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ABSTRACT 

CBL AND CBL-B DICTATE CSF-1R ENDOCYTIC TRAFFIC AND SIGNALING IN 

MACROPHAGES 

LU HUANG 

2017 

Macrophage colony stimulating factor receptor (CSF-1R or MCSFR) is a receptor 

tyrosine kinase essential for the growth and function of macrophages. Understanding the 

mechanisms that regulate CSF-1R activation and deactivation will provide insights to 

clinical treatment of macrophage related diseases including chronic inflammation and 

cancer. Previously, our laboratory showed that CSF-1R undergoes a novel membrane 

trafficking route that involves macropinocytosis to deactivate CSF-1R signaling.  This 

thesis makes the discovery that the ubiquitin ligases Cbl and Cbl-b cooperate to regulate 

CSF-1R endocytosis and traffic to macropinosome in macrophages.   Macrophages were 

derived from mice knocked out for Cbl, Cbl-b or the double knock out (DKO).  DKO 

macrophages hyperproliferated, matching the severe myeloproliferative disorder 

observed in DKO mice.  The CSF-1R and associated proteins were not ubiquitinated in 

DKO macrophages, unlike single knockouts and wild-type cells suggesting redundant 

functions of Cbl and Cbl-b. Mapping of the CSF-1R traffic demonstrated that CSF-1R 

internalization was slower in DKO cells, resulting in prolonged CSF-1R signaling at the 

plasma membrane and prolonged Akt signaling. Interestingly, CSF-1R transport to the 

lumen of macropinosome was defective in DKO cells, suggesting that altered membrane 

transport is responsible for the cellular phenotype.  Tyrosine phosphorylation was 

drastically decreased and ERK signaling was lower in DKO macrophages, possibly 
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resulting from defective CSF-1R signaling on endosome and macropinosome. One of the 

key ESCRT proteins, HRS, did not associate with the CSF-1R in DKO macrophages 

indicating Cbl and Cbl-b are required for ESCRT-mediated transport into the lumen of 

macropinosome.  Surprisingly, the CSF-1R was still degraded in DKO cells by an 

unknown mechanism. RNA sequencing analysis showed that Cbl and Cbl-b work 

together to regulate approximately 1,300 genes, while Cbl appears to regulate a unique 

set of approximately 250 genes in macrophages. In conclusion, Cbl and Cbl-b share 

partially redundant functions regulating CSF-1R signaling, endocytic traffic and cell 

growth. 
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Chapter I 

INTRODUCTION 

 

1.1 Introduction to the thesis 

Macrophages are a type of immune cells that function in both normal and diseased tissues 

(Mosser and Edwards 2008, Zarif, Taichman et al. 2014). Macrophage Colony 

Stimulating Factor-1 (CSF-1 or M-CSF), is the main growth factor for macrophages 

(Bourette and Rohrschneider 2000). CSF-1 mediates macrophage function by binding to 

its receptor (CSF-1R) on the surface of macrophages to regulate  gene expression, 

controlling macrophage abundance and guiding the function of macrophages in tissues 

(Pixley and Stanley 2004). CSF-1R belongs to the type III receptor tyrosine kinases 

(Stanley and Chitu 2014). The CSF-1R dimerizes upon binding to CSF-1, which activates 

its kinase activity, results in the tyrosine phosphorylation on its cytosolic tails. The 

phosphorylated tyrosine residues at the cytosolic tails of CSF-1R provide binding sites 

for the association of downstream signaling proteins, mediating signaling cascades and 

activation of the transcriptional factors responsible for the growth, differentiation, and 

proliferation of macrophages (Pixley and Stanley 2004).  

 

Endocytosis and delivery of activated CSF-1R to the lysosome is essential for cells to 

control growth factor receptor signaling and prevent out-of-control cellular growth 

(Miaczynska, Pelkmans et al. 2004, Tomas, Futter et al. 2014). Upon binding to CSF-1, 

the CSF-1R is quickly internalized by endocytosis to intracellular compartments named 
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as endosomes. As the cytosolic tail of CSF-1R is still accessible to downstream signaling 

proteins for signaling with CSF-1R on endosomes (Huynh, Kwa et al. 2012), activated 

CSF-1R will quickly transport to the lysosome that contains degradative enzymes to be 

cleaved and destroyed and thus deactivated (Lou, Low-Nam et al. 2014).  

 

The balance between receptor signaling and receptor deactivation exerted by receptor 

traffic is essential for controlling cell growth and function and preventing tumor 

development (Tomas, Futter et al. 2014). Disrupted growth factor receptor traffic can 

lead to the increased or prolonged signaling resulting in the hyperactive growth of cells 

(Tomas, Futter et al. 2014). Growth factor receptor traffic is tightly controlled and 

regulated by many molecular “brakes” (inhibitory proteins) that stop receptor signaling. 

Cbl is an E3 ubiquitin ligase that tags CSF-1R and other growth factor receptors with 

ubiquitin (Miyake, Lupher et al. 1997, Lee, Wang et al. 1999, Mancini, Koch et al. 2002, 

Rorsman, Tsioumpekou et al. 2016).  Cbl-mediated receptor ubiquitination is an essential 

regulator in receptor traffic to lysosomes to be deactivated (de Melker, van der Horst et al. 

2001, Mancini, Koch et al. 2002).  

 

Defects in receptor ubiquitination lead to out-of-control growth factor signaling and can 

cause cancer (Lipkowitz 2003, Huangfu and Fuchs 2010). Approximately 5% of 

leukemia is caused by a defect in Cbl’s E3 ubiquitin ligase activity.  These cases are 

caused by hyperactive growth of myeloid cells (myoloproliferative disease) (Nadeau, An 

et al. 2012).  Cbl-b is a homologue of Cbl with E3 ubiquitin ligase activity also expressed 

in myeloid cells (Thien and Langdon 2005). Mice with either Cbl or Cbl-b protein 
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depletion are normal while with loss of both Cbl and Cbl-b result in severe 

myeloproliferative disease (Naramura, Nandwani et al. 2010), suggesting that Cbl and 

Cbl-b redundantly control myeloid cell growth.  

 

Cbl has a mild effect in regulating macrophage proliferation by slowing CSF-1R 

internalization from the cell surface (Lee, Wang et al. 1999). However, the role of Cbl-b 

in controlling macrophage growth and CSF-1R traffic and signaling is unknown. We 

hypothesize that Cbl and Cbl-b share overlapping functions in controlling macrophage 

growth through regulating CSF-1R traffic and CSF-1R signaling.  

 

1.2 Macrophages, CSF-1, CSF-1R  

1.2.1 Macrophages 

Macrophages are cells of the innate immune system that differentiate from myeloid 

lineage progenitors in the bone marrow and peripheral tissues (Weischenfeldt and 

Porse 2008). Macrophages residing in different tissues are given different names, 

such as microglial cells in brain, Kuppffer cells in liver, alveolar macrophages in lung, 

peritoneal macrophages in peritoneum, and Langherhan cells in skin (Epelman, 

Lavine et al. 2014). Mature macrophages located in different tissues can sense 

microbes and cell debris and are able to phagocytose (eat) targets. Macrophages are 

crucial for maintaining tissues in a healthy state by fighting (guarding) against 

bacterial infections, clearing apoptotic cells. Macrophages are also involved in 

disease states such as promoting cancer metastasis (Wynn, Chawla et al. 2013).  
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1.2.2 CSF-1 

Colony stimulating factor 1 (CSF-1), also known as macrophage colony-stimulating 

factor (M-CSF), is the primary growth factor for macrophages(Mouchemore and 

Pixley 2012). CSF-1 encoded by a single gene that produces three protein isoforms by 

alternative post-transcriptional splicing and post-transcriptional cleavage: secreted 

proteoglycan, secreted glycoprotein and cell surface protein (Alterman and Stanley 

1994).  The active form of CSF-1 circulating in tissues is mainly the proteoglycan 

disulfide linked. A wide variety of cells produce CSF-1, including fibroblasts, 

monocytes, activated macrophages, secretory epithelial cells of endometrium, 

endothelial cells activated by LPS or cytokines, and bone marrow stromal cells. CSF-

1 is important for macrophages differentiation, growth and survival and is elevated at 

sites of inflammation (Stanley and Chitu 2014).  

 

1.2.3 CSF-1R  

CSF-1R, also known as CD115 (Cluster of Differentiation 115), is a transmembrane 

protein of 150-170 kDa encoded by oncogene c-fms (Stanley and Chitu 2014). CSF-

1R is a member of the platelet-derived growth factor receptor family of receptor 

tyrosine kinases.  The extracellular domain of the CSF-1R contains five 

immunoglobulin-like domains that are highly glycosylated. The intracellular  tail 

contains a transmembrane domain, and an intracellular tyrosine kinase domain that is 

split into two halves by a kinase insert segment (Figure 1.1) (Stanley and Chitu 2014). 

Although CSF-1R has two known ligands (CSF-1 and IL-34) that complimentary 

activate CSF-1R (Wei, Lin et al. 2008), CSF-1R null mice have similar phenotype as 
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MCSF knock out mice (Dai, Ryan et al. 2002), suggesting that CSF-1R appears the 

only receptor for CSF-1 (Stanley and Chitu 2014). CSF-1R mediates most, if not all, 

of the biological effects of CSF-1. In the following, CSF-1R activation by CSF-1 

binding will be illustrated. 

 

1.2.4 CSF-1R activation and signaling in macrophages 

CSF-1R upon CSF-1 binding dimerizes, which activates its tyrosine kinase activity 

and leads to phosphorylation tyrosine residues of the intracellular domain(Stanley and 

Chitu 2014). The phosphotyrosine residues provide sites for signaling molecules to 

bind and thus induce signaling transduction that lead to gene expression change in 

nucleus, lead to macrophages growth, survival, and differentiation(Figure 1.1) 

(Mouchemore and Pixley 2012). Here I will summarize the CSF-1R’s 

phosphorylation residues after CSF-1 activation, and the major signaling pathways 

induced by CSF-1R activation. 

 

1.2.4.1 CSF-1R phosphorylation, adaptors and downstream signaling molecules in 

response to CSF 

CSF-1R has 20 tyrosine residues on the intracellular domain, and 8 of them are 

phosphorylated when the CSF-1R is activated in response to CSF-1 (Bourette and 

Rohrschneider 2000). Most of the phosphorylated tyrosine residues provide binding 

sites for known downstream signaling molecules that mediate CSF-1 response (Table 

1.1). 
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The relevant phosphorylated tyrosine residues to the thesis are Y559, Y697, Y721, 

Y921 and Y974 in mouse. CSF-1R Y559 is the first tyrosine being phosphorylated in 

response to CSF-1. Phosphorylated Y559 at the juxatamembrane section interacts 

with SH2 domains from Src family kinases (SFKs), which phosphorylate associated 

proteins including PI3K, Cbl and guanine-nucleotide exchange factors(GEFs) for Rho 

GTPases. Phosphorylation of Y559 is necessary for the activation of SFK/Cbl/CSF-

1R ubiquitination pathway while also is required for the other tyrosine residues 

phosphorylation on CSF-1R (Xiong, Song et al. 2011, Yu, Chen et al. 2012). 

Phosphorylated Y697 along with a XNX in C-terminal end of the kinase insert 

segment interacts with Grb2. Grb2 links CSF-1R to the Ras/Extracellular signal-

regulated kinase(ERK)  by providing a docking site for SOS; Meanwhile Grb2 also 

recruits Cbl association to CSF-1R through a SH3 domain (Dey, She et al. 2000). 

Phosphorylation of Y721 of the kinase insert section activates PI3K/Akt or PLCγ2 

pathway, these two pathways cooperate to mediate CSF-1differentiation (Bourette, 

Myles et al. 1997, Kelley, Graham et al. 1999, Chang, Hamilton et al. 2009, Lee 

2011). Phosphorylation of Y921 in the C-terminal domain forms a second site for the 

adaptor protein Grb2. Y921 appears to dominant Y697 in transducing Grb2-

dependent growth factor signals (Mancini, Niedenthal et al. 1997). Y974 is 

phosphorylated in response to CSF-1 and is a binding site for Cbl.  Macrophages 

express Y974F mutant spread poorly, suggesting that Y974 mediated Cbl recruitment 

is required for both cytoskeletal remodeling and formation of membrane protrusions 

(Yu, Chen et al. 2008).  
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The activation of CSF-1R also leads to phosphorylation of many effector proteins 

important for signaling and traffic (Pixley and Stanley 2004). Table 1.2 lists the 

identified tyrosine phosphorylation proteins contain adaptors including Cbl, kinases 

including PLCγ, SFKs, PI3K, some phosphatases, GEFs and transcriptional factors 

including STAT1, STAT3, STAT5.  

 

In conclusion, phosphorylation of tyrosine residues on CSF-1R result in activation of 

CSF-1R, those tyrosine residues are essential for recruiting different signaling 

molecules, resulting in phosphorylation of the effector proteins important for 

activation of signaling pathways that will be discussed in the following. 

 

1.2.4.2 Signaling pathways following CSF-1R activation by CSF-1 

Phosphorylation of effector proteins physically recruited by activated by CSF-1R 

initiate multiple signaling which fit the classical RTKs signaling transduction 

pathways (Figure 1.2). Four of them are well characterized: Mitogen-activated protein 

kinase cascades (MAPKs) pathway, the lipid kinase phosphatidylinositol 3 kinase 

(PI3K) pathway, Signal Transducers and Activator of Transcription(STAT), and the 

phospholipase Cγ (PLCγ) pathway (Katz, Amit et al. 2007). These pathways result in 

further post-translational modification of target proteins, as well as activation of 

transcriptional factors, and lead to cellular alterations(Katz, Amit et al. 2007).  
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1.2.4.2.1 The PLCγ pathway 

PLCγ binds to phosphotyrosine of activated receptor via its SH2 domain, and is 

phosphorylated on its tyrosine by activated receptor (Figure 1.3). The 

phosphotyrosine, along with its translocation to the plasma membrane leads to 

enzyme activation of PLCγ. Activated PLCγ hydrolyzes phosphatidylinositol 4, 5 

bisphosphate (PIP2) to diacylglycerol(DAG) and inositol(1,4,5) trisphosphate (IP3), 

which leads to Ca2+ release to cytosol. DAG and Ca2+ activate protein kinase C family 

proteins, which phosphorylate various effector proteins, Meanwhile, cytosolic Ca2+ 

also activate Ca2+-dependent protein kinases and phosphatases(Katz, Amit et al. 

2007). For CSF-1R, PLCγ2 pathway activated by CSF-1R Y721 phosphorylation 

promotes macrophages differentiation (Junttila, Bourette et al. 2003).   

1.2.4.2.2 The PI3K/AKT pathway 

The PI3K/AKT pathway is important for macrophage proliferation, differentiation, 

and survival.  PI3K contains two subunits: the p85 regulatory subunit harboring two 

SH2 domains, and the p110 catalytic subunit.  PI3K is activated by binding of its p85 

subunit to the phosphorylated tyrosine of RTK. Alternatively, PI3K is recruited to 

plasma membrane by activated small G protein Ras. Activated PI3K induces 

PtdIns(3,4,5)P3 (PIP3) formation at the inner leaflet of the plasma membrane, which 

recruits various proteins, such as PDK1 and AKT/PKB containing phospholipid 

binding domains. AKT recruited to plasma membrane is activated by PDK1 and 

PDK2, which leads to subsequent phosphorylation of proteins, including major 

effectors of apoptosis, and several transcriptional factors (Jones 2000). Here, 
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phosphorylated Y559, Y697, Y721 of CSF-1R could contribute to activating AKT 

pathway (Pixley and Stanley 2004).  

1.2.4.2.3 The STAT signaling pathway 

Cytoplasm STAT family transcriptional factors may be phosphorylated by RTKs 

directly, which results in the dimerization of STAT and translocation to nucleus (Katz, 

Amit et al. 2007). STAT signaling pathway activates transcription of genes involved 

in cell proliferation. CSF-1R activation is shown to directly activate STAT1, STAT3, 

STAT5 involved in STAT pathway (Yeung and Stanley 2003).  

1.2.4.2.4 The MAPK signaling pathways 

The MAPK pathway is a signaling cascade in which the MAPK elements are 

activated upon tyrosine and threonine phosphorylation catalyzed by dual-specificity 

kinases (MAPKKs, MEK) at the Thr-Xxx-Tyr motif in the activation loop of the 

kinase domain. MAPKKs are regulated by serine/threonine phosphorylation within a 

conserved motif activated by various upstream activators, including kinases and small 

GTP-binding proteins. The MAPK pathway is shared by four distinct cascades: the 

extracellular signal –related kinases (Erk1/2), Jun amino-terminal kinases (Jnk2/3), 

p38-MAPK and ERK5. Among those signaling cascades, growth factors are the 

major regulators of Erk1/2 signaling cascade (Katz, Amit et al. 2007).  

The Erk1/2 activation process by activated receptor is schematically shown (Figure 

1.4). It is initiated via SH2 domain of Grb2 recruitment to phosphotyrosine residue. 

SH3 domain of Grb2 interacts with the guanine nucleotide exchange factor, Sos, 

which is recruited to the vicinity of the plasma membrane, where it promotes the 

active GTP bound active form of Ras. GTP-bound Ras then binds and activates Raf 
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(MAPKKK) (Kyriakis, App et al. 1992), which induces the phosphorylation of serine 

residue in the activation loop of Mek to form Mek1/2 (MAPKK). Mek1/2 then 

activates Erk1/2 to active form by phosphorylation of adjacent threonine and tyrosine 

residues, spaced by a glutamic acid at the activation loop (Yoon and Seger 2006). 

Erk1/2 activation phosphorylates cytoplasmic and cytoskeleton proteins, and also 

various transcriptional factors including Sp1, E2F, Elk-1 and AP-1 after its 

translocation to nucleus. Phosphorylated Y697, Y721, Y921 of CSF-1R could all 

possibly contribute to MAPK pathway (Pixley and Stanley 2004). 

  

In summary, the multiple phosphorylation sites of CSF-1R lead to different signaling 

pathways that are just the major highway of information flow, and between them, one 

pathway possibly connects with another.  Also, the signaling pathways are regulated 

temporally and spatially according to the location and stability activated CSF-1R that 

will be discussed in the following. 

1.3. Cellular membrane compartments in macrophages 

Cells internalize fluid, macromolecules, plasma membrane components, and particles 

by invagination of the plasma membrane and form vesicles, endosomes or vacuoles 

through membrane fission. In mammalian cells, internalized cargos include a wide 

range of nutrients and their carriers, receptor-ligand complexes, fluid, lipids, 

membrane and membrane proteins, extracellular-matrix components, cell-debris, 

bacteria, and virus etc. Internalized cargos are sorted, recycled, stored, or degraded by 

trafficking through endosomes (Huotari and Helenius 2011). Endosomes are cellular 

compartments that contain a recycling circuit for plasma membrane components and 
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their ligands, a degradative system for digestion of macromolecules, and a 

unidirectional pathway for transporting fluid and selected membrane components to 

degradative system (Huotari and Helenius 2011).   

Cargos after endocytosis follow different routes and are dynamically sorted through 

different for recycling to the cell surface or target to lysosome for degradation. In 

mammalian tissue culture cells, endosomes in general are categorized to early 

endosomes (EEs), Late endosomes (LEs), and lysosomes, and EEs, LEs, and 

lysosome provide the classical endocytic pathway. 

 

1.3.1 Early endosomes(EEs) 

EEs are the compartment formed from primary endocytic vesicles fuse with each 

other in the cell cytosol and they are the main sorting station in the endocytic pathway 

(Huotari and Helenius 2011).  EEs in cytosol dynamically acquire functional proteins 

to their membrane surface. One of the proteins complex, Rab5 together with 

Vps34/p150, a type III phosphoinositol 3-kinase [PI(3)K] along with its product 

phosphoinositide (PI) PtdIns(3)P define the identity of EEs. EEs are slightly acidic 

with pH of 6.8 to 5.9 and are relatively small and move through microtubules in cells 

(Vonderheit and Helenius 2005).  

 

1.3.2 Late endosomes(LEs) 

Mature LEs are morphologically round or oval and have a diameter of 250-1000nm 

(Bayer, Schober et al. 1998).  The limiting membrane of LEs contains LAMP1 and 

the lumen contains acid hydrolases, and the pH of lysosome ranges from 6.0-4.9 
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(Maxfield and Yamashiro 1987). LEs formed at the cytoplasm peripheral area traffic 

centripetally toward nuclear area in a unidirectional death pathway where they fuse 

with each other to form larger endosomes and fuse in a kiss and run transiently and 

eventually fuse with lysosomes (Luzio, Pryor et al. 2007). LEs contain mannose-6-

phosphate receptors, tetraspanins, and SNARES that may escape degradation after 

fusion with Lysosome. Lysosome Consists of a collection of vacuoles of 

heterogeneous composition, morphology, and density due to the diversity of cargos, 

cargo degradation variance and the existence of other feeder pathways of which the 

classical endosome pathway is a major one (Huotari and Helenius 2011).  

 

1.3.3 Lysosome 

Lysosome is an essential location in cell that contains lots of hydrolases for 

degradation process. Also, lysosome serve as a storage for preserved membrane 

protected by LAMPs, and other substances resistant to degradation (Huotari and 

Helenius 2011).  

 

EEs, LEs, Lysosomes are scattered and undergo dynamic and continuous protein 

exchange, transformation, fusion and fission, provide the classic traffic route for 

cargos. Of the cellular cargos, receptor tyrosine kinases (RTKs) are special due to that 

they carry signaling that is important for many cell functions, for instance, CSF-1R as 

one of RTKs, is able to initiate the signaling important for cell growth and other 

functions (Figure 1.1, 1.2) (Dey, She et al. 2000, Roepstorff, Grovdal et al. 2008). 

Different RTKs take different traffic route, and the same RTKs possibly take different 
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traffic route in different cell types and triggers (Madshus and Stang 2009). Based on 

this classical endocytic pathways, in the following I will illustrate the possible traffic 

routes taking by RTKs including endocytosis, endocytic traffic, and degradation.  

 

1.4. Receptor endocytosis, endocytic traffic and degradation  

Receptors Tyrosine kinases (RTKs) on the plasma membrane mediate signaling 

cascades that direct the cell either turnover extracellular stimuli to decrease 

extracellular stimuli concentration, terminate receptor signaling from plasma 

membrane by endocytosis.  Receptors after endocytosis transport through the 

endocytic pathway, then are targeted for degradation in lysosome or being recycled 

back to plasma membrane.  

 

1.4.1 Endocytosis 

Endocytosis is an active transport during which cell transport molecules into the cell. 

In general, there are two endocytosis mechanisms upon receptor activation  including 

Clathrin Mediated Endocytosis (CME), and Clathrin independent Endocytosis (CIE), 

some of the pathway are constitutive, while others are triggered by specific signals or 

hijacked by pathogens (Mayor, Parton et al. 2014). In different cells models and 

different receptors, different endocytosis pathway can be initiated. 

 

1.4.1.1 Clathrin Mediated Endocytosis (CME) 

CME is well recognized in the downregulation of transmembrane receptor signaling 

transduction. CME is induced within minutes of ligand recognition of receptors and 
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forms a coated pit mediated by a cytosolic protein clathrin on the inner leaflet of the 

plasma membrane (Figure 1.5). The pit buds into the cell produces small endosomes 

(~100nm in diameter). CME happens in all cells and the CME process mediates many 

receptor-ligand complex internalization (Marsh and McMahon 1999). By doing this, 

the cell not only brings in cells with a small area of plasma membrane, but also 

membrane proteins and small volume of extracellular fluid.  

 

1.4.1.2 Clathrin independent Endocytosis(CIE) 

CIE refers to several endocytosis mechanisms do not use clathrin for bringing 

material into the cell (Figure 1.5), including small scale endocytosis, 

macropinocytosis and phagocytosis. They differentiate from each other by their 

mechanisms, kinetics of the endocytic vesicle formation, associated molecular 

machinery, and cargo destination (Mayor, Parton et al. 2014). Small scale endocytosis 

form heterogeneous population of small size vesicles/endosomes (<200nm), while 

macropinocytosis and phagocytosis internalize large volume of extracellular material 

and large area of plasma membrane, thus produce larger diameter compartments, 

namely macropinosomes and phagosomes, respectively. These different CIE 

pathways may share some of the same molecular machinery, especially those use 

actin in membrane rearrangement (Bohdanowicz and Grinstein 2013).  

 

1.4.1.2.1 Small scale CIE 

Small scale endocytosis can be classified by the requirement of dynamin during the 

process, thus are divided to dynamin dependent and independent endocytosis (Figure 
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1.5). The other simple classifier is the presence or absence of a coat on the formed pit 

(Mayor and Pagano 2007). Among the CIE pathways, the best characterized one is 

the dynamin-dependent caveolar endocytosis (Mayor, Parton et al. 2014). Recently, a 

fast-acting tubulovesicular endocytic pathway independent of clathrin and AP2 

marked and controlled by a membrane remodeling protein named endophilin 

(Boucrot, Ferreira et al. 2015).  

 

1.4.1.2.2 Macropinocytosis and phagocytosis 

Macropinocytosis happens when receptors response to growth factors, in which, 

plasma membrane ruffles (effect of actin polymerization) and closes at their distal 

margins to gulp large volume of extracellular fluid and forms macropinosomes 

(Figure 1.5) (Swanson 2008). Phagocytosis is initiated by receptor (Fc receptor, 

recognize antibodies) mediated ingestion of cell particles, result in plasma membrane 

and the actin surrounding the target particles, forming intracellular compartment 

named phagosomes (Swanson 2008). Macropinocytosis simply differs from 

phagocytosis by their ability to form macropinosomes without particles.  For 

macrophages, macropinocytosis and phagocytosis are important for their immune 

function in clearing antigen.  

Due to that macropinosomes are more relevant to the thesis comparing to phagosomes, 

here I will illustrate a little more about macropinosomes. Macropinosomes are large 

endocytic vacuoles (0.2-5um) that form during Macropinocytosis, which is an actin-

dependent process initiated by plasma membrane rearrangement. Due to large 

dimension of macropinosome, they can be differentiated from other small endosomes 
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by labeling with fluorescent labeled dextran (High molecular weight, 40-150kD). 

Macropinosomes are formed frequently in macrophages and are major compartments 

of non-selectively uptake of membrane, nutrients, fluid, and antigens (Swanson 2008, 

Lim and Gleeson 2011). Large size Macropinosomes are induced in response to CSF-

1 stimulation in bone marrow derived macrophages (Racoosin and Swanson 1989). 

Once formed, macropinosomes undergo a maturation process, during which, 

macropinosomes shrink, acquire, and lose different endocytic protein markers while 

move toward the lysosome. During the early stage of macropinosome maturation, 

macropinosomes share some EEs markers including transferrin receptors, EEA1 in 

bone marrow macrophages. Very quickly (2-4min CSF-1 stimulation), 

macropinosomes are devoid of transferrin receptors and acquire Rab7, a marker of 

LEs. Macropinosomes then fuse with the tubular lysosome (Racoosin and Swanson 

1993).  

 

In summary, the possible endocytosis mechanism for RTKs are CME, CIE. CME is 

the major endocytosis  mechanism and well-studied for many RTKs (Madshus and 

Stang 2009). For CSF-1R, it is shown that CSF-1R internalized to small size 

endosomes and internalization of CSF-1R is attenuated by dynamin inhibitor (Lou, 

Low-Nam et al. 2014), suggesting that CSF-1R possibly take CME, or small scale 

CIE pathways instead of large scale CIE. Next, I will discuss the endocytic traffic 

after RTKs endocytosis. 
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 1.4.2 RTKs endocytic traffic and degradation 

After internalization, signaling receptors are transported to endosomes either to be 

recycled or degraded. The specific motifs and interactions determine receptors to be 

recycled or to be degraded. Many signaling receptors are targeted to endocytic 

degradation pathway and are efficiently degraded in late endosomes and lysosomes. 

Ubiquitination of receptors (will explain more later) after ligand activation is reported 

to direct receptors to multi-vesicular bodies (MVB) mediated by a set of endosomal 

sorting complex required for transport (ESCRT) (Welchman, Gordon et al. 2005). 

The ESCRT sorting complex are collectively referred to ESCRT0, ESCRTI, 

ESCRTII, ESCRTIII. One of the ESCRT0 component is HRS-STAM (hepatocyte 

growth factor-regulated tyrosine kinase substrate-signaling transducing adaptor 

molecule) complex. HRS directly interact with ubiquitinated receptors through 

ubiquitin binding domain and recruit receptors, while it also interacts and thus recruit 

ESCRTI complex. These events will lead to the formation of MVB that contain 

receptors in late endosome or lysosome (Figure 1.7), Consequently, ubiquitinated 

receptors will be degraded in MVB of late endosome and lysosome and inaccessible 

for downstream signaling molecules (Miaczynska 2013). Again, EGFR is one of the 

best studied RTKs that using MVB as a deactivation mechanism in late endosomes. 

CSF-1R takes macropinosome as an route to be deactivated and is deactivated by 

intraluminal budding into the lumen of  macropinosome (Lou, Low-Nam et al. 2014), 

suggesting that CSF-1R is most likely being deactivated through a new MVB 

platform (macropinosome), however, the molecular mechanism is not clear.  
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In terms of receptor fate, CSF-1R is known to not be recycled and is degraded in 

lysosome in macrophages (Lee, Wang et al. 1999, Lou, Low-Nam et al. 2014), 

however, not all receptors will be targeted for degradation in lysosome depending on 

the threshold of ligand concentration. For example, EGFR stimulated with different 

concentration of EGF will have different route. Low concentration of EGF will 

trigger the CME process and recycling of EGFR, while high concentration of EGF 

confer EGFR to the CIE and the degradation of EGFR in lysosome (Sigismund, 

Algisi et al. 2013),  

 

In summary, RTKs activated by their ligand endocytosis and traffic to EEs, LEs and 

are degraded in lysosome or recycled back to plasma membrane, different from this 

classical route, CSF-1R undergoes a novel membrane trafficking route that involves 

macropinosome most likely through ESCRT machinery mediated MVB process to 

degrade CSF-1R in lysosome (Guilbert and Stanley 1986, Lou, Low-Nam et al. 2014). 

From here, I will illustrate how the different RTKs endocytic traffic outcome will 

affect the signaling of RTKs.  

        

1.4.3 Receptor tyrosine kinases (RTKs) endocytic traffic and the regulation on Receptor 

signaling  

Many signaling pathways of RTKs from ligand activation, including MAPK pathway 

as well as PI3K pathway is initiated from the plasma membrane (Brankatschk, 

Wichert et al. 2012, Sousa, Lax et al. 2012),  RTKs endocytosis is thought to initiate 

termination of the signaling cascade (Roepstorff, Grovdal et al. 2008). However, it is 
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shown that endocytosis of activated RTKs continues signaling on intracellular 

endosomes and the endocytic traffic of RTK may facilitate the propagation of a 

subset of signaling pathways initiated at plasma membrane, or it may allow RTK 

activate pathways that are different from those activated from the plasma membrane 

through signaling proteins specifically located to endosomes (Vieira, Lamaze et al. 

1996, Joffre, Barrow et al. 2011, Huynh, Kwa et al. 2012).  

 

1.4.3.1 Endocytic traffic Regulators of RTKs signaling  

1.4.3.1.1 Grb2 

Grb2 plays opposing roles in regulating RTKs signaling. Grb2 is recruited to 

activated RTKs and facilitate RTKs signaling by activating MAPK pathway, and it 

also mediates RTKs downregulation in a Cbl mediated ubiquitination pathway.  

 

1.4.3.1.2 Cbl proteins 

Cbl is an E3 ubiquitin ligase typically involved in ubiquitination of RTKs and 

effector proteins during the RTK signaling activation process. Ubiquitination of 

proteins are targeted for degradation. Structurally, Cbl contains a tyrosine kinase 

binding domain (TKB), a Ring finger domain (RF), a proline domain (PR) (Figure 

1.6).  

The Cbl proteins are highly conserved gene family, and the name derives from the 

retroviral onco-protein v-Cbl, which is a dominant mutant dominant its cellular 

homolog Cbl, promoting development of B cell leukemia in mice. Mammalian 
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genome encodes three Cbl proteins: Cbl, Cbl-b, and Cbl-c. Cbl and Cbl-b are 

expressed in a wide range of tissues, Cbl-c is restricted to epithelia.  

The Cbl family RING finger ubiquitin ligases (E3) are recruited to many RTKs upon 

RTK activation and regulate RTK turnover. Of the E3 ubiquitin ligases, Cbl and Cbl-

b are enriched in hematopoietic stem cells. it contains tyrosine kinase binding domain 

(four-helix bundle(4H), a calcium-binding EF hand and a modified SH2 domain), 

RING finger domain(RF), C-terminal proline rich domain(P) and Ubiquitin Binding 

Association domain(UBA). 

 The TKB domain named due to its ability to bind to phosphotyrosine residues in 

multiple protein tyrosine kinases (PTK) (Meng, Sawasdikosol et al. 1999). TKB 

recognizes most of PTKs through the consensus sequence (N/D)XpY(S/T)XXP(Meng, 

Sawasdikosol et al. 1999). TKB domain is capable of multiple interactions with its 

binding partners. TKB domain mediate binding of Cbl to other proteins besides PTKs 

with varies binding mode. For example, proteins like Src-like adaptor protein (SLAP) 

and tubulin bind Cbl through the other domain independent of SH2 domain (Tang, 

Sawasdikosol et al. 1999). The L domain and RING finger domain are very 

conserved in Cbl family. 

The RF domain of Cbl mediates the E3 ubiquitin ligase activity of Cbl, it is separated 

from TKB domain by the L domain. TKB conferring substrate specificity and RING 

bring in an E2 ubiquitin-conjugating enzyme to mediate ubiquitination and 

degradation of activated PTKs. The L domain is also critical for the E3 activity of Cbl. 

Phosphorylation of Tyr-371 and Tyr-368 at L domain was shown to involve in EGFR 

signaling regulation (Levkowitz, Waterman et al. 1999). Tyr mutation at these 
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residues constitutively activate E3 activity (Kassenbrock and Anderson 2004), Tyr-

371 phosphorylation is essential for Cbl-dependent ubiquitination of Src in vitro 

(Yokouchi, Kondo et al. 2001). Moreover, Tyr-371 phosphorylation involves in the 

interaction of Cbl with PI-3 kinase (PI3K) and possibly interact with Crk in 

adipocytes to positively regulate glucose transport (Miura, Sajan et al. 2003, Miura, 

Sajan et al. 2004).  

The P domain contains a number of SH3 binding motifs for signaling adaptors. The 

C-terminal part of Cbl proteins contains major sites of tyrosine for phosphorylation 

(Tyr-674, Tyr-700, Tyr-731, Tyr774), which provide binding sites for SH2 domain 

containing proteins(Liu, Kimura et al. 2002, Steen, Kuster et al. 2002, Grossmann, 

Kolibaba et al. 2004). Besides, the LZ domain in C-terminal mediates dimerization of 

multiple proteins thus facilitate protein-protein interaction and phosphorylation 

(Bartkiewicz, Houghton et al. 1999), and the UBA domain binds to ubiquitin. UBA 

domain is not essential for E3 ubiquitin ligase of Cbl and its role is less clear 

(Levkowitz, Klapper et al. 1996). 

 

1.4.3.1.3 Ubiquitination of RTKs 

Protein ubiquitination is a post-translational and reversible modification in which Ub, 

a 76-amino-acid polypeptide, is covalently attached to the ε-amino group of lysine 

residues in target proteins by E3 ubiquitin ligases(Madshus and Stang 2009). It is 

shown that in EGFR example that protein can be concurrently monoubiquitinated 

(one Ub on one lysine), multiubiquitylated (several monoubiquitylated lysine resides 

on one protein ), and polyubiquitynated (several Ub molecules on one lysine in one 
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protein through each of the seven lysine residues within Ub itself) (Peng, Schwartz et 

al. 2003).  

Among the RTKs, EGFR has been extensively studied for the function of 

ubiquitination in endocytosis. CSF-1R and EGFR both belong to RTKs and share 

very similar structure, here I will use EGFR as example to illustrate the function of 

ubiquitination in RTKs endocytosis and thus to infer to CSF-1R endocytosis. 

Ubiquitination of EGFR targets both EGFR internalization and degradation. Cbl 

mediated ubiquitination of EGFR is recognized by ubiquitin-binding proteins of the 

CME protein machinery and thus facilitates recruitment of activated EGFR to clathrin 

coated pits and promotes CME (Madshus and Stang 2009, Bertelsen, Sak et al. 2011). 

However, EGFR mutant with 15 lysine residues lacking at the tyrosine kinase domain 

of EGFR deplete EGFR ubiquitination but still internalizes (Huang, Goh et al. 2007). 

Thus the contribution ubiquitination to RTK internalization is cell type and 

physiological condition dependent. 

 

1.4.4 RTKs traffic and cancer   

Disrupted endocytic trafficking of RTKs is shown to play important role in roles in 

oncogenesis. Traffic defects lead to the wrong subcellular location and poor 

downregulation of EGFR are associated with enhanced signaling and may contributes 

to cancer development (Roepstorff, Grovdal et al. 2008).  

Again, EGFR as one of the RTKs are best studied in its traffic and the finding in 

EGFR study can be used to guide CSF-1R research. Several oncogenes have been 

proposed to affect EGFR trafficking. One RhoGTPase GEFs named Vav2 has been 
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shown to enhance ERK, AKT signaling of EGFR by delaying EGFR internalization. 

Another oncogene, Cdc42 associated kinase (ACK1) interacts with ubiquitinated 

EGFR and facilitate the degradation of EGFR (Mahajan and Mahajan 2010). 

Trafficking of EGFR regulates tumorigenesis via interacting with the tumor 

suppressors PTEN and SPRY2 (sprouty homolog 2). Reduced SPRY2 expression 

causes hyper-activation of PI3K/AKT signaling and thus increased cell proliferation 

and invasion in prostate cancer (Gao, Patel et al. 2012). In other side, increased EGFR 

internalization and sustained EGFR signaling on early endosome also enhance EFGR 

endosome specific signaling (Winograd-Katz and Levitzki 2006).  

 

In summary, RTKs signaling is regulated by endocytosis, and endocytic traffic due to 

the spatial and temporal availability of different signaling molecules on different 

cellular location (plasma membrane, EEs, LEs, lysosomes, macropinosomes) 

(Brankatschk, Wichert et al. 2012, Huynh, Kwa et al. 2012, Miaczynska 2013). Same 

RTK taking different traffic routes possibly have different signaling outcomes 

(Francavilla, Papetti et al. 2016). Next, I will illustrate in detail the novel traffic route 

of the CSF-1R, the possible signaling outcomes if this unique route is disrupted, and 

what can be investigated based on this characterized traffic route.  

 

1.5. A novel mechanism of CSF-1R deactivation through macropinosome in bone 

marrow macrophages  

A novel model for CSF-1R endocytosis and downregulation was reported by our lab 

in 2014. The CSF-1R upon binding to CSF-1 is endocytosed to small size endosomes, 
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and macropinocytosis triggered by CSF-1 induce nascent macropinosomes in the 

absence of CSF-1R. Interestingly, CSF-1R on small size endosomes transport to the 

lumen of macropinosome to be deactivated (Lou, Low-Nam et al. 2014) and is 

degraded after transport to macropinosome (Figure 1.8). Macropinosomes generated 

from macropinocytosis contain fluid nutrient and are usually used by cells for 

supporting growth or antigen clearance (Lim, Teasdale et al. 2012, Commisso, 

Davidson et al. 2013). However, being a platform for RTK subcellular locating, and 

downregulation is first reported. This traffic route is different from the classical 

endocytic route for other RTKs: RTKs endocytosis, appearing on EEs, then transport 

to LEs through intraluminal vesicle budding to be degraded in lysosome or being 

sorted back to plasma membrane (Sorkin and Goh 2009). In the CSF-1R traffic model, 

macropinosomes could possibly be a platform for specific signaling pathway of CSF-

1R to prorogate, or for specific signaling pathway to be deactivated. Disrupting the 

tightly controlled traffic pathway could possibly leads to those “macropinosome-

based” signaling pathways deregulation and cause cellular phenotype. The unique 

CSF-1R traffic route provide us basis and model to investigate: 1. What molecular 

machinery control and regulate this unique route?  2. What is the function of 

macropinosomes for CSF-1R signaling? 3. How is the CSF-1R transported to 

macropinosomes? Answering those questions is very important for the understanding 

macrophages function guided by CSF-1R traffic and signaling, and thus provide 

fundamental biology for translating research finding to clinical treatment of 

macrophage related diseases including chronic inflammatory, autoimmune diseases 

and leukemia. 
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FIGURES 

 

 

Figure 1.1 Structure diagram of CSF-1R and activation by CSF-1.  

CSF-1R on cell surface dimerize upon binding to CSF-1, which activates CSF-1R kinase 

activity, result in tyrosine phosphorylation on intracellular kinase domains, lead to 

signaling transduction pathways that activate gene expression.  
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        Figure 1.2 Signaling pathways initiated by activated receptor tyrosine kinases. 

Ligand binding leads to  RTKs activated      pathways: PLCγ, PI3K/AKT pathway, 

MAPK pathway(including JNK, Erk1/2, Erk5, p38 pathways), STAT pathway. (Katz, 

Amit et al. 2007). 
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        Figure 1.3 Schematic diagram of PLCγ signaling pathway. 

 PLCγ binds to phosphotyrosine of activated receptor via its SH2 domain, and is 

phosphorylated on its tyrosine by activated receptor. The phosphotyrosine, along with its 

translocation to the plasma membrane leads to enzyme activation of PLCγ. Activated 

PLCγ hydrolyzes phosphatidylinositol 4, 5 bisphosphate (PIP2) to diacylglycerol(DAG) 

and inositol(1,4,5) trisphosphate (IP3), which leads to Ca2+ release to cotyosol. DAG and 

Ca2+ activate protein kinase C family proteins, which phosphorylate various effector 

proteins, Meanwhile, cytosolic Ca2+ also activate Ca2+-dependent protein kinases and 

phosphatases. 
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Figure 1.4 Schematic diagram of ERK signaling pathway.  

SH2 domain of Grb2 recruitment to phosphotyrosine residue. SH3 domain of Grb2 

interacts with the guanine nucleotide exchange factor, Sos, which is recruited to the 

vicinity of the plasma membrane, where it promotes the active GTP bound active form of 

Ras. GTP-bound Ras then binds and activates Raf (MAPKKK), which induces the 

phosphorylation of serine residue in the activation loop of Mek to form 

Mek1/2(MAPKK). Mek1/2 then activates Erk1/2 to active form by phosphorylation of 

adjacent threonine and tyrosine residues, spaced by a glutamic acid at the activation loop. 

Erk1/2 activation phosphorylates cytoplasmic and cytoskeleton proteins, and also various 

transcriptional factors including Sp1, E2F, Elk-1 and AP-1 after its translocation to 

nucleus.  
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Figure 1.5 Different mechanisms of endocytosis. 

Small-scale endocytic process include Clathrin mediated endocytosis(CME), and Clathrin 

independent endocytosis(CIE, including Caveolar, RhoA, endophilin assocated 

endocytosis) produces small size endosomes that are typically small than 200 nm, they 

require a GTPase protein Daynamin assist in membrane scission. Macropinocytosis 

produces macropinosomes that has large size of 0.2-5um, phagocytosis is Fc receptor 

mediated antigen uptake and produces the phagosomes. Reproduced from (Mayor, Parton 

et al. 2014)  
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Figure 1.6 Functional domains of Cbl family proteins.  

The tyrosine kinase binding domain(TKB) contains a 4-helical bundle(4H), EF-hand 

domain, and SH2 domain. A conserved linker region(L) spate the TKB from a RING 

finger (RF) domain that binds to E2 enzymes. The proline-rich domain(PR) interacts with 

SH3 domains of proteins in endocytosis and signaling. Cbl and Cbl-b contain an ubiquitin 

associated domain(UBA) that engage in ubiquitin binding and dimerization. Modified 

from (Lutz-Nicoladoni, Wolf et al. 2015) 
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Figure 1.7 Cbl mediated EGFR ubiquitination target EGFR sort to intraluminal 

vesicles of MVB on endosome. 

On the membrane of an endosome, Cbl mediated ubiquitination of EGFR are recognized 

by Hrs, then ubiquitinated EGFR is passed to ESCRT I, II, III that all have the 

ubiquitination binding domain, intraluminal budding mediated by ESCRT I, II, III, and 

Vps4, to transport ubiquitinated EFGR to the lumen of endosome, meanwhile EGFR is 

deubiquitinated by Doa4, an enzyme that can remove ubiquitin, this process results in 

formation of multi-vesicular bodies(MVB) (Welchman, Gordon et al. 2005).  
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Figure 1.8 CSF-1R degradation mechanism. 

Upon CSF-1 binding, CSF-1R dimerize, and endocytosis to small vesicles, meanwhile, 

macropinocytosis is triggered and macropinosomes form without CSF-1R present, CSF-

1R is transport from endosomes to nascent macropinosomes and is degraded (Lou, Low-

Nam et al. 2014).  
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TABLES 

Table 1.1 Tyrosine phosphorylation sites on CSF-1R, adaptors that are recruited, 

signaling transduction pathway, and the function in mouse macrophages. 

Reproduced from (Pixley and Stanley 2004) 

Phosphorylation 
sites 

Adaptors Downstream 
Signaling 

Function 

Y544 p55 unknown Prolifertaion 
Y559 SFKs PI3K-Cbl-

RhoGTPase-
WASP  

Cell adhesion, 
spreading, 
phagocytosis, 
motility 

Y697 Grb2 1.Mona-Shc-Gab2-
Gab3 
2.Sos-Ras/Raf-1-
ERK 
3. Cbl-degradation 

Differentiation, 
proliferation 

Y706 N/A STAT1 Proliferation 
Y721 PI3K 

PLCγ 
1.SHIP1-Gab3 
2.PKCφ -PKare 
3.ROS-ERK 

Differentiation, 
oncogenic 
signaling 

Y807 N/A Activation loop, 
adaptors not 
reported 

Prolifearation 

Y921 Grb2 1.Shc-Gab2-Gab3 
2.Cbl 

Proliferation 
Attenuate CSF-1R 
signaling 

Y974 Cbl Ubiquitination Attenuate CSF-1R 
signaling 
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Table 1.2 Tyrosine phosphorylated proteins in response to CSF-1. Reproduced from 

(Pixley and Stanley 2004). 

Protein	 Full name/Function	
SFKb,c	 Src family kinases	
Grb2c	 Adaptor	
Monab,c	 Monocyte adaptor; adaptor	
Socs1b,c	 Suppressor of cytokine signaling-1; adaptor	
PLCγb,c	 Phospholipase C-γ	

P85PI3Kb,c	 Regulatory subunit of PI3K	

Cblb,c	 Casita B lineage; ubiquitin ligase, adaptor	
FMIPb,c	 FMS-interacting protein; unknown fucntion	
PP2Ab	 Protein phosphatase 2A	
Pyk2b	 Proline-rich and Ca+2 activated tyrosin 

kinase	
MAYPb	 Macrophage actin associated and tyrosine 

phosphorylated protein	
Iba1b	 Actin bundling	
Gab2b	 Grb2 associated binder-2, adaptor	
Gab3b	 Grb2 associated binder-3, adaptor	
SHIP1 b	 SH2 domain containing polyinositol 

phosphatase-1	
SHP2 b	 SH2 domain containing phosphatase-2  

phosphatase-2	

PKC φ b	 Protein kinase C- φ	
STAT1,3,5 b	 Signal transducers and activators of 

transcription 1,3,5, transcriptional factors	
Vav b	 Rho family guanine nucleotide exchange 

factor	
b Tyrosine phosphorylated in response to CSF-1 
c Directly associate with CSF-1R	 	

	
	
	
	
	
 

 



	

	

35	

Chapter II 

ABSTRACT 

Endocytosis and intracellular traffic regulates and shapes signaling from growth factor 

receptors.  Here, we demonstrate that Cbl and Cbl-b have overlapping function in 

regulating macrophage growth by regulating the endocytosis and endocytic traffic of the 

CSF-1R.  Analysis of bone marrow derived macrophages from Cbl-/-, Cbl-b-/- or  Cbl-/-

/Cbl-b-/-  (double knockout, DKO) mice revealed that Cbl and Cbl-b redundantly control 

membrane transport and signaling of the CSF-1R.  DKO macrophages, but not single 

knockouts demonstrated accelerated growth, mirroring the myeloprolifotirve disease of 

the mice.  In DKO we observed a loss of ubiquitination of the CSF-1R and associated 

proteins following exposure of cells to CSF-1.  The loss of ubiquitination correlated with 

slowed CSF-1R internalization and elevated AKT signaling in DKO macrophages. 

Previously we defined a novel endocytic pathway in macrophages in which the CSF-1R 

is internalized by small vesicle endocytosis and then transported to the lumen of newly 

formed macropinosomes where it is subsequently degraded.  This pathway was fully 

functional in WT and single Cbl knockouts, but not in DKO macrophages, indicating that 

rapid transport to the macropinosome requires Cbl or Cbl-b function even though they are 

dispensable for CSF-1R degradation.  RNA seq analysis show that the altered traffic in 

DKO cells correlated with altered gene expression and that a small number of genes were 

regulated uniquely by Cbl and no genes were uniquely regulated by Cbl-b. 

INTRODUCTION 

Cbl and Cbl-b are E3 ubiquitin ligases that regulate the endocytic traffic and signaling of 

receptor tyrosine kinases (RTK) and immunoreceptors including EGFR, PDGFR, c-Kit, 
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CSF-1R, TCR and FcγR (Matsuo, Hazeki et al. 1996, Erdreich-Epstein, Liu et al. 1999, 

Schmidt and Dikic 2005, Marois, Vaillancourt et al. 2011, Voisinne, Garcia-Blesa et al. 

2016).  Upon activation, Cbl or Cbl-b are recruited to phosphotyrosine residues on the 

cytoplasmic tail of RTKs by the adaptor Grb2 or through direct interaction mediated by 

their tyrosine kinase binding domain (Miyake, Lupher et al. 1997, Ettenberg, Keane et al. 

1999, Pennock and Wang 2008).  Cbl and Cbl-b mediated ubiquitination of RTKs 

controls the subcellular location and degradation of receptors thereby regulating RTKs 

signaling.  In addition to ubiquitin ligase activity, Cbl can act as an adaptor/scaffold 

protein by associating with a variety of SH2 and SH3 containing singling proteins 

including Crk, Fyn, Lck, PI3K, and Shc (Miyake, Lupher et al. 1997).  

The CSF-1R is an RTK that mediates most of the effects of CSF-1 in promoting 

differentiation, growth and immune functions of macrophages. Although rare, aberrant 

CSF-1R activity can contribute to the pathogenesis of human cancer and as a model RTK 

understanding its traffic and signaling will provide insight into its two closest and high 

frequency oncogenes c-Kit and Flt3 (Ridge, Worwood et al. 1990, Sapi 2004).  Recently 

we demonstrated that in macrophages, the endocytosis and degradation of the CSF-1R is 

mediated by a novel pathway that involves small-vesicle endocytosis followed by 

subsequent traffic to macropinosome that are form in response CSF-1R signaling (Lou, 

Low-Nam et al. 2014). Although advances have been made toward CSF-1R endocytic 

traffic and signaling regulation (Lee, Wang et al. 1999, Huynh, Kwa et al. 2012, Lou, 

Low-Nam et al. 2014), the understanding of CSF-1R endocytic traffic and signaling 

remains to incomplete.  
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Cbl gene mutations have been identified in more than 10% patients with juvenile 

myelomonocytic leukemia, which is a type of myeloproliferative disease with excessive 

proliferation of myeloid cells (Loh, Sakai et al. 2009, Makishima, Cazzolli et al. 2009, 

Sanada, Suzuki et al. 2009). Mice lacking Cbl or Cbl-b in the hematopoietic compartment 

are non-lethal, while mice carrying the double knock out for Cbl and Cbl-b develop 

severe myeloproliferative disease and do not typically live past average life-span of 65 

days  (Naramura, Nandwani et al. 2010). The myeloproliferative disease suggests that 

Cbl and Cbl-b function redundantly in myeloid cells.  

Here we have analyzed macrophages produced from WT, Cbl knock out, Cbl-b 

knock out and Cbl/Cbl-b double knock out(DKO) mice. Cbl and Cbl-b are found to 

regulate CSF-1R internalization and transport to macropinosome thus CSF-1R signaling 

possibly through their redundant E3 ubiquitin ligase function, but not CSF-1R 

degradation.   

 

MATERIALS and METHODS 

 

Reagents 

Dulbecco’s Modified Eagle Medium (#SH30022, GE Healthcare Life Sciences), fetal 

bovine serum (#SH30088, GE Healthcare Life Sciences) and L-cell supernatant were 

used for cell culture. Recombinant CSF-1 (#:574806, Biolegend) was used for CSF-1 

stimulation time course experiment. Alamar blue reagent (#DAL1025, ThermoFisher 

Scientific) was used for growth assay of macrophages. CSF-1R antibody (#SC692, Santa 

Cruz Biotechnology),  CSF-1R antibody(AFS98, eBioscience), p-ERK antibody (#9101, 
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Cell Signaling Technology), pAKT antibody (#4691, Cell Signaling Technology),  p-

Tyrosine antibody (#P-Tyr-100, Cell Signaling Technology), and pCSF-1R(Y721) 

antibody (#49C10, Cell Signaling Technology) were used for western blot or 

immunofluorescence,  goat anti-Rat Dylight 594 and Goat anti-Rabbit Dylight 488 

conjugated secondary antibodies (ThermoFisher Scientific) were used for detecting 

primary antibodies. Texas-Red Dextran(70 kD)  (#D1864, ThermoFisher Scientific) was 

used to label macropinosomes. GeneJET RNA Purification Kit (#K0732, ThermoFisher 

Scientific) and Turbofree DNA free Kit was from (# AM1907, ThermoFisher Scientific) 

were used to purify total RNA for RNA seq. ToxinSensorTM Gel Clot Endotoxin Assay 

Kit (L00351, GenScript) was used to check medium contamination from LPS.  

Generation of WT, Cbl-/-, Cbl-b-/-, and DKO bone marrow derived 

macrophages(BMDM)  

WT, Cbl-/-, Cbl-b-/-, and DKO bone marrow derived macrophages  were differentiated 

with CSF-1 containing medium from bone marrow isolated from the bone of WT mice, 

Cbl knock out, Cbl-b knock out , Cbl and Cbl-b double knock out(DKO) in the 

hematopoietic compartment of the mice(Naramura, Nandwani et al. 2010).  

 

Growth assay of BMDM 

Bone marrow cells were isolated from bone and plated on 10 cm non-tissue treated dishes 

or 6 well plates in DMEM+10% FBS supplemented with CSF-1 (100ng/mL). For growth 

assay between Day5-25, alamar blue assay was applied. Day 5 macrophages were plated 

on 96 well plates in CSF-1 (100ng/mL) DMEM+10% FBS in 6 replicates with starting 

cell number of about 1,000, cells were re-plated after reaching 90% confluence. Alamar 
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blue dye was applied to measure cell number every other day from Day 5 to Day 25. 

Alamar blue dye reaction with cells was done in 37 oC CO2 incubator for 40 min. 

Microplate Reader (BioTek Synergy 2) was used with excitation of 550 nm and emission 

at 585 nm to measured reaction products and calculate cell number, data was normalized 

to number at Day 5. For growth assay from Day 81 to Day 94, macrophages plated on 6 

well plates were counted for at least 10 field of view with triplicate wells, and the cell 

number was recorded and plotted against days of cell age.  

 

Immunofluorescence 

Intracellular targets in cells were fixed with 4% (PFA), and permeabilized with 0.1% 

Triton x-100 at room temperature for p-ERK or fixed and permeabilized with cold 

methanol at -20 oC for CSF-1R, phosphorylated Tyrosine, Hrs. Surface CSF-1R in cells 

was fixed with 2% PFA  and not permeabilized (Lou, Low-Nam et al. 2014). Following 

that, samples were blocked with 2.5% BSA in PBS. Primary antibody was added to 

incubate with sample for 1h at room temperature or overnight at 4oC, secondary antibody 

was then added followed by secondary antibody incubation for 1h at room temperature.  

 

Western blot 

Macrophages were lysed by M-Per solution at different times following CSF-1 

stimulation, lysate was centrifuged for 10 min at 12,000 rpm at 4oC.  The total protein 

was determined by BCA (#P123221, ThermoFisher Scientific) and 20 ug total protein 

was loaded on a 8% SDS-PAGE gel, at 150V for 1 hour.  Protein Transfer to 

nitrocellulose membrane was achieved at 300 amps for 30 min. The membrane was 



	

	

40	

blocked in 5% BSA in PBST or TBST solution at room temperature for 30 min, then 

primary antibody was incubated overnight at 4 oC followed by secondary antibody at 

room temperature for 1h.  

 

Microscopy and data analysis  

Immunofluorescence images were acquired on a Leica CTR4000 inverted microscope 

equipped with an QICAM 12-bit color camera via Micromanager software and 60X oil 

lens.  Exposure times were optimized according to sample brightness and held constant 

for all samples within a staining group.  imaging parameters were kept constant for each 

experimental condition. Cell Nucleus was masked with HCS (#H10325, ThermoFisher 

Scientific), Pholloidin-dylight647 (#A22287, ThermoFisher Scientific) that can labeling 

actin cytoskeleton was used to mask cells. CellProfiler (Broad Institute) was used to 

measure intensity from individual cells over the region defined by the phalloidin stain 

and HSC.  

Macropinosomes were labled by incubating cells in Texas red-Dextran (70 kD) and CSF-

1.  Sequential immunostaining of the CSF-1R  was done  on either a custom-built Till 

iMic microscope (FEI) using 60 X water objective (Lou, Low-Nam et al. 2014), or on a 

High content microscope (Imagexpresspro XLS, Molecular Devices) using 60X air 

objective.  

 

RNA Sequencing by Illumina 

RNA-seq was performed using indexed libraries prepared using the Illumina Truseq kit, 

and samples were sequenced by RNA-seq and 150-nt single-end reads were obtained. 
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Reads were filtered based on quality control set up and mapped to Mouse genome . Reads 

were mapped to mouse genome using RNA-seq pipeline in CLCBio (QIAGEN) and 

counts were normalized to calculate expression level as RPKM. Raw total exon counts 

were used to identify significantly differential expressed genes in macrophages across 

different genotypes using R/Bioconductor’s Limma package  (Ritchie, Phipson et al. 

2015) with cutoff values of fold change>1.5, false discovery rate calculations were 

calculated based on the Benjamini-Hochberg method with a cut off of 0.05. 

RESULTS 

 

Growth phenotype in DKO macrophages   

Given that mice that were null for Cbl and Cbl-b in the myeloid compartment developed 

severe proliferative disease, we sought to determine the growth phenotype of 

macrophages from these and single knockout mice (Naramura, Nandwani et al. 2010). 

The initial growth rate of DKO macrophages was similar to WT and Cbl -/-, Cbl-b-/- 

before 15 days. At 15 days, BMDM generally senesce, which was observed for WT and 

Cbl -/- and Cbl-b-/- BMDM, however, DKO BMDM continued to proliferate (Figure 

2.1A).  To determine if DKO macrophages immortalize, we replated the cells to the same 

density at 81 days and measured growth, and DKO BMDM continue proliferation during 

day 81 to day 94 while WT BMDM already become senescent (Figure 2.1B). Thus, Cbl 

and Cbl-b work together to control the early stem cell growth and have an important role 

in tempering CSF-1 signaling for senescence.    
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Cbl and Cbl-b redundantly ubiquitinate the CSF-1R and its signaling complex 

response to CSF-1 

We speculated that the growth defect observed in DKO BMDM was a result of the loss of 

ubiquitination of the CSF-1R.  Indeed, pull down of the CSF-1R followed by ubiquitin 

blot indicated that a complete loss of ubiquitination in DKO BMDM relative to WT, Cbl-

/- and Cbl-b-/- BMDM (Figure 2.2).   These results indicate that Cbl and Cbl-b have 

overlapping ubiquitination activity in macrophages with Cbl, showing a slightly stronger 

role in ubiquitination. 

Cbl and Cbl-b regulate CSF-1R internalization, phosphorylation and AKT signaling 

Given the parallel between DKO macrophage growth phenotype and myeloproliferative 

disease observed in the parent mice, and a complete loss of CSF-1R and CSF-1R 

signaling complex ubiquitination, we sought to determine Cbl and Cbl-b’s contributions 

to endocytosis and initial receptor activation.  By staining the CSF-1R remaining on the 

cell surface following CSF-1 stimulation, we were able to record the rate of CSF-1R 

endocytosis (Figure 2.3A).  Internalization of the CSF-1R was slowed in DKO relative to 

WT (Figure 2.3A).  Quantification of these data showed that the CSF-1R had 

internalization of a single exponential fit with a half-life of 126s (~2min, Figure 2.3B) in 

WT BMDM.   In DKO BMDM a double exponential was needed to fit the data and the 

corresponding average half-life was 18 min, corresponding to a fast 182s (~3min) and 

slow 1,980s (~30 min) components. Increased surface CSF-1R level in DKO BMDM was 

noticed from the quantification graph (Figure 2.3B).  

Since CSF-1R internalization was slowed in DKO macrophages, we examined the 

activation of CSF-1R to evaluate if its phosphorylation was slowed by loss of adaptor 
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function from Cbl and Cbl-b (Miyake, Lupher et al. 1997, Nadeau, An et al. 2015).  

Western blot of CSF-1R Y721 showed that the CSF-1R in WT, Cbl-/- and Cbl-b-/- ran as a 

smear shifted towered higher molecular weight, but this shift was not present in the DKO 

sample (Figure 2.4), consistent with Cbl and Cbl-b mediated ubiquitination (Figure 2.2).  

The upshift in CSF-1R molecular weight was somewhat less pronounced for Cbl, 

suggesting that Cbl plays a somewhat pronounced role in CSF-1R ubiquitination over 

Cbl-b.   Quantification of CSF-1R phosphorylation indicated that the CSF-1R remained 

in a phosphorylated state longer in DKO and to a lesser degree in Cbl-/- (Figure 2.4).  

Together these data indicate that Cbl and Cbl-b have little effect on initial CSF-1R 

phosphorylation, but that they have an additive effect in mediating the deactivation of the 

CSF-1R. 

Based the slow internalization rate of CSF-1R in DKO macrophages, we hypothesized 

that p-AKT signaling, which is mainly activated on cell surface (Katz, Amit et al. 2007), 

would enhanced in DKO macrophages. In WT, Cbl-/- and Cbl-b-/-, p-AKT(S473) was 

activated by 7min, then deactivated quickly at 15min following CSF-1 stimulation 

(Figure 2.5).  DKO cells however showed prolonged p-AKT(S473) consistent with an 

extended residence of phospho CSF-1R at the cell surface.  

 

Cbl and Cbl-b facilitate global tyrosine phosphorylation downstream of the CSF-1R  

Given the pronounced elevation in AKT signaling, we considered the possibility that Cbl 

and Cbl-b simply act as attenuators of CSF-1R signaling and that without them there 

would be a global potentiation of kinase activity.   Surprisingly, immunostaining for 

phosphotyrosine at early time after CSF-1 stimulation indicated tyrosine phosphorylation 
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in WT BMDM was much more pronounced than in DKO BMDM (Figure 2.6), indicating 

that Cbl and Cbl-b were needed for rapid and robust downstream kinase cascades.  

Additional, we noticed that tyrosine phosphorylation in WT BMDM was localized to 

intracellular punctate structures reminiscent of early endosomes and macropinosomes.    

 

Cbl and Cbl-b redundantly regulate CSF-1R intracellular transport to 

macropinosome  

 

Previously, we discovered a novel trafficking route for the CSF-1R that involved its 

endocytosis by small vesicle carriers that were then transported to nascent 

macropinosomes where the CSF-1R would eventually enter the macropinosome lumen 

(Lou, Low-Nam et al. 2014). Given the strong defect in kinase cascades, we speculated 

that Cbl and Cbl-b were required for the transport of the CSF-1R through this pathway.  

Using a dual staining procedure (Lou, Low-Nam et al. 2014) we imaged macropinosomes 

by the uptake of with Texas-red dextran, then cells were fixed and permeabilized with 

4%PFA and Triton X-100, and stained with CSF-1R (Figure 2.7).   Indeed, we observed 

that that in WT BMDM, the CSF-1R was efficiently transported to a subset of 

macropinosomes and accumulated within the macropinosome lumen (Figure 2.7A).  In 

the case of DKO BMDM however, the CSF-1R showed only trace quantities of the CSF-

1R on the limiting membrane of the majority macropinosomes suggesting that it ‘rode in’ 

on newly formed macropinosomes, but was not trafficked to the lumen.  Indeed, 

approximately 40% of the Texas-red labeled macropinosomes lumen contained CSF-1R 

puncta in WT BMDM whereas macropinosomes in the DKO did not contain CSF-1R 
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(Figure 2.7 B).   We conclude that Cbl and Cbl-b were required for efficient transport of 

the CSF-1R to macropinosome and mediated the accumulation of the CSF-1R in the 

lumen of macropinosome.   

 

CSF-1R degradation with an ubiquitin independent mechanism in DKO 

macrophages 

Previously we speculated that transport of the CSF-1R to the macropinosome lumen was 

the predominant mechanism for its degradation(Lou, Low-Nam et al. 2014) From the 

immunostaining of the CSF-1R it was clear that it was degraded even in the DKO 

BMDM.   Immunostaining of the CSF-1R in macrophages across different genotypes 

showed that trafficking of the CSF-1R was distinct in DKO (Figure 2.8) BMDM.  

Specifically, WT and single KO BMDM rapidly transported the CSF-1R to newly formed 

macropinosomes (observed as large ring-like objects (Figure 2.8 and Figure 2.9).  

However, DKO BMDM trafficked the CSF-1R through dispersed vesicles and only 

occasionally seemed to have CSF-1R associated with macropinosomes (Figure 2.8).   

Note that there were trace quantities of the CSF-1R on macropinosome-like structures 

even prior to the addition of CSF-1 (Figure 2.8).  Surprisingly, despite the significant 

difference in trafficking, the CSF-1R was degraded at approximately the same rate in 

BMDM across different genotypes (Figure 2.9).  Given that CSF-1R was degraded in 

DKO BMDM, we consider whether CSF-1R was degraded in proteasome, another 

degradation system in cells.  From CSF-1R staining from samples treated with 

proteasome inhibitor (Bortezomib), it was clear that CSF-1R was still degraded in DKO 

BMDM (Figure 2.10). Thus, Cbl and Cbl-b were required for rapid and organized 
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transport to the macropinosome but an unknown or cryptic pathway exists for CSF-1R 

degradation independent of transport to the macropinosome. 

 

Hrs and CSF-1R association is regulated by Cbl and Cbl-b 

The defect of CSF-1R transport to macropinosomes in DKO macrophages lead us to ask 

if there is a defect in intraluminal budding process mediated by ESCRT machinery. It is 

not known whether ESCRT machinery assembles on macropinosomes but, we 

hypothesized that ESCRT machinery facilitates CSF-1R transport to macropinosomes in 

WT macrophages and that ESCRT may act at different locations in DKO BMDM. 

Immunostaining of showed that Hrs and CSF-1R co-localized on large macropinosomal 

structures in WT, Cbl-/-, and Cbl-b-/- but not DKO BMDM (Figure 2.11).   In fact, little or 

no Hrs was observed to co-localize with the CSF-1R in DKO cells at all indicating that 

the receptor was degraded by an unknown pathway. 

 

Given the defects in kinase cascades in DKO macrophages, we sought to determine if 

ERK signaling, which is a well-known signal downstream of the CSF-1R was affected 

(Yoon and Seger 2006, Katz, Amit et al. 2007, Huynh, Kwa et al. 2012, Stanley and 

Chitu 2014).  Immunostaining of pERK was examined by immunofluorescence in WT 

and DKO macrophages with a time course of 30 min CSF-1 stimulation (Figure 2.12) 

showed CSF-1R ERK activation was quickly activated at 5 min CSF-1 stimulation, and 

then reduced start from 7 min stimulation and was completely deactivated at 30min 

stimulation in both WT and DKO macrophages. By quantifying the p-ERK signal, pERK 

was shown slightly downregulated in DKO macrophages.  
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Cbl and Cbl-b regulate gene expression downstream of the CSF-1R 

We applied RNA Seq. to determine how Cbl and Cbl-b regulation of CSF-1R and 

signaling and trafficking affect gene expression that involved in cell proliferation and 

growth.  mRNA levels were compared in macrophages across different genotypes 

cultured at steady state in the presence of CSF-1 (Figure 2.14A).  The overall impact on 

gene expression was mild, with only ~ 1,500 differentially regulated genes with fold 

changes greater than 1.5, indicating the overall transcriptional program was intact.  

Interestingly, the expression of approximately ~1,300 genes was dependent on both Cbl 

and Cbl-b indicating that their overlapping function in regulating the CSF-1R.  We did 

find a small subset of approximately 250 genes that appeared to be regulated by Cbl 

alone. Of the upregulated genes in DKO macrophages, their molecular function of gene 

ontology is enriched in growth factor activity (Figure 2.14B), their cellular component is 

enriched in extracellular space (Figure 2.14C) and their pathway is related to cell 

proliferation and growth, cell motility, and immune response (Figure 2.14D).  

DISCUSSION 

Cbl family E3 ubiquitin ligases are important negative regulators of receptor tyrosine 

kinase signaling pathways (Thien and Langdon 2001, Schmidt and Dikic 2005).  Cbl 

knock out in mice only have mild myeloproliferative disease and is non-lethal, while Cbl 

and Cbl-b knock out mice develop lethal myeloproliferative disease, suggesting lack of 

Cbl-b additively contribute to myeloproliferative disease (Naramura, Nandwani et al. 

2010).  We demonstrate here that (I) Cbl and Cbl-b have overlapping function in 

regulating macrophage growth, (II) ubiquitination of CSF-1R and associated signaling 

complex, (III) promoting CSF-1R internalization thereby regulating AKT signaling (IV) 
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and governing rapid transport of the CSF-1R to macropinosome where it associated with 

Hrs.  Thus Cbl, Cbl-b and ubiquitination act at multiple steps to control the endocytosis, 

membrane traffic and signal transduction of the CSF-1R.  

The dominant function of Cbl with Cbl-b’s additive role in controlling macrophage 

growth, and ubiquitination and endocytosis the CSF-1R   

We noticed that Cbl mutants had stronger phenotypes for ubiquitination of the CSF-1R 

and gene expression.  Previous work has shown that macrophages lacking Cbl have a 

mild growth advantage, mild attenuation of CSF-1R ubiquitination and  CSF-1R 

endocytosis (Lee, Wang et al. 1999). Our findings reproduce some of these phenotypes, 

however when compared with the phenotype of DKO macrophages, we conclude Cbl or 

Cbl-b is sufficient for controlling macrophage growth consistent with the 

myeloprolifotirve phenotype observed in the mutant mice.  Loss of both Cbl and Cbl-b 

resulted in a strong defect in ubiquitination, slowed CSF-1R internalization and 

dramatically altered transport of the CSF-1R into the lumen of macropinosome.  Thus, 

while Cbl has more pronounced role in regulating the CSF-1R, either Cbl or Cbl-b are 

sufficient for targeting associating the CSF-1R with Hrs and targeting it to the 

macropinosome.     

We were not surprised to find that p-AKT is hyper activated due to the higher amount of 

remaining activated CSF-1R(Y721) with slower internalization from the surface due to 

loss of both Cbl and Cbl-b (Katz, Amit et al. 2007). This is consistent with CSF-1R 

Y721’s function in activation of AKT’s signaling pathway on plasma membrane reported 

(Lee, Wang et al. 1999). In conclusion, the overlapping function of Cbl and Cbl-b in 

CSF-1R ubiquitination is important for CSF-1R endocytosis and the p-AKT signaling.  
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Cbl and Cbl-b mediate CSF-1R transport to the lumen of macropinosome  

The CSF-1R is transported to the lumen of macropinosome in macrophages where the 

CSF-1R is packaged into the lumen and degraded (Lou, Low-Nam et al. 2014).   Neither 

Cbl or Cbl-b knockout altered this phenotype, however, DKO cells failed to accumulate 

the CSF-1R within macropinosomes and failed to associate the CSF-1R with Hrs (Figure 

2.7, Figure 2.8, Figure 2.9).  Thus Cbl and Cbl-b mediated ubiquitination mediates 

recognition of ubiquitinated CSF-1R and its transport into the lumen of macropinosome. 

The CSF-1R transport into the macropinosome lumen likely attenuates CSF-1R signaling, 

given that the CSF-1R continues to signal after endocytosis (Huynh, Kwa et al. 2012).  

Thus, the evidence above suggests that Cbl and Cbl-b directs the CSF-1R to the 

macropinosome which acts as an important platform for CSF-1R signaling and 

termination.  

Cbl and Cbl-b may be important adaptors for CSF-1R full activation thus for 

tyrosine phosphorylation signaling and p-ERK signaling 

Our finding indicate that global phosphorylated tyrosine is drastically reduced and p-

ERK signaling pathway. Cbl protein was previously shown to mediate full activation of 

CSF-1R (Stanley and Chitu 2014). Among 8 tyrosine residues on the intracellular domain 

of CSF-1R, different tyrosine phosphorylation leads to different signaling pathways 

(Pixley and Stanley 2004). For instance, Y559, Y697 phosphorylation recruit Cbl that 

ubiquitinates CSF-1R. Y559 recruitment of Cbl via SFKs mediated ubiquitination of 

CSF-1R is important for other tyrosine residues phosphorylation of CSF-1R, while Y697 

recruitment of Cbl via Grb2 is important for ERK signaling pathway activation and 

tyrosine phosphorylation (Pixley and Stanley 2004, Stanley and Chitu 2014). Thus our 
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finding that Cbl and Cbl-b loss caused decreased tyrosine phosphorylation and slightly 

downregulated ERK signaling suggest that Cbl and Cbl-b redundantly act as adaptors for 

CSF-1R full activation thus for tyrosine phosphorylation and p-ERK signaling. 

 

In summary, we find that Cbl together with the additive function of Cbl-b mediates CSF-

1R ubiquitination, endocytosis, transport to macropinosome, but not degradation of CSF-

1.   Loss of Cbl and Cbl-b result in deregulated CSF-1R signaling on cell surface and a 

failure to transport the CSF-1R to the lumen of macropinosome.  Furthermore, 

macropinosomes may be an important CSF-1R signaling platform and is possibly an 

organelle that could be targeted for developing clinical therapy for oncogenic Cbl family 

mutations.   
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FIGURES 

	

 

Figure 2.1 Depletion of both Cbl and Cbl-b in macrophages results in immortalization of 

macrophages. A. Growth comparison following replating at Day5 by the alamar blue 

assay, n=6, error is standard deviation. B. Growth measurement during 81 and 94 days of 

macrophages. N=3, error is standard deviation. 
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Figure 2.2  Ubiquitination of the CSF-1R and downstream signaling complex by Cbl 

and Cbl-b. 

BMDMs were stimulated with CSF-1 for the times indicated and the CSF-1R was 

immunoprecipitated, and ubiquitin and the CSF-1R were immunoblotted. The CSF-1R 

blot showed that two forms of CSF-1R in cells: the mature CSF-1R (fully glycosylated 

form) with a molecular weight of ~ 165 kD, and the immature CSF-1R pool with a 

molecular weight of ~130 kD. The ubiquitin blot (top panel) showed extensive 

ubiquitination at 10 min in WT, Cbl-/- and Cbl-b but not in DKO BMDM.  This blot is 

representative of three trials. 
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Figure 2.3  CSF-1R internalization was delayed in DKO macrophages.  

A. Cell surface CSF-1R in WT and DKO was compared following CSF-1 exposure. CSF-

1R in WT quickly internalized at 2.5min as shown in the data with a decreased 

fluorescent signal, and internalized at 10min. CSF-1R in DKO internalized with a much 

slower speed with much higher fluorescent than WT at the same time point. Scale bar 

equals 5 um. B. The intensity of surface CSF-1R vs CSF-1 stimulation time point was 

plotted and the data was applied to exponential fit. Before CSF-1 stimulation(0min), 

surface CSF-1R in DKO macrophages was about twice as much as CSF-1R in WT 

macrophages. CSF-1R had a half-life of 126s in WT macrophages, while CSF-1R in 

DKO quickly internalized in the beginning, then about half of the CSF-1R were 

internalized with slow rate. The half-life of CSF-1R was 1080 s in DKO macrophages. 

n=100 cells, scale bars equal 5 um, error bars = standard deviation.  
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Figure 2.4 CSF-1R phosphorylation was prolonged in DKO and Cbl and Cbl-b had 

an additive effect in attenuated CSF-1R phosphorylation.   

A. CSF-1R Y721 phosphorylation of CSF-1R was examined by western blot. 

Phosphorylated CSF-1R in WT, Cbl-b-/-  and to a lesser extent Cbl-/- ran as smear at 3 and 

7min CSF-1 stimulation. Phosphorylated CSF-1R ran as single molecular weight and in 

DKO macrophages.  B. The quantification of the signal in 100 cell in each condition 

shown in A indicated that CSF-1R phosphorylation showed the highest in DKO and but 

was also deactivated very quickly.  
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Figure 2.5 AKT signaling pathway was hyper activated in DKO macrophages. 

A. AKT S473 phosphorylation was measured in macrophages across different genotypes 

with indicated time period of CSF-1 stimulation by western blot. AKT phosphorylation 

duration was longer and was not quickly deactivated in DKO macrophages comparing to 

WT, Cbl-/-, Cbl-b-/- macrophages. B. The quantification of A panel, error is standard 

deviation, image was representative of 2 experiments.  
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Figure 2.6 p-Tyrosine signaling defect in DKO macrophages. 

A. immunostaining of Tyrosine phosphorylation within 8.5 min CSF-1 stimulation in WT 

and DKO macrophages. B. Quantification of signal from A. 30 cells in each condition 

were used to quantify the signal, error is standard error of mean. images were 

representative of 2 experiments. Scale bar, 5 um.  
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Figure 2.7 Defect of CSF-1R transport to macropinosome in DKO macrophages. 

A.  Macropinosomes labeling and sequential immunostaining of CSF-1R. 

Macropinosomes were labeled by the fluid phase marker Texas red-dextran at 10min 

CSF-1 stimulation then cells were permeabilized and Texas-red dextran leaking out 

enabled CSF-1R immunofluorescence. CSF-1R located in the lumen of macropinosome 

in WT macrophages and, while CSF-1R was absent in the macropinosome lumen, only 

with small amount on the limiting membrane of macropinosome. B. Quantification of 

macropinosome that contain CS-1R. The percentage of macropinosome that contain CSF-

1R punctate in its lumen was 40% in WT, while close to 0 in DKO. Error is standard 

deviation. Scale bar, 5 um. 
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Figure 2.8 CSF-1R degradation in DKO macrophages with an unknown mechanism. 

CSF-1R immunostaining in WT and DKO macrophages at CSF-1 stimulation for 

different time as indicated. CSF-1R internalized and transported to bright donut like 

structures from 5-10 min, after that, CSF-1R trafficked to the center of the cells where 

lysosome degrades CSF-1R at about 60 min in WT macrophages. CSF-1R signal did not 

accumulate as bright donut like structures in DKO macrophages and only few CSF-1R 

appeared on the limiting membrane of macropinosome, while at about 30min CSF-1R 

appeared in the center of the cells too and was degraded. 
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Figure 2.9 CSF-1R endocytic traffic similarly in WT, Cbl-/-, Cbl-b-/-  but without 

transport to macropinosome, though CSF-1R was degraded with an unknown 

mechanism in DKO macrophages. 

CSF-1R immunostaining in macrophages across different genotypes at indicated CSF-1 

stimulation time period. CSF-1R internalized and transported to bright donut like 

structures from 5-10 min, after that, CSF-1R traffic to the center of the cells where CSF-

1R was degraded in lysosome at about 60 min in WT, Cbl-/-, Cbl-b-/-  macrophages. CSF-

1R signal did not accumulate as bright donut like structures in DKO macrophages and 

only few CSF-1R appeared on the limiting membrane of macropinosome, while at about 

30min CSF-1R appeared in the center of the cells too and was degraded. Scale bar, 5 um. 

 



	

	

61	

 

Figure 2.10 The unknown CSF-1R degradation mechanism in DKO macrophages 

was not a proteasome dependent pathway. 

CSF-1R immunostaining in macrophages with or without proteasome 

inhibitor(Bortezomib) at CSF-1 stimulation time as indicated. CSF-1R traffic and 

degradation in samples treated with Bortezomib was similar to samples without 

Bortezomib. 
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Figure 2.11 Hrs and CSF-1R association is regulated by Cbl and Cbl-b. 

CSF-1R and Hrs co-staining in macrophages across different genotypes. CSF-1R stain 

and Hrs staining in same cells stimulated by CSF-1 for 5min in WT, Cbl-/-, and Cbl-b-/- 

macrophages. The merge panel showed that CSF-1R and colocalized in WT, Cbl-/-, and 

Cbl-b-/- macrophages, while CSF-1R in DKO did not colocalize. Scale bar, 5 um 
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Figure 2.12 ERK signaling pathway is slightly downregulated in DKO macrophages. 

A. p-ERK was examined by immunofluorescence in WT and DKO macrophages within 

30min CSF-1 stimulation. p-ERK signal quickly increases at 5 min CSF-1 stimulation 

and slightly dropped at 7min CSF-1 stimulation, and reduced at 10minutes and 

disappears at 30min in both WT and DKO macrophages. B. The quantification of p-ERK 

signal in 30 cells in each CSF-1 stimulation time point of WT and DKO macrophages. p-

ERK signaling was slightly reduced at 5 and 7 min CSF-1 stimulation. Scale bar, 5 um. 
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Figure 2.13 Cbl and Cbl-b regulate CSF-1R endocytic traffic and signaling.  

CSF-1R fast internalization was redundantly regulated by Cbl and Cbl-b, CSF-1R 

internalization was reduced by loss of Cbl and Cbl-b (DKO macrophages) and the 

activation of CSF-1R and the duration and amplitude of AKT signaling pathway 

indicated by p-AKT level was increased. CSF-1R transport to macropinosome is 

redundantly regulated by Cbl and Cbl-b, and this defect in DKO macrophages possibly 

leads to decreased global tyrosine phosphorylation of CSFf-1R and ERK signaling 

pathway. Eventually, CSF-1R was degraded in DKO macrophages with an unknown 

mechanism. 
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Figure 2.14 Cbl and Cbl-b redundantly regulate the majority of the differential 

expressed genes.  

A. Intersection showed the overlapped differential expressed genes that are either 

upregulated or downregulated in Cbl-/-, Cbl-b-/-, DKO macrophages. Loss of both Cbl and 

Cbl-b caused the most gene expression change, upregulated genes in DKO macrophages 

B. Molecular function of upregulated genes by GOrilla in DKO macrophages are 

enriched in growth factor activity C. Cellular component of upregulated genes by GOrilla 

in DKO macrophages are enriched in extracellular space D. Network analysis of DKO 

upregulated genes are involved in cell proliferation and growth, cell motility, and 

immune response.  
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Chapter III 

CONCLUSION 

In this study, we characterized the function of Cbl and Cbl-b in CSF-1R endocytic traffic 

and signaling. Specifically, we discovered that Cbl and Cbl-b redundantly ubiquitinate 

the CSF-1R in macrophages subsequently regulating CSF-1R internalization and 

transport to macropinosome.   This work demonstrated that Cbl and Cbl-b are key 

regulators in this newly discovered pathway CSF-1R degradation (Lou, Low-Nam et al. 

2014) and that their ubiquitination of the CSF-1R enables recognition by Hrs and 

transport into the macropinosome lumen, ostensibly via the ESCRT. Surprisingly, CSF-

1R degradation does not require Cbl and Cbl-b mediated ubiquitination, suggesting the 

existence of an uncharacterized ubiquitin-independent degradation mechanism for the 

CSF-1R in macrophages. The control of Cbl and Cbl-b on CSF-1R traffic is important for 

normal CSF-1R signaling. CSF-1R p-AKT signaling amplitude and duration is increased 

correlated longer half-life of CSF-1R on cell surface, while global Tyrosine 

phosphorylation based signaling and p-ERK signaling are slightly decreased in 

simultaneous Cbl and Cbl-b depletion macrophages possibly due to Cbl and Cbl-b’s 

adaptor function for CSF-1R endocytic traffic to endosome and macropinosome.  

 

Redundant and non-redundant function of Cbl and Cbl-b in receptor traffic and 

signaling 

We have shown the overlapping function of Cbl and Cbl-b in ubiquitination and 

regulating receptor traffic and signaling, but also some dominant function of Cbl over 

Cbl-b in CSF-1R in protein ubiquitination and regulation of gene expression.  Distinct 
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functions of Cbl and Cbl-b has been reported in regulating EGFR (Ettenberg, Keane et al. 

1999, Ettenberg, Rubinstein et al. 1999, Davies, Ettenberg et al. 2004, de Melker, van der 

Horst et al. 2004). For example, Cbl-b overexpression is more potent than Cbl in 

inhibiting EGF mediated growth via PI3K-AKT signaling (Ettenberg, Keane et al. 1999). 

Another study shows that Cbl-b UBA domain binds ubiquitinated proteins, and 

overexpression Cbl-b UBA domain blocks EGFR degradation, possibly acting as an 

dominant negative mutants in protein ubiquitination(Davies, Ettenberg et al. 2004). 

Furthermore, Cbl is shown to interact with EGFR at an early stage of trafficking, while 

Cbl-b association happens later after Cbl dissociate from EGFR(Pennock and Wang 

2008). Together, Cbl and Cbl-b have redundant function as well as non-redundant 

function in regulating CSF-1R traffic and signaling.   

 

Effects of receptor ubiquitination on receptor phosphorylation 

Y721 is one of the major phosphorylation sites during CSF-1R activation, Y721 

phosphorylation of CSF-1R is not prevented in DKO macrophages. The specific lysine 

residues ubiquitinated are not known in CSF-1R, while 6 residues have been mapped on 

the kinase insert segment of EGFR, and EGFR mutant with ubiquitination defect does not 

affect receptor kinase activity in EGFR and their tyrosine phosphorylation triggered by 

activation is similar to wild type EGFR. (Huang, Kirkpatrick et al. 2006). Based on the 

slightly higher CSF-1R Y721 phosphorylation extent in DKO macrophages, the decaying 

of Y721 phosphorylation in CSF-1 stimulation kinetics in DKO macrophages is very 

similar to the one in WT macrophages, which suggest that ubiquitination does not 

regulate the stability of activated CSF-1R. 
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Possible ubiquitination mechanism and other cellular proteins ubiquitinated by Cbl 

and Cbl-b in response to CSF-1R activation 

The ubiquitination immunoblot (Figure 2.2) from immunoprecipitated CSF-1R tells us 

ubiquitinated proteins are a mixture of proteins with different molecular weight, and most 

of the proteins have higher molecular weight than matured CSF-1R (~170 kD). Limited 

ubiquitinated proteins are known to associate with activated CSF-1R trafficking, by 

Combining protein ubiquitination in response to the activated EGFR identified by 

proteomics with the specific CSF-1R traffic route. Due to the significant size upshift of 

the ubiquitinated proteins, those proteins are possibly poly ubiquitinatinated. In summary, 

further proteomics experiments are required to map the interactome of CSF-1R activation, 

and identify ubiquitinated proteins coupled with CSF-1R traffic and signaling.  

The multifunctional signal of ubiquitin and ubiquitin like proteins  

Ubiquitination of proteins is  first recognized as a targeting signal to degradative 

pathway(Ciechanover 2005); it has the non-degradative function specifically in signaling 

transduction(Zaaroor-Regev, de Bie et al. 2010), enzymatic activation(Nguyen, Munoz-

Garcia et al. 2011), endocytosis and trafficking(Sorkin and Goh 2009), DNA repair and 

transcription(Welchman, Gordon et al. 2005, Weake and Workman 2008), which 

possibly leads to the broad level impact of gene expression regulated by loss of 

ubiquitination mediated by Cbl and Cbl-b.  

 

Teasing out Cbl protein adaptor function and ubiquitin ligase function in regulating 

receptor traffic and signaling  
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Whether Cbl proteins or ubiquitination of proteins regulates CSF-1R internalization and 

transport to macropinosome is unknown. For receptor endocytosis, a EGFR mutant, 

weakly ubiquitinated due to replacement of 6 lysine residues on the kinase domain, 

undergoes normal internalization(Huang, Kirkpatrick et al. 2006, Huang, Goh et al. 2007). 

Another study shows that Cbl associates with EGFR before EGFR entering clathrin 

mediated endocytosis pit, and couple with EGFR during the endocytic route, suggesting 

that the important function of Cbl and ubiquitination in receptor endocytosis (de Melker, 

van der Horst et al. 2001). For receptor endocytic traffic, our findings indicate that Cbl 

and Cbl-b mediate CSF-1R transport to macropinosome in an Hrs dependent mechanism.  

In future, we will combine established macrophage cell lines dependent on CSF-1R for 

proliferation and CRSPR to generate DKO macrophages. By complementing these DKO 

macrophages with truncated Cbl protein or Cbl protein with point mutation,   

 We will furtherly investigate the mechanism by which Cbl regulates CSF-1R traffic and 

signaling. 

 

Macropinosome may be an important signaling platform for global tyrosine 

phosphorylation and p-ERK signaling pathway 

Slow CSF-1R internalization results in higher AKT signaling, suggests that CSF-1R 

activating AKT signaling mainly is initiated on plasma membrane. However, the tyrosine 

phosphorylation based signaling including STAT, many protein kinases, phosphatases 

and some of proteins involved in ERK signaling require the normal endocytosis of CSF-

1R, and are activated along the endocytic traffic to macropinosome. In conclusion, 
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macropinosomes are important signaling platform for the propagation of global tyrosine 

phosphorylation and p-ERK signaling.   

 

Cellular alternative degradation mechanisms  

We find that CSF-1R is degraded in DKO macrophages in the absence of protein 

ubiquitination. Other degradation mechanism except from ubiquitination directed 

lysosome degradation exist to compromise CSF-1R ubiquitination degradation defect. 

Endoplasmic reticulum (ER)- associated degradation (ERAD) pathway and 

intramembrane proteolysis are additional mechanisms are used to drive regulated protein 

turnover (Yao, Works et al. 2005, Ruggiano, Foresti et al. 2014). ERAD target misfolded 

proteins of the ER for ubiquitination and degradation by proteasome, and Intramembrane 

proteolysis dislocate and cleave full-length proteins by proteases in cytosol in an 

irreversible way and turnover membrane proteins in proteasome(Hachmeister, Bobowski 

et al. 2013). We attempt to block proteasome function by drug inhibition to test those two 

possibility, but CSF-1R is still degraded in DKO macrophages. Thus, CSF-1R 

degradation in lysosome is more likely but the mechanism is still puzzling to us. 
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