Preventing Electric Shocks by Proper Grounding

William H. Peterson

Follow this and additional works at: https://openprairie.sdstate.edu/extension_fact

Recommended Citation
https://openprairie.sdstate.edu/extension_fact/1338

This Fact Sheet is brought to you for free and open access by the SDSU Extension at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in SDSU Extension Fact Sheets by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.
PREVENTING ELECTRIC SHOCKS

By Proper

COOPERATIVE EXTENSION SERVICE
SOUTH DAKOTA STATE UNIVERSITY
U. S. DEPARTMENT OF AGRICULTURE
Preventing Electric Shocks

By William H. Peterson, Extension Agricultural Engineer

Figure 1. An electric drill, equipped with a three-prong grounding type plug, is shown with an adapter for use in a two-prong receptacle (left). The appliance is not grounded until the adapter wire is properly connected to a ground. Otherwise, the operator in effect is installing himself as the conducting path which any stray current will take to ground.

SHOCKS KILL

The amount of electric current required to light a 7 1/2-watt Christmas tree light bulb is sufficient to kill a human being. In fact more persons are killed by 115-volt shocks than by high-line current.

Ordinary fuses will not protect against the lethal wallop packed in the common 115-volt "house line," but proper grounding can. Safety is the reason manufacturers are supplying three-prong grounding type plugs with many portable tools and other appliances (as seen with the drill in Figure 1).

WHAT GROUNDING DOES

Should an appliance become energized through a breakdown of the insulation or because of dampness, the fault current will be carried away from the appliance frame by the "third-wire"—the ground. If there is no other channel, current will be carried to the ground through the body, producing a hazardous shock if the person is touching anything that is grounded. The third prong of a three-prong plug is connected by a green insulated wire inside the cord to the frame of the appliance.

Figure 2. Internal wiring (dotted line) from receptacle to main entrance fusebox (on left) connects the green-colored grounding terminal of the receptacle to the grounded service entrance neutral and carries off potentially harmful stray currents. The metal wall receptacle box (not shown) also is grounded.

METALLIC PATHS THAT SAVE LIVES

Internal wiring connections for properly grounding a three-prong receptacle are shown in Figure 2. The rectangle on the left represents the main service entrance "fusebox." Solid lines represent the wires that normally carry current to the receptacle. The dotted line represents the "third wire" that connects electrically to the third prong on the three-prong plug. The other end of the "third wire" is connected to the grounded neutral at the service entrance box, providing a good metallic path for any stray current to go to ground.

If this metallic path is not provided, any person coming in contact with the appliance becomes the metal's substitute—a conductor for stray current. The grounding screw terminals of receptacles and plugs are a hexagon shape and green for identification. These grounding type receptacles are required by the electric code in all locations in new home construction and farm wiring.

Existing two-prong receptacles can be converted to three-prong grounding receptacles if a third grounding wire is run from the main fusebox to the receptacle box.
Figure 3. Illustrates method of connecting bare grounding wire from cable to terminal on receptacle.

Figure 4. Shows method of grounding a metal box so adapter can be used (this is not provided in existing wiring in most homes. The installation shown in Figure 3 is just as easy and more permanent).

HOW TO USE THE ADAPTER

Many business and public buildings in South Dakota already have grounded receptacle boxes, since wiring was by metal conduit (pipe). However, most homes and farm buildings in South Dakota are not wired in conduit and boxes are not grounded. Figure 4 shows a wall box, wired in cable, in which a bare, "third wire" serves as ground to the box. The wired in installation, shown in Figure 3, is just as easy to install and more permanent.

RECEPTACLES FOR LARGER LOADS

125 Volt Only 15 Amp. 250 Volt Only 15 Amp. 250 Volt 20 Amp. Locking 250 Volt 30 Amp. 250 Volt 50 Amp.

125-250 Volt 30 Amp. 125-250 Volt 50 Amp.

Figure 5. Depicted above is a variety of grounding type receptacles for different voltages.

GROUNDING HEAVIER LOAD APPLIANCES

Suitable receptacles for plug-in grounding of appliances of heavier loads and higher voltages than the standard 115-volt wall receptacles are available (shown in Figure 5). The voltages referred to are maximum voltages. Three-prong plugs are used where the load operates only on 115 or 230 volts; four-prong plugs are used where both 115- and 230-volt loads are carried. The receptacle on the lower right in Figure 5 is required for service electricity to mobile homes.
Some people have the mistaken idea that connecting an appliance to a driven ground rod will protect against electric shocks. The fallacy of this idea is dramatized in Figure 6. A ground rod in soil usually will not conduct enough current to blow the fuse and remove the danger of shock. Connection to water pipes has been permitted as a means of grounding in some areas in the past, but the electrical industry standards now call for a separate grounding wire from the frame of the appliance to the grounded neutral at the service entrance. In many cases water pipes are plastic and will not conduct electricity well enough for grounding.

Figure 6. The electrically-heated waterer (pictured above), not properly grounded, killed this pig. The ground wire was connected only to a driven ground rod.

A driven ground rod usually will not carry away the danger from shock to a person standing on the ground. Here's why—the amount of current needed to cause a severe shock is very small. This amount will flow even if electrical resistance is quite high (as it is in some soils). To remove the danger of shock, an effective path of low electrical resistance must be provided (as in copper, silver, brass, etc.).

The resistance of soil is usually too high to do an effective job. Water pipes, even if they are made of metal, may have high-resistance joints and therefore may not be well enough grounded.

DON'T DEPEND ON GROUND ROD!

A livestock waterer or similar appliance should be well grounded—in the manner shown in Figure 7. The dotted line indicates a good metallic path which will carry away potentially dangerous stray currents. The ground rod—though it may be useful in carrying away lightning surges, particularly if the waterer is located on a fence line—provides a poor path for stray line-voltage currents. Properties inherent in soil determine whether a particular soil is a good or poor conductor of electricity (for this reason DON'T DEPEND ON A GROUND ROD TO PREVENT SHOCK).

Figure 7. The curved lines with arrow points in diagram above show the poor path provided by ground rod through the soil. The dotted line shows good metallic path provided by a grounding wire (which usually is bare and enclosed inside the cable with the insulated wires).

Figure 8. The disconnect switch box also is grounded, but not connected to the neutral wire in this diagram, which shows grounding connections for a milking machine.
EQUIPMENT THAT SHOULD BE GROUNDED

The following equipment should be grounded, either through a three-prong type receptacle or through permanent wiring:

HOME EQUIPMENT
- Air conditioner
- Drills, saws, and other portable hand tools
- Clothes dryer
- Furnace
- Freezer
- Garbage disposer
- Bathroom heater
- Mixer, food
- Oven
- Range
- Refrigerator
- Table saw
- Washer (Clothes or dish)

FARM EQUIPMENT
- Air compressor
- Drills, saws, and other hand power tools
- Ventilating fan
- Electric fencer
- Furnace
- Heaters
- Milk Cooler
- Milking machine
- Silo Unloader, conveyor, bunk feeder, and other motors
- Water heater
- Livestock waterer, heated
- Water pump
- Welder

Note: The above is only a partial listing. Grounding is advised for any appliance or device which, if energized, could cause a shock to a person or animal.

Some manufacturers are offering for sale “double-insulated” tools such as electric drills. “Double-insulated” tools are less likely to produce shocks than standard tools, but proper grounding of standard tools offers better and cheaper protection if grounding receptacles are available for use.

Also on the market is a device designed to stop current flow if the appliance plugged into it develops a shock-causing fault. The device can detect an electric shock by the unbalance of currents in the two wires supplying power to the device. Cost is a consideration here. The anti-shock device probably would interest contractors and others who must work in many different locations where grounding receptacles are not available.

Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the United States Department of Agriculture.

John T. Stone, Dean of Extension, South Dakota State University, Brookings.

3M—4-61—File: 6.1-8—7488