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ABSTRACT 

IMPACT OF SUBSURFACE DRAINAGE ON WATER YIELD FOR TYPICAL SOIL 

AND WEATHER IN EASTERN SOUTH DAKOTA 

GOVINDA KARKI 

2017 

Subsurface drainage in agricultural land changes the field water balance by 

providing an alternate pathway for subsurface water. Determining the effects of subsurface 

drainage on downstream hydrology requires quantifying the components of the water 

balance. A number of studies have looked at the hydrological impacts of subsurface 

drainage. However, the effects are complex and difficult to generalize. The complex 

interaction involves the interrelation among variables such as soil type and properties, 

climate (rainfall and evapotranspiration), and drainage design configuration (drainage 

intensity and drainage coefficient), which all are local in nature. Additionally, most studies 

have been conducted in humid climates, whereas eastern South Dakota is located in a 

transitional dry subhumid climate. The objective of this study was to determine the impact 

of subsurface drainage on water yield (runoff plus drain flow) at the field scale in eastern 

South Dakota in terms of soil type, weather, and drainage design (drain depth and 

spacing). Long-term simulations were performed in DRAINMOD, a field scale 

deterministic process based hydrological model, to quantify each component involved in 

the water balance. The hydrologic outputs (daily, monthly, and yearly) of DRAINMOD 

were used to determine the impact of subsurface drainage for various scenarios of selected 

soil type, climatic condition, and drainage design that are typical for the study area. The 

results of the impacts of tile drainage on water yield at the field scale were presented as  
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functions of soil, climate, and drainage design. The results showed the water yield 

increased with increased drainage intensity (DI) for all selected soils. The subsurface 

drainage amounts also increased with increased DI. The results also showed that runoff 

decreased with increased in DI within the same soil type. Also, the proportion of drainage 

to water yield  increased with increased DI. Water yield decreased as saturated hydraulic 

conductivity increased. Improved understanding of impacts at the field scale is an 

important first step towards understanding the impacts of subsurface drainage on stream 

flow.  
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Chapter 1:  

General Introduction 

1.1 Background 

Subsurface (tile) drainage was first brought to the United States (U.S.) in 1835 by 

a Scottish farmer named John Johnston, who is also known as “the father of tile drainage 

in the United States”. Extensive works of subsurface drains have been constructed to 

remove excess water from agriculutaral field since then. Modern subsurface drainage 

using perforated plastic pipes is considered instrumental to maximize profitability of crop 

production on poorly drained soils. Construction of surface drains and installation of 

subsurface drainage assist in removing excess water, thus providing favorable conditions 

for crop growth (Skaggs et al., 1994b). However, drainage of agricultural areas can 

produce some negative environmental impacts, particularly the degradation of water 

quality (Franz et al., 2015).  Studies by Irvin and Whitely (1983) and Kladivko (2004) 

have shown that the hydrological response of catchment areas have been significantly 

altered by the installation of subsurface drainages over the past decades resulting in 

floods and flash floods, and changing the peak flow rate and time (Irwin and Whiteley, 

1983; Kladivko et al., 2004). Research continues on contributions of improved subsurface 

drainage to changes in hydrological responses.  The possible reasons for changes in 

hydrological response could be result of different inter-related variables; however 

intensified agricultural subsurface drainage has always been subject of considerable 

interest. 

South Dakota is no exception in utilizing the benefits of subsurface drainage, and 

the number and area of subsurface drainage installations have increased for a variety of 
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reasons (Hay, 2011). Along with increasing subsurface drainage, there are increasing 

concerns about the impact of subsurface drainage on the downstream hydrology and the 

environment. One of the recent concerns in eastern South Dakota and the Midwestern U. 

S. is the impact that subsurface drainage discharge has had on water quality and water 

yield into the Mississippi River and beyond. 

1.2 Hydrological Modeling 

Hydrologic systems are complex heterogenous systems and interdependent on 

various variables. Hydrologic process is complex process to understand in detail. 

Therefore, abstraction is necessary if we are to understand or control some aspects of 

their behavior through modeling approach. A hydrologic system model is an 

approximation of the actual system, and its inputs and outputs are measurable by 

hydrologic variables. One of the well accepted modeling tools for study of agricultural 

drainage system is DRAINMOD (Skaggs et al., 2012), developed at North Carolina State 

University. It is a process based, distributed simulation model, and has been extensively 

used to model the hydrology in poorly drained soils to evaluate many objective functions 

such trafficability, relative yield, excess soil water (SEW), and wetland hydrology.  

1.3 Performance of DRAINMOD with Soil Input by Pedotransfer Function 

Soil properties (saturated hydraulic conductivity, Ksat and soil water 

characteristics, SWC)  are the prime inputs in DRAINMOD. The model is capable of 

using both direct measured soil properties and indirect methods as soil input. Direct 

methods of obtaining soil hydraulic properties required for hydrological models (e.g., 

DRAINMOD) are expensive, time consuming, and laborious compared to indirect 

methods. Therefore, various pedotransfer functions (PTFs) are also available for 

estimating the soil properties required for the model. One of the most widely used PTFs 
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is Rosetta (Schaap et al., 2001; Schaap et al., 2004), which uses easily available soil 

properties (textural class, particle size distribution, bulk density, and water content at -33 

kPa and -1500 kPa) to estimate water retention parameter, saturated hydraulic 

conductivity, and unsaturated hydraulic conductivity. Rosetta uses five different levels of 

input depending on the availability of information. However, only a few studies have 

been conducted on the possibility of using PTF-derived SWC data and Ksat in 

DRAINMOD simulation, and evaluating performance of the model. Most of those studies 

of using PTF in DRAINMOD were focused on humid regions and different soils than 

those in eastern South Dakota.  

1.4 Drainage Design Rate for Eastern South Dakota 

The drainage coefficient (DC) is the water removal rate of a drainage system, 

typically expressed in units of depth per day. Choice of a DC for drainage design is 

primarily dictated by weather, soils, and crop root zone depth or type of corps. The DC of 

a drainage system is a function of soil properties, minimum water table depth, and 

drainage system design. The DC associated with the optimum drain depth and spacing for 

maximum net return was called the drainage design rate (DDR) and has been developed 

for eastern United States (Skaggs et al., 2006). A simple approach for determining DDR 

values was first used for eastern North Carolina using DRAINMOD simulation with 

economic analysis (Skaggs, 2007; Skaggs and Tabrizi, 1987). Hooughoudt’s equation in 

DRAINMOD was used to calculate DDR (Skaggs et al., 2006) as the steady-state 

drainage rate associated with maximum net annual return. The results indicated this 

approach could be used to make reasonable estimates of the drain depths and spacing to 

maximize profits for given inputs. The same approach was used as an expansion study 

using 50-year DRAINMOD simulations to determine DDR for ten locations in the 
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eastern USA with four different soils (Skaggs, 2007). This study suggested that the 

average DDR required to maximize net annual return was function of climatic factors as 

affected by location and soil properties, and growing season precipitation (P). The study 

also indicated further research would be required to validate these equations for other 

climatic and soil conditions. The validity of these DDR equations is unclear for a location 

such as eastern South Dakota that is in a transitional climate from dry sub humid to 

semiarid conditions. 

1.5 Subsurface Drainage and Its Impacts on Hydrology 

There has been much debate regarding the impact of artificial subsurface drainage 

on downstream hydrology since the mid 1980’s due to lack of measured data (Robinson, 

1990). Even though observational data are available now in many places, the debate 

remains because of complexity of interacting variables including drainage system soil 

properties, weather conditions, and crop type. There are no definitive answers whether 

the artificial drainage is to blame for the increased risk of downstream hydrology (peak 

amount and time) because most of the variables are local in nature.  

There exist two schools of thought relating to the impact of subsurface drainage 

on hydrology: (1) Subsurface drainage increases downstream flooding because 

subsurface drains remove water that would be stored in the soil more quickly than it 

would naturally drain, and (2) Subsurface drainage reduces downstream flooding because 

subsurface drains allows potential surface runoff to infiltrate and be released at a slower 

rate increasing the travel time and thereby reducing the peak flow rates downstream 

(Robinson, 1990). Both schools of thought have posed reasoning to support their ideas 

but ultimately conclude the impact is a complex interaction of hydrologic processes and 

depends on local factors (Robinson and Rycroft, 1999). 
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The first comprehensive study was published in 1990 (Robinson, 1990) in the 

United Kingdom (UK). The study showed some key observations, however no definitive 

explanation and conclusion had been made because of the complex interactions of 

variables associated with the hydrologic system. The result of the study on six different 

fields in the UK suggested that the key factors are pre-drainage soil water condition, soil 

type, land use, and topography. It was observed that subsurface drainage decreased the 

peak flow rate in clayey soils, while it increased the peak flow rate in sandy soils. 

Various studies (Blann et al., 2009; Chang-xing et al., 2003; Irwin and Whiteley, 1983; 

Robinson and Rycroft, 1999; Skaggs et al., 1994a) found that soil type, the presence of 

macro pores, and surface storage are among the most dominant factors that determine 

whether the peak flow rate is increased or decreased. The presence of macro pores and/or 

surface storage increased the peak flow rates in dry summer months because of cracks in 

clay soils (Robinson, 1990). Climatic factors (precipitation and evapotranspiration) are 

other dominant factors that determine whether downstream flow increases or decreases 

(Basso et al., 2016). The hydrology of an agricultural field is affected by the occurrence 

and timing of precipitation, surface and subsurface water storage, surface runoff, 

infiltration, evapotranspiration, and seepage. Each of these processes is influenced by soil 

type, crop type, and growth stage. Drain spacing and depth, collectively termed drainage 

intensity (DI), is another key factor identified as modifier in hydrological response 

(Skaggs et al., 2005). Robinson (1990), using DRAINMOD simulations, showed that a 

decrease in spacing decreased the peak flow rate initially to some point and then peak 

flow rates increased. The drainage coefficient can also affect peak flows during large 

rainfall events. During large events, the subsurface storage may be filled and surface 
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runoff will dominate (Skaggs et al., 1994a). Management practices such as mulching 

were observed to reduce peak flows, especially on plowed, bare soil (Robinson and 

Rycroft, 1999). The reduction is due to decrease in kinetic energy of rain drops hitting the 

soil surface, which will reduce surface sealing and increase infiltration. 

In general, the previous studies on impact of subsurface drainage on hydrology 

suggest that it is difficult to generalize the impact on hydrology because of the 

complexity of variables involved and limited studies. In addition, there is a study gap in 

quantifying the water yield caused by agricultural drainage under different scenarios of 

system design, soil type, and weather. With the increase in subsurface drainage in eastern 

South Dakota and the importance of local factors in the hydrologic responses, there is a 

need for research on how increased subsurface drainage impacts downstream water yield 

for typical soil and weather conditions available in the area. Therefore, the goal of this 

research is to quantify downstream water yield for different scenarios of drained 

conditions vs. undrained conditions under typical agricultural soil and weather 

conditions. While doing so, the performance of DRAINMOD, a field scale hydrological 

model, will also be evaluated using estimated soil hydraulic properties from pedotransfer 

functions (PTF). 

1.6 Objectives 

The goal this research is to better understand how the addition of subsurface 

drainage to agricultural production system alters hydrology at the field scale. Specific 

objectives of the study were to: 

1. Evaluate the effect of measured and estimated soil hydraulic properties input 

in DRAINMOD. 
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2. Estimate the drainage design rate (DDR) for typical weather and commonly 

drained soils in southeastern South Dakota 

3. Evaluate the imnpact of subsurface drainage on field scale water yield under 

typical weather on commonly drained soils in southeastern South Dakota. 

1.7 Dissertation Organization 

This dissertation is organized as a collection of three manuscripts with a general 

introduction and a general summary and conclusions. Each manuscript includes its own 

introduction, literature review, and methods section. Therefore, there is some redundancy 

in the contents. 

Each manuscript addresses one of the study objectives in section 1.6. The first 

manuscript, titled “Evaluating the performance of DRAINMOD from measured soil 

properties and estimated soil properties using pedotransfer function in eastern South 

Dakota”, focuses on the comparison of hydrological model output by direct measured soil 

input vs. indirect measured soil input. The second manuscript, titled “Estimating 

Drainage Design Intensity for south eastern South Dakota”, estimates the drainage design 

rate for typical southeastern South Dakota soil and weather conditions. The final 

manuscript, “Impact of subsurface drainage on field-scale water yield in eastern South 

Dakota”, describes the impact of subsurface drainage on field-scale hydrology as a 

function of soil type, drainage intensity, and rainfall. 
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Chapter 2: 

2. Evaluating the performance of DRAINMOD from measured soil properties 

and estimated soil properties using pedotransfer functions in eastern South 

Dakota 

2.1 Abstract:  

DRAINMOD is widely used field scale hydrological model for simulating hydrology 

in poorly drained soils. Soil hydraulic properties are primary inputs for the model. The 

hydrological model predictions are most sensitive to saturated hydraulic conductivity (Ksat) 

followed by unsaturated hydraulic properties derived from the soil water characteristic 

(SWC) curve, a relationship between volumetric water content and pressure head.  

DRAINMOD is capable of using soil hydraulic properties derived from both direct and 

indirect methods. Indirect methods use pedotransfer functions (PTF), which use easily 

available soil properties (textural class, particle size distribution, bulk density, and water 

content at field capacity and wilting point) to estimate water retention parameters (θ and 

h), saturated hydraulic conductivity (Ksat), and unsaturated hydraulic conductivity (Kusat) 

with varying levels of input. Direct methods of obtaining soil hydraulic properties required 

for DRAINMOD are expensive, time consuming, and laborious compared to indirect 

methods. A few studies have been conducted on the possibility of using PTF derived SWC 

data and Ksat in DRAINMOD. This study makes use of relatively newer techniques for 

generating SWC data using the Hyprop (Wind and Schindler evaporation method) and 

WP4C (dew point potentiometer) instruments. The Hyprop software includes its own PTFs 

for estimating saturated hydraulic conductivity (Ksat). Long term (63 year) DRAINMOD 
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simulations were conducted for a study field in eastern South Dakota to evaluate 

DRAINMOD hydrological output using PTF derived soil properties based on NRCS soil 

data, and directly measured SWC curve obtained from Hyprop and WP4C and saturated 

hydraulic conductivity (Ksat) derived from hyprop data evaluation software (Hyprop-DES). 

The model was calibrated against observed water table depth, and measured SWC data 

and PTF derived Ksat were used in DRAINMOD under the same weather, crop, and 

drainage system configuration for long-term simulations. Predicted annual subsurface 

drainage for different soil inputs were compared with the observed and calibrated result. 

Both visual and statistical comparisons showed good agreement among calibrated (Co) 

measured (Mo), and PTF derived (Ro) soil properties. The mean absolute error in annual 

drainage and runoff was less than 1 cm. The Nash-Sutcliffe efficiency (E) values for yearly, 

monthly, and daily drainage were found to be 0.99, 0.99, and 0.97 between Mo and Co 

values while 0.97, 0.94, and 0.91 between Ro and Co values. The same values for yearly, 

monthly, and daily runoff were found to be 0.98, 0.98, and 0.94 between Mo and Co while 

0.75, 0.75, and 0.58 between Ro and Co. The result shows the higher agreement with 

calibrated values for drainage values compare to runoff. The findings of this study will be 

important for long-term study of drainage water management and water quality impact on 

watershed scale. 

 Introduction: 2.1

DRAINMOD is one of the widely used field scale hydrological models for 

simulating hydrology in poorly drained soil, developed by Skaggs (1980) at North 

Carolina State University. It has been used extensively over the past 30 years to model 

the hydrology in poorly drained soils, and to evaluate many other objective functions 
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such as trafficability, relative yield, amount of excess soil water (SEW30), dry days, and 

wetland hydrology. DRAINMOD calculates surface and subsurface water balance for a 

thin column of soil that has a unit surface area which extends from the ground surface to 

the subsurface impermeable layer and is located at the midway between two tile drains. 

The water balance is calculated primarily at an hourly and daily time increment basis, 

using approximate methods with six different input such as weather, soil, crop, and 

system design configuration inputs (Skaggs, 1978). 

Results of DRAINMOD are primarily dictated by soil hydraulic properties and 

evapotranspiration (ET) (Skaggs, 1980). The soil hydraulic properties used in the model 

are saturated hydraulic conductivity (Ksat), soil water characteristics (SWC) curve, 

drainable porosity, upward flux, and Green-Ampt parameters (Skaggs et al., 2012). All 

except saturated hydraulic conductivity are derived from the SWC curve within the 

model.  

The model can use both measured and indirectly estimated soil properties. One of 

the precise methods of measuring water retention for developing the SWC curve in the 

laboratory is the combination of Hyprop (Wind and Schindler evaporation method) and 

WP4C (dew point potentiometer) instruments (Peters and Durner, 2008). Hyprop works 

well for the wet range of matric potentials, while the WP4C works well in the dry range. 

A combination of both methods gives the best result in generating SWC data. Moreover, 

hyprop and WP4C have their own data evaluation software (Schwab et al., 1985) for 

SWC and pedotransfer function, this uses the measured data for SWC, to estimate 

saturated hydraulic conductivity. It provides an alternative to field measurement of 

saturated hydraulic conductivity, which is time consuming, laborious and expensive.  
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Alternatively, various other pedotransfer functions (PTFs) are also available for 

estimating soil properties, both SWC and Ksat, required for DRAINMOD. One of the 

most widely used PTFs is Rosetta (Schaap et al., 2001; Schaap et al., 2004), which uses 

more readily available soil properties (textural class, particle size distribution, bulk 

density, and water content at -33kPa and -1500kPa) to estimate water retention 

parameters, saturated hydraulic conductivity, and unsaturated hydraulic conductivity. 

Rosetta uses five different levels of input (H1: United States Department of Agriculture 

(USDA) textural class; H2: H1 plus percent sand, silt, and clay; H3: H2 plus dry bulk 

density; H4: H3 plus water content at suction -33kPa; H5: H4 plus water content at -

1500kPa).  

United States Department of Agriculture, Natural Resources Conservation Service 

(USDA, NRCS) maintains the Soil Survey Geographic Database (SSURGO) that 

contains soil data collected by the National Cooperative Soil Survey (NCSS) over the 

course of a century, and is an attractive option for estimating soil hydraulic properties 

from PTFs. Few studies have been conducted on the possibility of using PTF-derived 

SWC data and Ksat in DRAINMOD simulation and evaluating performance of the model. 

A study in Iowa was conducted to determine which level of selected soil information 

would have been sufficient to use with DRAINMOD in predicting subsurface drainage 

volumes (Qi et al., 2015). The result showed that Rosetta in combination with SSURGO 

offers quick and robust way to derive soil hydraulic properties to simulate long term 

DRAINMOD in predicting subsurface drainage.  

Another more detailed study was performed in Sweden that compared the 

simulated hydrologic output in DRAINMOD with four years of observed data (Salazar et 
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al., 2008). The study used Rosetta-estimated Ksat using different complexity levels of soil 

information for a coarse textured soil with low water holding capacity and high Ksat. In 

2009, a study was performed to evaluate the accuracy of twenty-four PTFs for predicting 

Ksat for US soils (Abdelbaki et al., 2009). The functions were divided into three groups 

according to their input requirements and results were ranked according to their 

performance in predicting Ksat for the entire soil’s database and for each textural class in 

the US. In 2010, the study was extended to assess the feasibility of running DRAINMOD 

with PTF-predicted soil hydraulic parameters (Abdelbaki and Youssef, 2010). The PTFs 

selected for the study were the best ranked from the study in 2009 (Abdelbaki et al., 

2009). This study also showed the excellent agreement between observed and simulated 

overall drainage outflows in conventional and control drainage system compared to 

measured soil input, while the result showed some variation in drainage flow under 

conventional drainage system with Rosetta soil input. 

Most of the studies on the feasibility of using PTFs in DRAINMOD were focused 

on humid regions with different soils and climate than eastern South Dakota. SWC and 

Ksat in those studies were PTF derived. The purpose of this study was to evaluate the 

feasibility of running DRAINMOD simulations with Rosetta-estimated soil properties 

(SWC and Ksat) and compare them with those derived from soil water characteristic 

curves from Hyprop and WP4C instruments and Ksat from Hyprop DES-PTF. The 

performance of model output in predicting growing season drainage was also checked for 

its sensitivity to soil properties (Ksat and suction head) by altering inputs by a known 

percentage and noting the deviation in hydrological output. The predicted drainage and 
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runoff volumes using Rosetta-derived soil properties were compared with calibrated 

values obtained from field-measured soil SWC and PTF-derived Ksat.  

 Methods: 2.2

2.2.1 DRAINMOD 

DRAINMOD (Version 6.1) was selected for this study. DRAINMOD is a field 

scale, process based, distributed simulation model (Skaggs et al., 2012). It was developed 

by Dr. Wayne Skaggs in the Biological and Agricultural Engineering Department at 

North Carolina State University. It has been used extensively over the past 30 years to 

model the hydrology in poorly drained soils and to evaluate many other objective 

functions such as trafficability, relative yield, SEW30, dry days, and wetland hydrology. 

DRAINMOD calculates surface and subsurface water balances for a thin column of soil 

that has a unit surface area which extends from the ground surface to the subsurface 

impermeable layer and is located midway between two subsurface drains. The water 

balance is calculated on an hourly or daily time increment basis, using approximate 

methods based on weather, soil, crop, and system design configuration inputs (Skaggs, 

1978). The two governing water balance equations for the surface and subsurface are:  

∆𝑉 = 𝐷 + 𝐸𝑇 + 𝐷𝐿𝑆 − 𝐹  (1) 

𝑃 = 𝐹 + 𝑆 + 𝑅𝑂  (2) 

where, 

∆𝑉 is change in water free pore space, D is drainage, ET is evapotranspiration, DLS  is 

deep and lateral seepage, F is infiltration, P is precipitation, S is change in volume of 

water stored on surface, and RO is runoff. All are in the same units of depth. Each of 

these components is calculated using approximation methods which allow DRAINMOD 
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to run long-term simulations very quickly. DRAINMOD (Version 5.0 and higher) is 

capable of incorporating the effect of freezing, thawing and snowmelt (Luo et al., 2000). 

These versions (5.0 and higher) are also capable of simulating nitrogen and carbon cycles 

in shallow water table soils and the effects of drainage and drainage water management 

practices on nitrogen losses in drainage. The model inputs for DRAINMOD are soil 

properties, weather, drainage system characteristics, and crop-related parameters. 

Additional parameters are required to consider the effect of freezing, thawing, and 

snowmelt. Details of parameters can be found elsewhere for DRAINMOD (Luo et al., 

2000), and predicting field hydrology with DRAINMOD (Luo et al., 2001). 

2.2.2.1 Subsurface Drainage 

DRAINMOD uses the steady state Hooughoudt equation (3) when the water table 

is between the drain depth and the soil surface. The Hooghoudt equation includes Dupuit-

Forcheimer (D-F) assumptions (lateral flow in the saturated zone only) and assumes an 

elliptical water table. 

𝑞 =  
4k𝑒𝑚 (2𝑑𝑒+𝑚)

𝐿2
    (3) 

where, 

q is drainage flux (cm/hr.), de is the equivalent drainage depth of the impermeable layer 

below the drain (cm), m is the mid-point water table height above the drain (cm), Ke is 

effective lateral hydraulic conductivity (cm/hr.), and L is the lateral spacing between the 

drains (cm), (Figure 2.1). 
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Figure 2.1 Drainage schematic for DRAINMOD (Skaggs et al., 2012) 

2.2.2.2 Infiltration 

Infiltration in DRAINMOD is calculated using the Green-Ampt equation (4) 

{
𝑓 = 𝐾𝑣 +

𝐾𝑣𝑀𝑆𝑎𝑣

𝐹

= 𝐵 +
𝐴

𝐹

   (4) 

where,  

Kv is saturated vertical hydraulic conductivity, M is the fillable porosity (water content at 

saturation minus water content at desired water table depth), Sav is suction at the wetting 

front, F is the cumulative infiltration, and A and B are constants. Additionally, at times 

where rainfall is below infiltration capacity, DRAINMOD assumes that the infiltration 

rate is equal to the rainfall rate. 

2.2.2.3 Evapotranspiration 

Evapotranspiration (ET) in DRAINMOD can be estimated using either the 

Thornthwaite method within the model or can be given as user defined input in an input 
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file. The Thornthwaite equation is used to calculate monthly potential evapotranspiration 

(PET) in the model and then converted to daily values using the method described by 

Thornthwaite and Mather (Thornthwaite et al., 1957). However, the Hargreaves-Samani 

method (Hargreaves and Samani, 1985) was used in this study as it was found to compare 

well with the Food and Agricultural Organization Penman-Monteith equation when using 

a time-step of five days or longer (Allen et al., 1998; Hargreaves and Allen, 2003). 

Reference evapotranspiration(Allen et al., 1998) estimated using in the REF-ET (Allen, 

2000) model was multiplied using High Plains Regional Climate Center (HPRCC) crop 

coefficients for corn, which is based on growing degree days (GDD), and provided into 

the model as crop potential evapotranspiration for long term simulation. Actual ET was 

computed in the DRAINMOD from crop potential evapotranspiration provided in model 

after correction with crop coefficient as limited by soil water availability. 

2.2.2 Hyprop and WP4C 

Hyprop (Decagon Devices, Pullman, WA) uses the evaporation method in which 

continuous measurements of suction with two high-capacity tensiometers installed at 

different depths of soil samples are made and changes in moisture content are obtained by 

change in weight of soil (Schindler et al., 2010). The sample is packed in a stainless-steel 

cylinder to the bulk density corresponding to the field condition, and brought to 

saturation before measurements are taken.WP4C (Decagon Devices, Pullman, WA) is a 

dew point potentiometer which measures relative humidly of air above soil sample and 

suction is calculated. The soil sample is placed in a cup and inserted into a chamber in the 

WP4C, and is allowed to equilibrate to the air temperature in the chamber. Water vapor 

diffuses out of the soil into the air inside the chamber until the relative humidity of the air 
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comes to equilibrium. A mirror above the sample is chilled allowing water to condense, 

and the temperature at which the condensation occurs is the dew point temperature. The 

relative humidity of the air can therefore be determined from the dew point temperature, 

and since the relative humidity is related to the matric potential in the soil sample, the 

matric potential can be determined directly from the dew point temperature measurement  

Hyprop data evaluation software (Hyprop-DES) (Pertassek et al., 2011) is a 

computer program for analyzing data from Hyprop and WP4C experiments (Decagon 

Devices, Pullman, WA). Hyprop-DES provides an algorithm to fit functional 

relationships of the retention curve and the conductivity curve to the data. No 

specification of initial guesses for the parameter values is required. Seven widely used 

retention models are available, encompassing expressions for soils with unimodal (Van 

Genuchten, 1980) and bimodal (Durner, 1994; Ross and Smettem, 1993)pore-size 

distributions, with (Brooks and Corey, 1966) and without air-entry, and a model 

extension that reaches water content zero at oven dried condition(at pF scale7) (Fayer and 

Simmons, 1995). The retention functions are coupled to conductivity models by the 

classical pore-bundle models (Burdine, 1953) and (Mualem, 1976), including a film-flow 

component according to the models of Peters and Durner (Peters and Durner, 2008). 

2.2.3 Rosetta 

Rosetta (Schaap et al., 2001) is a set of pedotransfer functions which use five 

hierarchical surrogate soil data parameters (soil textural classes, bulk density, and 

moisture content at field capacity and permanent wilting point) to estimate vertical 

saturated hydraulic conductivity. A total of 1306 soil samples from the U.S.A. and 
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Europe were used to predict saturated hydraulic conductivity based on the Mualem 

(Mualem, 1976) pore-size model. The retention function is given by 

𝜃(ℎ) =  𝜃𝑟 +
𝜃𝑠−𝜃𝑟

[1+(𝛼ℎ)𝑛]1−
1
𝑛

 (5) 

where,  

θ(h) represents the water retention curve defining the water content, θ (cm
3
/cm

3
), as a 

function of the soil water pressure head h (cm),θr and θs (cm
3
/cm

3
) are residual and 

saturated water contents respectively, while α(1/cm) and n are curve shape parameters. 

The equation (5) can be rewritten to yield the relative saturation (Se) 

𝑆𝑒 =  
𝜃(ℎ)−𝜃𝑟

𝜃𝑠−𝜃𝑟
=  [1 + (𝛼ℎ)𝑛]1−

1

𝑛 (6) 

The equation (6) is used in conjunction with the pore-size distribution model 

(Mualem, 1976). 

𝐾(𝑆𝑒) =  𝐾0𝑆𝑒
𝐿 {1 − [1 − 𝑆𝑒

𝑛
(𝑛−1)⁄

]
1−1

𝑛⁄

}

2

 (7) 

where, 

K is the unsaturated hydraulic conductivity (cm/day), K0 is the matching point at 

saturation (cm/day) and similar, but not necessarily equal to the saturated hydraulic 

conductivity, Ksat. The parameter L(-) is an empirical pore tortuosity/connectivity 

parameter that is normally assumed to be 0.5 (Mualem, 1976). Rosetta predicts L which 

will be negative in most cases, although this leads to some theoretical complication, it 

gives better results. 

In DRAINMOD model, a subroutine is available to convert the Rosetta output 

into DRAINMOD readable format and requires the following input: θr, θs  α, n, L,K0 and 

Ksat.  
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2.2.4 Study Area 

The study area was located at Southeast Research Farm (SERF) near Beresford 

(43º4’12” N 96º55’48” W) in Clay County of South Dakota (Figure 2.2). The soil in the 

study area was Egan-Trent silty clay loam, (EhA, mixed, mesic pachic haplustolls). The 

climate in the area was classified as a transitional zone from subhumid to semi-arid 

conditions, with average annual precipitation (1950-2012) of 642 mm, and average 

annual (1950-2012) daily maximum and minimum temperature of 14.7 ºC and 1.8 ºC 

respectively. The field parcel was 5.75ha (14.25 acre) divided into six plots (Figure 2.2). 

Half of the area was conventional drainage and the other half is managed as undrained. 

The plots were drained separately and the drain outflow from each plot was measured in 

control structures that were installed in all plots to monitor the flow depth. Monitoring 

wells were installed in between the plots for monitoring water table depth. The observed 

data had been used for calibration and validation purpose. 

The soil at the study area is classified as Egan-Trent series silty clay loam in the 

USDA, NRCS (SSURGO) database. Soil information available for this series required for 

the model in SSURGO is shown in (Table 2.1). Long-term (1950-2012) weather data 

(daily maximum and minimum air temperature, and daily precipitation) for the purpose 

of DRAINMOD simulation were taken from the South Dakota climate and weather 

station located at Centerville (station 391579), eight kimolmeters northwest of the study 

site. Weather data were alos used to estimate potential evapotranspiration (PET) by 

Hargreaves Samani (1985) method. 
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Figure 2.2 Study area 

  

South Dakota 
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Table 2.1 Soil information from SSURGO for the study area 

Component 

Name 

Depth 

(cm) 

Representative 

(Ksat) 

% 

of 

sand 

% of 

silt 

%

 % of 

clay 

Soil bulk 

density 

(ρb) 

Moisture 

content 

at-33 

kPa 

Moisture 

content 

at -1500 

kPa 

cm/hr. % % % gm/cc % % 

EhA Egan 

Series 

(silty-Clay 

Loam) 

0-20 3.24 6.7 62.3 31 1.20 32.7 19.6 

20-66 3.24 6.8 63.2 30 1.28 30.6 16.6 

66-86 3.24 26.4 43.6 30 1.28 30.0 15.7 

86-152 3.24 26.4 43.6 30 1.60 30.5 18.9 

 

2.2.5 Soil Hydraulic Properties 

The soil water characteristics curve was generated using hyprop-DES combining 

the data obtained by Hyprop and WP4C. Saturated hydraulic conductivity was obtained 

using the model described by Mualem (1976), a model provided within hyprop-DES. 

Five levels of soil information from the (SSURGO) data base were used as Rosetta input 

to produce the SWC data required for DRAINMOD while representative saturated 

hydraulic conductivity from  (SSURGO) has been used for model simulation. Measured 

and Rosetta-generated soil hydraulic properties are shown in Figure 2.3 and Table 2.2. 
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Figure 2.3 Soil water characteristics curve of the soil for study area 

Table 2.2 Saturated hydraulic conductivity of the soil for the study area 

Saturated Hydraulic Conductivity (Ksat,cm/hr.) 

Rosetta derived Estimated from hyprop 

Depth Value of Ksat Depth Value of Ksat 

0-43 3.24 0-20 1.74 

43-71 3.24 20-45 1.74 

71-119 3.24 45-110 1.74 

119-132 3.24 110-152 1.74 

132-152 0.97 
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2.2.6 Model Simulation and Evaluation 

DRAINMOD simulations were conducted for the period of 2004-2014 using 

measured weather data and soil hydraulic properties, and specified drainage design 

configuration for continuous crop. Soil temperature (freezing and thawing) was also 

taken into consideration in simulation. Table 2.3 and Table 2.4 list some selected 

DRAINMOD input parameters for drainage system design, crop production, and soil 

temperature. The SWC data obtained by laboratory measurement (Hyprop and WP4C) 

and Rosetta PTF, were used to develop water table-drained volume-upward flux 

relationships and Green-Ampt parameters using utilities provided in DRAINMOD 

separately. PET was supplied as a user defined input file. Lateral saturated hydraulic 

conductivity obtained from Hyprop-DES in the layers was adjusted to calibrate the model 

against the observed water table. Mean absolute error (MAE) was used as the objective 

function during the calibration process. The calibrated hydraulic conductivity values are 

given in Table 2.5.  

Once the calibration process was completed, two sets of long term simulations 

(1950-2012) as shown in Table 2.6 (Ro and Mo) were performed using long term weather 

data, crop input, and specified drainage system design. The drainage and runoff values 

obtained from long-term simulations were compared with the values obtained using 

calibrated soil input (Co)  as shown in Table 2.5.  



26 

 

 

 

Table 2.3 DRAINMOD input parameters 

Description of Parameters Value 

Drain depth (cm) 110 

Drain spacing (m) 24.40 

Effective radius (cm) 0.51 

Depth of impermeable layer from surface (m) 2 

Drainage coefficients (cm/day) 0.95 

Initial depth to water table (cm) 30 

Maximum surface storage (cm) 1.0 

Kirkham's depth (cm) 50% of maximum storage 

Drainage system Conventional 

Crop Parameters Value 

limiting water table depth for no crop damage 30 

Desired planting date (Day of year) 124 (May 4) 

Length of growing season for corn 173 

 

Table 2.4 DRAINMOD input for soil temperature 

Soil temperature Parameters Input value 

Computational depth function coefficients (a) 2.5 cm  

(b) 1.21 

Thermal conductivity function W/m ° C (a) 0.39 

W/m ° C(b) 1.33 

Diurnal Phase lag of air temp 8 hrs. 

Base temperature as boundary (°C) 9.11 

Rain/snow dividing temp  (°C) 0 

Snow melt base temperature  (°C) 1 

Degree day coefficient (mm/day) 5 

Critical ice content (cm3/cm3) 0.2 
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Table 2.5 Calibrated hydraulic conductivity 

Depth 
Calibrated hydraulic conductivity Ksat 

(cm/hr.) 

0-20 1.74 

20-43 3.24 

43-109 3.24 

109-152 1.74 

Table 2.6 Soil parameters used as input in DRAINMOD 

Soil input Description of data 

Rosetta (Ro) Soil water characteristics curve(SWC) data and Ksat: Estimated from 

soil textural class, particle size distribution, bulk density, and water 

content at field capacity and wilting point) 

Measured soil 

data (Mo) 

Soil water characteristics curve(SWC) data: Measured from Hyprop 

and Ksat: Estimated from pedotransfer function provided  in Hyprop 

–DES 

Calibrated soil 

data (Co) 

Soil water characteristics curve(SWC) data: Measured from Hyprop 

and Ksat: Estimated from pedotransfer function in available in 

Hyprop-DES, and adjusted for calibration 

2.2.7 Statistical Analysis 

Performance measures (PMs) and corresponding performance evaluation criteria 

(PEC) are important aspects of calibrating and validating hydrologic and water quality 

models and should be updated with advances in modeling science (Moriasi et al., 2015). 

Certain statistical performance criteria are recommended by Moriasi et al. (2015) to 

measure the accuracy and performance of hydrological model. 

DRAINMOD output using field measured SWC and Hyprop-DES derived 

hydraulic conductivity (M0), and the best Rosetta-estimated soil input (R0) were 

compared with long-term calibrated values (C0). Yearly, monthly and daily simulated 

drainage outflow and runoff values were compared by calculating four statistical 
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measures: Nash-Sutcliffe efficiency (E), normalized root mean square (RMSE), average 

percent deviation (Dv), and mean absolute error (MAE): 

Nash-Sutcliffe Efficiency (E):  

𝐸 = 1 −
∑ (𝑄𝑜−𝑄𝑝)

2𝑛
𝑖=1

∑ (𝑄𝑜−𝑄𝑚)2𝑛
𝑖=1

                      (8)  

 

Normalized root mean square (RMSE):  

𝑅𝑀𝑆𝐸 = √∑ (𝑄𝑝𝑖̂ −𝑄𝑜𝑖)
2𝑛

𝑖=1

𝑛
 = √

1

𝑛
∑ (𝑒𝑟𝑟𝑜𝑟)2𝑛

𝑖=1                      (9) 

Average percent deviation (Dv):  

𝐷𝑣(%) =  
∑ |𝑄𝑜−𝑄𝑝|𝑛

𝑖=1

∑ 𝑄𝑜𝑛
𝑖=1

𝑥100%                                            (10) 

Mean absolute error (MAE): 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑄𝑝 − 𝑄𝑜|𝑛

𝑖=1 =  
1

𝑛
∑ |𝑒𝑖|

𝑛
𝑖=1                             (11) 

where, 

Qo is the observed value, Qp is the predicted value, Qm is the mean observed 

value, 𝑄𝑝𝑖 is the predicted value in ith observation, Qoi is the observed value for the ith 

observation, n is the number of observations, and ei is the average of absolute error. 

Nash-Sutcliffe model efficiency (E) is a way to measure the fit between the predicted and 

observed values and is also called dimensionless model evaluation statistics (Moriasi et 

al., 2007) . The E value is one the one of the major indicator of hydrological model 

evaluation as it is less sensitive to the extreme values due to the squared difference. The 

E value can range from −∞ to 1. Unit value of E corresponds to a perfect match of 

modeled value to the observed value. Zero value of E (E<0) indicates that the model 
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predictions are as accurate as the mean of the observed data, whereas E less than zero 

(E < 0) observed values would have been a better predictor than the model. 

RMSE is the square root of the mean squared error, which can be interpreted 

easily as it has the same unit as observed the values and, is representative of the size of a 

typical error. It is a measure of goodness of fit. RMSE is one of the commonly used error 

index statistics. Lesser RMSE values indicate better model performance. Further, the 

correlation coefficient (r, which varies between -1 and 1) serves as a bench mark for 

performance evaluation. For example, if all points lie exactly on a line with positive 

slope, then r will be 1 and,  RMSE will be zero (0). An average percent deviation 

provides an immediate complement to the visual inspection and describes percent 

deviation from the mean value. Lower values indicate a better model. MAE measures the 

closeness of predicted and observed values. A zero value of MAE indicates a perfect fit. 

 Results and Discussion: 2.3

The long-term model predictions of hydrological output (drainage and runoff) 

using various soil inputs and model performance are presented in this section. Also, 

results and discussion of sensitivity of model output due to errors in soil inputs are 

presented. 

2.3.1 Model Simulations 

Yearly, monthly, and daily predictions of DRAINMOD on drainage and runoff 

with measured soil properties (Mo) and PTF derived soil property (Ro) for the simulation 

period are shown in (Figure 2.4 through Figure 2.7, and Table 2.7). Both visual and 

statistical comparisons showed good agreement among Co, Mo, and Ro. The mean 

absolute error in annual drainage and runoff in both comparisons is less than 1 cm. The 
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Nash-Sutcliffe efficiency (E) values for yearly, monthly, and daily drainage were 0.99, 

0.99, and 0.97 between Mo and Co and 0.97, 0.94, and 0.91 between Ro and Co values. 

The same values for yearly, monthly, and daily runoff were 0.98, 0.98, and 0.94 between 

Mo and Co and 0.75, 0.75, and 0.58 between Ro and Co. The results show better  

agreement between for drainage values compared to runoff. The results also show better 

agreement between Mo and Co compared to Ro, and Co for both drainage and runoff. 

According to reported performance criteria by Skaggs (2012), model performance 

is considered as excellent, good and acceptable for Nash-Sutcliffe efficiency (E) values 

of 0.75, 0.60, and 0.40. This criterion (E) indicates that model performance in predicting 

yearly, monthly, and daily drainage using measured and Rosetta soil input was excellent. 

Yearly and monthly runoff predictions of runoff were excellent while daily model 

performance was good. However, the Moriasi et al. (2015) criteria for model 

performance in flow prediction were slightly different and divided into very good, good, 

satisfactory, and non-satisfactory. According to the Moriasi et al. (2015) criteria, model 

performance for our study in predicting yearly, monthly, and daily drainage using 

measured and Rosetta soil input were very good. Model performance in predicting yearly 

and monthly runoff prediction using Rosetta was good while model performance in 

predicting daily runoff was satisfactory. 

Our study showed RMSE values less than unity, suggesting that the model is 

within the acceptable range, as lesser RMSE values indicate better model performance. 

The result showed that RMSE values for yearly, monthly, and daily drainage between Mo 

and Co were 0.25, 0.08, and 0.007 cm while Ro and Co were 0.65, 0.94 and 0.01 cm. The 

RMSE values for yearly, monthly, and daily runoff between Mo and Co were 0.20, 0.06, 
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and 0.01 cm while Ro and Co were 0.98, 0.25 and 0.04  cm. The study also showed that 

RMSE is better with measured soil input than Rosetta soil input in the model. Also, the 

yearly and daily model prediction of drainage flow were better than prediction of  runoff 

while monthly runoff prediction was better than drainage (Table 2.7).  

Percent deviation statistics in our study varies from 6.7% with measured soil input 

to 66.65% in Rosetta input. Yearly drainage deviation is 6.7% in measured soil input to 

16.4% Rosetta input, while runoff deviation is 9.5% in measured soil input to 58.8% 

Rosetta soil input. Monthly deviation in drainage is form 9.65% measured soil input to 

22.9% Rosetta soil input. Daily drainage deviation in drainage with measured soil input is 

14.06% while with Rosetta soil input is 27.04%. This variation in daily runoff with 

measures soil input is 16.10% while with Rosetta soil input is 66.56%. The variation was 

more in runoff and daily as expected. This high variation in daily is because there number 

of days of zero rainfall events, and high variation in runoff is there is no runoff until 

rainfall intensity exceeds infiltrations rate. This statistic was also better in Mo than Ro in 

this study.  

Mean absolute error measures the closeness of predicted and observed values of 

hydrological output and varied from 0.15 cm to 0.37 cm in yearly drainage, 0.07 cm to 

0.43 cm in yearly runoff. The mean absolute error varied from 0.02 cm to 0.04 cm in 

monthly drainage, and 0.01 cm to 0.03 cm in monthly runoff. There is little or no 

variation in daily MAE drainage and runoff. 
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Figure 2.4 Comparison of total annual drainage in cm for long term simulation period (1950-2012)
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Figure 2.5 Comparison of total annual runoff in cm for long term simulation period (1950-1012)
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Figure 2.6 Comparison of calibrated with simulated drainage flow with rosetta soil input in model (Nash-Sutcliffe value & coefficient 

of determination, R
2
)
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Figure 2.7 Comparison of calibrated with simulated runoff flow with rosetta soil input in model (Nash-Sutcliffe value & coefficient of 

determination, R
2
)
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Table 2.7 Statistical comparison between Mo and Ro for drainage and runoff 

Soil 

Input 

Yearly 

Drainage Runoff 

E RMSE 

(cm) 
Dv (%) MAE 

(cm) 
E RMSE 

(cm) 
Dv (%) MAE (cm) 

Ro 0.96 0.65 16.4 0.37 0.75 0.98 8.8 0.43 

Mo 0.99 0.26 6.70 0.15 0.98 0.20 0.50 0.07 

Soil 

Input 

Monthly 

Drainage Runoff 

E 
RMSE 

(cm) 
Dv (%) MAE (cm) E 

RMSE  

(cm) 
Dv (%) MAE (cm) 

Ro 0.94 0.94 22.9 0.04 0.75 0.25 60.0 0.03 

Mo 0.99 0.08 9.65 0.02 0.98 0.06 11.2 0.01 

Soil 

Input 

Daily 

Drainage Runoff 

E 
RMSE 

(cm) 
Dv (%) MAE (cm) E RMSE  (cm) Dv (%) MAE (cm) 

Ro 0.92 0.01 27.04 0.001 0.58 0.04 66.56 0.001 

Mo 0.97 0.007 14.06 0.001 0.94 0.01 16.10 0.003 

E=Nash-Sutcliffe efficiency RMSE=Root Mean Squared Error 

Dv=Average Percent Deviation MAE=Mean Absolute Error 

2.2.3 Sensitivity Analysis 

A sensitivity analysis of growing season drainage predicted by the model to 

variation in soil properties (Ksat and SWC) was performed by changing the measured soil 

properties by set percentages and evaluating the change in drainage amount. The 

percentage changes in growing season drainage (cm) with the changes in soil properties 

(Ksat, SWC) are shown in Figure 2.8 and Figure 2.9. The results showed that a -90% 

change of Ksat value resulted in a 64% decrease in drainage amount. A 200% change of 

Ksat increased the growing season drainage by 26% . Also, a change of SWC of -50% 

increased the drainage amount by 70%. Finally, a change of SWC by 50% decreased the 
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drainage amount by 20%. These results indicated the growing season drainage is more 

sensitive to under predicted Ksat and SWC, which is similar to the results of Skaggs 

(1980) and Workman and Skaggs (1994). 

 

Figure 2.8 Sensitivity analysis of drainage with change in hydraulic conductivity (Ksat) 

 

Figure 2.9 Sensitivity analysis of drainage with change in SWC Curve 
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2.3 Summary and Conclusions: 

The purpose of this study was to determine the feasibility of running 

DRAINMOD simulations with Rosetta-estimated soil properties (SWC and Ksat) for 

predicting the subsurface drainage and runoff in place of measured soil properties for 

typical eastern South Dakota conditions. The model was run with three different sets of 

soil inputs as measured (Mo), rosetta derived (Ro), and calibrated (Co). Predicted values of 

drainage and runoff by the model with two soil inputs, measured and rosetta derived, 

were compared with the calibrated values using statistical measures and graphical 

measures. The results showed that the SSURGO soil information and rosetta-derived soil 

properties could be used in the DRAINMOD for long-term hydrological simulation. As 

expected, the results also showed that hydrological prediction (yearly, monthly, and 

daily) was better using measured soil properties than using Rosetta-derived soil 

properties. The yearly and monthly predictions were better than for daily prediction. A 

sensitivity analysis was also performed for growing season drainage outputs predicted by 

the model to variation in soil properties. The results showed that the model was more 

sensitive to under-predicted soil hydraulic properties (Ksat and SWCC) as oppose to over-

predicted values. The high values of Ksat and SWCC obtained from rosetta-derived soil 

properties also indicated that the rosetta derived soil properties are better to be used in 

long-term yearly simulations as over predicted soil hydraulic properties are less sensitive.  
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Chapter 3: 

3. Estimating Drainage Design Rate for South-Eastern South Dakota 

3.1 Abstract.  

Subsurface drainage (tile) has expanded dramatically in eastern South Dakota in 

the last several years, driven by increases in precipitation, and land and commodity 

prices. Estimating optimum drain depth and drain spacing of subsurface drainage system 

requires use of a simulation model and extensive data input. A relatively approach to 

estimating drain depth of spacing using the steady state Hooghoudt equation has been 

used for many years. However, success of estimation of spacing and drain depth by the 

Hooghoudt equation depends on a good estimate of the drainage design rate (DDR).  

Existing drainage design criteria for drainage intensity have been primarily developed 

for humid regions. It is unclear how well these criteria apply to regions such as eastern 

South Dakota, which lies in a transition zone from subhumid to semi-arid conditions. 

Better information on design criteria for these regions is needed to balance production 

and environmental goals for optimum drainage design. This study was designed to 

estimate drainage design criteria for Eastern South Dakota and to compare to existing 

design criteria developed for the eastern U.S.A. The DRAINMOD model was calibrated 

to simulate drainage conditions for the selected study area of South Dakota. The model 

simulations were then used to determine optimum drainage intensities that maximize 

economic return for continuous corn production. A steady state Hooughoudt’s equation 

was used to estimate DDR for the optimum spacing at selected locations and soil type of 

eastern South Dakota. The DDR values for the study area vary from 0.43 cm/day to 0.72 



43 

 

 

 

cm/day for 91cm drain depth, 0.3 to 0.66 cm/day for 108 cm drain depth, and 0.26 to 

0.62 cm/day for 122 cm drain depth. The result showed similar behavior as found for the 

eastern US, (i.e. varied with growing season precipitation, soil properties and drain 

depth). However the DDR in this study was less than the DDR values found in eastern the 

eastern US. 

3.2 Introduction:  

Subsurface (tile) drainage installation has increased in eastern South Dakota in 

recent years because of increased precipitation, changes in cropping systems, and high 

commodity prices (Hay and Todey, 2011). Research over the past several decades has 

shown that subsurface drainage has a positive impact on crop yield and is viewed 

positively for agricultural production. Historically, the only primary objective of 

subsurface drainage was to increase crop yield (Skaggs et al., 2006). Objectives of more 

recent drainage design systems have been supplemented by other environmental factors 

to consider, including downstream environmental effects as a negative environmental 

impact of surface and subsurface on downstream hydrology (Kalita et al., 2007). In some 

cases, environmental considerations are more important than increasing crop yield. 

Optimum design to meet both objectives includes proper combination of drainage depth 

and spacing, and called drainage design rate (DDR) of any particular soil and weather 

conditions. Closely spaced and/or deeper drain has greater drainage intensity and has 

increased potential of nitrate-nitrogen loss (Skaggs et al., 2005), while wider spacing and 

shallow drain might not be able to drain excess water.  

DRAINMOD is a process based field scale hydrological model developed by 

Skaggs (1978) in North Carolina State University. It has been used to simulate the 
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hydrology and crop response in poorly drained soils all over the world (Skaggs et al., 

2012). DRAINMOD uses the water balance equation for a column of soil that has a unit 

surface area which extends from the ground surface to a subsurface impermeable layer 

and is located at the midway between two subsurface drains. The model has incorporated 

the effect of freezing, thawing and snowmelt in 2000 (Luo et al., 2000). The model can 

be used to simulate nitrogen and carbon cycles in soils. Soils input to DRAINMOD are 

some of the major inputs and play major roles in the simulated water balance. Soils inputs 

consist of four key components, including the soil water characteristic curve (SWCC), 

drainage volume, upward flux, and Green-Ampt infiltration parameters. Other inputs for 

the model are weather, drainage design configuration, and crop parameters.  

The drainage intensity (DI) associated with the optimum drain depth and spacing 

for maximum crop yield is called drainage design rate (DDR). A very simple approach 

for determining DDR was used for eastern North Carolina using DRAINMOD simulation 

with economic analysis (Skaggs, 2007; Skaggs and Tabrizi, 1987). The Hooghoudt 

equation was used to calculate DDR as the steady state drainage rate associated with a 

midpoint water table that is coincident with the soil surface (Skaggs et al., 2006). The 

results indicated that this approach could be used to make reasonable estimates of the 

drain depths and spacing to maximize profits for given inputs. The same approach was 

used as an expansion study using 50-year DRAINMOD simulations to determine DDR 

for ten locations in the eastern USA with four different soils (Skaggs, 2007). This study 

suggested that average DDR required to maximize profits is dependent on climatic 

factors as affected by location and soil properties. The study also showed that the DDR 

was related to growing season precipitation (P) and soil properties. The study results were 
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used to develop regression equations for predicting DDR in terms of growing season 

rainfall, drain depth, soil profile transmissivity, and drainable porosity (Skaggs, 2007). 

The study cautioned that further research was needed for validating the equation to 

estimate DDR for different climatic scenarios. The validity of the DDR equation is 

unclear for a location such as eastern South Dakota that is in a transitional climate from 

dry subhumid to semiarid conditions. Therefore, the objective of this study was to 

estimate the DDR for three drain depths, two South Dakota locations, two soil types at 

each location, and current economic conditions. 

3.3 Methods: 

3.3.1 Study Area 

The study areas were located in Moody and McCook Counties in Eastern South 

Dakota. Locations and a summary of key climatic data are shown in Figure 3.1, and 

Table 3.1. Average annual precipitation (1950-2012) values for the study areas were 620 

mm and 580 mm, while average annual (1950-2012) daily temperature values were 7ºC 

and 9ºC, respectively. Growing season precipitation and crop potential evapotranspiration 

(ETc) as calculated using Hargreaves- Samani method (Hargreaves and Samani, 1985) 

were found to be 734 mm at Flandreau, and 759 mm at Montrose (Table 3.1). Grass 

reference potential evapotranspiration was calculated using REF –ET (Allen, 2000) and 

crop potential evapotranspiration was calculated using the crop coefficient from High 

Plains Regional Climate Center (HPRCC) data and crop coefficients for corn. As found 

in Soil Survey Geographic Database (SSURGO), typical soils from Moody county were 

Houdek clay loam (HoB, Fine loamy, mesic, Typic Argiustolls), which is also the state 

soil of South Dakota, and Moody-Nora silty clay loam (MnB, Fine-silty, mixed, mesic 
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Udic Haplustolls). Soils from McCook County were Clamo silty clay loam (Cb, Fine, 

montmorillonitic, mesic Cumulic Vertic Endoaquolls) and Wentworth silty clay loam 

(WbB, Fine-silty, mixed, mesic Udic Haplustolls).  

Table 3.1 Climate parameters for study locations of South Dakota 

Location Latitude Longitude 

Average 

Annual 

precipitation 

(mm) 

Average 

Annual 

Ref ET 

(mm) 

Growing 

season 

Precipitation 

(mm) 

Growing 

season 

Ref ET 

(mm) 

Average 

Temperature 

(Degree C) 

Flandreau, 

Moody , 

SD 

44º 03' 06" 96 º 35’34” 620 734 514 594 7 

Montrose, 

McCook , 

SD 

43º 46' 12" 97º14’58” 580 759 488 607 9 

 

 

Figure 3.1 Location of study area 

3.3.2 DRAINMOD  

DRAINMOD is a field-scale process based, distributed simulation model 

originally developed as a means of quantifying, on a continuous basis, the performance of 

South Dakota 
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multi-component drainage and related water management systems (Skaggs et al., 2012). 

DRAINMOD has gone through several modifications since it was originally developed in 

1978. The input parameters for DRAINMOD are weather (temperature, precipitation, and 

evapotranspiration), soil properties, site characteristics, drainage system designs, and 

crop inputs.  

The model is based on water balance for a section of soil of unit area located 

midway between two parallel drains. The water balance for a time increment (hourly or 

daily) is expressed as:  

∆𝑉 = 𝐷 + 𝐸𝑇 + 𝐷𝐿𝑆 − 𝐹                                              (1) 

where, 

∆𝑉 is change in water free pore space, D is drainage, ET is evapotranspiration, DLS is 

deep and lateral seepage, and F is infiltration in cm. The water balance at the soil surface 

in each time increment is  

P = F + 𝑆 + 𝑅𝑂                                                                        (2) 

where,  

P is precipitation, F is infiltration, S is change in volume of water stored on the 

surface, and RO is runoff.  DRAINMOD uses time a increment based on the precipitation 

time step and infiltration rate from 0.05-h. to 24-h. The latest DRAINMOD version (6.0) 

is capable of incorporating the effects of freezing, thawing and snowmelt (Luo et al., 

2000), simulating the nitrogen and carbon cycles, and simulating drainage water 

management practices on nitrogen losses in draining water. 

DRAINMOD uses the steady state Hooughoudt equation to quantify subsurface 

drainage, when the water table is between the drain depth and soil surface, and is based 
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on Dupuit-Forcheimer (D-F) assumptions (lateral flow in the saturated zone only) and an 

elliptical water table. The model uses the Green-Ampt equation to calculate the 

infiltration rate. At times when the rainfall rate is less than the infiltration rate, 

DRAINMOD assumes that the infiltration rate is equal to the rainfall rate. 

Evapotranspiration (ET) in the model can be estimated either by the Thornthwaite 

method within the model or can be given as user defined input as an input file. The 

Hargreaves-Samani method (Hargreaves and Samani, 1985) was used in this study. 

Reference evapotranspiration(Allen et al., 1998) estimated using in the REF-ET (Allen, 

2000) model was multiplied using High Plains Regional Climate Center (HPRCC) crop 

coefficients for corn, which is based on growing degree days (GDD), and provided into 

the model as crop potential evapotranspiration for long term simulation. Actual ET is 

computed in the model from potential crop evapotranspiration provided in the model as 

limited by soil water availability. 

3.3.3 Model Simulations 

First of all, DRAINMOD (version 6.0) simulation was performed for 2013-2014, 

and  was calibrated against observed water table by changing lateral hydraulic 

conductivity. Then, long-term DRAINMOD simulation was run to predict hydrology and 

crop yield for continuous corn considering the effects of freezing, thawing, and snowmelt 

within the model (Luo et al., 2000) at the study areas in South Dakota. Simulations were 

conducted for representative soils in the study area, two from Moody County and two 

from McCook County. Soil properties for these selected soils were taken from the 

SSURGO (USDA) data set and Rosetta (Schaap et al., 2001) was used to derive the soil 

hydraulic properties in DRAINMOD input format. DRAINMOD simulations were run 
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for these selected soils for 62 years (1950-2011) of climatological data. The simulations 

included drain depths of 91cm (3 ft.), 108cm (3ft. 6 inch), 122cm (4 ft.), and spacing 

varying from 5 m (16 ft.) to 100 m (328 ft.). A brief summary of DRAINMOD input for 

this study is shown in Table 3.2. DRAINMOD simulations were performed for the same 

periods of 62 years to find relative yields (RY) as a function of drain spacing for selected 

drain depths. An economic analysis was conducted to determine optimum drain spacing, 

which is defined as the drain spacing corresponding to the maximum annual returns. 

Relative yield (RY) was converted to annual average yield by multiplying relative yield 

by potential yield. Potential yield of 16319 kg/ha (260 bu/ac) and average assumed corn 

price or $0.16/kg ($4/bushel) was based on National Agricultural Statistics Services 

(NASS) data (USDA, 2013a), and (USDA, 2013b). Annual cost of corn production was 

assumed to be $1502/ha ($608/acre) (Davis, 2014). Drainage system costs were assumed 

at $3.95/m ($1.2 per ft.) based on data from Iowa (William and Ann, 2014). This cost 

assumes that surface drainage is in good condition and no extra surface drainage is 

required. Drainage system costs were calculated by amortizing the initial cost of the 

system over an assumed life of 30 years at an interest rate of 6%. Annual maintenance 

cost was assumed to be 25% of initial cost. Average annual net return was plotted against 

drain spacing for three different depths at two locations with two different soils at each 

location. 
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Table 3.2 DRAINMOD input parameters 

Description of Parameters Value 

Drain depth (cm) 91 

Drain spacing (m) 5 m to 100 m 

Effective radius (cm) 0.51 

Depth of impermeable layer from surface (m) 2.0 

Drainage coefficients (cm/day) 2.5 

Initial depth to water table (m) 1.65 

Maximum surface storage (cm) 1 

Crop input Parameters 

Parameter description Value 
 

Lower limit of water content in the root zone 0.14 cm
3
/cm

3
 

 
limiting water table depth for no crop damage 30 

 
Desired planting date (Day of years) 125 ( 5 May) 

 
Length of growing days for corn 180 

 
Last day of Planting without yield loss 130 

 
Parameters for freezing, thawing and snowmelt 

Parameters description Value 
 

Computational depth function 
  

a 2.5 cm 
 

b 1.21 
 

Thermal conductivity function 
  

a 0.39 
 

b 1.33 
 

Diurnal Phase lag of air temp 8 hrs. 
 

Base temperature as boundary (ºC) 7.2 
 

Rain/snow dividing temp  (ºC) 0 
 

Snow melt base temperature  (ºC) 2 
 

Degree day coefficient (mm/day) 5 
 

Critical ice content (cm
3
/cm

3
) 0.18 
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Daily weather data (maximum and minimum temperature, and precipitation) 

required for the model were taken from national climatic data center (NCDC), Climatic 

Data Online (CDO), (NOAA, 2014) for Flandreau in Moody County and Montrose in 

McCook County. Data for the entire period of 1950-2011 were not available at Montrose, 

so data from the nearest station Bridgewater, which is 20 miles southwest from the site, 

were used to fill gaps. The gaps are missing precipitation and temperature data for some 

days in the period of study.  Daily precipitation data were uniformly distributed to the 

four-hour period starting at 17:00 as per a subroutine provided in DRAINMOD for 

derivation of hourly precipitation and simulation. Potential evapotranspiration (PET) was 

calculated using the Hargreaves-Samani method (Hargreaves and Samani, 1985) and 

supplied as an input to DRAINMOD after applying crop coefficients using High Plains 

Regional Climate Center (HPRCC) data and crop coefficients for corn, which is based on 

growing degree days (GDD).  A summary of soil properties input for DRANMOD is 

shown in Table 3.3. 
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Table 3.3 Summary of soil properties and drainage parameter used in DRAINMOD 

Soil properties Houdek CL 
Moody-Nora 

SiCl 
Clamo SiCL 

Wentworth 

SiCL 

Depth to 

restrictive layer > 

(cm) 

200 200 200 200 

Depth wise 

saturated 

Hydraulic 

conductivity (Ks) 

(cm/hr.) 

Depths 

(cm) 
Ksat 

Depths 

(cm) 
Ksat 

Depths 

(cm) 
Ksat 

Depths 

(cm) 
Ksat 

(0-20) 3.24 (0-25) 2.77 (0-28) 0.33 (0-20) 3.24 

(20-43) 3.24 (25-89) 3.24 (28-56) 0.33 (20-51) 3.24 

(43-109) 3.24 (89-122) 3.24 (56-76) 0.33 
(51-152) 3.24 

(109-152) 0.97 (122-152) 3.24 (76-152) 3.24 

Average Ks 

(cm/hr.) 
2.6 3.16 1.77 3.24 

Transmissivity 

cm
2
/hr. 

394.96 480.73 271.32 492.48 

Average saturated 

water content 

(cm
3
/cm

3
) 

0.43 0.46 0.49 0.39 

Water content at 

lower limit 

(cm
3
/cm

3
) 

0.14 0.15 0.18 0.16 

3.4 Results and Discussion: 

The predicted 62-year average relative corn yield and net annual profit for two 

location and four soils are plotted as function of drain spacing for three different depths 

as shown in Figure 3.2 through Figure 3.4, and is shown in Appendix (Table 3.6 and 

Table 3.7). Relative yield, which is the ratio of actual yield to potential yield, varies from 

60 percent to 81 percent depending on the spacing, depth and soil type. Potential yield is 

the average yield that would have be obtained if there is no dry or wet stress, and planted 

on time, whereas the actual yield was affected by stress factors depending on the 

moisture conditions. The result showed less relative yield at very narrow or very large 
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drain spacing for all drain depths and soil types. The reason was that narrow spacing 

increased dry stress, while larger spacing increased wet stress, causing reductions in 

relative yield in the model. The plots of relative yield and net annual return for all soils 

and locations were all similar in shape. The relative yield at Montrose for Clamo silty 

clay loam and Wentworth silty clay loam soils tended to be more flat at wider spacing, 

and net annual return was less compared to Flandreau. The difference related to crop 

drought stress during most of the year, which lead to lower relative yields. On average, 

about 20%-40% of relative yield was lost due to stress caused by soil moisture deficits in 

both studied fields. However, the stress and relative yield varied from year to year. Also, 

close spacing and deep drain depths reduced the relative yield. Drain spacing 

corresponding to maximum annual return, which was considered the optimum spacing, 

for all four soils and three different depths in both locations was calculated in shown in 

Table 3.4. The magnitude in net annual return was dependent on assumed annual corn 

price, production cost, and potential yield and assumed to that it doesn’t affect the 

optimum spacing (Skaggs et al., 2006). The optimum drain spacing was found to be 

proportional to hydraulic transmissivity at Montrose for Clamo SiCL and Wentworth 

SiCL soil, while it did not follow the same pattern at Flandreau (Houdek CL and Moody 

SiCL soils). This is because the Moody soil has relatively higher saturated hydraulic 

conductivity as compared to the Houdek soil resulting wider optimum spacing which 

ultimately reduces the drainage cost. 
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Figure 3.2 Effect of drain spacing @ 91cm drain depth on long-term average yield and annual return for different soil type 
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Figure 3.3 1 Effect of drain spacing @ 108 cm drain depth on long-term average yield and annual return for different soil type 
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Figure 3.4 Effect of drain spacing @ 122 cm drain depth on long-term average yield and annual return for different soil type  
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The optimum DDR values for the Houdek CL and Moody SiCL in Moody County 

were found to be 0.71 cm/day and 0.67 cm/day, respectively. The optimum DDR values 

for the Clamo SiCL and Wentworth SiCL soils in McCook County were 0.42 and 0.59 

cm/day, respectively, for the 91 cm drain depth. The optimum DDR values found in this 

study are less than those found by Skaggs (2007). For example, the DDR value found at 

the location nearest to South Dakota at Waseca in eastern Minnesota in the Skaggs (2007) 

study for four different soils varied from 0.78 cm/day to 1.1 cm/day for 100 cm drain 

depth with growing season precipitation of 520 mm, which are greater than those found 

for the Moody county soils. The optimum DDR in Montrose, where the growing season 

precipitation was 492 mm, was even less (0.59 and 0.42 cm/day).  

Optimum spacing for three drainage depth for four soils at two location is shown 

in Table 3.4. The result shows that spacing increases with increase in depth and change 

and related to hydraulic conductivity. DDR value for less conductive soil is lower than 

high conductive soil. DDR value for the Montrose is comparatively less than Moody. 

Comparative annual return predicted from DDR with this study for 91 cm drain depth and 

DDR from regression equation Skaggs (2007) is shown in Table 3.5. The DDR value 

estimated from regression equation is higher than found from optimum net return in this 

study. The resulting higher DDR shows reduction in net annual return. The reduction is 

attributed to reduction in long-term average relative yield as a result of crop in stress 

condition. The predicted annual return using DDR  at drainage depth of 91 cm for both 

locations and all four soils were plotted as function of drainage intensity (DI) and are 

shown in Figure 3.5 and found some close to predicted by Skaggs’s regression. A 

regression equation as a function of growing season precipitation (mm), combining DDR 
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(cm/day) for eastern US and this study is shown in Figure 3.6 for comparison of DDR 

with eastern US only. The DDR for Montrose are less than the DDR in eastern U.S.A as 

shown in red dot in Figure 3.6. The equation is shifted from (0.0041P-1.1) for eastern US 

only to ( 0.0042-1.2) including South Dakota study while R
2
 value was reduced from 

0.63 to 0.56. 

Table 3.4 Optimum spacing and DDR for study area for three specific drain depths 

 

 

 

Location 

 

 

 

 

Soil type 

Drain depth (cm) Drain depth (cm) 

91 108 122  91 108  122  

Optimum spacing (m) 

for different depths 

DDR (cm/day) for 

different depths 

Flandreau Houdek CL 28 32 35 0.71 0.66 0.62 

Flandreau Moody-Nora SiCL 32 36 40 0.67 0.64 0.59 

Montrose Clamo SiCL 30 40 45 0.42 0.30 0.26 

Montrose Wentworth SiCL 35 43 46 0.59 0.48 0.46 

 

Table 3.5 Optimum DDR for 91 cm drain depth and average annual return based on this 

study and on Skaggs (Skaggs, 2006) 

Location Soil type 

DDR Value (cm/day) Annual Return ($/ha) 

This study Skaggs et al, 

(2006) 

This study Skaggs et al, 

(2006) 

Flandreau Houdek CL 0.71 0.956 428 400 

Flandreau 
Moody-Nora 

SiCL 
0.67 0.956 446 413 

Montrose Clamo SiCL 0.42 0.850 190 135 

Montrose Wentworth SiCL 0.59 0.85 140 112 
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Figure 3.5 Predicted effect of DDR on net annual return for continuous corn yield in SD 
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Figure 3.6 Regression equation for eastern US and including eastern South Dakota 
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3.5 Summary and Conclusions: 

The purpose of this study was to estimate optimal drainage intensity using 

DRAINMOD simulation for four typical soil of two location of eastern South Dakota in 

continuous corn production, and compare it with the optimal drainage intensity found for 

the eastern USA. Long term average relative yield obtained from DRAINMOD 

simulation were used for economic analysis to find maximum drain spacing that 

maximize net return. Results indicated that optimum DI to maximize profit is dependent 

on weather and soil properties as found in eastern USA. The results were also compared 

to the result obtained for the eastern USA. The results followed the same overall behavior 

as found in in eastern USA; i.e., DDR is a function of growing season precipitation and 

soil hydraulic properties. However, the optimal DDR values found in this study were 

between 0.62 - 0.71 cm/day for Houdek CL, lower than found in eastern USA. Drain 

spacing to achieve these DDR values were 28 to 35 m . The optimum DDR values for 

Moody Nora SiCL soils at Flandreau were also found lower than easten USA, and found 

to be 0.59 to 0.67 cm/day. Drain spacing to achieve the DDR values for the Moody-Nora 

SiCL were 32 to 40 m. For the Montrose location the DDR values were even lower than 

eastern USA. The optimum DDR values were 0.26 to 0.42 cm/day for the Clamo SiCL 

soil and 0.46 to 0.59 cm/day for the Wentworth SiCL soil. The associated drain spacings 

were 30 to 46 m. A regression equation (Skaggs, 2007) for the eastern USA was found to 

be DDR = 0.004P-1.1 (R
2
 = 0.63) while this equation was changed to DDR = 0.0042P-

1.2 (R
2
 = 0.56) if included DDR values for 91 cm drain depth. This equation could be 

used to estimate DDR for eastern South Dakota. However, it should be noted that this 

regression equation is based on the study of two location of four soils and limited to a 
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three drain depths. Additionally the model used here used Rosetta derived soil input for 

the study. Further study in multiple locations of South Dakota with measured soil 

properties, weather data, and controlled drainage could lead to improved estimates of 

DDR for transitional regions like South Dakota. 
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3.7 Appendix 

Table 3.6 Relative yield for varying soil type and drainage depth for study area 

Soil 

Type 

Drain 

spacing 

(m) 

Drain Depth (91 cm) Drain Depth (108 cm) Drain Depth (122 cm) 

Relative 

Yield (%) 

Annual 

Return/ha 

($) 

Relative 

Yield (%) 

Annual 

Return/ha 

($) 

Relative 

Yield (%) 

Annual 

Return/ha 

($) 

HoB 

5 76.4 -256.3 76.4 -256.3 76.2 -261.4 

10 79.5 182.1 79.3 176.9 79.0 169.2 

15 80.7 332.5 80.6 329.9 80.3 322.2 

20 81.0 400.0 81.2 405.1 81.1 402.6 

25 80.6 425.6 81.3 443.6 81.4 446.1 

30 79.6 423.8 80.8 454.6 81.2 464.9 

35 78.1 402.3 79.7 443.4 80.4 461.4 

40 76.5 374.0 78.4 422.8 79.4 448.5 

45 75.3 353.1 77.3 404.5 78.2 427.7 

50 73.9 325.1 76 379.1 77.0 404.8 

55 72.9 306.0 74.7 352.2 76.1 388.2 

60 71.9 285.7 73.8 334.5 74.9 362.8 

70 70.6 260.8 72.3 304.5 73.6 337.9 

80 69.5 239.0 71.1 280.1 72.4 313.5 

90 68.5 218.2 70.2 261.9 71.3 290.2 

100 67.5 196.5 69.4 245.4 70.1 263.3 

MnB 

5 74.2 -312.8 74.7 -300.0 74.9 -294.8 

10 77.5 130.7 77.7 135.8 78.1 146.1 

15 79.2 293.9 79.8 309.4 79.8 309.4 

20 80.3 382.0 80.8 394.8 80.8 394.8 

25 80.6 425.6 81.4 446.1 81.4 446.1 

30 80.3 441.8 81.4 470.0 81.7 477.8 

35 79.7 443.4 81.2 482.0 81.7 494.8 

40 78.5 425.4 80.6 479.4 81.5 502.5 

45 77.4 407.1 79.8 468.8 80.9 497.1 

50 76.2 384.2 78.8 451.1 80.1 484.5 

55 75.5 372.8 77.9 434.5 79.3 470.4 

60 74.5 352.5 76.8 411.6 78.3 450.2 

70 72.5 309.7 74.6 363.6 76.6 415.0 

80 71.9 300.6 73.7 346.9 75.2 385.4 

90 70.4 267.1 72.8 328.8 73.7 351.9 

100 69.3 242.8 71.2 291.6 72.7 330.2 
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Table 3.7 Relative yield for varying soil type and drainage depth for study area 

Soil 

Type 

Drain 

spacing 

(m) 

Drain Depth (91 cm) Drain Depth (108 cm) Drain Depth (122 cm) 

Relative 

Yield (%) 

Annual 

Return/ha 

($) 

Relative 

Yield (%) 

Annual 

Return/ha 

($) 

Relative 

Yield (%) 

Annual 

Return/ha 

($) 

Cb 

5 65.8 -528.7 65.4 -539.0 65.1 -546.7 

10 68.7 -95.5 68.0 -113.5 67.4 -128.9 

15 70.2 62.7 69.5 44.7 68.8 26.7 

20 70.7 135.3 70.3 125.0 69.7 109.6 

25 70.7 171.2 70.7 171.2 70.3 160.9 

30 70.5 189.9 70.6 192.5 70.5 189.9 

35 69.8 189.0 70.4 204.4 70.5 207.0 

40 69.4 191.6 70.0 207.0 70.3 214.7 

45 68.9 188.7 69.4 201.5 70.1 219.5 

50 68.3 181.2 69.0 199.2 69.6 214.6 

55 68.0 180.0 68.6 195.5 69.0 205.7 

60 67.8 180.3 68.5 198.3 68.6 200.9 

70 67.3 176.0 68.3 201.7 68.4 204.3 

80 66.9 172.1 67.9 197.8 68.2 205.6 

90 66.4 164.3 67.6 195.1 68.0 205.4 

100 65.9 155.4 67.2 188.8 67.8 204.2 

WbB 

5 62.6 -610.9 62.6 -610.9 62.5 -613.5 

10 65.1 -188.0 65.0 -190.5 64.9 -193.1 

15 66.7 -27.3 66.6 -29.9 66.3 -37.6 

20 67.6 55.6 67.5 53.1 67.3 47.9 

25 68.0 101.8 68.2 106.9 68.0 101.8 

30 68.0 125.7 68.4 136.0 68.4 136.0 

35 67.9 140.2 68.4 153.0 68.5 155.6 

40 67.4 140.2 68.2 160.7 68.5 168.4 

45 66.6 129.6 67.9 163.0 68.3 173.2 

50 65.8 117.0 67.3 155.5 67.9 170.9 

55 64.9 100.4 66.4 138.9 67.3 162.0 

60 64.2 87.8 65.6 123.8 66.6 149.5 

70 62.6 55.2 64.3 98.9 65.1 119.5 

80 61.7 38.5 62.7 64.2 63.9 95.0 

90 61.2 30.6 61.9 48.6 62.5 64.1 

100 60.6 19.2 61.4 39.8 61.8 50.0 
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Chapter 4: 

4. Impact of subsurface drainage on field-scale water yield in eastern South 

Dakota 

4.1 Abstract:  

Subsurface drainage in agricultural land changes the field water balance by 

providing an alternate pathway for subsurface water. Determining the effects of 

subsurface drainage on downstream hydrology requires quantifying the components of 

the water balance. A number of studies have looked at the hydrological impacts of 

subsurface drainage. However, the effects are complex and difficult to generalize. The 

complex interaction involves the interrelation among variables such as soil type and 

properties, climate (rainfall and evapotranspiration), and drainage design configuration 

(drainage intensity and drainage coefficient), which all are local in nature. Additionally, 

most studies have been conducted in humid climates, whereas eastern South Dakota is 

located in a transitional dry subhumid climate. The objective of this study was to 

determine the impact of subsurface drainage on water yield (runoff plus drain flow) at 

the field scale in eastern South Dakota in terms of soil type, weather, and drainage 

design (drain depth and spacing). Long-term simulations were performed in 

DRAINMOD, a field scale deterministic process based hydrological model, to quantify 

each component involved in the water balance. The hydrologic outputs (daily, monthly, 

and yearly) of DRAINMOD were used to determine the impact of subsurface drainage for 

various scenarios of selected soil type, climatic condition, and drainage design that are 

typical for the study area. The results of the impacts of tile drainage on water yield at the 
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field scale were presented as  functions of soil, climate, and drainage design. The results 

showed the water yield increased with increased drainage intensity (DI) for all selected 

soils. The subsurface drainage amounts also increased with increased DI. The results 

also showed that runoff decreased with increased in DI within the same soil type. Also, 

the proportion of drainage to water yield  increased with increased DI. Water yield 

decreased as saturated hydraulic conductivity increased. Improved understanding of 

impacts at the field scale is an important first step towards understanding the impacts of 

subsurface drainage on stream flow. 

4.2 Introduction: 

Subsurface (tile) drainage installation has increased in eastern South Dakota in 

recent years because of increased precipitation, changes in cropping systems, and high 

commodity prices (Hay and Todey, 2011) Subsurface drainage has agronomic and 

economic benefits for crop production by providing improved growing conditions and 

trafficability and increased crop yield. However, adverse environmental effects are also 

associated with increased subsurface drainage as it modifies flow paths and timing (Irwin 

and Whiteley, 1983) (Kladivko et al., 2004), and (Kalita et al., 2007). Agricultural 

subsurface drainage is considered to be a primary source of nitrogen loss, causing 

significant water quality problems in downstream surface water and is directly related to 

the drainage intensity (Skaggs et al., 2005). Aquatic ecosystem have been substantially 

modified and impacted by the land use, hydrologic, and water quality changes associated 

with extensive development of agricultural surface and subsurface drainage (Blann et al., 

2009). 
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The impacts of tile drainage on water yield (drainage amount plus runoff amount) 

have been the growing concern and topic of research. There have several studies 

addressing water yield. The first comprehensive study was performed in 1990 by 

Robinson (Robinson, 1990). Studies are continued all over the world in evaluating the 

effect on downstream hydrology. Generally, the study of hydrological effects can be 

categorized in to three main categories as a function of: soil type (including macro-pore 

and surface storage), weather (rainfall and evapotranspiration), and drainage design 

intensity (Skaggs et al., 2005), while methods of studies can be categorized into two 

types: field studies, and modelling studies (Robinson, 1990). Many past field and 

modelling studies on change in downstream water yield showed that the effects are site 

specific, local in nature, and are functions of soil type, weather, and drainage intensity 

and complex interactions among them.  

The field study by Robinson (1990) in the United Kingdom (UK) at six different 

field sites showed that subsurface drainage decreased peak flow in clayey soils under 

drained conditions, while it increased in sandy soils (Robinson, 1990). The same trend 

was followed in the study by Harms (Harms, 1986), however there were exceptions in 

some fields in both studies. The decreased peak flows in clayey soils for the drained 

condition was attributed to increased effective permeability of the soil because of 

improved drainage thus increasing the proportion of the total drain flow that is routed 

through the subsurface pathway. These soils would otherwise have been in frequent 

waterlogged conditions leading to significant surface runoff. Conversely, in sandy soils, 

which have high natural permeability, further increases in permeability of the subsurface 

from improved drainage increased in peak flows. Exceptions were found in two fields 
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studied by Robinson (1990) where existence of macro pores in clay soils have played a 

counter effect, i.e. increased peak flow in dry summers and decreased flow during other 

seasons. This effect was attributed to creation of macro pores in clay soils due to dry, 

cracking soils in summer. Similar results were found in a study by Schwab (Schwab et 

al., 1985). Depressional storage also resulted in reduced surface runoff and increased 

infiltration leading to increased drainage flow.  

The effect of weather is complex in influencing the effect of subsurface drainage 

on hydrology because of complexities of rainfall pattern and evapotranspiration (Skaggs 

et al., 1994a). It is even more complex because actual evapotranspiration is also related to 

available soil moisture condition and precipitation (Franz et al., 2015). Studies have 

found that increased precipitation caused a large amount of surface runoff in undrained 

scenario, which increased peak flows (Robinson and Rycroft, 1999) and (Franz et al., 

2015). The model study in Iowa (Franz et al., 2015) suggested that high-magnitude 

intense storms overwhelm the soil infiltration capacity quickly, such that drainage does 

not affect peak flows. However, results of those models also suggested that peak flow 

increased in tile-drained soils experiencing consecutive storms. Higher frequency, low to 

moderate magnitude precipitation events are more likely to produce increased peak flows 

due to tile drainage. It has been noticed the effect of surface storage and pre-drainage 

water condition on both study.  

Drainage intensity (drain spacing and depth) and drainage capacity (drainage 

coefficient) were found to other modifying factors for hydrologic response (Skaggs et al., 

2012). A DRAINMOD simulation study in the UK for poorly drained soil found that 

decreasing drain spacing initially decreases peak flow to some point, and then started 
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increasing (Robinson, 1990). The study in Iowa (Franz et al., 2015) also conclude the 

same result with DRAINMOD  and SWAP model simulation. This behavior was first 

found by Wiskow (Wiskow and van der Ploeg, 2003) who developed a semi-analytical 

procedure in order to determine an optimal drain-spacing that would allow for the 

greatest soil water retention during extreme rainfall events, thereby attenuating daily peak 

flows (Wiskow and van der Ploeg, 2003). 

In the context of the trend of increased subsurface drainage in South Dakota, the 

objective of this study was to determine the impact of subsurface drainage on water yield 

(runoff plus drain flow) at the field scale in eastern South Dakota using long term 

DRAINMOD simulation for selected scenarios of soil type, climatic condition, and 

drainage design. The result was presented as a function of soil, climate, and drainage 

design. 

4.3 Methods: 

4.3.1 Study Area 

This DRAINMOD modeling study was performed using model input parameters 

primarily from the Southeast Research Farm (SERF) near Beresford in Clay County of 

southeastern South Dakota (Figure 4.1). The land parcel is divided into six (6) plots, three 

drained and three maintained as undrained with a control structure at each outlet and a 

monitoring well installed midway between drains in each plot. The parcel consist of 

5.75ha (14.25 acre) with each plot in average of 0.96 ha (2.375) acres in size. The plots 

were drained separately, and drain outflow from each plot was measured with a pressure 

transducer that measured flow depth in each control structure. The flow rate was 

calculated from the flow depth using a local calibration (Partheeban et al., 2014). The 
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observed data from the monitoring wells were used for calibration purposes. Pressure 

sensors were installed to observe the data in the well at 1.372 m below ground level to 

measure the water table depth below the soil surface. Water table depths were 

continuously measured with data logger and were recorded since June 2014. 

The soils in the study area were Egan-Trent silty clay loam, (EhA, mixed, pachic 

haplustolls). The climate in the area is classified as dry subhumid, with average annual 

(1950-2012) precipitation of 642 mm, and average annual (1950-2012) daily maximum 

and minimum temperatures of 14.7 ºC and 1.8 ºC, respectively. 

The study area has insufficient of long-term weather data therefore gaps were 

filled conducted using nearby weather at Centerville, located nineteen (19) kilometers 

northwest from SERF. Soils input for model simulations were taken from the USDA 

NRCS SSURGO data base (SSURGO). Soils were converted into DRAINMOD input 

format using Rosetta-PTF (Schaap et al., 2001). Reference evapotranspiration (Allen et 

al., 1998) estimated using in the REF-ET (Allen, 2000) and High Plains Regional Climate 

Center (HPRCC) crop coefficients for corn were used to obtain potential crop potential 

evapotranspiration (ETc). 
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Figure 4.1 Study area 

4.3.2 DRAINMOD 

DRAINMOD is a field scale, process based, distributed simulation model (Skaggs 

et al., 2012). It was developed by Dr. Wayne Skaggs in the Biological and Agricultural 

Engineering Department at North Carolina State University, and has been extensively 

used to evaluate hydrology in poorly drained soils for over 30 years. It calculates surface 

South Dakota 
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and subsurface water balances using equations (equation 1 and equation 2), on an hourly 

or daily basis for a thin column of soil that has a unit surface area which extends from the 

ground surface to the subsurface impermeable layer and is located midway between two 

tile drains (Figure 4.2, Skaggs, 1978). 

 

Figure 4.2 Schematic diagram of water management system with subsurface drains used 

in DRAINMOD  adapted from Skaggs (1978) 

∆𝑉 = 𝐷 + 𝐸𝑇 + 𝐷𝐿𝑆 − 𝐹                                          (1)   

𝑃 = 𝐹 + 𝑆 + 𝑅𝑂                                                           (2)  

where, 

∆𝑉 is change in water free pore space, D is drainage, ET is evapotranspiration, 

DLS is deep and lateral seepage, F is infiltration, P is precipitation, S is change in volume 

of water stored on the surface, and RO is surface. DRAINMOD (Version 5.0 and higher) 

is capable of incorporating the effects of freezing, thawing and snowmelt (Luo et al., 

2000), which requires additional parameters in the model input, and makes the model 

more adapted for use in cold climates like South Dakota. These versions (5.0 and higher) 

are also capable of simulating the nitrogen and carbon cycles in shallow water table soils 

and effects of drainage, and drainage water management practices on nitrogen losses in 
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draining water (Skaggs et al.,2012). The model inputs for DRAINMOD are soil 

properties, weather, drainage systems, and crop-related parameters.  

4.3.2.1 Subsurface Drainage 

DRAINMOD uses the steady state Hooughoudt equation (3) when the water table 

is between the drain depth and the soil surface. The Hooghoudt equation includes Dupuit-

Forcheimer (D-F) assumptions (lateral flow in the saturated zone only) and assumes an 

elliptical water table. 

𝑞 =  
4k𝑒𝑚 (2𝑑𝑒+𝑚)

𝐿2
                             (3)     

Where, 

q is drainage flux (cm/hr.), de is the equivalent drainage depth of the impermeable 

layer below the drain (cm), m is midpoint water table height above the drain (cm), Ke is 

effective lateral hydraulic conductivity (cm/hr.), and L is the lateral spacing between the 

drain (cm). 

4.3.2.2 Infiltration 

Infiltration is calculated using the Green-Ampt equation (equation 4) (Skaggs, 

1980) 

{
𝑓 = 𝐾𝑣 +

𝐾𝑣𝑀𝑆𝑎𝑣

𝐹

= 𝐵 +
𝐴

𝐹

                                     (4) 

where,  

Kv is saturated vertical hydraulic conductivity, M is the fillable porosity (water 

content at saturation minus water content at desired water table depth), Sav is suction at 
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the wetting front, F is the cumulative infiltration, and A and B are constants. Additionally, 

at times, when rainfall rate is less than the infiltration rate, DRAINMOD assumes that the 

infiltration rate is equal to the rainfall rate. 

4.3.2.3 Evapotranspiration 

ET can be estimated either by the Thornthwaite method within the model or can 

be given as a user defined input in an input file. However, the Hargreaves-Samani 

method (Hargreaves and Samani, 1985) was used in this study as it was found to compare 

well with the Food and Agricultural Organization Penman-Monteith equation when using 

a time-step of five days or longer (Allen et al., 1998; Hargreaves and Allen, 2003). 

Reference evapotranspiration(Allen et al., 1998) estimated using in the REF-ET (Allen, 

2000) model was multiplied using High Plains Regional Climate Center (HPRCC) crop 

coefficients for corn, which is based on growing degree days (GDD), and provided into 

the model as crop potential evapotranspiration for long term simulation. Actual ET was 

computed in the DRAINMOD from crop potential evapotranspiration provided in model 

after correction with crop coefficient as limited by soil water availability. 

4.3.3 Rosetta 

Rosetta (Schaap et al., 2001) is a set of pedotransfer functions that use five 

hierarchies of surrogate soil data (soil textural classes, bulk density, and moisture content 

at field capacity and permanent wilting point) to estimate vertical saturated hydraulic 

conductivity. Prediction of saturated hydraulic conductivity using Mualem (1976) pore 

size model is given by 

𝜃(ℎ) =  𝜃𝑟 +
𝜃𝑠 − 𝜃𝑟

[1 + (𝛼ℎ)𝑛]1−
1
𝑛

                    (5) 
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where,  

θ(h) represents the water retention curve defining the water content, θ as a function of the 

soil water pressure head h (cm) θr and θs are residual and saturated water contents 

respectively, and α and n are curve shape parameters. Equation (5) can be rewritten to 

yield the relative saturation (Se) as: 

𝑆𝑒 =  
𝜃(ℎ) − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
=  [1 + (𝛼ℎ)𝑛]1−

1
𝑛                               (6) 

Equation (6) is used in conjunction with the pore-size distribution model of (Mualem, 

1976) to yield the Van Genuchten-Mualem model(Van Genuchten, 1980): 

𝐾(𝑆𝑒) =  𝐾0𝑆𝑒
𝐿 {1 − [1 − 𝑆𝑒

𝑛
(𝑛−1)⁄

]
1−1

𝑛⁄

}

2

                (7) 

where,  

K is the unsaturated hydraulic conductivity, K0 is the matching point at saturation and 

similar, but not necessarily equal to the saturated hydraulic conductivity, Ksat.  The 

parameter L is an empirical pore tortuosity/connectivity parameter that is normally 

assumed to be 0.5 (Mualem, 1976). Rosetta predicts L which will be negative in most 

cases, which although this leads to some theoretical complication, gives better results 

(Kosugi, 1999; Schaap and Leij, 2000). 

In DRAINMOD, a routine is available to convert the Rosetta output into a 

DRAINMOD readable format and requires the following inputs: θr,  θs,  α, n, L, K0 and 

Ks.  

4.3.4 Soil Hydraulic Properties 

Four typical agricultural soils in eastern South Dakota were identified and 

selected from SSURGO data, as shown in Figure 4.4. The four selected soils were Egan 
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Trent (Silty Clay Loam, EhA), Albaton (Silty Clay, Ac), Bon (Clay Loam, Bm), Ticonic 

(Loamy Fine Sand, Tr). The four soils are shown in Figure 4.3. Physical soil properties 

from SSURGO data were input into Rosetta (Schaap et al., 2001) to derive soil hydraulic 

properties required for DRAINMOD simulation. Textural class, Rosetta output for 

DRAINMOD, other physical properties, and derived soil water characteristics curve of 

the selected soils for the study are shown in Figure 4.3, Table 4.1, Table 4.2, and Figure 

4.4. 

 

Figure 4.3 Textural classification of soil at study area  
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Table 4.1 Rosetta output for DRAINMOD of selected soils for the modeling study 

Soil Type 
Depths 

(cm) 

(θr) (θs) (α) (n) (Ks) (Ko) (L) 

cm
3
/cm

3
 cm

3
/cm

3
 log(1/cm) Log10 (cm/day) (cm/day) 

 

Egan SiCL  0-20 0.084 0.490 0.019 1.307 34.143 6.812 -1.19 

Egan SiCL 20-66 0.069 0.459 0.014 1.343 23.096 5.179 -0.66 

Egan SiCL 66-86 0.065 0.455 0.013 1.357 21.95 5.072 -0.54 

Egan SiCL 86-137 0.063 0.389 0.016 1.248 4.342 4.591 -1.54 

Egan SiCL 137-152 0.062 0.388 0.015 1.253 4.443 4.535 -1.47 

Albaton 

SiCL 
0-23 0.178 0.467 0.062 1.275 12.262 7.178 -3.27 

Albaton 

SiCL 
23-152 0.180 0.465 0.063 1.271 11.96 6.972 -3.34 

Ticonic 

FineSM 
0-23 0.021 0.416 0.049 1.370 181.671 43.98 -1.24 

Ticonic 

FineSM 
23-66 0.017 0.411 0.059 1.420 237.767 60.53 -1.17 

Ticonic 

FineSM 
66-127 0.037 0.388 0.010 1.405 19.437 4.902 -0.18 

Ticonic 

FineSM 
127-203 0.033 0.371 0.008 1.433 18.010 3.922 -0.01 

Bon Clay 

Loam 
0-109 0.064 0.463 0.016 1.324 31.984 6.481 -0.75 

Bon Clay 

Loam 
109-142 0.085 0.435 0.042 1.357 31.393 17.25 -1.76 

Bon Clay 

Loam 
142-152 0.055 0.421 0.037 1.363 34.597 20.56 -1.38 

 

Note: EhA: Egan Trent (Silty Clay Loam), Ac :Albaton (Silty Clay), Bm: Bon (Clay 

Loam), Tr: Ticonic (Loamy Fine Sand) 

 

θr: Residual water content, θs: Saturated water content, Ks: Saturated hydraulic 

conductivity, Ko: Matching point hydraulic conductivity, α and n: Shape parameters, L: 

Empirical tortuosity/connectivity parameters. 
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Table 4.2 Soil properties of selected soil for modeling study 

Soil 

properties 

Ac-Albaton 

(Silty-Clay) 

EhA-Egan(Silty-

Clay-Loam) 

Tr-Taconic (Loamy-

Fine-Sand) 
Bm-Bon(Clay loam) 

Depth to 

restrictive 

layer > (cm) 

200 200 200 200 

Depth wise 

saturated 

Hydraulic 

conductivity 

(Ks) (cm/hr.) 

Depths 

(cm) 

Ks 

(cm/day) 

Depths 

(cm) 

Ks 

(cm/day) 

Depths 

(cm) 

Ks 

(cm/day) 

Depths 

(cm) 

Ks 

(cm/day) 

0-23 3.28 0-20 1.74 0-23 7.75 0-109 3.24 

23-152 0.86 

20-43 3.24 23-66 9.9 109-142 3.24 

43-109 3.24 66-127 3.24 
142-152 8.28 

109-152 1.74 127-152 1 

% sand 5 7 62 40 

% silt 45 62 28 38 

% clay 50 31 10 22 

Bulk density 

(cm
3
/cm

3
) 

1.39 1.38 1.4 1.3 

θ at -33 kPa 

(%) 
0.35 0.31 0.18 0.26 

θ at -1500 

kPa (%) 
0.29 0.18 0.065 0.15 

 

 

Figure 4.4 Soil water characteristic curves for soils used for the modeling study 
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4.3.5 Model Simulations 

DRAINMOD (version 6.0) with calibrated input parameters was used to simulate 

hydrology for continuous corn considering the effects of freezing, thawing, and snowmelt 

within the model (Luo et al., 2000) using four selected soils and Rosetta derived soil 

hydraulic properties. The saturated water content, θs (cm3/cm3), residual water content, θr 

(cm3/cm3), curve shape parameters α (1/cm) and n, and Ksat (cm/day) (Table 4.1) were 

used in the Van Genuchten model via Rosetta to obtain values for the tortuosity 

parameter, L, and matching point at saturation, Ko (cm/day). These hydraulic parameters 

were inputs into a subroutine in DRAINMOD to create soil inputs needed in the model. 

Derived soil water characteristic curves are shown in Figure 4.4.  Horizontal conductivity 

was assumed to be 1.4 times the vertical saturated conductivity, depth to the  

impermeable depth was assumed to be below 3.0 m. The impermeable depth was 

assumed based on the SSURGO data base information. No vertical seepage was allowed 

in the model to generalize the model. Daily weather data were converted into hourly data 

using the subroutine provided in the model. PET was estimated using the Hargreaves 

Samani (Hargreaves and Samani, 1985) method in (Allen, 2000) Reference 

evapotranspiration(Allen et al., 1998) estimated using in the REF-ET (Allen, 2000) 

model was multiplied by High Plains Regional Climate Center (HPRCC) crop 

coefficients for corn, which is based on growing degree days (GDD), and provided into 

the model as crop potential evapotranspiration for long term simulation. Long-term 

DRAINMOD simulations were then run for these selected soils, crop inputs, drainage 

conditions, and climatological data. The simulations included varying drain depths and 

spacings in the form of four drainage intensities: 0 (undrained),  and 0.32, 0.64 and 0.95 
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cm/day for drained conditions. Undrained conditions were simulates by using a drainage 

coefficient close to zero with excessively wide spacing (>1000 m). Simulations also 

included the selected dry year (2012), wet year (2010), and average weather year (2001) 

to see the effects of dry and wet years in water yield. Daily, monthly and yearly drainage 

and surface runoff (water yield) or hydrological output were exported as outputs of long-

term simulations to a spreadsheet for further analysis of different scenarios. 

4.4 Result and Discussions 

4.4.1 Effect of Soil Type on Water Yield (Drainage and Runoff)  

DRAINMOD simulations were performed for the period of (1950-2012) for the 

study area using input parameters for four selected soil types and four drainage intensities 

and water yield (drainage plus runoff) obtained are shown in (Table 4.3 and Figure 4.5). 

The results showed the drainage water and water yield increased with increased in 

drainage intensity for all selected soils. Runoff decreased within the same soil type as the 

drainage intensity increased. Also, the ratio of drainage to water yield was increased with 

the increased drainage intensity. The amount of water yield was decreased with the 

change in soil texture from fine-textured or less permeable soil (silty clay) to coarse-

textured soil or permeable (sandy loam). The decrease in water yield was attributed to 

increased infiltration in the coarser soil thus increasing the potential for plant use leading 

to increased evapotranspiration (ET) component in water balance (Figure 4.6). The result 

also showed the drainage amount in the Egan soil (silty-clay-loam) was greater than in 

the Bon (loam) soil. DRAINMOD uses a soil water characteristic curve to derive 

drainage volume versus water table and upward flux versus water table. Infiltration, and 
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ET component are directly related to the soil characteristics curve shown in (Figure 4.4), 

in the same manner in increased infiltration in water balance as shown in (Figure 4.6). 

Table 4.3 Average annual water yield (drainage plus runoff) for four soil type under 

undrained, and drained conditions at four drainage intensities (0 or undrained, 0.32, 0.64 

and 0.95 cm/day). 

Soil 

Type 

Drainage intensity 

(cm/day) 

Drainage 

(cm) 

Runoff 

(cm) 
Total % increase over drainage 

Ac 

Albaton 

(Silty-

Clay) 

  

  

  

0 (Undrained) 0.00 5.21 5.21 0.0 

0.32 0.97 4.96 5.93 16.3 

0.64 1.40 4.95 6.36 22.1 

0.95 1.71 4.93 6.64 25.7 

EhA-

Egan  

(Silty 

Clay 

loam) 

  

  

  

0 (Undrained) 0.00 2.94 2.94 0.0 

0.32 0.77 2.83 3.61 21.5 

0.64 0.95 2.83 3.78 25.2 

0.95 1.10 2.78 3.87 28.4 

Bm-Bon  

(Clay 

loam) 

  

  

  

0 (Undrained) 0.00 0.80 0.80 0.0 

0.32 0.59 0.68 1.27 46.4 

0.64 0.85 0.69 1.54 55.3 

0.95 1.04 0.68 1.72 60.6 

Tr-

Ticonic 

(Sandy 

loam) 

  

  

  

0 (Undrained) 0.00 0.37 0.37 0.0 

0.32 0.72 0.18 0.90 80.1 

0.64 1.08 0.15 1.23 88.0 

0.95 1.33 0.14 1.47 90.5 

 

 

Figure 4.5 Average water yield (drainage plus runoff) for four soil type and four drainage 

intensities 
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Figure 4.6 Long-term annual water balance components for four soil type and four drainage intensities (cm/day) 
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4.4.2 Effect of Drain Spacing on Water Yield (Drainage and Runoff):  

DRAINMOD simulation results for four selected soil types and various drain 

spacings at the study area are shown in Figure 4.7 and Table 4.4. As expected, the results 

showed that the addition of drainage increased water yield. The results also showed that 

increasing the drain spacing reduced the water yield in all selected soils. The increased 

water yield in drained condition was attributed to increased infiltration and decreased ET 

(Figure 4.6) as infiltrated water has new pathways through subsurface drainage. ET was 

decreased under drained conditions and increased with increasing drain spacing. 

Narrower drain spacing resulted in increasing drainage for all soil types. The decrease in 

drainage amount with the increase in spacing was very small for the Ticonic loamy fine 

sand soil. In undrained soils or for large drain spacing, water yield was dominated by 

surface runoff. As drain spacing decreased, more flow was routed through the subsurface, 

increasing the drainage flow. The results indicated that water yield was affected by drain 

spacing in the same manner as it does in soil type; i.e. water yield was decreased with the 

change in soil texture from fine-textured soil (silty clay) to coarse-textured soil (sandy 

loam).
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Figure 4.7 Long-term average water yield (drainage plus runoff) for four soil type at various drainage spacing 
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Table 4.4 Long-term average water yield (drainage plus runoff), and percentage of 

drainage water to the total water yield for four soil type at various drainage spacing 

Soil Type Drain spacing 

(m) 

Drainage

(cm) 

Runoff 

(cm) 

Total 

(cm) 

% of 

drainage 

Albaton SiCL 

(Ac) 

  

  

  

  

  

  

  

  

0 (Undrained) 0.00 5.20 5.20 0.0 

8.5 2.76 4.97 7.73 35.7 

10.0 2.43 4.95 7.37 32.9 

12.5 2.00 4.94 6.93 28.8 

15.0 1.70 4.93 6.63 25.6 

17.5 1.48 4.95 6.43 23.0 

20.0 1.31 4.95 6.26 20.9 

25.0 1.04 4.95 6.00 17.4 

30.0 0.85 4.97 5.82 14.6 

Egan SiCL loam 

(EhA) 

  

  

  

  

  

  

  

  

(0) Undrained 0 2.94 2.94 0.0 

15.0 1.70 2.74 4.44 38.2 

17.5 1.48 2.76 4.24 34.8 

20.0 1.32 2.76 4.08 32.4 

22.9 1.17 2.79 3.96 29.6 

25.0 1.06 2.82 3.88 27.2 

30.0 0.89 2.82 3.71 23.9 

35.0 0.75 2.83 3.58 20.9 

40.0 0.64 2.85 3.49 18.4 

Bon CL (Bm) 

  

  

  

  

  

  

  

  

(0) Undrained 0.00 0.80 0.80 0.1 

15.0 1.65 0.71 2.36 69.8 

17.5 1.44 0.68 2.13 67.9 

20.0 1.29 0.69 1.98 65.0 

22.9 1.16 0.68 1.84 62.9 

27.5 1.00 0.68 1.68 59.5 

32.5 0.86 0.65 1.51 56.8 

40.0 0.69 0.68 1.37 50.6 

47.5 0.58 0.68 1.26 45.8 

Ticonic loamy 

find sand (Tr) 

  

  

  

  

  

  

  

  

  

  

(0) Undrained 0 0.37 0.37 0.0 

20.0 2.10 0.11 2.21 95.0 

22.9 1.90 0.09 1.99 95.4 

25.0 1.73 0.11 1.84 94.0 

30.0 1.49 0.10 1.59 93.8 

35.0 1.25 0.14 1.39 89.9 

40.0 1.09 0.14 1.24 88.4 

45.0 0.97 0.15 1.12 86.2 

50.0 0.86 0.16 1.02 84.1 

55.0 0.77 0.17 0.94 81.8 

60.0 0.69 0.18 0.87 78.9 
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4.4.3 Effect of Climate (Dry Year and Wet Year):  

DRAINMOD simulations were performed for a selected dry year (2012), wet year 

(2010) and average precipitation weather year (2001), keeping all other input parameters 

constant. The results in all three years showed the similar pattern, i.e., drainage water and 

water yield increased with increased drainage intensity for all selected soils and runoff 

was decreased within the same soil type as drainage intensity increased (Figure 4.8, and 

Table 4.5). Water yield however was zero for the dry  year 2012 except for a small 

amount of runoff for the Albaton silty clay soil. The small runoff amount in Albaton silty 

clay was because of very low effective lateral conductivity thus leading to runoff even in 

small amount of rainfall. Daily hydrographs were also plotted to see how closely storm 

events affected daily hydrograph and the water yield. An event of one week (25-31 May) 

in 1995 was chosen to represent one moderate precipitation event (Figure 4.9, and Figure 

4.10). The results showed increased drainage flow and peak flow in Ticonic loamy fine 

sand (Tr) and Bon clay loam (Bm) soil, decreased in Egan silty-clay loam (EhA), while 

there was hardly any difference in Albaton silty clay (Ac) for the drainage intensity of 

0.95 cm/day as compared to the undrained condition. 
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Figure 4.8 Annual average water yield for four soil type under undrained and drained 

conditions at four drainage intensities (cm/day) for selected wet, dry, and average year 
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Table 4.5 Annual average water yield for four soil type and four drainage intensities 

Year Water Yield as a function of soil type and DI (cm per day) 

2010 (wet) 

Soil Type 

Drainage 

intensity 

(cm/day)  

Drainage (cm) Runoff (cm) 

Ac 

  

  

  

0 (Undrained) 0.00 15.09 

0.32 0.64 15.04 

0.64 1.28 15.04 

0.95 1.76 15.04 

EhA 0 (Undrained) 0.00 10.64 

  0.32 0.16 10.64 

  0.64 0.29 10.64 

  0.95 0.41 10.64 

Bm 0 (Undrained) 0.00 0.00 

  0.32 0.44 0.00 

  0.64 0.44 0.00 

  0.95 1.62 0.00 

Tr 0 (Undrained) 0.00 0.00 

  0.32 0.77 0.00 

  0.64 1.53 0.00 

  0.95 2.22 0.00 
 

2012 (Dry) 

Ac 0 (Undrained) 0.00 0.19 

  0.32 0.00 0.19 

  0.64 0.00 0.19 

  0.95 0.00 0.19 

EhA 0 (Undrained) 0.00 0.00 

  0.32 0.00 0.00 

  0.64 0.00 0.00 

  0.95 0.00 0.00 

Bm 

  

  

  

0 (Undrained) 0.00 0.00 

0.32 0.00 0.00 

0.64 0.00 0.00 

0.95 0.00 0.00 

Tr 0 (Undrained) 0.00 0.00 

  0.32 0.00 0.00 

  0.64 0.00 0.00 

  0.95 0.00 0.00 
 

2001 (Average) 

Ac 

  

  

  

0 (Undrained) 0.00 5.57 

0.32 0.05 5.62 

0.64 0.33 5.66 

0.95 0.75 5.70 

EhA 

  

  

  

0 (Undrained) 0.00 2.01 

0.32 0.06 2.14 

0.64 0.11 2.19 

0.95 0.17 2.22 

Bm 

  

  

  

0 (Undrained) 0.00 0.00 

0.32 0.00 0.00 

0.64 0.00 0.00 

0.95 0.00 0.00 

Tr 

  

  

  

0 (Undrained) 0.00 0.00 

0.32 0.29 0.00 

0.64 0.63 0.00 

0.95 0.96 0.00 
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Figure 4.9 Daily hydrographs for four soils and selected event (May 25-31, 1995) under 

undrained, and drained condition at DI 0.95 cm/day (0.375 inch/day)  
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Figure 4.10 Daily hydrographs for selected soil and selected event (May 25-31, 1995) 

under drained and undrained scenario 
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4.4.4 Seasonal Variation of Water Yield: 

Water yield in monthly output file (*GRM file in DRAINMOD) obtained from 

DRAINMOD simulations in the study area for drainage intensities of 0 and 0.95 cm/day 

were averaged for four seasons. The four seasons were the climatological seasons: 

December to February as winter, March to May as spring, June to August as summer, and 

September to November as fall. The results showed the water yield was the greatest 

during summer in all soil types, while the drainage was greatest during spring and least 

during summer (Table 4.6 and Figure 4.11). This was because the tile drains in cold areas 

tend to freeze during winter with increased drainage occurring during and shortly after 

snow melt and spring thaw. The increase in water yield goes on increasing from coarse 

soil (Tr-Ticonic) to fine soil (Ac-Albaton). Also the results showed that the drainage 

percentage of the total water yield during spring varied from 45 percent in Albaton clay 

to 80 percent in Ticonic loamy fine sand. 
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Table 4.6 Average seasonal water yield (drainage plus) under undrained and drained 

condition at DC 0.95 cm/day 

Soil Type Season 
Drainage 

intensity 

(cm/day) 

Drainage 

(cm) 

Runoff  

(cm) 
Total (cm) 

Ac Fall 0 (undrained) 0.00 0.37 0.37 

    0.95 0.00 0.37 0.37 

  Spring 0 (undrained) 0.00 0.46 0.46 

    0.95 0.35 0.41 0.76 

  Summer 0 (undrained) 0.00 0.84 0.84 

    0.95 0.18 0.80 0.98 

  Winter 0 (undrained) 0.00 0.06 0.06 

    0.95 0.04 0.06 0.11 

EhA Fall 0 (undrained) 0.00 0.20 0.20 

    0.95 0.00 0.19 0.19 

  Spring 0 (undrained) 0.00 0.30 0.30 

    0.95 0.22 0.28 0.50 

  Summer 0 (undrained) 0.00 0.43 0.43 

    0.95 0.12 0.39 0.51 

  Winter 0 (undrained) 0.00 0.05 0.05 

    0.95 0.03 0.06 0.09 

Bm Fall 0 (undrained) 0.00 0.00 0.00 

    0.95 0.01 0.00 0.01 

  Spring 0 (undrained) 0.00 0.18 0.18 

    0.95 0.20 0.16 0.36 

  Summer 0 (undrained) 0.00 0.04 0.04 

    0.95 0.11 0.00 0.11 

  Winter 0 (undrained) 0.00 0.04 0.04 

    0.95 0.04 0.06 0.10 

Tr Fall 0 (undrained) 0.00 0.00 0.00 

    0.95 0.01 0.00 0.01 

  Spring 0 (undrained) 0.00 0.07 0.07 

    0.95 0.25 0.05 0.30 

  Summer 0 (undrained) 0.00 0.06 0.06 

    0.95 0.14 0.00 0.14 

  Winter 0 (undrained) 0.00 0.00 0.00 

    0.95 0.05 0.00 0.05 
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Figure 4.11 Seasonal water yield (drainage plus runoff) for selected soil type under undrained, and drained conditions at DC 0.95 

cm/day
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4.5 Summary and Conclusions 

The purpose of this study was to find the impact of tile drainage on water yield as 

function of soil type, drainage intensity and climate for typical eastern South Dakota 

conditions and was performed by DRAINMOD modelling study. 

The study showed that the amount of water yield was decreased with the change 

in soil texture from fine-textured  or silty clay to coarse-textured soil loamy fine sand. 

Runoff  decreased as soil texture changed from fine to coarse, so was the subsurface 

drainage. The model also showed that fine texture soil contributed more water yield as 

compared to coarse texture soil in undrained condition as water infiltrated slowly and 

there was more surface runoff in fine soils. Drainage percentage varied from 15 percent 

to 90 percent to water yield while it was upto 11 percent to total precipitation.  

Spacing of tile drainage on water yield had also the similar effects in drained 

versus undrained condition, i,e; dominated by surface runoff.  The  result showed that 

greater drain spacing reduced the water yield in all selected soils. In undrained soils or for 

large drain spacing, water yield was dominated by surface runoff. 

Effect of precipitation also showed that the drainage water and water yield 

increased with increased drainage intensity for all selected soils, and runoff decreased 

within the same soil type as drainage intensity increased. The model showed no drainage 

flow in dry precipitation year. ET component in average water balance increased when 

there was no drainage flow. 

The result of seasonal variation showed that the water yield was the greatest 

during summer in all soil types, while the drainage was greatest during spring and least 

during summer. The result also showed that the drainage percentage of the total water 



97 

 

 

 

yield during spring varied from 45 percent in Albaton clay to 80 percent in Ticonic loamy 

fine sand soil. 

The study results, for the most part, agree with the conclusion with some the 

previous field scale studies. However, there is scope of future work that needs to be 

carried out to validate the findings of this study. The DRAINMOD is not capable of 

incorporating the effect of micropores, which might be very important during the summer 

months in fine soil or less permeable soils. Other model such as SWAP (Soil-Water-

Atmosphere-Plant) which has the capability of incorporating effect of micropores will be 

helpful to support the conclusion of this study. Additionally, hourly precipitation weather 

input with more specific measured soil input and hourly output analysis would give more 

specific result of output hydrograph response. Continuance detailed studies of tile 

drainage on impact of hydrology with more specific detail input in field scale model will 

be useful to watershed scale, and can produce positive impact on engineering, economics, 

and ecological environment. 
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