1971

Planting Corn in South Dakota

Lyle A. Derscheid

Follow this and additional works at: https://openprairie.sdstate.edu/extension_fact

Recommended Citation
https://openprairie.sdstate.edu/extension_fact/1350

This Fact Sheet is brought to you for free and open access by the SDSU Extension at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in SDSU Extension Fact Sheets by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.
Planting Corn in South Dakota

Cooperative Extension Service
South Dakota State University, Brookings
U. S. Department of Agriculture

Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U. S. Department of Agriculture. John T. Stone, Dean of Extension, South Dakota State University, Brookings.

4M—1-71—File 1-1-24—909
Replaces FS 186
Corn is a profitable crop in several areas of South Dakota, but demands a high degree of production efficiency. As with other row crops it leaves much of the land bare and encourages soil erosion, but it allows for cultivation to aid in weed control.

In eastern South Dakota (especially the southeastern part) corn can be raised continuously under proper management.

Plant corn on land with a slope of 3% or less to minimize erosion, loss of nutrients and loss of water absorbing capacity from the soil. Use enough fertilizer to produce maximum yield and plant growth. Incorporate residue from a corn crop into the soil to lessen loss of soil organic matter. Apply manure, whenever possible, to maintain organic matter level. Do not remove stalks from the field unless manure is used to supplement organic matter. It takes 3-4 tons of manure to replace the organic matter in stalks and leaves of a 50-bushel corn crop. Use insecticides each year to control corn rootworms.

For most efficient production, corn growers must make decisions concerning row width, plant population, maturity of the hybrid, soil fertility, date of planting, method of planting, weed and insect control, soil and moisture conservation, and other management practices.

Where to Plant

Corn is a good crop to raise in rotation with small grains in eastern South Dakota. Clean and timely cultivation prevents annual weeds from producing seed and is very helpful in reducing the weed problem during the entire rotation.

Corn planted on summer fallow may suffer from lack of phosphorous unless larger-than-normal amounts of this fertilizer are applied.

Corn is generally a high risk crop to plant after alfalfa or perennial grass. Although a rotation containing 2 years of an alfalfa-grass mixture followed by a row crop is good for controlling wild oats, the corn may not produce well. One reason is that alfalfa reduces soil moisture reserves so a long-season crop, such as corn, may not yield well unless an above-normal amount of rain is received during the growing season or the previous fall. Also, rootworms, wireworms or cutworms may be a serious problem in corn following alfalfa.

Maturity Date

Most corn companies now rate their corn hybrids according to the number of "growing degree days" (GDD) required for maturity. "Growing degree days" for corn for various areas of the state are shown in Figure 1. It is a helpful guide for selecting hybrids of the proper maturity. Growing degree days for your area is one factor to consider, but moisture and length of growing season also are important for selecting corn of the right maturity.

Full season corn will produce maximum yield in favorable years, but may yield wet or soft corn during less favorable years. The same is true if a high rate of seeding is used. Planting an extra early variety to assure dry mature corn every year may result in lower total production over a period of years.

Under South Dakota conditions, you should select a variety with a maturity that will produce dry mature corn in most years. However, you should be able to dry it or use silage or wet corn during poor corn years. If you cannot dry it or use the silage you should select an earlier maturing hybrid.

Plant Population

A thick stand of corn may produce more corn during wet years, but may not produce a satisfactory crop during dry years. A lower population will produce corn in dry years and will produce larger plants and a better crop during wet years.

Yields of bigger, later, full-season hybrids are not so sensitive to variations in populations as smaller, early-maturing hybrids. With more favorable growing conditions, the bigger hybrids have a greater capacity to increase ear size to make up for deficiencies in stands.

In years with above average rainfall higher populations are advantageous, but unless you are a good weather prophet it is best to plan on an average year. Excessive populations during a dry year may be disastrous. However, large quantities of subsoil moisture at planting time, may lessen the risk of using a higher planting rate.
Narrow Rows
Corn yields can be increased in the eastern and southeastern areas (Figure 2) by using a row spacing of less than 40 inches. In narrower rows, it is believed that corn plants make more efficient use of soil moisture, nutrients and sunlight. Research at the Southeast South Dakota Experiment Farm indicates: (a) biggest yield advantages (6-8 bushels) for both full-season and short-season hybrids come from reducing row spacing from 40 to 30 inches although yields are not increased very much by reducing row spacing from 30 to 20 inches, and (b) with high populations (16,000-18,000), yield responses in favor of narrow rows are generally greater than with 10,000 plants per acre. These results apply to the southeastern counties, but are less valid for counties at greater distances from Centerville.

Mechanical weed control is more difficult in 20-inch rows and herbicides are not always 100% effective. A few weeds will lower yields more than enough to offset any yield advantage gained by the use of 20-inch spacings.

Soil Fertility
Corn, to produce a bushel of grain, requires 1.5 pounds of elemental nitrogen (N), 0.5 pound of phosphate (P₂O₅), and 1.0 pound of potash (K₂O) and lesser amounts of 13 other elements. About five times these amounts are needed for a ton of silage. Most South Dakota soils do not contain enough available nitrogen, or phosphorus and sometimes potassium or zinc to produce the yields desired by most corn producers. Although some plant food will come from the soil, the remainder must be applied as fertilizer. This is especially true under serious soil erosion conditions.

Legumes (through microorganisms) remove the nitrogen from the air and store it in the soil. Legumes, if plowed under, add organic matter. Alfalfa uses considerable soil moisture, often adversely affecting a succeeding corn crop, and the nitrogen provided is not sufficient for more than one corn crop. Although one might not wish to use a legume as a source of plant food, the value of organic matter of a plowed-under legume should not be overlooked. Although organic matter contains nitrogen, phosphorus and other nutrients, its importance is in improving soil structure, to provide better water absorption, greater moisture storage, and lower power requirements for plowing and other tillage operations.

More complete information on use of fertilizer is in a Fact Sheet, “Fertilizing Corn.”

Weed and Insect Control
Weeds can be controlled by mechanical cultivations and/or by herbicides. Herbicides are applied preplant, pre-emergence, or post-emergence. Methods are discussed in a Fact Sheet, “Weed Control in Corn.” Some corn hybrids are tolerant to some herbicides while others are quite susceptible. This is especially true with 2,4-D.

Corn rootworm, corn borer and other insects must be controlled to get maximum production. Some of these are discussed in a Fact Sheet, “Corn Rootworm Control.”

Planting Date
Time of planting depends on the number of growing degree days required for the maturity of the hybrid, the level of soil fertility, length of growing season, amount of reserve soil moisture at planting time, and the average annual rainfall.

Table 1. Bushels per acre of two corn hybrids planted at five population densities in three row-spacings for 3 years (1966-1968).

<table>
<thead>
<tr>
<th>Row Spacing (inches)</th>
<th>Hybrid</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>87</td>
<td>92</td>
<td>96</td>
<td>96</td>
<td>95</td>
<td>92</td>
</tr>
<tr>
<td>Short 40</td>
<td></td>
<td>98</td>
<td>102</td>
<td>105</td>
<td>99</td>
<td>101</td>
<td>100</td>
</tr>
<tr>
<td>Full 40</td>
<td></td>
<td>105</td>
<td>110</td>
<td>107</td>
<td>113</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>Short 30</td>
<td></td>
<td>93</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>102</td>
<td>100</td>
</tr>
<tr>
<td>Full 30</td>
<td></td>
<td>105</td>
<td>110</td>
<td>107</td>
<td>113</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>Short 20</td>
<td></td>
<td>93</td>
<td>102</td>
<td>98</td>
<td>105</td>
<td>102</td>
<td>100</td>
</tr>
<tr>
<td>Full 20</td>
<td></td>
<td>106</td>
<td>107</td>
<td>107</td>
<td>106</td>
<td>109</td>
<td>107</td>
</tr>
<tr>
<td>Average Short 40</td>
<td></td>
<td>91</td>
<td>98</td>
<td>98</td>
<td>101</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>Average Full 40</td>
<td></td>
<td>103</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>105</td>
</tr>
</tbody>
</table>

Table 2. Planting rate needed to give various populations of corn planted several ways with several row widths.

<table>
<thead>
<tr>
<th>Planting method</th>
<th>Hill spacing (inches) and kernels/hill</th>
<th>Final corn population plants per acre*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Row spacing in inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Hill dropped</td>
<td>16-2 per hill</td>
<td>16,700</td>
</tr>
<tr>
<td></td>
<td>20-2 per hill</td>
<td>13,300</td>
</tr>
<tr>
<td></td>
<td>3 per hill</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>24-2 per hill</td>
<td>11,100</td>
</tr>
<tr>
<td></td>
<td>3 per hill</td>
<td>16,700</td>
</tr>
<tr>
<td></td>
<td>28-2 per hill</td>
<td>9,500</td>
</tr>
<tr>
<td></td>
<td>3 per hill</td>
<td>14,300</td>
</tr>
<tr>
<td></td>
<td>4 per hill</td>
<td>19,000</td>
</tr>
</tbody>
</table>

*Corn populations have been adjusted to account for an average of 15% loss due to germination, cultivation, etc.
AREA RECOMMENDATIONS

South Dakota is divided into four basic areas with regard to corn production (Figure 2). Corn is grown as a feed or cash crop on about 35% of the total acreage in this area. This area includes nonirrigated cropland in six southeastern counties (Figure 2) and coincides with crop adaptation area E (Figure 3). Corn is grown as a feed or cash crop on about 25% of the total acreage in this area. Relatively high plant populations can be planted because average annual rainfall ranges from 22 to 25 inches. Although an average 5 inches of rain falls during late May and June, more significant is the nearly 3 inches that falls the last week of July and the first 3 weeks of August. Research from 1966 to 1968 near Centerville (Table 1) indicates that the full-season hybrid produces an average of 8 bushels more corn per acre than the short-season hybrid. Yields from 20- and 30-inch row spacings were equal, and were 6 to 8 bushels higher than from 40-inch row spacings. Populations of 12,000 to 18,000 plants per acre produced about the same amount of corn which was somewhat higher than for 10,000 plants. Highest yielding combination for these 3 years was the full-season hybrid at 16,000 plants per acre in 30-inch rows.

In other experiments at the same location, corn was planted on four dates each of 2 years—April 26, May 9, May 20, and June 3 in 1968 and May 12, May 19, May 26 and June 2 in 1969. In general the best yields were obtained by planting May 9 to 20. Greatest response to fertilizer (20 to 30 bu/ha) was obtained from plantings made on April 26, however, yield was still about 5 bushels lower than from fertilized corn planted a couple of weeks later.

Plant for a population of 14,000 to 18,000 plants per acre in 30-inch rows. Plant the bulk of your corn during the second week in May. Use hybrids that will mature with the number of growing degree days shown in Figure 1 for your area. Follow the guide in Table 2 to get the proper rate of planting. Starter fertilizer is generally needed if you plant before May 10.

Eastern Area

This area includes nonirrigated cropland in all or part of 20 eastern counties (Figure 2) and coincides with crop adaptation areas D1, D3, and D4 (Figure 3). Corn is grown as a feed or cash crop on about 20% of the total acreage in this area. One expects to get a good yield almost every year because average annual rainfall is 20 to 22 inches. The area receives about 20% (4.5 inches) of the yearly total during June and about 12% (3.5 inches) between July 26 and August 22 a period critical for corn.
Research results in Table 1 and summarized in the preceding section give an indication of what can be expected in the southern part of this area from hybrids of different maturity, planted at different rates in different row spacings. However, note that the average annual rainfall was 24.9 inches at the time and place these results were obtained and best plant population may be a little higher than can be used with 20 to 22 inches of precipitation.

Ten years of research near Brookings give an indication of what can be expected from hybrids of different maturity, planted on different dates at several rates of planting.

A hybrid of medium maturity with 10,000 to 12,000 plants per acre planted May 20 gave maximum yields of good quality corn. It is probable that corn planted on May 10 would have been equal. Planting on May 1 resulted in poor stands and lower yields; however, a later maturing corn produced as well when planted May 1 as when planted later. Planting on May 30 resulted in lower yields. A medium-late hybrid planted May 20 or May 30 produced wet or soft corn some of the years.

In other research near Brookings, 10 hybrids with an average population of 15,000 plants per acre produced 86 bushels an acre, and 17,800 plants produced 90 bushels.

Other experiments in the northern part of the area gave these results: With above average rainfall, 12,000 plants per acre produced 99 bushels; 16,000 produced 127 bushels; and 20,000 produced 133 bushels. Under average or below average rainfall, 8,000 plants per acre produced 47 bushels; 12,000 produced 40 bushels; and 16,000 produced 29 bushels. Under high rainfall conditions there was little advantage in raising over 16,000 plants per acre and under drier conditions 8,000 produced maximum yields.

Plant for a population of 12,000 to 16,000 plants per acre in 30-inch rows. Plant during the middle of May. Use hybrids that will mature with the number of growing degree days shown for your area in Figure 1 if you want to raise good quality corn. Follow the guide in Table 2 to get the proper planting rate. Starter fertilizer is generally needed if you plant before May 10.

Central Area

This area includes nonirrigated cropland in more than 20 counties in the central part of the state (Figure 2). Research during 10 years near Highmore indicates what can be expected from hybrids of different maturity planted on different dates at several rates of planting.

A rate of 7,000 to 8,000 plants per acre was superior in yield on all planting dates and resulted in good quality corn during 5 favorable years. Early hybrids were definitely superior during dry years and with higher rates of planting. A medium-late hybrid with 6,000 plants per acre performed better when planted May 1 than when planted May 20 or May 30. However, the May 1 planting still produced soft corn for 5 out of the 10 years.

North Central. In crop adaptation areas B2, C1, and D2 (Figure 3), 10% to 15% of the acreage is planted to corn. Average annual rainfall is 16 to 18 inches in area B2, 18 to 20 inches in C1, and 20 to 22 in D2. Areas B2 and C1 receive very little rain during late July and August and are not well suited for corn production. Elevation in area D2 is several hundred feet higher than adjacent areas, resulting in cooler nights not favorable for maximum corn production.

Plant for a population of 8,000 to 12,000 plants per acre in 30- to 40-inch rows. Plant about May 20. Use hybrids that will mature with the number of growing degree days shown for your area in Figure 1 if you want to raise good quality corn. Plant for the higher plant populations in the southeastern part of the area and lower ones in the northwestern part. Follow the guide in Table 2 to get the proper planting rate.

South Central. In crop adaptation areas C2 and C3, average annual precipitation is 18 to 20 inches. Approximately 20% of the acreage in C3 and 10% of the acreage in C2 is planted to corn.

Plant for a population of 8,000 to 12,000 plants per acre in 30- to 40-inch rows. Plant around May 20. Use hybrids that will mature with the number of growing degree days shown for your area in Figure 1 if you want to raise good quality corn. Plant for the higher plant populations in the eastern part of the area and lower ones in the western part. Follow the guide in Table 2 to get the proper planting rate.

Western Area

This area includes nonirrigated cropland in most of the area west of the Missouri River (Figure 2). Annual rainfall is normally below 18 inches. Corn does not yield well and is used primarily as a summer fallow substitute. About 2% of the total acreage is devoted to corn.

Plant for a population of 4,000 to 6,000 plants per acre in crop adaptation areas B1 and B3 (Figure 3) and 6,000 to 8,000 plants in crop adaptation area B4. Use hybrids that mature with the number of growing degree days shown for your area in Figure 1. Use the guide in Table 2 to get the proper planting rate.

Irrigated Areas

Under irrigation, you can plant thicker than on dryland, but you must keep soil fertility high to get maximum yields. You can generally grow a later maturing hybrid on irrigated cropland than on dryland.
At Redfield the difference in maturity between irrigation and non-irrigated is about 5 days.

In one Redfield seeding rate experiment, six hybrids with 14,570 plants per acre yielded 96 bushels, 19,360 plants yielded 98 bushels, and 23,000 produced 96 bushels. In a second test, 12 hybrids with 10,000 plants yielded 85 bushels, 14,520 plants produced 91 bushels, and 19,360 produced 94 bushels. In a third test, 14,520 plants yielded 112 bushels, 19,360 plants produced 118 bushels, and 24,890 yielded 111 bushels. At Yankton four hybrids with average population of 12,000 yielded 103 bushels, 16,000 plants produced 114 bushels, 20,000 yielded 111 bushels, and 32,000 produced 113 bushels.

In irrigated fields of the eastern and central areas, plant a hybrid that matures 5 days later than those planted on dryland. For the western area use a hybrid that matures about 10 to 15 days later than those planted on dryland. Plant for a population of 16,000 to 18,000 plants per acre. Use adequate amounts of fertilizer and irrigate properly.

Secure These Fact Sheets for More Information on Corn Production:
- Fertilizing Corn
- Weed Control in Corn
- Corn Rootworm Control
- Control of European Corn Borer
- A New Corn Maturity Rating
- Diseases of Corn (smut, ear rot, stalk rot and leaf blight)
- Drying Corn
- Methods of Planting Corn