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ABSTRACT
A KERNEL BASED APPROACH TO DETERMINE ATYPICALITY
AUSTIN O’BRIEN
2017

This dissertation outlines the development and use for a new probabilistic
measure for categorization, referred to as atypicality. Given a set of known source
objects, we can create a corresponding set of similarity scores between them.
Assuming the set of scores has a normal distribution, we can estimate its
parameters. Then, we can introduce new trace objects to the problem, and compute
similarity scores for them. The main goal of the atypicality score is to determine if
the new trace objects are similar to the source objects. To do this, we bootstrap
many new scores using the estimated parameters (from the source scores), and
compare the likelihood of these new scores to the scores belonging to the trace
objects. We then make note of how often the trace objects have a higher likelihood
value. The bootstrap result will be a number between zero and one, with smaller
values indicating that the trace objects are not similar to the source objects. This is
the atypicality value. We can use this as a p-value in a hypothesis test where the
null hypothesis states that the trace objects are similar to the source objects. This
can be used in a variety of applications, especially where we have multiple trace
objects in multi-dimensional space. This dissertation will outline the development
and use of the atypicality measure, show the results when the objects and scores are
not normal, discuss the power of atypicality, and provide a comparison to support

vector machines.



1. INTRODUCTION TO ATYPICALITY FOR CLASSIFICATION

In basic terms, atypicality can be thought of as a way to answer the question:
"Do two independent simple random samples from a given known source?” The
answer to this question can help people make decisions about the origin of objects
from an unknown origin. This can be useful in many fields, particularly where
classification is needed. An area of focus in this paper is the forensic sciences. An
example application could be comparing shards of glass collected from clothing of a
suspected thief. If we collected other glass shards from a broken window (a known
source of origin), we would like to determine how atypical the glass shards are in
reference to the glass shards from the window.

Other authors have developed their own definitions for atypicality, which we
will review below.This paper proposes a new development and interpretation for

atypicality, in the form of a hypothesis test. The hypothesis test is

H, : Two independent simple random samples are from a given known source.

H1 : Not Ho.

In order to determine whether to reject or fail to reject the null hypothesis, a
p-value must be calculated. This p-value is the result of the atypicality algorithm
presented in this paper. It can be used as any other p-value, where most researchers
would reject the null hypothesis if the p-value is smaller than some threshold,
commonly 0.05.

Before proceeding with the literature review of atypicality, let us first walk
through a toy example of atypicality in an informal matter. This will help us lock in
a solid understanding of what atypicality is, how it is calculated, and how it is

applied. The formal write-up of each step can be found within the pages that follow,



but let us follow each bulleted item as a critical step in the development of

atypicality.

e First, we make the assumption that the samples are i.i.d. with an unknown
distribution. We then state our hypothesis, that the samples are from a known
given source. A significance criterion must then be set; 0.05 being an example.
A We then collect samples from a known source. These objects will be used in
a similar fashion as training data. We also collect the objects from the
unknown source. This can be a single object, or several objects. Feature data

is then measured from these samples.

e Next, we compute pairwise similarity scores between the objects using some
method that is appropriate for the type of data we have. For simple toy
examples, we can use the euclidean distance between two objects. For other
types of data, there may be a well developed method of computing a similarity
score between the objects. By using the scores, any dimensionality in the
original data space is reduced to a vector where the length is directly related
to the number of objects we have, including both the known objects and the
objects of unknown origin. There is one important caveat about the scores: we
must assume that this score vector is a multivariate normal random variable.
The reason we must make this assumption is because the process of computing
the p-value for the hypothesis test to come involves estimating the parameters
for this multivariate normal vector of scores. If the vector of scores is not a
multivariate normal random vector, steps may be taken to transform the data

to become one.

e As mentioned before, the parameters for the multivariate normal score vector
are estimated. These parameters include the covariance matrix and the mean

vector. Only the scores that relate to the pairwise comparison between the



known origin objects are used. This is similar as using the known origin
objects as training data. The trick is, how do we estimate these parameters
with a single multivariate score observation. Well, the mean vector is
estimated by simply calculating the mean of the scores that make up the score
vector. This value is repeated in a vector that is the same dimension as the
score vector. The covariance matrix is developed in a rigorous process that

can be found starting at lemma 1 on page 21, that continues on until page 33.

Developing the covariance matrix is easily one of the most difficult aspects of
this dissertation. Reducing the process into digestible portions is no small
feat, but here is a best attempt. We first define a few different covariance and
variance terms for the different types of scores. If a; and a; are objects from
the original dimensional space, then s;; is the score between them. The
variance term for any s;; is defined as simply o2. To find the variance of a
score, we take the variance of the model on page 20. This yields a variance
0? = 202 + 02, where 02 is the variance for the error term. The covariance
term between two scores Cov (s;j, 8;;/) = 02, where j' # i, 7. We then
construct a projection matrix where the scores are represented down the rows
and across columns as demonstrated on page 24. The process of then
determining estimates for o2 and o2 involves a lengthly eigen decomposition
that allows us to solve for a series of sums of squares. This process spans
pages 26 through 33. These sums of squares can be used as estimates for the
Mean Square values, which in turn, can be used formulas to estimate the

variance and covariance terms mentioned earlier; as shown on page 33.

The dimensionality of these parameters is important to note. Both the
estimated mean vector and the covariance matrix are conditional, as proposed

by Izenman [29] (as seen on page 38). Given the vector of scores that relate to



the relationships between the test observations, the dimension of the
conditional mean vector will be the same length. The conditional covariance

matrix will be a square matrix with matching column and row counts.

Once we have the estimated parameters, applying them with the multivariate
normal equation gives us a probability density function. Essentially, we are
going to apply these estimated parameters to calculate the probability
assigned for the objects given these parameter values. We don’t, however,
simply compare these assumed probabilities for the objects of known and
unknown origin and compare them, but rather we perform a Monte Carlo

bootstrap simulation.

A bootstrap simulation is a special case of Monte Carlo simulations. With
repeated sampling, we sample a random multivariate vector using the
parameters estimated in the step before. These conditional parameters used to
sample this new observation will remain fixed throughout the bootstrap
process; no new parameters are estimated. We then compare the assigned
probability of this sample vector to that of the objects of unknown origin.
Because this is a bootstrap simulation, we do this many times. If f (-, 0) is the
pdf with estimated parameters #, and 5 is the complete vector of scores; then
the comparison of the probability of the sampled score vector S* and that of
the unknown source score vector sy would be shown as

f <§ *| S, 5) <f (s?)|§’, 5) Every occurrence of this condition being true is
summed to a number. This number is divided by the total number of
bootstraps that occurred. This will always give a number between 0 and 1.

This number is then used as the p-value in the hypothesis test.

A researcher can set any threshold for the p-value that would lead them to

reject the null hypothesis that they deem appropriate for their experiment. As



mentioned before, a common number is 0.05. Looking back at the comparison
of the likelihoods between the sampled score vector and the score vector
relating to the unknown source objects, we can see that if the objects from the
unknown source are atypical to the objects from the known source, then the
p-value will be small. These small values would lead a researcher to reject the

null hypothesis that states that they are typical.

e This last bullet isn’t so much a step as it is a explanation of the reasoning for
atypicality. We were able to avoid the curse of dimensionality by using
pairwise comparison between the objects. Also, we have a probability based
metric that can be used to make decisions on the atypicality of objects of
unknown origins, when compared to those of a known source. It’s also
important to note that using conditional parameters, we can consider several
unknown source objects at once instead of having to consider them
individually. This differs from machine learning methods that simply yield a
classification for a single object without considering any other unknown source
objects collected at the same time; nor is there much room for interpretation
of the model itself. This makes the atypicality classification method described

above a robust option for any researcher.

To help summarize this, below is a step-by-step pseudocode version of the
process 1:
1.1 Related metrics. Atypicality is an important statistical concept that could
potentially be applied in many fields. A particular field of interest is forensic
science. In its basic terms, atypicality is an index to determine how likely an object
came from a population of other objects. This addresses many questions that
pertain to forensic science; such as, did a sample with a given characteristic belong
to a population believed to be the source of the sample? Before we describe

atypicality more directly, we will review the previous research and importance of



Data: scores
initialize scores;
scores.known < partition.known(scores);
scores.unknown < partition.unknown(scores);
params.scores.known < param.estimates(scores.known);
CondSig < construct.conditional.coomat(params.scores.known);
CondMu < construct.conditional.mean(params.scores.known);
sum <+ 0;
for j + 1 to NumSamples do
Samples < get.scores(CondSig, CondMu);
if f(Samples, CondSig, CondMu) <

f(scores.unknown, CondSig, CondMu) then

‘ sum < sum + 1;
end

end
atypicality < sum/NumSamples;

Algorithm 1: Atypicality Algorithm Pseudocode

matching samples to a given population in forensic science. Before we move forward,
it is important to define our usage of the term "match”. Here, when we say that a
sample is a match to a population, we mean that the probability that the sample
belongs to a population is within some threshold.

Trying to match found samples to a given population has been the subject of
extensive study in the forensic sciences. Theoretical work can be found in papers
such as [51],[52], [35] and [66]. Examples involving characteristics more attuned to
real world situations include experiments involving: chips of paint [73] and [43],
matching human hair from a sample to an individual [19], matching shoe prints [22],
and even dental impressions [1]. More recently, a paper comparing the depth
contours of tool mark surfaces has developed an algorithmic matching procedure
[41].

This paper describes the development of an atypicality index that uses
similarity scores in its construction. Similarity scores have been used in several areas

of the forensic sciences and biometrics, including facial recognition [67], [75], [54]



and [61]." The higher the similarity score between two objects, the more likely they
have come from the a common source. More examples of similarity scores used in
forensic applications include: speaker/audio recognition [45], [15], [20], [3], [21];
text/writing recognition [47], [14]; shoe prints [13]; fingerprints [31]; walking
patterns [7]; and statistical theory [12], [6].

This paper will now formally describe atypicality theory. Beyond that, we will
show how to derive an atypicality statistic from score based pairwise comparison
data. A simulation of the power of the statistic is provided, as well as several other
examples and simulations. This paper focuses on the conditional atypicality
statistic. Future work will likely include work for the unconditional statistic.

1.2 Previous Definitions of Atypicality. Below is a description of a previously
defined atypicality metric. This is not the same as the one being presented, but is
shown as a review of similar work done. In particular, we present the work of [44],
and how it is applied to multidimensional data. Given a set of training data, our
goal is to assess how likely it is that the observation x arose from a population in
question. This has a similar goal as our atypicality, but is calculated differently.

First, we will start with a summary of the concept of atypicality among
objects, as described by [44]. Formally, we have n i.i.d. objects

X; where ¢ = 1,...,n. This is shown as

X; ~ MVN(u,%); (1)

where MV N (u, ¥) denotes a multivariate normal distribution with mean vector u
and covariance matrix . In RP space, these objects have a multivariate normal

distribution, with realized values of z;;, where i =1,...,n;7=1,...,p. Using an

"'We can easily convert a dissimilarity score to a similarity score.



atypicality index, we can assign a value from the unit interval [0, 1] to each object
that indicates the probability of incorrectly stating that the objects came from
different populations, when they actually came from the same one. Values closer to
one indicate that the object in question is more typical, and values closer to zero
indicate that the object is atypical and may have come from a different population.
From the assumption of multivariate normality, for each object vector x;, we
have the associated tail area a; under the density curve. This tail area is computed
to the right of the normalized squared Mahalanobis distance. The Mahalanobis
distance is described at great length in [42]. It is essentially a measure of the
distance between a point P and a distribution D. In multi-dimensional space, it is a
way of measuring how many standard deviations away P is away from the mean of
D along each principal component. It also accounts for other aspects that the
Euclidean distance does not. These include the covariance between variables, and
the fact that variances in different directions (for each variable) may be different.
When the respective axes are scaled to have the unit variance and the variables are
uncorrelated, then the Mahalanobis distance is equivalent to the Euclidean distance.
In forming the distance that corresponds to each object, x; is first deleted from
the sample to prevent it from contaminating the estimates of the mean and
covariance matrix. Let X denote the mean vector of all the objects, and 3 be the
unbiased estimate of the covariance matrix X. Then define 7(;) and i(i) as the
resulting values of § and 3 after the deletion of x; from the data. The squared

Mahalanobis distance is then
(xi|T @), By = (xi — ) B (% — Tp))-

Now, to get the tail area a; to the right of x;, we multiply the Mahalanobis



distance by the factor
(n—1)v
(np)(v+p—1)’

c(n,v) =

where p and v = n — p — 1 are degrees of freedom. In our case, n is defined as the
number of objects that we have, and p is the number of dimensions in each vector.

By multiplying the Mahalanobis distance by this factor, then we have
c(n, U)(S(Xi’f(i),z(i)). (2)

The above statistic is closely related to Hotelling’s T statistic. By
Anderson([5], it is known that the squared Mahalanobis distance multiplied by the
number of observations is equal to 72. Anderson continues to show that 7%/ (n — 1)
can be written as the ratio of a noncentral x? and another independent Xf). He then
goes on to show that (7?%/(n —1))[(n —p+1) /p] ~ Fppn_p+1. To summarize, if
X ~Tyn, then [(n —p+1) /pn] X ~ F,,_p+1. This means that the equation 2 is
similar to a T statistic in that it has a similar Fyn—py1 distribution.

Now let us write equation 2 in shorthand as a;:
a; = c(n,v)0(%4] Ty, Xiy)- (3)

According to [44], the a; values will have a uniform distribution on the unit
interval [0, 1].

To illustrate what we have stated above, here is a simple example. We will
randomly sample n objects with p-dimensions and show their atypicality index value

to a multivariate normal distribution with known parameters. Specifically, will set



n = 10 and p = 3. The mean vector will be set as

To help make this information more relatable, we could say that these values
represent 2"x4”x10’ pieces of wood. To get an appropriate positive definite
covariance matrix, we can specify the principle components and construct the
covariance matrix. We do this in R [57] by modifying the “genPositiveDefMat”
function in the “clusterGeneration” package [56]. The modifications we make
remove the random components of the covariance matrix generation. In the R
program, the eigenvalues were set as 1 through n. For this example, the known

covariance matrix is

2.0000 0.2113 0.7887
Y= 102113 2.2887 0.5000]
0.7887 0.5000 1.7113

10

with eigenvalues 3, 2, 1. Using R, we obtain the samples found on Table 1 rounded

to two decimal places and their corresponding area values a. We remind the reader

that when computing the estimates for the mean vector and covariance matrix, we

remove the object in question first to prevent contamination of the estimated
parameters by that object. That being said, below is the mean vector and

covariance matrix for all the samples found in Table 1.

2.1692 3.9037 0.0764 1.8404
fo=|4.1405 | , Y= 10.0764 1.9876 0.4604| .
9.4090 1.8404 0.4604 2.0957

with eigenvalues 5.0812, 2.0657, 0.8401.
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Looking at Table 1, we notice that the object with the smallest atypicality
score is object x5. This may be intuitive by looking at the objects first dimension,
which is negative and quite far from the mean. The object with the largest
atypicality index is object g with whose values are close to the mean vector values.

We now observe the results when we increase the size of the dimensions,
approaching the total number of objects that we have. We are constrained to a
minimum of two and a maximum of n — 2 dimensions. This is due to the limits of
computing an atypicality score using the I’ distribution. We need the degrees of
freedom to be larger than zero. The degrees of freedom are computed as
v =n—p—1, where n is the total sample size and p is the number of dimensions we
have. As the number of objects gets larger, we will expect the density of the
resulting a vector to appear uniform on the unit interval. Figure 1 shows the
resulting density when we have n equal to one thousand, and the dimensions p
increasing in size. We can see that as the number of dimensions increase, the
empirical density is further removed from a uniform density and approaches a bell
shaped curve; meaning that this can’t be used as a p-value.

This fact is extremely important to this paper. We will see further in the
paper that we use similarity scores between objects to reduce the dimensionality.
This helps to maintain the uniform distribution property that we desire. However,
applying McLachlan’s method directly with a vector of scores will still have the
problem mentioned in the previous paragraph.

From [44], we can see how to use the atypicality index value a; as a p-value for
a test of the compatibility of an object (or a set of objects) with a given population.
We will prove this further along in this paper. A feature vector can be assessed as

being atypical of a given population if

CI,Z'SCY,
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Sample p; P2 D3 a

1 268 6.74 9.84 0.1921
2 3.57 2.75 11.20 0.3200
3 3.0 5.34 10.86 0.3579
4 495 4.15 10.52 0.2053
5 -2.15 540 819 0.0190
6 1.09 241 9.64 0.4942
7 0.45 251 6.30 0.0196
8 3.40 3.88 8.69 0.9491
9 238 3.63 897 0.9676
10 226 459 987 0.9490

Table 1: Randomly drawn samples and their corresponding atypicality values.

where « is some predetermined threshold. As stated by McLachlan, although we
assume that the population is normal, the measure of atypicality can still be
considered useful if the conditional density is at least elliptically symmetric.

We now a different description of atypicality, as described by Aitchison[2].
Working with a vector of similarity scores, if we attempted to implement
McLachlan’s method; we will have the problem where our atypicality values are less
uniform and occur more often on the tails. This is why we must find a better
method of determining atypicality indexes. Such a method is to use the index of [2]
described below.

Given a multivariate normal density f with observations w, given parameters

0, the index of atypicality for an object vector x is defined by

a(x)=1-— w; 0)dw, 4
(x) /H(x)f( ) (4)
where

H(x)={w: f(w,0) > f(x,0)} (5)

is the set of all observations more typical of the group than x. To provide an

assessment of a(x), we replace the conditional density f(x,6) with f(x,6) in
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Figure 1: The density of the a vector with objects under increasing dimensions.

Equation (4) on page 12 and Equation (5) on page 12. If a(x) represents the

estimate of a(x), then it can be shown under the normal model that

That is to say a(x) can be interpreted, in a frequentist sense, as the level of
significance associated with the test of the compatibility of x with the population of

objects.
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More specific to our situation, we substitute the integral in Equation (4) on

page 12 with

a(x,)=1- /H( )f(w,¢9|Xn = X, )dw

where

H(x,) ={w: f(w, 01X, =x,) > f(x,,0|X,, =%x,)}.

In order to use these atypicality values as a p-value, it is important to show
that they will have a uniform distribution when the null hypothesis is true. We will
show that this is mathematically true for our version of atypicality in a future
section.

1.3 Typicality as a P-value. For the purposes of this research, we will apply the
atypicality index as a p-value. This p-value can be used to test the the null
hypothesis that an object (or set of objects) introduced to a population has a
differing distribution than that population, and can therefore be considered atypical.
The alternative hypothesis would then be that the population and the newly
introduced object do have similar distributions, and the object(s) may be considered

typical. This is shown as

H, : Two independent simple random samples are from a given known source.

H1 : Not H(]-

If we estimate the parameters from the known source population of scores, we
can then use the resulting multivariate normal likelihood function to compare the
density value of the scores pertaining to the unknown object with the scores
sampled from the estimated distribution of the known source population. Now, let

f <§O|§’, 5) be the multivariate normal pdf such that larger values give evidence that
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Hy is true. We will derive the log-likelihood function in a future section of this

paper. It will be shown to be

—210g({(j15, 02, 02]5)) =N In(27) + (%) + (n — 1) (%) + (N — n) In(xs)+

SS,. S8S, SS. (7)
~— + =+ —=.
A1 A2 A3

where 5,02, and o2 are restricted maximum likelihood estimates of the parameters.

Y a’

Let us simply denote the set of parameters to be

0 = {ps,0.,0.}.

Now, we define the entire set of scores between objects as mathbfs. Here, we

will show that when Hj is true,
Theorem 1. p(s) = Pr{f(S,0) < f(s,0)}.

Then p(s) can be thought of as a valid p-value for our hypotheses. To show

that p(s) is a valid, unbiased p-value, consider the following proof.

Proof. First, let F(w) denote the continuous cumulative distribution function (cdf)

of f(S,0). Then we can define

p(s) = Pr{f(S,0) < f(s,0)} = F (f(s,0)).

So, we will show that by the probability integral transformation, that f(S,0)
has a continuous cdf F' and p(S) = F(f(S,0)). By definition, F is a non-decreasing

function. When F is increasing,

F (p(s)) = f(s.6) & F (f(s,0)) = p(s).
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Also let

F 1) =00 if F(f(s,0)) < 1 for every f(s,0), and

F~0) = —oc for any F.

Then for p(S) = F (f(S,0)) we have for 0 < p(s) < 1,

Pri{p(S) <p(s)} = Pr{F (f(S,0)) <p(s)}

= Pr{F~[F (f(S.0)] < F" (p(s))}

because F~1 is increasing.
Since F is strictly increasing, then F~1[F (f(s,0))] = f(s,0). Therefore, we

have

Pr{F7"[F (f(S,0)] < F~" (p(s))} = Pr{f(S,0) < F (p(s)}
= F [F"(p(s))] (by the definition of F')

= p(s) (by the continuity of F) .
At the end points, we have

Pr{p(S) <p(s)} =1 forp(s) > 1 and

Pri{p(S) < p(s)} = 0 for p(s) = 0.
This implies that p(S) has a uniform distribution on the unit interval,

p(S) ~ Unif(0,1).
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This in turn implies that,

Pr{p(S) <p(s)} = p(s) for 0 < p(s) < 1.

So for every 0 < a <1

Since Pr{p(s) < a} < Pr{p(S) < a} < « for every 0 < a < 1, then we can

say that p(S) is a valid p-value.

It is important to note the direction of the inequality sign in the probability
statement Pr{f(S,0) < f(s,0)}. This is the reverse of what one might normally see
in hypothesis testing, but one can see that by the definition of our hypotheses, this
is the correct format. This probability can be stated formally as the probability that
the likelihood of the estimated parameters from a known population given a set of
scores from a similar distribution is less than or equal to the likelihood of the
estimated parameters given the object-in-question’s scores. So if we have object(s)
in question with an associated set of scores that give a low likelihood value for the
estimated parameters compared to the known population scores, then the
probability statement decreases, making it more likely that we reject the null
hypothesis.

Typically, the integrals to calculate p(s) do not exist in closed form and it will
be necessary to use resampling techniques to calculate its value.

In order to show that the distribution of atypicality is uniform when Hj is
true, we can run a simulation where we calculate the p-value many times for a
random population of objects with a random new object being tested for atypicality.
The algorithm with known parameters is given in Algorithm 2.

In this instance, we use known parameters for the likelihood function. Figure 2
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Data: scores
Initialize atypicality.vector;
for i < 1 to NumSims do
initialize scores;
scores.known < partition.known(scores);
scores.unknown < partition.unknown(scores);
params.scores.known < param.estimates(scores.known);
CondSig < construct.conditional.covmat(params.scores.known);
CondMu < construct.conditional . mean(params.scores.known);
sum < 0;
for j « 1 to NumSamples do
Samples < get.scores(CondSig, CondMu);
if f(Samples, CondSig, CondMu) <
f(scores.unknown, CondSig, CondMu) then
‘ sum < sum + 1;
end

end

atypicality.vector[i| < sum/NumSamples;
end

plot(cdf(typicality.vector));

Algorithm 2: Uniform P-Value Simulation Pseudocode

is a graph of the cumulative distribution function from one such simulation. We
would expect a straight diagonal line from F'(p(S)) = 0 to F'(p(S)) =1 as the
p-value also goes from 0 to 1 along the interval. This can be seen in figure 2. The
pseudo code for this is found in Algorithm 2. The hardware and software
specifications can be found in the appendix.

We will see, that when the parameters are not known and we must use our
REML estimates, we will see a distribution that is not exactly uniform. However, as
n approaches infinity, this distribution will converge weakly to a uniform

distribution. With our estimates denoted with hats, then we can write this as

Pr{f(S,0) < f(s,0)} ~ Unif(0,1),n — co.

1.4 Parameter Estimation for the Multivariate Normal Likelihood Function for

Pairwise Scores.  As we have seen in the previous chapter, the atypicality score is
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Cumulative Distribution Function of p(S)
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Figure 2: The Empirical Cumulative Distribution Function of Atypicality Measures.

given as the probability that the likelihood of the parameters given the newly
bootstrapped scores will be less than or equal to the likelihood of the parameters
given our observed scores in question. Since we assume that the scores have a
multivariate normal distribution, then these likelihoods are multivariate normal
likelihood functions.

If we take the log of the density and multiply by negative two, we have

—21log(l) = Nlog(27) +log(|Z]) + (s — 01)TX (s — 01).

This chapter deals with finding appropriate values for |3| and the derivation

of (s —01)TX~1(s — 61). Much of the work for finding these necessary parameters
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was conducted by [48].
We will start with the following assumptions. We start with a population of n
i.i.d. objects X = {X;, Xy, ..., X,,}7, that have a similar, but arbitrary distribution,

shown as:

The product of the set of objects with itself can be mapped to the real space,
which we call a score:

s X x X — R

Our next assumption is that the variance for each score is finite,

Var (s (x;,x)) < 00.

Now consider the parametric model for the scores;

sij=0+ai+a;+e;, 1<i<j<n, (8)

where the a;’s are i.i.d. random variables with Ea; = 0 and Var(a;) = 02; the ¢;’s
are also i.i.d. random variables with Ee;; = 0 and Var(e;;) = o2. We will also

assume that these random variables are normally distributed,

a; ~ N(0,02),
€5 ~ N(O, 0'2).

From here, we have the necessary information to begin our study of 3.
If we have a number of n X; objects, then we will have N = (g) total scores in

the vector s. Under this model, we would then have the vector of a;, and a; objects
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and the vector of error terms ¢;; given as a and € respectively. This allows to give a

vector /matrix representation of the model:

s=Pa+e+01,

E[s] = 61.

where P is a design matrix that has the form of:

Py
Py

P(n—l)n
where each Py row is a vector length n that has 1’s in the £ and [ indices of that
row and zeros elsewhere. For example,
Py, =(0,1,0,1,0---0).
(We will soon see more on P.)
It can be shown that the covariance for s takes on the following structure:

Lemma 1. Cou(s) = PPTo? + 021
Proof.

Cov(s) = Cov(Pa) 4+ Cov(e)

= PCov(a)P? + o1

= Po?P? + 071

= PP7o? + 071
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]

If n is the number of known objects, and m is the number of unknown objects,
we use the following covariance matrix for our likelihood functions, developed by

48], where Cov(s) = X and is shown as

3= O’?INM + UzPPT.

where N M has the value of (";m) The derivation of X follows.

First we look at the covariance between two scores s;; and s;;; where ¢ = 7, but

j # 7'. By conditioning on the common term x;, we have

2

Lemma 2. Cou(s;j, sij) = 05.

Proof.
Cov(sij, sijr) = E[(s (w3, 25) —0) (s (23, 2) — 0)]
= EE|x,— [(s (zi, ;) — 0) (s (23, 2;0) — 0)]
=E{[(si = 0)(si — 0)]
= Var(s;) = o2
which is the variance of the scores that pertain to the i** object. O]

Now we will define the variance for a given score between objects ¢ and j as
o? = Var(s;;) = 202 4+ o2. With our assumption that o2 > 0, then we also have
o > 202.

Next, we will look at the correlation between two scores,

COV(Sij, Si’j’)

(B (si; — 9)2)1/2 (E (i — 0)°)

Corr (845, 845) = 7
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where we will have three cases:

o2

p=—5 ifi=iandj#j,
o

p=2 iti=iandj=7,
o
O . . ., . .,

p=— ii#Fiandj#j.
o

Thus, we achieve the following correlation matrix for s:

512 Sin 523 Sn—1,n
0'2 0'2
S12 1 0'_% U—% 0
2
S1n % 1 0 0
Corr(s) = ,
S23 ) 0 1 0
Sp—in \ 0 ... 0 0o ... 1

We can see that the matrix dimensions are N x N. The value for Corr(S;;) depends

on the values of i and j as pointed out directly above. (Note that for the above

illustration, we assume that n > 3.

Noting that we defined 0? = 202 + 02, we can see that the covariance matrix



Y can be written as

S12

S12 0'2

2

S1in g

_ 2 _ a
3 =o;Corr(s) = ,
S923 O'a

Sn—1n 0

Sin

5923

24

Sn—1,n

If we want to express this in matrix form, then define a matrix A of dimension

N x N that has zeroes in the same places as the correlation matrix, and 1’s

everywhere else. Then we can write ¥ = Ac? + I(0? + 02).

Now we can see that if we take PP?, we get a similar structure with values of

2 along the diagonal, and zeros and ones in the same positions as the correlation

matrix. An example is shown below. With of n = 6, the PP” has dimensions of
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N x N, or 15 x 15 and takes the form of

2111111110000O0¢O0O0
121111000111000

o O

0
PP'=11 o
0

o O
—_
o
—_
—_
\]
—_
o O
—_
e}
—_
o
—_

— =
o o =
_ o
o O
e
(e S
_ o
o O
— N
[NCR
— =
e
S =
_ o

o o o o o O

o o O
—
o
—
(@]
—
S
—
—
(@)
—
—
[\
—

We have found that it is simpler to perform the spectral decomposition of 3 when it
takes the form of o2PP” + Io2.

Perhaps a better illustration of the form the covariance matrix takes can be
seen using the heat maps in figure 3. The pattern begins to emerge as the number of
objects increases. White indicates values of 0, gray indicates values of 1, and black
indicates values of 2.

The covariance matrices grow increasingly sparse as the number of objects
increases. Table 2 below shows the number of each kind of value and the proportion
of the PPT matrix that it holds. As the number of objects increases, the number of

‘zero’ entries increases rapidly. As the number of zeros approaches infinity, the
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0 1 2 total
n=>=5 30, 30% | 60, 60% | 10, 10% | 100
n =10 | 1260, 62% | 720, 36% | 45, 2% | 2025
n =20 | 29070, 81% | 6840, 19% | 190, 1% | 36100

n =30 | 164430, 87% | 24360,  13% | 435, 0% | 189225

n =40 | 548340, 90% | 59280, 10% | 780, 0% | 608400

n =60 | 2925810, 93% | 205320, 7% | 1770, 0% | 3132900
n =100 | 23527350, 96% | 970200, 4% | 4950, 0% | 24502500

Table 2: Ratio of values in PPT

proportion of zeros to non-zero values will never reach one hundred percent, but it
will continuously approach it.

1.5 Covariance Matriz Eigen Decomposition.  The spectral decomposition is as
follows: First we start with the property that for a square matrix A, Av, = A\pvy
where v and )\ are a unique eigenvector/eigenvalue pair. Since X is a linear
combination of PPT and the identity matrix multiplied by a constant, then the
eigenvectors/values found for PP” can be used to find the eigenvectors/values for 3

in the following way,

Sv, = (2PPT + ¢ T)v,
= JZ/\kvk + ngvk
= JZ/\kvk + agvk

= (02/\19 + J?)Vk,

where )., is the eigenvalue for the PP? matrix. This important result tells us that if
we calculate the eigenvalue for the matrix PP”, then the corresponding eigenvalue
for 3 is equal to o2\, + o2.

We will now show that there are three unique eigenvalues for 3. We make the
process simpler by noting that PP and its transpose PTP have the same rank and

the same eigenvalue/eigenvalue sets. PTP has the form of n — 1 along the diagonal,
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Figure 3: The heat maps of PP? with n = 5, 10, 20, 30, 40, 60.

and ones everywhere else ag shown below.

We note that PTP has dimensions of n x n. We can write this in matrix form as

(n — 2)I, + 1,17 where 1,, is a vector of ones of length n. We have shown before

27
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that the eigenvalues for a matrix in the form of A + bI will have eigenvalues equal to
A = A\, + b. In this situation, the matrix 117 has one eigenvalue equal to n with the
matching eigenvector equal to ﬁ = \/iﬁ There are n — 1 remaining eigenvalues of

zero with eigenvectors orthogonal to 1,. Therefore, the eigenvalues for

(n—2)I, + 1,17 are

1
A1 =n+ (n—2)=2(n—1) with eigenvector ——

VN
Aoy ooy Ay =0+ (n—2)=n—2.

We note that PP? will have N eigenvectors/eigenvalues; but is not full rank. There
are n non-zero eigenvalues and N — n eigenvalues equal to zero with eigenvectors
equal to the zero vector due to orthogonality.

Applying the spectral decomposition found in Equation (9) on page 26 to our

covariance matrix 3, we get
e Eigenvector v; = \/LN with corresponding eigenvalue \; = 02 + 2(n — 1)o2.

e n — 1 eigenvectors vy through v,, with matching eigenvalue

Ao =02+ (n—2)o2.
e N — n eigenvectors v, through vy with eigenvalue \3 = 2.

Because 02 > 0, then 3 will have full rank. Also, because eigenvectors are
orthogonal, then we will have v/, 1y = 0, for all & > 1.
We will find that is useful to work with the sums of the eigenvectors in the

form of vv’. We continue with the spectral decompositions of I, PP, and . Since
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the eigenvectors are orthogonal, we have

I=wvv 1+kavk+ Z vivl.

l=n+1
N
PPY =2(n — 1)vivl + (n —2) Z vivie +0- Z vivl
k=2 I=n+1
=2(n—Dvivi +(n+2) kaka.
k=2
Y= (02 +2(n—1od)vivi, + (6 + (n kav k+ ol Zvlvl

I=n+1

So we know from the preceding work that PP? can be used to find

zn:VkV/k _ PP" —2(n — 1)vv7

n—2
_ PPT —2(n—1)5117
N n—2 '

We know that we can obtain this value since we know the values in the above
equation. Subbing this into the spectral decomposition of I, we can find the third

sum of eigenvectors as

E vvli, =1—vvl, — E Vka

l=n+1
1 PP —2(n—1)<117

N n—2

We’ll see how these eigenvector sums will be useful when constructing our
multivariate likelihood function.
Because we are assuming that a; and ¢€;; values are normally distributed, we

can write out the log-likelihood function for a multivariate normal density that is



30
appropriate for our model.

In(L) = —% (%)) — %(s o175 — 01) — %mm).
Noting that [Z] = X, A = MM ']AY ™" and that

In(A AN = In(A\y) + (n — 1) In(Ag) + (N — n) In(A3),
we now have
—2In(L) = In(A) + (n—1)In(Xg) + (N —n) In(A3) + (s — 01)" 27 (s — 61) + N In(27).
Now analyzing (s — 01)7X (s — 61), we have

N
(s —01)"S (s — 01) =(s — 01)" Y A tviv (s — 01)
k=1

=(s — 01)" X\ tvivi(s — 01)

+ (s —61)" Z A vvi (s — 01)
k=2

N
+(s—01)" > N vv (s - 61).

l=n-+1



First, we will analyze the first term of these sums:

_o1\T _ 01
(s — 1)\ vyvi(s — 01) = (s —01) vivi(s )

A1
2
T 1 0171
_ (S VN m)
A1
T 1 . T 1 T 1 0171 0171 T 1 0171 0171
e () () - () (k) () ()
= "
iy s 2_ i si NO\ _ [ NO iy s + N6 NO
_\ VN VN N N VN N N
= N
N 2
_ %—ezﬁlsi—ezﬁlsﬁj\w
A1
N SiQ
:%_2925\;1‘%4—]\[92
At
N _\?2
N <<ZZJ_\71251) _ 292}%1 Si + 92)
= N
_ N(5%—205+6%)
A1
N(s—0)?
- "
~SS,

AL
Regarding the other two terms, we have

(s —01)" Y5, vivi(s —01) s" (3, Vvavi)s 5SS,

—= — d
A2 % o
T N T sT (SN wivl)s

(s—01)" >, vivi (s—01) I=n+1 VIV S8,

A3 a A3 Y

So finally, we have our log likelihood as
SSy SS, SS.
—2In(L) = NIn(27) +In(\) + (n — 1) In(Ag) 4+ (N — n)Ag + =2 + 220 4

A A2

31

A3
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By the spectral decomposition of PP?, we obtain a useful property.

n— 2

1 4
= (PPT - —1N1TN>
n— 2 n

n—1)2 1 4
_ ¢ S (PPT - ElNlTN)

n T o T
S v = (PP" —2(n — 1)vivT)
k=2

_<:—_12>2 " c( 4 s -y
e ((n—wPP *(n%n—w n<n—1>2)1N1 N)’

noting that @ = N, we continue with

- T (n— 1) 1 T 4 T n T
= PP" — —— 1,51 —1y1
;V’“V’“ n—2 \(n—1)y2 Nin—1) Vvt
(n—1)2 1 T 1 T 1 T n
= PP ——2.1,1"y ————2-1y1 — 1,17
n—2 \(n=1p N(n—1) NT Nmopo VN ety
(n—1) 1 T 1 T 1 T pT 1 T T
= PP ———P1,1' y — ——1,51",P —1y1",1,1
=2 \n=17 N(n—1) NTNm—1)Y Tty N
(n— 1) 1 1 T 1 T T
= P——1y1", )| —P' — =1,1
n—2 \n-1 N7 —1 NN
We can see that if 5% = ﬁ Z(Z or jk) Sij» We can get the following vectors
5 s _3
5(2) 52 _ 3
1 S 1 1 1 S S
n—lPTS: : and Nl%s:g, then n—lPTS_NlTN:
5 sn) _ g
Therefore, our sum-of-squares SS, must be
— 12
S5, = (17 (5% —5)°.
n—2

k=1
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Source df Sum of Squares Mean Square Expected Value of
Mean Square
A n—1 SSa MS,=5S,/(n—1) | 02+ (n—2)02
Error | N —n SS, MS,=SS./(N —n) | o2
Total | N —1 SS; MS; = SS;/(N —1)

Table 3: ANOVA Table

As we have seen before,

N n
T
E vivi;=I—wviv; — E ViV L
I=n+1 k=2
1 n
:I——].N]. N — E ViV L
k=2

If we now define the total sum-of-squares to be S5, = s’ (I - V1VT1) s, then
we can write the error sum-of-squares as S5, = s’ Zl]\inﬂ viviis =88, —SS,.

Because SS, and SS, are defined using the characteristic vectors of 3, then by
Cochran’s Theorem[10], we have independence between SS, and SS. with degrees of
freedom n — 1 and N — n respectively. (Note that SS; =SS, + SS.). Each of the
SS’s are independent of the sample mean. It can also be seen that F(s) =
6, Var(s) = % + % E(5S,) = (n — 1)(02 + (n — 2)02), and E(SS,) = (N —n)o?2.
This gives us the ANOVA table shown in Table 3.

This allows us to retrieve REML plug-in unbiased estimators for the necessary

parameters in our multivariate normal density function, as derived by [48], shown as:
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1.6 Conditional Likelihood. When computing the atypicality value during the
bootstrap, we use a conditional multivariate normal pdf. It is the probability of the
sub-vector of scores that are within the unknown objects and between the known
and unknown objects (denoted as $j), conditional on the scores between the known
objects being equal to what they are (sx = s;). We can write this probability
density function as f ($|sx—s ). However, since the parameters 6 for this
distribution are estimated using only data found in s;, we write the pdf as f (s4|0)
throughout this paper for simplicity. The following section describes the process of
deriving the conditional multivariate normal parameters 6 that make up the
conditional distribution.

Let the vector of known i.i.d. objects be represented by X,, = (X7,... ,Xn)T,
and Y, = (Y1,... ,Ym)T represent a different vector of unknown i.i.d objects of size
m. We do not assume to know the distribution for either vector of these objects.
Now, let the vector of all the objects be given as Z,, 1 = (Yo, + Xn)T.

Next, we use an appropriate kernel obtain the vector of scores between all
objects, shown as 5. We assume § has a conditional multivariate normal distribution
with unknown parameters. To obtain the conditional parameters, we then discern
the score vector into two groups. The first group pertains to the scores that are
within the unknown objects Y and between the unknown and known objects X. Let
this subset of the score vector be known as sy. The remaining scores are within the
group of known objects. Let’s denote this subset as sx. For the conditional
multivariate normal distribution, we have f (so|sx— ).

As an example, let Y5 = (y1,y2) and X3 = (x3, 24, x5). Then the vector
Zs = (y1, Yo, T3, T4, T5); and the corresponding score vector
§ = (S12, 513, S14, S15, S23, S24, S25, S34, S35, 345)T. Then the subset of scores
S0 = (812, 513, S14, S15, 523, S24, 825)T7 and sy = (5347 535, S45)~

The number of scores in sy and s, is dependent on the number of objects in
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X, and Y,,. The number of scores withing the unknown objects is (m) The number

2
of scores between the known and unknown objects is m x n. Since s; is the vector of
scores within the unknown objects and the scores between the unknown scores, the
number of scores in s is (Z”) + mn. The number of scores in s, is simply (g) This
means that the total number of scores N = () + mn + (3).

Now that we have our score vector separated into two groups, we use
Izenman’s approach to calculate the conditional mean and covariance matrix [29].

To simplify the notation for the following work, let ¥ x denote the covariance
matrix for s,, ¥ be the covariance matrix for sp, and X xo contain the covariances
for the s, and sy sub-vectors.

While X x and Xy are square matrices, Y xo may not necessarily be so. Let

Yox = (EXO)T. For the derivation of the covariance matrix, we use quadrant’s of X

to get the necessary Yy, ¥ xo, Xox, 2o values, as specified by [29]. This is shown as

T E0 EOX

EXO ZX

This means that the dimensionality of the covariance matrix will be
N = (75 = (3) 4 mn+ (3).

Yix 1Is a square (g) matrix in the lower-right quadrant of . X is a (Tg) + mn
square matrix that is the top-left quadrant. X xq is the lower-left quadrant with (;)
rows and (T;) + mn columns. Finally, ¥ox is the top right quadrant of the
covariance matrix and is simply the transpose of ¥ xq.

As an example, let n = 5,m = 1. Instead of ¥, we will use PP for the visual
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aid to keep the numeric values simple. Below, PP” divided into the four quadrants.

2111111110000
1211110001110

o O
o o O

0
PP"=/1 0010/112101
0

o o o o o o
[a)
—
—
o
(@]
—
—
(@]
—
—
[a)
[\
—
—

So our quadrants are given as
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From here, we replace all the 2 values with 202 + o2 and the 1 values with o2 to get
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our appropriate Y covariance matrix.

From [29], the conditional mean and covariance matrix are shown as
_ 1/ - _
MO|X =Sz + ZOXZX (SJ: - Sx)a

Sox = Zo — Sox ¥ o

0= {Mopo EO\X}

A detailed derivation of these parameters can be found in Izenman’s text. But we
can see that the conditional mean is the mean of s, plus an adjustment. The
adjustment involves the covariances between sy and s; and the inverse of the
covariance matrix for s,, and the difference between the s, vector and its mean.
Therefore, the conditional mean is a function of s,. Typically , one would use §; as
the first term in this equation, but s, was chosen instead to make atypicality’s
hypothesis test more powerful. By using $,, probability values given by f (s4|0) will
be smaller as sg is further away from the mean of s;, making it harder to fail to
reject H.

These parameters clearly have the same dimension as sy. Also, these
parameters are used in the bootstrap to sample a new vector of scores S* each
iteration. Therefore, S* and so will have the same dimensionality, and will use the
same conditional parameters in the computation of atypicality
Pr{f (§"\0> < f($0]6)}. This is an important fact because, as the dimensionality
increases, probability values from pdfs tend to decrease in general. This can be seen
by looking at Table 4 below. The Table represents taking the pdf of the standard
multivariate normal distribution for vectors of zeros of different dimensions.

This means that if one of the pdf calculations has a smaller dimensionality,
then it naturally tends to have a higher value, yielding what might be considered

skewed atypicality results. By utilizing the conditional multivariate normal
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Dimension of zero vector Pdf Value
0.399
0.159
0.063
0.025
0.010
0.004
0.002
0.001
0.000
0.000

© 00 O T W N+~

—_
e}

Table 4: Pdf values of vectors of zeros. The diminishing pdf value illustrates the
natural phenomenon that as dimensions increase, the pdf values decrease in general.

distribution, we can maintain equal dimensionality comparisons. The pseudo code

in Algorithm 3 is the bootstrap portion replicated here for the reader’s convenience.

sum <+ 0;

for j < 1 to NumSamples do

Samples < get.scores(CondSig, CondMu);

if f(Samples, CondSig, CondMu) <
f (scores.unknown, CondSig, CondMu) then
‘ sum < sum + 1;

end

end
atypicality.vector|i] <— sum/NumSamples;

Algorithm 3: The bootstrap portion of the algorithm demonstrating the use
of the conditional parameters.

1.7 Example of Atypicality Application. Here we will show some examples of
finding the atypicality values from fabricated data. Further chapters will use real
world data. To start, we will create a population of random objects from a standard
normal distribution, and then introduce a new object from a normal distribution
with differing mean and variance.

We will start with n = 8 known objects sampled from a one dimensional
standard normal distribution, and then a new object will be introduced with a value

starting at zero, increasing by one for each new simulation. We predict that the
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atypicality value should get smaller as the value of the unknown objects moves away
from the others. For all the simulations, the eight known objects were sampled as:
-0.626, 0.184, -0.836, 1.595, 0.330, -0.820, 0.487, and 0.738. Let the unknown

observation be represented by y.

y 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Atypicality | 0.942 | 0.234 | 0.775 | 0.227 | 0.093 | 0.008 | 0.000

Table 5: Table showing how atypicality tends to approach zero as the unknown object
moves away from the other objects.

We can see that as the value of X, is moved farther from zero, it’s atypicality
value tends to decrease. The exception is when the unknown object is equal to 0.5.
But, if we were to perform a hypothesis test using atypicality with an alpha set to
0.05, then we wouldn’t choose to reject Hy until the unknown object is equal to 2.5.

The R code for an example using tool mark data is in the Appendix. According
to the paper that was published with this data, they found that the 16th object was

the most unlike the others by their metric [41]. Below is the atypicality R output.



[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
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As we can see, the 16th object has an atypicality value of zero, matching the
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2. THE POWER OF ATYPICALITY

This chapter shows the power of the atypicality measure under different conditions.
The power of a hypothesis test is the probability that the test correctly rejects the
null hypothesis Hy, when the alternative hypothesis H; is true. We remind the

reader that the hypotheses are:

Hy : Two independent simple random samples are from a given known source.

H1 : Not HQ.

Primarily, we will focus on the conditional atypicality score. We found that
when generating scores between standard normal objects, we weren’t getting scores
that were multivariate normal. The discovery was made by rotating the cloud of
scores in three dimensional space; showing a non-normal skew depending on the
view. See Figure 4 for a visual of this phenomenon.

The cloud was created by first randomly sampling a three-dimensional,
standard multivariate normal variable X ~ MV N (63, I 3). Then, a score vector
was created by squaring the difference between each dimension’s value, and dividing
by two, yielding a chi-squared variable. We divide by two because that would be the
variance of the chi-squared variable in the numerator. By calculating the probability
of this chi-squared variable using the cumulative distribution function F\z2(;), and
then the using that probability as input for the normal quantile function @ y,1), we
will get a normal variable, which will be used as a score value. The vector of these
scores is a standard MVN sample.

We then repeat this process a large number of times to create a large sample
of these MVN vectors. Principal component analysis is then performed to obtain
the component scores. The scatterplot shown on the left side of Figure 4 is of the

component scores of the first and third dimensions. This appears to be a normal
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Figure 4: Scatterplots comparing the principal component scores of fabricated MVN
vectors. The left plot appears to be multivariate normal, but the right is skewed.

density cloud. The scatterplot on the right is of the component scores for the second
and third dimensions. Here, the pattern of the density cloud does not appear

normal, but has a triangular pattern with a hollow center.
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X - X%\ . .
sij = QN(0,1) (Fxm) (%)) < g < 3.

5= {812,313,823}

In order to alleviate this problem, we increased the dimensionality of the
sampled objects to 2n + (g) There may be a more specific dimensionality to sample
from, but we leave that to be explored in future work.

The Figures 5, 7, and 6 show various situations where we have different
numbers of objects from the original known population, and then introduce new
objects. We need a minimum of four known population objects and one introduced
object in order for the algorithm to run properly. A maximum of forty total objects
(both known and introduced) is computationally convenient to run in simulations,
so that is the max shown here.

The simulations presented start with a known group of objects and a smaller
to equal sized group of introduced objects. The distribution for the known objects
will be set as:

X ~ N(0,1).

The distribution for the introduced objects will have a set variance of one, but the
we will move the mean away with each new simulation. A new set of known and
introduced objects will be randomly selected from these distributions and the
atypicality value will be computed. We will expect near uniform distributions of
atypicality scores when both groups of objects have the same distribution; that is to
say, when they have the same mean. We would then expect the atypicality scores to
be closer to zero as the we move the mean of the introduced objects further away
from zero. The simulations will run one thousand times for each set of distributions,

and an empirical CDF and distribution plot will be shown to illustrate the results.
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Figure 5: The empirical CDFs and histograms of the Atypicality Scores with four

known objects, one introduced object, and changing means.

First, we begin by showing Figure 5 for the smallest sample sizes that we can

have, with four known objects and one introduced object. The first plot in Figure 5

shows that the distribution of the atypicality scores when the known objects and the

introduced object have the same distribution is not uniform. Due to the skewness of

the multivariate score vector, this can be expected. If the scores did not have this

skewness, then we would expect a completely uniform distribution of p-values. We

will see that in further simulations, as the number of known objects increases, and
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the smaller the number of introduced objects in proportion, then the more uniform
our simulated distribution of atypicality scores will be. The second and third plots
show that as the mean of the introduced object moves further away from the mean
of the known objects, we get a higher frequency of low atypicality scores, as

expected.
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Figure 6: The empirical CDFs and histograms of the Atypicality Scores with eighteen
known objects, one introduced object, and changing means.

Figure 6 is similar to Figure 5, but has eighteen known objects. We can see

that the top left plot is near uniform. This is because Hj is true and we have a large
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number of known objects. The middle and right plot show the expected results of

getting more atypicality values as the unknown object moves away from known

objects.
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Figure 7: The empirical CDF's and histograms of the Atypicality Scores with thirteen
known objects, Hj is true, with an increasing number of unknown objects.

Figure 7 illustrates how the distribution of the atypicality scores change as

increase the number of introduced objects. We see that as the number of introduced

objects approaches the number of known objects, we get low atypicality scores more

frequently.
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their entirety, let us first look at the results

when the null hypothesis is true. That is, when the known and unknown objects do

in-fact come from the same distribution. See the heat map on Figure 8 where the

x-axis represents the number of known objects, the y-axis represents the number of

unknown objects, and the coloring represents the type I error for that particular

simulation. We can see that when the ratio of unknown objects to known is small,

then the probability of committing a type I error is closer to 5%. The type I error

probability tends to rise as the ratio of the unknown and known objects gets closer

to one.
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(a) X-axis represents the number of
known objects. Y-axis represents the
number of unknown objects. The color-
ing represents the probability of commit-
ting a type I error.
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(b) Line graph when the null hypothesis
is true.

Figure 8: Visual representations of the probability of committing a type I error when
using atypicality and the null hypothesis is true.

An exhaustive listing of these results and their plots is readily available by

request as supplementary material. Also, the plots of the observed power for

different values of known and unknown objects can be found in the appendix.
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3. SUPPORT VECTOR MACHINE COMPARISON

Now that we have thoroughly described our atypicality metric, we should
compare it to other known methods for sample categorization. One of the most
popular categorizing tools used today is the Support Vector Machine.

In this chapter, we will describe what a Support Vector Machine (SVM) is and
how it works. After that, its popularity will be discussed, as well as why it was
chosen as a good comparison to our atypicality measure. We will then run a SVM
on the same data sets that were generated for our atypicality simulations, with the
results following. Finally, there will be a discussion comparing the results of the two
methods.

3.1 Introduction to Support Vector Machines. There have been many different
methods developed to solve the classification problem. Given a set of objects
grouped into classes based on their known features, the classification problem
involves determining the optimum class membership of a new object. These classes
can be predetermined by the user, or developed using a training set of data. The
training data contains objects with their corresponding features. In order to train
the SVM, some combination of one or more of the object features is used to
determine which class the object belongs to. So in this case, the classes of known
objects are known before hand, and are used to help determine the class of new
objects.

The classification problem itself is claimed to be in the realm of several
different disciplines. Computer Science claims it as a part of machine learning.
Information system analysts claim classification as a subproblem of data mining.
Also, the field of statistics lays claim to the problem. The atypicality measure that
we have developed fits into this last category, stating that classification can be done
through a probability measure. The fact is, all three have valid claims. Recently, the

overlap between these three disciplines has become more clear as researchers from
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these areas share their ideas via publications, presentations, and lectures.

In this chapter, we will focus on what is currently one of the more popular
methods of solving the classification problem, support vector machines. As such, we
will discuss it’s origins and derivation in detail.

To help set the idea of what a SVM is, here is a brief description with more
rigorous detail to follow. A support vector machine can be interpreted as a surface
that creates a boundary between different multidimensional points of data. In other
words, this boundary works as a way to separate the different data points into
classes in multidimensional space.

The boundary itself is generally a flat hyperplane that attempts to partition
the data on either side of the boundary. A hyperplane is a subspace that is one
dimension less than the ambient space around it. For example, if we’re looking at a
two-dimensional space, then the hyperplanes are one-dimensional lines. If we're
looking at three-dimensional space, then the hyperplanes are two-dimensional lines.
In the case of four-dimensional space, the hyperplane is a three-dimensional
enclosure. The concept continues on into higher dimensions. ”Similar” data points
are on the same side of the boundary, and "differing” points are separated via the
hyperplane. The SVMs learning method combines both instance-based nearest
neighbor learning and linear regression modeling to develop the hyperplane. This
combination of learning is very powerful and allows SVMs to model complex
relationships fairly well.

Typically, SVMs are applied in a binary classification system. However, it is
possible to use them with multi-class problems [76, 77, 16, 25, 17]. This is by
implementing a voting method and combining many binary classification systems.
Because the atypicality measure presented in this paper determines the probability
that a group of objects is from a similar source as another group of objects on a case

by case basis, we will focus on the binary classification methods with SVMs.
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The reason SVMs were chosen as a comparison to our atypicality measure is
mainly due to its recent rise in popularity. This rise in popularity is likely because
of its solid performance in classification. Although the math needed to implement a
SVM is quite complex, it has been around for several decades. Because of its stellar
performance, many SVM’s have been implemented in popular libraries across many
different programming languages (including R). This allows them to be adopted by
audiences who may not have considered using them before, due to a lack of
knowledge on the subject or understanding how to implement them. Without
extensive study, comprehending the math needed to implement an SVM can be a
daunting task for those not fluent in their behavior. By implementing SVMs in
popular and well-maintained libraries, the door to new and diverse applications has
been opened for researchers not directly studying the material.

SVMs can be used in nearly any learning problem, including classification and
numeric prediction problems, through pattern recognition. Notable applications
include: classification of microarray gene expression data
4,9, 8, 18, 23, 27, 38, 46, 49, 53, 55, 58, 68, 69], which is useful to identify cancer
and other genetic diseases; text categorization
(32, 74, 33, 36, 65, 39, 60, 34, 64, 70, 28, 78], which is useful for language
identification on documents or web pages; or the classification of documents by
subject matter. SVMs are also good at detecting important, but rare, events.
Examples of this include combustion engine failure, security breaches [50, 26, 71], or
earthquakes.

3.2 SVMs and Hyperplanes. As you've read, SVMs use hyperplanes to separate
data into different classes. There are several different ways to implement these
hyperplanes, each with different difficulties and perks. First, we will discuss the
simplest case, straight line/surface hyperplanes, and then we’ll discuss kernels used

to create more ornate hyperplanes.



52

In the ideal case, we would like our hyperplane to be a straight line/surface
that separates the data completely into two different classes. When this occurs, we
have linearly separable data.

In both of these examples, the SVM algorithm generates the hyperplane that
completely separates the data into two sections using a straight line in the 2D case,
and a straight plane in the 3D case. The concept, while not possible to truly
visualize, is carried on in higher dimensions.

You can imagine that there are other lines that could separate the circles from
the squares. The line/plane that is generated by the SVM algorithm looks for a
particular one that is called the maximum margin hyperplane (MMH). This
hyperplane has the greatest separation between the two classes. This allows the
greatest chance of new data falling on the "correct” side of the hyperplane when
classified by the SVM model; even when random noise is present.

In order to generate the MMH, the SVM algorithm identifies the support
vectors for each class. The support vectors are the data points that are the closest
to the MMH. Each class will have at least one support vector, meaning that there
may be more than one. When this is the case, the two support vectors from the
same class are the same distance from the MMH. Using just these support vectors
alone, one could construct the MMH. This is one of the reasons for SVMs
popularity; the support vectors provide a very compact way to store the
classification model regardless of the number of features in the data itself. Using
vector geometry, the SVM algorithm will find the parallel planes that create the
furthest distance from the MMH. When introducing new data, whichever side the
point falls on will determine its classification. When points fall on the MMH,
generally one of the classes is chosen based on a hard coded decision.

A detailed explanation of constructing the MMH can be found in Cortes’s and

Vapnik’s paper on the subject [11]. A more generic description will be given here via
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assistance from Lantz [37]. To begin discussing how the MMH is generated
algorithmically, we will start by analyzing the simple case when the data is linearly
separable (which may not always be the case, as we will see).

The process to find the MMH is one that searches through the space of all
possible hyperplanes to find the two parallel planes that separate the data into their
defined classes, and are then as far apart as possible.

First thing to get started is to define a hyperplane in n-dimensional space.

G-F+b=0 (11)

The arrows above the letters indicate that we’re dealing with vectors. The @ vector
of weights, ¥ is the vector of data points, and b is a scalar value known as the bias.
One could think of the bias term in a similar fashion as one would think of the
intercept term in the slope-intercept form of a line in simple linear regression.

Let’s say that we have data for two classes, where x; ... x, are the data points
and each data point has a corresponding class denoted by 1 or -1, given as
Y1 .- yn € {1,—1}. A particular data point and it’s class could then be given as
(;,y;),t = 1...n. Then we can say that data is linearly separable if there exists a

vector w and scalar b such that

Gz +b>1 ify =1

(12)
wex; +b< -1 ify, =-—1
We can rewrite the above inequalities in the form
yi(W-z;4+0)>1i=1,...,n. (13)

As noted before, the MMH is the optimal hyperplane that linearly separates

the data with a maximal margin. To find this optimal hyperplane, the direction
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w/ |w| that will give this maximal margin is determined. The margin itself is a

function of @ and b given as d (w0, b).

- w

g

d(w,b) = min T

= — — m —_—.
trv=y [l =1y ]

(14)

The goal is to find the unique arguments wy and by that maximize the above
distance, yielding the hyperplane (wp, by). It follows from Equation (13) on page 53

and Equation (14) on page 54 that

2 2

d (i, by) = —— — .
(W b0) = 1T = Voo

(15)

This indicates that the MMH is a unique one that will minimize @ - @ under
the constraints of Equation (13) on page 53. This means that solving for the MMH
is a quadratic optimization problem. The data points x; for which y; (@ - 7; + b) = 1
will be known as the support vectors. Since we want to maximize the distance, we
can look at the equation in a different way. From the distance equation, we know
that in order to maximize the distance, we need to minimize ||w|| because it is in the

denominator. This is expressed then as
N T S .
min | 7 |0]|* | s.t. y; (W-z; —b) > 1,Va;. (16)

Finding the solution to Equation (16) on page 54 given the constraints of can
be a processor-intensive task. As of late, quadratic optimization software with
specialized algorithms (outside the scope of this paper) have been developed to ease
this burden, even with large datasets.

3.3 Nonlinearly Separable Data. So far we’ve been working under the assumption
that the data itself can be linearly separated. While this is ideal, it is often not the

case. There are two approaches to alleviate this problem. The first will employ the
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use of slack variables to create a soft margin. This soft margin allows for some
points to fall on the incorrect side of the MMH. The second option is to map the
problem into a higher dimensional space. Doing so can turn a nonlinear relationship
into one that is in the new dimensional space. This is known as the kernel trick.
First, we’ll discuss using slack variables to create a soft margin. Imagine, if
you will, that we have data where there is a point for each class on the wrong side of
the MMH. These points violate the constraints set forth by equation Equation (13)
on page 53. To account for this, a cost is associated with these vectors. The cost is
in the form of a distance from the vector to the margin separating the data, given as
& >0,0=1,...,n. The goal now turns from finding the maximum margin to
linearly separate the classes, to an algorithm that minimizes the total cost of the

system, given as

O (&) =) & where a > 0. (17)
i=1
with new constraints

This changes our original quadratic problem so that we need to minimize

L.
P+ 0w (6)
(19)

where C'is a constant and ® () is a monotonic convex function.

Given a constant C' that is sufficiently large, an « that is sufficiently small; the
vector wy and constant by that minimize the function Equation (19) on page 55
determines the hyperplane for the system. With this hyperplane, the number of
errors in the training set will be minimal, and the rest of the elements that are on

the correct side of the margin will be separated by the maximal margin. The process
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of minimizing this function can be found in the appendix of Cortes and Vapnik [11].
Let’s take a look at a toy example of a SVM and follow the process of

categorizing data. The data used was taken from the University of California, Irvine

(UCI) Machine Learning Repository [40]. Here is a direct quote regarding the data

itself:

The objective is to identify each of a large number of black-and-white
rectangular pixel displays as one of the 26 capital letters in the English
alphabet. The character images were based on 20 different fonts and
each letter within these 20 fonts was randomly distorted to produce a file
of 20,000 unique stimuli. Each stimulus was converted into 16 primitive
numerical attributes (statistical moments and edge counts) which were
then scaled to fit into a range of integer values from 0 through 15. We
typically train on the first 16000 items and then use the resulting model

to predict the letter category for the remaining 4000.

Because there are 16 feature vectors besides the class variable, it can be
difficult to visualize the data. If we decide to use a 2D graph to display our SVM
results, we need to find the two features that best show the separation between the
classes, and then draw the line representing the hyperplane edge in that space. This
is not a simple task. To help alleviate this problem, Linear Discriminant Analysis
(LDA) is performed on the data set. LDA is a supervised method that computes the
directions (a.k.a the linear discriminants) that represent the axes that maximize the
separation between multiple classes [30].

Figure 9 on page 57 represents the data on the two linear discriminants that
most separate the classes. We can see that horizontal axis explains roughly 31.6% of
the between-group variance. We can also see that the character 'Z’ class clusters
towards the top left corner of our plot, and the character "M’ class clusters towards

the bottom right. These will make exceptional candidates for a linearly separable
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SVM for letters M and Z.
LDA applied to illustrate maximum separation.
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Figure 10: Letters "M’ and 'Z’ with LDA axes.

binary classification example.

Figure 10 on page 58 shows the letters ‘"M’ and 'Z’ separated by the line
generated by applying the SVM algorithm to the data. We can see that the line
linearly separates the letters. When using 75% of the data for training the SVM
algorithm, the SVM model correctly predicted 100% of the testing data. This
shouldn’t be too much of a surprise for us since we saw that the data was linearly
separable.

Now, what happens if the data is not linearly separable. Looking back at
Figure 9, we can choose two letters that are similar looking, and therefore have
overlapping clusters. Two such letters could be 'D’ and "O’.

Figure 11 on page 59 shows that even with the LDA axes, we do not have
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SVM for letters D and O.
LDA applied to illustrate maximum separation.
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Figure 11: Letters 'D’ and 'O’ with LDA axes.
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completely linearly separable data points. With close observation, we can see there
are points on either side of the MMH, creating cost in the SVM model itself. When
training the SVM model with 75% of the data, the SVM model correctly predicted
roughly 97% of the testing data values. Quite robust indeed.
3.4 Support Vector Machines in Non-Linear Space. it is not always the case that
we will end up with data that shares a linear relationship. We just saw when this
can occur, and noted how a slack variable with a cost function can give us a means
to separate the data as much as possible while still having some incorrectly classified
data. Another method to handle data that is not directly separable is to use what is
know as the kernel trick. The kernel trick is the process of mapping the data to a
higher dimensional space. In this process, we hope to find a relationship that allows
linear separation.

A kernel is simply a mathematical mapping (or function) that will transform
an n-dimensional input vector ¥ into an N-dimensional feature vector. For our

purposes, n < N. The kernel function itself, denoted as ¢, is

¢ R — RV, (20)

Let’s now take a look at an example when we do decidedly do not have
linearly separated data. Figure 12 shows what data can look like when it is clearly
not linearly separable. The two circles represent two classes of data. However, by
mapping it to a higher dimension, as seen in Figure 13 we find that it is possible to
fit a hyperplane between the data points on this new dimension.

The extra dimensions are not inherently part of the original data set, but are
constructed via a mathematical relationship computed by the kernel. This
relationship is dependent on the kernel that is chosen, as there are several to choose
from. But before we look at the specific kernels themselves, let’s look at the general

kernel function. This generalized function applies a transformation to the feature
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vectors x; € R™ to map them into an N-dimensional feature vectors.

O (T3) = ¢ (T3) P2 (T7) oy on (T3) i =1,... L. (21)

To clarify, ¢ is the number of feature vectors that make up the input data, n is
the number of dimensions per vector, and N is the newly increased dimensionality
of each vector created by a transformation defined by ¢.

The generalized kernel, denoted by K (77, }), then combines the transformed
feature vectors using the pairwise dot product; taking two numbers and returning a

single number. This is shown as

K (25, 75) = (@ (23) , ¢ (75)) v » (22)

where (-, ), is an inner product of R".

There has been a lot presented in the last page or two, so let’s streamline it all
into a concise pipeline: For 3,z € %", K (2, 7;) = (¢ (73) , ¢ (7)) 5,7 < N, and
¢ () transforms 7 to RY (¢ : R” — RY).

With the general form of a SVM kernel given, we should take the time to
consider the consequences of its use (and also how to get around them). The biggest
caveat to consider is the increase in computational complexity by increasing the
dimensionality from n to N. If N grows exponentially (e.g. O (2")) with respect to
n, then the problem may become infeasible to calculate due to storage space and
computational constraints.

This problem is actually avoided due to the fact that the SVM does not
explicitly work in the N-dimensional space during the training or testing phase. The
training data is only used to compute the dot products mentioned before. Thus the
kernel implicitly transforms the given data to a higher dimension during the training

phase to train the SVM model. One does not necessarily need to store the
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transformed vectors; with the exception of visuals and plotting. There is the
computational complexity of calculating K, but so long as the kernels themselves
are computationally efficient, then the cost of computation can be minimal.
There are a handful of kernels available. We will discuss three that may be
considered the most popular here.
The polynomial classifier [11] of degree d in n-dimensional input space takes

the form of

K(@’x_;) = ((:U_;,.CE_;> + 1)d> (23)

although most packages add more parameters

K (&,a5) = (7 - (@, 45) + 1) (24)

where r and v are set by the user.
Looking at a basic example where the feature vectors originate from R? space,
and we set d = 2 (yielding a two-degree polynomial kernel) then the implicit

transformation will take on the form of

[$1,9€2] = [$%7$§7$1$2\/§,$1\/2_C> $2\/%7 C} (25)

This essentially mapped 22 — R, adding four more dimensions. In general, a

n+d

d-dimensional kernel will map a dataset in R” space to ( J

)—dimensional space. If
we were to actually store these transformed vectors instead of implicitly using the
calculations from the kernel, these problems could quickly become intractable.

The second kernel we will look at is the Sigmoid kernel [24]. It looks like

K (73, 2;) = tanh (y (73, 2;) + 7). (26)
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where, again, r and v are set by the user. The use of a sigmoid activation
function is similar to procedures found in certain neural networks. The sigmoid
function (which is a special case of the logistic function) allows the hyperplane to
curve at different points to accommodate points that would normally be on the
wrong side of a linear hyperplane.

The last kernel we’ll look at is the Radial Basis Function (RBF) Kernel. It
looks like

K (z3,2;) = exp (—'y- |z; — :EJH2) , where v > 0. (27)

The RBF kernel is a natural choice to start with when selecting one. It
behaves similar to RBF's in neural networks as activation functions whose value only
depends on a distance.

The biggest problem facing SVMs attempting to model non-linear data is that
there are no hard and fast rules as to which kernel to pick. Even after one is
selected, choosing the parameters takes trial and error that will yield differing
results. While a detailed study of kernel and parameter choice is outside the scope
of this paper, an excellent overview can be found in [24].

Before we move on to the next section, let’s look back at Figure 12. After
training models for straight linear, RBF, polynomial, and sigmoid kernels, the test
results had the following accuracy: linear - 56%, polynomial - 56%, sigmoid - 44%;
which are all fairly a 50-50 chance, but RDF stood out with 100% accuracy. This
makes sense as that RBF transforms the new dimension in such a way that would
look similar to Figure 13, creating a separating hyperplane perpendicular to the z
axis so to speak. The other kernels try to weave the hyperplane around the feature
points, which would work poorly given the circular nature of the data.

One could tinker with the parameters of the different kernels, but the results

change little in this example. The code to generate the data and plots given in this
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subsection can be found in the appendix.

3.5 One-Class Support Vector Machines. The final topic to cover before we
compare SVMs to our atypicality classification method are one-class SVMs.
Previously we’ve seen how hyperplane boundaries are constructed between multiple
classes. The reason that we can’t use those methods directly in our comparison is
because that makes an initial assumption that we have two classes to begin with.
Atypicality is currently more focused on the probability that a set of objects belongs
to a given distribution. Instead of multi-class classification, we can use one-class
support vector machines. These have also been called distribution estimators by
computer scientists [63, 72, 62].

Scholkopf et al [62] present a planar method of developing a hypersurface that
attempts to encompass the training data to form a boundary. The hypersurface has
a maximal distance from the origin in the feature space, separating all the data
points from the origin. Any data outside of this boundary would be considered
novelty (outlier) data. Tax and Duin [72] have dubbed their method the support
vector domain description (SVDD). This is a spherical approach, as opposed to
planar. The algorithm obtains a spherical boundary, whose volume is minimized to
better help disclose outliers. Since the majority of software packages out there use
Scholkopf’s method, we will focus on that.

The primary difference in calculating the hypersurfaces comes from the
quadratic minimization function found in equation Equation (19) on page 55. In
that previous equation, C' was used as a smoothness parameter. The updated

version here can be shown as

(1, I« .,
min (3 191°) + 25 3¢

(28)

The emphasis here is put on the parameter v. This characterizes the solution
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Figure 14: One-Class SVM Toy Example

by setting an upper bound on the fraction of outliers that are allowed when
constructing the hypersurface with the training data. This also sets a lower bound
on the number of training examples that can be used when training the SVM model.
This method of creating the SVM is arguably the most popular and is referred to as
a v-SVM.

Figure 14 illustrates a toy example of a one-class SVM. Here, the black dots
represent (x,y) coordinates where x ~ N (0,1), and the red triangles were generated
using x ~ N (O, \/§) When training the model, the v value was set to 0.05. This
means that when constructing the concave hypersurfaces, 5% of the data were
considered to be outliers, specifically, the ones furthest away from the origin. The

RBF kernel was used, since the data is not linearly separable. One hundred points
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Figure 15: One-Class SVM Toy Example Continued

were used when training the SVM model. Twenty new objects were introduced with
the new distribution. The model stated 60% of the new objects did not belong to
the original distribution of objects.

The objects classified as not part of the distribution are shown in Figure 15 by
the blue X’ symbols. It cannot be stressed enough how greatly the choice of v can
effect the model and its classification accuracy. If desired, we could use any of the
kernels listed in the last section. Given the toy example, it wouldn’t make much
sense to use anything besides the RBF method, but it’s important to know the
availability of the others.

Now, we can use a one-class support vector machine to properly compare our

atypicality classification method with SVMs.
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3.6 One-class SVM compared to Atypicality Classification. Here, we will compare
the results of a one-class SVM model to that of an atypicality model for
classification. We will do this with two different experiments. The first will compare
the two models when the test object is generated from the same distribution as the
training data. The second will gradually move the testing object away from the
mean of a known distribution of training objects.

Before executing these experiments, we must determine what to set the v
parameter as for the one-class SVM. As a reminder, the v parameter is used to
determine the percentage of objects to allow as outliers when determining the
hyper-planar surface that encapsulates the data. Outliers are considered in the
hyper-planar calculation process. Since v is a percentage, then valid numbers range
from [0, 1]. This extra experiment will vary the v in steps of 0.05 as we also have
different values for the number of training objects and the number of dimensions the
objects exist in. The table 7 gives the complete results of this experiment.

Let’s take some different view of these results and summarize. The table with
the complete listing of results can be found in Appendix section C.4.

We can summarize this data by view the Figure Figure 16 on page 70. The
Figure shows six different heat maps under different conditions. They represent the
results of the SVM simulations when we adjust the v parameter and the number of
dimensions the objects have. The top three represent the case when the null
hypothesis is true and the test object is sampled from the same distribution as the
training data. Darker areas represent low categorization percentage, and light colors
are higher number. The brighter the color, the better the SVM model performed
given the conditions. The bottom three are heat maps when the training object was
held at two standard deviations away from the mean. One would prefer darker
colors in this instance. Looking at these heat haps, it was determined that setting

the v parameter 0.1 had favorable results in the majority of cases. Therefore, that is



70

-,

) 4 obs. Null True ) 10 obs. Null True ) 20 obs. Null True
(d) 4 obs. Null False ) 10 obs. Null False (f) 20 obs. Null False

Figure 16: Heatmaps displaying results of a varying v parameter.

the parameter used when training the SVM models that are compared to the
atypicality results.
In order to evaluate the effectiveness of atypicality classification against SVM

classification, the following outline was followed.

e All objects are taken from the standard normal distribution. These
simulations will illustrate each model’s ability to correctly classify the test case

as part of this distribution.

e Since SVMs can’t consider a group of objects at one time, then only compare

one test element at a time.

e v was set to 0.1 for all simulations using the RBF kernel. The reason we chose
this parameter is described below, but in summary, it had the best

performance for the SVM model.

e Consider situations with varying training sample size. In this paper, we

consider 4, 10, and 20 samples to train the SVM model and estimate the
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parameters for the atypicality model.

e Consider differing dimensionality of the original data. For this paper,
dimensionality was exponentially increased, so the set of test cases includes

dimensions 1, 2, 4, 8, 16, 32, 64.

e For each combination of parameters set above, run 100 simulations where all
objects (including the test case) comes from the same distribution. Then

compare the percentages of the correct classifications for each model.

For the SVM, the decisions are 1 for TRUE, 0 for false. For each simulation,
we sum the TRUE results and divide by 100. For the atypicality classification, we
use the hypothesis that test case is a part of the distribution, so p-value results less
than 0.05 would lead us to reject this hypothesis. So looking at the results, we tally
all the p-values greater than 0.05 and divide by 100.

The code and complete results for these simulations can be found in the
appendix. A summary of the results are shown below.

Here, we see in Table 6 that the performance of the SVM starts to break down
as the dimensionality increases. This is an expected behavior, according to
Rasmussen [59]. When we have a data set in N dimensions, if N > n, where n is the
number of training objects; then there will always be a separating hypersurface. The
issue is that the hypersurface may not yield good results. A kernel can be used to
help with the issue, but as we saw above, the SVM using the RBF kernel started to
deteriorate as the dimensionality increased. The atypicality classification system,
however, maintained a higher performance, especially as the number of training
objects increased. This is to be expected, as more objects allow us to get more
accurate estimates for the distribution’s parameters.

Now, what about detecting objects that are not part of the same distribution

as the training set? For the next set of simulations, the training objects were kept at
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# of training objects # of dimensions SVM % Correct Atypicality % Correct

4 1 24% 63%
4 2 20% 59%
4 4 9% 61%
4 8 0% 2%
4 16 0% 68%
4 32 0% 65%
4 64 0% 58%
10 1 53% 85%
10 2 35% 89%
10 4 20% 86%
10 8 12% 88%
10 16 4% 90%
10 32 0% 91%
20 1 76% 74%
20 2 49% 83%
20 4 40% 85%
20 3 21% 88%
20 16 13% 93%
20 32 10% 92%

Table 6: Table representing the correct percentage of classifications for a SVM and
our atypicality measure when the NULL hypothesis is true.
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a normal distribution, and a testing object was discretely moved away from the
centroid of the distribution. So, by keeping the mean vector of the training
distribution near 0, the test object was moved by 0.5 units in all dimensions for each
new set of simulations. As before, the number of training objects and dimensions
fluctuated. The table found in the Appendix section C.5 shows these values and the
percentage of test cases that were classified as part of the training set by atypicality
and SVM models. One hundred simulations for each set of parameters (trainings
objects, number of dimensions, and test object’s coordinates) was executed to
determine this percentage. Under certain conditions, the code was unable to handle
producing multivariate normal scores when the testing value was moved away from
the mean. This was the limit set by the simulations to determine how far to move
the test object. One can see by looking at Table C.5 that this occurred as the
number of training objects increased, along with the dimensionality.

Observation of the table shows that the SVM model quickly determines that
the test object is not part of the training set, as the test object moves away from
the centroid of the group; as compared to the atypicality model. As before, the
SVM model performs better when the ratio of training objects to dimensions is
greater than one, where it continues to improve as this ratio increases. The
atypicality model maintained it’s high performance. Since all the objects were
pulled from the standard multivariate normal distribution, we can expect the
percentage of "matching” classifications to decrease as the test value moves away
from the mean vector. These expectations are shown in a more gradual fashion for
the atypicality classification model, as compared to the SVM model.

3.7 Atypicality and SVM Conclusions. Looking at the two tables, we can see that
the atypicality handles higher dimensions far better than the SVM model, especially
when the the number of dimensions is larger than the number of objects in the

training set. This is likely due to the atypicality method reducing the objects to
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pair-wise scores, and estimating parameters between them, whereas the SVM model
must consider all dimensions presented.

Classifying data when the null hypothesis was true proved an easier task for
the atypicality model. When the null hypothesis was not true, the atypicality had a
gradual decrease in positive classifications as compared to the sharper decrease by
the SVM.

One thing to note is that setting the parameters for the one-class SVM can
yield different outcomes. There is no set method to determining these parameters,
and determining "good” ones can be quite difficult. Future work could be finding an
optimal v parameter for the one-class SVM model in order to produce "better”
results.

This would lead us to recommend using the atypicality approach when dealing
with smaller number of objects in higher dimensions. This is a common occurrence
in certain fields, such as the forensic community; where only small amounts of

evidence can be collected.
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APPENDIX

Appendices

A Hardware & Software

A.1 Hardware

The code used was run on a MacBook Pro, Mid 2012.

Processor: 2.3 GHz Intel Core i7
Memory: 16 GB 1600 MHz DDR3
Software: Mac OS X Lion 10.7.5 (11G63b)

A.2 Software

R 3.0.2 GUI 1.62 Snow Leopard build (6558)
R for Mac OS X GUI written by:
Simon Urbanek
Hans-JAtirg Bibiko

Stefano M. lacus

R: Copyright 2004-2013
The R Foundation
for Statistical Computing

http://www.R-project.org
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A.3 Computational Limitations

It is clear that the estimation of our parameters relies heavily on the size of our
initial population; the larger the population, the more accurate our parameters are
likely to be. Current simulations require at least four objects in the population to

estimate the parameters.

B Results Tables and Graphs

C Plots

C.1 True Null Hypothesis Plots
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C.2 Power Plots
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C.3 Power Function Plots

C.4 SVM finding best v parameter

# of training obs # of dimensions v parameter % SVM positive classification

4 1 0.05 45
4 2 0.05 47
4 4 0.05 45
4 8 0.05 30
4 16 0.05 15
4 32 0.05 8
4 64 0.05 2
4 1 0.10 35
4 2 0.10 o1
4 4 0.10 20
4 8 0.10 33
4 16 0.10 18
4 32 0.10 8
4 64 0.10 2
4 1 0.15 39
4 2 0.15 45
4 4 0.15 46
4 8 0.15 35
4 16 0.15 12
4 32 0.15 3
4 64 0.15 2
4 1 0.20 33
4 2 0.20 92
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Table 7: The percent of test objects classified as belonging to the training objects set,
given fluctuating numbers of training objects, number of dimensions, and v parameter.

C.5 SVM and Atypicality Results when the NULL

hypothesis is false

# of training obs

# of dimensions

Test obj vector
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Table 8: The percent of test objects classified as belonging to the training objects set,
given fluctuating numbers of training objects, number of dimensions, and training

coordinates.
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