2 shows 

the average total ion chromatograms comparing ICECLES and SBSE from nine samples 

each. Log Kows of the green tea compounds [48, 53, 92-101], retention times, and signal 

enhancements are also reported in Table S1. It is evident that signals for most 

components of the ICECLES prepared samples are larger than for SBSE, especially over 

the first 15-20 minutes of the chromatograms. Moreover, when using automated 

integration, the average number of components found with ICECLES was 301 peaks, not 

counting those peaks attributable to components in the blank, while the average number 

of peaks for SBSE was 245 peaks. A large number of green tea components observed in 

ICECLES were not detected in the SBSE prepared sample (i.e., 56). All green tea 

components that were detected only via ICECLES are reported in the supporting 

information (Table S2).  

Except four components (107, 296, 297, and 300; see supporting information Table S1), 

signal enhancements were above 1 for each green tea component. As observed in Figure 

2.2 and Table S1, high signal enhancements in ICECLES are primarily seen for higher 

polarity compounds, log Kow < 3. When components have low polarity, ICECLES and 

SBSE show similar extraction efficiencies. It is interesting to note that some green tea 

components present only in the ICECLES chromatogram have log Kow ≥ 3 (Table S2). This 

is likely because of their relatively small concentrations, necessitating the high 

concentration factors afforded by ICECLES in order to be detected.
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Figure 2.2 Total ion chromatograms of ICECLES and SBSE prepared green tea samples. As clearly shown in the first 15-20 
minutes, ICECLES extracts the vast majority green tea components more efficiently than SBSE.
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2.3.3. Compound identification 

Multi-stir bar ICECLES (mICECLES) can be used to increase signals by 

preparing samples via ICECLES simultaneously, thermally extracting each in sequence 

and trapping the extracted compounds in a cooled injection source liner. The mICECLES 

method improved the identification probability of components up to 5 times. Moreover, 

mICECLES allowed detection of some components which were not detectable via a 

single green tea sample prepared with ICECLES. Where possible, components of 

ICECLES prepared green tea were definitively confirmed by standards (Table S1). Figure 

2.3 shows an example of definitively identified furfural. Both furfural’s retention time 

and mass spectra from the standard match the furfural detected using ICECLES.  

Figure 2.3 Example of definitively identified compound. A) GC-MS chromatogram of 
furfural extracted via ICECLES and confirmed with its standard, B) mass spectrums of 
furfural in green tea sample and furfural standard. 
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Table S1 shows the assigned identification probability with 19 compounds 

definitively identified, 87 compounds with a high probability of identification, and 9 

compounds with a medium probability.  

2.3.4. Important flavor compounds detected by ICECLES 

ICECLES was able to detect many compounds which were not detectable by 

SBSE (i.e., 56 compounds). Four examples are shown in Figure 2.4. Aldehydes like 

furfural, 5-(hydroxymethyl)furfural (5-HMF), and (E,E)-2,4-hexadienal (Figure 2.4A, 

2.4B, and 2.4C, respectively) make up a major group of compounds which proved 

difficult to detect via SBSE, but can be readily seen via ICECLES. This group of 

compounds is important for flavor and likely gives green tea its distinctive flavor [102]. 

Furfural and 5-HMF have a caramel flavor and are present in the Maillard reaction as an 

intermediate product, likely adding to the flavor quality of green tea [103, 104]. 

Furfuraldehydes have been used for assessing food quality to test the misuse of 

temperature and poor storage conditions in drinks such as juices and infant milks [104-

106]. Another aldehyde, (E,E)-2,4-Hexadienal has a citrus odor and is used as a food 

additive, a fragrance agent, or as a starting material in pharmaceutical industries [107]. 

Pyrazine derivatives in green tea such as methyl pyrazine (Figure 2.4D) and 2,5-

dimethylpyrazine are heterocyclic compounds with nutty like odor/flavor. As shown in 

Table S2 and Table 3, one green tea alcohol that was extracted via ICECLES but was 

absent in from SBSE was phenylethyl alcohol. This compound is widely consumed in 

food as a flavor component and is also used as ingredient for perfumes to produce a rose 

smell [108, 109]. Maltol (Table S2) is another flavor compound which found in green tea 

which does not have a remarkable odor at small concentration but is used as a potent 
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flavor enhancer in different types of foods [110].Maltol is widely consumed as a food 

additive due to its contribution to the fragrance of a variety of foods and beverages. It is 

also used in combination with other components in synthetic perfumes to produce a 

caramel smell [111]. 

Figure 2.4 Examples of green tea components extracted via ICECLES, but undetectable 
via SBSE. A) furfural, B) 5-(hydroxymethyl)furfural, C) E,E-2,4-hexadienal, and D) 
methylpyrazine. 
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2.3.5. Important medicinal compounds detected by ICECLES 

Beside components important for flavor, green tea contains medicinal 

components, including antimicrobial agents and potent antioxidants. Green tea contains 

several terpenoid and phenolic compounds which were only extracted via ICECLES. 

Terpenoids such as α-terpineol (i.e., extracted via ICECLES, Table S2) have been shown 

to have antibacterial effects against periodontal diseases and cariogenic bacteria [112]. 

Eugenol is a phenolic compound that acts as an antioxidant and an anti-inflammatory 

agent. It inhibits lipid-peroxidation and can treat many diseases caused by the presence of 

hydroxyl radicals, such as atherosclerosis, cancer and neurological disorders [113, 114]. 

In addition, both α-terpineol and eugenol have been used as natural antifungal agents 

[115, 116]. Syringol is an antioxidant compound which was also detected by ICECLES 

alone. Syringol is one of the main components of pyroligneous acid complex (i.e., 

pyroligneous acid is a complex mixture of syringol, sugar, water, aldehydes, ketones, and 

carboxylic acids) and has been used as sterilizing agent and antimicrobial agent [117]. 

Although pyrazine derivatives are used as food additives, some medicinal research 

proved these compounds to have pharmacological actions. For example, methyl pyrazine 

has been found to have a beneficial pharmacological effect, especially for tuberculosis 

[118-120]. Phenylethyl alcohol is also effective inhibiting agent for Gram-negative 

bacteria [121]. 

Although most green tea components with pharmacological effects are beneficial, 

some have shown toxicity. For example, according to the Flavor and Extract 

Manufacturers Association (FEMA) and National Cancer Institute (NIH), (E,E)-2,4-

hexadienal is carcinogenic (LD50 270 µL/kg) [107, 122]. Furthermore, maltol causes 



 

 

38 

several pains including headache and can produce nausea and vomiting, and impacts the 

functions of liver and kidney at high concentrations (above 200 mg kg−1)  [110, 111]. 

 

Table 2.1 Some important green tea components only detected via ICECLES. 

a Boiling point   
*log Kow values were calculated by using the difference between a logP value of known compound and the 
query compound then estimated by an additive model with well-defined correction factors [100]. 
**log Kow values were calculated by using an atom/fragment contribution method via KOWWIN™ program 
[101]. 

 

Peak No. Name Odor Log 
Kow 

 B.Pa  

(°C) 

 
Alcohol 

14 

 
 

1-Pentanol 

 
 

Fruit 

 
 

1.33 

 
 

137.5 
15 2-Penten-1-ol, (Z) Rubber 0.9* 138 
84 Phenylethyl Alcohol Rose 1.57 218 
105 

 
 

Heterocyclic 

3-Cyclohexene-1-methanol, a,a4-
trimethyl 

(α-Terpineol) 

Floral 3.28 218-221 

21 Pyrazine, methyl (Methyl pyrazine) Nut 0.49 135 
38 
 

Aldehyde 

Pyrazine, 2,5-dimethyl 
(2,5-dimethylpyrazine) 

Nut 1.03 155 

22 Furfural Caramel 0.83 161 
37 (E,E)-2,4-Hexadienal Citrus 1.37** 174 
111 

 
 

Ketone 

2-Furancarboxaldehyde, 5-
(hydroxmethyl) 

(5-(Hydroxymethyl)furfural) 

Caramel -0.09** 114-116 

82 Maltol Caramel 0.02 93 
91 
 

Ester 

2,6,6-Trimethyl-2-cyclohexene-1,4-
dione (Ketoisophorone) 

Floral 1* 222 

95 Acetic acid, phenylmethylester 
(Benzyl acetate) 

Fruit 1.96* 213 

66 
 

Phenol 

2-(3H)-Furanone, 5-heptyldihydro 
(γ-Undecalactone) 

Fruit 0.7* 219 

136 Phenol,2,6-dimethoxy 
(Syringol) 

Phenol 1.1* 261 

138 Eugenol Clove 2.49 254 
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2.4. Conclusion 

 ICECLES proved to be well-suited for food flavor analysis of green tea and was 

more efficient for flavor analysis than SBSE for extraction for most green tea 

components, especially for more polar compounds (log Kow < 3). Signal enhancements 

were above 1 for ICECLES for the vast majority of green tea components. Moreover, 

ICECLES allowed detection of 56 more constituents than SBSE, some of which were 

important flavor and/or medicinal compounds. 
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3. Chapter 3. Conclusions and Future Work 

3.1. Conclusions 

In this study, the new sample preparation technique, ICECLES, was used to 

prepare green tea for analysis of flavor compounds and was compared to SBSE. 

ICECLES extracted 301 constituents as compared to 245 for SBSE with 56 compounds 

only detectable via ICECLES. Some of these compounds were very important for flavor 

or medicinal properties of green tea. For example, 1-pentanol, (E,E)-2,4-hexadienal, 

furfural, furfural alcohol, maltol, eugenol, 2-methylpyrazine, phenethyl alcohol, 2,6-

dimethoxyphenol, and α-terpineol were identified via ICECLES where SBSE did not 

allow detection. Many of these compounds were identified with the help of the National 

Institute of Standards and Technology (NIST) mass spectra reference database (2005) 

and, where possible, standards were used for confirmation. Overall, ICECLES proved to 

be an excellent extraction technique for analysis of green tea due to its multiple 

advantages, which include the ability to extract relatively polar compounds, simplicity, 

and high extraction efficiencies. However, ICECLES still has some drawbacks that need 

to be overcome, including long extraction times (i.e., 5.5 hrs), long conditioning times for 

the sorptive stir bars, and the sample volume limit of 10 mL. 
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3.2. Future Work 

 Green tea is made up of multiple components, and the quality of green tea 

depends on the identity and concentration of these components. With the inherent 

advantages of ICECLES, determination of the LOD for some important flavor, medicinal, 

and toxic compounds in green tea are needed. Moreover, optimization of ICECLES to 

reduce the total extraction time is necessary. 
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APPENDIX AND SUPPORTING MATERIAL 

Appendix 1. 

 

A.1.1. Table S1. Green tea components with the corresponding identification, log Kow, 

and signal enhancement, and (common names). 

A.1.2.  Table S2. Green tea components extracted only by ICECLES with the 

corresponding retention time, identification, log Kow, and boiling point. 
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Table 00.1. Green tea components with the corresponding identification, log Kow, and 
signal enhancement, and (common names). 

Peak 
No. Name RTa IDb Log 

Kow 
Signalc 

SEd ICECLES SBSE 

1 Propanoic acid, chloro-
2-hydroxy 2.12 MP 0* 326557 0 NA 

2 Threo-4-Hydroxy-L-
homoarginine lactone 2.34 HP  594690 174609 3.40 

3 Propane, 2-ethoxy-2-
methyl 2.46 HP 1.92** 319468 0 NA 

4 Acetic acid 2.78 DI -0.17 3062786 603397 5.07 
5  2.86 UK  599352 189323 3.16 
6  3.07 UK  1318266 120612 10.92 
7 Pentanal 3.21 HP 1.31 3522124 185174 19.02 
8  3.65 UK  109103 0 NA 
9  3.77 UK  222513 0 NA 
10  3.87 UK  145901 0 NA 
11 2-Pentanal, (E) 4.04 HP  1779267 155760 11.42 
12  4.14 UK  280330 76079 3.68 
13 Toluene 4.23 DI 2.69 499814 270270 1.84 
14 1-Pentanol 4.26 DI 1.33 632067 0 NA 
15 2-Penten-1-ol, (Z) 4.31 DI 0.9* 605861 0 NA 
16  4.55 UK  342383 0 NA 
17  4.61 UK  295275 123634 2.38 
18 Hexanal 4.85 HP 1.80 6264675 1557444 4.02 
19  5.00 UK  147553 0 NA 
20  5.07 UK  139146 0 NA 

21 Pyrazine, methyl 
(Methyl pyrazine) 5.40 DI 0.49 212283 0 NA 

22 Furfural 5.53 DI 0.83 652725 0 NA 
23 2,4-Dimethyl-1-heptene 5.71 HP 4.4* 583900 221161 2.64 

24 1-Hexene-3-yne, 2,5,5-
trimethyl 5.79 HP 3.8* 241821 152565 1.58 

25 2-Hexenale 5.85 HP 1.5* 173703 48753 3.56 
26 2-Hexenale 6.03 HP 1.5* 4678468 736077 6.35 

27 2-Furanmethanol 
(Furfural alcohol) 6.14 DI 0.45 640330 0 NA 

28  6.34 UK  104357 0 NA 
29  6.43 UK  368507 102319 3.60 
30  6.72 UK  162838 0 NA 
31  6.81 UK  148768 43603 3.41 
32  6.92 UK  768043 0 NA 
33  7.08 UK  768043 0 NA 
34 4-Heptenal,(Z) 7.20 HP 1.4* 1238977 699318 1.77 
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S1. Continued 
Peak 
No. Name RTa IDb Log 

Kow 
Signalc SEd ICECLES SBSE 

35 Heptanal 7.27 HP 2.29 1136474 475986 2.38 

36 1-Pentanone, 1-(3-
Furnayl)-4-Hydroxy 7.44 HP  284242 0 NA 

37 2,4-Hexadienal, (E,E) 7.49 DI 1.37** 588011 0 NA 

38 Pyrazine, 2,5-dimethyl 
(2,5-dimethylpyrazine) 7.54 HP 1.03 611607 0 NA 

39 2-Cyclopentene-1-one, 
2-hydroxy 7.87 MP 0.4* 326455 0 NA 

40  7.98 UK  134963 59562 2.26 

41 2,5-Dimethylhexane-2,5-
dihydroperoxide 8.09 HP 0.9* 1000326 237751 4.20 

42 2-Heptanone, 4-methyl 8.21 HP 2.3* 613183 275592 2.22 

43 

5-(3,7-Dimethylocta-2,6-
dienyl)-4-methyl-2,3 

dihydrothiophene 1,1-
dioxide 

8.34 MP  138650 0 NA 

44  8.70 UK  153050 65213 2.34 
45 2-Heptenal, (Z) 8.79 HP 2.1* 553156 287119 1.92 

46            
Benzaldehyde 8.94 DI 1.48 4404536 493092 8.9 

47  9.12 UK  466290 88367 5.27 
48  9.19 UK  389617 72116 5.40 
49  9.29 UK  346181 0 NA 
50  9.38 UK  285813 168240 1.69 
51  9.48 UK  882542 130310 6.77 

52 5-Hepten-2-one, 6-
methyl 9.60 HP 1.9* 2261549 1452586 1.55 

53  9.65 UK  2735891 0 NA 

54 
3-Cyclohexen-1-ol, 1-

methyl-4-(1-methylethyl) 
(1-Terpineol) 

9.76 HP  597526 286311 2.08 

55 2,4-Heptadienale 9.98 HP 1.6* 9079686 2122570 4.27 
56 4-Bromoheptane 10.07 HP 3.6* 709099 298221 2.37 
57 Octanal 10.16 HP 2.78 457311 374965 1.21 
58 2,4-Heptadienale 10.42 HP 1.6* 9603923 2453768 3.91 
59  10.59 UK  992998 0 NA 
60 1-Hexanol, 2-Ethyl 10.91 MP 3.1* 1049786 267347 3.92 
61  10.99 UK  625168 71145 8.78 
62 Benzyl Alcohol 11.07 DI 1.1 2179193 211717 10.29 
63  11.18 UK  420638 130489 3.22 
64 Benzenacetaldehyde 11.35 HP 1.8* 2304409 290558 7.93 
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 S1. Continued 

 
 

Peak 
No. Name RTa IDb Log 

Kow 
Signalc 

SEd ICECLES SBSE 

65 1H-pyrrole-2 
carboxaldehyde, 1-ethyl 11.45 HP 0.8* 900733 164244 5.48 

66  11.56 UK  386129 0 NA 
67  11.63 UK  684595 161833 4.23 
68  11.70 UK  463239 98802 4.68 
69 2-Octenal, (E) 11.79 HP 2.6* 1433745 808777 1.77 

70 Ethanone,1-(1H-pyrrol-2-
yl) 11.91 HP 0.9* 1018258 150579 6.76 

71 Acetophenone 11.98 HP 1.58* 1358595 242659 5.59 
72 3,5-Octadien-2-one 12.11 HP 1.8* 4953909 1726768 2.86 
73  12.18 UK  954123 324157 2.94 

74 
1-3’s-Hydroxy-2’R-

butoxy(methyl)thymine, 
1’ethylhydrogenphosphate 

12.30 MP  729470 80187 9.09 

75  12.38 UK  980750 170564 5.75 

76 Benzaldehyde, 4-methyl 
(p-Tolualdehyde) 12.52 HP 2.26** 637268 133099 4.78 

77 
a-Methyl-a(4-methyl-

3pentenyl)oxirane 
methanol 

12.66 HP  487326 106636 4.56 

78 3,5-Octadien-2-one(E,E) 12.82 HP 1.8* 1917051 584176 3.28 

79 1,6-Octadien-3-ol, 3,7-
dimethyl (Linalool) 13.05 HP 3.38 1230696 353165 3.48 

80 Ethanone, 1-(2-mehtyl-1-
cyclopenten-1-yl) 13.11 HP 1* 3175588 751934 4.22 

81 Nonanal 13.18 HP 3.27 1373071 1186906 1.15 
82 Maltol 13.25 DI 0.02 520624 0 NA 

83 3,4-
Dimethylcyclohexanol 13.34 HP 2* 1550458 324494 4.77 

84 Penylethyl alcohol 13.39 DI 1.57 2888171 0 NA 
85  13.64 UK  354784 94908 3.73 
86  13.75 UK  229449 0 NA 
87  13.89 UK  366731 67901 5.40 

88 2,5-Pyrrolidinedione, 1-
ethyl(N-ethylsuccinimide) 13.97 HP -0.5* 353457 0 NA 

89 Benzene, 1-isocyano-2-
methyl 14.11 HP  896037 0 NA 

90 
4H-pyran-4-one, 2,3-

dihydro-3,5-dihydroxy-6-
methyl 

14.26 HP -0.4* 2074374 0 NA 
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Peak 
No. Name RTa IDb Log 

Kow 

Signalc 

SEd ICECLE
S SBSE 

91 
2,6,6-Trimethyl-2-

cyclohexene-1,4-dione 
(Ketoisophorone) 

14.34 HP 1* 655810 0 NA 

92 2,6-Nonadienal, (E,E) 14.57 HP 2.2* 429920 235236 1.82 

93 2-(1,5-Dimethyl-hexyl)-
cyclobutanone 14.70 HP  557684 187984 2.96 

94 2-Nonenal, (E) 14.78 HP 3.1* 530948 314804 1.68 

95 Acetic acid,phenylmethyl 
ester (Benzyl acetate) 14.85 HP 1.96* 653684 0 NA 

96  14.90 UK  565165 160177 3.52 
97  15.01 UK  736826 178426 4.12 
98  15.16 UK  864139 218361 3.95 
99  15.22 UK  1143442 0 NA 

100 
Cyclohexanol, 5-methyl-2-

(1-mehtylethyl)-,(1R-
(1a,2ß,5a)) 

15.34 HP 3* 1075905 418752 2.56 

101  15.42 UK  370345 93849 3.94 
102  15.51 UK  761125 408761 1.86 
103  15.59 UK  292968 0 NA 
104 Methylsalicylate 15.72 HP 2.55* 884496 352577 2.50 

105 
3-Cyclohexene-1-methanol, 

a,a4-trimethyl 
(α-Terpineol) 

15.84 DI 3.28 584226 0 NA 

106 
1,3Cyclohexdiene-1-
carboxaldehyde,2,6,6-
trimethyl (Safranal) 

15.93 HP 2.1* 700311 339824 2.06 

107  16.14 UK  666289 816535 0.81 
108  16.32 UK  110625 0 NA 
109 Benzofuran, 2,3-dihydro 16.41 MP 2.1* 1183997 389996 3.03 

110 
1-Cyclohexene-1-

carboxaldehyde,2,6,6-
trimethyl (b-Cyclocitral) 

16.51 HP 2.4* 943863 625920 1.50 

111 
2-Furancarboxaldehyde, 5-
(hydroxmethyl) 
(5(Hydroxymethyl)furfural) 

16.64 DI -0.09** 1064983 0 NA 

112 1H-Pyrrole-2,5-dione, 3-
ethyl-4-methyl 16.84 HP 0.5* 1110710 0 NA 

113  16.92 UK  581964 170181 3.41 
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 S1. Continued 
Peak 
No. Name RTa IDb Log 

Kow 
Signalc SEd ICECLES SBSE 

114 

ß-D-Glucopyranose, 1-thio-
,1-(N-

hydroxybenzenepropanimid
ate) 

17.00 HP  594384 0 NA 

115  17.05 UK  683926 302507 2.26 

116 
2-Cyclohexen-1-one,2-

methyl-5-(1-mehtylethnyl)-
,(s) 

17.21 HP 2.5* 2426393 1043790 2.32 

117 Benzene, 1,3-bis(1,1-
dimethylethyl) 17.31 HP 5.8* 816544 549630 1.48 

118 2,6-Octadien-1-ol, 3,7-
dimethyl (Geraniol) 17.37 HP 3.56 2067464 699953 2.95 

119   Acetic acid, 2 phenylethyl 
ester(Phenethyl Acetate) 17.47 HP 2.57 1249730 393329 3.17 

120  17.57 UK  416422 182322 2.28 
121  17.70 UK  870393 462088 1.88 
122  17.79 UK  558326 0 NA 

123 2,6-Octadienal,3,7-
dimethyl (Citral) 17.85 HP 3.45

** 1439562 872031 1.65 

124 Nonanoic acid 17.99 HP 3.42 3283367 101698
9 3.22 

125 
Cyclohhexene, 3-methyl-6 (1-

methylethenyl)-,(3Rtrans) 
( (1R)-(+)-trans-

Isolimonene) 

18.24 HP 4* 3046178 1603812 1.89 

126 Indole 18.49 DI 2.05 2653432 812730 3.26 
127 2,4-Decadienal, (E,E) 18.61 HP 3.2* 997011 744643 1.33 

128 Azetidine, 1-chloro-
2-phenyl 18.70 HP 2.3* 1148382 303461 3.78 

129  18.91 UK  987225 188491 5.23 
130  18.98 UK  629342 0 NA 
131  19.11 UK  438505 224649 1.95 

132  19.25 UK  3574110 230271
6 1.55 

133 Furan, 2,3-dihydro-3methyl 19.39 HP 1.1* 1031933 0 NA 
134  19.60 UK  230455 0 NA 
135  19.78 UK  3211291 1006247 3.19 

136 Phenol,2,6-dimethoxy 
(Syringol) 19.94 DI 1.1* 498756 0 NA 
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 S1. Continued 
Peak 
No. Name RTa IDb Log 

Kow 
Signalc SEd 

ICECLES SBSE 
137  20.05 UK  1633174 449165 3.63 
138 Eugenol 20.12 DI 2.49 1499645 0 NA 
139  20.23 UK  1011734 314468 3.21 

140 
2(3H)-Furanone, dihydro-

5-propyl 
(g-Heptalactone) 

20.32 HP 1.1* 1605933 495029 3.24 

141 n-Decanoic acid 20.59 HP 4.09* 1614418 482623 3.34 
142  20.68 UK  2036914 587289 3.46 
143  20.88 UK  1307575 727557 1.79 
144  20.98 UK  788196 357363 2.20 

145 
2-Cyclopenten-1-one, 3-
methyl-2-(2-pentenyl)-

,(Z) (cis-Jasmone) 
21.22 HP 3.55 1287030 698859 1.84 

146  21.32 UK  691415 121391 5.69 
147  21.46 UK  771748 202260 3.81 

148 
2,4,7,9-Tetramethyl-5-

decyn-4,7-diol (Surfynol 
104) 

21.67 HP 2.7* 4398238 1640929 2.68 

149  21.86 UK  465316 225800 2.06 

150 
3-Buten-2-one, 4-(2,6,6-
trimethyl-2-cyclohexen-

1-yl) (β-Ionone) 
21.98 HP 3.84 1889633 1604913 1.17 

151 Megastigmatrienone 22.11 HP 2.6* 1224327 845086 1.44 

152 2H-benzopyran-2-one 
(Coumarin) 22.28 HP 1.51 1086358 302054 3.59 

153 
Butane, 1,1’-(oxybis(2,1-
ethanediyloxy))bis (Butyl 

diglyme) 
22.36 HP 1.9* 819636 350466 2.33 

154  22.51 UK  687751 167840 4.09 
155  22.61 UK  3225534 2293840 1.40 
156  22.72 UK  670998 175181 3.83 
157  23.04 UK  732816 317852 2.30 
158  23.17 UK  485036 219904 2.20 
159  23.33 UK  787210 432129 1.82 

160 
3-Buten-2-one, 4-(2,6,6-
trimethyl-1-cyclohexen-

1-yl) (a-Ionone) 
23.41 HP 3.85 4101447 3866645 1.06 

161 
6-Methyl-6-(5-

methylfuran-2-yl)heptan-
2-one 

23.49 HP 2.9* 6947821 2744368 2.53 

162  23.65 UK  2380989 714319 3.33 
163  23.84 UK  757213 296352 2.55 
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 S1. Continued 
Peak 
No. Name RTa IDb Log 

Kow 
Signalc SEd 

ICECLES SBSE 
164  23.97 UK  658129 207821 3.16 

165 Phenol,2,4-bis(1,1-
dimehtylethyl) 24.11 HP 4.9* 1474134 1234137 1.19 

166  24.25 UK  2585816 1762767 1.46 
167  24.37 UK  2510834 2170812 1.15 
168  24.41 UK  2154569 0 NA 

169 

2(4H)-Benzofuranone, 
5,6,7,7a-tetrahydro-

4,4,7a-trimethyl 
(Dihydroactinidiolide)e 

24.64 HP 2.2* 14023403 3621186 3.87 

170 

2(4H)-Benzofuranone, 
5,6,7,7a-tetrahydro-

4,4,7a-trimethyl 
(Dihydroactinidiolide)e 

24.72 HP 2.2* 14803638 9163687 1.61 

171  24.8 UK  234934 167444 1.40 
172  24.94 UK  320857 0 NA 
173  25.01 UK  446864 189955 2.35 
174  25.06 UK  512241 222187 2.30 
175  25.11 UK  580779 253955 2.28 
176  25.23 UK  562957 289299 1.94 
177  25.29 UK  650833 358660 1.81 
178  25.41 UK  5418815 3978197 1.36 
179  25.51 UK  2513703 702837 3.57 

180 
2-(3H)-Furanone, 5-

heptyldihydro 
(γ-Undecalactone) 

25.63 DI 0.7* 803114 0 NA 

181  25.76 UK  786682 342842 2.29 

182 
3,5,9-Undecatrien-2-

one, 6,10-dimethyl(E,E) 
(Geranyl acetone) 

25.88 HP 3.7* 925394 674011 1.37 

183  26.07 UK  521235 295649 1.76 
184  26.12 UK  635640 381016 1.66 
185  26.23 UK  611241 278611 2.19 
186  26.31 UK  386355 230212 1.67 
187  26.39 UK  627479 329167 1.90 
188  26.43 UK  585097 341268 1.71 
189  26.51 UK  437439 247873 1.76 

190 

1H-3a,7-Methanozulen-
5-ol, octahydro-3,8,8-
trimethyl-6-methylene 

(cedrenol) 

26.59 HP  562766 338959 1.66 
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S1. Continued 
Peak 
No. Name RTa IDb Log 

Kow 
Signalc SEd 

ICECLES SBSE 
191  26.66 UK  563662 188765 2.98 
192  26.79 UK  1158898 361815 3.20 
193 Benzophenone 26.95 HP 3.18* 608991 356357 1.70 
194  26.99 UK  654308 232996 2.80 
195  27.09 UK  422355 233075 1.81 
196 Methyl jasmonate 27.26 HP 2.76** 1492808 638455 2.33 
197  27.32 UK  540480 285647 1.89 
198  27.41 UK  473576 226675 2.08 
199  27.53 UK  535516 180240 2.97 
200 3-Oxo-ß-ionone 27.63 MP  1262551 590540 2.13 
201  27.75 UK  381265 0 NA 
202  27.86 UK  566052 278802 2.03 
203  27.92 UK  460932 262313 1.75 
204  28.04 UK  388474 281759 1.37 
205  28.21 UK  976963 405207 2.41 
206 Sulforidazine 28.49 HP 4.6 8536864 6899045 1.23 
207  28.66 UK  537255 333563 1.61 
208  28.74 UK  367146 225465 1.62 
209  28.89 UK  416555 243678 1.70 

210 
2H-1-Benzopyran-2-

one, 7-methoxy 
(7-Methoxycoumarin) 

29.03 HP 1.9* 1287063 713482 1.80 

211 
3-Methylbut-2-enoic 

acid, 3,4-
nitrophenylester 

29.17 HP 2.9* 5792412 2832466 2.04 

212  29.23 UK  577000 331736 1.73 
213 9H-Fluoren-9-one 29.34 HP 3.58* 671573 515301 1.30 
214  29.50 UK  474041 301740 1.57 
215  29.55 UK  430227 261241 1.64 
216  29.83 UK  1177507 985815 1.19 
217  29.97 UK  668632 311776 2.14 
218  30.11 UK  333686 194878 1.71 
219  30.29 UK  304399 209822 1.45 
220  30.36 UK  469796 386224 1.21 
221  30.43 UK  275276 237818 1.15 
222  30.46 UK  279767 192733 1.45 
223  30.59 UK  314139 227929 1.37 
224  30.68 UK  386923 234226 1.65 
225  30.77 UK  311175 184435 1.68 
226  30.86 UK  485593 281384 1.72 
227  30.94 UK  366852 225900 1.62 
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S1. Continued 
Peak 
No. Name RTa IDb Log 

Kow 
Signalc SEd ICECLES SBSE 

228  31.06 UK  248914 202996 1.22 
229  31.23 UK  283907 211414 1.34 
230  31.36 UK  275947 196336 1.40 
231 Caffeine 31.42 HP -0.07 15402668 9726892 1.58 
232  31.77 UK  561390 301367 1.86 

233 
1,2-Benzenedecarboxy- 
-licacid,diundecylester 
(Diundecyl phthalate) 

31.92 MP 11.49** 859941 644393 1.33 

234 

1H-Purine-2,6-dione, 
3,7-dihydro-3,7-

dimethyl 
(Theobromine) 

32.01 DI -0.78* 618206 0 NA 

235  32.16 UK  562095 441182 1.27 
236  32.23 UK  486416 299418 1.62 
237  32.35 UK  551084 385696 1.42 
238  32.51 UK  349400 252532 1.38 

239 
1H-Indole-3-ethanol, 

acetate (ester) 
(Ethyl 3-indoleacetate) 

32.59 HP 2.1* 503746 0 NA 

240 
7,9-Di-tert-butyl-1-

oxaspiro(4,5)deca-6,9-
diene-2,8-dione 

32.79 HP 3.8* 1078584 870929 1.23 

241  32.96 UK  387211 372783 1.03 
242  33.10 UK  220005 194878 1.12 
243  33.18 UK  225178 209822 1.07 
244  33.37 UK  461233 401050 1.15 
245  33.44 UK  357643 311380 1.14 
246  33.63 UK  331412 331190 1.00 
247 Dibutyl phthalate 33.79 HP 4.13 623851 574032 1.08 

248 n-Hexadecanoic acid 
(Palmitic Acid) 34.00 HP 7.17* 6722363 6144871 1.09 

249  34.10 UK  4255600 3170665 1.34 
250  34.42 UK  347929 299043 1.16 
251  34.56 UK  454659 351704 1.29 
252  34.74 UK  270278 154877 1.74 
253  34.88 UK  500483 301446 1.66 
254  35.08 UK  334714 319615 1.04 
255  35.47 UK  1640208 1225099 1.33 
256  35.59 UK  374100 292848 1.27 
257  35.69 UK  557701 513346 1.08 
258  35.83 UK  369740 318757 1.15 
259  36.03 UK  596365 364727 1.63 
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S1. Continued 
Peak 
No. Name RTa IDb Log 

Kow 
Signalc SEd ICECLES SBSE 

260  36.09 UK  602677 468507 1.28 
261  36.24 UK  400959 266320 1.50 
262  36.45 UK  372745 306826 1.21 
263  36.52 UK  277795 240563 1.15 
264  36.59 UK  360766 344068 1.04 
265  36.62 UK  379226 338198 1.12 
266  36.73 UK  283641 249038 1.13 
267  36.80 UK  272176 253058 1.07 

268 9,12,15-Octadeca- 
-trienoic acid, (Z,Z,Z) 37.32 HP 5.9* 9130163 8421613 1.08 

269 Octadecanoic acid 
(Stearic Acid) 37.73 HP 8.28* 4265806 3373659 1.26 

270  37.96 UK  401774 345431 1.16 
271  38.03 UK  538349 359242 1.49 
272  38.29 UK  428666 274734 1.56 
273  38.38 UK  713800 574090 1.24 
274  38.52 UK  728523 503216 1.44 
275  38.60 UK  351083 299553 1.17 
276  38.78 UK  339341 232951 1.45 
277  38.86 UK  316611 250586 1.26 
278  39.00 UK  349040 300023 1.16 
279  39.14 UK  273998 213703 1.28 
280  39.30 UK  376583 0 NA 
281  39.56 UK  616871 292144 2.11 
282  39.69 UK  458364 343789 1.33 
283  39.91 UK  430291 388052 1.10 
284  40.15 UK  551601 354386 1.55 
285  40.37 UK  338553 280673 1.20 
286  40.56 UK  442743 334789 1.32 
287  40.70 UK  703042 691431 1.01 
288  40.87 UK  298289 240628 1.23 
289  41.03 UK  271357 0 NA 
290  41.15 UK  256548 230403 1.11 

291 

2-Propen-1-one, 1-(2,6-
dihydroxy-4-

methoxyphenyl)-3-
phenyl-, (E) 

(Pinostrobin Chalcone) 

41.47 MP 3.5* 379750 299922 1.26 

292  41.61 UK  267438 234693 1.13 
293  41.76 UK  213890 188173 1.13 
294  42.10 UK  202433 124852 1.62 
295  42.23 UK  230719 193581 1.19 
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S1. Continued 
Peak 
No. Name RTa IDb Log 

Kow 
Signalc SEd ICECLES SBSE 

296  42.63 UK  173823 241133 0.41 
297  42.80 UK  105873 206117 0.51 
298  42.91 UK  113212 93372 1.21 
299  43.00 UK  115295 105200 1.09 
300  43.22 UK  107580 116008 0.92 
301  43.79 UK  187102 169299 1.10 

a RT: retention time. 
b ID: identification. 
1) DI: definitively identified, 2) HP: high probability, 3) MP: mid probability, and 4) UK: unknown. 
c Signal peak height of ICECLES and SBSE. 
d SE: signal enhancement. 
e Isomers. 
* log Kow values were calculated by using the difference between a logP value of known compound and the 
query compound then estimated by an additive model with well-defined correction factors [100]. 
** log Kow values were calculated by using an atom/fragment contribution method via KOWWIN™ 
program [101]. 
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Table S0.2. Green tea components extracted only by ICECLES with the corresponding 
retention time, identification, log Kow, and boiling point. 
Peak 
No. Name RTa IDb Log 

Kow B.Pc 

1 Propanoic acid, chloro-2-hydroxy 2.12 MP 0*  
3 Propane, 2-ethoxy-2-methyl 2.46 HP 1.92** 73 ◦C 
8  3.65 UK   
9  3.77 UK   
10  3.87 UK   
14 1-Pentanol 4.26 DI 1.33 137.5 ◦C 
15 2-Penten-1-ol, (Z) 4.31 DI 0.9* 138 ◦C 
16  4.55 UK   
19  5.00 UK   
20  5.07 UK   
21 Pyrazine, methyl (Methyl pyrazine) 5.40 DI 0.49 135 ◦C 
22 Furfural 5.53 DI 0.83 162 ◦C 
27 2-Furanmethanol (Furfural alcohol) 6.14 DI 0.45 170 ◦C 
28  6.34 UK   
30  6.72 UK   
32  6.92 UK   
33  7.08 UK   
36 1-Pentanone, 1-(3-Furnayl)-4-Hydroxy 7.44 HP   
37 2,4-Hexadienal, (E,E) 7.49 DI 1.37** 174 ◦C 

38 Pyrazine, 2,5-dimethyl (2,5-
dimethylpyrazine) 7.54 HP 1.03 155 ◦C 

39 2-Cyclopenten-1-one, 2-hydroxy 7.87 MP 0.4* 244.80 ◦C 

43 5-(3,7-Dimethylocta-2,6-dienyl)-4-methyl-
2,3 dihydrothiophene 1,1-dioxide 8.34 MP   

49  9.29 UK   
53  9.65 UK   
59  10.59 UK   
66  11.56 UK   
82 Maltol 13.25 DI 0.02 93 ◦C 
84 Penylethyl alcohol 13.39 DI 1.57 219-221 ◦C 
86  13.75 UK   

88 2,5-Pyrrolidinedione, 1-ethyl (N-
ethylsuccinimide) 13.97 HP -0.5*  

89 Benzene, 1-isocyano-2-methyl 14.11 HP   
 
 
 
 



71 

 

S2. Continued 
Peak 
No. Name RTa IDb Log 

Kow B.Pc 

90 4H-pyran-4-one, 2,3-dihydro-3,5-
dihydroxy-6-methyl 14.26 HP -0.4*  

91 2,6,6-Trimethyl-2-cyclohexene-1,4-
dione (Ketoisophorone) 14.34 HP 1* 222 ◦C 

95 Acetic acid, phenylmethylester (Benzyl 
acetate) 14.85 HP 1.96* 206 ◦C 

99  15.22 UK   
103  15.59 UK   

105 3-Cyclohexene-1-methanol, a,a4 
trimethyl (α-Terpineol) 15.84 DI 3.28 220 ◦C 

108  16.32 UK   

111 
2-Furancarboxaldehyde, 5-

(hydroxmethyl) 
(5-(Hydroxymethyl)furfural) 

16.64 DI -0.09** 114-116 ◦C 

112 1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl 16.84 HP 0.5* 253.81 ◦C 
113  16.92 UK   

114 ß-D-Glucopyranose, 1-thio-,1-(N-
hydroxybenzenepropanimidate) 17.00 HP   

122  17.79 UK   
130  18.98 UK   
133 Furan, 2,3-dihydro-3-methyl 19.39 HP 1.1*  
134  19.60 UK   
136 Phenol,2,6-dimethoxy (Syringol) 19.94 DI 1.1* 261 ◦C 
138 Eugenol 20.12 DI 2.49 225 ◦C 
168  24.41 UK   
172  24.94 UK   

180 2-(3H)-Furanone, 5-heptyldihydro (γ-
Undecalactone) 25.63 DI 0.7* 220 ◦C 

201  27.75 UK   

234 1H-Purine-2,6-dione, 3,7-dihydro-3,7-
dimethyl (Theobromine) 32.01 DI -0.78* 290-295 ◦C 

239 1H-Indole-3-ethanol, acetate (ester) 
(Ethyl 3-indoleacetate) 32.59 HP 2.1* 164-166 ◦C 

280  39.30 UK   
289  41.03 UK   

a RT: retention time. 
b ID: identification. 
1) DI: definitively identified, 2) HP: high probability, 3) MP: mid probability, and 4) UK: unknown. 
c Boiling point 
* log Kow values were calculated by using the difference between a logP value of known compound and the 
query compound then estimated by an additive model with well-defined correction factors [100]. 
** log Kow values were calculated by using an atom/fragment contribution method via KOWWIN™ 
program [101]. 
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