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ABSTRACT 

LIGNIN TRANSFORMATION AND CHARACTERIZATION OF PYROLYTIC 

PRODUCTS 

ERIC AMO BOAKYE 

2017 

Lignocellulosic materials derived from plants have the ability to serve as 

feedstocks in place of depleting petroleum and coal for production of fuels and 

chemicals. Lignin forms about 30% of lignocellulosic material, and is the second most 

abundant non-fossil organic carbon source in the biosphere. However, it is often treated 

as waste or, in some instances, burned to supply energy. Developing an efficient and 

environmentally benign method to convert lignin to high value-added aromatic 

monomers (e.g., guaiacol, vanillin, acetovanillone, and eugenol) for synthesis of 

polymers is of interest. Mineral bases, such as NaOH and CsOH, or supported-metal 

catalysts (Pt, Ru, Pd, and Ni on C) have been used to form aromatic monomers, but 

associated drawbacks are corrosion, catalyst recovery, sintering of metals, and loss of 

activity. Lignin conversion into useful aromatic compounds is highly desired but often 

hindered by recondensation and accompanied undesired products.  

Zeolite-supported metal oxide catalysts (CoO, LaO, and MoO) with subcritical 

water at 200°C and 240°C were used to convert lignin to value-added aromatic 

monomers. Separation of the resulting organic and aqueous phases was done by liquid-

liquid extraction using ethyl acetate. Our results indicate the formation of guaiacol, 

homovanillic acid, isoeugenol, 3-methoxyacetophenone, acetovanillone, and vanillin as 

the main products. GC-MS analysis of the organic extract shows 2-4.8 wt% and 3-15 



xvi 

 

wt% formation of phenolic compounds at 200 °C and 240 °C, respectively, at 12 MPa 

and 15 minutes. MoO catalyst gave the highest yield of phenolic monomers at both 

temperatures. The presence of the aromatic products was confirmed by FTIR, GC-MS, 

and UHPLC analysis. 

Extracted lignin from torrefied prairie cordgrass at 250 °C (Tor250), 300 °C 

(Tor300), and 350 °C (Tor350) yielded 23.5±1.6 wt%, 5.4±6.8 wt%, and 4.1±7.3 wt% of 

lignin respectively with 92-93.1 wt% recovered lignin relative to the organosolvent 

method. Torrefaction at 350 °C provided higher lignin purity (93.1±3.2 wt%) than lignin 

extracted from PCG (89.2±2.5 wt%). Thermogravimetric analysis shows breakdown of β-

O-4 linkages in the lignin by mass loss between 250 to 350°C. Pyrolytic bio-oil obtained 

ranged between 13 and 37 wt% of prairie cordgrass at temperatures of 250°C, 300 °C, 

350 °C, 600 °C, and 900 °C. The bio-oil contains the useful aromatic compounds - 

phenol, guaiacol, m-cresol, xylenol, ethyl-phenol, ethyl-guaiacol, catechol, syringol, 

furan-2-one, vanillin, and 3-furancarboxaldehyde. 
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CHAPTER 1 

INTRODUCTION AND BACKGRROUND 

1.1. Introduction 

 The reliance on petroleum for the production of energy and materials has 

increased in demand. This is causing a rapid depletion of crude oil reserves
1
, which has 

raised legitimate concern among the global community. Presently, about 80 wt% by 

weight of the chemicals generated by the petrochemical industry is used in producing 

polymers for different applications.
2
 These polymers include vinyl polymers, polyesters, 

polyamides, and polyurethanes etc.
2
 These materials can be produced from biomass 

instead of petroleum products, and thus help grow the economic base of bio-based 

products. Continuous dependence on petroleum for the production of energy and 

materials is not sustainable. Therefore, a renewable source is needed as a replacement. 

Plant products are seen as an inexhaustible source for energy and materials production. 

However, most of the chemicals produced today are of first generation, which is from 

sugar and starch-based agricultural crops that compete with global food production. 

Therefore, this represents a limited supply.  

The use of lignocellulosic biomass for production of biofuel and materials is a 

promising plant-derived option. The U.S. Department of Energy (DOE) has identified the 

following as sources of lignocellulosic biomass
3
:  

 Municipal solid waste, such as household garbage and paper products, 

 Waste from food processing and other industries, such as black liquor from 

ethanol production and paper manufacturing, 
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 Grasses such as switchgrass, prairie cordgrass, miscanthus grass, and big 

bluestem grass and fast growing trees, which are grown purposely for utilization 

as lignocellulosic biomass because of their low mineral content, low nutrient 

content, and efficient utilization of water,
4
 

 Forestry waste such as dead trees, wood chips, sawdust, and cut tree branches, 

 Agriculture residue such as wheat straw, sugar cane bagasse, and corn stover. 

 These raw materials are abundant and renewable, and form the basis of the second-

generation technologies for producing biofuels and bio-chemicals. The use of suitable 

methods to depolymerize the components of lignocellulosic biomass will help reduce 

greenhouse gas emissions and increase the revenue for biofuel and biochemical 

industries.  

 Finding a perfect solution to solve the challenges in energy production is very 

difficult because every process for energy production requires some amount of energy 

utilization. The use of energy crops, such as grasses and fast-growing trees, for the 

production of ethanol requires fossil fuel, herbicide, fertilizer, and other chemicals for 

cultivation and production. However, production of biochemicals from lignocellulosic 

materials is an improvement over fossil fuel use that may lead to sustainable energy 

production in the near future. A study by Farrell et al.
5
 compared the production of 

ethanol and gasoline indicate that producing 1 MJ of ethanol uses far less petroleum than 

is required to produce 1 MJ of gasoline, not taking into account the coproducts that have 

been developed in recent times. Greenhouse gas emissions from ethanol produced by the 

first-generation  technology can be slightly different than that obtained from gasoline per 

unit of energy
5
. However, studies have shown that there is a substantial reduction in 



   3 

 

greenhouse gas emission and petroleum utilization by ethanol produced from second-

generation technology (i.e., lignocellulosic materials).
5-6

 Lignocellulosic ethanol 

production uses fewer petroleum products mainly because they are perennial crops, 

which require less nutrients, herbicides, and other agricultural-maintenance practices 

often required by annual crops such as corn, sugar cane, and cassava. There are 

limitations, though, posed by the use of aboveground agricultural crop biomass residue 

for lignocellulosic ethanol. Lignocellulosic materials such wheat straw, corn stover, and 

corn husks are needed to maintain soil carbon to produce good properties leading to 

enhanced soil nutrients, and also prevent erosion by wind or rain.
7-9

 However, the 

perennial energy crops, especially grasses, have extensive root systems that help improve 

the soil quality, leading to an increase in soil nutrients and carbon dioxide capture, 

thereby aiding carbon sequestration and preventing erosion, even after harvesting. Figure 

1
10

 shows the bioenergy cycle of ethanol production from lignocellulosic biomass. The 

available data suggest that only lignocellulosic biochemicals production can offer a large 

reduction in greenhouse gas emissions.
5
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1.2. Lignocellulosic materials and pretreatment methods used to separate them   

The cell of the plant is composed of cellulose, hemicellulose, and lignin with small 

portions of pectin, minerals, salts, fat and fatty acids, proteoglycans, etc. The different 

components of the plant cell protect it from mechanical, physical, biological, and 

chemical damage from the environment. Figure 2 shows the three main components of 

lignocellulosic materials, cellulose, hemicellulose, and lignin.
11

 Cellulose and 

hemicellulose occupy about two-thirds of the total dry biomass. The cellulose and 

hemicellulose are made up of polymers of sugars, and thereby represent a potential 

Figure 1. Bioenergy cycle of ethanol production from lignocellulosic 

biomass.
10
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source of fermentable sugars. After pretreatment, these fermentable sugars are treated to 

produce biofuels and chemicals. The amount of polysaccharide present in the plant dry 

matter and the methods of treatment affect the yield of the biofuel greatly. Lignin, which 

is the phenolic-rich component of the dry matter of lignocellulosic materials, makes up to 

about one-quarter of plant biomass. Lignin serves as a crosslinkage between 

hemicellulose and cellulose, therefore providing support within the cell wall and the plant 

as a whole. The majority of the lignin is located in the interfibrous area of cellulosic 

biomass, whereas smaller portions cover the cell surface 
12

.  Lignin is able to resist 

biological and moisture attacks from the environment because it is insoluble in water and 

interferes with enzymatic activities of microbes. Lignin is not used during fermentation 

of polysaccharides present in lignocellulosic biomass to ethanol or in the processing of 

paper from wood. The separated lignin is burned in order to provide heat for these 

processes. Therefore, lignin is underutilized. Efficient utilization of lignin to produce 

value-added chemicals is necessary to reduce the overall cost of biofuel production. 
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 A wide range of pretreatment methods such as biological, chemical, mechanical, 

physical, and thermochemical have been designed to break the crosslinkages between 

lignocellulosic materials to release the carbohydrates and lignin-rich materials for 

conversion to chemicals.
13

 About 90 % of the dry weight of most plant matter is stored in 

the form of cellulose, hemicellulose, lignin, and pectin materials which are useful in the 

production of biofuels and chemicals.
14

 For conversion of biomass to biochemicals, the 

bonds between the lignocellulosic materials need to be broken. Figure 3
15

 shows the 

release of the three lignocellulosic components after pretreatment. The treatment of 

lignocellulosic materials leads to monomers and low molecular weight organic 

compounds. Pretreatment of lignocellulosic materials largely results in cellulose, 

hemicellulose, and lignin formation, with some oligomers and small amounts of 

Figure 2. The distribution of the three major lignocellulosic materials.
11 
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monomer sugars, aromatic compounds, acetic acids, and other organic acids. 

Pretreatment methods reduce moisture, remove extractives, and make separation of the 

biomass components possible, as well as prevent reaction-inhibitory tendencies in the 

treatment stages. There are a few lignocellulosic pretreatment methods that result in the 

formation of monomers and low molecular weight organic compounds, for example 

thermochemical pretreatment or pyrolysis of grass. Other pretreatment methods such as 

chemical and hydrothermal hydrolysis have been employed in actual treatment processes. 

 

 
 

 

 

 

There is a great challenge in separating the three lignocellulosic materials because 

of the crosslinkages formed between them. There are four main types of bonds that exist 

within the lignocellulosic materials. These are ether, ester, hydrogen, and carbon-carbon 

bonds. These four bonds form the linkages within each of the three major components 

Figure 3. The impact of pretreatment of lignocellulosic biomass.
15
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themselves (intrapolymer crosslinkages) and  in the interpolymer crosslinkages that 

connect the cellulose, hemicellulose, and lignin components of the lignocellulosic 

biomass as indicated in Table 1.
16

  

1.2.1. Intrapolymer crosslinkages of lignocellulosic materials 

The cellulose polymer is made up of glucose monomers. To make available these 

glucose monomers for biofuels and chemicals, the bonds within the cellulose need to be 

degraded. The cellulose is a great source of ethanol production. There are two types of 

linkages that connect the monomers of cellulose, hydrogen and ether bonds. The ether 

bonds within the cellulose are formed by glycosidic linkages (1-4 β D-glycosidic) 

between the glucose moieties. These ether bonds are the bonds that initiate the 

polymerization in cellulose. The hydrogen bonds connect the hydroxyl groups on 

different glucose monomers and are responsible for the crystalline nature of the 

cellulose.
17

 The hydroxyl groups are evenly distributed on both sides of the glucose 

monomer, which allow hydrogen bonds to be formed between different hydroxyl groups 

on adjacent polymer chains leading to a formation of a well-arranged cellulose polymer 

in long parallel straight chains as demonstrated in Figure 4.
16
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Hemicellulose is a heterogeneous polysaccharide unlike cellulose. The 

hemicellulose is mainly made up of glucose and xylose, with fructose, rhamnose, 

mannose, arabinose, and galactose depending on the type of wood. The ether bonds in 

hemicellulose are mostly glycosidic and fructosic linkages. Hydrogen bonds are not 

present in the monomers that make up the hemicellulose. Hemicellulose produces less 

ethanol by weight of the starting material as compared to cellulose because of the 

presence of five-member rings within the hemicellulose polymer. There is no crystalline 

structure in the hemicellulose because of the highly branched polymer-chain structure 

and the presence of a high amount of carboxyl groups.
18

 The carboxyl groups on the 

pentose monomers in the polymer chains of the hemicellulose are responsible for the 

ester bonds. Degradation of the pentoses and hexoses results in ethanol and an array of 

bio-based chemicals, such as aromatic, aldehydes, sugars, and other hydrocarbons.  

Figure 4. Hydrogen bonding in cellulose polymer of lignocellulosic 

biomass.
16
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Ether and carbon-carbon crosslinkages are the main types of bonds found in the 

monomer units that make up the lignin as shown in Table 1. The ether linkages form the 

majority of the bonds in lignin molecules (about 70 % of total bonds in lignin monomer 

units).
18

 The rest of the bonds within the monomer units are made up of carbon-carbon 

linkages. The ether linkages may exist within two allylic carbons, aryl to aryl carbon 

atoms and allylic and aryl carbon atoms in the monomer units of lignin polymer. The 

carbon-carbon bonds may also occur between two aryl carbon atoms and an aryl carbon 

and an allylic carbon atom.
12

  

1.2.2. Interpolymer crosslinkages of lignocellulosic materials 

The plant polymer is considered a fibril-matrix length scale of cellulose, which is 

interspersed with lignin and hemicellulose within the cell-wall layers.
19

 It is very difficult 

to definitively establish the crosslinkages connecting the three components of 

lignocellulosic materials in plants. In order to determine the bonds that connect the lignin 

and the polysaccharides, the lignocellulosic materials have to be separated from each 

other. However, the separation processes used to break the bonds of the lignocellulosic 

complex changes the original structure of the three polymers (lignin, hemicellulose, and 

cellulose).  

Bonding in the form of ether and ester crosslinkages have been identified between 

lignin and polysaccharides.
18

 Lignin is reported to be bonded to hemicellulose via ester 

linkages, whereas ether bonding couples lignin and polysaccharides.
18

 Hydrogen bonds 

between lignin and cellulose and with hemicellulose have also been identified. The 

hydrogen bonds formed between hemicellulose and cellulose is weak because of lack of a 

primary alcohol on the external side of the pyranose ring found in the hemicellulose.
18
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Bonds formed within lignocellulosic components (Intrapolymer) 

Ether bonds                                                           Lignin, hemicellulose, cellulose 

Carbon-carbon                                                      Lignin 

Hydrogen bonds                                                   Cellulose 

Ester bonds                                                           Hemicellulose     

Bonds connecting cellulose, hemicellulose, and lignin (Interpolymer) 

Ether bonds                                                          Cellulose-lignin 

                                                                              Hemicellulose-lignin 

Ester bonds                                                           Hemicellulose-lignin 

Hydrogen bonds                                                   Cellulose-hemicellulose 

                                                                              Hemicellulose-lignin 

                                                                              Cellulose-lignin 

 

1.2.3. Physical pretreatment 

Drying, chipping, and milling are important pretreatment techniques that help 

reduce the amount of water, the level of cellulose crystallinity, and the overall 

lignocellulosic crystallinity. Chipping is usually done during the biomass collection to 

reduce the size of the biomass and make packing easy in order to reduce transportation 

costs. The biomass size is considerably reduced as compared to its original size after 

chipping. Milling or grinding is performed on the lignocellulosic materials after chipping 

to alter biomass structure and reduce crystallinity, and it is usually done by simple 

machines to reduce the amount of time spent by manual grinding. Different types of 

milling machines are often used, but the vibrating ball is found to be most effective in 

improving the digestibility and in reducing the crystallinity of the biomass.
20

  

Table 1. The different crosslinkages formed between the monomers of cellulose, 

hemicellulose, and lignin  
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The reduction in lignocellulosic crystallinity increases enzyme accessibility to 

polysaccharides and results in more effective recovery of lignin from  the biomass.
21

  

Chipping of the biomass results in particle sizes of about 10 - 30 mm, whereas milling 

causes the size to be reduce to 0.2 - 2 mm. Almost all of the other pretreatment processes 

for biomass employ drying, chipping, and milling or grinding.  

1.2.4. Biological pretreatment 

Microorganisms such as fungi have been used to pretreat lignocellulosic 

biomass.
22-23

 White-rot, brown-rot, and soft-rot fungi, have been used for biomass 

pretreatment to release the polysaccharides and lignin.
24-26

 Lignin is resistant to 

microorganism degradation as compared to other lignocellulosic materials, and therefore, 

a higher amount of lignin is maintained after the pretreatment without degradation. The 

use of microorganisms for biomass pretreatment is always performed under low 

temperature and requires no additional energy, making it environmentally benign.
27

 

Biological pretreatment, however is not economically viable, and thus, it is not often 

considered on an industrial scale. Some portions of the biomass, such as cellulose, 

hemicellulose, and pectin, are often lost in the process by consumption from the 

microorganisms used.
28

   

1.2.5. Chemical pretreatment 

a. Hydrolysis using acids 

Several acids have been used to pretreat lignocellulosic materials from different 

grasses and other plants. Acidic-hydrolysis pretreatment has effectively improved ethanol 

production as well as delignification.
29

 Acid hydrolysis has been used in combination 

with heating. The temperature used ranges from 50 °C to 260 °C with atmospheric 
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pressure.
22, 30

 Low acid concentrations usually require higher temperatures and the 

application of mechanical force, whereas high concentrations of acid use less mechanical 

force with lower temperatures.
31-33

 The most common acids used for lignocellulosic 

biomass hydrolysis are hydrochloric acid, sulfuric acid, and phosphoric acid, as well as 

organic acids such as oxalic, maleic, and fumaric acids.
34-37

 Most of the polysaccharides 

are depolymerized into monomers and oligomers, leaving the lignin polymer during acid 

hydrolysis making lignin recovery achievable by precipitation. Recovery of the acids 

after hydrolysis makes the process economical.
38

   

b. Alkaline hydrolysis 

Alkaline solutions such as sodium, ammonium, potassium, and calcium 

hydroxides, as well as sodium sulfides, are used to break the bonds that link 

lignocellulosic materials into lignin, polysaccharides and sugars. Alkaline pretreatment is 

often performed at ambient temperature to temperatures a little above 100 °C.
39-40

 The 

lignin is then removed to allow subsequent degradation of the polysaccharides and sugars 

to fermentable sugars or to pyrolyze to fuel and other chemicals. The biomass is often 

soaked in the alkaline solution which causes swelling, increasing the internal surface area 

of the molecules leading to a decrease in crosslinkages between the lignin and 

polysaccharides, as well as disruptions within the polymers. The continuous instability 

increases the bond breakages in the polymers of the lignocellulosic materials.
41

 Most 

alkaline pretreatment is used for delignification of agricultural residues and herbaceous 

plants, such as grasses. Alkaline delignification of wood chips with hot water by kraft 

lignin is highly used in industry and leads to cheap and high purity lignin. The four 
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preferred alkaline agents used for biomass hydrolysis are sodium, calcium, potassium, 

and ammonium hydroxides, but the most studied is sodium hydroxide.
42-45

 

c. Organosolv process 

Organic solvent or a mixture of organic solvents is used to dissolve the lignin in 

lignocellulosic materials leaving the cellulose and hemicellulose in the biomass residue. 

Different groups of organic solvents have been used: ketones, phenols, esters, organic 

acids, etc. The organic solvents are mixed and heated with lignocellulosic biomass at 

pressures above atmospheric pressures to force the lignin molecules to dissolve into the 

organic solvent. Acids such as hydrochloric and sulfuric acids are usually added to the 

organic solvent mixtures as catalysts to break the bonds between the lignin and 

hemicellulose molecules.
46-48

 Phase separation is created when water is added at the end 

of the reaction, this removes any sugar arising from the hydrolysis of polysaccharides.
46

 

Lignins extracted using this pretreatment is considered to high purity lignin.
48

     

d. Ozonolysis hydrolysis 

Ozone has been used as pretreatment for removal of hemicellulose and lignin in 

lignocellulosic materials in order to produce biochemicals. Morrison and Akins 
49

 used 

ozone to oxidize grasses to produce levulinic acid, vanillin, p-hydroxybenzoic acid, and 

hexanoic acid, malonic acid, hydroquinone, and p-hydroxybenzaldehyde. The 

degradation mostly attacks the bonds within the lignin and slightly affects hemicellulose, 

while the cellulose remains intact. Ozone oxidation pretreatment has been used to pretreat 

different lignocellulosic material such as green hay, pines, poplar sawdust, cotton straw, 

and wheat straw. Ozonolysis pretreatment reaction is performed at room temperature and 
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atmospheric pressure and produces no toxic residues.
50-53

 The only drawback is a large 

amount of ozone is required, which makes the reaction expensive. 

Other oxidative delignification pretreatments that are similar to ozonolysis have 

been studied. Schmidt et al.
54

 used wet oxidation to pretreat wheat straw to degrade lignin 

and hemicellulose at 185 °C and 1.2 MPa O2 with water. Azzam et al.
55

 also used 

hydrogen peroxide as an oxidative delignification agent to pretreat agrocellulosic waste, 

sugarcane bagasse at 30 °C. 

1.2.6. Physicochemical pretreatment 

a. Torrefaction  

Torrefaction is a thermochemical process employed to pretreat lignocellulosic 

materials using temperatures from 200 – 300 °C in an inert or nitrogen atmosphere, 

thereby forming a solid uniform product (torrefied biomass) with less moisture but high 

calorific values compared to the raw biomass.
56

 Devolatilization of lignocellulosic 

materials occurs at temperatures above 200 °C leading to torrefied biomass, depending on 

the conditions of the process. Torrefaction process causes the removal of hemicellulose, 

hydroxyl groups, cleavage of aryl ether linkages, demethoxylation of lignin, degradation 

of cellulose, and an overall increase in aromaticity of biomass, while increasing the 

energy value or energy density of the torrefied biomass.
57-58

 Studies have shown that 

torrefied biomass is about 70 % of the mass of the starting biomass.
59

 Dehydration of the 

biomass during the torrefaction process reduces the ability of the torrefied biomass to 

uptake moisture. The hydrophobicity of the torrefied biomass is due to the removal of 

hydroxyl groups in the initial biomass by the dehydration reactions, which leads to the 
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inability of the torrefied biomass to form hydrogen bonds with water. The moisture 

uptake of torrefied biomass ranges from only 1 % to 6 %.
59-60

  

Torrefaction is a promising pretreatment technique because of high process 

efficiency (94 %) as compared to pyrolysis (64 %).
60

 There are many advantages of 

torrefied biomass over the raw biomass. The change in chemical and physical property of 

the torrefied biomass reduces the cost of transportation and logistics. The increase in 

hydrophobicity properties of the torrefied biomass provides suitable long-term storage. 

The torrefaction process increases carbon content and reduces oxygen and hydrogen 

content thereby lowering O/C. Torrefaction also result in better grinding of the 

biomass.
57, 61

  

b. Pyrolysis 

Unlike torrefaction, in pyrolysis the lignocellulosic material is thermochemically 

converted to form vapor in the absence of oxygen at elevated temperatures, which 

produces bio-oil when the volatile gases generated are rapidly cooled.
62-63

 Pyrolysis can 

be used as pretreatment and treatment techniques for lignocellulosic materials at a desired 

temperature. This process uses high temperatures usually above 300 °C to 800 °C to 

convert lignin, cellulose, and hemicellulose to lower molecular weight liquid products, 

bio-oil, gas products (H2, CO, CO2, and CH4 etc.), and bio-char. Bio-oil from pyrolysis is 

made up of a mixture of aqueous and organic compounds. Bio-oil is a renewable liquid 

fuel and in a well-controlled environment can also be converted to other forms of 

chemicals.
64

 
65

 The amount and structural compositions of pyrolytic products is 

dependent on the type of biomass and pyrolytic conditions used.  The type of reactor, 

temperature program, particle size, reaction time, maximum temperature used, and 
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amount of water present in the biomass determines the yield and structural composition 

of pyrolytic products. 

Bio-oils produced at temperatures lower than 350 °C are reported to have high 

water content and low weight organic compounds such as acetic acid, furan aldehydes, 

formaldehydes, hexanoic acid, and phenolic monomers ( p-cresol, phenol, guaiacol, 

vanillin, etc.). Pyrolysis of biomass at temperatures above 400 °C to 800 °C usually 

results in a lower amount of water, high amount of organic compounds, and high amount 

of non-condensable gases (CO2, H2, and CO).
66

 Pyrolysis of lignin results heavily in 

aromatic moieties, especially methoxylated phenolic monomers, and a few oligomers and 

aliphatic compounds. On the other hand, pyrolysis of hemicellulose and cellulose results 

in esters, organic acids, aldehydes, and a few oligomers. Pyrolysis of lignocellulosic 

materials above 900 °C produces little or no oil, but noncondensable gases. The amount 

of char produced reduces as the temperature increases. 

1.2.7. Explosion pretreatment 

There are different explosion pretreatment techniques that have been used for 

separation of lignocellulosic material components. Methods such as steam 

(autohydrolysis) explosion, carbon dioxide explosion, ammonia fiber explosion (AFEX) 

all have been used to pretreat recycled papers, rice straw, grasses, and sugarcane 

bagasse.
67-69

 Explosion pretreatment combines chemical and physical processes using 

high pressures and temperatures. The pressure is first maintained steadily for the reaction 

and followed by a rapidly reduction in pressure which causes the reactants to undergo 

explosive decompression. Steam explosion uses acids for lignocellulosic material 

hydrolysis and solubilizes the hemicellulose, increasing enzymatic saccharification.  
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Ammonia fiber explosion uses alkaline solutions and does not solubilize the 

hemicellulose. Carbon dioxide explosion uses a supercritical carbon dioxide/water 

combination which results in carbonic acid to increase the rate of hydrolysis of 

lignocellulosic materials. The carbon dioxide explosion process is the most cost effective 

of all the explosive methods and does not produce inhibitory products to affect the 

downstream enzymatic hydrolysis.
67

 Steam explosion is the next most cost-effective 

process, but it produces inhibitory products to the enzymes downstream. 

1.2.8. Liquid hot water pretreatment 

Liquid hot water pretreatment uses water under high pressure and temperature to 

penetrate lignocellulosic materials to hydrate cellulose by removing hemicellulose and 

lignin.
67

 This is similar to the hydrothermal treatment except that chemicals are usually 

not used, resulting in less resistance to enzymes during enzymatic hydrolysis. Chemicals 

are only used in a few cases where catalysts are added to aid in breaking the bonds within 

the lignocellulosic materials. In liquid hot water pretreatment, long reaction times and 

large amounts of hot water are used as compared to hydrothermal treatment. Therefore, 

more energy is needed to separate the products. 

1.3. Depolymerization of lignin for high-value biochemicals   

1.3.1. Monomers of lignin 

Lignin is the second most abundant biopolymer found in the plant cell wall, 

consisting of phenylpropanoid chains linked mostly by carbon-carbon and ether bonds. 

This complex of phenolic heteropolymers provides strong stiffness and fortification of 

secondary cell walls in the xylem tissues. The denser matrix that binds cellulose and 

hemicellulose provides mechanical support and limits elasticity to tissues in the plant 
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stems. It is very difficult to identify a complete structure of a lignin polymer because of 

the complex nature and inherent difficulties in characterization of lignin polymers. Figure 

5 shows a model structure of softwood lignin.
70

  

 

 
 

 

 

 

 5

 Models have been proposed for lignin from several different sources, though due 

largely to lignin's complicated nature and the difficulties inherent in lignin analysis, no 

complete structure of a lignin molecule has ever been identified.  The models that have been 

developed are only representations drawn from analyses of the relative proportions of each 

lignin unit type and each linkage type (Figure 1.3) [Dence and Lin, 1992; Sjöström, 1993]. 
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Figure 1.3:  A structural model of softwood lignin [Alder, 1977]. 
Figure 5. A model structure of lignin from softwood.

70 
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The three main phenolic monomers that make up the building blocks of a lignin 

polymer are p-hydroxyphenyl (H) moieties or p-coumaryl alcohol, coniferyl alcohol or 

guaiacyl (G) moieties, and sinapyl alcohol or syringyl (S) moieties as shown in Figure 

6.
71-76

 The propane side chains link the phenolic monomers in the lignin polymeric 

structure. The type of moieties present in the lignin polymer depend on the plant species, 

climatic conditions, age, the type of cultivation practices, and soil conditions under which 

the plant was grown. Pretreatment processes are employed to determine the amount of 

lignin in lignocellulosic biomass. Different lignin characterization methods are used to 

determine the phenylpropanoid moieties in the polymer. Lignins from softwood are 

predominately made up of guaiacyl (G) moieties while hardwoods are made up of both 

guaiacyl and syringyl moieties.
76

 Lignins from grasses are predominantly p-

hydroxyphenyl (H) moieties with guaiacyl (G) and syringyl (S) moieties.
76
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 Figure 6. Structures of three basic phenolic monomers that form lignin.
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1.3.2. Hydrotreatment or hydrothermal liquefaction of lignin   

Lignin has been isolated in large quantities in the biorefinery, pulp, and paper 

industries because of its interference in the hydrolysis of polysaccharides. Unlike 

cellulose and hemicellulose, lignin is underutilized because of the difficulty in converting 

it to useful biochemicals. Lignin is rich in aromatic compounds and, therefore, can serve 

as a great source of phenolic compounds in order to replace petroleum products. There 

are several processes including pyrolysis previously described, hydrothermal gasification, 

wet oxidation, hydrotreatment or hydrothermal liquefaction (HTL) that are used to 

depolymerize lignin to bio-oil as a biochemical feedstock for the production of phenolic 

resins, epoxy resins, or phenolics for food and pharmaceutical additives. For the purpose 

of this study, the focus will be on conversion of lignin by hydrotreatment or HTL using 

subcritical water.  

Subcritical water exists in a wide-temperature range, from the normal boiling 

point, 100 °C, and the critical temperature, 374 °C, as indicated in Figure 7.
77

 

Hydrotreatment uses temperatures between 200 °C and 374 °C and pressures between 10 

and 25 MPa for physical and chemical transformation of lignin to produce value-added 

useful chemicals. The unique properties of subcritical and supercritical water allow it to 

behave as an acid-base catalyst because concentration of the ionic products (H3O
+
 and 

OH
-
) increases by two orders of magnitude over that in water at room temperature whiles 

the pH remains neutral. The density of water decreases from 1000 kg/m
3 

at room 

temperature to 820 kg/m
3
 for subcritical water at 250 °C and 25 MPa 

78
, but the density 



   22 

 

changes more significantly at temperature above 300 °C. The kinetic energy of the 

molecules of the liquid, as well as the intermolecular interactions, significantly affects 

how fast the liquid particles can vaporize. Liquid changes to a vapor when the kinetic 

energy of the liquid particles is higher than the intermolecular force of attraction between 

the particles of the liquid. The decrease in density of the water during hydrotreatment or 

HTL decreases the viscosity and increases the solubility of hydrophobic lignin in the 

superheated water. Even though increasing the temperature above 300 °C results in 

significant change in water density with pressure, the use of high pressure and 

superheated water below 300 °C with catalysts increases the rate of diffusion. Higher 

temperatures lead to char/coke formation, corrosion to the reaction vessel, damage to the 

catalyst, and increases in repolymerization. HTL has several advantages over other 

methods used for lignin depolymerization: (1) pre-drying of lignin from pulp, kraft, and 

papermaking is not necessary, reducing cost and energy usage. (2) hydrothermal 

treatment conditions produce hydrogen from the water which is necessary for lignin 

gasification, 
79

 (3) hydrothermal treatment temperatures are usually lower than other 

thermochemical methods including pyrolytic, supercritical, and gasification temperatures, 

and (4) nitrogen and sulfur are predominantly found in lignin, especially lignosulfonates.  

Other depolymerization methods release nitrogen oxide and sulfur oxides which require 

further treatment, incurring extra costs. In hydrotreatment, these oxides are dissolved in 

the water.  
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1.3.3. Catalysts 

The primary aim of lignin depolymerization is to form phenolic monomers, but 

oligomers are also formed in the process. There are different operating conditions that 

affect the HTL of lignin. Temperature, pressure, resident time, and the concentration of 

the catalyst all affect the formation of phenolic monomers and oligomers, and 

repolymerization. Cheng et al. 
80

 indicated that the hydrotreatment process for lignin 

depolymerization needs stirring to reduce solid residue or char formation, but it is not 

affected by the rate of stirring. The catalyst is one of the operating conditions which 

affect the yields of HTL of lignin depolymerization in terms of breaking the C-C and C-O 

bonds (mainly β-O-4 ether bonds), which is usually accompanied by dealkylation of side 

chains and hydrolysis of methoxyl groups for desired products as well as reduction in 

Figure 7. Changes in properties of water under different temperatures and 

pressures.
77 
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coke/char formation and repolymerization.
81

 Zeolite metal catalysts have two roles in 

lignin depolymerization: (1) acidic sites and (2) pores help control the reaction in the 

mixture in order to achieve the more stable, desired  products, as well as to increase 

yields.
82

 The acidic sites are responsible for the breaking down crosslinkages, leading to 

the desired products, while the volume created by the pores helps prevent 

repolymerization and the formation of cokes in the reaction 
82

. The combination of zeolite 

metal catalysts with desired changes in the properties of water at high temperatures and 

pressures during HTL process of lignin increases the yields of bio-based phenolic 

products.
80

 

1.3.4. Effect of hydrogen source in hydrothermal liquefaction 

 Hydrogen helps in reductive depolymerization of lignin when using supported-

metal catalysts during hydrothermal liquefaction. The hydrogen breaks down to produce 

a hydrogen atom and a radical. The hydrogen radical initiates depolymerization of lignin 

while the hydrogen atom is donated to stabilize the intermediate phenolic moiety in the 

reaction solution. Several hydrogen-donating solvents such as formic acid, acetic acid, 

and 2-propanol have been employed in the application of reductive depolymerization of 

lignin.
83-85

 The hydrogen-donating solvents are usually added at the beginning of the 

reaction or during the extraction process. Large amounts of the hydrogen-donating 

solvents are needed when added during a depolymerization reaction process, but lesser 

amounts are needed if added at the extraction stage. When a hydrogen-donating solvent is 

added to a reaction mixture during the extraction process to be used only as a protonating 

agent, it is environmentally benign.  
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 In the HTL process, the hydrogen gas produced in-situ gets adsorbed by the 

supported-metal catalysts surfaces, which cause the dissociation of the hydrogen gas into 

a hydrogen atom or a radical 
86

. The hydrogen radical attacks the ether cross-linkages 

within the lignin polymer, as shown in Figure 8.
86

 The cleavage of the ether bonds results 

in the production of monomers and oligomers from the lignin polymer. The hydrogen 

atoms in the solution protonate the intermediate phenolic compounds, stabilizing them.  

 
  

 

     

1.4. The purpose of this study 

This dissertation proposes that subcritical water at elevated temperatures of 200 °C 

and 240 °C and pressures between10 and 25 MPa will depolymerize kraft lignin to the 

desired phenolic monomers without side reactions when using a zeolite metal oxide 

catalyst and a liquid-liquid extraction method. At higher temperature near the critical 

point, the hypothesis is supported by an increased yield of phenolic monomers. This 

dissertation also proposes the identification of lignin in torrefied biomass and extracted 

Figure 8. Lignin depolymerization reaction mechanism involving metal catalysts 

in hydrothermal liquefaction process.
86
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phenolic monomers obtained from the torrefaction of prairie cordgrass. The hypothesis is 

supported by lignin recovered from torrefied biomass as compared to the availability of 

lignin recovered by pyrolysis of prairie cordgrass. The specific objectives are 

summarized as: 

1. Develop hydrothermal liquefaction methods using subcritical water and 

zeolite metal oxide catalysts (MoO, CoO, and LaO) to depolymerize kraft 

lignin into phenolic monomers. The phenolic monomers will be extracted 

from the reaction mixture by liquid-liquid extraction using ethyl acetate and 

acetic acid as protonating agents. The phenolic moieties will be characterized 

by GC-MS and UHPLC analysis. 

2. Quantify lignin from the torrefied biomass of prairie cordgrass at 250 °C, 300 

°C, and 350 °C using NREL lignin determination methods and compare it to 

the bio-char from pyrolysis at 600 °C and 900 °C.   

3. Determine the phenolic monomers produced during pretreatment of prairie 

cordgrass using torrefaction at 250 °C, 300 °C, and 350 °C compared to 

phenolic monomers produced by pyrolysis at 600 °C and 900 °C. The phenolic 

moieties will be extracted by Accelerated Solvent Extraction (ASE) and 

characterized by GC-MS analysis. 

This dissertation will characterize the kraft lignin before it is used for 

hydrothermal liquefaction to form phenolic monomers. This dissertation also aims to 

determine the effects the torrefaction pretreatment method has on ash, moisture, 

extractives, and lignin recovery from prairie cordgrass, as well as the elemental analysis 

and heating values of the biofuels resulting from the torrefaction method.    
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CHAPTER 2 

HYDROTREATMENT OF KRAFT LIGNIN INTO PHENOLIC MONOMERS 

USING SUBCRITICAL WATER AND SUPPORTED-ZEOLITE METAL OXIDES 

2.1. Introduction 

The polyphenolic nature of lignin makes it a great source for production of useful 

phenolic compounds 
87

, which are renewable in nature.
88-90

 The main phenolic moieties 

found in lignin are p-hydroxyphenyl (H), guaiacyl (G), and syringyl alcohol (S).
72-76

 

Lignin separation from other lignocellulosic materials involves two processes, sulfur and 

non-sulfur lignin extraction.
91

 Sulfur-free lignin extraction consists of the use of organic 

solvents and alkaline solutions.
92

 The sulfur process involves the use of sulfite to produce 

lignosulfonate and kraft lignins from extraction using sodium sulfite and sodium 

hydroxide mixtures. Kraft lignin has been produced as a byproduct in large quantities by 

the paper and pulp industry and forms 15-30 % by weight of the starting biomass. Lignin 

is usually burned as fuel in industrial burners and only small amounts are used as 

additives. 
92-94

 About 50 million tons of lignin are produced as a byproduct annually in 

the paper and pulp industry.
95

 However, there have been limitations in the direct use of 

kraft lignin because of high steric hindrances and lower reactivity caused by different 

crosslinkages. Utilization of kraft lignin for the production of biofuels and biochemicals 

will help generate additional revenue for the paper and pulp industry.  

Lignin extraction methods are able to break the weak hydrogen and ether linkages 

between lignocellulosic materials in biomass, leading to separation of carbohydrates and 

lignin, but it does little on the bonds within lignin. The methoxylated phenylpropane units 

are cross-linked by C-C and C-O-C bonds. Ether linkages form two-thirds of the total 
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linkages in most lignins and the rest of the linkages are C-C bonds. 
82

 The main ether 

linkages include the α-O-4 (α-aryl ether), 4-O-5 (diaryl ether), and β-O-4 (β-aryl ether), 

as shown in Figure 9, based on the positions of carbon and oxygen atoms forming the 

bond.  The most abundant ether linkage is β-O-4 with lower percentages of α-O-4 and 4-

O-5.
96-101

 C-C linkages are more difficult to break than ether bonds in lignin because of 

higher bond dissociation energies in C-C bonds.
102-104

 Even though ether linkages are 

readily cleaved compared to C-C linkages in lignin, its chemical reactivity considerably 

dictates lignin resistance to thermochemical degradation.
82

 Functional groups within 

native lignin such as methoxyl, benzyl alcohol, phenolic and aliphatic hydroxyl, 

noncyclic benzyl ether, carboxyl, and carbonyl also affect reactivity and resistance of 

lignin to be transformed to useful compounds.
82
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The fragmentation of lignin during extraction and the multiplicity of various 

functional groups in lignin give rise to the complexity of lignin structure. Products 

produced from lignin depends largely on the characteristics of the starting material, 

therefore lignin characterization is necessary before any useful transformation is done. 

Studies have shown that the characteristic structure and functional groups of lignin 

significantly depend on the extractions methods employed.
105

 Transformation of lignin to 

generate commodity chemicals requires cleavage of the linkages in the native lignin.
106

 

An appropriate catalytic method is needed to depolymerize lignin to useful aromatic 

compounds such as vanillin, vanillic acid, acetovanillone, guaiacol, syringol, etc. Several 

Figure 9: Schematic structure of a model compound bearing typical lignin 

linkages from hardwood.
97 
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studies have been conducted to depolymerize kraft lignin and other isolated lignins to 

valuable products to make the biorefinery industry economically viable.
97, 107-110

  

Recent developments of chemical depolymerization of lignin, including base-

catalyzed, acid-catalyzed, metal-catalyzed, ionic liquid-assisted, and supercritical fluid-

assisted, has been discussed by Wang et al.
111

 Catalysts are employed in lignin 

depolymerization process to reduce high char yields and repolymerization. Base-

catalyzed depolymerization, including the use of KOH, NaOH, Ca(OH)2, 

LiOH,  Ba(OH)2, and CsOH with water/methanol or ethanol under supercritical 

conditions, for phenolic compounds (syringol, phenols, catechol, p-cresol, guaiacol, etc.) 

production at temperatures higher than 260 °C was studied by different researchers.
47, 112-

116
 A near-neutral condition with the use of acetone/CO2/water or phenol under 

supercritical temperatures above 300 °C and high pressure was utilized to depolymerize 

organosolv lignin.
117-118

 The use of Lewis acids (NiCl2 and FeCl2) and other acids (formic 

and boric) with different solvents were also used to convert lignin to phenolic compounds 

at temperatures above 300 °C.
115, 119

 Co, Ni, Ru, Mo, Cu, Au, Pt, and Pd are used on 

different supported media (C, Al2O3, SiO2, SiO2-Al2O3, and zeolite) in addition to bases, 

acids, subcritical, supercritical, and pyrolytic conditions to reduce repolymerization and 

to increase yield of organic compounds from lignin.
107, 119-127

 Zeolite H-ZSM-5-supported 

catalysts are known to favor production of aromatic hydrocarbons.
128

 Co, Mo, and Ni 

have been the most studied catalysts to increase yield and hydrogenation in 

hydrotreatment.
120, 129-130

 Hydrotreatment of kraft lignin using Mo catalyst at different 

times (15 - 60 min), catalysts concentrations, and temperatures has been studied.
131

 

Oasmaa and Johansson found out that Mo catalysts resulted in high yields of oils from 
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kraft lignin by hydrotreatment and that the concentration of  the catalyst did not affect the 

change in yield, but high temperatures (430 – 450 °C) and long residence time (60 mins) 

showed lowest yield.
131

 Cheng et al also have reported that long residence times do not 

influence the properties and product yield using metal catalyst.
81

 Yuan et al have reported 

repolymerization of lignin fragments from the products of hydrotreatment at high 

temperatures.
132

 

Most of the methods discussed above involve model compounds where tetramers, 

trimers, and dimers are used. There is difficulty in repeating these experiments. 

In addition to the difficulty of using model compounds is the use of high temperatures 

and pressures which led to coke/char formation and corrosion on the internal surface of 

the reactor. The use of high amount of catalysts has made lignin depolymerization 

economically unattractive. 
107

 An environmental and economical benign process is 

needed to generate phenolic monomers from kraft lignin. In this study, we hypothesize 

that the use of inexpensive supported-zeolite metal oxides (CoO, LaO, and MoO) 
133

 with 

subcritical water at 200°C and 240°C will convert lignin to value-added phenolic 

monomers to serve as a feedstock for production of resins and additives for the 

pharmaceutical and food industries. Thus, to determine the phenolic monomers from the 

reaction, the approach is: (1) characterize the starting material (kraft lignin) using fourier 

transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), 

pyrolysis-gas chromatography–mass spectrometry (Py-GC-MS), and thermogravimetric 

analysis (TGA) to understand the characteristics of the phenolic moieties in the lignin 

polymer, (2) use ultra-high-performance liquid chromatography (UHPLC), gas 
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chromatography–mass spectrometry (GC-MS), and FTIR to analyze the phenolic 

monomers from kraft lignin. 

2.2. Experimental  

2.2.1. Materials and reagents 

Kraft lignin was purchased from Sigma-Aldrich (St. Louis, MO). Kraft lignin was 

oven dried at 105 °C for 48 hours and stored in a desiccator after cooling to room 

temperature. Supported-zeolite (H-ZSM-5) metal oxides, CoO, LaO, and MoO, were 

obtained from the Agricultural and Biosystems Engineering Department of South Dakota 

State University. 99 % nitrobenzene, 97.5 % cupric oxide, 99.9 % ethyl acetate, 99.9 % 

methanol, 99 % sodium hydroxide, and 99.8 % anhydrous acetic acid were all obtained 

from Sigma-Aldrich (St Louis, MO) and used without any further purification. Ultra-

purified water used was obtained by using a Thermo Fisher Scientific 18ΩM/cm
-1

 

Barnstead Ultrapure water system. 99 % phenol, 99 % catechol, 98 % guaiacol, 99 % p-

cresol, 99 % 4-propyl-guaiacol, 98 % ethyl- guaiacol, 98 % methyl-guaiacol, 98 % 

eugenol, 97 % vanillin, 98 % acetovanillone, and 99.9 % o-terphenyl and acetic acid were 

purchased from Sigma-Aldrich (St. Louis, MO) and 98 % homovanillic from Acros 

Organics (NJ, USA). 

2.2.2. Methods 

Different characterization methods were employed to analyze the starting material 

and phenolic monomers extracted from HTL of the kraft lignin. Figure 10 shows the 

outline of the various characterization methods.  
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Figure 10. Outline of kraft lignin characterization and analysis of 

depolymerization processes.  
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a. Lignin characterization 

i. Cupric oxide oxidation analysis 

The Pearl cupric oxide oxidation method was used to elucidate the structure of the 

lignin with slight modification.
134

 Base, 15-mL 2-M NaOH, was added to 100 mg of 

lignin in a 50-mL round-bottom flask and purged with nitrogen. The mixture was 

degassed and then filled with nitrogen gas to maintain an inert atmosphere. The reaction 

mixture was stirred uniformly and continuously until the lignin dissolved at room 

temperature. One gram of cupric oxide was added to the reaction mixture and refluxed 

for 150 minutes at 175 °C. The oxidized reaction was cooled to room temperature using 

cold water and then washed with 15-mL methylene chloride to remove the impurities. 

The reaction mixture was acidified to pH 3-4 using hydrochloric acid. The acidified 

mixture was washed three times using 15-mL methylene chloride. All methylene chloride 

extracts were concentrated using rotary evaporation under controlled vacuum and stored 

for GC-MS analysis of phenolic monomers.     

ii. DSC analysis 

DSC measurements of kraft lignin were performed using a DSC Q200 from TA 

Instruments (Newcastle, DE). Five to ten milligrams samples were loaded in the covered 

hermetic pans, sealed, and then run against the empty reference pan. DSC scans were 

measured at a dynamic heating rate of 15 °C/min from 20 to 400 °C under nitrogen. All 

samples were performed in duplicate. Logger Pro 3.8.6 software was used for the analysis 

of the different phase changes.   
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iii. Py-GC-MS Analysis 

Py-GC-MS analysis of kraft lignin was performed. Py-GC-MS experiments were 

carried out using a CDS Analytical Inc. Pyroprobe 5000 (Oxford, PA) heated filament 

pyrolyzer directly coupled to an Agilent 7890A gas chromatography with Agilent 5975C 

triple-axis mass detector and electron-impact ionization at 70 eV (Newcastle, DE). 

Agilent DB-5 %-phenyl-methylpolysiloxane capillary column (30 m x 0.25 mm x 0.25 

µm) was used to separate the compounds. Hydrogen was used as a carrier gas.  

Approximately one mg of lignin was added to the quartz wool in the 20-mm quartz tube. 

The samples were subjected to pyrolysis at a set temperature range between 60 °C and 

600 °C at a ramp rate of 20 °C/ms and held for 1 minute. The initial temperature was held 

for 5 s. The pyrolyzed gases were introduced into the GC at an interface temperature of 

300 °C with splitless injection and an MS ion-source temperature at 200 °C. An initial 

oven temperature of 60 °C held for 2 min was ramped to 280 °C at of 10 °C/min and held 

for 5 min at 280 °C. The inlet and auxiliary lines were kept at 300 °C. Peaks were 

identified by NIST Mass Spectral library and mass spectra from standards. The mass 

spectral data was obtained using electron ionization at 70 eV over the m/z range from 50 

to 550 amu.  

iv. TG analysis   

Kraft lignin samples were analyzed using a Perkin Elmer Pyris-1 TGA thermogravimetric 

analyzer (Shelton, CT). The TGA were obtained in terms of TG and DTG curves. The 

TG data were recorded as percent mass loss of the lignin samples as a function of 

temperature, whereas the DTG curve is first derivative of the TG curve. Thermal 

decomposition of lignin was performed using an aluminum crucible under nitrogen 
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atmosphere with dynamic conditions of 25 to 900 °C at a heating rate of 15 °C/min in a 

nitrogen atmosphere at a flow rate of 18 mL/mins. Five to ten milligram samples were 

used for the analysis. The experiments were performed in duplicate. The data were 

automatically output through the integrated thermogravimetric analyzer system. 

v. FTIR analysis 

A Thermo Electron Corporation Nicolet 380 FT-IR spectrometer (Madison, WI) 

in the attenuated reflectance mode was used to obtain the FTIR spectra for the Kraft 

lignin to determine the functional groups present. Eight per centimeters resolution with 

100 scans in the spectral range of 4000-700 cm
-1 

was used. The background spectra were 

collected for all trials before running all samples, as a control measurement. All data 

collection and analysis were done using OMNIC Specta and Nicolet 380 OMNIC FT-IR 

spectrometer interpretation guide software.  

a. Catalytic depolymerization of kraft lignin 

i. Catalysts characterization 

 The surface area, pore sizes and total pore volumes of the catalysts were 

determined using Micromeritics Tristar 3000 automated N2 adsorption-desorption 

analyzer. ASAP 2010 Micropore Analyzer with liquid nitrogen was used to carry out the 

analysis of the physisorption of the catalysts at 77 K. The catalysts were degassed using 

the Micromeritics FlowPrep 060 unit at 200 °C for 5h to remove moisture before nitrogen 

isotherm analysis. The specific surface areas of the catalysts were calculated by a 

Brunauer-Emmett-Teller (BET). The micropore and mesopore volumes were determined 

by Density Functional Theory (DFT) analysis.    
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ii. Hydrotreatment reaction 

A supercritical fluid reactor from Applied Separations (Allentown, PA) was used 

for hydrothermal liquefaction of lignin, as shown in Figure 11. The lignin 

depolymerization was carried out in a 25-mL stainless steel reaction vessel. 

 

 

 

 

                                                            

 

  

 

  

 

 

 

 

 

 

 

 

    

                                                                                                        

 

 

 

 

 

0.23 g of dry Kraft lignin was used for all hydrotreatment reactions. The catalysts 

(10 wt% with reference to the kraft lignin) were added to the Kraft lignin for all reactions 

and blanks. The three catalysts used were CoO, LaO, and MoO on the zeolite-support. 

23-mL of deionized water was pumped into the reaction vessel. The water was preheated 

to 60 °C before reaching the reaction vessel. The oven was computer programmed to heat 

the reaction vessel to the required temperatures and pressures. Figure 11 shows the 

outline of the Applied Separations Supercritical Fluid reactor system used for the 

Reaction  

Vessel 

Figure 11. Helix SFE system used for hydrothermal depolymerization of Kraft lignin. 
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hydrotreatment. The reaction conditions for the lignin depolymerization were 200 and 

240 °C, 12 MPa, and 15 minute. The oven heated the reaction vessel to the desired 

temperature at 15 °C/min. The desired pressure was achieved as a result of temperatures 

reaching the maxima. The hydrothermal liquefaction reaction mixtures were emptied 

from the reaction vessel by rapid cooling of the reactor with water at room temperature. 

The product mixtures were collected in 50-mL centrifuge bottles and extracted. The solid 

residues (catalysts and unreacted lignin) were reused in the second hydrotreatment then 

dried and stored for further analysis. 

iii. Extraction of phenolic monomers  

Liquid-liquid extraction was used. The liquid reaction products were acidified 

using 0.02 mL of acetic acid to pH 2–3 from pH 5-6. Ethyl acetate was used for the 

extraction of phenolic monomers from the liquid reaction products.
107, 135

 Three mL of 

the liquid reaction mixture was measured and added to nine mL of ethyl acetate and 

vortexed for two min to obtain a uniform mixture. The mixtures were allowed to stand for 

30 min before separation using a separatory funnel. The aqueous portion of the reaction 

mixtures were filtered and reused in the second depolymerization process. The organic-

solvent soluble products (OSSP) were concentrated by nitrogen blow-down to one-third 

of the total extracted volume. 0.1 mL of 1000 ppm of internal standard (o-terphenyl) was 

added to the OSSP and the samples were then analyzed alongside the prepared standards 

on GC-MS and UHPLC. The blanks were also subjected to the extraction process and 

GC-MC, FTIR, and UHPLC analysis.     
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iv. Characterization of phenolic compounds  

α. UHPLC analysis of phenolic monomers 

The phenolic monomers present in the OSSP were determined at room 

temperature using a Thermo Fisher Dionex Ultimate 3000 UHPLC equipped with 

autosampler, pump, and  diode array detector (DAD-300 RS) with ultraviolet visible 

(UV-Vis) wavelength range from 280 -720 nm. The Haghi et al. UHPLC method for 

phenolic compounds was employed to analyze the monomers present in the OSSP.
136

 The 

injection volume was 1 µL. Separation was conducted on a Agilent C18 column with 

dimensions of 150 mm x 4.6 mm (i.d.) x 5 µm thickness using isocratic elution with a 2 

% aqueous acetic acid and 0.5 % aqueous acetic acid: acetonitrile (50:50 v/v) with a flow 

rate of 0.8 mL/min. Phenolic standard compounds were injected into the column to 

identify the compounds present in the OSSP. The samples, standards, and blanks were 

run in triplicate. Five different concentration levels of standards were prepared using 

ethyl acetate as solvent. Thermo Scientific Dionex Chromeleon 7 software and the 

retention times of the standards were used for the identification of the phenolic 

monomers.  

β. GC-MS analysis of phenolic monomers 

The different phenolic compounds and their molecular weights in the reaction 

mixtures were determined using an Agilent 7890A GC equipped with an Agilent 5975C 

triple-axis mass detector with electron-impact ionization (Newcastle, DE). An Agilent 

DB-5 %-phenyl-methylpolysiloxane capillary column was used. The column dimension 

was 30 m x 0.25 mm x 0.25-µm film and the oven temperature was initially programmed 

at 65°C for 1 min, ramped at 10°C/min up to 280°C with hydrogen gas as a carrier at 1.2 
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mL/min. A splitless 2 µL injection of the standards and OSSP were used at injection 

temperature of 250°C. The mass spectrometry analysis was done in full-scan mode for 

m/z ranging from 50-550 amu using electron ionization at 70 eV. Analytical standards of 

the phenolic compounds present were prepared and used to identify the phenolic moieties 

present in the OSSP in connection with the NIST library and retention times of the 

known compounds on the MS Chemstation software. Quantification was achieved by 

internal standard methods using o-terphenyl as an internal standard.
137

 Calibration curves 

were prepared by running five standard solutions with different concentration levels 

(31.25, 62.5, 125, 250, 500 ppm) and blanks in triplicates. Three masses corresponding to 

three major fragments of each compound were used for quantification from m/z values 

observed in the fragmentation pattern. The molecular weights and amounts of various 

phenolic moieties present in the OSSP were determined. The phenolic units present in the 

oxidation mixtures using cupric oxide oxidation were identified using the GC-MS 

method described for the OSSP. 

2.3. Results and discussions 

2.3.1. Catalysts characterization 

Table 2 shows the lists of N2 adsorption-desorption analysis for CoO/Al2O3, 

MoO/Al2O3 and LaO/Al2O3. The molecular cross-sectional areas were determined to be 

the same for all metal catalysts. The BET surface area increased while the total pore 

volumes decreased for all metal catalysts after loading of CoO, MoO, and LaO to Al2O3 

as compared Al2O3 by Zhao et al.
138

 The BET surface area and total pore volume of 

MoO/Al2O3 were higher than CoO/Al2O3 and LaO/Al2O3 metal catalysts. The possible 

explanation to the lower total pore volumes in CoO/Al2O3 (0.162 cm
3
/g) and LaO/Al2O3 
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(0.160 cm
3
/g) compared to MoO/Al2O3 is due to high filled up of metal oxides of the 

micropores and mesopores of the supporting medium after loading of CoO, LaO and 

MoO.
139

 The high BET surface area of MoO/Al2O3 (380.89±5.14 m
2
/g) is as a result of 

interactions within MoO and aggregation of it deposition on the surface of Al2O3.  

 

 

 

 

 

Catalysts 
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   Total pore volume(cm
3
/g) 

CoO/Al2O3 353.13±2.88 0.162 0.162 

MoO/Al2O3 380.89±5.14 0.162 0.171 

LaO/ Al2O3 364.88±2.80 0.162 0.160 

1
 BET surface area 

2
 Molecular cross-sectional areas 

 

2.3.2. Lignin characterization 

a. Cupric oxide oxidation  

The structural composition of lignin is characterized by the presence of p- 

hydroxyphenyl (H), guaiacyl (G), and syringyl (S) phenolic units distributed in the cross-

linkages of the polymer. Cupric oxide and nitrobenzene oxidations are the main chemical 

degradative methods used to analyze the structure characteristics of lignin polymer.
140-141

 

Nitrobenzene is known to produce higher phenolic yields from lignin compared to cupric 

oxide. However, the harmful nature of nitrobenzene in its reduced form in the reaction 

mixture makes the use of cupric oxide lignin oxidation more preferable. The phenolic 

units present in the oxidation mixtures were determined by GC-MS as described for the 

separation of OSSP except that dichloromethane was used to prepare the standard and 

Table 2. Characterization of the three different catalysts by their textural properties; 

BET surface area, molecular cross-sectional areas, and total pore volume. 
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there was no internal standard used. Figure 12 and Table 3 show the different phenolic 

monomers and the type of structural moieties.   
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structure 

1 Guaiacol G 

2 p-cresol H 

3 Vinyl-guaiacol G 

4 Vanillin G 

5 Acetovanillone G 
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Figure 12. GC-MS total-ion chromatogram showing phenolic moieties 

produced from oxidation of Kraft lignin using cupric oxide. 

Table 3. Structure of phenolic monomers in Kraft lignin produced during 

cupric oxide oxidation  

 

4 



   43 

 

 

All the phenolic moieties are guaiacyl (G) units of the lignin resulting from cupric oxide 

oxidation, except p-cresol which is a hydroxyphenyl (H). Vanillin showed the highest 

abundance of all the phenolic moieties as indicated in Figure 12. The abundance of 

vanillin and other guaiacyl (G) moieties is an indication that the lignin polymer belongs 

to softwood origin. Cupric oxide oxidation of softwood lignins results in high yields of 

vanillin and other guaiacyl moieties, alongside a few hydroxyphenyl moieties. 
142

 

b. Py-GC-MS Analysis 

Kraft lignin was subjected to Py-GC-MS analysis. Figure 13 and Table 4 show the 

different phenolic moieties with molecular formula and weights obtained from pyrolysis 

at 600 °C. The compounds were identified by retention times of standards and the NIST 

library. The group type according to the arrangement of ether groups on the phenolic 

linkages (p-hydroxyphenyl, guaiacyl, and syringyl) was also determined. 
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Peak 

number 

  

Compound 

 

Formula 

Molecular 

weight 

(g/mol) 

Moiety 

type 

 

1 

 

 

 

Phenol 

 

C6H6O 

 

94 

 

H 

2  Guaiacol C7H8O2 124 G 

3  p-Cresol C7H8O 108 H 

4  2-methoxy-6-methylphenol C8H10O2 138 G 

5  Methyl guaiacol C8H10O2 138 G 

6  Ethyl guaiacol C9H12O2 152 G 

7  Catechol C6H6O2 110 H 

8  4-Propyl guaiacol C10H14O2 166 G 

9  Eugenol C10H12O2 164 G 

10  Vanillin C8H8O3 152 G 

11  Acetovanillone C9H10O3 166 G 

12  Homovanillic acid C9H10O4 182 G 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Phenolic monomers, groups, molecular weights and formula identified using 

Py-GC-MS analysis of Kraft lignin 
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The majority of the phenolic compounds are guaiacyl (G) moieties, with a 

hydroxyphenyl (H). This is in agreement with the results of cupric oxide oxidation 

reaction. The phenolic compounds obtained from the pyrolysis are characteristics of 

softwood lignin. Softwood lignins mostly contain guaiacyl moieties, hardwood lignins 

are mainly made up of hydroxyphenyl (H) and syringyl (S) moieties, whereas grass 

lignins exhibit characteristics of all the three different groups of moieties.
143

 The large 

abundance of these phenolic compounds resulting from pyrolysis of Kraft lignin is 

indicative that many useful phenolic moieties, especially guaiacyl units, can be derived 

Figure 13: Chromatogram of phenolic compounds produced during Py-GC-MS analysis 

of Kraft. 
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from the crosslinked three-dimensional lignin polymer using catalysts in suitable 

conditions. Some of the phenolic compounds from the pyrolysis have the same chemical 

formula but because they differ in their structural arrangement, they elute from the 

column at different times.  

 

c. TG analysis 

Figure 14 shows the thermal decomposition of Kraft lignin as measured by TG 

and differential thermal gravimetric (DTG) with increasing temperature from 25 °C to 

900 °C at a rate of 15 °C/min. The TG curve shows a measure of weight loss as a 

function of temperature whereas the DTG curve is the first derivative of the 

thermogravimetry curve with respect to temperature. The initial weight loss in the Kraft 

lignin which is considered as drying was observed to be 1.6 % from 25  to 120 °C due to 

the removal of moisture from the polymeric film of the lignin which is less than what is 

reported in the Sigma Aldrich website (5 %) for kraft lignin.
144-145

 The reduction in 

moisture content is due to the oven drying of the kraft lignin in our laboratory which 

helped in determining the dry weight mass of the lignin used in depolymerization. The 

first stage (S1) of the kraft lignin degradation started from 149 to 225 °C. The 

degradation at this stage is mainly as a result of devolatilization of functional groups and 

accounted for 2.5 % mass loss.  

The second stage (S2) of degradation occurred from 225 - 520 °C with maximum 

(DTGmax) decomposition occurring at 360 °C as shown by broad peak on the DTG curve 

in Figure 14. The weight loss was determined to be 36 % and this is due to breakdown of 

crosslinkages within the lignin polymer.
146

  The last stage of the degradation (S3) led to 

formation of char in the temperature range of 520 – 750 °C as result of the breakdown of 
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aromatic rings. The weight loss was observed to be 11.1 %. The residual carbon for the 

Kraft lignin was determined to be 48.4 % at temperatures above 750 °C. The high 

residual carbon yield shows that kraft lignin has high resistance to degradation. The 

degradation profile is comparable to Sigma Aldrich degradation analysis.
145

 

 
 

 

 

  

d. DSC Analysis 

The enthalpy change of Kraft lignin was determined by obtaining a differential 

scanning calorimetry (DSC) heating curve within a temperature range of 20 to 400 °C at 

a constant heating rate of 15 °C/min under nitrogen atmosphere. Figure 15 shows the 

DSC curve of Kraft lignin of heat flow as a function of temperature. The glass transition 

(Tg), melting temperature (Tm), and crystallization temperature (Tc) were determined 

from the DSC heating curve.  

 

Figure 14. TG and DTG analysis curves of Kraft lignin performed at 900 °C  

under nitrogen atmosphere at constant heating rate of 15 °C/min. 
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All the enthalpy changes for the Kraft lignin DSC analysis were endothermic. 

Figure 15 shows the three endothermic peaks. The first endothermic peak occurred at 

124.9 °C which corresponds to the glass transition temperature (Tg), whereby the brittle 

hard state of amorphous materials in the lignin polymer is converted to rubbery material. 

The glass transition temperature determined is comparable to literature values under 

similar conditions for lignins from Eucalyptus nitens (140 °C) and Pinus radiata (120 °C). 

147
 The second endothermic peak was observed at 193 °C which shows the melting 

temperature of the Kraft lignin which is consistent with the first thermal degradation 

range observed (149 – 225 °C). The last endothermic peak was observed 365 °C due to 

decomposition of hydroxyl and epoxy groups in the polymer of the lignin.
148

 The 

decomposition temperature from the DSC analysis is in agreement with the maximum 

degradation, DTGmax value (360 °C).  

 

Figure 15. Heating curve of differential scanning calorimetry analysis of kraft 

lignin from 20 to 400 °C at a constant heating rate of 10 °C/min. 
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2.3.3. Catalytic hydrotreatment of lignin 

The functional groups in the Kraft lignin and the OSSP were compared using 

FTIR analysis. The extracted phenolic monomers in the organic solvent ethyl acetate 

were characterized using GC-MS and UHPLC. The identification and quantification of 

the phenolic monomers were done using GC-MS. UHPLC identification analysis was 

performed at oven temperature of 30 °C to confirm that the phenolic monomers were 

produced from the depolymerization reaction rather than resulting from breaking down of 

oligomers that might be present in the organic solvent during GC-MS analysis.  

a. FTIR analysis 

FTIR analysis of the starting material and OSSP, as well the lignin residue after 

the hydrotreatment, was performed to determine the correlation between their functional 

groups in the wavenumber region of 4000- 650 cm
-1

. FTIR is one of the methods that can 

be used to investigate changes in structure of lignin. The characteristic spectra were 

assigned using Thermo Electron Corporation Nicolet 380 OMNIC FT-IR spectrometer 

interpretation guide software and literature spectra studies of lignin and its product 

analysis.
105, 149-152

 Figures 16 and Table 4 show the FTIR absorption spectra of Kraft 

lignin, untreated lignin, and OSSP. The FTIR spectra for the starting material show 

similarities in functional groups and absorption intensities to the unreacted lignin except 

in absorption band regions of 1045-1032 cm
-1

and 1090-1078 cm
-1

 where an unreacted 

lignin showed stronger absorption intensities than kraft lignin. The strong absorption 

intensities in the unreacted lignin in these two regions are as result of C-O deformation in 

the secondary alcohol and aliphatic ethers caused by the hydrotreatment. Apart from 

these two absorption band regions, which reveal cleavage of ether linkages and 
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disorientation in the C-C linkages, the unreacted lignin is able to maintain most of the 

characteristics of the starting material and therefore, can be reused to produce useful 

phenolic monomers, because it did not transform into coke or char during the 

depolymerization reaction. The unreacted lignin and the OSSP all have absorptions 

between 2985-2336 cm
-1

 and 1738-1702 cm
-1

 which indicate the presence of methyl, 

methylene, and aromatic carbonyl. The major difference between the unreacted lignin 

and the OSSP is the strong absorption at 3389.8 cm
-1

 indicating the presence of alcohol in 

the unreacted lignin peak but not in the OSSP peak.  

 A careful study of the OSSP shows that there is a disappearance of the peak at 

3390-3382 cm
-1

 which confirms that the broad peak exhibited by Kraft lignin and 

unreacted lignin was as result of O-H stretching of alcohols in the lignin polymer but not 

O-H stretching of aromatics. The strong guaiacyl rings plus C=O stretching at 1269-1239 

cm
-1

 coupled with C=O stretching in aromatic carbonyl at 1738-1702 cm
-1

 for OSSP 

without peak formation at 1224-1221 cm
-1

 for C-C and C=O stretch for condensed 

guaiacyl moieties, confirms that Kraft lignin underwent depolymerization by 

hydrotreatment to form phenolic monomers. The FTIR analysis correlates well with the 

GC-MS, copper oxide oxidation, HPLC, and Py-GC-MS analysis that the phenolic 

monomers produced in the reactions are mainly guaiacyl type. 
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Figure 16. FTIR analysis spectra of Kraft lignin (blue), unreacted lignin (purple) from 

the hydrotreatment, and organic-solvent soluble products (red) showing similarities 

and differences in peak absorption intensity. 
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  1  2 3 

3390-3382 O-H stretching vibration due to alcohols s s - 

2985-2336 C-H stretching in methyl and methylene groups m m m 

1738-1702 C=O stretching in aromatic carbonyl m m s 

1595 Aromatic skeletal vibration plus C=O stretch m m - 

1515-1513 Aromatic skeletal vibrations; Guaiacyl (G) s s w 

1461-1444 Aliphatic CH2 deformation w w w 

1427-1425 Aromatic skeletal vibrations plus C-H in plane 

deformation 

w w - 

1373-1362 Aliphatic C–H stretch in CH3 w w m 

1269-1239 Guaiacyl rings plus C=O stretch m m s 

1224-1221 C-C, and C=O stretch Guaiacyl  (G) condensed m m - 

1090-1078 C-O deformation in secondary alcohols and 

aliphatic ethers 

w s w 

1045-1032 Aliphatic ether C-O and alcohol C-O stretching m s s 

860-840 Aromatic C–H out of plane deformation w w w 

634-608 Phenol O-H out of plane deformation w w w 

 

 

 

 

b. GC-MS Analysis 

All the samples and standards were subjected to GC-MS analysis. There were up 

to six phenolic compounds that were extracted. The analytical standards and internal 

standards were purchased commercially and were used in GC-MS for phenolic monomer 

characterization after preparation using ethyl acetate as solvent. All of the retention times 

and fragmentation patterns of phenolic monomers from hydrotreated depolymerized kraft 

Table 5. Functional group assignment of FTIR analysis of Kraft lignin, unreacted lignin 

and organic solvent soluble products. 

1- Kraft lignin: 2- unreacted lignin: 3- organic soluble product: s-strong intensity: m-medium intensity: w-weak 

intensity 
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lignin matched the analytical standards analyzed on GC-MS. The molecular weight of all 

the analyzed phenolic monomers were less than 190 g/mol ranging from 124 to 183 

g/mol and only one unidentified peak on the GC-MS analysis for both temperatures, as 

shown in Figures 17 and 18 was observed. GC-MS run time was increased from 13 min 

to 45 minute to accommodate possibility of detecting more peaks, but no peaks were 

found after 12.5 min. This shows that the extraction method is able to extract mainly the 

phenolic monomers. Ethyl acetate eluted before all the phenolic monomers, but the 

internal standard eluted after the analytes.  

The phenolic monomers produced were guaiacol, 3-methoxyacetophenone, 

vanillin, 4-propylguaiacol, acetovanillone, and homovanillic acid. There were more 

phenolic monomers and higher yields in hydrotreatment depolymerization at 240 °C than 

200 °C as shown in Figures 17, 18, 19 and 20. The reaction conditions without catalyst 

produced only one and two phenolic monomers at 240 °C and 200 °C respectively. An 

increase in temperature without catalyst decreased the yield in phenolic monomers from 1 

wt% to 0.6 wt%. Moreover, the use of catalyst increased the phenolic monomers from 0.6 

wt% to 15 wt% (use of MoO) at 240 °C and from 1 wt% to 5 wt% for temperature of 200 

°C (use of MoO). The highest yield of product was recorded for MoO (15 wt%) for all 

the mixtures of the two hydrotreatment reactions performed on the same Kraft lignin 

followed by LaO (9 wt%) and, CoO (3.4 wt%) at 240 °C. Under the first reaction 

conditions using MoO, LaO, and CoO the yields in phenolic monomers were 6.8 wt%, 

4.8 wt%, and 0.9 wt% respectively.  

The increase in number and amount of phenolic monomers in the catalyzed 

depolymerization reactions conditions at 240 °C is indicative that the catalysts were able 
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to cause depolymerization to more phenolic monomers from the lignin polymer and 

subsequently stabilize them to prevent repolymerization. Repolymerization has been a 

major issue in the production of phenolic monomers from lignin. The oxo species of 

MoO, CoO and LaO cycle between multiple oxidation states, in the process release and 

transfer hydrogen and oxygen atom within the lignin polymer.
153

 The oxidation states 

affected the yield of phenolic monomers. The Mo metal has highest unpaired electrons in 

the d-orbital (up to +6 oxidation state) compared to Co and La metals which aided more 

hydrogen generation to stabilize more intermediate phenolic moieties and therefore, we 

speculate this is why it led to high yield of phenolic monomers.
153

 The surface area of the 

metal oxides after the formulation also affected the yield of phenolic monomers. Higher 

surface area of the supported-zeolite metal oxides led to higher yields. 

 
 

 

 

 

 

 

Figure 17. GC-MS total-ion chromatogram of vanillin (3), 4-propylguaiacol (4), 

acetovanillone (5), and homovanillic acid (6) obtained from Kraft lignin hydrotreatment at 

200 °C  
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Figure 18. GC-MS total-ion chromatogram of guaiacol (1), 3-methoxyacetophenone 

(2), vanillin (3), 4-propylguaiacol (4), acetovanillone (5), and homovanillic acid (6) 

obtained from Kraft lignin at 240 °C.  
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Figure 19. Yields of phenolic monomers - vanillin (purple), 4-propylguaiacol (dark 

blue), acetovanillone (orange) from hydrothermal liquefaction of Kraft lignin at 200 °C. 
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c. UHPLC analysis of phenolic monomers 

The OSSP were analyzed by injecting them and the standards into the HPLC 

column. Figure 21 shows the peaks of phenolic monomers and the internal standard. The 

phenolic compounds were identified using HPLC analysis are similar to those analyzed 

by GC-MS.  Deepa et al. confirmed that no oligomers are extracted during phenolic 

monomers extraction using organic solvent extraction.
107

 

 

Figure 20.  Yields of phenolic monomers: guaiacol (red), 3-methoxyacetophenone 

(green), vanillin (purple), 4-propylguaiacol (dark blue), acetovanillone (orange), and 

homovanillic acid (light blue) from hydrothermal liquefaction of Kraft lignin at 240 

°C.  
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2.4. Conclusion 

The result obtained and discussed for the hydrothermal liquefaction demonstrated 

that subcritical water at 250 °C and 12 MPa with MoO using a reaction time of 15 mins is 

able to depolymerize Kraft lignin. The BET surface area (380.89±5.14 m
2
/g) and total 

pore volume (0.171 cm
3
) contributed to high yields of monomers for MoO/Al2O3 at 

240°C than CoO/Al2O3, and LaO/Al2O3.The extraction of the reaction mixtures using 

ethyl acetate produced six useful phenolic monomers: guaiacol, vanillin, 3-

methoxyacetophenone, acetovanillone, 4-propyguaiacol and homovanillic acid. 

Subcritical water and MoO supported-zeolite catalysts reaction provides a viable 

alternative to depolymerize lignin.   
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Figure 21. HPLC analysis of phenolic monomers in the ethyl acetate extract of 

depolymerized Kraft lignin at 240 °C using MoO catalyst 
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CHAPTER 3 

AROMATIC MONOMERS GENERATED FROM TORREFACTION AND 

PYROLYSIS OF PRAIRIE CORDGRASS  

3.1. Introduction 

The constant growing concern for an alternative renewable, abundant, greener and 

cleaner source for fuels and chemicals has resulted in many studies into lignocellulosic 

materials as another source of energy rather than continuous reliance on petroleum 

products 
110, 154

. Lignocellulosic biomass, of which prairie cordgrass forms part, accounts 

for about 50 % of world’s biomass, and it is readily available from agricultural waste, 

energy crops, and woody and grassy materials at low cost 
155-158

. Lignin from biomass has 

a great potential for production of biochemicals, renewable energy, and control of CO2 

emissions therefore reducing global warming.
159

 

In recent developments, lignin is used as a co-polymer in bio-composites for 

plastic and polylactide materials to enhance their thermal and mechanical strength. 
160-161

 

Studies have shown that lignin-based co-polymer electrodes display electrochemical 

properties that are comparable to commercial anodes at low production cost, meaning 

lignin can serve as energy storage in batteries.
162-163

 Lignin is now used as a biobased 

alternative for carbon precursors. The rich carbon structure of lignin allows it to be used 

as renewable, low-cost graphitic carbon compared to the high cost of producing other 

carbon-fiber precursors such as polyacrylonitrile and its associated environmental 

issues.
164-165

 The many hydroxyls and polar groups exist in the lignin structure leading to 

the formation of strong intramolecular and intermolecular hydrogen bonding, therefore 
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making the intrinsic lignin insoluble in any solvent. However, chemical hydrolysis of the 

separated lignin enables it to be divided into soluble lignin and insoluble lignin.
166

 

Torrefaction and pyrolysis processes cause thermal decomposition of cellulose, 

hemicellulose and lignin at temperatures above 200 °C, but pyrolytic temperatures used 

for production of bio-oil and biochar effectively range from 250-800°C.
62, 167

 Drying of 

biomass is done at temperatures above 105 °C for several hours to reduce water in 

pyrolytic bio-oil. Water content is highest at the initial stage of pyrolysis when 

temperatures are in the range of 100-300 °C.
168

 Torrefaction is a thermochemical 

pretreatment process where raw biomass is heated at lower temperatures ranging between 

200-300 °C under an inert atmosphere in order to remove bound and unbound water, 

thereby reducing moisture content.
61, 158, 169-171

 However torrefaction biochars below 250 

°C have poor grindability.
59

 Torrefaction is one of the pretreatment techniques employed 

in recent times to increase heating value, density, grindability and hydrophobicity of the 

feedstock to reduce logistic cost.
61, 169-170, 172-173

 Torrefaction study on bio-char from 

prairie cordgrass at 250, 300, and 350 °C by Wei et al 
173

 shows that an increase in 

temperature lowered the moisture content, leading  to an increase in carbon content from 

44.27 to 66.28 wt%, along with a subsequent increase in heating value (7.25 to 28.75 

MJkg
-1

). Bio-char from torrefaction has high polycyclic aromatic hydrocarbons as 

compared to bio-char from pyrolysis at temperatures above 360 °C.
174

  

The undesirable characteristics of bio-oil from torrefaction and pyrolysis is mostly 

due to high water and oxygen content, which makes it an ineffective fuel source for 

transportation.
110

 The oxygenated content is mostly made up of aromatic organic 

compounds. These aromatics compounds are rich in useful furfurals and phenolic 
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monomers from the lignin of the biomass which can serve as feedstock for polymer 

synthesis.
175-177

  

Reduction in moisture content occurs mainly at low temperature, below 220 °C 

during torrefaction. Hemicellulose is the component of lignocellulosic material that 

degrades at the lowest temperatures, from 200-260 °C, followed by cellulose degradation 

from 240 °C - 360 °C. Lignins decompose slowly to volatiles in the background during 

torrefaction and pyrolysis starting at a 160 °C and continuing until 900 °C.
56, 63, 168

 

Degradation of cellulose and hemicellulose result in a low pH in bio-oil because of the 

formation of organic acids 
178

, but favors the extraction of aromatic compounds in the 

bio-oil. Bio-oil produced from biomass shows a lot of similarities to petroleum-based 

fuels in terms of usage and storage. It contains diverse chemical compounds, such as 

hydroxyaldehydes, carboxylic acids, ketones, and aromatic compounds, all having 

different polarities. Most of the phenolic groups exist as monomers, dimers and 

tetramers, contributing to the difficulty in using traditional refinement processes.
179-180

 

However, an understanding into the physical and chemical properties of bio-oil will help 

with the isolation of useful fractions. Mohan et al.
63

 have presented several manual 

methods for the solvent separation of bio-oil components. Manual extraction of bio-oil 

components takes a substantial amount of time to perform and also uses a large amount 

of solvent.  

Pressurized solvent extraction uses less solvent at elevated temperatures for the 

extraction of desirable components of bio-oil. The extraction kinetics and solute 

solubility are increased by the elevated temperatures, while the high pressures prevent the 

solvent from boiling. This reduces the solvent consumption by up to 90%.
181

 This 
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pressurized solvent extraction technique can selectively extract specific compounds in 

bio-oil based on the chosen solvent. Accelerated solvent extraction (ASE) increases the 

reproducibility of solute extraction and reduces human exposure to solvent because it is 

automated. Ethyl acetate and dichloromethane have been used by Mantilla et al 
135

 to 

extract phenolic compounds of bio-oil from agricultural biomass waste, but the use of 

dichloromethane for extraction has health and environmental concerns. 

To date, the amount of lignin remaining in biochar from prairie cordgrass during 

torrefaction is not known. A stepwise procedure is needed to determine the amount of 

lignin, ash, moisture, extractives, and total solids in biochar at different pretreatment 

temperatures (250, 300, 350, 600, and 900 °C) without interferences in analysis.  In this 

study, lignin determination from torrefaction of prairie cordgrass at 250 °C, 300 °C, and 

350 °C is compared to the pyrolysis of prairie cordgrass at 600 °C and 900 °C. We 

hypothesize that National Renewable Energy Laboratory (NREL) procedure for lignin 

determination in biomass can be used to determine lignin from biochars at different 

pretreatment temperatures (250, 300, 350, 600, and 900 °C), as well as raw prairie 

cordgrass (PCG). Lignin determination includes the use of acid hydrolysis which isolates 

the lignin to acid-soluble and acid-insoluble portions. The acid-insoluble portion contains 

most of the pure lignin compared to the acid-soluble. Lignin from different pyrolysis 

temperatures was recovered using the organosolvent (organosolv) method to obtain 

amount of pure lignin. FTIR, high heating value (HHV) analysis, Elemental analyzer, and 

TGA were used to characterize the recovered lignin. This work also uses ethyl acetate as 

a solvent during ASE for the extraction of the bio-oil components and characterization by 
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GC-MS. FTIR was used to confirm the presence of aromatic compounds in the bio-oil. 

Figure 22 shows the overview of various pathways used in this work. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

3.2. Experimental 

3.2.1. Materials and Reagents 

Ethanol (200 proof), and 8M sulfuric were purchased from Thermo-Fisher 

Scientific in Dubuque (Iowa, USA). Methyl isobutyl ketone (MIBK), 1, 3, 5-trioxane, 

99.8 % anhydrous ethyl acetate and deuterated dimethyl sulfoxide were purchased from 

Sigma-Aldrich in St. Louis, MO, USA. A Thermo-Fisher Scientific Barnstead Ultrapure 

water purification systems set at 18ΩM cm
-1

 was used to produce ultrapure water. Prairie 

cordgrass was harvested in Brookings, SD, USA and air dried for two weeks. The prairie 

cordgrass was knife milled with 1-mm screen sieving pans to obtain uniform 1-mm 

 Biomass  

Pyrolysis/ 

torrefaction of 

biomass  

Bio-oil 

Recovered 

lignin 

Figure 22. Outline for pyrolysis of prairie cordgrass and separation and analysis 

of pyrolytic products 

FTIR analysis 
Extracted bio-oil 
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pieces. Ice cubes obtained from ice making machine in the Dr. Lin Wei laboratory 

located in the Agricultural and Engineering Department of South Dakota State University 

Brookings, SD, USA. The balance for weighing was constantly checked with standard 

masses of 1, 2, 5, 10, 20, 50, and 100 g from Will Corporation, Rochester, NY, USA. All 

analytical grade chemicals acquired were used without further purification. Analytical 

aromatic compound standard 99 % vanillin, 98 % guaiacol, 99 % m-cresol, 99 % p-

cresol, 99 % catechol, 98.5 % American Chemical Society (ACS) grade xylene, 99 % 

ACS grade phenol, 98 % ethyl-guaiacol, 99 % syringol, 99 % ethyl-phenol, 98 % furan-

2-one, 97 % 3-furancarboxaldehyde, and o-terphenyl were purchased from Sigma Aldrich 

in St Louis, MO.  

3.2.2. Methods 

a. Torrefaction and pyrolysis of biomass 

A 310 stainless steel reactor, 27cm in length, internal diameter of 12.5cm, and 

13.5cm outer diameter that can withstand a maximum temperature of 1125 °C was used 

for torrefaction and pyrolysis of the prairie cordgrass. An isothermal, programmable, 

forced-draft muffle furnace with microprocessor control of linear heating and cooling 

was used to provide heat and cooling to the reactor. Copper tubes were connected from 

the nitrogen gas supply through the reactor to the bio-oil collection containers and Tedlar 

bag outlet for exit of the pyrolysis gas from the system as shown in Figure 23. The 

reactor and copper tubing systems were cleaned before each experiment. Each 

experiment was carried out in triplicate and the reported yield is the average. The samples 

were knife milled with 1-mm screen sieving pans to obtain uniform 1-mm particles 
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before each run. The sample (100 g) was weighed for each experiment and placed in an 

airtight reactor. 

 The heating rate of the reactor was 10 °C/min starting from 19 °C to the required 

temperature and held for 1 hour. The prairie cordgrass was subjected to torrefaction at 

250 °C (Tor250), 300 °C (Tor300), 350 °C (Tor350), and pyrolysis at 600 °C (Pyro600) 

and 900 °C (Pyro900). The system was purged right before the start of the experiment 

until its completion. Nitrogen (N2) was used as an inert gas to purge the system at a flow 

rate of 1L/min. Gas produced from the biomass samples were carried out through the 

reactor outlet to bio-oil collection flasks because of the direction of the flow of nitrogen 

gas from the nitrogen tank (Figure 23). The condensable gases were condensed to bio-oil 

and collected by corked Erlenmeyer flasks over ice at 0 °C. The copper tube connected to 

the Tedlar bag helped remove the non-condensable gases (NCG) from the reactor. The 

bio-oils and biochars (solid residues) were collected and weighed to determine the 

percent yield from the starting material. The bio-oils were collected in airtight 300-mL 

centrifuge bottles and stored in a refrigerator at a temperature of 0 °C for subsequent 

analysis. The percent yields of bio-oils, biochars, and noncondensable gases were 

determined from the starting material. Equation 1 was used to calculate the final yield of 

bio-oils, biochars and noncondensable gases as the ratio of the weight of desired product 

(WDP), bio-oils and bio-char) to the weight of initial sample (WIS). The yield of the 

NCG was determined by Equation 2. The bio-chars were stored in polyethylene bags at 

room temperature prior to analysis. 
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%𝑌𝑖𝑒𝑙𝑑 =
𝑊𝐷𝑃

𝑊𝐼𝑆
𝑥 100                                                                                                  (1) 

 

 %𝑁𝑜𝑛 − 𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑏𝑙𝑒 𝑔𝑎𝑠𝑒𝑠 = 100 − (𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑏𝑖𝑜 − 𝑜𝑖𝑙 𝑎𝑛𝑑 𝑏𝑖𝑜𝑐ℎ𝑎𝑟)         (2)        
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Figure 23. Pyrolysis-reactor system used for torrefaction and pyrolysis of prairie 

cordgrass. 
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b. Determination of lignin content in bio-chars of prairie cordgrass at 

different temperatures 

i. Sample Preparation 

The National Renewable Energy Laboratory method for lignocellulosic sample 

preparation (NREL/TP-510-42620) 
182

 was used for the sample preparation for lignin 

determination analysis of PCG and bio-chars obtained fromTor250, Tor300, Tor350, 

Pyro600, and Pyro900. The bio-char samples were oven dried at 45 °C for 48 hours and 

cooled to room temperature in a desiccator prior to lignin determination analysis 

experiment. 

ii. Total solids and moisture content determination in prairie cordgrass bio-

chars 

 The National Renewable Energy Laboratory method (NREL/TP-510-42621) was 

used for moisture content and total solids determination in the samples.
183

 200-mL 

aluminum pans were used as weighing containers. The containers were first oven dried 

for four hours at 105 °C. The hot, dry containers were removed and placed in the 

desiccator for cooling to room temperature. The weights of the empty aluminum pans 

were measured. Once the aluminum pans were cooled, 4.5g of samples were weighed 

into each and oven dried for four hours at 105 °C. After which, the samples were cooled 

to room temperature in a desiccator and the weights of each were recorded. The samples 

were oven dried for an additional four hours at 105 °C until a constant weight was 

obtained. The final weights of aluminum pans and samples were recorded to determine 

the sample weight. The dried samples were stored in a desiccator for further analysis. The 

percent average total solids and moisture in the samples were calculated in equation 3 and 
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4, respectively, using oven-dry weight (ODW) of weighing pans and ODW of samples 

and weight of air dry samples. 

  

% 𝑇𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑖𝑑𝑠 =
𝑂𝐷𝑊 𝑜𝑓 𝑝𝑎𝑛 𝑝𝑙𝑢𝑠 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑂𝐷𝑊 𝑜𝑓 𝑝𝑎𝑛

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑖𝑟 𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒
𝑥 100                          (3) 

 

% 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 = 100 −
𝑂𝐷𝑊 𝑜𝑓 𝑝𝑎𝑛 𝑝𝑙𝑢𝑠 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑂𝐷𝑊 𝑜𝑓 𝑝𝑎𝑛

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑖𝑟 𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒
𝑥 100                    (4) 

 

iii. Determination of amount of extractives in prairie cordgrass bio-chars 

The amount of extractives in PCG and bio-chars were determined using the 

National Renewable Energy Laboratory method (NREL/TP-510-42619).
184

 Extractives in 

samples (Tor250, Tor300, Tor350, Pyro600, Pyro900, and PCG) were determined by 

exhaustive extraction in a two-step process, with water and ethanol as solvents, using a 

Dionex ASE 350 (Sunnyvale, CA) and 250- mL ASE collection vessels. Oven dried 

samples at 105 °C for four hours were weighed (5.5 g) and loaded into extraction cells. 

The dead volumes in the extraction cell were filled with glass beads which provided a 

uniform flow for water and ethanol during extraction. The parameters used for the 

extraction were 1500 psi, 100 °C, 7-min static hold, 120 s purge, three static cycles, and 

150 % flush volume. Samples were collected and oven dried at 105 °C for six hours after 

the extraction cells were cooled to room temperature. The weights of the dried samples 

were recorded. The samples were stored in a desiccator. Equation 5 was used to calculate 

the percent extractives in the samples. The average percent extractives were determined 
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from the triplicate experiments using the difference in ODW of pan plus samples and 

ODW of pans. 

 

% 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑠 =
𝑂𝐷𝑊 𝑜𝑓 𝑝𝑎𝑛 𝑝𝑙𝑢𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑠 − 𝑂𝐷𝑊 𝑜𝑓 𝑝𝑎𝑛

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑖𝑟 𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒
𝑥 100                   (5) 

 

iv. Determination of ash content in prairie cordgrass bio-chars  

The National Renewable Energy Laboratory method (NREL/TP-510-42622) was 

used to determine the ash content in PCG and bio-chars samples from Tor250, Tor300, 

Tor350, Pyro600, and Pyro900. The porcelain crucibles were placed in a muffle furnace 

at 575 °C for four hours and then cooled in a desiccator to room temperature. Porcelain 

crucibles were dried at 575 °C in the muffle furnace for an additional four hours to 

achieve a constant weight for the empty crucibles. The muffle-furnace-dried porcelain 

crucibles were cooled and stored in the desiccator. The furnace-dried weights (FDW) of 

the porcelain crucibles were recorded.  The extractive-removed biochar samples (0.5 g) 

were placed in dried porcelain crucibles and subjected to ashing at 575°C in the muffle 

furnace for 24 hours. The porcelain crucibles with the ashes were removed from the 

muffle furnace and cooled to room temperature in the desiccator. The weights of ash 

samples were recorded. The ash samples were subjected to additional ashing in the 

muffle furnace at 575°C for six hours. The weights of the ash samples were recorded 

after they were cooled in the desiccator to room temperature. The average ash content in 

samples was calculated in percentages using Equation 6. 
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% 𝐴𝑠ℎ =
𝐹𝐷𝑊 𝑜𝑓 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒𝑠 𝑝𝑙𝑢𝑠 𝑎𝑠ℎ − 𝐹𝐷𝑊 𝑜𝑓 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒𝑠

𝑂𝐷𝑊 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑠 𝑓𝑟𝑒𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝑥 100                   (6) 

 

v. Lignin content determination and recovery in bio-chars from prairie 

cordgrass  

The amount of lignin in prairie cordgrass bio-chars was determined by National 

Renewable Energy Laboratory method (NREL/TP-510-4618).
185

 Lignin determination by 

this method accounts for both the acid-insoluble lignin (AIL) and acid-soluble lignin 

(ASL) of the biomass sample through hydrolysis, filtration, and ashing.
186

  The 

extractives free biochar samples and PCG were knife milled with 1-mm screening pans to 

obtain uniform particles seize of 1-mm. Extractives free  PCG, Tor250, Tor300, Tor350, 

Pyro600, and Pyro900 biomasses were each added (300 mg) to 3 mL of 72% sulfuric acid 

in an Ace glass pressure tube with a Teflon cap and an O-ring. The pressure tubes were 

removed sealed tightly and shook for 60 minutes at 30°C in an incubator. The pressure 

tubes were removed from the incubator after 60 minutes and 84 ml of deionized water 

was added to each sample to obtain a 4% sulfuric acid solution. The Teflon caps were 

tightly screwed on and sample contents were vigorously mixed to eliminate any 

concentration gradient. The content of the airtight sealed pressure tubes were autoclaved 

at 120 °C for 60 minutes. The samples were removed and cooled to room temperature at 

the completion of the reaction for analysis of acid-soluble and acid-insoluble lignin. 

Porcelain filtering crucibles were dried at 575°C for fours in a muffle furnace. 

The porcelain-filtering crucibles were then removed from the furnace and placed in the 

desiccator to cool to room temperature. After which, the FDW were recorded. The 

porcelain-filtering crucibles were further dried in the muffle furnace at 575 °C for four 
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hours to attain a constant weight. The final weights of dried porcelain-filtering crucibles 

were recorded. The autoclave-hydrolyzed sample mixtures were vacuum filtered using 

the oven-dried porcelain-filtering crucibles into filtrate and solid residues. The remaining 

solids in the pressure bottles were rapidly washed by hot deionized water and transferred 

into porcelain filtering crucibles. 45 mL of the filtrates were then transferred into 50 mL 

centrifuge bottles for acid-soluble lignin analysis. Triplicate UV spectrometer analyses of 

the filtrates were done using 4% of sulfuric acid as a blank solution on the same day to 

prevent breakdown of lignin in the hydrolyzed solutions. Absorbance of the aliquots was 

recorded at 320 nm using a 1-cm cuvette.  

 The acid-insoluble lignin was determined by using the collected solid residues in 

the porcelain filtering crucibles. The solid residues were dried in an oven at 105°C for 24 

hours until a constant weight was achieved. The samples were removed and stored in the 

desiccator to attain room temperature. The weights of the crucibles plus the samples were 

measured. The porcelain-filtering crucibles containing the samples were subjected to 

ashing at 575°C for 24 hours in the muffle furnace. The samples were removed from the 

muffle furnace and cooled to room temperature in the desiccator. The samples were 

further subjected to ashing at 575 °C for six hours in the muffle furnace. The samples 

were finally removed and stored in the desiccator, after which the weights were recorded 

at room temperature. Equations 7 and 8 were used to calculate the percentages of lignin 

in bio-char samples in terms of acid-insoluble lignin (AIL) and acid-soluble lignin (ASL). 

 

% 𝐴𝐼𝐿 =
𝐹𝐷𝑊 𝑜𝑓 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑙𝑖𝑔𝑛𝑖𝑛 𝑝𝑙𝑢𝑠 𝑎𝑠ℎ −𝐹𝐷𝑊 𝑜𝑓 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑎𝑠ℎ

𝑂𝐷𝑊 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑠 𝑓𝑟𝑒𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝑥 100               (7)  
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%𝐴𝑆𝐿 =
𝑈𝑉𝑎𝑏𝑠 𝑋 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑒 𝑋 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛

𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑣𝑖𝑡𝑦 𝑎𝑡 320 𝑛𝑚 𝑋 𝑂𝐷𝑊 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋 𝑃𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ
 𝑋 100        (8)      

 

 Lignins determined from  PCG, Tor250 , Tor300, and Tor350 were further 

extracted by the organosolv method using a Dionex Accelerated Solvent Extractor ASE 

350 
187

 to determine the percentage purity of the lignin. MIBK was used as a solvent for 

the lignin whereas H2SO4 acted as an acid promoter to dissolve the lignin in the ternary 

mixture. Samples were each weighed (15 g) and then loaded into 33-mL extraction cells 

having a filter at the bottom. The ternary mixture (200 mL) prepared in the ratio of 

MIBK: EtOH: H2O (52:35:13 v/v/v) with 0.5 % H2SO4 was placed into the ASE 350 

bottle (reservoir). All the extractions were performed at 140 °C (preheating time of 5min) 

with 56-min static hold, 150 % flush volume, 1500 psi, 300-sec purge, and two static 

cycles. Phase separation was created by diluting the extracts with 200 mL of water, 

creating an organic phase containing lignin and an aqueous phase. The weights of empty 

beakers were measured after oven drying at 45 °C. The organic phase was further washed 

with water, and the organic solvent was subsequently evaporated to obtain the extracted 

lignin. The extracted lignin was ground and placed in the weighed, empty beakers. The 

extracts were further washed with benzene: methanol mixture in a ratio of 5:1 and oven 

dried at 45 °C for 48 hours. The total weights of the beaker plus lignin extracts were 

measured, and the percentage lignin recovered was determined using Equation 9. The 

extracted lignins were stored in an airtight Ziploc bags for characterization. 

 

%𝐿𝑖𝑔𝑛𝑖𝑛 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑒𝑎𝑘𝑒𝑟 𝑝𝑙𝑢𝑠 𝑙𝑖𝑔𝑛𝑖𝑛−𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑏𝑒𝑎𝑘𝑒𝑟

𝑊𝑒𝑖𝑔ℎ 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
 𝑥100          (9)    
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c. ASE extraction of bio-oil from torrefaction and pyrolysis of prairie 

cordgrass 

Bio-oils obtained from torrefaction and pyrolysis of prairie cordgrass at different 

temperatures (250 °C, 300 °C, 350°C, 600 °C, and 900 °C) were extracted for aromatic 

monomers by ethyl acetate using a Dionex ASE 350, 300-mL collection vessels, 33-mL 

extraction cells, and glass fiber filters. Five grams of bio-oil samples were weighed and 

mixed with diatomaceous earth and loaded into the extraction cells with a filter at the 

bottom and top. The dead volume in the extraction cell was filled with glass beads. All 

extractions were performed at 140 °C with five-minute preheating, 10-min static hold, 

150 % flush volume, 1500 psi, three-minute purge, and two static cycles. All collection 

vessels were weighed separately before and after the extraction to determine the weight 

of the bio-oil fraction. The bio-oil extracts were concentrated by gentle nitrogen blow-

down. 

d. Characterization of bio-oil and lignin from bio-char of prairie cordgrass  

i. Characterization of bio-oil from torrefaction and pyrolysis of prairie 

cordgrass 

α. Water content, density, and pH of bio-oils 

The pH of the bio-oils was determined using a Fisher Scientific Accumet Basic 

AB15 pH meter (Waltham, Massachusetts) at room temperature. The density of the bio-

oil was determined by dividing the mass of the bio-oil by its volume. The volume was 

determined using a 25-mL pycnometer and the mass was measured as well. All the 

measurements were done at room temperature. The moisture content in the bio-oil was 



   74 

 

determined with a Mettler Toledo V20 compact volumetric Karl Fischer Titrator 

(Columbus, OH).  

β. FTIR bio-oil extracts analysis 

Fourier transform infrared spectrometry (FTIR) experiments were performed 

using a Nicolet 380 FTIR spectrophotometer from Thermo-Fisher Scientific (USA). The 

absorption spectra were determined in the region of 4000-600 cm
-1

 at 8 cm
-1

 resolution 

with 100 scans. Aliquots of bio-oil extracts were all subjected to FTIR analysis. 

Background spectra were collected for the experiments before running samples. All data 

collection and analysis were done using OMNIC Specta software. 

γ. GC-MS bio-oil extracts analysis  

The gas chromatographic analysis for all the extracts were done using an Agilent 

7890A equipped with an Agilent 5975C triple-axis mass detector and electron-impact 

ionization (Newcastle, DE) . An Agilent DB-5 phenylmethylpolysiloxane capillary 

column was used. The column dimensions were 30 m x 0.25 mm (0.25-µm film) and the 

oven temperature was initially held at 65°C for 1 min, ramped at a 10°C/min up to 280°C 

with a hydrogen carrier at 1.2 mL/min. Two-microliter splittless injections of the 

standards and bio-oil extracts were done at an injection temperature of 250 °C. The mass 

spectrometer analysis was done in the full-scan mode ranging from m/z 50-550 using 

electron ionization at 70 eV. Agilent Chemstation software was used to auto-tune the 

mass detector frequently.  Analytical standards of the compounds present in the bio-oil 

extracts, as shown in Table 5, were prepared using ethyl acetate and used to identify the 

phenolic and furfural moieties present in the bio-oil samples in connection with the NIST 

library and retention times of known compounds. Quantification was achieved using the 
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internal standard method and o-terphenyl as an internal standard.
137

 Calibration curves 

were prepared by running five standard solutions in triplicate with different concentration 

levels (31.25, 62.5, 125, 250, and 500ppm). Three masses corresponding to the three 

major fragments of each compound were used for quantification.  

ii. Characterization of lignin from bio-char of prairie cordgrass 

α. Elemental analysis and Higher Heating Value (HHV) 

Organosolv-extracted lignin samples were used for elemental analysis. EA440 E, 

Exeter Analytical Incorporation elemental analyzer (North Chelmsford, MA, USA) was 

used to measure the C, H, and N contents in the extracted lignin. The O content was 

determined by the difference as follows: O = 100 – (C + H + N). The elemental 

composition of lignin samples were reported as percentage of dry weight of the starting 

lignin. The higher heating values (HHV) of the lignin samples were determined by C2000 

calorimeter systems from IKA-Works Incorporation (Wilmington, N.C, USA) 

β. FTIR spectroscopic analysis  

PCG, Tor250, Tor300, Tor350 organosolv-extracted lignin were used for FTIR 

spectroscopic analysis. Thermo Electron Corporation Nicolet 380 FT-IR spectrometer 

(Madison, WI, USA) with 8 cm
-1

 resolution with 100 scans in an absorption spectra range 

4000-600 cm
-1

. Background spectra were collected for the experiments before running all 

samples as control measurement. All data collection and analysis were done using 

OMNIC Specta software. 

γ. Thermogravimetric analysis (TGA) 

TGA analysis for organosolv-extracted lignin samples from PCG, Tor250, 

Tor300, and Tor350 were analyzed using TG/DTA 220U system from Seiko Instruments 
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(California, USA). The TGA data was recorded as change in mass of the lignin sample as 

a function of temperature. Thermal-decomposition behavior of lignin was performed 

using an aluminum crucible under a nitrogen atmosphere with dynamic conditions of 25 

to 500 °C at a heating rate of 20 °C/min. 10 mg sample size was used for the analysis. 

The experiments were performed in duplicate with a RSD less than 5 %. Logger Pro 3.8.6 

software was used for the analysis of the weight loss curves.   

3.3. Results and discussion 

3.3.1. Yield of pyrolysis products 

The total yield of bio-oil, bio-char, and non-condensable gases determined were 

based on the initial dry weight of the prairie cordgrass.
188

 Table 6 shows the distribution 

of products (condensate, noncondensate, and biochar) obtained after torrefaction of 

prairie cordgrass at 250, 300, and 350 °C compared to pyrolysis at 600 and 900 °C. There 

was an increase in bio-oils and non-condensable gases with a corresponding decrease in 

biochar yield as temperatures increased, with the exception of 900 °C, where a decrease 

in biochar did not lead to an increase in bio-oil, but did result in a significant increase in 

noncondensable gases. Bio-oil yields at 350 and 600 °C were comparably high 

(34.24±1.10 and 36.50±6.13 wt%) 
189

 due to the breakdown of cellulose, hemicellulose, 

and lignin to condensable gases as compared with  900 °C, which composed mainly of 

volatile matter 
190

 and less bio-oil yields. This is because of the degradation of higher 

molecular weight compounds into noncondensable gases at 900 °C.
191

 A higher amount 

of noncondensable gases was determined at 300 °C (32.73±1.30 wt%) compared with 350 

°C (27.86±1.01 wt%) must be due to the rapid degradation of cellulose and hemicellulose 

that did not result in the condensation of those volatile compounds.   



   77 

 

 

 

 

 

 

 

Sample 
 Bio-oil 

(wt%) 

Biochar 

(wt%) 

Noncondensable gases 

   (wt%) 

Tor250 13.51±2.27 71.00±2.66 15.49±2.02 

Tor300 21.88±1.03 45.39±1.10 32.73±0.87 

Tor350 34.24±1.10 37.90±0.19 27.86±0.64 

Pyro600 36.50±6.13 30.23±5.10 33.27±4.60 

Pyro 900 26.60±3.87 23.41±8.30 49.99±5.29 

 

 

3.3.2. Lignin content and recovery in prairie cordgrass bio-chars 

All experiments were performed in triplicate and the results were recorded as an 

average with standard deviation.  Table 7 shows the total amount of solids, moisture 

content, extractives, ash content, acid-soluble lignin, and acid- insoluble lignin. Lignin 

determination is largely affected by amount of ash, particle size and extractives in the 

biomass. Ash contents increased as extractives and moisture contents in the torrefied 

biomass decreased compared to PCG due to evaporation at higher temperatures. The 

moisture content in all biomass samples were less than 10 % and the use of extractives 

free samples reduced interferences in lignin determination. The determined ash content of 

PCG (4.78±0.10 wt%), Tor250 (6.37±0.09 wt%), Tor300 (7.00±0.04 wt%) are 

comparable to what was determined by Cybulska et al 
192

  for raw prairie cordgrass (5.7 

wt%), but ash content in biochars from temperatures above torrefaction, Tor350 

(12.09±0.10 wt%), Pyro600 (12.57±0.45 wt%), and Pyro900 (14.72±0.15 wt%) were 

higher than 10 % due to an increase in the amount of inorganic matter and char. 

Table 6. Yield of products obtained from torrefaction and pyrolysis of prairie 

cordgrass at different temperatures  
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Sample 

wt% Total 

solids 

wt% 

Moisture 

wt% 

Extractives wt% Ash 

wt% 

Lignin 

wt% 

Lignin 

recovered 

Tor250 95.37±1.27 4.6±2.2 9.44±0.03 6.37±0.09 23.5±1.6 92.3±1.0 

Tor300  95.42±0.63 4.9±1.1 8.37±0.06 7.00±0.04 5.4±6.8 92.9±2.7 

Tor350 96.69±1.79 3.3±3.1 2.65±0.13 12.09±0.22 4.1±7.3 93.1±3.2 

Pyro600 97.47±0.64 2.5±1.1 1.25±0.01 12.57±0.45 - - 

Pyro900 98.56±1.04 1.4±1.8 1.22±0.05 14.72±0.15 - - 

PCG 93.63±0.81 6.4±1.4 16.78±0.41 4.78±0.10 20.3±2.6 89.2±2.5 

 

The total amount of determined soluble lignin was small in quantity compared to 

insoluble lignin, as expected.  At 250 °C, the amount of lignin in the bio-char is higher 

than lignin in PCG but as the temperature increases to severe torrefaction, 300 °C and 350 

°C and pyrolysis temperatures, the amount of lignin decreases to a point where there is no 

detectable lignin in the bio-char (Pyro600 and Pyro900). This is because from 300 °C and 

above most of the three lignocellulosic materials are degrading. At 250 °C there is 

degradation of hemicellulose and cellulose but less lignin degradation. Thus the biochar 

at Tor250 is rich in lignin as compared to PCG.
56, 168, 174

 The percentage lignin 

determined using the organosolv method are Tor250 (92.3±1.0 wt%), Tor300 (92.9±2.7 

wt%), and Tor350 (93.1±3.2 wt%). Recovered lignin percentages are comparable to the 

literature on prairie cordgrass and studies have shown that lignins recovered by 

organosolv method is considered native lignin because it is less than 5 % carbohydrate.
192

 

Table 7. Amount of total solids, moisture, extractives, ash, and total lignin with % 

RSD determined for torrefaction biochar samples at 250 °C (Tor250), 300 °C 

(Tor300), 350 °C (Tor350) and pyrolysis biochar samples at 600°C (Pyro 600) and 

900°C (Pyro 900). 
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The high percentage of lignin recovered from the torrefied biochar is due to less 

interference by carbohydrates.  

3.3.3. Characterization of bio-oil and lignin from prairie cordgrass bio-chars  

a. Characterization of bio-oil from torrefaction and pyrolysis of prairie 

cordgrass 

i. Water content, pH, Density of bio-oils 

Table 8 shows the water content, density, and pH of the bio-oil obtained at 

different torrefaction and pyrolytic temperatures. As seen in Table 7 pH range of the bio-

oils is 2.6±0.3 to 3.2±0.4. The acidic nature of the bio-oils aided extraction of aromatic 

compounds by aromatic ring hydrogenation.
112

 The water content for the torrefaction 

temperatures (250-350 °C) were high, ranging from 65 to 75 wt%, but was reduced in 

bio-oils for pyrolytic temperatures of 600 °C (41.73±8.20 wt% ) and 900 °C (42.77±1.30 

wt%). The high water content at torrefaction temperatures is a good indication that those 

conditions can be used to pretreat the biomass to remove a large amount of water before 

pyrolysis at higher temperatures, as studied by Wei et al.
173

 The lower water content for 

torrefaction at 350 °C (65.43±1.01 wt%) is consistent with the water content Cheng et al. 

determined for the same biomass at 350 °C.
193

 The densities of bio-oils from torrefaction 

are comparable to the density of water at room temperature, 0.997044g/cm³ because of 

the high amount of water in the bio-oils. The densities of bio-oils at 600 and 900 °C were 

determined to be the same (1.42 g/cm
3
), and higher than densities of bio-oils obtained 

from torrefaction because of the presence of higher molecular weight compounds from 

lignin degradation at higher temperatures during pyrolysis.
194
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ii. FTIR bio-oil extracts analysis 

FTIR spectroscopic analysis was performed to determine the functional groups 

present in the bio-oil samples. Table 9 shows characteristics assignment of typical FTIR 

absorption bands, main functional groups, and compounds. Figure 24 shows FTIR spectra 

analysis of bio-oil fractions after ASE extraction. FTIR spectra of different bio-oil 

samples show similar functional groups indicating that they have similar chemical bonds 

within the samples. There is a strong absorption from 3600 -3200 cm
-1

 as a result of the 

stretching H-bonded of O-H groups, along with an intense band at 1290-1220 cm
-1 

due to 

C-O stretching indicating the presence of phenols and alcohols 
195

 in bio-oil extracts  as 

determined by Abnisa et al.
196

 This is consistent with our GC-MS results. The phenolic 

compounds present in all the bio-oil samples are due to lignin breakdown during the 

pretreatment process.
197

 The presence of methylene and methyl groups are indicated by 

the strong absorbance peaks of C–H vibrations between 3000 and 2600 cm
-1

. The intense 

absorption bands present between 1750-1650 cm
-1

 are due to C=O stretching of ketones, 

aldehydes, and carboxylic acids as a result of breakdown of hemicellulose and cellulose. 

198
 Absorption from 1170-1020 cm

-1
 is due to C-O-C stretching vibrations from the 

Sample 

Water 

content  

(wt%) 

Density 

(g/cm
3
) 

pH 

Tor250 75.11±2.24 1.08±0.16 2.61±0.30 

Tor300 71.06±0.16 1.02±0.61 2.62±0.20 

Tor350 65.43±1.01 1.04±0.20 2.91±0.01 

Pyro600 41.73±8.20 1.42±0.11 2.90±0.68 

Pyro900 42.77±1.30 1.42±0.36 3.25±0.48 

Table 8. Physicochemical properties of pyrolysis of prairie cordgrass at different 

temperatures. 
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pyranose ring skeleton as a result of the breakdown of hemicellulose during pyrolysis to 

form 3-furancarboxaldehyde and furan-2-one in all bio-oil samples 
199

, which is in 

agreement with the GC-MS results shown in Figure 24 and Table 9.   

On the other hand, the absorption bands at 1500 cm
-1

 are due to C=C stretching of 

aromatic skeletal vibrations. C-H in-plane deformation as a result of peak bands at 1125 

cm
-1

, a C=O vibration of esters at 1167 cm
-1

,  and aromatic C-H out of plane vibration at 

650-950 cm
-1

 indicate the presence of aromatic compounds in all bio-oil samples and 

confirms the presence of guaiacyl and syringol moieties 
198, 200-201

 in the prairie cordgrass. 

 

 
 

 

 

 

 

 

 

 

Figure 24. FTIR spectra of bio-oil extracts from Pyro900 (blue), Tor250 (red), 

Tor300 (purple), Pyro600 (green), and Tor350 (pink) of prairie cordgrass.  
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Absorption  

bands (cm
-1

)  

Functional groups and compounds 

3460-3200 O-H stretching  

3000-2842 C-H stretching in methyl and methylene groups 

1738-1709 C=O stretching in unconjugated ketone, carbonyl  

1675-1655 C=O stretch in conjugated aryl ketones 

1605-1593 Aromatic skeletal vibrations plus C=O stretch 

1515-1505 Aromatic skeletal vibration; Guaiacyl 

1470-1460 Aromatic methyl group vibrations 

1430-1422 Aromatic skeletal vibrations 

1370-1365 Aliphatic C–H stretch in CH3 

1330-1325 Syringyl ring breathing with C–O stretching 

1270-1266 Guaiacyl ring plus C=O stretch 

1230-1221 C-C, and C=O stretch Guaiacyl condensed 

1165 C=O in ester groups conjugated typical for p-hydroxyphenyl, 

Guaiacyl, Syringyl  

1135 Aromatic C–H in-plane deformation for syringyl type 

1043 Aromatic C–H in-plane deformation for guaiacyl type 

835 Aromatic C–H out of plane bending 

691 Aromatic C-H stretching 

 

 

iii. GC-MS analysis of bio-oil fractions 

The identification and quantification of the major components of bio-oils obtained 

from torrefaction and pyrolysis of prairie cordgrass at different temperatures has been 

analyzed by GC-MS. Figure 25 shows the GC-MS chromatograms of the different bio-oil 

extracts analyzed using o-terphenyl as an internal standard. For the purposes of 

determining the high acidity (pH from 2.6-3.2) of bio-oil samples, acetic acid and 

hexanoic acids GC-MS peaks were identified in Figure 25 as A and B, respectively, 

Table 9: Assignments of FTIR absorption bands of lignin from Tor250, Tor300, 

Tor350, and PCG and bio-oils from torrefaction and pyrolysis 
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which is in agreement with FTIR peaks showing strong absorption bands for organic 

acids.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. GC-MS chromatograms of bio-oil extracts from Pyro900, Pyro600, 

Tor250, Tor300, and Tor350 of prairie cordgrass 
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Numbers Compounds Retention 

time(mins) 
250 °C 
(wt%) 

300 °C 
(wt%) 

350 °C 
(wt%) 

600 °C 
(wt%) 

900 °C 
(wt%) 

1 3-

Furancarboxaldehyde 
3.01 0.32 0.30 0.38 0.52 - 

2 Furan-2-one 3.21 0.03 0.06 0.07 0.10 - 
3 Phenol 5.11 0.30 0.31 0.37 0.51 - 
4 Guaiacol 7.81 0.77 0.85 1.01 1.39 - 
5 m-Cresol 8.01 0.83 2.33 2.76 3.82 - 
6 p-Cresol 9.88 0.17 1.18 1.32 1.83 0.03 
7 Xylenol 11.22 - 0.17 0.19 0.27 0.01 
8 Ethyl-phenol 12.80 - 0.76 0.90 1.24 0.07 
9 Ethyl-guaiacol 13.32 - 0.09 0.12 0.16 0.01 
10 Catechol 14.01 - 0.13 0.15 0.21 0.01 
11 Syringol 14.45 - 0.09 0.10 0.14 0.01 

12 Vanillin 17.81 - 0.01 0.01 0.17 0.05 

 

 Total aromatic 

compounds  2.42 6.28 7.38 10.36 0.19 

 

 

The major compounds identified and quantified were aromatic compounds 

involving useful furanic and phenolic moieties in the bio-oils as listed in Table 10. Table 

10 shows retention times and amounts of aromatic compounds contained in the bio-oil 

extracts. All bio-oil extracts showed the presence of organic acids and aromatic moieties. 

Bio-oils at 250 and 900 °C gave less aromatic compounds while 300, 350, and 600 °C 

produced more aromatic compounds. For torrefaction at 250 °C, water was evaporated 

and only a small portion of the lignocellulosic materials degrading, leading to high water 

content in the bio-oils and less aromatic moieties as indicated in Tables 6 and 7. An 

increase in torrefaction temperature led to degradation of more polysaccharides and 

lignin, resulting in an increase in the amount of aromatic compounds, but at 900 °C 

Table 10. GC-MS aromatic composition of bio-oils obtained from torrefaction and 

pyrolysis of prairie cordgrass at different temperatures 
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further breakdown of aromatic compounds, resulted in less furanic and phenolic 

compounds, as seen in Figure 25 and Table 10. The amount of aromatic compounds 

determined for 250, 300, 350, 600, and 900 °C were 2.42, 6.28, 7.38, 10.36, 0.19 wt% 

respectively. 

b. Characterization of lignin from bio-char of prairie cordgrass 

i. Elemental and HHV analysis 

The elemental composition and HHV of extracted lignin from PCG, Tor250, 

Tor300, and Tor350 were analyzed by an elemental analyzer and calorimeter 

respectively. The elemental analysis and HHV were carried out in duplicates and the 

averages with standard deviations were reported, as shown in Table 11. Lignin extracted 

from raw prairie cordgrass have high O content (39.8±10.6 %), but lower C and H 

contents compared to lignin from torrefaction. Elemental compositions of lignin from 

torrefaction were comparable. Carbon content in the extracted lignin increased from 53.4 

% to 68.3 % as the amount of oxygen content decreased from 39.8 % to 20.8 %. 

Torrefaction at 250 °C have the highest C and H contents. Even though torrefaction led to 

a significant increase in C and H content and reduction in oxygen content, severe 

torrefaction temperatures (300 and 350 °C) turned the trend around. The HHV of 

torrefied lignin (23.1-29.8 MJ/kg
-1

) were comparable to the lignin from PCG (25.8 

MJ/kg
-1

). Lignin from Tor250 has the greatest HHV while lignin from Tor300 and 

Tor350 has lower HHV than lignin from PCG. This is due to degradation of lignin 

polymer to form lower molecular weight compounds at higher temperatures.  
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Sample % C % H % N % O HHV(MJkg
-1

) 

PCG  53.4 ± 1.8 5.7 ± 16.7 1.1 ± 7.6 39.8 ± 10.6 25.8 ± 1.5 

Tor250 68.2 ± 1.4 7.4 ± 13.1 0.5 ± 2.9 23.9 ± 7.7 29.8 ± 1.3 

Tor300 64.8 ± 1.4 6.9 ± 13.8 0.4 ± 2.6 27.9 ± 8.1 24.4 ± 1.6 

Tor350 62.1 ± 1.5 6.7 ± 14.4 0.7 ± 2.1 30.5 ± 8.4 23.1 ± 1.7 

 

ii. FTIR spectroscopic analysis 

The lignin recovered by the organosolv method from torrefied bio-chars and raw 

prairie cordgrass were analyzed by FTIR spectroscopy in the wavenumber region of 

4000-600 cm
-1

, as shown in Figure 26. Table 9 shows typical characteristic assignments 

of lignin FTIR absorption bands and functional groups of possible compounds associated 

with the signals as a reference.
202-205

 The results of the FTIR spectra of Tor250, Tor300, 

Tor350, and PCG lignins are essentially similar in absorption bands from 4000-1600 cm
-1

 

but differ in signal profiles from 1515-844 cm
-1

, and are comparable to earlier studies on 

extracted lignins from different plants, 
204-206

 The similarities in the spectral profile for all 

the four extracted lignins are the result of broad intense absorption at 3460-3200 cm
-1

 due 

to O-H groups and at 3000-2842 cm
-1 

as a result of  C-H stretching in methylene and 

methyl groups. The difference in absorption spectral in the fingerprint region is due to 

modifications caused by torrefaction of the PCG at different temperatures. The PCG, 

Tor250, Tor300, and Tor350 show spectral absorption bands at 1605-1422 cm
-1

 due to 

aromatic vibrations plus C=O stretching. An aromatic C-H in-plane deformation present 

at 1135-1043 cm
-1

 and intense absorption band ranging from 1230-1221 cm
-1

 due to the 

C=O stretching. The C=O vibration in ester groups led to an intense absorption band at 

Table 11: Elemental compositions and High Heating Values (HHV) of lignin 

extracted from PCG, Tor250, Tor300, and Tor350 
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1165 cm
-1

. All of these confirm the presence of guaiacyl, p-hydroxyphenyl, and syringyl 

moieties in the lignins.
205

  

  

  
 

 

 

 

iii. Thermogravimetric analysis  

Thermal stability of differently extracted lignins was measured using their 

thermogravimetric analysis (TGA). Thermal decomposition of PCG, Tor250, Tor300, 

and Tor350 were determined by a temperature range from 25 to 500 °C at a rate of 20 

°C/min under an inert nitrogen atmosphere. Weight loss was recorded as a function of 

Figure 26. FTIR spectra for extracted lignin from Tor250 (blue), Tor300 (red), 

Tor350 (green), and PCG (violet). 
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increasing temperature. Figure 27 shows the TGA curves of the different extracted lignin. 

Table 12 shows the measurement of weight losses at different stages of the TGA curves.  

The first stage of weight loss occurred from 45 to 120 °C as a result of the 

evaporation of moisture from the polymeric films of the extracted lignin.
144

 The loss of 

water may also be due to the release of unbound and bound water in the polymeric films 

of the extracted lignin. The amount of water evaporated from PCG, Tor250, Tor300, 

Tor350 lignin were 4.12 %, 5.72 %, 4.51 %, and 4.21 % respectively. The high water 

content in all lignin compared to the starting biomass may be due to insufficient drying of 

lignins. The second stage of weight loss in the lignin happened at a temperature range of 

160-280 °C due to devolatilization of carbohydrates associated with lignin samples and 

due to the conversion of lower molecular lignin compounds to volatile gasses like CO, 

CO2, and CH4.
56, 199, 207

 As shown in Table 12, the weight loss was highest in lignin 

extracted from raw prairie cordgrass, PCG (13.14%), whereas lignin extracted from 

torrefied prairie cordgrass showed less mass loss, ranging from 6.06-11.18 %. The low 

amount of devolatilization in lignin from torrefied prairie cordgrass at this stage is a good 

indication that there is less association of carbohydrates, and confirms the high 

percentage of lignin recovery in Tor250 (92.3 %), Tor300 (92.9 %), and Tor350 (93.1 %) 

compared to PCG (89.2 %).  

The third stage of degradation occurred as a result of continuous devolatilization 

at a temperature range of 280-403 °C for all the extracted lignin.  The lowest degradation 

was observed in lignin from Tor300 (27.5 %) and the highest degradation in PCG (35.0 

%) lignin with Tor250 and Tor350 lignins recording 32.9 % and 30.4 % degradation 

respectively. This suggests that torrefaction of biomass affects lignin thermal properties. 
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After 400 °C of pyrolysis the amount of carbon residue of PCG, Tor250, Tor300, and 

Tor350 were 47.8 %, 50.18 %, 59.40 %, and 59.04 % respectively. There are higher 

yields of residual carbon in lignin from torrefied prairie cordgrass than the raw prairie 

cordgrass. Within the third stage, the devolatilization products are mainly from the lignin 

compounds such as phenolics, alcohols, aldehydes, and ketones.
207

 Cleavage of β-O-4 

linkages and the devolatilization of functional groups present in the extracted lignin led to 

mass losses within the second and third stages of the TGA.
146, 208

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 27: Thermogravimetric analysis curves obtained for organosolv lignin 

extracted from Tor250, Tor300, PCG and Tor350 (from bottom to top) with a 

temperature range from 25 to 500 °C.  



   90 

 

 

 

 

 

Degradation  

Stages 

PCG 

% Mass loss 

Tor250 

% Mass loss 

Tor300 

% Mass loss 

Tor350 

% Mass loss 

Stage 1 4.1±1.6 5.7±1.0 4.5±1.5 4.2±0.5 

Stage 2 13.1±1.9 11.1±1.9 8.6±1.8 6.1±1.8 

Stage 3 35.0±1.5 33.0±1.9 27.5±2.2 30.6±2.1 

Carbon residual 47.8±1.4 50.2±0.6 59.4±0.6 59.0±0.1 

 

 

3.4. Conclusion 

 In order to determine the amount of lignin in the torrefied prairie cordgrass, 

torrefaction in a pyrolysis reactor was performed with a working temperature of 250 °C, 

300 °C, 350 °C and compared to pyrolysis at 600 °C and 900 °C. The extracted lignin 

from the torrefied prairie cordgrass yielded 4.1 to 23.5 wt%. The organosolv recovered 

lignin for the torrefaction temperatures yielded in the range between 92.3-93.1 %.  The 

result for evaluated bio-oil from the torrefaction of the prairie cordgrass demonstrated 

that torrefaction produces useful aromatic compounds, furan and phenolic moieties. 

Torrefaction at 250 °C yielded the highest lignin (23.5±1.6 wt%), but the lowest aromatic 

monomers (2.42 wt%) while the torrefaction at 350 °C yielded the lowest lignin (4.1±7.3 

%) but high lignin purity (93.1±3.2) and 7.38 wt% aromatic monomers. Increase in 

temperature led to corresponding increase in aromatic monomers but decrease in lignin 

amount. Pyrolysis at 600 °C produced the highest amount of aromatic monomers (10.36 

wt%) but no lignin determined at 600 °C and above.  

 

 

 

Table 12. Thermogravimetric analysis of extracted lignins from PCG, Tor250, 

Tor300, and Tor350 showing mass losses at different degradation stages. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

Feedstocks for production of biochemicals from lignocellulosic materials are 

cheap and renewable and can replace diminishing petroleum products. The uses of 

biochemicals from the lignocellulosic materials are environmentally benign. 

Lignocellulosic materials are complex and dynamic structure mainly consists of 

cellulose, hemicellulose and lignin. The main challenge is to develop methods and 

technologies to efficiently hydrolyze the components of the lignocellulosic materials. 

Torrefaction is one of the pretreatment methods used to process prairie cordgrass. Lignin 

is a potential source for value-added biochemicals. Torrefied prairie cordgrass can serve 

as a large source of lignin and bio-oil from torrefaction process has aromatic compounds. 

Kraft lignin is cheap and produced in large amounts in paper and pulp industries. In this 

study we determined and characterized lignin and bio-fuels from torrefied prairie 

cordgrass. We also depolymerized and characterized the products from hydrothermal 

liquefaction of Kraft lignin    

In the first part of this dissertation, characterization of the Kraft lignin showed 

mainly guaiacyl and hydroxyphenyl moieties which is indicative of softwood lignin 

origin.
209

 All the phenolic monomers identified by the GC-MS and UHPLC analysis 

show guaiacyl moieties (G) which is supported by cupric oxide oxidation and pyrolysis 

GC-MS analysis. No hydroxyphenyl moieties were detected in the GC-MS or UHPLC 

analysis for the organic solvent soluble products. Hydrotreatment reaction conditions 

without catalyst at 200 °C resulted in two phenolic monomers (vanillin and homovanillic 

acid) and only vanillin at 240 °C due to repolymerization at this higher temperature. The 
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use of CoO catalyst yielded two phenolic monomers (vanillin and homovanillic acid) at 

200°C and 240 °C. A separate hydrotreatment reaction conditions for LaO and MoO both 

yielded guaiacol, 3-methoxyacetophenone, vanillin, 4-propylguaiacol, acetovanillone, 

and homovanillic acid at 240 °C and the same phenolic products at 200 °C with the 

exception of guaiacol and 3-methoxyacetophenone. Vanillin yield was predominant in all 

the different hydrotreatment reaction conditions. There is more cleavage of ether linkages 

and propyl chains in the lignin polymers for the catalyzed hydrotreatment reaction that 

resulted in formation of more phenolic monomers than the non-catalyzed hydrotreatment 

reactions. 

Increased in temperature resulted in an increased in phenolic monomers of the 

three reaction steps. The use of MoO on supported-zeolite medium at 240 °C yielded the 

highest products (15 wt%) as compared to low product yield (0.5 wt%) for non-catalyzed 

depolymerization reaction at the same temperature. The use of zeolite-supported metal 

catalysts reduced repolymerization in the product mixtures as shown in the noncatalyzed 

reaction where homovanillic acid repolymerized at higher temperature, 240°C. The 

decrease in reaction time to 15 minute prevented coke formation as shown by the lignin 

residue FTIR analysis. The reuse of the reaction solvents (water) and the lignin residue 

for the subsequent reactions brings economic and environmental advantages to 

depolymerization of kraft lignin. MoO supported-zeolite catalysts can be used to produce 

useful phenolic monomers under mild temperature and pressure conditions using 

hydrotreatment. 

In the second part of this dissertation, torrefaction and pyrolysis of prairie 

cordgrass at different temperatures, 250, 300,350, 600, and 900 °C at 25 °C/min with 
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nitrogen as flow gas have been performed using simple laboratory reactor. The yields of 

different pyrolytic products were determined. The water content, density, pH of the bio-

oils obtained from prairie cordgrass at different temperatures has been analyzed. ASE 

was used for extraction of useful aromatic components of the bio-oils. The low pH range 

of 2.6-2.9 aided the extraction. The type and amount of aromatic compounds in the bio-

oil fractions were determined by GC-MS, ranging from 0.19-10.28 wt % of the bio-oil. 

Temperature at 900 °C showed the lowest amount of aromatic compounds 0.19 wt % 

while 600 °C gave the highest amount of aromatic compounds of 10.28 wt %. The 

functional groups of the aromatic groups were confirmed by FTIR analysis of the bio-oil 

fractions. The present study involves extraction of lignin from torrefied prairie cordgrass 

and raw prairie cordgrass using NREL lignin determination method, as well as lignin 

recovery by organosolv method. The lignins were characterized through FTIR, elemental 

analysis, HHV, and TGA methods. Lignin yield from torrefaction at 250 °C was the 

highest and comparable to lignin extracted from raw prairie cordgrass whereas there was 

a decrease in lignin amount as temperature increased above 250 °C. Therefore, 250 °C is 

the best torrefaction temperature for prairie cordgrass amongst the temperatures studied 

in this experiment. FTIR analysis shows that all the extracted lignins are made up of 

guaiacyl, p-hydroxyphenyl, and syringyl moieties which can be used for production of 

high commercial value biochemicals.
210

  

In addition, elemental compositions of extracted lignin from PCG, Tor250, 

Tor300 and Tor350 show that torrefaction decreased the oxygen content and increased 

the carbon content of lignin which makes it a good pretreatment method for extraction of 

lignin for production of co-polymers in bio-composites and carbon fiber precursors.
160, 163

 



   94 

 

Lignin from Tor250 has the highest carbon and lowest oxygen content that led to greatest 

HHV due to devolatilization of  H2O, CO2, formic acids, aldehydes and phenols from 

lateral chains but at severe torrefaction temperatures (300 and 350 °C) there is an 

additional release of hydrocarbons, mainly CH4 from methoxy and methylene groups in 

the lignin 
206

. The TGA degradation curves exhibited by the extracted lignins are 

comparable to other lignin degradation curves and pyrolysis studies. 
208, 211

 The 

evaporation of H2O, devolatilization, and continuous devolatilization led to different 

decomposition phase changes. Lignin extracted from torrefied prairie cordgrass have high 

thermal resistance than lignin from raw prairie cordgrass because of high formation of 

residual carbon yields at temperatures above 400 °C during thermogravimetric analysis. 

Therefore lignin from torrefaction can be used for carbon fiber-based anode 

applications.
212

   

The methods described in this study are a step towards determination and thermal 

characteristics of lignin from torrefied prairie cordgrass. This study will serve as a 

background to determine amount of lignin in other torrefied biomass. The effect of 

seasonal changes in biomass on the amount of lignin in the torrefied prairie cordgrass 

should be investigated. 

The economies and ergonomics on the hydrothermal liquefaction 

depolymerization of lignin using subcritical water and supported-zeolite catalyst need to 

be evaluated to determine the applicability of the process on industrial scale. The 

potential reuse of the solvents and catalysts as well as optimization process should be 

evaluated to ensure efficient production of aromatic monomers from lignin. 
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