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ABSTRACT

APPROXIMATE STATISTICAL SOLUTIONS TO THE

FORENSIC IDENTIFICATION OF SOURCE PROBLEM

DANICA M. OMMEN

2017

Currently in forensic science, the statistical methods for solving the identification of

source problems are inherently subjective and generally ad-hoc. The formal Bayesian

decision framework provides the most statistically rigorous foundation for these prob-

lems to date. However, computing a solution under this framework, which relies on a

Bayes Factor, tends to be computationally intensive and highly sensitive to the sub-

jective choice of prior distributions for the parameters. Therefore, this dissertation

aims to develop statistical solutions to the forensic identification of source problems

which are less subjective, but which retain the statistical rigor of the Bayesian solu-

tion.

First, this dissertation focuses on computational issues during the subjective quantifi-

cation of the Bayes Factor, and on characterizing the numerical error associated with

the resulting quantification. Secondly, the asymptotic properties of the Bayes Factor

for a fixed set of unknown source evidence are considered as the number of control

samples increases. Under the formal Bayesian paradigm, Doob’s Consistency Theo-

rem implies that a Bayesian believes in the existence of a value of evidence analogous

to a true likelihood ratio in the Frequentist paradigm. Finally, two approximations



xviii

to the value of evidence for the forensic identification of source problems are derived

relative to the existence of a true likelihood ratio.

The first approximation is derived as a result of the Bernstein-von Mises Theorem.

This Bernstein-von Mises approximation eliminates the determination of prior dis-

tributions for the parameters. Under suitable conditions, the Bernstein-von Mises

approximation converges in probability to the Bayes Factor as the size of the control

samples increases. However the Bernstein-von Mises approximation su↵ers from sim-

ilar computational issues as the Bayes Factor. The second approximation is derived

as a result of various theorems regarding the asymptotic properties of M-estimators.

This Neyman-Pearson approximation requires no prior distributions, and is generally

less computationally intractable. Under suitable conditions, the Neyman-Pearson

approximation converges in probability to the true likelihood ratio as the number

of control samples increases. In addition, the Neyman-Pearson approximation can

replace the Bayes Factor in the forensic identification of source problems, and result

in decisions that are approximately equivalent to using the Bayes Factor.
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CHAPTER 1

Introduction & Overview

1.1 Introduction

The forensic identification of source problem seeks an answer to the question of where

a collection of forensic evidence originated. The point of origin may be a person, as

is the case for DNA and handwriting evidence, or a specific object or collection of

objects, as is the case with firearms and glass evidence. This type of problem is

typically of interest to the criminal justice system. In the quest for the answer to this

problem, the evidence interpretation expert is expected to summarize the observed

evidence relative to two competing propositions, often referred to as the prosecution

and defense propositions, for how the evidence was generated. This can be done in a

number of di↵erent ways, but the most fully developed structure for solving this type

of problem is a Bayesian decision framework.

Under the Bayesian decision framework, the forensic statistician is tasked with pro-

viding the value of evidence as the summary of the observed evidence relative the two

competing hypotheses (as well as the necessary prior belief for the nuisance param-

eters). Traditionally, the value of evidence is given in the form of the Bayes Factor.

The Bayes Factor is used to convert the prior odds to posterior odds. The prior odds

summarizes the decision-maker’s relative personal belief concerning the validity of the

prosecution and defense hypotheses before observing the evidence. The value of evi-

dence then allows the decision-maker to update the personal prior belief following the
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observation of the evidence and arrive at the posterior odds concerning the relative

validity of the two hypotheses after observing the evidence.

Typically when considering forensic evidence, the forensic scientist is concerned with

source or sub-source level propositions or hypotheses, although activity level propo-

sitions might be considered in some cases. However, the court system is typically

concerned with o↵ense level propositions concerning the guilt or innocence of the

defendant (for a detailed description of the hierarchy of propositions see Cook et al.

[17] or the ENFSI guidelines [24]). The focus of this dissertation is on two di↵erent

classes of source level identification problems and the corresponding forms of the value

of evidence under each problem.

Historically, the forensic identification of source problems have been approached from

the perspective of Bayesian hypothesis testing to aid the final decision-making process.

Recently, there has been some push-back on the Bayesian decision-making process

in forensic science [47, 79]. The criticisms are that the prior odds belong to the

decision-maker, while the Bayes Factor belongs to the forensic expert, leading to an

invalid updating of the prior odds to arrive at the posterior odds for the decision-

maker [47]. Also, there has been a recent push in the United States to increase

the rigor of statistics in forensic science [58]. One of the main e↵orts towards this

goal, and one of the main areas of debate (see the virtual special issue in Science

and Justice entitled “Measuring and Reporting the Precision of Forensic Likelihood

Ratios” [9, 13, 18, 50, 54, 72, 74]), is characterizing the various aspects of uncertainty

in quantifying the value of evidence.
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1.2 Historical Review

Dating back to the 1970s and 1980s, there were a series of papers regarding a problem

in forensic science in which a window was broken to gain entry into a residence and

a suspect identified in relation to the crimes committed therein. On the suspect are

found fragments of glass whose source is unknown. The intention is to compare these

fragments to fragments of glass collected from the crime scene window to determine

whether they match. This comparison is made by way of the refractive index mea-

surement taken on each individual glass fragment. A solution to this problem, which

is an example of the forensic identification of source problem, was provided by (at

least) three authors during this time-frame, Lindley [46], Evett [25], and Grove [39].

The details of each solution will be discussed briefly below.

Lindley’s solution, detailed in his seminal paper “A Problem in Forensic Science” in

1977, is often referenced as the foundation of Bayesian model selection techniques for

general applications, and in particular for applications in forensic science. For a more

detailed historical discussion relating to Lindley’s solution, the interested reader is re-

ferred to Good [38]. To illustrate his technique in smooth mathematical form, Lindley

assumes that the refractive index measured on each of the glass fragments follows a

normal distribution with an unknown mean and a known variance [46]. Then the pa-

rameter for the mean is attached a normal distribution with known mean and variance

as a prior. Standard Bayesian techniques are used to show that the corresponding

normal densities can be used to form a Bayes Factor for deciding whether the mean

parameter for the unknown source glass fragments takes the same value as the mean

parameter for the glass fragments collected from the scene of the crime, or whether

they are di↵erent values [46]. Lindley then uses a clever transformation of variables

to arrive at a closed-form solution of the Bayes Factor under the (unrealistic) assump-

tion of normality. However, it should be noted that in the case of non-normality, a
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closed-form expression of the Bayes Factor often does not exist. Therefore, Lindley

suggests a Taylor series expansion for non-normal densities to cover this more realis-

tic setting [46], but this result in a numerical approximation (often very complicated

and nearly as intractable) of the Bayes Factor instead of an exact value. Nearing the

conclusion of this discussion, Lindley assumes that the identification of a common

source for the glass fragments implies the guilt of the accused suspect [46].

Lindley then compares his approach to the two-staged approach developed by Parker

in 1966 [56] and used by Evett in his 1977 paper “The Interpretation of Refractive

Index Measurements” which considers the same problem of comparing glass fragments

under the assumption of normality [25]. Initially, Evett’s approach consisted of two-

di↵erent stages. The first stage is a comparison stage under which the mean refractive

index for the glass with unknown source is compared to that of the glass from the

crime scene using a standard normal Frequentist hypothesis test [25]. If under the

first stage, the fragments are concluded to be dissimilar, the second stage is forgone.

However, if the fragments are concluded to be similar, the second stage consists of

determining the probability that the glass fragments at the scene of the crime would

be deemed similar to glass fragments found in the general population [25]. When

the probability of coincidence is smaller, greater significance should be placed on

the result obtained from the first stage [26]. Evett provides a series of follow-up

papers [26, 28, 29, 30] with generalizations of the result to make it more applicable to

casework where normality is often unrealistic. These solutions become more and more

computationally complex and intractable as the assumptions become more general

(and more practical).

The third approach to the forensic identification of source problem arrived a few short

years later than Lindley and Evett. Grove added his solution in his 1980 paper “The

Interpretation of Forensic Evidence using a Likelihood Ratio” which again considered
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the comparison of glass fragments under the assumptions of normality [39]. Grove

suggests that Lindley’s assumption that the mean parameter for the unknown source

evidence be attributed a prior distribution which is the same prior distribution as

the mean parameter for the crime scene evidence is unappealing to “orthodox non-

Bayesians” [39]. Grove’s solution is to consider replacing this parameter with its

maximum likelihood estimate in the Bayes Factor suggested by Lindley. Under various

simplifying assumptions, it can be shown that Grove’s likelihood ratio is quite similar

to Lindley’s Bayes Factor [39]. While Grove contributed to the advancement of the

solution techniques for the forensic identification of source problem, he admits that

these solutions are actually answering to the wrong question. The problem of interest

to the court system is on proving whether the accused is guilty of committing the

crime, and Grove shows that his likelihood ratio for determining whether the two

sets of glass fragments match does not provide any direct information regarding the

likelihood ratio for determining guilt/innocence [39].

It should be noted that this may be the point where the lines blurred between a Bayes

Factor and a likelihood ratio, and the two phrases started to be used interchange-

ably in forensic science. Grove’s likelihood ratio is somewhere in-between a “plug-in”

likelihood ratio, typically used in DNA applications [19, 14], and the Bayes Factor

presented by Lindley. Additionally, Seheult showed that Lindley’s Bayes Factor pro-

vides equivalent results to the traditional Neyman-Pearson hypothesis test (which

uses the likelihood ratio test statistic), further obscuring the di↵erence between the

two quantities. The di↵erences between the Bayes Factor and likelihood ratio are

presented in Section 3.3 along with various relationships between the two quanti-

ties, presented in Section 5. An interesting issue was first revealed by Shafer in his

commentary “Lindley’s Paradox” in 1982 [66]. Lindley’s paradox occurs when two

di↵erent methods for assessing the exact same evidence under the exact same circum-

stances provide opposing conclusions. This is precisely the result that Shafer shows
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for the Bayes Factor presented by Lindley and the two-stage approach presented by

Evett [25]. This di↵erence between the Bayes Factor and the two-stage approach oc-

curs when “the prior density under the alternative hypothesis is very di↵use relative

to the discriminating power of the evidence” [66].

Criticism from Lindley [46] of two-stage approach led many European researchers

associated with the Forensic Science Service to abandon the two-staged approach,

and research e↵orts shifted towards approximating the Bayesian solution presented

by Lindley (because of its intractability under practical assumptions). Even Evett

considered the Bayesian approach to the glass problem in his 1986 paper [27]. Evett’s

solution in this case takes the form of a “plug-in” likelihood ratio where estimates

of nuisance parameters calculated from background data are used in place of the

actual values for the parameters. Evett discloses in this paper that this solution is far

from optimal, and that further e↵orts were needed to improve the result [27]. Chan

and Aitken [16] also provide an estimate of the Bayes Factor, but using informative

kernel density estimates of prior distributions for the non-normal nuisance parameter

based on a set of training data. In this paper, the estimated Bayes Factors have

closed-form solutions in all of the scenarios considered. In order to evaluate the

performance of the estimated Bayes Factor, a simulation study was designed. When

the actual prior distribution for the nuisance parameter was non-normal, the kernel

density method performed better than using a normal prior density for the nuisance

parameter [16].

The methods described above, and many other similar methods, relied on the as-

sumptions that there was a large background database, or training set, available from

which reliable estimates of the associated parameters could be obtained. Issues with

these methods started surfacing in the presence of uncertainty in the background

population [6]. Due to this added complication, many ad-hoc solutions of the forensic
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identification of source problem surfaced [14]. As the number and range of methods

for quantifying the value of evidence increased, the call for further research to increase

the statistical rigor of these methods escalated [51, 24, 58].

1.3 Contributions & Chapter Summaries

To begin, a review of standard results from multivariate statistics, Bayesian statistics,

and Markov Chain Monte Carlo methods is provided. Most of the preliminary results

needed to complete the proofs in this dissertation are provided in Chapter 2.

In Chapter 3, the forensic identification of source problem is considered under an

institutional decision process [12, 35], which attempts to avoid any issues with the

current process related to the mismatch of the creator of Bayes Factor to the creator of

the prior and posterior odds. Also, in Chapter 3, the forensic identification of source

problem is developed under a Bayesian model selection framework, as opposed to hy-

pothesis testing, since the assumptions of the problem have become more generalized

since the initial papers by Lindley [46], Evett [25], and Grove [39]. It should also be

of note that historically, the forensic identification of source problem considered the

“matching” of two sets of glass fragments to a common, but unknown, source. This

is what will be called the common source problem in Section 3.1. In these initial

problems, the source of the glass fragments was considered to be a random source

typical of the background population. An alternative approach to the problem is pro-

vided in Section 3.2, called the specific source problem. In this problem, the source of

the glass fragments would be considered a fixed source related to the specific source

under investigation. The distinction between the common source and specific source

problems is important because the treatment of the two problems is di↵erent: the

forensic hypotheses, the sampling models, the Bayes Factor, and the likelihood ratio



8

are all di↵erent between the two identification of source problems.

In Chapter 4, a single asymptotic approximation of the standard error associated

with quantifying the common source and specific source Bayes Factors using Monte

Carlo integration is derived. While many other possible numerical approximation

techniques for quantifying the Bayes Factor have been proposed, see for example

Kass and Raftery [44], Han and Carlin [41], and Carlin and Chib [15], Monte Carlo

integration was chosen since it provided the most straight-forward method of quan-

tifying the numerical standard error. A simulation study is designed to explore the

reasonableness of these approximate Monte Carlo standard errors. In addition, the

Bayes Factors were computed using a number of di↵erent choices for prior distribu-

tions on the parameters. It is a well-known issue that Bayes Factors can be sensitive

to the choice of prior distribution for the associated parameters [44]. This simulation

study revealed that the specific source Bayes Factors are much more sensitive to this

choice than the common source Bayes Factors, which is an issue since the specific

source Bayes Factor is more appropriate for use in the court system. Therefore, the

conclusion of Chapter 4 is that methods less-sensitive to the subjective prior choice

be developed for use in the court system.

In Chapter 5, advancements are made towards developing methods which are less

sensitive to the subjective choice of prior. First, two alternative forms for the Bayes

Factor are developed which relate the Bayes Factor to the likelihood ratio function.

Then using these alternative forms and Doob’s Consistency Theorem, it can be shown

that for almost-every prior parameter value, and for almost-every infinite sequence

of data, the Bayes Factor converges to the likelihood ratio. This result implies that

a number of other results can reasonably be applied to the forensic identification of

source problems.

As a consequence, in Chapter 6, the Bernstein-von Mises Theorem is used to propose
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an approximation to the Bayes Factor which reduces the sensitivity of the resulting

value of evidence to the choice of prior distributions. Furthermore, it will be shown

that the di↵erence between this Bernstein-von Mises approximation and the Bayes

Factor will converge to zero as the amount of relevant evidence gathered increases, see

Section 6.1. However, this approximation does not avoid the use of computationally

intense MCMC techniques. To avoid these techniques, one could use the Laplace ap-

proximation of the Bayes Factor, see Section 6.3 for details. Still, this approximation

is lacking since it has the potential for sensitivity to the choice of subjective prior

distributions.

Finally, the Neyman-Pearson approximation is presented in Chapter 7. This approx-

imation requires no MCMC techniques and avoids any specification of prior distri-

butions. Under reasonable circumstances, the Neyman-Pearson approximation will

converge to the true value of the likelihood ratio using a Delta method technique and

properties of M-estimators. This Neyman-Pearson approximation can also replace the

Bayes Factor in the Bayesian decision-making process, and lead to an approximately

equivalent result with less computational hassle.

Related to the topic of quantifying uncertainty in the value of evidence, there are

many researchers who are exploring the use of confidence or credible intervals for the

computed likelihood ratio [9, 13, 18, 50, 54, 72, 74]. In Ommen et al. [54], it is argued

that if an interval is use to characterize some aspect of uncertainty in a computed

value of evidence, then a single-number summary of that interval should be available

from which a logical and coherent decision is possible. In Chapter 8, a method of

computing credible intervals for the likelihood ratio is derived from which the Bayes

Factor (or an approximation of it, including the Neyman-Pearson approximation) is

the natural choice for the summary of the interval to use as the value of evidence in

the Bayesian decision-making process.
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CHAPTER 2

Introductory Results from Statistics

The purpose of this chapter is to introduce a common notation to be used through-

out this dissertation. Additionally, the following sections will provide definitions

and results from standard multivariate and Bayesian statistics, as well as asymp-

totic statistics, empirical process theory, and Markov Chain Monte Carlo (MCMC)

methods that will be used and referenced throughout this dissertation.

2.1 Multivariate Statistics

In order to define the models and distributions needed to calculate the value of evi-

dence, we will need some results from multivariate statistics [43, 33, 4]. The follow-

ing notation will be used to denote the expected value of a random column vector

X =

✓
X1 X2 · · · X

k

◆
T

,

E[X] =

✓
E[X1] E[X2] · · · E[X

k

]

◆
T

⌘
✓
µ1 µ2 · · · µ

k

◆
T

= µ, (2.1)

where E[X
i

] =
R
x
i

dF (x
i

) and F (x
i

) is the probability distribution forX
i

with respect

to an appropriate dominating measure �. Note that F is typically referred to as the

cumulative distribution function for the random variable X
i

. The covariance matrix
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for X will be denoted by

⌃ ⌘ E[(X � µ)(X � µ)T ] (2.2)

=

0

BBBBBBB@

Var[X1] Cov(X1, X2) · · · Cov(X1, Xk

)

Cov(X1, X2) Var[X2] · · · Cov(X2, Xk

)

...
...

. . .
...

Cov(X1, Xk

) Cov(X2, Xk

) · · · Var[X
k

]

1

CCCCCCCA

(2.3)

where Var[X
i

] ⌘ E[(X
i

� µ
i

)2] and Cov(X
i

, X
j

) ⌘ E[(X
i

� µ
i

)(X
j

� µ
j

)]. The

corresponding formula for the covariance of two random vectors X and Y with cor-

responding means µ
x

and µ
y

is

Cov(X, Y ) = E[(X � µ
x

)(Y � µ
y

)T ] (2.4)

Many of the datasets used in the examples will be modeled using multivariate normal

distributions. Following Ferguson [31], the multivariate normal distribution is defined

in Definition 2.1 below. The multivariate normal distribution for random vectors is

the analog to the univariate normal distribution [31].

Definition 2.1: The k-variate random column vectorX =
⇣
X1 X2 · · · X

k

⌘
T

has k-variate normal distribution if, for all vectors b 2 Rk, then U = bTX

is either univariate normal or constant.

A k-variate normal vector X with mean vector µ and covariance matrix ⌃ will be

denoted byX ⇠ N
k

(µ,⌃). It should be noted that using this definition, a multivariate

normal random vector does not always have a proper probability density function

defined. When the probability density function exists (i.e. ⌃ is positive definite), it

is given by

f(x|µ,⌃) = (2⇡)�r/2|⌃|�1/2e�1/2(x�µ)T⌃�1(x�µ) (2.5)

for x 2 Rk, where |⌃| denotes the determinant of the covariance matrix.
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Theorem 2.1 (The Cramer-Wold Device):

A random k-dimensional vector X is completely determined by its one-

dimensional linear projections, ↵TX, for any given vector ↵ 2 Rk.

The Cramer-Wold device has been reproduced from Flury [33], and in combination

with Definition 2.1 for multivariate normality results in the following equivalent def-

inition of multivariate normal random vectors from Izenman [43]. The following def-

inition will be useful in determining the distribution of vectors which are composed

of other multivariate normal random vectors, which will be the case for certain types

of forensic evidence considered as examples in the following Chapters.

Definition 2.2: The random k-dimensional vectorX has a k-variate nor-

mal distribution if, and only if, every linear functional of X has a univari-

ate normal distribution.

Consider a column vector Y =

✓
Y T

1 Y T

2 · · · Y T

n

◆
T

in which each individual

column vector Y
i

composing this larger vector is distributed as a multivariate nor-

mal

Y
i

iid⇠ N
k

(µ,⌃)

for i = 1, 2, · · · , n. Then under Definition 2.2, the larger vector Y will also have a

multivariate normal distribution given by

Y =

0

BBBB@

Y1

Y2

...

Y
n

1

CCCCA
⇠ N

kn

0

BBBBB@

0

BBBB@

µ

µ
...

µ

1

CCCCA
,

0

BBBBB@

⌃ 0
k⇥k

· · · 0
k⇥k

0
k⇥k

⌃
. . .

...
...

. . . . . . 0
k⇥k

0
k⇥k

· · · 0
k⇥k

⌃

1

CCCCCA

1

CCCCCA
. (2.6)

The derivation of this well-known result from Miller [49] is reproduced for clarity

below.

Derivation (2.6): Since each of the Y
i

is normally distributed, by Defin-

tion 2.1 and the Cramer-Wold Device, Y is also normally distributed since

any linear projection of Y will be univariate normal. We just need to find
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its mean vector and covariance matrix. Clearly, the expected value will

be the kn-dimensional column vector

E[Y ] =

0

BBBB@

E[Y1]

E[Y2]
...

E[Y
n

]

1

CCCCA
=

0

BBBB@

µ

µ
...

µ

1

CCCCA
.

The Var[Y
i

] = ⌃, so we need to find Cov(Y
i

, Y
j

).

Cov(Y
i

, Y
j

) = E[(Y
i

� µ)(Y
j

� µ)T ]

= E[Y
i

Y T

j

� µY T

j

� Y
i

µT + µµT ]

= E[Y
i

Y T

j

]� µE[Y T

j

]� E[Y
i

]µT + E[µµT ]

= E[Y
i

Y T

j

]� µµT � µµT + E[µµT ]

= E[Y
i

Y T

j

]� µµT � µµT + µµT

= E[Y
i

Y T

j

]� µµT

= E[Y
i

] E[Y T

j

]� µµT

= µµT � µµT = 0
k⇥k

Another typical model that will be used for defining the evidence in forensic science

is the hierarchical simple random e↵ects model as given by Miller [49]. Let y
ij

denote

the k-dimensional column vector of measurements on the jth component from the ith

source for j = 1, 2, · · · ,m
i

and i = 1, 2, ..., n. Then the hierarchical simple random

e↵ects model is given by

y
ij

= µ
a

+ a
i

+ w
ij

where a
i

iid⇠ N
k

(0
k

,⌃
a

) and w
ij

iid⇠ N
k

(0
k

,⌃
w

) are independent from each other. The

vector µ
a

denotes the overall mean of the measurements from all of the sources,

⌃
a

denotes the between-source covariance matrix, and ⌃
w

denotes the within-source

covariance matrix.

It will be useful to think about the evidence which follows the hierarchical simple ran-

dom e↵ects model as a combined multivariate normal random vector. The following
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theorem (a corollary to the results provided in Miller [49]) describes the properties of

this combined vector.

Theorem 2.2:

If y
ij

follows a simple random e↵ects model, then the km
i

-dimensional

column vector Y
i

=
⇣
yT
i1 yT

i2 · · · yT
imi

⌘
T

for i = 1, 2, · · · , n, has the

following distribution:

Y
i

⇠ N
mi (µc

,⌃
c

)

where ⌃
c

=

0

BBBBB@

⌃
a

+ ⌃
w

⌃
a

· · · ⌃
a

⌃
a

⌃
a

+ ⌃
w

. . .
...

...
. . . . . . ⌃

a

⌃
a

· · · ⌃
a

⌃
a

+ ⌃
w

1

CCCCCA
and µ

c

=

0

BBBB@

µ
a

µ
a

...

µ
a

1

CCCCA
.

Proof: First, consider y
ij

= µ
a

+a
i

+w
ij

. Since y
ij

is a linear combination of normally

distributed random variables, then y
ij

is also normally distributed by Definition 2.1.

We need to find the mean vector and the covariance matrix.

E[y
ij

] = E[µ
a

+ a
i

+ w
ij

] = µ
a

+ E[a
i

] + E[w
ij

] = µ
a

+ 0
k

+ 0
k

= µ
a

Var[y
ij

] = Var[µ
a

+ a
i

+ w
ij

] = 0
k⇥k

+Var[a
i

] + Var[w
ij

] = ⌃
a

+ ⌃
w

For Y
i

=

✓
yT
i1 yT

i2 · · · yT
imi

◆
T

for i = 1, 2, · · · , n, since each of the y
ij

is normally

distributed, then by Definition 2.1, Y
i

is also normally distributed since any linear

projection of Y
i

will be univariate normal. We just need to find its mean vector, µ
c

,

and covariance matrix, ⌃
c

.

µ
c

= E[Y
i

] =

0

BBBB@

E[y
i1]

E[y
i2]
...

E[y
imi ]

1

CCCCA
=

0

BBBB@

µ
a

µ
a

...

µ
a

1

CCCCA

Cov(y
ij

, y
ik

) = E[(y
ij

� µ
a

)(y
ik

� µ
a

)T ]

= E[(µ
a

+ a
i

+ w
ij

� µ
a

)(µ
a

+ a
i

+ w
ik

� µ
a

)T ]

= E[(a
i

+ w
ij

)(a
i

+ w
ik

)T ]
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= E[a
i

aT
i

+ a
i

wT

ik

+ w
ij

aT
i

+ w
ij

wT

ik

]

= E[a
i

aT
i

] + E[a
i

wT

ik

] + E[w
ij

aT
i

] + E[w
ij

wT

ik

]

= Var[a
i

] + E[a
i

] E[wT

ik

] + E[w
ij

] E[aT
i

] + E[w
ij

] E[wT

ik

]

= ⌃
a

+ 0
k

· 0T
k

+ 0
k

· 0T
k

+ 0
k

· 0T
k

= ⌃
a

Therefore, using Equation 2.2 we have that

⌃
c

=

0

BBBBB@

⌃
a

+ ⌃
w

⌃
a

· · · ⌃
a

⌃
a

⌃
a

+ ⌃
w

. . .
...

...
. . . . . . ⌃

a

⌃
a

· · · ⌃
a

⌃
a

+ ⌃
w

1

CCCCCA
.

⌅

Another interesting result involving the multivariate normal distribution is its rela-

tionship to the Wishart distribution. The Wishart distribution is a distribution for

random matrices and is the multivariate analog to the univarite Chi-Squared distri-

bution [43]. The definition of a Wishart random matrix is reproduced from Izenman

[43] below.

Definition 2.3: Given n independent random vectors X
i

where X
i

⇠
N

k

(0,⌃) for i = 1, 2, . . . , n with n � k, the random positive-definite,

symmetric, k ⇥ k matrix W =
P

n

i=1 Xi

XT

i

has a Wishart distribution

with n degrees of freedom and associated center matrix ⌃. This will be

denoted by W ⇠ W
k

(n,⌃).

It should be noted that if n < k the probability density function for W does not

exist. A matrix follows the inverse Wishart distribution if its inverse follows a Wishart

distribution [4].

Definition 2.4: Given W ⇠ W
r

(n,⌃) and B = W�1, then the k⇥k pos-

itive definite matrix B follows the inverse Wishart distribution, denoted
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B ⇠ W�1
k

(n,⌃�1) where ⌃�1 is a positive definite k⇥k matrix and n � k.

Similar to the Wishart distribution, if n < k the probability density function for B

does not exist. When the probability density function does exist, it is given by

f(b|n,⌃�1) =
|⌃�1|n/2 |b|(n+k+1)/2 e�1/2 tr(⌃�1

b

�1)

2nk/2 �
k

(n
2
)

(2.7)

for b a k ⇥ k positive-definite symmetric matrix, and where �
k

(•) is the multivariate

Gamma function

�
k

(•) = ⇡k(k�1)/4

kY

i�1

�

✓
•+ 1� i

2

◆
. (2.8)

Both the multivariate normal and inverse Wishart distributions will be useful as prior

distributions (prior distributions will be defined in the following subsection). Other

typical distributions used in forensic science include the multinomial and Dirichlet

distributions. Details of these distributions can be found in Wasserman [78].

2.2 Bayesian Statistics

Currently in forensic science there are three di↵erent frameworks that are considered,

the classical or Frequentist framework, the Bayesian framework, and the Likelihood

framework. These distinct frameworks each use probability to characterize di↵erent

types of uncertainty within the forensic identification of source problems. This section

focuses on the Bayesian probabilistic framework since it is fully developed for the class

of statistical problems in forensic science and frequently recommended [24, 51, 2].

Following the typical conventions of the Bayesian framework in forensic science, P

will be used to denote the probability measure characterizing all types of uncertainty.

The main tool of Bayesian statistics is Bayes Theorem. For events A and B, the
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Bayes Rule states that

P(A|B) =
P(B|A) P(A)

P(B)
(2.9)

where P(A) denotes the probability of the event A occurring.

The following section will define a set of standard notation to be used within the

Bayesian framework. The underlying probability space for the data, denoted (⌦,A, P0),

consists of the sample space ⌦, its corresponding �-field A, and the probability mea-

sure P0. Let x1,x2, . . . ,xn

denote an independent and identically distributed set of

observations of a random vector X defined on this probability space. For this reason,

P0 is often referred to as the sampling distribution ofX. To be clear, the p-dimensional

random vector X is a measurable function from (⌦,A, P0) into (Rp,B,�) where Rp

represents the p-dimensional vectors of real numbers, B its corresponding �-field, and

� is an appropriate dominating measure. We will denote the cumulative distribution

function associated with X under P0 as F0 such that F0(x) = P0(! 2 ⌦ : X(!)  x)

for any x 2 R. Recall from Dudley [22] and Ash [5] that there is a one-to-one mapping

between P0 and F0 by means of the Caratheodory Extension Theorem. When F0 is

absolutely continuous with respect to �, then the corresponding probability density

function exists, and is denoted f0 [5]. Typically, the actual sampling distribution, P0,

of the data will be unknown (and correspondingly, F0 is unknown).

Suppose that the unknown sampling distribution for the data is assumed to be in a

class of probability measures, P , such that the indexing parameter ✓ is an element

of a finite dimensional vector space ⇥ ✓ Rp, given by P = {P
✓

: ✓ 2 ⇥}. Therefore,

there exists a ✓ 2 ⇥ such that P
✓

= P0. It may be preferable to work with the class

of cumulative distribution functions corresponding to P , denoted F = {F
✓

: ✓ 2 ⇥}

in certain situations. In many cases, P is only implicitly defined by explicit definition

of F . In most applications, F will be chosen so that the corresponding probability

density functions exist. Let f(x|✓) denote the probability density function, when it



18

exists, corresponding to the distribution function F
✓

.

First, consider some basic definitions from Robert [59]. In the Bayesian paradigm,

any uncertainty about the values for the parameters should be characterized using

a measure of belief. A belief is a formal measure that follows the basic axioms of

probability. There are two basic types of measures of belief, a prior belief and a

posterior belief. In this case, since the parameter space ⇥ is a finite-dimensional

Euclidean vector space, then any probability measure on ⇥ will be equivalent to

the corresponding cumulative distribution function. Therefore, we will adopt the

standard Bayesian abuse of notation and treat these two measures synonymously

[59].

Definition 2.5: The prior distribution for the parameter is the probabil-

ity measure ⇧(✓) on the parameter space ⇥, and when its corresponding

density function exists it will be denoted ⇡(✓).

The prior distribution is considered the belief about the value of the parameter before

observing any data, and is often thought of as the unconditional distribution on the

parameter space since it doesn’t depend on the observation of any data [59]. On a

similar note, F
✓

is the conditional distribution on the sample space since it depends on

the value of ✓ in the parameter space. The unconditional distribution on the sample

space (which doesn’t depend on ✓) is often referred to as the marginal distribution

for the data [59].

Definition 2.6: When f(x|✓) exists, the marginal density of X is

f(x) =

Z

⇥

f(x|✓) d⇧(✓)

corresponding to the marginal distribution of X denoted F (with corre-

sponding probability measure P
x

).

Another name for the marginal distribution is the prior predictive distribution. This
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name indicates more explicitly that the unconditional distribution for the data is

implicitly dependent on the prior distribution for the indexing parameter. If the

prior distribution for the parameter were to change, then so would the marginal

distribution for the data.

Next, the posterior measure on the parameter space can be explicitly defined using

Bayes Rule [59]. Recall from Equation 2.9 that the conditional probability of an event

A given an event B is the conditional probability of B given A times the probability

of A divided by the probability of B. In a similar fashion, the posterior measure of ✓

given an observation of the data is defined in terms of the probability measure for the

data, the prior measure for the parameter, and the marginal measure for the data.

Definition 2.7: The posterior distribution for the parameter is the prob-

ability measure ⇧(✓) on the parameter space ⇥ conditional on the obser-

vation x given by

⇧(✓|x) = F
✓

(x) ⇧(✓)

F (x)
.

When the densities f(x|✓), ⇡(✓), and f(x) exist, then the posterior density

of ✓ given x is

⇡(✓|x) = f(x|✓) ⇡(✓)
f(x)

.

The posterior distribution is often thought of as the updated belief about the value

of the parameter after the observation of the data [59]. Alternatively, it can be

considered the conditional distribution on the parameter space given the data that has

been observed. Another conditional distribution concerning the data is the posterior

predictive distribution. The posterior predictive distribution can be thought of as

the conditional distribution of potentially unobserved data given the observed data.

Definition 2.8: Suppose that x and y are independent observations of
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a random variable X with respect to the sampling distribution F
✓

, then

the posterior predictive density of y given x is

f(y|x) =
Z

⇥

f(y|✓) d⇧(✓|x).

Analogous to the dependence of the prior predictive distribution on the prior dis-

tribution, the posterior predictive distribution depends on the posterior distribution

for the parameters (and therefore, the prior distribution for the parameters, as well).

Again, if the prior distribution for the parameter were to change, then the posterior

predictive distribution for the unobserved data given the observed data would also

change. The posterior predictive density can take the alternate form in terms of the

prior density for the parameter ✓ as well as the sampling densities for both x and y

[59].

f(y|x) =

Z

⇥

f(y|✓)f(x|✓) d⇧(✓)
Z

⇥

f(x|✓) d⇧(✓)
(2.10)

2.3 Asymptotic Statistics

A majority of the results in this section will be based upon di↵erent concepts of

convergence. A number of good references for these di↵erent forms of convergence

include van der Vaart [75] and Serfling [65]. The definition of the three most commonly

used forms of convergence are provided below. The strongest of these convergences

is most familiar to people and is called almost sure convergence.

Definition 2.9: A sequence of random vectors X
n

defined on (⌦,A, P ) is

said to converge almost surely to the random vectorX defined on (⌦,A, P )

if as n ! 1

P (! : lim
n!1

X
n

(!) = X(!)) = 1 or P (! : lim
n!1

||X
n

(!)�X(!)|| = 0) = 1
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and will be denoted

X
n

as�! X.

Almost sure convergence can also be referred to as convergence with probability one,

strong convergence, or convergence almost everywhere. One of the most useful theo-

rems involving almost sure convergence is called the Strong Law of Large Numbers

(SLLN). It says that the average of a set of random vectors will converge almost surely

to its expectation as the number of random vectors in the set increases without bound.

The result, reproduced from Serfling [65], is formalized below.

Theorem 2.3 (Strong Law of Large Numbers):

Let X1, X2, . . . , Xn

be an independent and identically distributed random

variables with expected value E[X
i

]. Then as n ! 1

X
n

⌘ 1

n

nX

i=1

X
i

as�! E[X
i

]

holds if and only if E[X
i

] is a finite constant.

More general statements of the SLLN which relax the assumptions of independence

and identical distributions can be found in Serfling [65] among others, but will not

typically be used for the results in this dissertation. The SLLN will be used to prove

consistency properties of Monte Carlo integration methods in Section 2.4. The next

form of convergence is called convergence in probability.

Definition 2.10: A sequence of random vectors X
n

defined on (⌦,A, P )

is said to converge in probability to the random vector X defined on

(⌦,A, P ) if as n ! 1

lim
n!1

P (! : ||X
n

(!)�X(!)|| > ") = 0, 8 " > 0

or

lim
n!1

P (! : ||X
n

(!)�X(!)|| < ") = 1, 8 " > 0
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and it will be denoted by

X
n

P�! X.

A similar result to the SLLN will be presented using convergence in distribution. It

is called the Weak Law of Large Numbers (WLLN), and will be formalized in the

following theorem [65].

Theorem 2.4 (Weak Law of Large Numbers):

Let X1, X2, . . . , Xn

be an independent and identically distributed random

variables with expected value E[X
i

]. Then as n ! 1

X
n

⌘ 1

n

nX

i=1

X
i

P�! E[X
i

]

holds if and only if E[X
i

] is a finite constant.

More general statements of the WLLN which relax the assumptions of independence

and identical distributions can be found in Serfling [65] among others, but will not

be used for the results in this dissertation.

It will be useful for the proofs of the theorems provided in the remainder of the

dissertation to provide a short-hand notation for certain sequences with specific con-

vergence in probability properties. Following the notation of van der Vaart [75] and

Serfling [65], denote a sequence which converges in probability (with respect to the

probability measure P ) to zero by o
P

(1) and a sequence which is bounded in proba-

bility (with respect to the probability measure P ) by O
P

(1). For example, let U
n

and

V
n

be sequences of random variables, then as n ! 1

U
n

= o
P

(1) if and only if U
n

P�! 0

and

U
n

= o
P

(V
n

) if and only if U
n

/V
n

P�! 0.

Similarly, for every " > 0, there exists 0  M  1 and 0  N  1 such that

U
n

= O
P

(1) if and only if P (|U
n

| > M) < ", 8n > N
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and

U
n

= O
P

(V
n

) if and only if P (|U
n

/V
n

| > M) < ", 8n > N.

It should be noted that this notation for stochastic, or probabilistic, convergence is

di↵erence from the ‘little-o’ and ’big-O’ notation for functional orders of magnitude,

see Serfling [65].

Next, the weakest form of convergence under consideration is convergence in distri-

bution.

Definition 2.11: A sequence of random vectorsX
n

defined on (⌦
n

,A
n

, P
n

)

is said to converge in distribution to the random vector X defined on

(⌦0,A0, P0) if as n ! 1

lim
n!1

P
n

(X
n

< x) = P0(X < x), 8 continuity points x under P0

and, if X1, . . . , Xn

, and X have corresponding distribution functions

F1, . . . , Fn

, and F

lim
n!1

F
n

(x) = F (x), 8 continuity points x of F,

and it is denoted by

X
n

d�! X or X
n

 X.

Convergence in distribution can also be referred to as weak convergence or convergence

in law. There are many equivalent definitions of convergence in distribution which

are given in the Portmanteau Theorem of van der Vaart [75] and reproduced in the

following theorem.

Theorem 2.5 (Portmanteau):

For any random vectors X
n

and X on (⌦,A, P ), the following statements

are equivalent:
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1. P (X
n

 x) ! P (X  x) 8 continuity points x of x 7! P (X  x);

2. E[f(X
n

)] ! E[f(X)] 8 bounded continuous functions f ;

3. E[f(X
n

)] ! E[f(X)] 8 bounded Lipschitz functions f ;

4. lim inf E[f(X
n

)] � E[f(X)] 8 non-negative continuous functions f ;

5. lim inf P (X
n

2 G) � P (X 2 G) 8 open set G;

6. lim supP (X
n

2 F )  P (X 2 F ) 8 closed set F ;

7. P (X
n

2 B) ! P (X 2 B) 8 Borel set B such that P (X 2 �B) = 0

where �B is the boundary of B.

For more general versions of the Portmanteau Theorem using outer- and inner-

probability, please see van der Vaart and Wellner [76]. If a sequence converges in

distribution, then that sequence is bounded in probability [65]. One of the most im-

portant results involving convergence in distribution is the Central Limit Theorem

(CLT). The CLT provides the conditions under which a sequence of random vec-

tors has an approximately normal distribution. The formal result is reproduced from

Serfling [65] below.

Theorem 2.6 (Central Limit Theorem):

Let X1, X2, . . . , Xn

be an independent and identically distributed random

sample with finite expected value µ and covariance matrix ⌃. Then as

n ! 1
p
n
�
X

n

� µ
�
 N

k

(0,⌃).

Alternatively, this may be denoted X
n

= AN
k

�
µ, 1

n

⌃
�
.

More general versions of the CLT are provided in Serfling [65]. The relationship

between the three types of convergence can be illustrated in the following result from

van der Vaart [75]:
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Theorem 2.7 (Relationship between Modes of Convergence):

Let X
n

and X be random vectors, then as n ! 1

1. X
n

as�! X implies X
n

P�! X

2. X
n

P�! X implies X
n

 X

The next two results (reproduced from van der Vaart [75]) apply regardless of which

type of convergence is being used. These theorems play a large role in proving many

major and minor results throughout the remainder of the dissertation. The first

result, the Continuous Mapping Theorem (CMT), allows the convergence properties

of a sequence of random vectors to extend to continuous functions of the random

vectors. The next result, Slutsky’s Theorem, considers the convergence properties

of a sequence of random vectors resulting from combining two di↵erent converging

sequences of random vectors. Slutsky’s Theorem can be viewed as a direct result of

the CMT.

Theorem 2.8 (Continuous Mapping Theorem):

Let g : Rk 7! Rm be a continuous function at every point of a set C such

that P (X 2 C) = 1 and let X
n

and X be random vectors. If X
n

! X,

then as n ! 1
g(X

n

) ! g(X)

where the convergence can be in any manner (almost sure, in probability,

or in distribution).

Theorem 2.9 (Slutsky’s Theorem):

Let X
n

, X, and Y
n

be random variables and let c be a constant. If X
n

! X

and Y
n

! c, then as n ! 1

1. X
n

+ Y
n

! X + c

2. Y
n

X
n

! cX

3. Y �1
n

X
n

! c�1X, provided that c 6= 0

where the convergence can be in any manner (almost sure, in probability,

or in distribution).
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The next two results provide the conditions under which a sequence of (Bayesian)

posterior probability measures converges to a fixed measure. These results are im-

portant since, under the Bayesian setting, the recommended practice is to base all

inferences about unknown parameters on the posterior distribution for that param-

eter. The first result which stems from Doob in 1948 [75] is a completely Bayesian

result, whereas the second result is a mixture of Bayesian and Frequentist ideas. The

following statement of Doob’s Consistency Theorem is from Ghosal and van der Vaart

[37] and van der Vaart [75]. Doob’s Consistency Theorem will be used in Chapter 5

to show, in most settings, that a Bayesian believes that an analog to the Frequentist

likelihood ratio exists.

First, some notational concepts will be presented to facilitate the understanding of

the theorem assumptions. Let (⇥, C,⇧0) denote the parameter space, where ⇧0 is

referred to as the prior probability measure on ⇥. Let x1, x2, . . . , xn

be an independent

and identically distributed sequence of observations of a random variable X on the

probability space (X ,A, P
✓

), where P
✓

is the conditional measure on X given ✓ 2

⇥. The condition that that P
✓

6= P
✓

0 whenever ✓ 6= ✓0 means that the probability

measure P
✓

is identifiable. Then, let ⇧
n

denote the sequence of posterior measures on

(⇥, C) given the observation of the sequence x1, x2, . . . , xn

for n = 1, 2, . . . ,1. For a

sequence of posterior measures to be strongly consistent under ✓, it means that the

posterior measure converges in distribution to a measure �
✓

which is degenerate at

✓ for P1
✓

-almost every sequence x1, x2, . . . ⌘ x1 [75], where P1
✓

is the limiting joint

probability measure on the product space (X1,A1) where X1 denotes the infinite

Cartesian product of the sample space and A1 the infinite Cartesian product of the

corresponding �-fields. In terms of the probability measures, strong consistency of

posterior measures means that

P1
✓

(x1 : ⇧
n

(✓
n

|x1, x2, . . . , xn

) �
✓

) = 1. (2.11)
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Theorem 2.10 (Doob’s Consistency Theorem):

Suppose that the sample space (X ,A) is a subset of Euclidean space with

its Borel sigma-field. Suppose that the random vectors X1, · · · , Xn

are in-

dependent and identically distributed according to the probability measure

P
✓

, and that P
✓

6= P
✓

0 whenever ✓ 6= ✓0. Then for every prior probability

measure ⇧ on ⇥ the sequence of posterior measures is strongly consistent

for ⇧-almost every ✓.

It is important to note that the Doob’s Consistency Theorem is a fully Bayesian result

since the parameter ✓ has an associated distribution characterizing the probability for

each possible value this parameter could take. In addition, the degenerate measure to

which the posterior distribution of ✓ converges is considered a random measure with

respect to the prior distribution on ✓. In the Frequentist paradigm, the parameter ✓

takes the fixed, non-random value ✓0, and it is the distribution given this fixed value of

✓ which generated the observed data. This is the view taken for the statement of the

Bernstein-von Mises Theorem below which is restated from van der Vaart [75]. The

Bernstein-von Mises Theorem will be used in Chapter 6 and Chapter 8 to motivate

point-based and interval-based estimations of the value of forensic evidence.

Theorem 2.11 (Bernstein-von Mises Theorem):

Let the experiment (P
✓

: ✓ 2 ⇥) be di↵erentiable in quadratic mean at

✓0 with nonsingular Fisher information matrix I
✓0, and suppose that for

every " > 0 there exists a sequence of tests �
n

such that

P n

✓0
(�

n

) ! 0 and sup
||✓�✓0||�"

P n

✓

(1� �
n

) ! 0.

Furthermore, let the prior measure be absolutely continuous in a neighbor-

hood of ✓0 with a continuous positive density at ✓0. Then the corresponding

posterior distributions satisfy

||Pp
n(⇥n�✓0)|X1,··· ,Xn

�N(�
n,✓0 , I

�1
✓0

)||
P

n
✓0�! 0.
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Please refer to van der Vaart [75] for a detailed proof of this theorem.

First, the assumptions of the theorem and the notation are discussed. In the context

above, the experiment notation (P
✓

: ✓ 2 ⇥) means that P is a collection of probability

measures on the space (X ,A) indexed by the parameter ✓ which ranges over ⇥ ✓ Rk,

and that P
✓

has the corresponding density function p
✓

with respect to the measure

µ. It is assumed that X1, . . . , Xn

is a random sample from the distribution P
✓0 . An

experiment (P
✓

: ✓ 2 ⇥) is di↵erentiable in quadratic mean if there exists a measurable

vector-valued function ˙̀
✓0 such that

Z 
p
p
✓

�p
p
✓0 �

1

2
(✓ � ✓0)

T ˙̀
✓0

p
p
✓0

�2
dµ = o(||✓ � ✓0||2)

as ✓ ! ✓0 [75]. Please see Lemma 7.6 of van der Vaart [75] for conditions under

which an experiment is di↵erentiable in quadratic mean. The next set of assumptions

means that there exists a sequence of estimators of ✓0 (denoted �n

) that is uniformly

consistent on ⇥. For a detailed description of this assumption and for conditions

under which this assumption is met, please see Section 10 of van der Vaart, especially

Lemmas 10.4 and 10.6 [75]. Finally, the last assumption is that the prior measure

is absolutely continuous in a neighborhood of the true value of the parameter. A

measure µ is absolutely continuous with respect to a measure � if �(A) = 0 implies

that µ(A) = 0 for every measurable set A [75].

Next, the final results of the theorem and the corresponding notation are discussed

to facilitate further understanding. The notation Pp
n(⇥n�✓0)|X1,··· ,Xn

refers to the

posterior distribution of the rescaled parameter
p
n(⇥

n

� ✓0) given X1, · · · , Xn

and

N(�
n,✓0 , I

�1
✓0

) is the distribution of a normal random variable with mean �
n,✓0 and

covariance matrix I�1
✓0

, where�
n,✓0 is the locally su�cient statistic [75] for the rescaled

version of the parameter and I�1
✓0

is the inverse Fisher’s information matrix. It should

be noted that �
n,✓0 can be replaced by any consistent estimator for the rescaled
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parameter [75]. There is also an equivalent result to the Bernstein von-Mises theorem

given in van der Vaart which considers the posterior distribution of the unscaled

parameter. That result is given by

���
���⇧

n

�
⇥

n

|X1, · · · , Xn

�
�N

⇣
✓̂
n

, 1
n

I�1
✓0

⌘ ���
���
TV

P

n
✓0�! 0. (2.12)

Finally, the metric || · ||
TV

denotes the total variation norm (see van der Vaart [75] or

van de Geer [73]). For two measures P and Q on (X ,A), the total variation distance

between P and Q is given by ||P �Q||
TV

= sup
A2A |P (A)�Q(A)|.

While the previous two theorems consider convergence results related to Bayesian pos-

terior distributions, the following two theorems consider asymptotic results related to

M-estimation. Using methods based on M-estimators, such as maximum likelihood

estimates, is an alternative for inferences concerning unknown parameters (typically

within the Frequentist scope of statistics). The first result considers situations in

which the M-estimator will be consistent, and the second considers asymptotic nor-

mality results for consistent M-estimators. These two results will be used in Chapter 7

to motivate a prior-free approximate solution to the forensic identification of source

problem. The first theorem is restated from Theorem 5.7 of van der Vaart [75] for

clarity.

Theorem 2.12 (Consistency of M-Estimators):

Let M
n

be random functions and let M be a fixed function of ✓ such that

Assumption 1: sup
✓:d(✓,✓0)�✏

M(✓)  M(✓0), 8" > 0;

Assumption 2: sup
✓2⇥

���M
n

(✓)�M(✓)
��� P�! 0;

Assumption 3: M
n

(✓̂
n

) � M
n

(✓0)� o
p

(1).

Then ✓̂
n

P�! ✓0 (i.e. ✓̂
n

is consistent).
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Please refer to van der Vaart [75] for a discussion of the assumptions and detailed

proof of this theorem. Or, for a more general version of this theorem, please see

Theorem 3.2.3 from van der Vaart and Wellner [76]. It is important to note that the

Consistency of M-Estimators theorem is a fully Frequentist result. The next theorem

is also a fully Frequentist result which has been reproduced from Theorem 5.23 of

van der Vaart [75] for clarity.

Theorem 2.13 (The Linearization of M-Estimators):

For each ✓ in an open subset of Euclidean space let x 7! m
✓

(x) be a

measurable functions such that ✓ 7! m
✓

(x) is di↵erentiable at ✓0 for P -

almost every x with derivative ṁ
✓0(x) and such that for every ✓1 and ✓2

in a neighborhood of ✓0 and a measurable function ṁ with Pṁ2 < 1

|m
✓1(x)�m

✓2(x)|  ṁ(x)||✓1 � ✓2||.

Furthermore, assume that the map ✓ 7! Pm
✓

admits a second-order Taylor

expansion at a point of maximum ✓0 with nonsingular symmetric second

derivative matrix W
✓0. If P

n

m
✓̂n

� sup
✓

P
n

m
✓

� o
p

(n�1) and ✓̂
n

P�! ✓0,

then
p
n(✓̂

n

� ✓0) = �W�1
✓0

1p
n

nX

i=1

ṁ
✓0(Xi

) + o
p

(1).

In particular, the sequence
p
n(✓̂

n

�✓0) is asymptotically normal with mean

zero and covariance matrix W�1
✓0

Pṁ
✓0ṁ

T

✓0
W�1

✓0
.

Please refer to van der Vaart [75] for a detailed proof of this theorem. Or, for a more

general version of this theorem, please see Theorem 3.2.16 from van der Vaart and

Wellner [76].

2.4 Monte Carlo Integration

Monte Carlo integration is a method which numerically approximates an integral

quantity which is computationally intractable (typically because the integral does not
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have a closed form solution). For a comprehensive review of Monte Carlo numerical

approximation methods, see Han and Carlin [41]. This section will review three

di↵erent Monte Carlo integration techniques discussed in Kass and Raftery [44] for

estimating integral quantities of the form

h(x) =

Z
f(x|✓) g(✓) d✓,

where f is the likelihood function (sampling density) for the data, x, indexed by the

parameter, ✓, and g is a density for ✓. Let n denote the Monte Carlo sample size.

The first technique, called the Arithmetic Mean estimate, is defined by

ĥ1(x) =
1

n

nX

i=1

f(x|✓(i)) (2.13)

where ✓(1), ✓(2), . . . , ✓(n) is an independent sample of size n drawn from the distribution

corresponding to the density g(✓). This is the most computationally simple form of

Monte Carlo integration that will be considered. The following Lemma formalizes the

result from Geweke [36] that ĥ1(x) is a strongly consistent estimate for h(x).

Lemma 2.14:

Let ĥ1(x) denote the Arithmetic Mean estimate of h(x). Then as n ! 1,

ĥ1(x)
as�! h(x).

Proof: The proof of this Lemma is reproduced from Geweke [36] for clarity. By the

Strong Law of Large Numbers

ĥ1(x) =
1

n

nX

i=1

f(x|✓(i)) as�! E
g

[f(x|✓)]

as n ! 1. The expectation is taken with respect to the distribution from which the
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{✓(i)} are sampled with corresponding density g(✓). Therefore,

E
g

[f(x|✓)] =
Z

f(x|✓)g(✓) d✓ = h(x).

Therefore, ĥ1(x) is a strongly consistent estimate for h(x) since

ĥ1(x)
as�! h(x).

⌅

The approximate Monte Carlo Standard Error (MCSE) for the estimate, ĥ1(x), gives

an approximation to the numerical precision of the Monte Carlo integration estimates

[70]. The approximate MCSE for ĥ1(x) is defined by

✏1 =

sP
n

i=1[f(x|✓(i))� ĥ1(x)]2

n(n� 1)
. (2.14)

The derivation of this form for the approximate MCSE is a well-known result which

is reproduced from Geweke [36] for clarity below.

Derivation (2.14): By the Central Limit Theorem,

p
n
h
ĥ1(x)� h(x)

i
 N (0, �2).

Therefore, the approximate MCSE is an unbiased estimate of �/
p
n. It

is well-known that the sample variance, S2 is an unbiased estimate of �2.

The sample variance for this problem is given by

S2 =
1

n� 1

nX

i=1

h
f(x|✓(i))� ĥ1(x)

i2
.

Therefore, the approximate MCSE is the unbiased estimate of �/
p
n given

by

✏1 =

sP
n

i=1[f(x|✓(i))� ĥ1(x)]2

n(n� 1)
.
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⇤

The second and third techniques are specific versions of importance sampling which

takes the form

ĥ(x) =

P
n

i=1 wi

f(x|✓(i))P
n

i=1 wi

(2.15)

with w
i

= g(✓(i))/I(✓(i)) where I(✓) is the importance sampling function from which

the ✓(i)’s are drawn. The following lemma shows that the importance sampling esti-

mates are strongly consistent.

Lemma 2.15:

Let ĥ(x) denote the importance sampling estimate of h(x). Then

ĥ(x)
as�! h(x), as n ! 1.

Proof: The proof is reproduced from Geweke [36] for clarity. By the Strong Law of

Large Numbers, the following two results hold:

1

n

nX

i=1

w
i

f(x|✓(i)) as�! E
I


f(x|✓)g(✓)

I(✓)

�

and
1

n

nX

i=1

w
i

as�! E
I


g(✓)

I(✓)

�
.

Since the expectations are taken with respect to I(✓), then

E
I


f(x|✓)g(✓)

I(✓)

�
=

Z
f(x|✓)g(✓)

I(✓)
I(✓)d✓

=

Z
f(x|✓)g(✓)d✓

= h(x)
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and

E
I


g(✓)

I(✓)

�
=

Z
g(✓)

I(✓)
I(✓)d✓

=

Z
g(✓)d✓

= 1.

By Slutsky’s Lemma, we have that

ĥ(x) =
1
n

P
n

i=1 wi

f(x|✓(i))
1
n

P
n

i=1 wi

as�! E
I

[f(x|✓)g(✓)/I(✓)]
E

I

[g(✓)/I(✓)]
= h(x)

which proves the strong consistency of ĥ(x) as an estimate of h(x) as n ! 1. ⌅

The general formula for the approximate MCSE of importance sampling estimates

from Tanner [70] is

✏ =

pP
n

i=1[f(x|✓(i))� m̂(x)]2w2
iP

n

i=1 wi

. (2.16)

The details of the derivation for this result is provided in Geweke [36]. Due to the

length of this derivation, it will omitted.

For the second technique, called the Harmonic Mean estimate, the importance sam-

pling function is the posterior density for ✓, I2(✓) = ⇡(✓|x) = f(x|✓)⇡(✓)/m(x) when

g is the prior density for ✓, denoted ⇡(✓). (First, note that in this case, a prior density

can be any density for ✓ which does not depend on the data, x, but may depend on

the observation of data distinct from x. A posterior is the resulting density for ✓ with

respect to the given prior density which does depend on the observation of the data,

x. Secondly, note that when g is not the prior density for ✓, the importance sampling

function may take a di↵erent form, or the Harmonic Mean estimate may not exist.)

After some simplification from substituting I2(✓) into Equation 2.15, the resulting
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estimate is defined by

ĥ2(x) =

"
1

n

nX

i=1

1

f(x|✓(i))

#�1

(2.17)

where ✓(1), ✓(2), . . . , ✓(n) is an independent sample of size n drawn from I2(✓) = ⇡(✓|x).

Since the Harmonic Mean estimate is an importance sampling estimate, then it will

be strongly consistent as well. This result is formalized in the following lemma.

Lemma 2.16:

Let ĥ2(x) denote the Harmonic Mean estimate of h(x). Then as n ! 1,

ĥ2(x)
as�! h(x).

Proof: By the Strong Law of Large Numbers

1

n

nX

i=1

1

f(x|✓(i))
as�! E

I2


1

f(x|✓)

�
.

Because the expectation is taken with respect to the distribution from which the

{✓(i)} are sampled with corresponding density I2(✓) = ⇡(✓|x), then

E
I2


1

f(x|✓)

�
=

Z
1

f(x|✓)⇡(✓|x)d✓

=

Z
1

f(x|✓)
f(x|✓)⇡(✓)

f(x)
d✓

=

Z
⇡(✓)

f(x)
d✓

=
1

f(x)

Z
⇡(✓)d✓

=
1

f(x)

=
1

h(x)
.

Since ⇡(✓) is a proper density function for ✓, then it integrates to one. Also, for the

Harmonic Mean estimate g(✓) = ⇡(✓) which means that f(x) =
R
f(x|✓)⇡(✓)d✓ =
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h(x). Now, since we have that

1

n

nX

i=1

1

f(x|✓(i))
as�! 1

h(x)

as n ! 1, then by the Continuous Mapping Theorem

ĥ2(x) =

"
1

n

nX

i=1

1

f(x|✓(i))

#�1

as�! h(x).

Therefore, ĥ2(x) is a strongly consistent estimate for h(x). ⌅

The approximate MCSE for ĥ2(x) can be derived by substituting the corresponding

weights w
i

= h(x)/f(x|✓) into Equation 2.16 above. The resulting formula for the

approximate MCSE is given by

✏2 =

vuut
nX

i=1

"
1� ĥ2(x)

f(x|✓(i))

#2

P
n

i=1 f(x|✓(i))�1
. (2.18)

The full derivation of Equation 2.18 will now be reproduced for clarity.

Derivation (2.18): For the Harmonic Mean estimate, the importance

sampling function is I(✓) = f(x|✓)⇡(✓)/h(x) [44]. Therefore,

w
i

= ⇡(✓(i))/I(✓(i))

=
⇡(✓(i))

f(x|✓(i))⇡(✓(i))/h(x)

=
⇡(✓(i))h(x)

f(x|✓(i))⇡(✓(i))

=
h(x)

f(x|✓(i)) .
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Substituting w
i

into the Equation 2.16 gives:

✏2 =

qP
n

i=1[f(x|✓(i))� ĥ(x)]2w2
iP

n

i=1 wi

=

s
nX

i=1

h
f(x|✓(i))� ĥ(x)

i2  h(x)

f(x|✓(i))

�2

nX

i=1

h(x)

f(x|✓(i))

=

h(x)

s
nX

i=1

h
f(x|✓(i))� ĥ(x)

i2  1

f(x|✓(i))

�2

h(x)
nX

i=1

1

f(x|✓(i))

=

s
nX

i=1

h
f(x|✓(i))� ĥ(x)

i2  1

f(x|✓(i))

�2

nX

i=1

1

f(x|✓(i))

=

vuut
nX

i=1

"
f(x|✓(i))� ĥ(x)

f(x|✓(i))

#2

nX

i=1

f(x|✓(i))�1

=

vuut
nX

i=1

"
1� ĥ(x)

f(x|✓(i))

#2

nX

i=1

f(x|✓(i))�1

.

⇤

The third technique has an importance sampling function which is a mixture of the

prior and posterior distributions for ✓ denoted I3(✓) = �⇡(✓) + (1 � �)⇡(✓|x) for the

mixing proportion, 0 < � < 1 when g(✓) = ⇡(✓). The resulting estimator, called the
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Mixture estimate, is defined by

ĥ3(x) =

P
n

i=1 wi

f(x|✓(i))P
n

i=1 wi

(2.19)

with w
i

= ⇡(✓(i))/I3(✓(i)) where the ✓(i) are drawn from I3 in the following way. Let

Z
i

⇠ Bernoulli(�), ✓(i)+ be the samples drawn from ⇡(✓), and ✓(i)⇤ be the samples drawn

⇡(✓|x). Then ✓(i) = Z
i

✓(i)+ +(1�Z
i

) ✓(i)⇤ . The strong consistency of ĥ3(x) as an estimate

of h(x) is a direct result of the consistency derived for the importance sampling

estimates. Similar to the derivation for the Harmonic mean MCSE, we can derive the

approximate MCSE for ĥ3(x) using the weights wi

= ⇡(✓(i))/[�⇡(✓(i))+(1��)⇡(✓(i)|x)].

One issue with this estimate arises if either the posterior or prior density is unknown

in closed form. In this case, an iterative scheme is needed in order to compute the

estimate. Let k denote the iteration for the Monte Carlo integral estimate and let i

denote the iteration for the parameter samples.

ĥ(k+1)
3 (x) =

P
n

i=1 f(x|✓(i))/[�ĥ
(k)
3 (x) + (1� �)f(x|✓(i))]

P
n

i=1[�ĥ
(k)
3 (x) + (1� �)f(x|✓(i))]�1

(2.20)

⌘
P

n

i=1 f(x|✓(i))/v
(k+1)
i

(x, �)
P

n

i=1 1/v
(k+1)
i

(x, �)

The full derivation of Equation 2.20 is provided below. See Newton and Raftery [53]

for full details on the iterative scheme.

Derivation (2.20): For the mixture estimate, the weighting function is

w
i

= ⇡(✓(i))/[�⇡(✓(i))+(1��)⇡(✓(i)|x)]. The weighting function w
i

cannot

be calculated if either ⇡(✓) or ⇡(✓|x) are unknown. In this case, w
i

can

be evaluated given the form below.

w
i

=
⇡(✓(i))

�⇡(✓(i)) + (1� �)⇡(✓(i)|x)

=


�⇡(✓(i)) + (1� �)⇡(✓(i)|x)

⇡(✓(i))

��1
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=


� + (1� �)

⇡(✓(i)|x)
⇡(✓(i))

��1

Note that ⇡(✓(i)|x) = f(x|✓(i))⇡(✓(i))
h(x)

which means that
⇡(✓(i)|x)
⇡(✓(i))

=
f(x|✓(i))
h(x)

.

However, since h(x) is unknown, it is approximated using the previous it-

eration’s estimate. Therefore, the new formula for w(k)
i

, the approximation

of w
i

at iteration k, is

w(k)
i

=

"
� + (1� �)

f(x|✓(i))
ĥ(k�1)(x)

#�1

=
h
�ĥ(k�1)(x) + (1� �)f(x|✓(i))

i�1

=
h
v(k�1)
i

(x, �)
i�1

Now, using the weighting function, we can derive the formula for the

mixture estimate under an iterative scheme.

ĥ(k)
3 (x) =

P
n

i=1 w
(k)
i

f(x|✓(i))
P

n

i=1 w
(k)
i

=

P
n

i=1 f(x|✓(i))/v
(k�1)
i

(x, �)
P

n

i=1 1/v
(k�1)
i

(x, �)

⇤

If an iterative scheme is necessary to compute ĥ3(x) in K iterations, then the corre-

sponding approximate MCSE formula with w
i

= 1/v(K)
i

(x, �) is given by

✏3 =

qP
n

i=1[f(x|✓(i))� ĥ(K)
3 (x)]2[v(K)

i

(x, �)]�2

P
n

i=1[v
(K)
i

(x, �)]�1
(2.21)

where v(K)
i

(x, �) = �ĥ(K�1)
3 (x) + (1� �)f(x|✓(i)). The full derivation of Equation 2.21

is provided below.

Derivation (2.21): The MCSE formula for the mixture estimate using

an iterative scheme can be derived by substituting the weighting function
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derived above,

w(k)
i

=
h
�ĥ(k�1)(x) + (1� �)f(x|✓(i))

i�1

=
h
v(k�1)
i

(x, �)
i�1

,

into the general form of the MCSE given by Tanner [70],

✏ =

qP
n

i=1[f(x|✓(i))� ĥ(x)]2w2
iP

n

i=1 wi

.

Therefore, if the iterative scheme for the mixture estimate takes K itera-

tions, then the MCSE formula is given by

✏3 =

r
P

n

i=1

h
f(x|✓(i))� ĥ(K)

3 (x)
i2 h

w(K)
i

i2

P
n

i=1 w
(K)
i

=

r
P

n

i=1

h
f(x|✓(i))� ĥ(K)

3 (x)
i2

/
h
�ĥ(K�1)

3 (x) + (1� �)f(x|✓(i))
i2

P
n

i=1 1/
h
�ĥ(K�1)

3 (x) + (1� �)f(x|✓(i))
i

=

r
P

n

i=1

h
f(x|✓(i))� ĥ(K)

3 (x)
i2

/
h
v(K)
i

(x, �)
i2

P
n

i=1 1/v
(K)
i

(x, �)

⇤

2.5 Gibbs Sampling

During the Monte Carlo integration methods, it is necessary to sample from vari-

ous distributions for the parameter ✓, even if the distribution is not known in closed

form. In this case, a Gibbs sampling algorithm may be used to sample values from

the approximate distribution of interest. A Gibbs sampler is a Markov chain where

the limiting distribution is the true distribution of interest [70]. Suppose that the

joint density is given by f(✓, x1, x2, · · · , xk

) where x1, x2, · · · , xk

are considered ob-



41

servations of k di↵erent random variables, and there is interest in sampling from the

marginal distribution

g(✓) =

Z
· · ·
Z

f(✓, x1, x2, · · · , xk

) dx1 · · · dx2

which does not have a closed-form solution. The idea of a Gibbs sampler is to create a

Markov chain whose value converges to the target distribution using only univariate

conditional distributions [60]. The Gibbs sampling algorithm will be presented in

Algorithm 1 without derivation. The corresponding theorems (and proofs) related to

the Gibbs sampler convergence can be found in Chapter 9 and Chapter 10 of Robert

and Casella’s textbook [60]. In subsequent chapters of this dissertation, the Gibbs

sampling algorithm will be used in many of the practical examples, especially for

computing the Bayes Factor. Please see Chapter 4 for further details.

Algorithm 1: Gibbs Sampler
Input: all univariate full conditional distributions f

✓

, f
X1 , fX2 , . . . , fXk

Initialize x0 = (x10 , x20 , · · · , xk0)
for i = 1, 2, ..., n do

Simulate ✓
i�1 ⇠ f

✓

(·|x1i�1 , x2i�1 , · · · , xki�1)
Simulate x1i ⇠ f

X1(·|✓i�1, x2i�1 , x3i�1 , · · · , xki�1)
Simulate x2i ⇠ f

X2(·|✓i�1, x1i , x3i�1 , · · · , xki�1)
...
Simulate x

ki ⇠ f
Xk

(·|✓
i�1, x1i , x2i , x3i , · · · , xk�1i)

end
Output: sample (✓

i

, x1i , x2i , · · · , xki) for i = 0, 1, · · · , n from approximate
joint distribution f(✓, x1, x2, · · · , xk

)

For the examples and applications in the following chapters of this dissertation, the

Gibbs sampling algorithm is used as implemented in the ‘MCMCglmm’ package in R

[40]. These examples typically use standard distributions like the multivariate normal

and the inverse Wishart. For more complicated distributions, the Gibbs sampler may

need to be implemented on a case-by-case basis.
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CHAPTER 3

Forensic Identification of Source

Disclaimer: Portions of this chapter are reproduced from Ommen et al.

[54] and Ommen et al. [55].

Two di↵erent types of identification of source problems will be considered in this dis-

sertation, the common source and the specific source identification problems, although

other types of identification problems are encountered in forensic science (see Kwan

[45], for instance). The distinction between these two di↵erent types of identification

of source problems is important because the methods used to solve the problem and

the interpretation of the solution will be di↵erent. This can be done in a number of

di↵erent ways, but the most fully developed structure for solving this type of problem

is a modified Bayesian decision framework.

The term ‘modified’ is used to mean that an institutional decision analysis is being

used [35]. Institutional decision analysis is used in businesses, government, and re-

search organizations as a “process of transparently setting up a probability model,

utility function, and an inferential framework leading to cost estimates and decision

recommendations” [35]. The appealing feature of an institutional decision analysis

for forensic evidence interpretation is that multiple people take various roles in the

decision process. For instance, judges and jurors set up their own prior beliefs con-

cerning the relative validity of the prosecution and defense models and make the final

decision, and the forensic evidence interpretation expert is tasked with providing the

prior belief structures necessary to construct a value of evidence. This is in contrast
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to personal decision analysis in which a single person completes the entire decision-

making process based on her/his beliefs alone. In an institutional setting, it may

be useful to determine a community of prior beliefs, although not considered in this

dissertation. A community of priors is a set of prior distributions which covers a wide

range of possible beliefs that anyone involved in the decision making process could

hold [12].

Under the Bayesian decision framework, the forensic statistician is tasked with pro-

viding the value of evidence as the summary of the observed evidence relative the two

competing hypotheses (as well as the necessary prior belief for the nuisance param-

eters). Traditionally, the value of evidence is given in the form of the Bayes Factor.

For more general definitions of the value of evidence see Aitken and Taroni [3], Berger

[10], or Fruhwirth-Schnatter [34]. The Bayes Factor is used to convert the prior odds

to posterior odds as follows:

P (H
p

|e, I)
P (H

d

|e, I)| {z }
Posterior Odds

=
P (e|H

p

, I)

P (e|H
d

, I)| {z }
Value of Evidence

⇥ P (H
p

|I)
P (H

d

|I)| {z }
Prior Odds

, (3.1)

where P is a probability measure characterizing all types of uncertainty, e is the

observed evidence, H
p

and H
d

are the prosecution and defense hypotheses (also com-

monly termed propositions), and I is the relevant background information common

to both hypotheses [46]. The prior odds summarizes the decision-maker’s relative

personal belief concerning the validity of the prosecution and defense hypotheses be-

fore observing the evidence. The value of evidence then allows the decision-maker to

update the personal prior belief following the observation of the evidence and arrive

at the posterior odds concerning the relative validity of the two hypotheses after ob-

serving the evidence. The statistics community tends to use the term “Bayes Factor”

when referring to the value of evidence, whereas the forensic science community typ-

ically uses the term “likelihood ratio” [38]. However, the Bayes Factor and likelihood
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ratio are two distinct quantities. Section 3.3 will discuss in detail the likelihood ra-

tio, the Bayes Factor, and the comparison between the two for both identification of

source problems.

In the remainder of this dissertation, the value of the evidence is based on three

possible subsets of evidence. The sets of evidence acquired can either originate from

a known source (typically referred to as control, or known, material [3]) or from

an unknown source (typically referred to as recovered, or questioned, material [3]).

The entire set of evidence (consisting of all three subsets) will be denoted by e. In

Aitken and Taroni [3], they make a distinction between the objects and the mea-

surements/observations on that object. That distinction is not made here in an

attempt to simplify the notation, but note that this set-up can easily be extended to

accommodate that distinction. The two competing hypotheses provide a statement

of the potential source(s) for the recovered evidence, and these statements of these

two hypotheses determine the type of source identification problem under considera-

tion. Depending on the type of identification problem, a di↵erent number of evidence

sets of each type, known or unknown source, are acquired. For the common source

identification problem, there are two sets of unknown source evidence and one set of

evidence from many known sources, typically called the background population. For

the specific source identification problem, there is one set of unknown source evidence,

one set of evidence from a single known source of interest, and one set of evidence

from many known sources (the background population). Subsections 3.1 and 3.2 will

discuss the evidence and statement of the forensic hypotheses in detail.
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3.1 Identification of Common Source

In forensic science, it is often of interest to determine whether two di↵erent crimes

are related. For instance, consider the situation in which, on separate occasions, two

di↵erent banks were robbed and a bank robbery note was left at each scene. The

two bank robbery notes are collected and then compared to see if they were written

by the same person, suggesting that the bank robberies were committed by the same

perpetrator. This is an example of the common source identification problem since

the question of interest is whether or not the two bank robberies were committed by

the same (unknown) person, but without specifying which person.

The forensic hypotheses for the common source problem are typically stated as fol-

lows:

H
p

: The two sets of unknown source evidence (e
u1 and e

u2) both originate from the

same unknown source.

H
d

: The two sets of unknown source evidence (e
u1 and e

u2) originate from two dif-

ferent unknown sources.

In the case of the bank robberies, the forensic hypotheses will typically be stated as

“The two bank robbery notes were written by the same (unknown) person” versus

“The two bank robbery notes were written by two di↵erent (unknown) people.”

For the common source problem, the evidence consists of those materials recovered

which originate from the first unknown source, denoted e
u1 , those materials recovered

which originate from the second unknown source, denoted e
u2 , and those control

materials which originate from the population of alternative sources, denoted e
a

, and

sometimes referred to as the background population. The entire set of evidence will

be denoted e = {e
u1 , eu2 , ea}. In the case of the bank robberies, the two bank robbery

notes (and the measurements or observations made on those notes) serve as e
u1 and
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e
u2 . The alternative source population e

a

might, for instance, be the collection of

‘London Letters’ collected for the FBI 500 dataset [63].

In other application areas, this type of problem might be solved using traditional

hypothesis testing methods to determine which hypothesis, prosecution or defense,

is supported by the evidence. In order to apply the hypothesis testing methods, the

statistical models for the evidence need to be specified by the hypotheses up to the

point of a finite dimensional vector space for the nuisance parameters. Then, the

sampling distribution as specified by one set of parameters would be implied by the

prosecution hypothesis, and the sampling distribution as specified by another set of

parameters would be implied by the defense hypothesis. That is, in hypothesis testing

problems, the parameter space is a set of indexing variables for a single specified

sampling distribution. However, in forensic identification of source problems, the

forensic hypotheses provide no clear idea as to what the sampling distributions for

the evidence are (at least in most scenarios outside of simple DNA analysis). In

these applications, the parameter space consists of a set of possible sampling models

from which a selection is to be made. These models only concern the exchangeability

of the observations. Since “the sampling distribution is unknown to a larger extent

than simply depending on an unknown (finite dimensional) parameter,” the forensic

identification of source problems are more well-suited to methods of Bayesian model

selection [59].

The full Bayesian models for the forensic identification of source problems consist of

three separate parts. The first is the statement of the sampling models which provide

information about which samples are exchangeable under each of the hypotheses.

The second is the statement of the class of parametric models approximating the true

sampling distributions implied by each of the sampling models. Finally, the third is a

statement specifying the prior belief structure for the parameters characterizing the
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class of probability models specified by each of the parametric models. The extent of

the information that can be obtained by the forensic hypotheses are summarized in

the following sampling models for the common source problem.

M
a

: e
a

is a sample generated by first randomly selecting n
a

sources from the popula-

tion of alternative sources, and then randomly selecting n
i

elements from within

the ith source for i = 1, 2, . . . , n
a

M
p

: e
u1 and e

u2 are two samples generated by first randomly selecting a single source

from the population of alternative sources, and then e
u1 is generated by ran-

domly selecting the first set of n
u1 elements from within that source, and finally

e
u2 is generated by randomly selecting the second set of n

u2 elements from

within the same source

M
d

: e
u1 and e

u2 are two samples generated by first randomly selecting two di↵erent

sources from the population of alternative sources, and then e
u1 is generated by

randomly selecting n
u1 elements from within the first source, and finally e

u2 is

generated by randomly selecting n
u2 elements from within the second source

For the common source problem, the prosecution hypothesis implies that the control

evidence has been generated according to model M
a

and that the recovered evidence

has been generated according to model M
p

, whereas the defense hypothesis implies

that the control evidence has been generated according to model M
a

, but that the

recovered evidence has been generated according to model M
d

. The model selection

problem is then a selection between M
p

and M
d

for the unknown source evidence.

In this scenario, the distributional models which generated e
u1 and e

u2 is the same,

but the exchangeability models for e
u1 and e

u2 are di↵erent under the two di↵erent

sampling models. Under the prosecution model, e
u1 and e

u2 are conditionally inde-

pendent given the common source, and e
u1 and e

u2 are unconditionally independent

under the defense model.
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Again, the goal of specifying the sampling models is to indicate the exchangeability

assumptions for the evidence. To specify the full Bayesian model for the evidence, a

statement about the class of parametric models is needed [59]. To facilitate the use

of Bayesian model selection methods, the classes of distributions will be constrained

such that the indexing parameter is an element of a finite dimensional vector space,

⇥
a

, which is a subset of Euclidean space. Also, the indexing sets for these classes

of distributions is assumed to be chosen such that the likelihoods are identifiable.

The following notation will be used for the parametric models under M
a

. The true

sampling distribution for e
a

, P
a0 , is assumed to be in a class of distributions indexed

by the set of parameters ⇥
a

given by P
a

= {P
✓a : ✓

a

2 ⇥
a

}. The likelihood functions

for the common source evidence will be denoted by f(e
a

|✓
a

), f(e
u1 |✓a), and f(e

u2 |✓a).

Please see Section 3.4.3 for the details of the evidence and Section 3.4.1 for the

construction of these likelihood functions. Finally, to complete the full Bayesian

model a prior belief structure on the parameter space needs to be specified [59].

Here, I will use the standard Bayesian abuse of notation and let ⇧(✓
a

) denote the

proper prior probability measure on the parameter space ⇥
a

, with corresponding

prior density function, ⇡(✓
a

), when it exists.

3.2 Identification of Specific Source

In contrast to the common source identification problem, it is often of interest to

determine whether a suspect can be linked to evidence found at the scene of the crime.

Consider that one bank has been robbed and one note has been left at the scene. After

the bank robbery note is collected, the investigators find some handwritten documents

at the suspect’s place of residence. These documents serve as the suspect’s template,

which is compared to the bank robbery note to determine if the suspect wrote the

bank robbery note. This is an example of the specific source identification problem
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since the question of interest is whether or not the specified suspect wrote the bank

robbery note. In the common source problem, the person who wrote the note is not

identified and is treated as unknown. In the specific source problem, the person is

identified as the suspect, and is treated as known.

The forensic hypotheses for the specific source problem are typically stated as fol-

lows:

H
p

: The unknown source evidence e
u

and the specific source evidence e
s

both origi-

nate from the specific source.

H
d

: The unknown source evidence e
u

does not originate from the specific source, but

from some other source in the alternative source population.

For the bank robbery, the specific source hypotheses are typically stated as “The

suspect is the writer of the bank robbery note” versus “The suspect is not the writer

of the bank robbery note.”

For the specific source problem, the evidence consists of those materials recovered

which originate from an unknown source, denoted e
u

, those control materials which

originate from a known, fixed specific source, denoted e
s

, and those control materials

which originate from the population of alternative sources, denoted e
a

, and sometimes

referred to as the background population. The entire set of evidence will be denoted

e = {e
u

, e
s

, e
a

}. In this case, the bank robbery note serves as e
u

, the documents

written by the suspect serve as e
s

, and just as in the common source problem, the

London Letters can serve as e
a

[63].

Analogous to the common source problem, the specific source problem is suited to

the methods of model selection. A typical example of the specific source sampling

models are as follows:

M
s

: e
s

is a sample generated by randomly selecting n
s

samples from the population
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of known specific source samples

M
a

: e
a

is a sample generated by first randomly selecting n
a

sources from the popula-

tion of alternative sources, and then randomly selecting n
i

samples from within

the ith source for i = 1, 2, . . . , n
a

M
p

: e
u

is a sample generated by randomly selecting n
u

samples from the population

of known specific source samples

M
d

: e
u

is a sample generated by first randomly selecting a new source from the

population of alternative sources, and then randomly selecting n
u

samples from

within that source

For the specific source problem, the prosecution hypothesis implies that e
a

and e
s

have been generated according to model M
a

and M
s

, respectively, and that e
u

has

been generated according to model M
p

. In contrast, the defense hypothesis implies

that e
a

and e
s

have been generated according to model M
a

and M
s

, respectively, but

that e
u

has been generated according to model M
d

. Similar to the common source

problem, the model selection problem is then a selection between M
p

and M
d

for the

unknown source evidence. In this scenario, the distributional models which generated

the unknown source evidence are di↵erent under the di↵erent sampling models, and

the exchangeability models are di↵erent, too. Under the prosecution model, e
u

and e
s

are conditionally independent given the parameters for the specific source population

and both are unconditionally independent of e
a

. However, under the defense model e
u

and e
a

are conditionally independent given the parameters for the alternative source

population and both are unconditionally independent of e
s

.

Similar to the common source problem, the sampling models only provide information

about the exchangeability of the evidence so the parametric models need to be speci-

fied as well. The following notation will be used for the parametric models under M
s

.

The true sampling distribution for e
s

, P
s0 , is assumed to be in a class of distributions
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such that the indexing parameter is an element of a finite dimensional vector space

⇥
s

✓ Rk given by P
s

= {P
✓s : ✓s 2 ⇥s

}. The following notation will be used for the

parametric models under M
a

. The true sampling distribution for e
a

, P
a0 , is assumed

to be in a class of distributions such that the indexing parameter is an element of a

finite dimensional vector space ⇥
a

✓ Rk given by P
a

= {P
✓a : ✓

a

2 ⇥
a

}. Both P
s

and

P
a

should be defined so that the likelihoods are identifiable.

The likelihood function for the evidence from the specific source will be denoted

f(e
s

|✓
s

) and the likelihood for the alternative source population will be denoted

f(e
a

|✓
a

). The likelihood function for the trace evidence will depend upon the model

under consideration. Under the prosecution model, the likelihood function for the

trace evidence is denoted f(e
u

|✓
s

) and under the defense model it will be denoted

f(e
u

|✓
a

). Please see Section 3.4.2 for the details of the evidence and Section 3.4.1 for

the construction of these likelihood functions. Finally, to complete the full Bayesian

model, a prior belief structure on the parameter spaces needs to be specified [59].

Again, the standard Bayesian abuse of notation will be used and let ⇧(✓
s

) denote the

proper prior probability measure on the parameter space ⇥
s

, with corresponding prior

density function, ⇡(✓
s

), when it exists. Let ⇧(✓
a

) denote the proper prior probability

measure on the parameter space ⇥
a

, with corresponding prior density function, ⇡(✓
a

),

when it exists.

3.3 Quantifying the Value of Evidence

In an institutional decision process, it is typically the task of the legal teams to deter-

mine the statement of the forensic hypotheses. From these hypotheses the sampling

models will follow readily according to the previous sections. It is then the task of

the forensic expert to determine the parametric models and the prior distributions.
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Once the expert has specified the full Bayesian model for the evidence under each of

the hypotheses, the next task is to provide a quantification of the value of evidence.

Again, “Bayes Factor” is the term used by the statistics community when referring

to the value of evidence, whereas “likelihood ratio” is the term typically used in the

forensic science community [38]. However, the Bayes Factor (BF) and likelihood ra-

tio (LR) are two distinct quantities in the author’s opinion. In particular, when the

values of the parameters for each of the sampling models are known with certainty,

the value of evidence takes the form of the LR. The likelihood ratio is given by

V
LR

(✓0; eu) =
f(e

u

|✓0,Mp

)

f(e
u

|✓0,Md

)
(3.2)

where e
u

denotes the unknown evidence, ✓0 represents the true value of the param-

eters, when they are known, and M
p

and M
d

denote the prosecution and defense

models, respectively. Indeed, the likelihood structure, denoted f , and the values

of the parameters, denoted ✓0, for these models need to be known with complete

certainty to compute the likelihood ratio [10, 59]. When there is no uncertainty con-

cerning the LR, it can formally be used as the value of evidence in Equation 3.1 to

update the prior odds and arrive at the exact posterior odds. The particular forms of

the LR for each of the identification of source problems is provided in the following

sections.

The likelihood ratio is the statistic at the forefront of the Likelihood paradigm for

evidence interpretation [61]. The particular forms of the LR for each of the identifi-

cation of source problems is provided in Sections 3.3.1 and 3.3.2. It should be noted

that in the Frequentist or Likelihood paradigms, the LR naturally exists for any well-

defined population. Under these paradigms, ✓0 corresponds to the true value of the

parameter for the statistical experiment which describes the methods for sampling

from the population. Under the Bayesian paradigm, the concept of a “true” value
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of the parameter is not well-defined (it is actually a highly debated concept among

subjectivists in forensic science whether a “true” value of the parameter even exists

[9, 71]). In the Bayesian paradigm, the belief in the existence of the true parameter

value is implied (almost-surely) by Doob’s Consistency Theorem (Theorem 2.10) rel-

ative to the specified prior distribution [75]. As a result, a Bayesian believes that a

likelihood ratio (analogous to the Frequentist likelihood ratio) is guaranteed to even-

tually exist. Please see Section 5 for further details. Under the three considered

statistical paradigms, it is often impossible to quantify the likelihood ratio in most

practical applications since there is some uncertainty concerning the value of ✓0.

When there is uncertainty concerning the values of the parameters, other strategies

need to be used to quantify the value of evidence. Consider the likelihood ratio

function to be defined as

V
LR

(✓; e
u

) =
f(e

u

|✓,M
p

)

f(e
u

|✓,M
d

)
(3.3)

which is a function of the unknown parameter, ✓. From this notation, it is clear

that the likelihood ratio defined above represents a single value of the likelihood

ratio function for the specified value of ✓. There are many ad-hoc solutions to the

forensic identification of source problem that involve the likelihood ratio function

[39, 64, 27]. The most common ad-hoc solution is to take some estimate of the

unknown parameter and substitute it into the likelihood ratio function [39]. This

results in what is commonly referred to as the ‘plug-in’ LR for forensic evidence.

In the best-case scenario, these ad-hoc methods are asymptotic approximations of

the value of evidence, and therefore, can not be used formally in the odds form of

Bayes Theorem above to arrive at the exact posterior odds. The precise forms of

the likelihood ratio functions for the common source and specific source problems are

provided in Sections 3.3.1 and 3.3.2.

As an alternative to the ad-hoc methods described above, one of the commonly used
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formal strategies for incorporating the uncertainty into the value of evidence is to

construct a Bayes Factor. The Bayes Factor takes the form

V
BF

(e) =

R
f(e|✓,M

p

) d⇧(✓|M
p

)R
f(e|✓,M

d

) d⇧(✓|M
d

)
. (3.4)

which is the ratio of the marginal likelihood of observing the entire set of evidence

under the prosecution model to the marginal likelihood of observing the entire set

of evidence under the defense model. In contrast to the ad-hoc methods described

above, the Bayes Factor can be used formally in the odds form of Bayes Theorem

above to arrive at the exact posterior odds for a given set of prior beliefs [67]. The

Bayes Factor is the statistic that is typically of interest in the Bayesian paradigm

for hypothesis testing, model selection, and decision analysis [10, 59]. The particular

forms of the Bayes Factor for each of the identification of source problems is given

in the Sections 3.3.1 and 3.3.2. In contrast to the likelihood ratio, the Bayes Factor

can be quantified in many practical applications, although it is a di�cult and very

computationally intensive process (see Ommen et al. [55] for details of a naive method

of computing Bayes Factors and their corresponding standard errors). When the

values of the parameters are known, then the Bayes Factor (constructed using an

appropriate degenerate prior on ✓) and the likelihood ratio are equal, and both are

equivalent to the value of evidence in Equation 3.1.

3.3.1 Common Source

The likelihood ratio function, as defined in Equation 3.3, for the common source

identification problem is given by

LR
cs

(✓
a

; e
u

) =
f(e

u1 , eu2 |✓a,Mp

)

f(e
u1 |✓a,Md

)f(e
u2 |✓a,Md

)
(3.5)
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which reflects that there are two sets of unknown evidence; under the prosecution

model they are two sets from the same randomly selected source whose distribution

is indexed by the parameter ✓
a

, in contrast to the defense model under which they are

two independent sets from two di↵erent randomly selected sources whose distributions

are indexed by the same parameter ✓
a

. For details of the likelihood structures for the

unknown source evidence, see Section 3.4.3. The “true” common source likelihood

ratio, as defined in Equation 3.2, takes the form

LR
cs

(✓
a0 ; eu) =

f(e
u1 , eu2 |✓a0 ,Mp

)

f(e
u1 |✓a0 ,Md

)f(e
u2 |✓a0 ,Md

)
(3.6)

where the only di↵erence between the true likelihood ratio and the likelihood ratio

function is that the true likelihood ratio represents a single point of the likelihood ratio

function corresponding to the value of ✓
a0 for ✓

a

. Under the Frequentist paradigm,

✓
a0 corresponds to the true value of the parameter. Under the Bayesian paradigm,

✓
a0 corresponds to the fixed value of the parameter suggested by Doob’s Consistency

Theorem [75].

The Bayes Factor, following the definition provided in Equation 3.4, for the common

source identification problem considers the ratio of the marginal density of the ev-

idence under the prosecution model to the marginal density of the evidence under

the defense model. Under the assumption that the marginal distribution of e
a

will

be the same under both the prosecution and defense models, the commons source

Bayes Factor can be given as the ratio of the posterior predictive distributions of

the unknown source evidence given the alternative source population evidence and

the prosecution model, to the defense model, respectively. This form of the common

source Bayes Factor is given in Equation 3.7 below.

BF
cs1(e) =

R
f(e

u1 , eu2 |✓a,Mp

) d⇧(✓
a

|e
a

)R
f(e

u1 |✓a,Md

) f(e
u2 |✓a,Md

) d⇧(✓
a

|e
a

)
(3.7)
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The derivation of Equation 3.7 is reproduced from Ommen et al. [55] below.

Derivation (3.7): The derivation starts from Equation 3.4 (step 3.8a). It

is assumed that the prior choice has been made such that the integrals ex-

pressed exist and are finite. Then, using the likelihood structure presented

in Equation 3.13 and the definition of the common source evidence in Sec-

tion 3.4.3, the likelihoods are factored (step 3.8b). Next, we make the as-

sumption that the marginal density for the alternative source population

evidence e
a

is the same for both of the models, i.e. f(e
a

|M
p

) = f(e
a

|M
d

).

Therefore, multiplying by f(e
a

|M
d

)/f(e
a

|M
p

) = 1 in step 3.8b doesn’t

change the value of the equation. The rest of the derivation (steps 3.8c

and 3.8d) follows from standard definitions in Bayesian analysis, and step

3.8e from the fact that the prior belief of ✓
a

is the same under both mod-

els. Therefore, the posterior belief of ✓
a

given e
a

is also the same under

both models.

BF
cs1(e) =

R
f(e|✓

a

,M
p

) d⇧(✓
a

|M
p

)R
f(e|✓

a

, H
d

) d⇧(✓
a

|M
d

)
(3.8a)

=

R
f(e

u1 , eu2 |✓a,Mp

)f(e
a

|✓
a

,M
p

) d⇧(✓
a

|M
p

)R
f(e

u1 , eu2 |✓a,Md

)f(e
a

|✓
a

,M
d

) d⇧(✓
a

|M
d

)
⇥ f(e

a

|M
d

)

f(e
a

|M
p

)

(3.8b)

=

Z
f(e

u1 , eu2 |✓a,Mp

)
f(e

a

|✓
a

,M
p

) d⇧(✓
a

|M
p

)

f(e
a

|M
p

)Z
f(e

u1 |✓a,Md

)f(e
u2 |✓a,Md

)
f(e

a

|✓
a

,M
d

) d⇧(✓
a

|M
d

)

f(e
a

|M
d

)

(3.8c)

=

R
f(e

u1 , eu2 |✓a,Mp

) d⇧(✓
a

|e
a

,M
p

)R
f(e

u1 |✓a,Md

)f(e
u2 |✓a,Md

) d⇧(✓
a

|e
a

,M
d

)
(3.8d)

=

R
f(e

u1 , eu2 |✓a, Hp

) d⇧(✓
a

|e
a

)R
f(e

u1 |✓a, Hd

) f(e
u2 |✓a, Hd

) d⇧(✓
a

|e
a

)
(3.8e)

⇤
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3.3.2 Specific Source

The likelihood ratio function, as defined in Equation 3.3, for the specific source iden-

tification problem is given by

LR
ss

(✓; e
u

) =
f(e

u

|✓
s

,M
p

)

f(e
u

|✓
a

,M
d

)
(3.9)

which reflects that under the prosecution model the unknown evidence is a random

sample from the specific source population whose distribution is indexed by the pa-

rameter ✓
s

, and that under the defense model the unknown evidence is a random

sample from a randomly selected source in the alternative source populations whose

distribution is indexed by the parameter ✓
a

. The “true” specific source likelihood

ratio, as defined in Equation 3.2, represents a single point of the likelihood ratio

function corresponding to a value of ✓0 = {✓
s0 , ✓a0} for ✓ = {✓

s

, ✓
a

}, and is given

below.

LR
ss

(✓0; eu) =
f(e

u

|✓
s0 ,Mp

)

f(e
u

|✓
a0 ,Md

)
(3.10)

The specific source Bayes Factor, as defined in Equation 3.4, does not require any

assumptions on the prior distribution for the parameter. Analogous to the common

source, the specific source Bayes Factor is the ratio of the marginal density of the

evidence given the prosecution model to the marginal density of the evidence given the

defense model. Under the assumption that the prior distribution of ✓
s

is statistically

independent of the prior distribution for ✓
a

, the specific source Bayes Factor can

be given as the ratio of posterior predictive distribution for the unknown source

evidence given the specific source evidence to the posterior predictive distribution for

the unknown source evidence given the alternative source population evidence. This
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form of the specific source Bayes Factor is given in Equation 3.11 below.

BF
ss1(e) =

R
f(e

u

|✓
s

,M
p

) d⇧(✓
s

|e
s

)R
f(e

u

|✓
a

,M
d

) d⇧(✓
a

|e
a

)
(3.11)

The derivation of Equation 3.11 is reproduced from Ommen et al. [55] below.

Derivation (3.11): The derivation starts from Equation 3.4 (step 3.12a).

Again, it is assumed that the prior choice has been made such that the

integrals expressed exist and are finite. Next, the likelihood structure pre-

sented in Equation 3.13 and the definition of the specific source evidence

in Section 3.4.2 is used to factor the likelihood into three di↵erent pieces,

one for each of the evidence datasets (steps 3.12b and 3.12c). Then, using

the assumption that the prior for ✓
s

is independent of the prior for ✓
a

,

the marginal likelihoods in the numerator and denominator of the value

of evidence can be split into two di↵erent integrals, one for each of the

parameters ✓
s

and ✓
a

(steps 3.12d and 3.12e). The rest of the deriva-

tion (steps 3.12f, 3.12g, and 3.12h) follows from standard definitions in

Bayesian analysis.

BF
ss1(e) =

R
f(e|✓,M

p

) d⇧(✓|M
p

)R
f(e|✓,M

d

) d⇧(✓|M
d

)
(3.12a)

=

R
f(e

u

|✓,M
p

)f(e
s

|✓,M
p

)f(e
a

|✓,M
p

) d⇧(✓|M
p

)R
f(e

u

|✓,M
d

)f(e
s

|✓,M
d

)f(e
a

|✓,M
d

) d⇧(✓|M
d

)
(3.12b)

=

R
f(e

u

|✓
s

)f(e
s

|✓
s

)f(e
a

|✓
a

) d⇧(✓)R
f(e

u

|✓
a

)f(e
s

|✓
s

)f(e
a

|✓
a

) d⇧(✓)
(3.12c)

=

R
f(e

u

|✓
s

)f(e
s

|✓
s

)d⇧(✓
s

)
R
f(e

a

|✓
a

)d⇧(✓
a

)R
f(e

s

|✓
s

)d⇧(✓
s

)
R
f(e

a

|✓
a

)f(e
u

|✓
a

)d⇧(✓
a

)
(3.12d)

=

R
f(e

u

|✓
s

)f(e
s

|✓
s

) d⇧(✓
s

)R
f(e

s

|✓
s

) d⇧(✓
s

)
⇥

R
f(e

a

|✓
a

) d⇧(✓
a

)R
f(e

a

|✓
a

)f(e
u

|✓
a

) d⇧(✓
a

)

(3.12e)

=

Z
f(e

u

|✓
s

)
f(e

s

|✓
s

) d⇧(✓
s

)R
f(e

s

|✓
s

) d⇧(✓
s

)Z
f(e

u

|✓
a

)
f(e

a

|✓
a

) d⇧(✓
a

)R
f(e

a

|✓
a

) d⇧(✓
a

)

(3.12f)
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=

Z
f(e

u

|✓
s

)
f(e

s

|✓
s

) d⇧(✓
s

)

f(e
s

)Z
f(e

u

|✓
a

)
f(e

a

|✓
a

) d⇧(✓
a

)

f(e
a

)

(3.12g)

=

R
f(e

u

|✓
s

) d⇧(✓
s

|e
s

)R
f(e

u

|✓
a

) d⇧(✓
a

|e
a

)
(3.12h)

⇤

3.4 Technical Details

3.4.1 The Likelihood Function for the Evidence

Let e = {e1, e2, . . . , er} denote the forensic evidence (a collection of r independent

numerical datasets) used to calculate the value of evidence. In the forensic identifi-

cation of source problems considered in this dissertation r = 3. Let the likelihood

function for e
i

(for i = 1, 2, . . . , r) be denoted as f(·|✓
ij

, H
j

) under each hypothesis (for

j = p, d). We use the following short-hand notation to represent the joint likelihood

function for the entire set of forensic evidence e

f(e|✓
j

, H
j

) =
rY

i=1

f(e
i

|✓
ij

, H
j

), (3.13)

where ✓
j

= {✓1j, ✓2j, . . . , ✓rj} denotes the collection of parameters for all of the likeli-

hood functions under hypothesis H
j

, and H
j

denotes either the prosecution or defense

hypothesis. It will typically be the case that ✓
p

and ✓
d

will be the same, so for this

case, we drop the subscript on ✓ to denote the common set of parameters under both

hypotheses.
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3.4.2 Specific Source Evidence

The specific source evidence will be the collection of three independent datasets,

e = {e
s

, e
a

, e
u

}, where e
s

is the dataset containing the numerical measurements on

the specific source evidence, e
a

is the dataset containing the numerical measurements

on samples from the alternative source population, and e
u

is the dataset containing the

numerical measurements on the unknown source evidence. For this development, only

balanced designs are considered (i.e. there are no missing values for the measurements

and the number of measurements per each sample is constant), but the generalization

to unbalanced designs is straight-forward.

First, consider the dataset e
s

which consists of n
s

random samples from the specific

source, each of which contains m
s

di↵erent measurements. Then e
s

has the matrix

structure given in Equation 3.14 below where each column corresponds to a sample

and each row corresponds to a measurement.

e
s

=

0

BBBBBBB@

y
s,11 y

s,21 · · · y
s,ns1

y
s,12 y

s,22 · · · y
s,ns2

...
...

. . .
...

y
s,1ms y

s,2ms · · · y
s,nsms

1

CCCCCCCA

⌘
✓
y
s1 y

s2 · · · y
sns

◆
(3.14)

It will be beneficial to consider each column of the dataset as a random vector,

independently and identically distributed to each of the other columns of the dataset

(this assumption will be approximately met for a majority of forensic evidence types).

Denote each column of the dataset as y
si

which represents the m
s

-dimensional vector

of measurements made on the ith sample from e
s

(for i = 1, 2, . . . , n
s

). Then,

y
si

iid⇠ F
s

(·|✓
s

)
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where F
s

is the distribution function indexed by the parameter ✓
s

corresponding to

the probability measure P
✓s under model M

s

. If we denote the probability density

function corresponding to the distribution F
s

by f
s

, then following the notational

conventions in the previous subsection, we can define the likelihood function for e
s

by

f(e
s

|✓
s

, H
p

) = f(e
s

|✓
s

, H
d

) =
nsY

i=1

f
s

(y
si

|✓
s

) (3.15)

since the observations in e
s

are independent and identically distributed under model

M
s

(the sampling model implied by both H
p

and H
d

for the specific source evidence).

Since this likelihood structure is the same under both the prosecution and defense hy-

potheses the notational dependence on H
p

or H
d

is typically dropped, f(e
s

|✓
s

).

Next, consider the dataset e
a

which has a hierarchical sampling structure in which n
a

sources are randomly sampled from the alternative source population and then from

each of the sample sources, n
i

samples are collected. From each of these sources,

m
a

measurements are recorded. Then e
a

has the block matrix structure given in

Equation 3.16 below where each block corresponds to a sampled source, each column

within a block corresponds to a sample from that source, and each row within a block

corresponds to a measurement on a sample.

e
a

=

✓
Y

a1 Y
a2 · · · Y

ana

◆

and for i = 1, 2, . . . , n
a

Y
ai =

0

BBBBBBB@

y
ai,11 y

ai,21 · · · y
ai,ni1

y
ai,12 y

ai,22 · · · y
ai,ni2

...
...

. . .
...

y
ai,1ma y

ai,2ma · · · y
ai,nima

1

CCCCCCCA

⌘
✓
y
i1 y

i2 · · · y
ini

◆
(3.16)

Again, it will be beneficial to consider each column of Y
ai as a random vector, inde-
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pendently and identically distributed to each of the other columns of the Y
ai (again,

this assumption will be approximately met for a majority of forensic evidence types).

Denote each column of Y
ai as yij

which represents the m
a

-dimensional vector of mea-

surements made on the jth sample from the ith source in e
a

(for i = 1, 2, . . . , n
a

and

j = 1, 2, . . . , n
i

). Then,

A
i

iid⇠ G(·|✓
a

) and y
ij

|a
i

iid⇠ F
a

(·|a
i

, ✓
a

)

where A
i

is the random variable used to denote the source being sampled from the

alternative source population, and F
a

and G are both probability distribution indexed

by the parameters ✓
a

under both the prosecution and defense hypotheses. The dis-

tribution function F
a

corresponds to the probability measure P
✓a under model M

a

.

Therefore, the probability density function for y
ij

can be defined by

f
a

(y
ij

|✓
a

) =

Z
f
a

(y
ij

|a
i

, ✓
a

)g(a
i

|✓
a

) da
i

where g is the probability density function for a
i

corresponding to the distribution

G and f
a

is the probability density function corresponding to F
a

. However, the

likelihood function for e
a

is commonly intractable since the y
ij

are not independent.

Therefore, if we define the joint probability density function of the y
ij

for a fixed i to

be

f
ai(yi1,yi2, . . . ,yini |✓a) =

Z "
niY

j=1

f
a

(y
ij

|a
i

, ✓
a

)

#
g(a

i

|✓
a

) da
i

(3.17)

⌘ f(Y
ai |✓a),

then we do in fact have independence due to the random sampling of sources from

the alternative source population and we can define the likelihood function for e
a

to
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be

f(e
a

|✓
a

, H
p

) = f(e
a

|✓
a

, H
d

) =
naY

i=1

f
ai(yi1,yi2, . . . ,yini |✓a).

In general, there is no simplification of the likelihood structure presented in Equa-

tion 3.17. However, there is a simplification presented by Miller [49] under the as-

sumption of normality which was discussed in Section 2.1. Again, since this likelihood

structure is the same under both the prosecution and defense hypotheses the nota-

tional dependence on H
p

or H
d

is typically dropped, f(e
a

|✓
a

).

Finally, consider the dataset e
u

which consists of n
u

random samples from the un-

known source, each of which contains m
u

di↵erent measurements. Then e
u

has the

matrix structure given in Equation 3.18 below where each column corresponding to

a sample and each row corresponds to a measurement.

e
u

=

0

BBBBBBB@

y
u,11 y

u,21 · · · y
u,nu1

y
u,12 y

u,22 · · · y
u,nu2

...
...

. . .
...

y
u,1mu y

u,2mu · · · y
u,numu

1

CCCCCCCA

⌘
✓
y
u1 y

u2 · · · y
unu

◆
(3.18)

It will be beneficial to consider each column of the dataset as a random vector.

Denote each column of the dataset as y
ui

which represents the m
u

-dimensional vector

of measurements made on the ith sample from e
u

(for i = 1, 2, . . . , n
u

). Then underH
p

,

e
u

is an additional independent random sample from the specific source population, so

the likelihood structure is the same as e
s

. Conversely, underH
d

, e
u

is a random sample

from an additional randomly selected source from the alternative source population,

so the likelihood structure is the same as e
a

. Therefore, the likelihood functions for

e
u

can be defined by

f(e
u

|✓
s

, H
p

) ⌘ f(e
u

|✓
s

,M
p

) =
nuY

i=1

f
s

(y
ui

|✓
s

)
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and

f(e
u

|✓
a

, H
d

) ⌘ f(e
u

|✓
a

,M
d

) = f
au(yu1,yu2, . . . ,yunu |✓a).

3.4.3 Common Source Evidence

The common source evidence will be the collection of three independent datasets,

e = {e
a

, e
u1 , eu2}, where e

a

is the dataset containing the numerical measurements

on samples from the alternative source population, e
u1 is the dataset containing the

numerical measurements taken from the first set of unknown source evidence, and

e
u2 is the dataset containing the numerical measurements taken from the second set

of unknown source evidence. Again, only balanced designs will be considered (i.e.

there are no missing values for the measurements and the number of measurements

per each sample is constant), but the generalization to unbalanced designs is straight-

forward.

The dataset e
a

has the exact same matrix structure and likelihood function as de-

scribed for e
a

in the previous subsection, and e
u1 and e

u2 have the same matrix struc-

ture as e
u

in the previous subsection. Now, under H
p

, e
u1 and e

u2 are supposed to be

conditionally independent samples drawn from the same randomly selected source in

the alternative source population. Therefore, the joint likelihood function for e
u1 and

e
u2 under M

p

is defined as

f(e
u1 , eu2 |✓a, Hp

) = f
au(yu11, . . . ,yu1nu1

,y
u21, . . . ,yu2nu2

|✓
a

)

⌘ f(e
u1 , eu2 |✓a,Mp

) ⌘ f(e
u

|✓
a

,M
p

).

Conversely, under H
d

, e
u1 and e

u2 are supposed to be independent samples drawn

from the two di↵erent randomly selected sources in the alternative source population.
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Therefore, the joint likelihood function for e
u1 and e

u2 under M
d

is defined as

f(e
u1 , eu2 |✓a, Hd

) = f
au1

(y
u11, . . . ,yu1nu1

|✓
a

)f
au2

(y
u21, . . . ,yu2nu2

|✓
a

)

⌘ f(e
u1 |✓a, Hd

)f(e
u2 |✓a, Hd

)

⌘ f(e
u1 |✓a,Md

)f(e
u2 |✓a,Md

) ⌘ f(e
u

|✓
a

,M
d

).
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CHAPTER 4

Methods for Computing Bayes Factors

Disclaimer: This chapter is based largely on Ommen et al. [55].

Recent developments in forensic science have led to a proliferation of methods for

quantifying the probative value of evidence by constructing a Bayes Factor that al-

lows a decision-maker to select between the prosecution and defense models. Unfor-

tunately, the analytical form of a Bayes Factor is often computationally intractable.

A typical approach in statistics uses Monte Carlo integration to numerically approx-

imate the marginal likelihoods composing the Bayes Factor. This chapter focuses

on developing a generally applicable method for characterizing the numerical error

associated with Monte Carlo integration techniques used in constructing the Bayes

Factor. The derivation of an asymptotic Monte Carlo standard error for the Bayes

Factor will be presented and its applicability to quantifying the value of evidence will

be explored using a simulation-based example involving a benchmark dataset. The

simulation will also explore the e↵ect of prior choice on the Bayes Factor approxima-

tions and corresponding Monte Carlo standard errors.

4.1 Monte Carlo Integration

This subsection will explain the details of using Monte Carlo integration methods to

approximate the Bayes Factor. The computational complexity of the Mixture method

is su�ciently prohibitive that it will not be used in the simulation study. Therefore,
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the details of its implementation will not be included in this section, but can be found

in Newton and Raftery [53]. The following compact notation will be used to denote a

set of sampled parameter values throughout the subsection: {✓(i)} = ✓(1), ✓(2), . . . , ✓(n).

Recall from Equation 3.11 that the Bayes Factor for the specific source identifica-

tion problem is given by

BF
ss

=

R
f(e

u

|✓
s

,M
p

) d⇧(✓
s

|e
s

)R
f(e

u

|✓
a

,M
d

) d⇧(✓
a

|e
a

)
.

This Bayes Factor can be approximated using the Arithmetic Mean method of Monte

Carlo integration by

dBF
(1)

ss

=
n�1
p

P
np

i=1 f(eu|✓
(i)
s

,M
p

)

n�1
d

P
nd
j=1 f(eu|✓

(j)
a

,M
d

)
(4.1)

where {✓(i)
s

} is an independent sample of size n
p

drawn from ⇡(✓
s

|e
s

) and the {✓(j)
a

}

is an independent sample of size n
d

drawn from ⇡(✓
a

|e
a

). The Bayes Factor approx-

imation for BF
ss

by method of Harmonic Mean Monte Carlo integration is given

by

dBF
(2)

ss

=

h
n�1
p

P
np

i=1 f(eu|✓
(i)
s

,M
p

)�1
i�1

h
n�1
d

P
nd
j=1 f(eu|✓

(j)
a

,M
d

)�1
i�1 (4.2)

where {✓(i)
s

} is an independent sample of size n
p

drawn from the importance sampling

function ⇡(✓
s

|e
s

, e
u

,M
p

) = f(e
u

|✓
s

,M
p

)⇡(✓
s

|e
s

)/f(e
u

|e
s

,M
p

) and {✓(j)
a

} is an indepen-

dent sample of size n
d

drawn from the importance sampling function ⇡(✓
a

|e
a

, e
u

,M
d

) =

f(e
u

|✓
a

,M
d

)⇡(✓
a

|e
a

)/f(e
u

|e
a

,M
d

).

Recall from Equation 3.7 that the Bayes Factor for the common source identifica-



68

tion problem can be written as

BF
cs

=

R
f(e

u1 , eu2 |✓a,Mp

) d⇧(✓
a

|e
a

)R
f(e

u1 |✓a,Md

) f(e
u2 |✓a,Md

) d⇧(✓
a

|e
a

)
.

This Bayes Factor can be approximated using the Arithmetic Mean method of Monte

Carlo integration by

dBF
(1)

cs

=
n�1
p

P
np

i=1 f(eu1 , eu2 |✓
(i)
a

,M
p

)

n�1
d

P
nd
j=1 f(eu1 |✓

(j)
a

,M
d

) f(e
u2 |✓

(j)
a

,M
d

)
(4.3)

where {✓(i)
a

} is an independent sample of size n
p

drawn from ⇡(✓
a

|e
a

) and {✓(j)
a

} is an

independent sample of size n
d

drawn from ⇡(✓
a

|e
a

). The Bayes Factor approximation

for BF
cs

by method of Harmonic Mean Monte Carlo integration is given by

dBF
(2)

cs

=

h
n�1
p

P
np

i=1 f(eu1 , eu2 |✓
(i)
a

,M
p

)�1
i�1


n�1
d

P
nd
j=1

⇣
f(e

u1 |✓
(j)
a

,M
d

) f(e
u2 |✓

(j)
a

,M
d

)
⌘�1
��1 (4.4)

where {✓(i)
a

} is an independent sample of size n
p

drawn from the importance sam-

pling function ⇡(✓
a

|e
a

, e
u1 , eu2 ,Mp

) = f(e
u1 , eu2 |✓a,Mp

)⇡(✓
a

|e
a

)/f(e
u1 , eu2 |ea,Mp

) and

{✓(j)
a

} is an independent sample of size n
d

drawn from the importance sampling func-

tion ⇡(✓
a

|e
a

, e
u1 , eu2 ,Md

) = f(e
u1 , eu2 |✓a,Md

)⇡(✓
a

|e
a

)/f(e
u1 , eu2 |ea,Md

).

If any of the distributions from which parameter values need to drawn at random do

not have closed for solutions, Gibbs sampling algorithms will be needed in order to

sample from those distributions [70]. However, the resulting sample of ✓(i)’s from the

Gibbs sampling algorithm will only be approximately independent and will require a

sample size correction to account for this dependence.
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4.2 Monte Carlo Standard Errors

Suppose that the value of evidence for the identification of source problem is given

by

V
BF

=

R
f(e|✓, H

p

) d⇧(✓|H
p

)R
f(e|✓, H

d

) d⇧(✓|H
d

)
⌘ f

p

(e)

f
d

(e)
.

Also, suppose that f
p

(e) and f
d

(e) are estimated independently using Monte Carlo

integration methods by f̂
p

(e) and f̂
d

(e), respectively, where the corresponding ap-

proximate MCSEs are denoted ✏
p

and ✏
d

, respectively. Therefore, let

V̂
BF

=
f̂
p

(e)

f̂
d

(e)

be the approximation of the value of evidence via Monte Carlo integration in both the

numerator and denominator. Assume that if a Gibbs sampler [70] is used to sample

the parameter values for the Monte Carlo integration, that the Gibbs sampler has

reached a stable state and is producing an independent sample of parameter values for

✓. By Lemmas 2.14, 2.15, and 2.16, the Monte Carlo integration estimates converge

to the actual value of the integral,

f̂
p

(e)
as�! f

p

(e), as n
p

! 1 (4.5a)

and

f̂
d

(e)
as�! f

d

(e), as n
d

! 1, (4.5b)

where n
p

and n
d

are the respective number of Monte Carlo samples used to compute

f̂
p

(e) and f̂
d

(e) [36, 65]. However, for the Harmonic Mean estimate, Neal suggests

that the convergence is very slow and unstable since “the number of points required

for this estimate to get close to the right answer will often be greater than the number

of atoms in the observable universe” [52]. A major advantage of the Mixture estimate
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over the Harmonic Mean estimate is that it has a more stable convergence as a function

of n
p

or n
d

[44]. A disadvantage of the Arithmetic Mean estimate is that, typically,

most of the values of ✓(i) will be small, causing a large approximate MCSE, and very

slow convergence to the actual value of the integral [44].

Now, let �2
p

and �2
d

be defined such that

p
n
p

[f̂
p

(e)� f
p

(e)] N(0, �2
p

), as n
p

! 1 (4.6a)

and
p
n
d

[f̂
d

(e)� f
d

(e)] N(0, �2
d

), as n
d

! 1 (4.6b)

according to the Central Limit Theorem [65] (see Geweke [36] for the proofs of these

results). Equations 4.5a, 4.5b, 4.6a, and 4.6b will be used in the following derivation

to show the asymptotic normality (according to the definition presented in Serfling

[65]) of the di↵erence between the approximated value of evidence, denoted V̂
BF

, via

Monte Carlo integration and the actual value of evidence.

V̂
BF

� V
BF

=
f̂
p

(e)

f̂
d

(e)
� f

p

(e)

f
d

(e)

=
f̂
p

(e)

f̂
d

(e)
� f

p

(e)

f̂
d

(e)
+

f
p

(e)

f̂
d

(e)
� f

p

(e)

f
d

(e)

=
f̂
p

(e)� f
p

(e)

f̂
d

(e)
+

f
p

(e)

f
d

(e)

 
f
d

(e)� f̂
d

(e)

f̂
d

(e)

!

=

p
n
p

[f̂
p

(e)� f
p

(e)]
p
n
p

f̂
d

(e)
+

f
p

(e)

f
d

(e)

 p
n
d

[f
d

(e)� f̂
d

(e)]
p
n
d

f̂
d

(e)

!

This suggests that V̂
BF

� V
BF

is asymptotically normal,

AN
✓
0,

�2
p

/n
p

[f
d

(e)]2
+

[f
p

(e)]2 �2
d

/n
d

[f
d

(e)]4

◆
.
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This implies that the appropriate asymptotic MCSE for the approximate Bayes Factor

will take the form

✏
V

=

r
[✏

p

f̂
d

(e)]2 + [✏
d

f̂
p

(e)]2

[f̂
d

(e)]2
(4.7)

since ✏
p

and ✏
d

are estimators of �
p

/
p
n
p

and �
d

/
p
n
d

, respectively, and f̂
p

(e) and

f̂
d

(e) are the approximations of f
p

(e) and f
d

(e), respectively.

The e↵ective sample size of a Gibbs sampler represents the equivalent number of

independent samples needed to achieve the MCSE corresponding to the dependent

sample obtained and is defined in terms of the auto-correlation function values for a

sample [35]. Let ⇢
k

denote the sample auto-correlation function value at lag k and let

n denote the Monte Carlo sample size. Then the e↵ective sample size, denoted n⇤, is

defined by [35] as

n⇤ =
n

1 + 2
P

N

k=1 ⇢k
,

for N su�ciently large. Using the e↵ective sample size to update Equation 4.7, define

the corrected MCSE to be

✏⇤
V

=

r
[✏⇤

p

f̂
d

(e)]2 + [✏⇤
d

f̂
p

(e)]2

[f̂
d

(e)]2
, (4.8)

where ✏⇤
p

= ✏
p

q
n
p

/n⇤
p

and ✏⇤
d

= ✏
d

p
n
d

/n⇤
d

are the corrected MCSE for f̂
p

(e) and f̂
d

(e),

respectively. It should be noted that the auto-correlation function values at each lag

which are smaller than the upper-confidence bound (the threshold for acceptable

thinning) are set to zero. This will ensure that the e↵ective sample size is bounded

above by the Monte Carlo sample size, 1  n⇤  n, achieving the upper bound only

when the sample is determined to be independent by having no auto-correlation.
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4.3 Simulation Study

A simulation study was designed using a dataset of measurements on glass fragments

with the purpose of characterizing the asymptotic MCSE for the Bayes Factors using

both the Arithmetic Mean and the Harmonic Mean techniques and studying the e↵ect

of prior choice on the outcome of the numerical procedure. Due to the computationally

intensive nature of the iterative scheme needed to compute the Mixture technique, this

method was not implemented for the simulation study. The simulation will be divided

into six distinct scenarios which will be described in the following subsection. For each

of the scenarios, two di↵erent values of evidence are calculated, given by Equation 3.7

and Equation 3.11, using each of the two di↵erent Monte Carlo integration techniques,

given by Equation 2.13 and Equation 2.17 (four approximate values of evidence in

total given by Equations 4.1-4.4) along with their corresponding asymptotic MCSE,

given by Equation 2.14 and Equation 2.18. All four of these values of evidence

were calculated using two di↵erent groups of windows to suggest the values of the

hyperparameters for the prior distributions, described in the subsection to follow.

Each one of the values of evidence for a given scenario is computed 30 di↵erent times

using a Monte Carlo sample size of 1000 for n
p

and n
d

. The asymptotic MCSE

for a given method is measured using the average of the 30 MCSE values for each

corresponding Bayes Factor which is compared to the empirical standard error for

the Bayes Factor as measured by the standard deviation in the 30 estimated Bayes

Factors. The algorithm for the simulation study is given in Algorithm 2.

4.3.1 Application to Forensic Evidence

The dataset used in the simulation consists of measurements made on three groups

of glass fragments from 62 di↵erent window panes. This dataset was collected by Dr.
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Algorithm 2: Bayes Factor Simulation Study

for each scenario S 2 {Hp, CNM, 1stQ, Med, 3rdQ, Max} do
Choose the evidence e from window group 1 according to scenario S;
for each window group W 2 {2, 3} do

Choose group W to suggest the prior hyperparameters;
for each MC integration method M 2 {Arithmetic, Harmonic} Mean do

Set n
p

= 1000 and n
d

= 1000;
for i = 1 to 30 do

for each definition of V
BF

in Equation {3.7, 3.11} do

Compute V̂ (i)
BF

using method M ;

Compute the corresponding ✏(i)
V

;
end

end
for each definition of V

BF

in Equation {3.7, 3.11} do

Compute the empirical standard error by sd(V̂ (1)
BF

, . . . , V̂ (30)
BF

);

Compute the asymptotic standard error by mean(✏(1)
V

, . . . , ✏(30)
V

);
end

end
end

end
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Figure 4.1: Pairwise plots of the overall mean elemental concentrations for each
window in the first group of the FBI glass data along with the window identification
number.
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JoAnn Buscaglia of the Federal Bureau of Investigation Laboratory Division, analyzed

in Aitken and Lucy, and publicly available online through the Journal of the Royal

Statistical Society [1]. There are 16 windows in the first group, 16 in the second

group, and 30 in the third group from which 5 fragments per window are measured

(310 total fragments). The trace elemental composition of four di↵erent elements

(which are thought to be the most discriminative [1]), calcium(Ca), potassium(K),

silicon(Si), and iron(Fe), are measured for each of the fragments. As described in

Aitken and Lucy [1], the values used for the analysis are the natural logarithms of the

three ratios, Ca/K, Ca/Si, and Ca/Fe. The first group of windows was chosen for the

evidence datasets in the simulation. Figure 4.1 shows the mean of the fragments for

each window in the first group along with each window’s identification number.

For the simulation, each window in the first group is used as the specific source for each

of six di↵erent choices for the trace evidence window. The six di↵erent windows for

the source of the trace evidence were chosen by first computing the Euclidean distance

matrix containing all the pairwise distances between the window means (plotted in

Figure 4.1). Then the distances for each window in turn were ordered from least to

greatest. Under the prosecution hypothesis, denoted scenario ‘Hp’, the window itself

was chosen as the trace evidence window. The next closest window to each specific

source window was chosen for the closest non-match scenario, denoted ‘CNM’, the first

quartile window was chosen for the ‘1stQ’ scenario, the median window was chosen

for the ‘Med’ scenario, the third quartile window was chosen for the ‘3rdQ’ scenario,

and finally the window farthest away from the specific source window was chosen

for the ‘Max’ scenario. For all six of the scenarios, the remaining windows serve as

the sources in the alternative source population. Figure 4.2 shows the values of the

measurements on each of the fragments for each of the windows in group 1, plotted as

the gray dots. The mean value of the measurements for each of the windows is plotted

in black to give an idea of the variation of the fragments within each window. The



75

●

●

●

●

●

●
● ●

●
●

● ●
●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●●

●●

●● ●

4.5 5.0 5.5

−0
.4

5
−0

.4
0

−0
.3

5
−0

.3
0

ln(Ca/K)

ln
(C

a/
Si

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●●●
●

●

●●
●●
●

●
●

●●
●●

●

●

●
●

●
●
●

●

●

●
●

●
● ●●

●
●

●
●

● ● ●

●
●

● ●

●

●
●

●
● ●●

●

●
●

●

●

●

●

●
●

●

●
● ●●

●
●

●
●

●

●● ●●
●

4.5 5.0 5.5

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

ln(Ca/K)
ln

(C
a/

Fe
)

●

● ●
●

●

●

● ●

●

●

●
●

●

●

●

●●

●

Fragment Values
Window Means

Group 1 Fragments

●
●

● ●
●

●
●
●●●

●

●

●●
● ●

●
●

●
●●

●●
●

●

●
●

●
●

●

●

●

●
●

●
●●●

●
●

●
●

●●●

●
●
● ●

●

●
●
●
●● ●

●

●
●

●

●

●

●

●
●

●

●
●●●

●
●

●
●

●

●●●●
●

−0.45 −0.40 −0.35 −0.30

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

ln(Ca/Si)

ln
(C

a/
Fe

)

●

●●
●

●

●

● ●

●

●

●
●

●

●

●

●

Figure 4.2: Pairwise plots of the elemental concentrations for each fragment in the
first group of FBI glass windows along with the mean elemental concentration for
each associated window.

Table 4.1: Test Results for Departures from Normality for Group 1 of the FBI Glass
Data

Method Component Test Statistic p-Value
Shapiro-Wilk 1 0.9617 0.01709
Shapiro-Wilk 2 0.9952 0.9928
Shapiro-Wilk 3 0.9906 0.8300
Fisher’s Method 8.525635 0.7979345

fragments belonging to the window corresponding to the plotted mean are connected

to that mean point with a line.

When the three-dimensional vectors of the measurements for the elemental composi-

tions in the first group was tested for multivariate normality, no significant departures

from a multivariate Normal distribution were observed. First, the data was mean-

centered and then rotated using principal component analysis [33]. The resulting

principal component scores were tested individually for departures from univariate

normality using the Shapiro-Wilk test, see Saunders [62] for details. Finally, the p-

values were combined using Fisher’s method [32]. The results of the tests are given

in Table 4.1.

Therefore, we will assume the following models for the evidence datasets. First,
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define the model for e
s

= (y
s1,ys2,ys3) under the specific source problem, where y

si

is the three-dimensional (column) vector of elemental compositions described above,

as

y
si

iid⇠ N3(µs

,⌃
s

) (4.9a)

where N3(µs

,⌃
s

) denotes a three-dimensional multivariate normal distribution with

mean µ
s

, a three-dimensional (column) vector, and variance ⌃
s

, a 3 ⇥ 3 positive

definite covariance matrix. The following priors are given for µ
s

and ⌃
s

:

µ
s

⇠ N3(µ⇡

,⌃
b

) and ⌃
s

⇠ W�1
3 (⌃

e

, ⌫
e

) (4.9b)

where µ
⇡

is a three-dimensional vector, ⌃
b

and ⌃
e

are 3⇥3 positive definite covariance

matrices, and the number of degrees of freedom ⌫
e

is a scalar which must be at least as

large as the dimension. The multivariate normal distribution is typically used as the

conjugate prior for the mean of a multivariate normal distribution [35]. The inverse

Wishart distribution is typically used as the conjugate prior for covariance matrices

of a multivariate normal distribution [35].

Next, for both the specific source and common source problems, define the alternative

source population evidence as e
a

= (Y
a1 , Ya2 , . . . , Ya16), where Y

ai = (y
i1,yi2, . . . ,yi5)

is the (column) vector of measurements from a single source, and y
ij

is the three-

dimensional (column) vector of elemental compositions for the jth fragment from the

ith window. Define the hierarchical random e↵ects model for e
a

, under both the

specific source and common source problems to be

y
ij

= µ
a

+ a
i

+ w
ij

(4.10a)

with

a
i

iid⇠ N3(0,⌃a

) and w
ij

iid⇠ N3(0,⌃w

) (4.10b)
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where µ
a

is the three-dimensional grand mean vector of the elemental compositions,

a
i

is the deviation from the grand mean vector for the ith window in e
a

, and w
ij

is the deviation for the jth fragment from the mean vector for the ith window. In

Section 2.1, a result presented by Miller [49] shows that

y
ci

iid⇠ N15(µc

,⌃
c

) (4.10c)

where µ
c

is a block vector whose elements are functions of µ
a

and ⌃
c

is a block matrix

whose elements are functions of ⌃
a

and ⌃
w

. The priors for µ
a

, ⌃
a

, and ⌃
w

are as

follows:

µ
a

⇠ N3(µ⇡

, K⌃
b

), ⌃
a

⇠ W�1
3 (⌃

b

, ⌫
b

), and ⌃
w

⇠ W�1
3 (⌃

e

, ⌫
e

) (4.11)

where µ
⇡

is a three-dimensional vector, ⌃
b

and ⌃
e

are 3⇥3 positive definite covariance

matrices, the number of degrees of freedom ⌫
b

and ⌫
e

are scalars which must be at

least as large as the dimension, and K is a scalar.

Now, under the prosecution hypothesis for the specific source problem, e
u

= (y
u1,yu2)

follows the same model as e
s

. Conversely, under the defense hypothesis for the specific

source problem, e
u

follows the same model as e
a

. For the common source problem,

e
u1 and e

u2 both follow the same model as e
a

under both hypotheses. However, under

the prosecution hypothesis they are considered to be dependent samples from the

same source in the alternative source population model, whereas under the defense

hypothesis they are considered to be independent samples from two di↵erent sources

in the alternative source population model. See Section 3.4.3 and Section 3.4.2 for

further details on the models.

For the simulation study, the values for the prior hyperparameters have been deter-

mined from the second or third group of windows. Let the second and third group
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of the data have the same structure as the alternative source population given in

Section 3.4, where y
kij

denotes the jth fragment from the ith source in the kth group

(either the second or third group of windows) for i = 1, . . . , n
gk
, j = 1, . . . , n

f

, and

where n
gk

is the number of windows in the kth group of windows (k = 2, 3) and n
f

is

the number of fragments from each window. Then

ȳ
ki

=
1

n
f

nfX

j=1

y
kij

(4.12a)

ȳ
k

=
1

n
gk

ngkX

i=1

ȳ
ki

(4.12b)

S
kiw

=
1

n
f

� 1

nfX

j=1

(y
kij

� ȳ
ki

)(y
kij

� ȳ
ki

)T for i = 1, . . . , n
gk

(4.12c)

S
kb

=
1

n
gk
� 1

ngkX

i=1

(ȳ
ki

� ȳ
k

)(ȳ
ki

� ȳ
k

)T (4.12d)

Then, µ
⇡

is a three-dimensional vector representing the grand mean of the elemental

compositions for the windows, ⌃
b

is the estimated 3 ⇥ 3 between group covariance

matrix, and ⌃
e

is the estimated 3⇥ 3 within group covariance matrix as described in

Aitken and Lucy [1] and given below.

µ
⇡k

= ȳ
k

(4.13a)

⌃
ek

=
1

n
gk

ngkX

i=1

S
kiw

(4.13b)

⌃
bk

= S
kb

� 1

n
f

⌃
ek

(4.13c)

The number of degrees of freedom for the inverse Wishart distributions ⌫
b

and ⌫
e

are

scalars that take the values 3, 9, 27, and K = 10. The degrees of freedom are chosen

to begin at the smallest possible value 3 and increase exponentially (i.e. 31, 32, 33,

. . .). For simplicity of the simulation, we chose to set ⌫
b

= ⌫
e

, however, this may

not always be the case in practice. (One situation in which it may be appropriate to
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Figure 4.3: Pairwise plots of the mean elemental concentrations for each window in
the FBI glass data and the grand mean elemental concentrations for each group in
all three groups of windows.

use ⌫
b

= ⌫
e

is when exploring a new forensic modality, such as copper wire [21], in

which there is little prior information concerning the degrees of freedom. The degrees

of freedom control the amount of information contained in the prior distribution

about the covariance matrices.) The value of K was chosen to make the prior for

µ
a

less informative (or more spread out). It should be noted that the priors chosen

are relatively restrictive priors, not non-informative or flat priors. These priors have

the e↵ect of shifting the grand mean of the first group towards the grand mean of

whichever group is being used for the prior (either group 2 or 3). The grand means are

plotted in Figure 4.3, which also provides a rough visualization of the between-window

covariance.

The first and second groups have similar between-window covariances, so, when the

second group is used as the prior there is not much e↵ect on this variable. However,

the third group has a much larger between-window covariance e↵ectively widening the

distribution for the first group when it is used in the prior. Figure 4.4 provides a visual

representation of the within-window covariance for each of the groups. The third

group has the smallest within-window covariance, the first group is in the middle,
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and the second group has the largest within-window covariance. Therefore, when

the second and third groups are used for the priors, the within-window covariance

structure widens and narrows, respectively.

4.3.2 Diagnostic Summary

After running the simulation, the output from the Gibbs samplers via the ‘MCM-

Cglmm’ function [40] in R was analyzed to see if the assumption of independent sam-

ples for the values of ✓ was valid. Within the ‘MCMCglmm’ function, a burn-in period

of 1000 samples was specified to ensure that the algorithm reached a steady state and

a thinning interval of 2 was used to facilitate the assumption of independence of the

samples for the values of ✓. The independence of the sample was measured by plot-

ting the auto-correlation function for each sub-simulation to see whether the values

fell within the recommended threshold [35]. It was determined that for the specific

source sub-simulation when the prosecution model is true that the auto-correlation

function values typically fell within the specified threshold value for all lag values

between one and twenty. (Note that we chose to stop the lag values at 20 because

theoretically the maximum lag is equal to the number of parameter values for ✓, due

to the Markov property, which is 9 for ✓
s

and 15 for ✓
a

[35].) This suggests that the

chosen burn-in period and thinning interval values are appropriate for this example.

A typical acceptable auto-correlation function plot can be seen in Figure 4.5(a).

However, for the specific source sub-simulation when the defense model is true and

for both models in the common source sub-simulation, the auto-correlation function

values did not fall within the desired tolerance for many of the lag values between

one and twenty. A typical unacceptable auto-correlation function plot can be seen in

Figure 4.5(b). This suggests that the thinning interval chosen was not appropriate

for this example and should have been increased to something larger than 2 (perhaps
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Figure 4.4: Pairwise plots of the elemental concentrations for each fragment in each
window in the FBI glass data along with the mean elemental concentrations for each
window in all three groups. (Note that each subplot has di↵erent scaling for the three
variables.)
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Figure 4.5: Typical auto-correlation function plots to determine whether the chosen
thinning intervals for the Gibbs samplers are appropriate.
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(a) A plot showing acceptable thinning inter-
vals.
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20 or even 50).

Another diagnostic test performed considered the trace plots for the values used in the

sum-portion of the Monte Carlo integration (for the Arithmetic Mean we considered

log(f(x|✓(i))), and for the Harmonic Mean we considered log(1/f(x|✓(i)))). In general,

the trace plots looked fairly well-mixed. A typical acceptable trace plot can be seen in

Figure 4.6(a) distinguished by the apparent randomness between consecutively sim-

ulated values. There were some abnormal trace plots which is unsurprising given the

large number of abnormal auto-correlation function plots. A typical abnormal plot

is given in Figure 4.6(b) distinguished by the trending feature of consecutively simu-

lated values. Due to the computational intensity of this simulation, the simulations

were not re-run using a higher thinning interval (as suggested by the auto-correlation

function plots) since many of the trace plots looked acceptable.
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Figure 4.6: Typical trace plots to determine whether the chosen thinning intervals
for the Gibbs samplers are appropriate.
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(a) Trace plot showing acceptable thinning intervals.
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Figure 4.7: Boxplots for the relative di↵erence between the empirical standard er-
ror in the specific source Bayes Factors and the asymptotic MCSEs comparing the
Arithmetic and Harmonic Mean methods.
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Figure 4.8: Boxplots for the relative di↵erence between the empirical standard er-
ror of the common source Bayes Factors and the asymptotic MCSEs comparing the
Arithmetic and Harmonic Mean methods.
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Table 4.2: Corrected Monte Carlo Standard Errors

DOF Scenario sd(V̂ss) ✏̄V ✏̄⇤V
sd(V̂ss)�✏̄V

sd(V̂ss)

sd(V̂ss)�✏̄⇤V
sd(V̂ss)

3 Hp 6.611725e-02 1.830668e-02 5.166504e-02 0.7231179 0.2185845
3 CNM 9.289674e-03 5.290273e-03 7.733278e-03 0.4305211 0.1675404
3 1stQ 5.187942e-02 1.741958e-02 4.206387e-02 0.6642294 0.1891992
3 Med 2.220020e-04 2.373557e-04 2.865845e-04 -0.0691604 -0.2909096
3 3rdQ 1.635434e-08 4.818058e-09 4.819576e-09 0.7053957 0.7053029
3 Max 7.536286e-18 1.383777e-18 1.386807e-18 0.8163848 0.8159826
9 Hp 1.879532e-02 8.300683e-03 1.666579e-02 0.5583643 0.1133012
9 CNM 5.774035e-03 4.149662e-03 5.676135e-03 0.2813238 0.0169551
9 1stQ 2.274740e-02 9.529237e-03 2.345237e-02 0.5810845 -0.0309915
9 Med 1.450562e-04 9.329485e-05 1.056527e-04 0.3568364 0.2716427
9 3rdQ 6.104715e-12 1.115829e-12 1.116634e-12 0.8172185 0.8170866
9 Max 2.295706e-35 4.248643e-36 4.343302e-36 0.8149309 0.8108076
27 Hp 1.700196e-03 1.006384e-03 1.458469e-03 0.4080778 0.1421756
27 CNM 6.562763e-04 5.970101e-04 7.819605e-04 0.0903068 -0.1915111
27 1stQ 2.096175e-03 1.174497e-03 2.277635e-03 0.4396950 -0.0865675
27 Med 2.952653e-06 1.522242e-06 1.631392e-06 0.4844494 0.4474828
27 3rdQ 4.060306e-23 7.522703e-24 7.526123e-24 0.8147257 0.8146415
27 Max 4.72576e-112 8.84673e-113 0.8127980

4.3.3 Simulation Results for Standard Errors

Before placing any trust in the asymptotic MCSE, it should be determined whether

these asymptotic MCSEs accurately reflect the empirical standard error. So, the

boxplots in Figure 4.7 and Figure 4.8 show the relative error between the empirical

standard error and the asymptotic MCSE of the Bayes Factor. Ideally, the boxplots

should have medians around zero with small ranges. However, this is not the case. For

both the specific source and common source sub-simulations, the error associated with

the Bayes Factor tends to be underestimated. This may be a byproduct of the issues

concerning the thinning interval for the Gibbs sampler. Because the auto-correlation

function values indicated that the samples generated by the Gibbs sampler were not

independent, it may have been more appropriate to use the e↵ective sample size from

the Gibbs sampler instead of the Monte Carlo sample size to calculate the asymptotic

MCSE.

Consider, for example, the specific source sub-simulation for the second window only

and using the second group of windows to suggest the priors. The corrected MCSEs
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(given by Equation 4.8) were calculated for each of the 30 estimated Bayes Factors

in each of the six scenarios. The corrected MCSEs are compared to the empirical

standard errors and the uncorrected MCSEs (given by Equation 4.7), and the results

are provided in the Table 4.2. It should be noted that the machine precision used

to compute the values in Table 4.2 was 2.220446 ⇥ 10�16, and so the values smaller

than this quantity are numerically zero. In addition, the auto-correlation function

values at each lag which are smaller than the upper-confidence bound (the threshold

for acceptable thinning) are set to zero. This will ensure that the e↵ective sample

size is bounded above by the Monte Carlo sample size.

The corrected MCSEs were calculated for all of the Arithmetic Mean Bayes Factors

(for all of the windows) in each of the six scenarios, and the results are compared to

the uncorrected MCSEs in Figure 4.9. See Figure 4.10 for the corresponding results

of the corrected MCSEs for all of the Harmonic Mean Bayes Factors. In general,

the corrected MCSEs have the e↵ect of increasing the asymptotic standard error

(so that the corrected MCSE is not underestimating the empirical standard error

as often as the uncorrected MCSE). However, for the scenarios where the trace and

control samples are very far apart resulting in a very small Bayes Factor (typically

the ‘3rdQ’ and ‘Max’ scenarios), the standard errors are so small that the sample

size correction has little e↵ect on the standard error. In certain cases, the corrected

standard errors for the numerator and denominator were numerically zero causing

the asymptotic MCSE for the Bayes Factor to not exist (these entries have been

omitted from Table 4.2 and from the construction of the boxplots in Figure 4.9) and

Figure 4.10.
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Figure 4.9: Boxplots for the relative di↵erence between the empirical standard error
in the Bayes Factors and the asymptotic MCSEs comparing the uncorrected and the
corrected MCSE.
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4.3.4 Sensitivity Analysis for Bayes Factors

A rough sensitivity analysis was performed using the results of the simulation study to

determine which, if any, of the results for each of the methods were a↵ected by changes

in the prior choice and the inexactness of the numerical approximation methods used.

Following Hepler et al. [42], the rates of misleading evidence (RME) and the rates

of disagreement between experts were analyzed to detect possible di↵erences in the

Bayes Factors as a result of the choice of prior and of using approximation techniques.

The results of this analysis are summarized in Table 4.3a and Table 4.3b.

In these tables, the 30 Bayes Factors for each method of approximating the value

of evidence are summarized using the average, and then the results for all six prior

choices were combined (two di↵erent groups of windows to suggest the prior hyper-

parameters each with three di↵erent choices of degrees of freedom). The rates of

disagreement were calculated by first determining for each of the 16 windows in each

scenario (‘Hp’, ‘CNM’, ‘1stQ’, ‘Med’, ‘3rdQ’, and ‘Max’) if all of the Bayes Factor

averages calculated for each of the six prior choices (all 6 Bayes Factor averages per

scenario, total) fell into the same category for magnitude of support (Supports H
p

,

Inconclusive, or Supports H
d

). If so, the window was labeled with its category for

magnitude of support. If any one of the six Bayes Factor averages provided a di↵erent

magnitude of support than the others, then the window was labeled as ‘Disagree’-ing.

The proportion of windows with labels in each category are summarized in Table

4.3a and Table 4.3b. For all six scenarios, the ‘Disagree’ category is a measurement

of the sensitivity of the method to the choice of prior and numerical approximation

technique. Methods with a high rate of disagreement are more sensitive to the prior

choice and numerical approximation techniques, whereas, methods with a low rate of

disagreement are less sensitive. For the ‘Hp’ scenarios, the RME gives the proportion

of Bayes Factor averages which are less than 100 (the proportion that do not ‘Sup-



91

Table 4.3: Rates of misleading evidence and rates of disagreement for the Bayes
Factors between all prior combinations.

(a) Specific Source Bayes Factors

Supports Hp Inconclusive Supports Hd

Scenario RME V̄ � 100 0.01 < V̄ < 100 V̄  0.01 Disagree

Arithmetic Mean

Hp 0.8229 0 0.0625 0 0.9375
CNM 0.7500 0 0.1875 0.1250 0.6875
1stQ 0.2292 0 0 0.4375 0.5625
Med 0.0729 0 0 0.6250 0.3750
3rdQ 0 0 0 1 0
Max 0 0 0 1 0

Harmonic Mean

Hp 0.7917 0 0.0625 0 0.9375
CNM 0.8125 0 0.1875 0 0.8125
1stQ 0.4271 0 0.0625 0 0.9375
Med 0.3542 0 0 0.1250 0.8750
3rdQ 0.2083 0 0 0.1875 0.8125
Max 0.3021 0 0 0.1875 0.8125

(b) Common Source Bayes Factors

Supports Hp Inconclusive Supports Hd

Scenario RME V̄ � 100 0.01 < V̄ < 100 V̄  0.01 Disagree

Arithmetic Mean

Hp 0.1250 0.7500 0 0 0.2500
CNM 0.8125 0.1250 0.3750 0.1875 0.3125
1stQ 0 0 0 1 0
Med 0.0833 0 0.0625 0.8750 0.0625
3rdQ 0 0 0 1 0
Max 0 0 0 1 0

Harmonic Mean

Hp 0.1146 0.7500 0 0 0.2500
CNM 0.8125 0.1250 0.3750 0.1875 0.3125
1stQ 0 0 0 1 0
Med 0.0833 0 0.0625 0.8750 0.0625
3rdQ 0 0 0 1 0
Max 0 0 0 1 0

ports H
p

’). For the remaining five scenarios, the RME give the proportion of Bayes

Factor averages which are greater than 0.01 (the proportion that do not ‘Supports

H
d

’).

The results show comparable rates of misleading evidence and rates of disagreement

between the Arithmetic Mean and Harmonic Mean methods. The specific source

methods studied in the simulation have very high RME, as well as high rates of dis-

agreement. This would indicate that the specific source values of evidence are highly

sensitive to the choice of prior and to the numerical approximation technique. In
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contrast, the common source methods tend to have lower RME and rates of disagree-

ment. It should be noted that the highest RME are for the ‘CNM’ scenario under

the common source methods. This is expected since the trace evidence will look very

similar to the specific source evidence, but not actually originate from the specific

source.

Due to the unexpectedly high rates of disagreement and rates of misleading evidence

(especially for the specific source methods under the ‘Hp’ scenario), the tables were

divided into two subsets based on the group of windows used to suggest the priors.

These results are given in Tables 4.4a, 4.4b, and 4.4c. They have been reorganized to

better compare results between the second and third group being used to suggest the

prior hyperparameters. For the specific source using the Arithmetic mean method,

the RME and rates of disagreement are higher for the second group than for the third

group. The same is generally true for the specific source Harmonic mean method

as well. For the common source methods, the tables for the Arithmetic mean and

Harmonic mean methods were the same. Because they were all the same, only one

table for the common source methods is presented in Table 4.4c. However, the group

used to suggest the prior hyperparameters does not seem to make a di↵erence for the

common source methods as it does for the specific source methods.

Tables 4.4a and 4.4b indicate that the priors suggested by group 2 are causing the

issues with the high RME seen in Table 4.3a. Further inspection of the evidence under

these circumstances reveals the potential cause. Figure 4.11 shows the pairwise scatter

plots of the evidence the specific source problem when the prosecution hypothesis is

true along with a contour plot of the posterior predictive distribution. This figure

reveals that under the specific source problem when the prosecution hypothesis is true,

the prior suggested by the second group of windows for the specific source parameters,

given by Equation 4.9b, is not a very good match for the specific source evidence.
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Table 4.4: Rates of misleading evidence and rates of disagreement for the Bayes
Factors within each prior group.

(a) Specific Source Bayes Factors using the Arithmetic Mean method

Supports Hp Inconclusive Supports Hd

Prior Scenario RME V̄ � 100 0.01 < V̄ < 100 V̄  0.01 Disagree

Group 2

Hp 0.9583 0 0.1875 0 0.8125
CNM 0.6458 0 0.2500 0.1250 0.6250
1stQ 0.1875 0 0.0625 0.6875 0.2500
Med 0.0625 0 0 0.8125 0.1875
3rdQ 0 0 0 1 0
Max 0 0 0 1 0

Group 3

Hp 0.6875 0 0.3750 0 0.6250
CNM 0.8542 0 0.5000 0.1250 0.3750
1stQ 0.2708 0 0 0.5625 0.4375
Med 0.0833 0 0 0.8125 0.1875
3rdQ 0 0 0 1 0
Max 0 0 0 1 0

(b) Specific Source Bayes Factors using the Harmonic Mean method

Supports Hp Inconclusive Supports Hd

Prior Scenario RME V̄ � 100 0.01 < V̄ < 100 V̄  0.01 Disagree

Group 2

Hp 0.9583 0 0.2500 0 0.7500
CNM 0.6875 0 0.2500 0.0625 0.6875
1stQ 0.2500 0 0.0625 0.6250 0.3125
Med 0.1875 0 0 0.6875 0.3125
3rdQ 0.0417 0 0 0.8750 0.1250
Max 0.0625 0 0 0.8125 0.1875

Group 3

Hp 0.6250 0.0625 0.3750 0 0.5625
CNM 0.9375 0 0.5625 0 0.4375
1stQ 0.6042 0 0.1875 0.0625 0.7500
Med 0.5208 0 0.0625 0.1250 0.8125
3rdQ 0.3750 0 0 0.1875 0.8125
Max 0.5412 0 0.0625 0.1875 0.7500

(c) Common Source Bayes Factors

Supports Hp Inconclusive Supports Hd

Prior Scenario RME V̄ � 100 0.01 < V̄ < 100 V̄  0.01 Disagree

Group 2

Hp 0.0417 0.9375 0 0 0.0625
CNM 0.8125 0.4375 0.3750 0.1875 0
1stQ 0 0 0 1 0
Med 0.0833 0 0.0625 0.8750 0.0625
3rdQ 0 0 0 1 0
Max 0 0 0 1 0

Group 3

Hp 0.2083 0.7500 0.1875 0 0.0625
CNM 0.8125 0.1250 0.6250 0.1875 0.0625
1stQ 0 0 0 1 0
Med 0.0833 0 0.0625 0.8750 0.0625
3rdQ 0 0 0 1 0
Max 0 0 0 1 0
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Figure 4.11: Pairwise scatter plots of the specific source evidence under the prosecu-
tion hypothesis, along with a contour plot of the posterior predictive distribution for
the specific source evidence, is plotted in black. The alternative source population
evidence and corresponding contour plot of the posterior predictive distribution is
plotted in gray.

Even when the prior is updated with the evidence, the posterior distribution for the

specific source evidence is still quite mismatched with the data. The same is true for

the alternative source population evidence, but to a much lesser degree. This is due

to the fact that there are many more samples in the alternative source population

evidence compared with the specific source evidence. This is e↵ectively decreasing the

numerator of the Bayes Factor, even though it should be large since the prosecution

hypothesis is true.

Since the previous analysis is based on the point values for the approximate Bayes

Factors and does not take the approximate MCSEs into account, the results can

often be misleading. In addition, it is impossible to di↵erentiate whether the rates of

misleading evidence and the rates of disagreement are due to the e↵ect of the prior

choice or due to the numerical approximation technique. The following analysis using

the MCSEs will consider the sensitivity of the Bayes Factors to only the prior choice

given the current level of MCSE.

Consider comparing, for each window under each scenario and approximation tech-
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nique, the interval for the approximate Bayes Factors defined below for each of three

di↵erent prior degrees of freedom:

[V̄ � 2✏̄⇤
V

, V̄ + 2✏̄⇤
V

]

where V̄ represents the average of the 30 Bayes Factor approximations and ✏̄⇤
V

rep-

resents the square root of the mean of the squared corrected MCSEs for the 30

corresponding Bayes Factors. If the lower endpoint of the interval is negative, it is

truncated to zero since Bayes Factors take only non-negative values. If the corrected

MCSE does not exist, the uncorrected MCSE (which is most often zero) will be used.

If all three of these intervals overlap each other, then that window is said to ‘agree’

for all prior choices. If any one of the intervals does not overlap another interval, that

window is said to ‘disagree’ for all prior choices. See Figure 4.12 for an illustration of

the di↵erent types of overlapping and non-overlapping intervals typically encountered

during the simulation. If a large proportion of the windows under each scenario and

approximation technique ‘disagree’, that method is sensitive to choice of the prior. It

should be noted that if ✏̄⇤
V

is numerically zero for more than one comparable Bayes

Factor (which is good in the sense that your estimate of the Bayes Factors do not con-

tain any significant amount of numerical error), then the interval above will become

essentially a point value. In this situation, this method of sensitivity analysis will not

be the ideal method since it is unlikely that several point values will be exactly the

same (meaning the ‘intervals’ will not overlap, even if the three point values are very

similar). The proportion of windows that ‘disagree’ for all prior choices considered

under each of the approximation scenarios is presented in Table 4.5. Table 4.5 is

for the Arithmetic mean and Harmonic mean methods and for the group 2 priors

only.

It should be noted that the levels of disagreement in Table 4.5 are a direct reflection
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Figure 4.12: Potential overlap scenarios of intervals for Bayes Factors based on the
corrected MCSE. (These exemplars have been chosen from the simulation results for
Bayes Factors approximated using the Arithmetic Mean method under the specific
source identification problem.)

Table 4.5: Sensitivity of the Bayes Factor to prior choice based on rate of disagreement
of the Bayes Factor intervals using the MCSE.

Scenario: Hp CNM 1stQ Med 3rdQ Max

Arithmetic Mean
SS 1.0000 0.8750 0.4375 0.4375 0.0000 0.0000
CS 0.5625 0.3125 0.0000 0.2500 0.0625 0.4375

Harmonic Mean
SS 0.9375 0.9375 1.0000 0.9375 0.8125 0.3125
CS 0.3750 0.2500 0.0000 0.1875 0.0000 0.0000
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of the choice of prior, and do not a↵ect the validity of the Monte Carlo standard

errors in this analysis. The specific source methods studied in the simulation have

very high rates of disagreement. This would indicate that the specific source values

of evidence are highly sensitive to the choice of prior. This e↵ect of prior choice on

the specific source Bayes Factors is particularly problematic in regards to using the

Bayes Factors in the judicial system. The specific source methods are of the most

interest in criminal trials because the specific source is fixed (typically related to the

defendant). As a result, it might be beneficial to use methods of quantifying the value

of evidence that do not depend on prior information for the nuisance parameters,

or that use standard reference priors [11] for the evidence type of interest. When

the Bayes Factor is particularly sensitive to prior choice, a common approach is to

choose a non-informative prior. However, in most situations we have encountered, the

non-informative priors are improper, leading to issues in the resulting Bayes Factor

[59]. In contrast, the common source methods are less sensitive to the prior choice.

The higher rates of disagreement for the common source Arithmetic mean methods

under the extreme scenarios (‘3rdQ’ and ‘Max’) are a byproduct of the MCSE being

numerically zero, so these cases are not concerning. Although some might find it

appealing to use the common source methods in criminal trials since it appears to be

less sensitive to prior choice, the common source value of evidence is not particularly

applicable in this setting since it does not consider the source related to the defendant

to be fixed.

4.4 Discussion

In the forensic science community, Bayesian methods have been proposed as the ideal

method for quantifying the probative value of evidence. Due to these recommen-

dations, many forensic statisticians have been focusing on formalizing methods of
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characterizing the di↵erent types of uncertainties and errors associated with com-

puting the value of evidence in practice. Using asymptotic properties of the Monte

Carlo integration estimates for the numerator and denominator of the Bayes Factor,

a single MCSE for the Bayes Factor was developed. This chapter proposes using the

Bayes Factor MCSE to characterize the amount of numerical imprecision associated

with using Monte Carlo integration methods to approximate the Bayes Factor. This

article provides a way to measure the computational reliability of the reported Bayes

Factors, not only for forensic science, but in general. (It is important to note that

the MCSE does not characterize the accuracy or computational validity of the Bayes

Factors.)

For the simulations studied, the diagnostic tools suggested that the thinning interval

needs to be increased. When the thinning interval is not large enough, the calculation

of the standard error should take into account the e↵ective sample size instead of the

Monte Carlo sample size. Without any sample size correction, the MCSE tends to

underestimate the standard error for the Bayes Factor, giving a false sense of numeri-

cal precision. However, using the e↵ective sample size will correct this standard error

to reflect the added imprecision associated with using a Gibbs sampling algorithm.

For most of the situations studied, the corrected MCSEs were closer to the empirical

standard error in the Bayes Factors than the uncorrected MCSEs.

For the limited number of prior hyperparameters considered in the simulation study,

the choice of prior seems to have little e↵ect on the approximation of the Bayes Factors

for the common source methods. However, for the specific source methods, the prior

choice had a significant e↵ect on the rates of misleading evidence for the Bayes Factors

using the same evidence. This is problematic in the judicial system since it may lead

a judge or jury to arrive at the wrong conclusion regarding the guilt/innocence of

the defendant. Additionally, for the specific source methods, the prior choice had a
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significant e↵ect on level of disagreement of the Bayes Factors for the same evidence.

This is also problematic in the judicial system since di↵erent forensic scientists could

present di↵erent values for the Bayes Factor. The common source methods produced

a lower rate of misleading evidence than the specific source methods, but the common

source methods are less applicable in criminal trials since they do not assume that

the specific source is fixed. Consequently, it may be beneficial to study methods of

quantifying the value of evidence which do not depend on prior information for the

nuisance parameters, or that use standard reference priors.



100

CHAPTER 5

The Bayes Factor & the Likelihood Ratio

While the Bayes Factor and the likelihood ratio are two di↵erent statistics used for

quantifying the value of evidence under di↵erent statistical paradigms (see Section 3.3

for details), the two have many practical relationships. In this section, standard

Bayesian analysis tools, including Doob’s Consistency Theorem, are used to relate the

Bayes Factor and likelihood ratio. In particular, Doob’s Consistency Theorem will

be used to show that under suitable conditions, a Bayesian believes the Bayes Factor

will converge almost-surely to the likelihood ratio. This result is important because

it reveals that Bayesians believe there is a fixed value of the likelihood ratio function

analogous to the Frequentist true likelihood ratio. This means that a Bayesian believes

that the Frequentist results, like the Bernstein-von Mises Theorem, will hold almost-

surely with respect to their prior belief.

5.1 Common Source

A direct relationship between the Bayes Factor and likelihood ratio is given in the

equation below, which provides an equivalent non-standard expression for the Bayes

Factor. While the first expression for the Bayes Factor applies generally to all

Bayesian model selection and hypothesis testing problems, this non-standard form

of the Bayes Factor is mainly applicable in statistical pattern recognition problems,

and of course, the forensic identification of source problems. This alternative expres-
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sion of the Bayes Factor considers the expected value of the common source likelihood

ratio function with respect to the posterior distribution for ✓
a

given the observation

of the entire set of evidence under the defense model.

BF
cs2(e) =

Z
f(e

u1 , eu2 |✓a,Mp

)

f(e
u1 , eu2 |✓a,Md

)
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) (5.1)

The derivation of Equation 5.1 is given below. This derivation is a summary of the

derivation given in Ommen et al. [55].

Derivation (5.1): This derivation essentially consists of multiplication

by convenient factors of one and applications of standard Bayesian analysis

tools. The derivation starts from the first definition of the common source

Bayes Factor given by Equation 3.7 above. Again, it is assumed that the

class of parametric distributions, P
a

, and the prior distributions, ⇧, have

been chosen such that the integrals expressed exist and are finite.
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It should be noted that the reciprocal of the Bayes Factor, 1/BF
cs2(e) (where BF

cs2(e)

is defined as in Equation 5.1), is equivalent to the expected value of the reciprocal of

the common source likelihood ratio function with respect to the posterior distribution

for the entire set of evidence under the prosecution model, given below.

BF
cs3(e) =

Z
1

LR
cs

(✓
a

; e
u1 , eu2)

d⇧(✓
a

|e
u1 , eu2 , ea,Mp

)

��1

(5.3)

The derivation of Equation 5.3 is provided below for reference.

Derivation (5.3): In a similar manner to Derivation 5.1, the reciprocal

of the common source Bayes Factor from Equation 3.7 is equal to the

expected value of the reciprocal of the common source likelihood ratio

with respect to the posterior distribution given the entire set of evidence

has been generated according to the defense model.

1
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There are no strong assumptions necessary for the alternative form of the common

source Bayes Factor to hold.

Another relationship between the Bayes Factor and likelihood ratio is provided as a

consequence of the Doob’s Consistency Theorem [75], which is included for clarity

in Section 2.3. It can be shown that the BF and the LR for the common source

identification problem are asymptotically equivalent (as n
a

tends to infinity) under a
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variety of prior distributions for the nuisance parameters in the Bayes Factor. The

result is formalized in the theorem to follow.

Theorem 5.1 (Common Source Bayes Factor Consistency):

Given a fixed observation of e
u1 and e

u2, suppose that f(e
u1 , eu2 |✓a,Mp

) is

bounded random variable with respect to ⇧(✓
a

) and that f(e
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0
a
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denote the cumulative distribution function corresponding to the posterior measure

on the parameter space given the observation e
a,na . We will also let �

✓a(✓
0
a
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cumulative distribution function corresponding to the probability measure degenerate
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a
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for all continuity points ✓0
a

of �
✓a where �

✓a is the probability measure degenerate at

✓
a

.

Let D be the class of all Cadlag functions [76] and let g : D 7! R be a continuous

map such that g(D) =
R
fdD for D 2 D and bounded, continuous function f . Then

Equation 5.5 and the Continuous Mapping Theorem, imply that

g(⇧
na(✓

0
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a,na))
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✓a(✓

0
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))
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for all continuity points ✓0
a

of �
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Now, because the non-negative inverse function is continuous, then by the Continuous

Mapping Theorem
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5.2 Specific Source

An alternative form of the specific source Bayes Factor is given in an analogous

manner to the common source. Under the assumption that the prior distribution for

✓
s

is statistically independent of the prior distribution for ✓
a

, the specific source Bayes
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Factor is given by the expected value of the likelihood ratio with respect to the joint

posterior distribution for the parameters given the entire set of evidence under the

defense model.
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The full derivation of Equation 5.6 can be found below.

Derivation (5.6): Similar to the common source derivation above, this

derivation also consists of multiplication by a convenient factor of one and

applications of standard Bayesian analysis tools. The derivation begins

from Equation 3.4 for the Bayes Factor specifically for the specific source

identification problem. Again, it is assumed that the classes of parametric

distributions, P
s
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, and the prior distributions, ⇧, have been chosen

such that the integrals expressed exist and are finite.
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Similarly, the reciprocal of BF
ss2(e) (the alternative form of the specific source Bayes

Factor given in Equation 5.6) is equivalent to the expected value of the reciprocal of

the likelihood ratio with respect to the joint posterior distribution for the parameters

given the entire set of evidence under the prosecution model, as given in Equation 5.8

below.
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A derivation of Equation 5.8 is provided below. Again, it should be noted that in

order for this form of the specific source Bayes Factor to hold, there is a strong

assumption that the prior distribution for ✓
s

is statistically independent of the prior

distribution for ✓
a

.

Derivation (5.8): Similar to the common source derivation above, the

reciprocal of the specific source Bayes Factor is equal to the expected value

of the reciprocal of the specific source likelihood ratio with respect to the

posterior distribution given the entire set of evidence has been generated

according to the defense model.
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)
d⇧(✓|e,M

p

)

#�1

.

⇤

As a consequence of the Doob’s Consistency Theorem [75], it can be shown that the

Bayes Factor and the likelihood ratio for the specific source identification problem

are asymptotically equivalent as the number of samples from the specific source (n
a

)

and the number of sources in the alternative source population (n
a

) tend to infinity.
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The result is formalized in the theorem to follow.

Theorem 5.2 (Specific Source Bayes Factor Consistency):

Given a fixed observation of e
u

, suppose that f(e
u

|✓
s

) is bounded ran-

dom variable with respect to ⇧(✓
s

) and that f(e
u

|✓
a

) is a random vari-

able with respect to ⇧(✓
a

) which is not degenerate at 0. Let the as-

sumptions of Doob’s Consistency Theorem be satisfied. Then for every

joint prior probability measure ⇧(✓) on ⇥, the sequence of Bayes Factors,

BF
ss

(e
n

), converges almost surely to the likelihood ratio, LR
ss

(✓; e
u

), as

n = n
s

= n
a

! 1 for ⇧-almost every ✓ and for P1
✓

-almost every e1.

Proof: For this proof, we will use the standard abuse of notation and let ⇧
na(✓

0
a

|e
a,na)

denote the cumulative distribution function corresponding to the posterior measure

on ⇥
a

the observation e
a,na , and let ⇧

ns(✓
0
s

|e
s,ns) denote the cumulative distribution

function corresponding to the posterior measure on ⇥
s

given the observation e
s,ns . We

will also let �
✓a(✓

0
a

) denote the cumulative distribution function corresponding to the

probability measure degenerate at ✓
a

, and �
✓s(✓

0
s

) denote the cumulative distribution

function corresponding to the probability measure degenerate at ✓
s

. By Doob’s Con-

sistency Theorem (Theorem 2.10), for ⇧
a

-almost every ✓
a

and for P1
✓a
-almost every

e
a,1, then as n

a

! 1

⇧
na(✓

0
a

|e
a,na) ! �

✓a(✓
0
a

) (5.10)

for all continuity points ✓0
a

of �
✓a where �

✓a is the probability measure degenerate at

✓
a

. Similarly, for ⇧
s

-almost every ✓
s

and for P1
✓s
-almost every e

s,1, then as n
s

! 1

⇧
ns(✓

0
s

|e
s,ns) ! �

✓s(✓
0
s

) (5.11)

for all continuity points ✓0
s

of �
✓s where �

✓s is the probability measure degenerate at

✓
s

.
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Let D and g : D 7! R be defined as above for the proof of Theorem 5.1. Then

Equations 5.10 and 5.11 and the Continuous Mapping Theorem, imply that

g(⇧
na(✓

0
a

|e
a,na))

as�! g(�
✓a(✓

0
a

))

for all continuity points ✓0
a

of �
✓a , for ⇧a

-almost every ✓
a

, and for P1
✓a
-almost every

e
a,1, and

g(⇧
ns(✓

0
s

|e
s,ns))

as�! g(�
✓s(✓

0
s

))

for all continuity points ✓0
s

of �
✓s , for ⇧s

-almost every ✓
s

, and for P1
✓s
-almost every

e
s,1.

Using alternative notation, this means that as n
a

! 1

Z
f(e

u

|✓0
a

)d⇧
na(✓

0
a

|e
a,na)

as�!
Z

f(e
u

|✓0
a

)d�
✓a(✓

0
a

),

and as n
s

! 1

Z
f(e

u

|✓0
s

)d⇧
ns(✓

0
s

|e
s,ns)

as�!
Z

f(e
u

|✓0
s

)d�
✓s(✓

0
s

).

Therefore, for ⇧
a

-almost every ✓
a

and for P1
✓a
-almost every e

a,1, as n
a

! 1

f(e
u

|e
a,na)

as�! f(e
u

|✓
a

),

and for ⇧
s

-almost every ✓
s

and for P1
✓s
-almost every e

s,1, as n
s

! 1

f(e
u

|e
s,ns)

as�! f(e
u

|✓
s

).

Now, because the non-negative inverse function is continuous, then by the Continuous
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Mapping Theorem
1

f(e
u

|e
a,na)

as�! 1

f(e
u

|✓
a

)
.

Finally, by Slutsky’s Theorem, as n ⌘ n
a

= n
s

! 1,

BF
ss

(e
n

) =
f(e

u

|e
s,ns)

f(e
u

|e
a,na)

as�! f(e
u

|✓
s

)

f(e
u

|✓
a

)
= LR

ss

(✓
s

, ✓
a

; e
u

)

for for ⇧
s

-almost every ✓
s

, for P1
✓s
-almost every e

s,1, for ⇧
a

-almost every ✓
a

, and for

P1
✓a
-almost every e

a,1. ⌅

It should be noted that for the statement of this theorem, it is assumed that n
s

and

n
a

are equal. However, this assumption can be generalized to include values for n
s

and n
a

that are proportional, although the proof becomes more complicated.

5.3 Application Example

The purpose of this example is to demonstrate the methods of computing both the

common source and specific source Bayes Factors using the alternative expressions

given by Equation 5.1 and Equation 5.6. The Monte Carlo integration methods for

computing these values of evidence are provided in Section 5.3.3. The resulting values

of evidence will be compared with those computed using the first expression given by

Equation 3.7 and Equation 3.11. For both of these examples, two di↵erent datasets

will be used to examine any sample size e↵ects on the resulting values of evidence,

the glass dataset described in Section 4.3 and a simulated glass dataset with larger

samples sizes than the former.
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5.3.1 Observed Glass Data

The dataset used for this example is the same glass data provided in Section 4.3.

Similarly to Section 4.3, the data from the first group of glass fragments, used for the

evidence data, is modeled with a normal distribution. The data used for the evidence

in the specific source identification example under the scenario that the prosecution

hypothesis is true is given by

e
u

: Two fragments from window number 10;

e
s

: Three di↵erent fragments from window number 10;

e
a

: Five fragments from each of 14 windows in the first group (excluding windows

number 10 and 48).

The data used for the evidence in the specific source identification example under the

scenario that the defense hypothesis is true is given by

e
u

: Two fragments from window number 10;

e
s

: Five fragments from window number 48;

e
a

: Five fragments from each of 14 windows in the first group (excluding windows

number 10 and 48).

The data used for the evidence in the common source identification example under

the scenario that the prosecution hypothesis is true is given by

e
u1: Two fragments from window number 10;

e
u2: Three di↵erent fragments from window number 10;

e
a

: Five fragments from each of 14 windows in the first group (excluding windows

number 10 and 48).
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The data used for the evidence in the specific source identification example under the

scenario that the defense hypothesis is true is given by

e
u1: Two fragments from window number 10;

e
u2: Five fragments from window number 48;

e
a

: Five fragments from each of 14 windows in the first group (excluding windows

number 10 and 48).

The datasets described above for this application example are for illustrative purposes

only and do not necessarily reflect realistic data commonly encountered in casework.

In the scenarios under which the data is chosen according the prosecution hypoth-

esis being true, it is expected that the Bayes Factors will be larger than one. In

contrast, for the scenarios under which the data is chosen according the the defense

hypothesis being true, it is expected that the Bayes Factors will be less than one.

Following Section 4.3, the measurements from the second and third groups of win-

dows are combined and used to suggest the prior hyperparameters. Again, a normal

distribution is used as the prior distribution for the mean parameters and an inverse

Wishart distribution is used as the prior distribution for the covariance parameters,

see Equations 4.9–4.13. The number of degrees of freedom for the inverse Wishart

distributions was chosen to be 27 for this example and the value of K was chosen to

be 10, similar to Section 4.3.

5.3.2 Simulated Glass Data

Notice that the glass data described above has relatively small sample sizes, only

a maximum of five fragments per source (including the specific source) and only 14

sources in the alternative source population. Because these samples sizes are so small,

it was desired to simulate some glass data with larger sample sizes to compare the
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behavior of the computed values of evidence. The simulated glass data will have

five fragments in each of the unknown source evidence sets, 25 fragments in the

specific source evidence, and 50 sources in the alternative source population with ten

fragments within each source.

To simulate this data, the first group of the glass data was used to suggest the true

parameter values for the multivariate normal distributions. The measurements on the

fragments from the window with identification number 10, where y(10)
si

is the three-

dimensional (column) vector of elemental compositions for the ith fragment from

window number 10, were used to determine the parameter values, µ(10)
s0 and ⌃(10)

s0 ,

given as the sample estimates below.

µ(10)
s0

=
1

n(10)
s

n

(10)
sX

i=1

y(10)
si

=

✓
4.586980 �0.365652 2.699196

◆
T

⌃(10)
s0

=
1

n(10)
s

� 1

n

(10)
sX

i=1

⇣
y(10)
si

� µ(10)
s0

⌘⇣
y(10)
si

� µ(10)
s0

⌘
T

=

0

BBBB@

8.378358⇥ 10�03 6.880485⇥ 10�04 �6.512652⇥ 10�04

6.880485⇥ 10�04 7.254092⇥ 10�05 �5.674613⇥ 10�05

�6.512652⇥ 10�04 �5.674613⇥ 10�05 2.673494⇥ 10�04

1

CCCCA

The measurements on the fragments from the window with identification number 48

were used to determine the parameter values, µ(48)
s0 and ⌃(48)

s0 in a similar manner to

the above sample estimates.

µ(48)
s0

=

✓
4.792984 �0.320326 2.846948

◆
T



113

⌃(10)
s0

=

0

BBBB@

1.138632⇥ 10�02 8.849329⇥ 10�04 1.260511⇥ 10�03

8.849329⇥ 10�04 1.165956⇥ 10�04 1.137223⇥ 10�04

1.260511⇥ 10�03 1.137223⇥ 10�04 5.526833⇥ 10�04

1

CCCCA

Finally, the measurements on the fragments from the remaining 14 windows were

used to determine the parameter values, µ
a0 , ⌃b0 , and ⌃e0 in a manner similar to

Equation 4.13 (the only di↵erence is that Equations 4.13 uses either group 2 or group

3 of the glass data, and here group 1 is used).

µ
a0 =

✓
4.830995 �0.344223 2.751252

◆
T

⌃
b0 =

0

BBBB@

0.118334236 �0.009927254 0.087147020

�0.009927254 0.002945243 �0.008224465

0.087147020 �0.008224465 0.094283548

1

CCCCA

⌃
e0 =

0

BBBB@

1.653828⇥ 10�02 8.373814⇥ 10�05 3.564552⇥ 10�04

8.373814⇥ 10�05 5.010762⇥ 10�05 �1.088538⇥ 10�05

3.564552⇥ 10�04 �1.088538⇥ 10�05 5.169330⇥ 10�04

1

CCCCA

First of all, for both the common source and specific source identification problems

and both of the scenarios under H
p

and H
d

being assumed true, the parameter values

µ
a0 , ⌃b0 , and ⌃e0 are used for generating the alternative source population evidence,

e
a

, according to

y
ci

iid⇠ N15(µc0 ,⌃c0),

for i = 1, 2, . . . , n
a

, where µ
c0 depends on µ

a0 and ⌃
c0 depends on ⌃

b0 and ⌃
e0

according to Theorem 2.2. For additional details, see Equation 4.10. Now, for the

specific source problem under the H
p

scenario, e
u

and e
s

are generated according

to

y
ui

iid⇠ N3(µ
(10)
s0

,⌃(10)
s0

) and y
sj

iid⇠ N3(µ
(10)
s0

,⌃(10)
s0

),
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for i = 1, . . . , 5 and j = 1, . . . , 25. Under the H
d

scenario, e
u

is generated using the

same parameter values while e
s

is generated according to

y
sj

iid⇠ N3(µ
(48)
s0

,⌃(48)
s0

),

for j = 1, . . . , 25. Next, for the common source problem under the H
p

scenario, e
u1

and e
u2 are generated according to

y
u1i

iid⇠ N3(µ
(10)
s0

,⌃(10)
s0

) and y
u2i

iid⇠ N3(µ
(10)
s0

,⌃(10)
s0

),

for i = 1, . . . , 5. Under the H
d

scenario, e
u1 is generated using the same parameter

values while e
u2 is generated according to

y
u2i

iid⇠ N3(µ
(48)
s0

,⌃(48)
s0

),

for i = 1, . . . , 5.

5.3.3 Monte Carlo Integration for Non-Standard BF

Recall from Equation 5.1 that the Bayes Factor for the common source identification

problem can be written as

BF
cs2 =

Z
f(e

u1 , eu2 |✓a,Mp

)

f(e
u1 , eu2 |✓a,Md

)
d⇧(✓

a

|e
u1 , eu2 , ea,Md

).

This Bayes Factor can be approximated using the Arithmetic Mean method of Monte

Carlo integration by

dBF
(1)

cs

= n�1

nX

i=1

f(e
u1 , eu2 |✓

(i)
a

,M
p

)

f(e
u1 , eu2 |✓

(i)
a

,M
d

)
(5.12)
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where {✓(i)
a

} is an independent sample of size n drawn from ⇡(✓
a

|e
u1 , eu2 , ea,Md

). The

Bayes Factor approximation for BF
cs2 by method of Harmonic Mean Monte Carlo

integration is given by

dBF
(2)

cs

=

"
n�1

nX

i=1

f(e
u1 , eu2 |✓

(i)
a

,M
d

)

f(e
u1 , eu2 |✓

(i)
a

,M
p

)

#�1

(5.13)

where {✓(i)
a

} is an independent sample of size n drawn from the importance sampling

function ⇡(✓
a

|e
u1 , eu2 , ea,Mp

) = f(e
u1 , eu2 |✓a,Mp

)⇡(✓
a

|e
a

)/f(e
u1 , eu2 |ea,Mp

). Note

that this posterior distribution is di↵erent from the posterior distribution for Equa-

tion 5.12 since the given model for the evidence is di↵erent. The derivation that this

Harmonic Mean estimate of the common source Bayes Factor is a proper Monte Carlo

integration estimate that converges to BF
cs2 is given below.

Derivation (5.13): It will be shown that dBF
(2)

cs

converges almost-surely

to BF
cs2. In the context above, the importance sampling function is given

by

I(✓
a

) ⌘ ⇡(✓
a

|e
u1 , eu2 , ea,Mp

) =
f(e

u1 , eu2 |✓a,Mp

)⇡(✓
a

|e
a

)

f(e
u1 , eu2 |ea,Mp

)
.

Therefore, by the SLLN,

n�1

nX

i=1

f(e
u1 , eu2 |✓

(i)
a

,M
d

)

f(e
u1 , eu2 |✓

(i)
a

,M
p

)

as�! E
I


f(e

u1 , eu2 |✓a,Md

)

f(e
u1 , eu2 |✓a,Mp

)

�
,

as the Monte Carlo sample size, n, tends to infinity, where

E
I


f(e

u1 , eu2 |✓a,Md

)

f(e
u1 , eu2 |✓a,Mp

)

�
=

Z
f(e

u1 , eu2 |✓a,Md

)

f(e
u1 , eu2 |✓a,Mp

)
d⇧(✓

a

|e
u1 , eu2 , ea,Mp

)

=

Z
f(e

u1 , eu2 |✓a,Md

)

f(e
u1 , eu2 |✓a,Mp

)

f(e
u1 , eu2 |✓a,Mp

)

f(e
u1 , eu2 |ea,Mp

)
d⇧(✓

a

|e
a

)

=

Z
f(e

u1 , eu2 |✓a,Md

)

f(e
u1 , eu2 |ea,Mp

)
d⇧(✓

a

|e
a

)

=

R
f(e

u1 , eu2 |✓a,Md

) d⇧(✓
a

|e
a

)

f(e
u1 , eu2 |ea,Mp

)

=

R
f(e

u1 , eu2 |✓a,Md

) d⇧(✓
a

|e
a

)R
f(e

u1 , eu2 |✓a,Mp

) d⇧(✓
a

|e
a

)
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=
1

BF
cs1(e)

=
1

BF
cs2(e)

.

Finally, by Slutsky’s Theorem, as n ! 1

dBF
(2)

cs

=

"
n�1

nX

i=1

f(e
u1 , eu2 |✓

(i)
a

,M
d

)

f(e
u1 , eu2 |✓

(i)
a

,M
p

)

#�1

as�! BF
cs2.

⇤

Note that the Harmonic Mean estimate of BF
cs2(e) given by Equation 5.13 is equiv-

alent to the Arithmetic Mean estimate of BF
cs3(e) from Equation 5.3. Also, that

the Arithmetic Mean estimate of BF
cs2(e) given by Equation 5.12 is equivalent to

the Harmonic Mean estimate of BF
cs3(e) from Equation 5.3. These derivations are

rather straight-forward, and so they will be omitted from this section.

Now, recall from Equation 5.6 that the specific source Bayes Factor is given by

BF
ss2(e) =

Z
f(e

u

|✓
s

,M
p

)

f(e
u

|✓
a

,M
d

)
d⇧(✓|e

u

, e
s

, e
a

,M
d

).

The specific source Bayes Factor can be approximated using the Arithmetic Mean

method of Monte Carlo integration by

dBF
(1)

ss

= n�1

nX

i=1

f(e
u

|✓(i)
s

,M
p

)

f(e
u

|✓(i)
a

,M
d

)
(5.14)

where {✓(i)
s

} is an independent sample of size n drawn from ⇡(✓
s

|e
s

) and {✓(i)
a

} is an

independent sample of size n drawn from ⇡(✓
a

|e
u

, e
a

,M
d

) (or you can think of this

as a single joint sample {✓(i)} = {(✓(i)
s

, ✓(i)
a

)} of size n from ⇡(✓|e
u

, e
s

, e
a

,M
d

)). The

Bayes Factor approximation for BF
cs2 by method of Harmonic Mean Monte Carlo
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integration is given by

dBF
(2)

ss

=

"
n�1

nX

i=1

f(e
u

|✓(i)
a

,M
d

)

f(e
u

|✓(i)
s

,M
p

)

#�1

(5.15)

where {✓(i)
s

} is an independent sample of size n drawn from ⇡(✓
s

|e
u

, e
s

,M
p

) and {✓(i)
a

}

is an independent sample of size n drawn from ⇡(✓
a

|e
a

) (or you can think of this as

a single joint sample {✓(i)} = {(✓(i)
s

, ✓(i)
a

)} of size n from the importance sampling

function I(✓) ⌘ ⇡(✓|e
u

, e
s

, e
a

,M
p

)). Note, similarly to the common source Bayes

Factor, that this posterior distribution is di↵erent from the posterior distribution for

Equation 5.14 since the given evidence model is di↵erent. The derivation that this

Harmonic Mean estimate of the specific source Bayes Factor is a proper Monte Carlo

integration estimate that converges to BF
ss2 is given below.

Derivation (5.15): It will be shown that dBF
(2)

ss

converges almost-surely

to BF
ss2. In the context above, the importance sampling function is given

by

I(✓) ⌘ ⇡(✓
a

|e
u

, e
s

, e
a

,M
p

) = ⇡(✓
s

|e
u

, e
s

,M
p

) ⇡(✓
a

|e
a

).

Therefore, by the SLLN, as n ! 1 (where n is the Monte Carlo sample

size)

n�1

nX

i=1

f(e
u

|✓(i)
a

,M
d

)

f(e
u

|✓(i)
s

,M
p

)

as�! E
I


f(e

u

|✓
a

,M
d

)

f(e
u

|✓
s

,M
p

)

�
,

where

E
I


f(e

u

|✓
a

,M
d

)

f(e
u

|✓
s

,M
p

)

�
=

Z
f(e

u

|✓
a

,M
d

)

f(e
u

|✓
s

,M
p

)
d⇧(✓

a

|e
u

, e
s

, e
a

,M
p

)

=

Z Z
f(e

u

|✓
a

,M
d

)

f(e
u

|✓
s

,M
p

)
d⇧(✓

s

|e
u

, e
s

,M
p

) d⇧(✓
a

|e
a

)

=

Z
f(e

u

|✓
a

,M
d

) d⇧(✓
a

|e
a

)

Z
1

f(e
u

|✓
s

,M
p

)
d⇧(✓

s

|e
u

, e
s

,M
p

)

= f(e
u

|e
a

,M
d

)

Z
1

f(e
u

|✓
s

,M
p

)

f(e
u

|✓
s

,M
p

)

f(e
u

|e
s

,M
p

)
d⇧(✓

s

|e
s

)

= f(e
u

|e
a

,M
d

)

Z
1

f(e
u

|e
s

,M
p

)
d⇧(✓

s

|e
s

)
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=
f(e

u

|e
a

,M
d

)

f(e
u

|e
s

,M
p

)

Z
d⇧(✓

s

|e
s

)

=
f(e

u

|e
a

,M
d

)

f(e
u

|e
s

,M
p

)
=

1

BF
ss1(e)

=
1

BF
ss2(e)

.

Finally, by Slutsky’s Theorem, as n ! 1

dBF
(2)

ss

=

"
n�1

nX

i=1

f(e
u

|✓(i)
a

,M
d

)

f(e
u

|✓(i)
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Again, it should be noted that the Harmonic Mean estimate of BF
ss2(e) given by

Equation 5.15 is equivalent to the Arithmetic Mean estimate of BF
ss3(e) from Equa-

tion 5.8. Also, that the Arithmetic Mean estimate of BF
ss2(e) given by Equation 5.14

is equivalent to the Harmonic Mean estimate of BF
ss3(e) from Equation 5.8. These

derivations are also omitted from this section since they are trivial extensions of the

results above.

5.3.4 Application Results

Based on the results of Section 4.3, the Bayes Factor was computed using Monte Carlo

integration techniques with a Monte Carlo sample size of 100, 000, a burn-in period

of 2000, and a thinning interval of 15. Details of the Monte Carlo approximation of

both the common source and specific source Bayes Factors by both the Arithmetic

and Harmonic mean methods are provided in Section 5.3.3. The auto-correlation and

trace plots were examined for each of the computed Bayes Factors. A typical auto-

correlation function plot and a typical trace plot are provided in Figure 5.1. These

plots indicated that the burn-in and thinning intervals were appropriately chosen

to ensure that the samples from the Gibbs sampling algorithm, as implemented by

the ‘MCMCglmm’ function in R [40], were approximately independent. The auto-

correlation values fall within the appropriate tolerance for all lag-values considered
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Figure 5.1: Typical diagnostic plots to determine whether the chosen thinning inter-
vals for the Gibbs samplers are appropriate.
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and the trace plot of the log-likelihood ratio function values used in the sum-portion of

the Monte Carlo integration method are randomly positioned without any apparent

systematic pattern. Therefore, the Monte Carlo standard errors can be computed

without any sample size corrections needed.

Using the methods described above, the Bayes Factors were computed for both the

common source and specific source identification problems under two di↵erent sce-

narios each. The first scenario uses data created under the prosecution hypothesis

and the second scenario uses data created under the defense hypothesis. Also, each

of the Bayes Factors are computed using the alternative expression, where the Bayes

Factor is given by the expected value of the likelihood ratio function with respect to

the posterior distribution for the parameters given the entire set of evidence under

the defense model, using both the Arithmetic and Harmonic Mean methods of Monte

Carlo integration. The results are provided in Table 5.1 for the observed glass data

and in Table 5.2 for the simulated glass data. As expected, all of the Bayes Factors

for the evidence under the H
p

scenario are above one, and all of the Bayes Factors for
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Table 5.1: Computed Bayes Factors (and corresponding MCSE) for the observed
glass data using the alternative expressions given in Equation 5.1 and Equation 5.6.

(a) Specific Source

Scenario
Hp Hd

Arithmetic 101.2017 8.0131⇥ 10�4

Mean (0.50845) (2.3209⇥ 10�4)
Harmonic 98.98313 1.5477⇥ 10�3

Mean (2.02394) (4.7023⇥ 10�4)

(b) Common Source

Scenario
Hp Hd

Arithmetic 256.4003 4.8869⇥ 10�9

Mean (0.22683) (9.6985⇥ 10�10)
Harmonic 256.6640 3.7440⇥ 10�9

Mean (0.22553) (2.0478⇥ 10�9)

Table 5.2: Computed Bayes Factors (and corresponding MCSE) for the simulated
glass data using the alternative expressions given in Equation 5.1 and Equation 5.6.

(a) Specific Source

Scenario
Hp Hd

Arithmetic 4809.033 5.1356⇥ 10�10

Mean (13.55218) (1.1316⇥ 10�10)
Harmonic 4800.352 2.5095⇥ 10�9

Mean (14.91021) (2.2921⇥ 10�9)

(b) Common Source

Scenario
Hp Hd

Arithmetic 694.8544 5.5534⇥ 10�35

Mean (0.3558765) (2.4121⇥ 10�35)
Harmonic 695.0588 6.0625⇥ 10�34

Mean (0.3532926) (3.2642⇥ 10�34)

the evidence under the H
d

scenario are less than one. These results are compared to

the corresponding Bayes Factors computed using the original expression in Table 5.3

for the observed glass data and in Table 5.4 for the simulated glass data.

It is clear that the corresponding values of the Bayes Factor are very comparable be-

tween the alternative and original expressions. This is expected since the two expres-

sions are equivalent. However, it should be noted that the Bayes Factors computed

using the alternative expression are expected to be more stable since the computa-

tion involves only a single Monte Carlo integration instead of two, as is the case for

Table 5.3: Computed Bayes Factors (and corresponding MCSE) for the observed
glass data using the original expressions given in Equation 3.7 and Equation 3.11.

(a) Specific Source

Scenario
Hp Hd

Arithmetic 101.7335 5.20015⇥ 10�4

Mean (0.49266) (1.0420⇥ 10�4)
Harmonic 101.3096 2.16392⇥ 10�3

Mean (1.82651) (7.07263⇥ 10�4)

(b) Common Source

Scenario
Hp Hd

Arithmetic 256.6531 4.21411⇥ 10�9

Mean (0.64141) (5.86046⇥ 10�10)
Harmonic 256.5720 1.41288⇥ 10�8

Mean (0.67984) (2.0639⇥ 10�9)
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Table 5.4: Computed Bayes Factors (and corresponding MCSE) for the simulated
glass data using the original expressions given in Equation 3.7 and Equation 3.11.

(a) Specific Source

Scenario
Hp Hd

Arithmetic 4805.955 4.2106⇥ 10�10

Mean (13.02153) (1.2798⇥ 10�10)
Harmonic 4802.957 3.0628⇥ 10�8

Mean (14.46239) (1.7698⇥ 10�9)

(b) Common Source

Scenario
Hp Hd

Arithmetic 695.0156 1.5637⇥ 10�33

Mean (1.613102) (1.5165⇥ 10�33)
Harmonic 694.084 4.6234⇥ 10�34

Mean (1.649854) (2.9533⇥ 10�34)

Table 5.5: Computed likelihood ratio values for the simulated glass example.

Scenario
Hp Hd

Specific
2449715 1.708589⇥ 10�50

Source
Common

482.056 5.31445⇥ 10�48

Source

the original expression of the Bayes Factor. Also, in this case, the computation is

additionally reduced by simplification of computing the Monte Carlo standard error.

Refer to Section 4.2 for details of the Monte Carlo standard error for Bayes Fac-

tors approximated by Monte Carlo integration from the original expressions given by

Equation 3.7 and Equation 3.11.

It should also be noted that the Bayes Factors computed using the simulated glass

data, which has larger sample sizes than the observed glass data, tend to be closer

to the values of the likelihood ratios computed using the true likelihood structures

from the simulation. The values of these likelihood ratios are given in Table 5.5 for

reference. This limited example is compatible with Theorem 5.1 and Theorem 5.2,

that the Bayes Factor is consistent towards the likelihood ratio as the sample size

increases.
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5.4 Discussion

In Chapter 4, it was determined that the Monte Carlo integration estimates of the

Bayes Factors (especially for the specific source) given in Equation 3.7 and Equa-

tion 3.11 are computationally complex and require additional computational e↵ort

to compute the corresponding Monte Carlo standard errors. In this section, two

non-standard forms for the Bayes Factor were presented. The first is given by

V
BF2(e) =

Z
V
LR

(✓; e
u

) d⇧(✓|e,M
d

), (5.16)

and the second is given by

V
BF3(e) =

Z
V
LR

(✓; e
u

)�1 d⇧(✓|e,M
d

)

��1

. (5.17)

While the alternative forms of the Bayes Factor given by Equation 5.16 (Equation 5.1

and Equation 5.6) do not eliminate the need for Gibbs sampling techniques, they may

still be preferred computationally since there is only a single integral to approximate

(instead of two) and because it is easier to characterize the corresponding numerical

standard error. Please see Section 5.3.3 for further details of the numerical approxi-

mation methods for these alternative Bayes Factor forms.

Additionally, the Monte Carlo integration estimates of the Bayes Factors (especially

for the specific source) given in Equation 3.7 and Equation 3.11 are sensitive to the

choice of prior distributions for the parameters. The non-standard forms of the Bayes

Factors given in Equation 5.1 and Equation 5.6 will aid in the development of various

approximations to the value of evidence which are not heavily influenced by the prior

choice.
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CHAPTER 6

Bernstein-von Mises & Laplace

Approximations

6.1 Bernstein-von Mises Approximation

In this section, an asymptotic approximation of the Bayes Factor is introduced as

a consequence of the Bernstein-von Mises Theorem. Please refer to Section 2.3 for

details of the theorem and for a discussion of its assumptions. The Bernstein-von

Mises Theorem gives a set of conditions under which the posterior distribution for

the parameter is approximately normal for large sample sizes. This result suggests a

natural approximation to the Bayes Factor, the Bernstein-von Mises (BVM) approxi-

mation, which is produced by replacing the posterior distribution in the Bayes Factor

with the Normal distributions suggested by the Bernstein-von Mises Theorem. The

general form of the BVM approximation is given by

V̂
BVM

(e) =

Z
V
LR

(✓; e
u

) d�(✓|µ̂
d

, ⌃̂
d

) (6.1)

where � (x;µ,⌃) represents the distribution function for a multivariate normal ran-

dom variable X with mean µ and covariance matrix ⌃, and with corresponding esti-

mates µ̂
d

and ⌃̂
d

, respectively, where the estimates are computing from the evidence,

e, under the defense model. It should be noted that � (x;µ,⌃) is the distribution
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function corresponding to the measure N (µ,⌃) on the sample space for X.

The forms of the BVM approximations for the common source and specific source

identification problems corresponding to the alternative forms of the Bayes Factor

given in Equation 5.1 and Equation 5.6, respectively, are given in Section 6.1.1 and

Section 6.1.2 below.

6.1.1 Common Source

Recall from Section 5.1 that the alternative form for the common source Bayes Factor

is given by

BF
cs2(e) =

Z
LR

cs

(✓
a

; e
u1 , eu2) d⇧(✓a|eu1 , eu2 , ea,Md

).

By the Bernstein-von Mises Theorem, the posterior distribution ⇧(✓
a

|e
u1 , eu2 , ea,Md

)

converges in probability under the total variation norm to �(✓
a

; ✓̂d
a

, I
d

(✓̂d
a

)�1) where ✓̂d
a

is the MLE for ✓
a

given the observation of the entire set of evidence under the defense

model, and I
d

(✓̂d
a

)�1 is the inverse of the observed Fisher’s information matrix for

the observation of the entire set of evidence under the defense model evaluated at ✓̂d
a

.

Therefore, the BVM approximation of BF
cs2 is given by

BVM
cs2(e) =

Z
LR

cs

(✓
a

; e
u1 , eu2) d�

⇣
✓
a

; ✓̂d
a

, I
d

(✓̂d
a

)�1
⌘
. (6.2)

In the following theorem, it will be shown that as the number of sources in the al-

ternative source population (n
a

) increases to infinity, then the di↵erence between the

common source BVM approximation and Bayes Factor converges to zero in probabil-

ity. To facilitate notation for this theorem, let e
n

denote the sequence of evidence sets

as n
a

increases. For clarity, e
n

= {e
u1 , eu2 , ea : na

= n} for n = 1, 2, . . . ,1. It should

be noted that the number of samples for the unknown source evidence n
u1 and n

u2

are constant, as well as the number of samples within each of the sources from the
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alternative source population. The only sample size that is changing is the number

of sources in the alternative source population, n
a

.

Theorem 6.1:

Suppose that ✓̂d
a

, the MLE for the entire set of evidence under the defense

model as defined above, is an asymptotically e�cient estimator of ✓
a0. Let

the assumptions of the Bernstein-von Mises Theorem hold, and let the

likelihood ratio function LR
cs
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; e
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Proof: Consider the di↵erence in the common source Bayes Factor and BVM approx-

imation.
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) is bounded in a neighborhood of ✓̂d
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by Slutsky’s Theorem. ⌅
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6.1.2 Specific Source

Recall from Section 5.2 that the alternative form of the specific source Bayes Factor

is given by
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where ✓̂
s

is the MLE for ✓
s

given the observation of e
s

(under the defense model),

✓̂⇤
a

is the MLE for ✓
a

given the observation of e
u

and e
a

under the defense model,

and ✓̂
d

is the MLE for ✓ given the observation for the entire set of evidence e under

the defense model; also, I
s

(✓̂
s

)�1 is the inverse of the observed Fisher’s information

matrix for the observation of e
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(under the defense model), I⇤
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)�1 is the inverse of

the observed Fisher’s information matrix for the observation of e
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and e
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defense model, and I
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)�1 is the inverse of the observed Fisher’s information matrix
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for the observation of the entire set of evidence e under the defense model.

In the following theorem, it will be shown that as the number of sources in the

alternative source population (n
a

) and the number of samples in the specific source

population (n
s

) increase to infinity, then the di↵erence between the specific source

BVM approximation and Bayes Factor converges to zero in probability. To facilitate

notation for this theorem, let e
n

denote the sequence of evidence sets as n
a

and n
s

increase. For clarity, e
n

= {e
u

, e
s

, e
a

: n
s

= n
a

= n} for n = 1, 2, . . . ,1. It should be

noted that the number of samples for the unknown source evidence n
u

is constant, as

well as the number of samples within each of the sources from the alternative source

population. For this theorem, n
s

and n
a

are constrained to be equal (this is the same

constraint used for Theorem 5.2).
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By the Bernstein-von Mises Theorem, as n
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Analogously to the common source proof, by the law of total probability, the Bernstein-
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6.1.3 Discussion

The advantage of this method is that the Bernstein-von Mises (BVM) approxima-

tion mitigates the e↵ect of the prior choice on the resulting quantification of the

value of evidence since it replaces the posterior distribution with a normal approx-

imation. While the e↵ect of prior choice has been alleviated, there is still a large

computational component to the BVM approximation since Monte Carlo integration

may be necessary in order to estimate the integrals. See Section 6.2.1 for details of

the computational methods needed for the BVM approximation. However, one of the

computational advantages of this methods is that there is no longer a need to perform

Gibbs sampling during the Monte Carlo integration because it is straight-forward to

simulate values from a multivariate normal distribution.

6.2 Application Example

The dataset used for this example is the data from the first group of glass windows de-

scribed in Section 5.3. For this example, the Bernstein-von Mises approximation will
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be computed for both the common source and specific source identification problems

under the two di↵erent scenarios, H
p

and H
d

, using both the observed and simu-

lated glass datasets described in Section 5.3. The methods of computing the BVM

approximations for this example by means of two di↵erent Monte Carlo integration

methods is provided in Section 6.2.1. Additionally, for each BVM approximation

computed, the required Fisher’s information matrices will be computed using three

di↵erent methods, described in the sections to follow.

6.2.1 Methods for Computing the BVM Approximation

Recall from Equation 6.2 that the BVM approximation for the common source iden-

tification problem can be written as
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d

)
(6.4)

where {✓(i)
a

} is an independent sample of size n drawn from �(✓
a

; ✓̂d
a

, I
d

(✓̂d
a

)�1) where ✓̂d
a

is the MLE corresponding to the objective function `
d

(✓
a

) = ln [f(e
u1 , eu2 , ea|✓a,Md

)]

and I
d

(✓
a

) is the corresponding Fisher’s information matrix. The BVM approximation

by method of Harmonic Mean Monte Carlo integration is given by

\BVM
(2)

cs

=

"
n�1

nX

i=1

f(e
u1 , eu2 |✓

(i)
a

,M
d

)

f(e
u1 , eu2 |✓

(i)
a

,M
p

)

#�1

(6.5)
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where {✓(i)
a

} is an independent sample of size n drawn from the importance sam-

pling function �(✓
a

; ✓̂p
a

, I
p

(✓̂p
a

)�1) where ✓̂p
a

is the MLE corresponding to the objective

function `
p

(✓
a

) = ln [f(e
u1 , eu2 , ea|✓a,Mp

)] and I
p

(✓
a

) is the corresponding Fisher’s in-

formation matrix. Note that this sampling distribution is di↵erent from the sampling

distribution for Equation 6.4 since the given model for the evidence is di↵erent.

Now, recall from Equation 6.3 that the specific source BVM approximation is given

by

BVM
ss

(e) =

Z
LR

ss

(✓; e
u

) d�
⇣
✓; ✓̂

d

, I
d

(✓̂
d

)�1
⌘

where ✓ = (✓
s

, ✓
a

) is the joint parameter, ✓̂
d

is the MLE corresponding to the objec-

tive function `
d

(✓) = ln [f(e
u

, e
s

, e
a

|✓,M
d

)], and I
d

(✓) is the corresponding Fisher’s

information matrix.

The specific source Bayes Factor can be approximated using the Arithmetic Mean

method of Monte Carlo integration by

\BVM
(1)

ss

= n�1

nX

i=1

f(e
u

|✓(i)
s

,M
p

)

f(e
u

|✓(i)
a

,M
d

)
(6.6)

where {✓(i)
s

} is an independent sample of size n drawn from �(✓
s

; ✓̂
s

, I
s

(✓̂
s

)�1) where ✓̂
s

is the MLE corresponding to the objective function `
s

(✓
s

) = ln [f(e
s

|✓
s

)] and I
s

(✓
s

) is

the corresponding Fisher’s information matrix; also, {✓(i)
a

} is an independent sample

of size n drawn from �(✓
a

; ✓̂⇤
a

, I⇤
a

(✓̂⇤
a

)�1) where ✓̂⇤
a

is the MLE corresponding to the

objective function `⇤
a

(✓
a

) = ln [f(e
u

, e
a

|✓
a

)] and I⇤
a

(✓
a

) is the corresponding Fisher’s

information matrix. Alternatively, instead of considering two independent samples,

one for {✓(i)
s

} and one for {✓(i)
a

}, the BVM approximation can be computed using a

single joint sample {✓(i)} = {(✓(i)
s

, ✓(i)
a

)} of size n from �(✓; ✓̂
d

, I
d

(✓̂
d

)�1). However, in

this case, the form of the Fisher’s information matrix becomes more complicated to

determine.
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The BVM approximation by method of Harmonic Mean Monte Carlo integration is

given by

\BVM
(2)

ss

=

"
n�1

nX

i=1

f(e
u

|✓(i)
a

,M
d

)

f(e
u

|✓(i)
s

,M
p

)

#�1

(6.7)

where {✓(i)
s

} is an independent sample of size n drawn from �(✓
s

; ✓̂⇤
s

, I⇤
s

(✓̂⇤
s

)�1) where

✓̂⇤
s

is the MLE corresponding to the objective function `⇤
s

(✓
s

) = ln [f(e
u

, e
s

|✓
s

)] and

I⇤
s

(✓
s

) is the corresponding Fisher’s information matrix; also, {✓(i)
a

} is an independent

sample of size n drawn from �(✓
a

; ✓̂
a

, I
a

(✓̂
a

)�1) where ✓̂
a

is the MLE corresponding to

the objective function `
a

(✓
a

) = ln [f(e
a

|✓
a

)] and I
a

(✓
a

) is the corresponding Fisher’s

information matrix. Similar to the above approximation, instead of considering two

independent samples, the BVM approximation can be computed using a single joint

sample {✓(i)} = {(✓(i)
s

, ✓(i)
a

)} of size n from �(✓; ✓̂
p

, I
p

(✓̂
p

)�1) where ✓̂
p

is the MLE

corresponding to the objective function `
p

(✓) = ln [f(e
u

, e
s

, e
a

|✓,M
p

)], and I
p

(✓) is

the corresponding Fisher’s information matrix. Note, similarly to the common source

BVM approximation, that this sampling distribution is di↵erent from the sampling

distribution for Equation 6.6 since the given evidence model is di↵erent.

It should be noted that in order to sample from the multivariate normal distributions,

then the maximum likelihood estimates and the Fisher’s information matrices need

to be computed first. There are a couple of ways in which the Fisher’s information

matrices can be computed. Depending on the numerical optimization method used

to compute the maximum-likelihood estimates, the Fisher’s information matrix may

be estimated as a necessary step. If this is not the case, then the following methods

may be considered for computing the Fisher’s information matrices: the first method

is by exact calculation, the second is by parametric bootstrap, and the third is by

jackknife resampling [23].
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6.2.2 Exact Fisher’s Information Matrices

For the first method, the following definition provides the exact form of the Fisher’s

information matrix for the evidence from the specific source under the assumption of

normality.

Definition 6.1: Consider the specific source evidence e
s

= {y
si

}ns
i=1 where

n
s

is the number of samples in the specific source population evidence,

y
si

is an m-dimensional column vector, and y
si

iid⇠ N
m

(µ
s

,⌃
s

) for i =

1, 2, . . . , n
s

where

µ
s

(�) =

0

BBBB@

�1

�2
...

�
m

1

CCCCA
, ⌃

s

(⌘) =

0

BBBB@

⌘11 ⌘12 · · · ⌘1m

⌘12 ⌘22 · · · ⌘2m
...

. . . . . .
...

⌘1m · · · ⌘
m�1,m ⌘

mm

1

CCCCA
,

and ⌃�1
s

(�) =

0

BBBB@

�11 �12 · · · �1m

�12 �22 · · · �2m
...

. . . . . .
...

�1m · · · �
m�1,m �

mm

1

CCCCA
.

Notice that there are N
m

=
�
m

2

�
+m unique elements in ⌃

s

(⌘) and ⌃�1
s

(�)

since they are both symmetric. Consider the following vectorization of

the unique elements in the matrix ⌃
s

(⌘):

⌃s =
⇣
⌘11 · · · ⌘1m ⌘22 · · · ⌘2m · · · ⌘

m�1,m�1 ⌘
m�1,m ⌘

mm

⌘
T

which is an N
m

-dimensional column vector. Let ✓
s

= (µT

s

⌃s
T )T be the

(m + N
m

)-dimensional column vector of unique parameter values. Then

the Fisher’s information matrix for the specific source evidence is an (m+

N
m

)⇥ (m+N
m

) symmetric matrix given by

I
s

(✓
s

) =

"
n
s

⌃�1
s

0

0 n
s

I(⌘)

#
(6.8)
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where I(⌘) is an N
m

⇥N
m

matrix with elements

I
ijkl

(⌘) =

8
>>>><

>>>>:

1
2
�2
ik

: i = j, k = l

�
ik

�
il

: i = j, k 6= l

�
ik

�
jk

: i 6= j, k = l

�
il

�
jk

+ �
ik

�
jl

: i 6= j, k 6= l

where the ijkl-element is in the row corresponding to the position of ⌘
ij

in ⌃s and the column corresponding to the position of ⌘
kl

in ⌃s.

When the evidence follows a multivariate normal distribution, the observed Fisher’s

information matrix I
s

(✓̂
s

) needed for the specific source BVM approximation using the

Arithmetic Mean method of Monte Carlo integration can be computed by replacing

✓
s

with ✓̂
s

in Definition 6.1 for I
s

(✓
s

). When the evidence follows a multivariate

normal distribution, the observed Fisher’s information matrix I⇤
s

(✓̂⇤
s

) needed for the

specific source BVM approximation using the Harmonic Mean method of Monte Carlo

integration can be computed by replacing ✓
s

with ✓̂⇤
s

in Definition 6.1 for I
s

(✓
s

).

The exact form of the Fisher’s information matrix for the alternative source popula-

tion evidence under the assumption of normality is given in the following definition.

Definition 6.2: Consider the alternative source population evidence e
a

=

{y
ij

}na nw
i=1 j=1 where nw

is the number of samples in the ith source, n
a

is the

number of sources from the alternative source population, and y
ij

is an

m-dimensional column vector. In addition, y
ij

= µ
a

+ a
i

+ w
ij

with

a
i

iid⇠ N
m

(0,⌃
b

) and w
ij

iid⇠ N
m

(0,⌃
w

) where

µ
a

(↵) =

0

BBBB@

↵1

↵2

...

↵
m

1

CCCCA
, ⌃

b

(�) =

0

BBBB@

�11 �12 · · · �1m

�12 �22 · · · �2m
...

. . . . . .
...

�1m · · · �
m�1,m �

mm

1

CCCCA
,
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and ⌃
w

(⌘) =

0

BBBB@

⌘11 ⌘12 · · · ⌘1m

⌘12 ⌘22 · · · ⌘2m
...

. . . . . .
...

⌘1m · · · ⌘
m�1,m ⌘

mm

1

CCCCA
.

Notice that there are N
m

=
�
m

2

�
+m unique elements in ⌃

b

(�) and ⌃
w

(⌘)

since they are both symmetric. Consider the following vectorization of

the unique elements in the matrix ⌃
b

(�):

⌃b =
⇣
�11 · · · �1m �22 · · · �2m · · · �

m�1,m�1 �
m�1,m �

mm

⌘
T

which is an N
m

-dimensional column vector. Similarly, consider the fol-

lowing vectorization of the unique elements in the matrix ⌃
w

(⌘):

⌃w =
⇣
⌘11 · · · ⌘1m ⌘22 · · · ⌘2m · · · ⌘

m�1,m�1 ⌘
m�1,m ⌘

mm

⌘
T

which is an N
m

-dimensional column vector. Let ✓
a

= (µT

s

⌃b
T ⌃w

T )T

be the (m+2N
m

)-dimensional column vector of unique parameter values.

Therefore, Y
ai

=
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where D is the m⇥m matrix

D(d) =

0

BBBB@

d11 d12 · · · d1m

d12 d22 · · · d2m
...

. . . . . .
...

d1m · · · d
m�1,m d

mm

1
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and S is the m⇥m matrix

S(s) =

0
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s11 s12 · · · s1m
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. . . . . .
...

s1m · · · s
m�1,m s

mm

1
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.

Then the Fisher’s information matrix for the alternative source population

evidence is the (m+ 2N
m

)⇥ (m+ 2N
m

) matrix given by

I
a

(✓
a

) =

2

64
n
a

I(↵) 0 0

0 n
a

I(�) 0

0 0 n
a

I(⌘)

3

75 (6.9)

with

I(↵) = n
w

D + n
w

(n
w

� 1)S

I(�) = n2
w

h
I(D) + (n

w

� 1)I(DS) + (n
w

� 1)2I(S)
i

I(⌘) = n
w

I(D) + n
w

(n
w

� 1)I(S)

where I(D) is an N
m

⇥N
m

matrix with elements

I
ijkl

(D) =

8
>>>><

>>>>:

1
2
d2
ik

: i = j, k = l

d
ik

d
il

: i = j, k 6= l

d
ik

d
jk

: i 6= j, k = l

d
il

d
jk

+ d
ik

d
jl

: i 6= j, k 6= l
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I(DS) is an N
m

⇥N
m

matrix with elements

I
ijkl

(DS) =

8
>>>><

>>>>:

d
ik

s
ik

: i = j, k = l

d
ik

s
il

+ d
il

s
ik

: i = j, k 6= l

d
ik

s
jk

+ d
jk

s
ik

: i 6= j, k = l

d
ik

s
jl

+ d
il

s
jk

+ d
jk

s
il

+ d
jl

s
ik

: i 6= j, k 6= l

,

and I(S) is an N
m

⇥N
m

matrix with elements

I
ijkl

(S) =

8
>>>><

>>>>:

1
2
s2
ik

: i = j, k = l

s
ik

s
il

: i = j, k 6= l

s
ik

s
jk

: i 6= j, k = l

s
il

s
jk

+ s
ik

s
jl
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.

When using I(D), I(DS), and I(S) to compute I(�) the ijkl-element

for all three matrices is in the row corresponding to the position of �
ij

in ⌃b and the column corresponding to the position of �
kl

in ⌃b. When

using I(D) and I(S) to compute I(⌘) the ijkl-element for both matrices

is in the row corresponding to the position of ⌘
ij

in ⌃w and the column

corresponding to the position of ⌘
kl

in ⌃w.

When the evidence follows a multivariate normal distribution, the observed Fisher’s

information matrix I⇤
a

(✓̂⇤
a

) needed for the specific source BVM approximation using

the Arithmetic Mean method of Monte Carlo integration can be computed by replac-

ing ✓
a

with ✓̂⇤
a

in Definition 6.2 for I
a

(✓
a

). The observed Fisher’s information matrix

I
a

(✓̂
a

) needed for the specific source BVM approximation using the Harmonic Mean

method of Monte Carlo integration can be computed by replacing ✓
a

with ✓̂
a

in Def-

inition 6.2 for I
a

(✓
a

) when the evidence follows a multivariate normal distribution.

When the evidence follows a multivariate normal distribution, the Fisher’s informa-

tion matrix I
d

(✓̂d
a

) needed for the common source BVM approximation using the

Arithmetic Mean method of Monte Carlo integration can be computed by replacing

✓
a

with ✓̂d
a

in Definition 6.2 for I
a

(✓
a

). The Fisher’s information matrix I
p

(✓̂p
a

) needed

for the common source BVM approximation using the Harmonic Mean method of
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Monte Carlo integration can be computed by replacing ✓
a

with ✓̂p
a

in Definition 6.2

for I
a

(✓
a

) when the evidence follows a multivariate normal distribution.

The implementation of these matrices in R, which was aided by the e↵orts of Dr.

Cedric Neumann and Ms. Allison Lempola in relation to the NIJ grant mentioned

in the Acknowledgements, provides some computational challenges. In rare cases,

the resulting matrices may no longer be symmetric, positive definite, or numerically

invertible. In these rare instances, the matrices are forced to have the desired be-

havior using the functions ‘forceSymmetric’ and ‘nearPD’ from the ‘Matrix’ package

[7]. While I admit that these methods are far from ideal, finding solutions to these

computational issues are beyond the scope of this dissertation.

6.2.3 Bootstrap Method for Fisher’s Information Matrices

For the second method of computing the matrices using a parametric bootstrap,

the computational issues mentioned above are avoided. However, this method is

more computationally intensive and requires significantly more time to perform. The

algorithm for computing the inverse observed Fisher’s information matrix associated

with the specific source evidence under the assumption of normality using this method

is given in Algorithm 3. Algorithm 3 should be used to replace the exact computation

of the inverse Fisher’s information matrix when it is defined by Definition 6.1. The

algorithm for computing the inverse observed Fisher’s information matrix associated

with the alternative source population evidence under the assumption of normality

using this method is given in Algorithm 4. Algorithm 4 should be used to replace the

exact computation of the inverse Fisher’s information matrix when it is defined by

Definition 6.2.
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Algorithm 3: Bootstrap for Specific Source Fisher’s Information Matrix

Input: µ̂
s

is the MLE for the mean parameter;

⌃̂
s

is the MLE for the covariance parameter;
n
s

is the number of samples in e
s

used to compute the MLEs;
m is the sample dimension;

Initialize an empty matrix M of size N ⇥ (
�
m

2

�
+ 2m);

for i = 1, 2, . . . , N do
Simulate a sample e⇤

s

of size n
s

from N
m

(µ̂
s

, ⌃̂
s

);
Compute µ̂⇤

s

the MLE for the mean from e⇤
s

;

Compute ⌃̂⇤
s

the MLE for the covariance from e⇤
s

;

Store the vectorization of the unique elements in µ̂⇤
s

and ⌃̂⇤
s

into row i of M
end
Compute the covariance matrix of M and store in invFIM ;

Output: invFIM is the inverse observed Fisher’s Information Matrix I
s

(✓̂
s

)

Algorithm 4: Bootstrap for Alternative Source Fisher’s Information Matrix

Input: µ̂
a

is the MLE for the mean parameter;

⌃̂
b

is the MLE for the between-source covariance parameter;

⌃̂
w

is the MLE for the within-source covariance parameter;
n
w

is the number of sources in e
a

used to compute the MLEs;
n
w

is the number of samples in each source of e
a

;
m is the sample dimension;

Initialize an empty matrix M of size N ⇥ (2
�
m

2

�
+ 3m);

for i = 1, 2, . . . , N do
Initialize an empty dataset e⇤

a

of the same size as e
a

;

Simulate a sample a
i

of size n
a

from N
m

(µ̂
a

, ⌃̂
b

);
for j = 1, 2, . . . , n

a

do
Simulate a sample of size n

w

from N
m

(a
ij

, ⌃̂
w

);
Store this sample in e⇤

a

end
Compute µ̂⇤

a

the MLE for the mean from e⇤
a

;

Compute ⌃̂⇤
b

the MLE for the between-source covariance from e⇤
a

;

Compute ⌃̂⇤
w

the MLE for the within-source covariance from e⇤
a

;

Store vectorization of unique elements in µ̂⇤
a

, ⌃̂⇤
b

, and ⌃̂⇤
w

into row i of M
end
Compute the covariance matrix of M and store in invFIM ;

Output: invFIM is the inverse observed Fisher’s Information Matrix I
a

(✓̂
a

)



140

6.2.4 Jackknife Method for Fisher’s Information Matrices

Since both of the previous algorithms require the assumption of normality for the

evidence in order to compute the exact Fisher’s information matrices, a jackknife

algorithm is utilized in order to avoid any distributional assumptions for the data. As

long as the MLEs are consistent, then according to the Linearization of M-estimators

Theorem 2.13, the MLEs have an asymptotic variance equal to the corresponding

inverse Fisher’s information matrix [75]. Since the jackknife estimate for the variance

of a parameter estimated via the jackknife method is known [23], it will be used

to estimate the inverse Fisher’s information matrix. The following algorithms for

computing the Fisher’s information matrices using the jackknife algorithm utilize

this theoretical result. The algorithm for computing the inverse observed Fisher’s

information matrix associated with the specific source evidence using this method

is given in Algorithm 5. The algorithm for computing the inverse observed Fisher’s

information matrix associated with the alternative source population evidence is given

in Algorithm 6.

Algorithm 5: Jackknife for Specific Source Fisher’s Information Matrix

Input: e
s

= {y1, y2, . . . , yN};
Initialize an empty matrix M of size N ⇥ (

�
m

2

�
+ 2m);

for i = 1, 2, . . . , N do

Let e(i)
s

be the set obtained by removing y
i

from e
s

;

Compute µ̂(i)
s

the MLE for the mean from e(i)
s

;

Compute ⌃̂(i)
s

the MLE for the covariance from e(i)
s

;

Store the vectorization of unique elements in µ̂(i)
s

and ⌃̂(i)
s

into row i of M ;
end
Compute the sample covariance of M and store in C;
invFIM = (n� 1)2/n C;

Output: invFIM is the inverse observed Fisher’s Information Matrix I
s

(✓̂
s

)
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Algorithm 6: Jackknife for Alternative Source Fisher’s Information Matrix

Input: e
a

= {Y1,Y2, . . . ,YN

};
Initialize an empty matrix M of size N ⇥ (2

�
m

2

�
+ 3m);

for i = 1, 2, . . . , N do

Let e(i)
a

be the set obtained by removing Y
i

from e
a

;

Compute µ̂(i)
a

the MLE for the mean from e(i)
a

;

Compute ⌃̂(i)
b

the MLE for the covariance from e(i)
a

;

Compute ⌃̂(i)
w

the MLE for the covariance from e(i)
a

;

Store vectorization of unique elements in µ̂(i)
a

, ⌃̂(i)
b

, and ⌃̂(i)
w

into row i of M
end
Compute the sample covariance of M and store in C;
invFIM = (n� 1)2/n C;

Output: invFIM is the inverse observed Fisher’s Information Matrix I
a

(✓̂
a

)

6.2.5 Application Results

The Bernstein-von Mises approximations were computed using the R software and a

Monte Carlo sample size of 100, 000 iterations. Using the methods described above,

the Bernstein-von Mises approximations were computed for both the common source

and specific source identification problems under the two di↵erent scenarios H
p

and

H
d

, for both the observed and simulated glass datasets as described in Section 5.3.

The results for the simulated glass data in Table 6.1. Since the methods performed

so poorly on the observed glass data, the results are not reported here.

One of the greatest computational issues with this method, especially for the observed

glass data and generally for data with small sample sizes, is the creation of likelihood

ratios for the Monte Carlo integration (or reciprocal likelihood ratios for the Harmonic

Mean method) which are undefined (in this case undefined can be a likelihood ratio

value of 0/0 or 1). In the implementation of these methods, any undefined likelihood

ratio values are discarded from the Monte Carlo integration and the number discarded

is recorded. If this number is too high, resulting in a much smaller Monte Carlo

sample size than desired, the method produces a computational error and aborts.
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Table 6.1: Computed Bernstein-von Mises approximations (and corresponding
MCSE) for the simulated glass data.

(a) Specific Source

Arithmetic Scenario
Mean Hp Hd

Exact 710123.6 2.196⇥ 10�17

FIM (11723.36) (8.659⇥ 10�18)
Bootstrap 1.13⇥ 1019 3.331⇥ 10�17

FIM (1.14⇥ 1019) (1.483⇥ 10�17)
Jackknife 748425.2 7.615⇥ 10�20

FIM (105338.1) (2.473⇥ 10�20)

Harmonic Scenario
Mean Hp Hd

Exact 2.14⇥ 10�280 0
FIM (2.13⇥ 10�280) (DNE)

Bootstrap 1.56⇥ 10�261 2.56⇥ 10�294

FIM (1.56⇥ 10�261) (2.56⇥ 10�294)
Jackknife 0 0

FIM (DNE) (DNE)

(b) Common Source

Arithmetic Scenario
Mean Hp Hd

Exact 402.0035 1.823⇥ 10�39

FIM (37.41627) (4.966⇥ 10�40)
Bootstrap 365.8552 1.921⇥ 10�39

FIM (0.555391) (8.156⇥ 10�40)
Jackknife 351.9083 4.872⇥ 10�38

FIM (0.4018931) (2.023⇥ 10�38)

Harmonic Scenario
Mean Hp Hd

Exact 332.7279 4.286⇥ 10�60

FIM (0.296837) (3.564⇥ 10�60)
Bootstrap 1.25⇥ 10�38 9.426⇥ 10�60

FIM (1.25⇥ 10�38) (6.626⇥ 10�60)
Jackknife 323.8939 2.022⇥ 10�64

FIM (0.2832954) (1.568⇥ 10�64)

This was the case with many attempts to compute the BVM approximation for the

observed glass data. In general, the Harmonic Mean methods tend to have much

higher numbers of discarded values than the Arithmetic Mean methods. These high

numbers of discarded values are thought to be the reason why the values of evidence

for the specific source BVM approximations computed using the Harmonic Mean

method are all numerically zero with corresponding Monte Carlo standard errors

which do not exist (labelled DNE in the table).

6.3 Laplace’s Approximation

Another numerical approximation technique for the Bayes Factor which can be more

computationally e�cient than Monte Carlo integration, but which still requires the

use of prior distributions for the parameters, is the Laplace’s approximation method.

The Laplace’s approximation for a posterior expectation is given in the following

asymptotic approximation result from Robert [59].
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Theorem 6.3:

Let L(✓) = ln[f(x|✓)⇡(✓)] and L⇤(✓) = ln[g(✓)f(x|✓)⇡(✓)], assuming that

f, ⇡, and g are positive. Let ✓̂ and ✓̂⇤ denote the parameter values maxi-

mizing L and L⇤, respectively. Define IL(x) and IL
⇤
(x) to be the (p⇥ p)

matrices with (i, j) elements, respectively,

IL
ij

(x) = �


@2

@✓
i

@✓
j

L(✓)

�

✓=✓̂

, IL
⇤

ij

(x) = �


@2

@✓
i

@✓
j

L⇤(✓)

�

✓=✓̂

⇤
.

Then, under suitable conditions,

E
⇡(✓|x)

⇥
g(✓)

⇤
⇡
 ��IL⇤

(x)
��

��IL(x)
��

!� 1
2 g
�
✓̂⇤
�
f
�
x|✓̂⇤

�
⇡
�
✓̂⇤
�

f
�
x|✓̂
�
⇡
�
✓̂
� .

The Laplace approximation of the Bayes Factor is a straight-forward applications of

this result to the first alternative form of the Bayes Factor. The general form of the

Laplace approximation is given by

V̂
LP

(e) =

 ��IL⇤
(x)
��

��IL(x)
��

!� 1
2 V

LR

�
✓̂⇤; e

u

�
f
�
e|✓̂⇤,M

d

�
⇡
�
✓̂⇤
�

f
�
e|✓̂,M

d

�
⇡
�
✓̂
� . (6.10)

It should be noted that there is no practical di↵erence between the Laplace approxi-

mation of the first forms for the Bayes Factor given in Equations 3.7 and 3.11 and the

Laplace approximation of the alternative forms of the Bayes Factor given in Equa-

tions 5.1 and 5.6. The application of the this result to the common source and specific

source Bayes Factors are given in Sections 6.3.1 and 6.3.2.

6.3.1 Common Source

The Laplace approximation of the common source Bayes Factor given by Equa-

tion 3.7 is a straight-forward application of Theorem 6.3 in both the numerator and

denominator of the Bayes Factor. Let ✓̃
a

denote the parameter value maximizing

L(✓
a

) = ln[f(e
a

|✓
a

)⇡(✓
a

)] with corresponding Fisher’s information matrix IL(e
a

), ✓̃p
a
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denote the parameter value maximizing Lp(✓
a

) = ln[f(e
u1 , eu2 |✓a,Mp

)f(e
a

|✓
a

)⇡(✓
a

)]

with corresponding Fisher’s information matrix IL
p
(e

a

), and ✓̃d
a

denote the parame-

ter value maximizing Ld(✓
a

) = ln[f(e
u1 , eu2 |✓a,Md

)f(e
a

|✓
a

)⇡(✓
a

)] with corresponding

Fisher’s information matrix IL
d
(e

a

). Then the Laplace’s approximation of the com-

mon source Bayes Factor is given by

LP
cs

(e) =

 ��ILp
(e

a

)
��

��IL(e
a

)
��

!� 1
2
f(e

u1 , eu2 |✓̃pa,Mp

)f(e
a

|✓̃p
a

)⇡(✓̃p
a

)

f(e
a

|✓̃
a

)⇡(✓̃
a

)
 ��ILd
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)
��

��IL(e
a

)
��

!� 1
2
f(e

u1 , eu2 |✓̃da,Md

)f(e
a

|✓̃d
a

)⇡(✓̃d
a

)

f(e
a

|✓̃
a

)⇡(✓̃
a

)

=

 ��ILp
(e

a

)
��

��ILd(e
a

)
��

!� 1
2
f(e

u1 , eu2 |✓̃pa,Mp

)f(e
a

|✓̃p
a

)⇡(✓̃p
a

)

f(e
u1 , eu2 |✓̃da,Md

)f(e
a

|✓̃d
a

)⇡(✓̃d
a

)
. (6.11)

If the assumption that both ✓̃p
a

and ✓̃d
a

are consistent towards ✓
a0 can reasonably be

met, then it can be shown that the Laplace’s approximation of the common source

Bayes Factor will converge in probability to the likelihood ratio.

6.3.2 Specific Source

The Laplace approximation of the specific source Bayes Factor given by Equation 3.11

is a straight-forward application of Theorem 6.3 in both the numerator and denom-

inator of the Bayes Factor. Let ✓̂
s

denote the parameter value maximizing L
s

(✓
s

) =

ln[f(e
s

|✓
s

)⇡(✓
s

)] with corresponding Fisher’s information matrix ILs(e
s

), ✓̂⇤
s

denote

the parameter value maximizing L⇤
s

(✓
s

) = ln[f(e
u

|✓
s

)f(e
s

|✓
s

)⇡(✓
s

)] with correspond-

ing Fisher’s information matrix IL
⇤
s(e

s

), ✓̂
a

denote the parameter value maximizing

L
a

(✓
a

) = ln[f(e
a

|✓
a

)⇡(✓
a

)] with corresponding Fisher’s information matrix ILa(e
a

),

and ✓̂⇤
a

denote the parameter value maximizing L⇤
a

(✓
a

) = ln[f(e
u

|✓
a

)f(e
a

|✓
a

)⇡(✓
a

)]

with corresponding Fisher’s information matrix IL
⇤
a(e

a

). Then the Laplace’s approx-
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imation of the specific source Bayes Factor is given by

LP
ss

(e) =

 ��IL⇤
s(e

s

)
��

��ILs(e
s

)
��

!� 1
2
f(e
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|✓̃⇤
s

)f(e
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s

)
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s

)f(e
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s
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)

f(e
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)f(e
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s

)f(e
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|✓̃⇤
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s

)⇡(✓̃⇤
a

)
. (6.12)

If the assumption that both ✓̃
s

and ✓̃⇤
s

are consistent towards ✓
s0 can reasonably

be met, and if the assumption that both ✓̃
a

and ✓̃⇤
a

are consistent towards ✓
a0 can

reasonably be met, then it can be shown that the Laplace’s approximation of the

specific source Bayes Factor will converge in probability to the likelihood ratio.

6.3.3 Discussion

The Bernstein-von Mises approximation involved the maximum likelihood estimates

of the parameters, whereas the Laplace’s approximation involves the maximum a-

posteriori (MAP) estimates. In this sense, the Laplace’s approximation for the Bayes

Factor is indirectly influenced by the prior choice. The Laplace’s approximation is

directly influenced by the prior choice through the expression of the estimate in-

cluding the prior densities. However, unlike the BVM approximation, the Laplace’s

approximation of the Bayes Factor doesn’t require any Monte Carlo integration. The

Fisher’s information matrices necessary for the Laplace’s approximation can be com-

puted in a similar fashion to the methods for the Fisher’s information matrices for

the BVM approximation. In addition, Fisher’s information matrices related to the

prior distributions need to be computed for the Laplace approximation.
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CHAPTER 7

Neyman-Pearson Approximation

Up to this point, the focus of the approximation techniques has been on the Bayes

Factor. Recall from Section 5 that the likelihood ratio (LR) is the limiting form of

the Bayes Factor. In this section, an approximation of the LR is presented which I

call the Neyman-Pearson approximation since it is similar to a generalization of the

Neyman-Pearson test statistic for non-nested models [69]. It should be noted that

this approximation is di↵erent from the “plug-in” LR. Where the plug-in LR only

considers the likelihood of the unknown source evidence, the Neyman-Pearson (NP)

approximation properly considers the likelihood of the entire set of evidence [20].

The NP approximation numerator is the maximum likelihood of observing the entire

set of evidence under the prosecution model, and the denominator is the maximum

likelihood of observing the entire set of evidence under the defense model. The op-

timization in the numerator of the NP approximation is performed independently of

the optimization in the denominator. The general form of the NP approximation is

given by

V
NP

(e) =
max
✓p2⇥p

f(e|✓
p

,M
p

)

max
✓d2⇥d

f(e|✓
d

,M
d

)
⌘ f(e|✓̂

p

,M
p

)

f(e|✓̂
d

,M
d

)
(7.1)

where ⇥
p

and ⇥
d

are the indexing sets for the classes of distributions implied under

the prosecution and defense models, respectively. This means that ⇥
p

and ⇥
d

are

subsets of Rk such that P
p

= {P
✓p : ✓

p

2 ⇥
p

} is the class of distributions for the

evidence implied by the prosecution proposition and P
d

= {P
✓d

: ✓
d

2 ⇥
d

} is the
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class of distributions for the evidence implied by the defense proposition. Please refer

back to Chapter 3 for further details. In the remainder of this section, it will be

shown that the NP approximation is an asymptotic approximation of the likelihood

ratio under certain conditions, including consistency of all the maximum likelihood

estimates. This result will be considered separately for the common source and specific

source problems in Sections 7.1 and 7.2. In order to facilitate the final result, two

intermediary results will be provided under each identification of source problem

which involve Theorem 2.12 and Theorem 2.13.

7.1 Common Source

First consider the following maximum likelihood estimates (MLEs) related to the

common source likelihood functions: ✓̂
a

is the MLE corresponding to the alterna-

tive source population evidence e
a

, ✓̂p
a

is the MLE corresponding to the entire set of

evidence under the prosecution model M
p

, and ✓̂d
a

is the MLE corresponding to the

entire set of evidence under the defense model M
d

. Using these MLEs, the common

source Neyman-Pearson approximation is given by

NP
cs

(e) =
f(e

u1 , eu2 |✓̂pa,Mp

)f(e
a

|✓̂p
a

)

f(e
u1 , eu2 |✓̂da,Md

)f(e
a

|✓̂d
a

)
. (7.2)

The first lemma is necessary to show that if ✓̂
a

is consistent for ✓
a0 under P

✓a0
prob-

ability, then both ✓̂p
a

and ✓̂d
a

are also consistent. In order to facilitate the under-

standing of the lemma, first consider the fixed function m(✓
a

) = E [ ln[f(Y
ai |✓a)] ],

where Y
ai is defined as in Equation 3.17, with a corresponding maximizing value

of ✓
a0 . Next, consider the sequence of functions m

n

(✓
a

) = n�1
a

P
na

i=1 ln[f(Yai |✓a)]

and note that, by definition, the maximizing value of m
n

(✓
a

) is ✓̂
a

. Also by defi-

nition, ✓̂p
a

and ✓̂d
a

are the maximizing values of the sequences of functions mp

n

(✓
a

) =
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m
n

(✓
a

)+n�1
a

ln[f(e
u

|✓
a

,M
p

)] andmd

n

(✓
a

) = m
n

(✓
a

)+n�1
a

ln[f(e
u

|✓
a

,M
d

)], respectively.

The following lemma will show that both ✓̂p
a

and ✓̂d
a

are near maximizers of m
n

(✓
a

).

Lemma 7.1:

Let the following assumptions of Theorem 2.12 hold where m(✓
a

) and

m
n

(✓
a

) are defined as above:

Assumption 1: sup
✓a:d(✓a,✓a0 )�✏

m(✓
a

)  m(✓
a0), 8✏ > 0;

Assumption 2: sup
✓a2⇥a

���m
n

(✓
a

)�m(✓
a

)
���
P✓a0�! 0, n

a

! 1;

Assumption 3: m
n

(✓̂
a

) � m
n

(✓
a0)� o

P✓a0
(1), n

a

! 1.

Suppose that f(e
u

|✓
a

,M
p

) and f(e
u

|✓
a

,M
d

) are both bounded in P
✓a0

-probability

in a neighborhood of ✓
a0, then ✓̂

a

, ✓̂p
a

, and ✓̂d
a

are consistent for ✓
a0 as

n
a

! 1.

Proof: Consistency of ✓̂
a

follows directly from Theorem 2.12. To complete the proof

of the lemma, we need to verify that Results 1-3 below hold for ✓̂h
a

for h = p and

h = d where mp

n

(✓
a

) and md

n

(✓
a

) are defined as above.

Result 1: sup
✓a:d(✓a,✓a0 )�✏

m(✓
a

)  m(✓
a0), 8✏ > 0

Result 2: sup
✓a2⇥a

���mh

n

(✓
a

)�m(✓
a

)
���
P✓a0�! 0

Result 3: mh

n

(✓̂h
a

) � mh

n

(✓
a0)� o

P✓a0
(1).

Result 1: This is exactly Assumption 1.

Result 2: Now, by the Triangle Inequality we have that

sup
✓a2⇥a

���mh

n

(✓
a

)�m(✓
a

)
��� = sup

✓a2⇥a

���mh
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(✓
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)�m
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(✓
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(✓
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)�m(✓
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���
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)] is bounded in probability in a neighborhood of ✓
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Now, by assumption ln[f(e
u

|✓̂
a

,M
h

)] is a continuous function of ✓
a

and by assumption
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✓̂
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� ✓
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P✓a0�! 0. Therefore, by the Continuous Mapping Theorem,
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(1) by Slutsky’s Theorem. Next, we have defined ✓̂h
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, and therefore, mh
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Now that we have Results 1-3, then by Theorem 2.12, ✓̂h
a

P✓a0�! ✓
a0 as n

a

! 1

(i.e. ✓̂h
a

is consistent for both h = p and h = d). ⌅

Unfortunately, in order to show that the NP approximation converges to the LR, it

is not su�cient that all of the MLEs are consistent for ✓
a0 . It is first necessary to

show that the di↵erence between ✓̂p
a

and ✓̂
a

, and the di↵erence between ✓̂d
a

and ✓̂
a

,

converges to zero in probability at a su�ciently fast rate. This is the result of the
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following lemma. In the following sections, the element-wise di↵erential operator r

is used.

First, consider the following measurable function m(✓
a

) = E [ ln[f(Y
ai |✓a)] ] as given

in Lemma 7.1 with corresponding maximizer ✓
a0 . By definition, m(✓

a

) is di↵erentiable

P
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�almost everywhere, with n
y

⇥ 1 vector of first partial derivatives  
✓a = rm(✓
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�
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.

Furthermore, suppose that m(✓
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of maximum ✓
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, for q, r = 1, . . . , n

y

.

Also, consider the sequence of functions m
n

(✓
a

) = n�1
a

P
na

i=1 ln[f(Yai |✓a)] as given in

Lemma 7.1. Note that by definition, the maximizer of m
n

(✓
a

) is ✓̂
a

.

Next, consider the following quantities related to ✓̂h
a

where h = p or h = d. First,

consider the following measurable function mh(✓
a

) = m(✓
a

)+n�1
a

E[ ln[f(e
u

|✓
a

,M
h

)] ]

with respect to P
✓a0

. Also, suppose that mh(✓
a

) possesses an n
y

⇥ 1 vector of first

partial derivatives  h

✓a
= rmh(✓

a

) =  
✓a +

1

n
a

rE[ ln[f(e
u

|✓
a

,M
h

)] ] with elements

given by

 h

q

=  
q

+
1

n
a

E


@ ln[f(e

u

|✓
a

,M
h

)]

@✓
a

q

�
, for q = 1, . . . , n

y

.

Furthermore, suppose that mh(✓
a

) admits a second-order Taylor expansion at a point

of maximum ✓
a0 with an n

y

⇥ n
y

nonsingular, symmetric second derivative matrix
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W h

✓a
= rrTmh(✓

a

) = W
✓a +

1

n
a

rrT ln[f(e
u

|✓
a

,M
h

)] with elements given by

wh

q,r

= w
q,r

+
1

n
a

E


@2 ln[f(e

u

|✓
a

,M
h

)]

@✓
a

q

@✓
a

r

�
, for q, r = 1, . . . , n

y

.

Finally, consider the sequence of functions mh

n

(✓
a

) = m
n

(✓
a

) + n�1
a

ln[f(e
u

|✓
a

,M
h

)] as

given in the introduction and proof of Lemma 7.1. Note that ✓̂h
a

is the maximizing

value of mh

n

(✓
a

). The following lemma will show that the di↵erence between ✓̂p
a

and ✓̂
a

,

and the di↵erence between ✓̂d
a

and ✓̂
a

, converges to zero in probability at a su�ciently

fast rate.

Lemma 7.2:

Let the assumptions of Theorem 2.13 hold for h = p or h = d, in particu-

lar the following:

Assumption 1:

|m(✓1)�m(✓2)|   ✓a0
||✓1 � ✓2||, 8 ✓1, ✓2 in a neighborhood of ✓

a0 ;

Assumption 2:

|mh(✓1)�mh(✓2)|   h

✓a0
||✓1 � ✓2||, 8 ✓1, ✓2 in a neighborhood of ✓

a0 ;

Assumption 3: m
n

(✓̂
a

) � sup
✓a2⇥a

m
n

(✓
a

)� o
P✓a0

(n�1
a

), n
a

! 1;

Assumption 4: mh

n

(✓̂
a

) � sup
✓a2⇥a

mh

n

(✓
a

)� o
P✓a0

(n�1
a

), n
a

! 1;

where m, m
n

,  
✓a, W

✓a, mh, mh

n

,  h

✓a
, and W h

✓a
are defined as above.

If ✓̂
a

and ✓̂h
a

are both consistent, then as n
a

! 1

p
n
a

(✓̂h
a

� ✓̂
a

)
P✓a0�! 0.

Proof: By Theorem 2.13 for ✓̂
a

, we have the following result, as n
a

! 1:

p
n
a

⇣
✓̂
a

� ✓
a0

⌘
= �W�1

✓a0

1
p
n
a

naX

i=1

 
✓a0

+ o
P✓a0

(1)

p
n
a

W
✓a0

⇣
✓̂
a

� ✓
a0

⌘
⌘ �G

na ✓a0
+ o

P✓a0
(1).
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By Theorem 2.13 for ✓̂h
a

, we have the following result, as n
a

! 1:

p
n
a

⇣
✓̂h
a

� ✓
a0

⌘
= �W h

✓a0

�1 1
p
n
a

naX

i=1

 h

✓a0
+ o

P✓a0
(1)

p
n
a

W h

✓a0

⇣
✓̂h
a

� ✓
a0

⌘
= � 1

p
n
a

naX

i=1


 

✓a0
+

1

n
a

r ln[f(e
u

|✓
a

,M
h

)]

�
+ o

P✓a0
(1)

= � 1
p
n
a

naX

i=1

 
✓a0

+
1

p
n
a

r ln[f(e
u

|✓
a

,M
h

)] + o
P✓a0

(1)

⌘ �G
na ✓a0

+
1

p
n
a

r ln[f(e
u

|✓
a

,M
h

)] + o
P✓a0

(1)

Sincer ln[f(e
u

|✓
a

,M
h

)] is not dependent on n
a

, then
1

p
n
a

r ln[f(e
u

|✓
a

,M
h

)] = O(n
� 1

2
a

)

as n
a

! 1. By Slutsky’s Theorem, we have, as n
a

! 1,

p
n
a

W h

✓a0

⇣
✓̂h
a

� ✓
a0

⌘
= �G

na ✓a0
+O(n

� 1
2

a

) + o
P✓a0

(1)

= �G
na ✓a0

+ o
P✓a0

(1)

Substituting
p
n
a

W
✓a0

⇣
✓̂
a

� ✓
a0

⌘
= �G

na ✓a0
+ o

P✓a0
(1) into the display above, we

get
p
n
a

W h

✓a0

⇣
✓̂h
a

� ✓
a0

⌘
=

p
n
a

W
✓a0

⇣
✓̂
a

� ✓
a0

⌘
+ o

P✓a0
(1)

Therefore, as n
a

! 1,

p
n
a

h
W h

✓a0
(✓̂h

a

� ✓
a0)�W

✓a0
(✓̂

a

� ✓
a0)
i

= o
P✓a0

(1)

W h

✓a0
(✓̂h

a

� ✓
a0)�W

✓a0
(✓̂

a

� ✓
a0) = o

P✓a0

⇣
n
� 1

2
a

⌘


W

✓a0
+

1

n
a

rrT ln[f(e
u

|✓
a

,M
h

)]

�
(✓̂h

a

� ✓
a0)�W

✓a0
(✓̂

a

� ✓
a0) = o

P✓a0

⇣
n
� 1

2
a

⌘

W
✓a0

(✓̂h
a

� ✓
a0) +

1

n
a

rrT ln[f(e
u

|✓
a

,M
h

)](✓̂h
a

� ✓
a0)�W

✓a0
(✓̂

a

� ✓
a0) = o

P✓a0

⇣
n
� 1

2
a

⌘

W
✓a0

h
(✓̂h

a

� ✓
a0)� (✓̂

a

� ✓
a0)
i
+

1

n
a

rrT ln[f(e
u

|✓
a

,M
h

)](✓̂h
a

� ✓
a0) = o

P✓a0

⇣
n
� 1

2
a

⌘

W
✓a0

(✓̂h
a

� ✓̂
a

) +
1

n
a

rrT ln[f(e
u

|✓
a

,M
h

)](✓̂h
a

� ✓
a0) = o

P✓a0

⇣
n
� 1

2
a

⌘
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Since rrT ln[f(e
u

|✓
a

,M
h

)] is not dependent on n
a

then
1

n
a

rrT ln[f(e
u

|✓
a

,M
h

)] =

O(n�1
a

) as n
a

! 1. Since ✓̂h
a

is consistent, then (✓̂h
a

� ✓
a0) = o

P✓a0
(1) as n

a

! 1.

Thus, by Slutksy’s Theorem, as n
a

! 1,

W
✓a0

⇣
✓̂h
a

� ✓̂
a

⌘
+

1

n
a

rrT ln f(e
u

|✓
a

,M
h

)
⇣
✓̂h
a

� ✓
a0

⌘
= o

P✓a0

⇣
n
� 1

2
a

⌘

W
✓a0

⇣
✓̂h
a

� ✓̂
a

⌘
+O(n�1

a

)o
P✓a0

(1) = o
P✓a0

⇣
n
� 1

2
a

⌘

W
✓a0

⇣
✓̂h
a

� ✓̂
a

⌘
+ o

P✓a0
(n�1

a

) = o
P✓a0

⇣
n
� 1

2
a

⌘

W
✓a0

⇣
✓̂h
a

� ✓̂
a

⌘
= o

P✓a0

⇣
n
� 1

2
a

⌘
� o

P✓a0

�
n�1
a

�

W
✓a0

⇣
✓̂h
a

� ✓̂
a

⌘
= o

P✓a0

⇣
n
� 1

2
a

⌘

p
n
a

W
✓a0

⇣
✓̂h
a

� ✓̂
a

⌘
= o

P✓a0
(1)

Finally, because matrix inverses are continuous functions, then by the Continuous

Mapping Theorem and Slutsky’s Theorem

p
n
a

⇣
✓̂h
a

� ✓̂
a

⌘
= W�1

✓a0
o
P✓a0

(1)

p
n
a

⇣
✓̂h
a

� ✓̂
a

⌘
= o

P✓a0
(1), as n

a

! 1.

⌅

Now that the necessary preliminary results are in place, the following theorem pro-

vides conditions under which the common source Neyman-Pearson approximation

converges in probability to the true likelihood ratio as the number of sources in the

alternative source population increases without bound.

Theorem 7.3:

Let the assumptions of Lemma 7.1 and Lemma 7.2 be satisfied. Then as

n
a

! 1,

NP
cs

(e
n

)
P✓a0�! LR

cs

(✓
a0 ; eu1 , eu2).
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Proof: Consider the Neyman-Pearson approximation for the common source problem

NP
cs

(e
n

) =
f(e

u1 , eu2 |✓̂pa,Mp

)f(e
a

|✓̂p
a

)

f(e
u1 , eu2 |✓̂da,Md

)f(e
a

|✓̂d
a

)

=
f(e

u1 , eu2 |✓̂pa,Mp

)

f(e
u1 , eu2 |✓̂da,Md

)
⇥ f(e

a

|✓̂p
a

)

f(e
a

|✓̂d
a

)

⌘ U ⇥ A

The goal of the proof is to show that A
P✓a0�! 1 and U

P✓a0�! LR
cs

(✓
a0 ; eu1 , eu2) as

n
a

! 1. First, consider

A =
f(e

a

|✓̂p
a

)

f(e
a

|✓̂d
a

)
=

Q
na

i=1 f(Yai |✓̂pa)Q
na

i=1 f(Yai |✓̂da)
,

then we have

ln(A) = ln

 Q
na

i=1 f(Yai |✓̂pa)Q
na

i=1 f(Yai |✓̂da)

!

=
naX

i=1

ln f(Y
ai |✓̂pa)�

naX

i=1

ln f(Y
ai |✓̂da)

⌘ `
A

(✓̂p
a

)� `
A

(✓̂d
a

).

Now, let ✓̃p
a

be on the line between ✓̂
a

and ✓̂p
a

. Let r be the derivative operator (i.e.

rf is the vector of first partial derivatives, rrTf is the matrix of second partial

derivatives, and so on). Using the second-order Multivariate Taylor’s Expansion

(Wade [77] p. 421) with the Mean Value Theorem, then

`
A

(✓̂p
a

) = `
A

(✓̂
a

) + (✓̂p
a

� ✓̂
a

)Tr`
A

(✓̂
a

) +
1

2
(✓̂p

a

� ✓̂
a

)TrrT `
A

(✓̃p
a

)(✓̂p
a

� ✓̂
a

).

Similarly, let ✓̃d
a

be on the line between ✓̂
a

and ✓̂d
a

. Using the second-order Multivariate
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Taylor’s Expansion (Wade [77] p. 421) with the Mean Value Theorem, then

`
A

(✓̂d
a

) = `
A

(✓̂
a

) + (✓̂d
a

� ✓̂
a

)Tr`
A

(✓̂
a

) +
1

2
(✓̂d

a

� ✓̂
a

)TrrT `
A

(✓̃d
a

)(✓̂d
a

� ✓̂
a

).

Therefore,

ln(A) = `
A

(✓̂p
a

)� `
A

(✓̂d
a

)

= `
A

(✓̂
a

) + (✓̂p
a

� ✓̂
a

)Tr`
A

(✓̂
a

) +
1

2
(✓̂p

a

� ✓̂
a

)TrrT `
A

(✓̃p
a

)(✓̂p
a

� ✓̂
a

)

�`
A

(✓̂
a

)� (✓̂d
a

� ✓̂
a

)Tr`
A

(✓̂
a

)� 1

2
(✓̂d

a

� ✓̂
a

)TrrT `
A

(✓̃d
a

)(✓̂d
a

� ✓̂
a

)

=
h
(✓̂p

a

� ✓̂
a

)T � (✓̂d
a

� ✓̂
a

)T
i
r`

A

(✓̂
a

) +
1

2
(✓̂p

a

� ✓̂
a

)TrrT `
A

(✓̃p
a

)(✓̂p
a

� ✓̂
a

)

�1

2
(✓̂d

a

� ✓̂
a

)TrrT `
A

(✓̃d
a

)(✓̂d
a

� ✓̂
a

).

Consider r`
A

(✓̂
a

) which is the derivative of the log-likelihood function evaluated

at the maximum likelihood estimate ✓̂
a

. By definition of ✓̂
a

in the introduction to

Lemmas 7.1 and 7.2, and by properties of MLE’s, then r`
A

(✓̂
a

) = 0. Thus,

ln(A) =
1

2
(✓̂p

a

� ✓̂
a

)TrrT `
A

(✓̃p
a

)(✓̂p
a

� ✓̂
a

)� 1

2
(✓̂d

a

� ✓̂
a

)TrrT `
A

(✓̃d
a

)(✓̂d
a

� ✓̂
a

).

Next, for both h = p and h = d, consider

rrT `
A

(✓̃h
a

) = rrT

"
naX

i=1

ln[f(Y
ai |✓̃ha)]

#
=

naX

i=1

rrT ln[f(Y
ai |✓̃ha)].

Because ✓̂h
a

and ✓̂
a

are consistent by Lemma 7.1 and ✓̃h
a

is on the line between the

two, then ✓̃h
a

will be in a neighborhood of ✓
a0 . By the Strong Law of Large Numbers,

then as n
a

! 1

1

n
a

naX

i=1

rrT ln[f(Y
ai |✓̃ha)]

as�! rrTE [ ln[f(Y
ai |✓a)] ]
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where the convergence of the matrix is element-wise. By assumption, E [ ln[f(Y
ai |✓a)] ]

is finite. Therefore, rrTE [ ln[f(Y
ai |✓a)] ] is also finite. Thus, as n

a

! 1

1

n
a

rrT `
A

(✓̃h
a

) = O
P✓a0

(1).

Also, by Lemma 7.2, as n
a

! 1

p
n
a

⇣
✓̂h
a

� ✓̂
a

⌘
= o

P✓a0
(1).

So, by Slutsky’s Theorem, as n
a

! 1

ln(A) =
1

2
(✓̂p

a

� ✓̂
a

)TrrT `
A

(✓̃p
a

)(✓̂p
a

� ✓̂
a

)� 1

2
(✓̂d

a

� ✓̂
a

)TD2`
A

(✓̃d
a

)(✓̂d
a

� ✓̂
a

)

=
1

2

hp
n
a

(✓̂p
a

� ✓̂
a

)T
i  1

n
a

rrT `
A

(✓̃p
a

)

� hp
n
a

(✓̂p
a

� ✓̂
a

)
i

�1

2

hp
n
a

(✓̂d
a

� ✓̂
a

)T
i  1

n
a

rrT `
A

(✓̃d
a

)

� hp
n
a

(✓̂d
a

� ✓̂
a

)
i

=
1

2
o
P✓a0

(1) O
P✓a0

(1) o
P✓a0

(1)� 1

2
o
P✓a0

(1) O
P✓a0

(1) o
P✓a0

(1)

= o
P✓a0

(1) + o
P✓a0

(1)

= o
P✓a0

(1).

This implies that ln(A)
P✓a0�! 0, as n

a

! 1. Since the exponential function is contin-

uous, then by the Continuous Mapping Theorem, as n
a

! 1

A = eln(A)
P✓a0�! e0 = 1.

To complete the proof, we need to show that, as n
a

! 1

U =
f(e

u1 , eu2 |✓̂pa,Mp

)

f(e
u1 , eu2 |✓̂da,Md

)

P✓a0�! LR
cs

(✓
a0 ; eu1 , eu2) =

f(e
u1 , eu2 |✓a0 ,Mp

)

f(e
u1 , eu2 |✓a0 ,Md

)
.
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By Lemma 7.1, we have that ✓̂p
a

P✓a0�! ✓
a0 and ✓̂d

a

P✓a0�! ✓
a0 , as n

a

! 1. By the

Continuous Mapping Theorem, as n
a

! 1

f(e
u1 , eu2 |✓̂pa,Mp

)
P✓a0�! f(e

u1 , eu2 |✓a0 ,Mp

)

and

f(e
u1 , eu2 |✓̂da,Md

)
P✓a0�! f(e

u1 , eu2 |✓a0 ,Md

).

Finally, use Slutsky’s Theorem to obtain the result. In conclusion, as n
a

! 1

NP
cs

(e
n

)
P✓a0�! LR

cs

(✓
a0 ; eu1 , eu2).

⌅

7.2 Specific Source

Next, the specific source Neyman-Pearson approximation is given by

NP
ss

(e) =
f(e

u

|✓̂⇤
s

,M
p

)f(e
s

|✓̂⇤
s

)f(e
a

|✓̂
a

)

f(e
u

|✓̂⇤
a

,M
d

)f(e
s

|✓̂
s

)f(e
a

|✓̂⇤
a

)
(7.3)

where ✓̂⇤
s

is the MLE for ✓
s

corresponding to e
u

and e
s

under the prosecution model,

✓̂
a

is the MLE for ✓
a

corresponding to e
a

under the prosecution model, ✓̂⇤
a

is the MLE

for ✓
a

corresponding to e
u

and e
a

under the defense model, and ✓̂
s

is the MLE for ✓
s

corresponding e
s

under the defense model.

Similar to the common source, the first lemma is necessary to show that if ✓̂
a

is con-

sistent for ✓
a0 under P

✓a0
probability, then ✓̂⇤

a

is also consistent, and if ✓̂
s

is consistent

for ✓
s0 under P

✓s0
probability, then ✓̂⇤

s

is also consistent. In order to facilitate the
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understanding of the lemma, for either k = a or k = s, consider the fixed function

m(✓
k

) = E [ ln[f(y
ki |✓k)] ], where y

ki = Y
ai for k = a is defined as in Equation 3.17

with a corresponding maximizing value of ✓
a0 , and where y

si for k = s is defined as

in Equation 3.15 with a corresponding maximizing value of ✓
s0 . Next, consider the

sequence of functions m
n

(✓
k

) = n�1
k

P
nk
i=1 ln[f(yki |✓k)] and note that, by definition,

the maximizing value of m
n

(✓
k

) is ✓̂
k

. Also by definition, ✓̂⇤
k

is the maximizing value

of the sequence of functions m⇤
n

(✓
k

) = m
n

(✓
k

)+n�1
k

ln[f(e
u

|✓
k

)]. The following lemma

will show that ✓̂⇤
a

and ✓̂⇤
s

are near maximizers ofm
n

(✓
a

) andm
n

(✓
s

), respectively.

Lemma 7.4:

Let k = a or k = s. Let the following assumptions of Theorem 2.12 hold

where m(✓
k

) and m
n

(✓
k

) are defined as above:

Assumption 1: sup
✓k:d(✓k,✓k0 )�✏

m(✓
k

)  m(✓
k0), 8✏ > 0;

Assumption 2: sup
✓k2⇥k

���m
n

(✓
k

)�m(✓
k

)
���
P✓k0�! 0;

Assumption 3: m
n

(✓̂
k

) � m
n

(✓
k0)� o

P✓k0
(1).

Suppose that f(e
u

|✓
k

) is bounded in P
✓k0

-probability in a neighborhood of

✓
k0, then ✓̂k and ✓̂⇤

k

are consistent.

Proof: Consistency of ✓̂
k

follows directly from Theorem 2.12. To complete the proof

of the lemma, we need to verify that Results 1-3 below hold for ✓̂k
a

for k = a and

k = s where m⇤
n

(✓
k

) is defined as above.

Result 1: sup
✓k:d(✓k,✓k0 )�✏

m(✓
k

)  m(✓
k0), 8✏ > 0;

Result 2: sup
✓k2⇥k

���m⇤
n

(✓
k

)�m(✓
k

)
���
P✓k0�! 0;

Result 3: m⇤
n

(✓̂⇤
k

) � m⇤
n

(✓
k0)� o

P✓k0
(1).

Result 1: This is exactly Assumption 1.
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Result 2: This proof is analogous to the corresponding proof for Lemma 7.1. Now,

by the Triangle Inequality, by Assumption 2, and by Slutsky’s Theorem, as n
k

! 1

sup
✓k2⇥k

���m⇤
n

(✓
k

)�m(✓
k

)
���
P✓k0�! 0.

Result 3: This proof is analogous to the corresponding proof for Lemma 7.1. By

Assumption 3, then as n
k

! 1

m
n

(✓̂
k

) � m
n

(✓
k0)� o

P✓k0
(1)

m⇤
n

(✓̂
k

)� 1

n
k

ln f(e
u

|✓̂
k

) + o
P✓k0

(1) � m⇤
n

(✓
k0)�

1

n
k

ln f(e
u

|✓
k0)

m⇤
n

(✓̂⇤
k

) + o
P✓k0

(1) � m⇤
n

(✓̂
k

) + o
P✓k0

(1) � m⇤
n

(✓
k0)

m⇤
n

(✓̂⇤
k

) + o
P✓k0

(1) � m⇤
n

(✓
k0).

Now that we have Results 1-3, then by Theorem 2.12 ✓̂⇤
k

P✓k0�! ✓
k0 , as nk

! 1 (i.e. ✓̂⇤
k

is consistent). ⌅

Similar to the common source problem, it is first necessary to show that the di↵er-

ence between ✓̂⇤
a

and ✓̂
a

, and the di↵erence between ✓̂⇤
s

and ✓̂
s

, converges to zero in

probability at a su�ciently fast rate. This is the result of the following lemma.

First, consider the following measurable function for k = a or k = s, m(✓
k

) =

E [ ln[f(y
ki |✓k)] ] as given in Lemma 7.4 which is di↵erentiable P

✓k0
�almost every-

where by definition, with n
y

⇥ 1 vector of first partial derivatives  
✓k

= rm(✓
k

) with

elements given by

 
q

= E


@ ln[f(y

ki |✓k)]
@✓

k

q

�
, for q = 1, . . . , n

y

.

Furthermore, suppose that m(✓
k

) admits a second-order Taylor expansion at a point
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of maximum ✓
k0 with an n

y

⇥ n
y

nonsingular, symmetric second derivative matrix

W
✓k

= rrTm(✓
k

) with elements given by

w
q,r

= E


@2 ln[f(y

ki |✓k)]
@✓

k

q

@✓
k

r

�
, for q, r = 1, . . . , n

y

.

Also, consider the sequence of functions m
n

(✓
k

) = n�1
k

P
nk
i=1 ln[f(yki |✓k)] as given in

Lemma 7.4. By definition, ✓̂
k

is the maximizer of m
n

(✓
k

).

Next, consider the following quantities related to ✓̂⇤
k

where k = a or k = s. First,

consider the following measurable function m⇤(✓
k

) = m(✓
k

)+n�1
k

E[ ln[f(e
u

|✓
k

)] ] with

respect to the measure P
✓k0

, and suppose that it possesses an n
y

⇥ 1 vector of first

partial derivatives  ⇤
✓k

= rm⇤(✓
k

) =  
✓k
+

1

n
k

rE[ ln[f(e
u

|✓
k

)] ] with elements given

by

 h

q

=  
q

+
1

n
k

E


@ ln[f(e

u

|✓
k

)]

@✓
k

q

�
, for q = 1, . . . , n

y

.

Furthermore, suppose that m⇤(✓
k

) admits a second-order Taylor expansion at a point

of maximum ✓
k0 with an n

y

⇥ n
y

nonsingular, symmetric second derivative matrix

W ⇤
✓k

= rrTm⇤(✓
k

) = W
✓k
+

1

n
k

rrT ln[f(e
u

|✓
k

)] with elements given by

wh

q,r

= w
q,r

+
1

n
k

E


@2 ln[f(e

u

|✓
k

)]

@✓
k

q

@✓
k

r

�
, for q, r = 1, . . . , n

y

.

Finally, consider the sequence of functionsm⇤
n

(✓
k

) = m
n

(✓
k

)+n�1
k

ln[f(e
u

|✓
k

)] as given

in the introduction and proof of Lemma 7.4. By definition, then ✓̂⇤
k

is the maximizer

of m⇤
n

(✓
k

). The following lemma will show that the di↵erence between ✓̂⇤
a

and ✓̂
a

, and

the di↵erence between ✓̂⇤
s

and ✓̂
s

, converges to zero in probability at a su�ciently fast

rate.

Lemma 7.5:

Let the assumptions of Theorem 2.13 hold for k = a or k = s, in particu-

lar the following:
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Assumption 1:

|m(✓
k1)�m(✓

k2)|   ✓k0
||✓

k1 � ✓
k2 || 8 ✓

k1 , ✓k2 in a neighborhood of ✓
k0 ;

Assumption 2:

|m⇤(✓
k1)�m⇤(✓

k2)|   ⇤
✓k0

||✓
k1 �✓kk || 8 ✓

k1 , ✓k2 in a neighborhood of ✓
k0 ;

Assumption 3: m
n

(✓̂
k

) � sup
✓k2⇥k

m
n

(✓
k

)� o
P✓k0

(n�1
k

), n
k

! 1;

Assumption 4: m⇤
n

(✓̂
k

) � sup
✓k2⇥k

m⇤
n

(✓
k

)� o
P✓k0

(n�1
k

), n
k

! 1;

where m, m
n

,  
✓k
, W

✓k
, m⇤, m⇤

n

,  ⇤
✓k
, and W ⇤

✓k
are defined as above.

If ✓̂
k

and ✓̂⇤
k

are both consistent, then as n
k

! 1

p
n
k

(✓̂⇤
k

� ✓̂
k

)
P✓k0�! 0.

Proof: This theorem is proved in an analogous manner to the common source Lemma 7.2.

By Theorem 2.13 for ✓̂
k

, then as n
k

! 1:

p
n
k

W
✓k0

⇣
✓̂
k

� ✓
k0

⌘
⌘ �G

nk
 

✓k0
+ o

P✓k0
(1).

By Theorem 2.13 for ✓̂⇤
k

and Slutsky’s Theorem, then as n
k

! 1:

p
n
k

W ⇤
✓k0

⇣
✓̂⇤
k

� ✓
k0

⌘
= �G

nk
 

✓k0
+ o

P✓k0
(1).

Substituting
p
n
k

W
✓k0

⇣
✓̂
k

� ✓
k0

⌘
= �G

nk
 

✓k0
+ o

P✓k0
(1) into the display above, as

n
k

! 1

p
n
k

h
W ⇤

✓k0
(✓̂⇤

k

� ✓
k0)�W

✓k0
(✓̂

k

� ✓
k0)
i

= o
P✓k0

(1)

W
✓k0

(✓̂⇤
k

� ✓̂
k

) +
1

n
k

rrT ln[f(e
u

|✓
k

)](✓̂⇤
k

� ✓
k0) = o

P✓k0

⇣
n
� 1

2
k

⌘

W
✓k0

(✓̂⇤
k

� ✓̂
k

) +O(n�1
k

)o
P✓k0

(1) = o
P✓k0

⇣
n
� 1

2
k

⌘

W
✓k0

(✓̂⇤
k

� ✓̂
k

) = o
P✓k0

⇣
n
� 1

2
k

⌘
� o

P✓k0

�
n�1
k

�

p
n
k

W
✓k0

(✓̂⇤
k

� ✓̂
k

) = o
P✓k0

(1).
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Finally, because matrix inverses are continuous functions, then by the Continuous

Mapping Theorem and Slutsky’s Theorem

p
n
k

(✓̂⇤
k

� ✓̂
k

) = W�1
✓k0

o
P✓k0

(1)

p
n
k

(✓̂⇤
k

� ✓̂
k

) = o
P✓k0

(1), as n
k

! 1.

⌅

Theorem 7.6:

Let the assumptions of Lemma 7.4 and Lemma 7.5 be satisfied. Then as

n
s

! 1 and n
a

! 1 at the same rate,

NP
ss

(e
n

)
P✓0�! LR

ss

(✓0; eu).

Proof: Consider the Neyman-Pearson Likelihood Ratio for the specific source problem

NP
ss

(e
n

) =
f(e

s

|✓̂⇤
s

)f(e
u

|✓̂⇤
s

)f(e
a

|✓̂
a

)

f(e
s

|✓̂
s

)f(e
u

|✓̂⇤
a

)f(e
a

|✓̂⇤
a

)

=
f(e

u

|✓̂⇤
s

)

f(e
u

|✓̂⇤
a

)
⇥ f(e

s

|✓̂⇤
s

)

f(e
s

|✓̂
s

)
⇥ f(e

a

|✓̂
a

)

f(e
a

|✓̂⇤
a

)

⌘ U ⇥ S ⇥ A

Our goal is to show that U
P✓0�! LR

ss

(✓0; eu) as n
s

! 1 and n
a

! 1 at the same

rate, S
P✓s0�! 1 as n

s

! 1, and A
P✓a0�! 1 as n

a

! 1.

The proof that A
P✓a0�! 1 is analogous to that for Theorem 7.3. First, consider

ln(A) =
naX

i=1

ln[f(Y
ai

|✓̂
a

)]�
naX

i=1

ln[f(Y
ai

|✓̂⇤
a

)]

⌘ `
A

(✓̂
a

)� `
A

(✓̂⇤
a

).

Using the second-order Multivariate Taylor’s Expansion (Wade [77] p. 421) with the
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Mean Value Theorem, then

ln(A) = �1

2
(✓̂⇤

a

� ✓̂
a

)TrrT `
A

(✓̃
a

)(✓̂⇤
a

� ✓̂
a

)

where ✓̃
a

be on the line between ✓̂
a

and ✓̂⇤
a

. Next, consider

rrT `
A

(✓̃
a

) = rrT

"
naX

i=1

ln[f(Y
ai

|✓̃
a

)]

#
=

naX

i=1

rrT ln[f(Y
ai

|✓̃
a

)].

Because ✓̂⇤
a

and ✓̂
a

are consistent by Lemma 7.4 and by the Strong Law of Large

Numbers, then as n
a

! 1

1

n
a

rrT `
A

(✓̃
a

) = O
P✓a0

(1).

Also, by Lemma 7.5, as n
a

! 1

p
n
a

⇣
✓̂⇤
a

� ✓̂
a

⌘
= o

P✓a0
(1).

So, by Slutsky’s Theorem, as n
a

! 1

ln(A) = �1

2
(✓̂⇤

a

� ✓̂
a

)TrrT `
A

(✓̃
a

)(✓̂⇤
a

� ✓̂
a

)

= o
P✓a0

(1).

This implies that ln(A)
P✓a0�! 0 as n

a

! 1, and by the Continuous Mapping Theorem

A
P✓a0�! 1.

Using a similar proof as above, then as n
s

! 1

S =
f(e

s

|✓̂⇤
s

)

f(e
s

|✓̂
s

)
=

Q
ns

i=1 f(ysi |✓̂⇤s)Q
ns

i=1 f(ysi |✓̂s)
P✓s0�! 1.
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To complete the proof, we need to show that, as n
a

! 1 and as n
s

! 1 at the same

rate,

U =
f(e

u

|✓̂⇤
s

)

f(e
u

|✓̂⇤
a

)

P✓0�! LR
ss

(✓0; eu) =
f(e

u

|✓
s0)

f(e
u

|✓
a0)

.

By Lemma 7.4, we have that ✓̂⇤
s

P✓s0�! ✓
s0 as n

s

! 1 and ✓̂⇤
a

P✓a0�! ✓
a0 as n

a

! 1. By

the Continuous Mapping Theorem

f(e
u

|✓̂⇤
s

)
P✓s0�! f(e

u

|✓
s0)

and
1

f(e
u

|✓̂⇤
a

)

P✓a0�! 1

f(e
u

|✓
a0)

.

Finally, by Slutsky’s Theorem

NP
ss

(e
n

)
P✓0�! LR

ss

(✓0; eu),

as n
s

! 1 and n
a

! 1 at the same rate.

⌅

7.3 Application Example

The dataset used for this example is the exact same glass data described in Section 5.3.

Four di↵erent Neyman-Pearson approximations are computed in the section, two for

the specific source identification problem and two for the common source identification

problem. For each identification of source problem, the Neyman-Pearson approxima-

tions are computed for two di↵erent scenarios; one scenario in which the evidence is

chosen such that the prosecution hypothesis is true, and the second scenario in which
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Table 7.1: Computed Neyman-Pearson approximations for the glass example.

(a) Observed Data

Scenario
Hp Hd

Specific
3.7117⇥ 10�23 7.0100⇥ 10�2

Source
Common

68.45877 4.4915⇥ 10�11

Source

(b) Simulated Data

Scenario
Hp Hd

Specific
1, 355, 357 8.4163⇥ 10�9

Source
Common

340.3552 5.9925⇥ 10�37

Source

Computed likelihood ratio values for the glass simulated example.

Scenario
Hp Hd

Specific
2449715 1.708589⇥ 10�50

Source
Common

482.056 5.31445⇥ 10�48

Source

the evidence is chosen such that the defense hypothesis is true. Since the data is

modeled using a multivariate normal distribution, see Section 4.3 for details of the

models, the maximum likelihood estimates needed to compute the Neyman-Pearson

approximation can be computed using the ‘lme’ function from the ‘nlme’ package in R

[57]. The results of the example are provided in Table 7.1. For comparison, Table 5.5

is reproduced which shows the value of the true likelihood ratio for the simulated

glass data under each of the scenarios and identification of source problems.

For the small number of samples in the specific source evidence (only three fragments

under the H
p

scenario and five fragments under the H
d

scenario), the specific source

Neyman-Pearson approximation results in misleading evidence (evidence pointing to

the incorrect hypothesis) under theH
p

scenario. This result is an example of Lindley’s

paradox in which two methods for evaluating the exact same evidence lead to two

opposing conclusions. This indicates that when n
s

, the number of samples in the

specific source evidence e
s

, is small (smaller than 10 samples) the Neyman-Pearson

approximation provides an unstable approximation of the value of evidence. However,

as indicated by the results presented in Section 7.1 and Section 7.2, this issue is
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resolved when the sample sizes are larger. This is indicated by the results for the

simulated glass data, since the samples sizes are larger than the observed glass data.

It can be seen that the values of the Neyman-Pearson approximation for the simulated

data are very close to the true value of the likelihood ratio, and do not result in

Lindley’s paradox. See the following Section 7.4 for further details.

7.4 Discussion

One of the most important consequences of the Neyman-Pearson approximation is

that it can be used to replace the Bayes Factor in Equation 3.1 to update the prior

odds and arrive at the approximate posterior odds. This result is formalized in the

following corollary.

Corollary 7.6.1:

Suppose that the likelihood ratio function is bounded in P
✓0-probability in

a neighborhood of ✓0. The Neyman-Pearson approximation is an approx-

imate value of evidence for the forensic identification of source problems:

P (H
p

|e, I)
P (H

d

|e, I) =


V
NP

(e
n

)⇥ P (H
p

|I)
P (H

d

|I)

�
+ o

P✓0
(1).

Proof: For the first case, consider either P (H
p

|I) 2 {0, 1}. Therefore, the prior odds

are either zero or infinite, and so the result is trivial.

For the second case, consider Equation 3.1 for P (H
p

|I) 2 (0, 1) and P (H
d

|I) 2 (0, 1)

P (H
p

|e, I)
P (H

d

|e, I) = V
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(e
n

)⇥ P (H
p

|I)
P (H

d

|I)
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(e
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)� V
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(e
n
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(e
n

)]⇥ P (H
p

|I)
P (H

d

|I)

=


(V
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(e
n

)� V
NP

(e
n

))⇥ P (H
p

|I)
P (H

d

|I)

�
+


V
NP

(e
n

)⇥ P (H
p

|I)
P (H

d

|I)

�
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Now, from Theorem 7.3 and Theorem 7.6, then V
NP

(e
n

)
P✓0�! V

LR

(✓0; eu) as n ! 1. If

it can be shown that V
BF

(e
n

)
P✓0�! V

LR

(✓0; eu) as n ! 1, then the proof is complete.

Recall from Equation 5.16 that the Bayes Factor is given by

V
BF

(e
n

) =

Z
V
LR

(✓; e
u

) d⇧(✓|e
n

,M
d

),

where ||⇧(✓|e
n

,M
d

) � �(✓|✓̂
d

, 1
n

I
d

(✓̂
d

)�1)||
TV

P✓0�! 0 as n ! 1 by the Bernstein-von

Mises Theorem (Theorem 2.11) and where ✓̂
d

is the MLE for ✓ and I
d

(✓̂
d

)�1 is the

inverse of the observed Fisher’s information matrix corresponding to the entire set

of evidence under the defense model. Under the assumptions of Theorem 7.3 and

Theorem 7.6, then ✓̂
d

is consistent towards ✓0. Additionally, 1
n

I
d

(✓̂
d

)�1
P✓0�! 0 as

n ! 1 provided that I
d

(✓̂
d

)�1 is bounded in P
✓0-probability in a neighborhood of ✓0.

Therefore, this implies that ||�(✓|✓̂
d

, 1
n

I
d

(✓̂
d

)�1) � �
✓0(✓)||TV

P✓0�! 0 as n ! 1 where

�
✓0(✓) is the measure degenerate at ✓0. Now, consider
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Therefore,
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���
���
TV

P✓0�! 0 as n ! 1.

Now, consider the di↵erence between the Bayes Factor and the Likelihood Ratio
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Similar to the proofs of Theorem 6.1 and Theorem 6.2, by properties of signed mea-

sures and the total variation norm,

���
Z

V
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(✓; e
u
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By the assumption that V
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) is bounded in a neighborhood of ✓0, then suppose

that V
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)  C for some real number C > 0. This implies that, when ✓ is in a

neighborhood of ✓0,
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In conclusion,
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The Neyman-Pearson approximation only requires the computation of the maximum

likelihood estimates for the parameters, in contrast to the Bernstein-von Mises or

Laplace’s approximations which require both the parameter estimates as well as com-

putation of Fisher’s information matrices. Also, the Neyman-Pearson requires no

Monte Carlo integration techniques since there are no integrals to compute, as in the

Bernstein-von Mises approximation. However, the Neyman-Pearson approximation

will require an optimization routine to find the maximum likelihood estimates for

many classes of parametric distributions. Finally, the Neyman-Pearson approxima-

tion does not have any dependence on a choice of prior distribution, like the Bayes

Factor (and potentially the Laplace’s approximation).

7.5 Simulation Study

To further investigate the relationship between the Neyman-Pearson approximation

and the Bayes Factor, a simulation study was designed with the goal of showing that

the Neyman-Pearson approximation is similar to a Bayes Factor computed using a

non-informative prior. Theoretically, a Bayes Factor computed using a (improper)

non-informative prior is not well-defined [10]. Computationally, several issues arise

when attempting to compute a Bayes Factor using a non-informative prior [10, 59].

However, the Neyman-Pearson approximation is well-defined for the forensic identifi-



171

cation of source problems and computationally viable when samples sizes for e
s

and

e
a

are not too small.

7.5.1 Details of Simulation Methodology

For this simulation study, the first group of the glass data was used to suggest the

true parameter values for the generation of evidence sets in the manner described

in Section 5.3.2. Once the evidence has been generated for the simulation study, it

is assumed that the evidence follows the multivariate normal distribution originally

formulated in Section 4.3. These distributions will be used to compute both the

Neyman-Pearson approximations and the Bayes Factors. In order to complete the full

Bayesian model needed to compute the Bayes Factors, the specified true parameter

values are used as the values of the hyperparameters for the prior distributions.

µ
s

⇠ N3(µs0 , K⌃s0) and ⌃
s

⇠ W�1
3 (⌃

s0 , ⌫s) (7.4a)

µ
a

⇠ N3(µa0 , K⌃b0), ⌃
a

⇠ W�1
3 (⌃

b0 , ⌫b), and ⌃
w

⇠ W�1
3 (⌃

e0 , ⌫e) (7.4b)

Under the H
p

scenario µ
s0 = µ(10)

s0 and ⌃
s0 = ⌃(10)

s0 , while under the H
d

scenario

µ
s0 = µ(48)

s0 and ⌃
s0 = ⌃(48)

s0 . In addition, the Bayes Factors for the simulation

study were computed using varying degrees of certainty in the prior distribution,

as designated by the scaling variable, K, for the covariance hyperparameters of the

multivariate normal prior for the mean parameters and by the degrees of freedom

hyperparameters, ⌫, of the inverse Wishart priors for the covariance parameters. See

the following Algorithm 7 for further details of the simulation study.
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Algorithm 7: Neyman-Pearson/Bayes Factor Simulation Study

Input: Compute the following true parameters values (as described above):

µ(10)
s0 ,⌃(10)

s0 , µ(48)
s0 ,⌃(48)

s0 , µ
a0 ,⌃b0 ,⌃e0 ;

for each identification of source problem ID 2 {CS, SS} do
for each scenario S 2 {H

p

, H
d

} do
Generate unknown source evidence according to S for ID problem;
Compute the Likelihood Ratio using Equation 3.6 or Equation 3.10;
for i = 1, 2, . . . , N do

Generate control evidence according to S for ID problem;
Compute the NP approximation using Equation 7.2 or Equation 7.3;
for d 2 {31, 32, 34, 36, 38, 310, 312, 314, 316} do

Compute dBF (e) using Equation 5.12 or Equation 5.14
where the prior distributions are given in Equation 7.4
with ⌫

s

= ⌫
b

= ⌫
e

= d and K = 100/d;
end
Store all Bayes Factors and NP approximations for comparison;

end
Store all Likelihood Ratios for reference;

end
end

7.5.2 Simulation Results

The results of the simulation study are shown in the following plots. For the scenarios

considered in this small simulation study, it can be seen in Figures 7.1-7.4 that as

the degrees of freedom used for the prior distributions to compute the Bayes Factor

increase, the Bayes Factors converge to the value of the likelihood ratio, given by the

red line. These figures also show that as the degrees of freedom decrease towards zero,

the Bayes Factor approaches the value of the Neyman-Pearson approximation. These

results support the conjecture that the Neyman-Pearson approximation behaves like

a Bayes Factor computed using uninformative prior distributions.

For the scenarios explored in the simulation study, the Neyman-Pearson approxima-

tion tends to be larger (often much larger) than the value of the likelihood ratio. This

relationship may not hold for all cases, as is indicated by the common source problem
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Figure 7.1: The simulation results for the specific source problem under the H
p

scenario represented by the log-10 Neyman-Pearson approximation (NP) and the
various log-10 Bayes Factors computed using di↵ering degrees of certainty in the
prior distribution.
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(b) Boxplots corresponding to the simulation
results for Figure(a). Again, the true log-10
likelihood ratio is represented by the solid red
line.

Figure 7.2: The simulation results for the specific source problem under the H
d

scenario represented by the log-10 Neyman-Pearson approximation (NP) and the
various log-10 Bayes Factors computed using di↵ering degrees of certainty in the
prior distribution.
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Figure 7.3: The simulation results for the common source problem under the H
p

scenario represented by the log-10 Neyman-Pearson approximation (NP) and the
various log-10 Bayes Factors computed using di↵ering degrees of certainty in the
prior distribution.
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Figure 7.4: The simulation results for the common source problem under the H
d

scenario represented by the log-10 Neyman-Pearson approximation (NP) and the
various log-10 Bayes Factors computed using di↵ering degrees of certainty in the
prior distribution.
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under the H
p

scenario, in which the Neyman-Pearson tended to be smaller than the

values of the likelihood ratio. Since the Neyman-Pearson approximation is behaving

similarly to a Bayes Factor computed using an uninformative prior, the direction of

the relationship between the Neyman-Pearson approximation and the likelihood ratio

is di�cult (possibly impossible) to predict in practical applications.

7.5.3 Simulation Conclusions

The results of this simulation study provide support for the conjecture that the

Neyman-Pearson approximation behaves like a Bayes Factor computed using unin-

formative prior distributions. This method of computing the Bayes Factor is referred

to as a generalized Bayes Rule [10]. In Berger [10], it is shown that decisions based

on generalized Bayes Rules are often statistically admissible with respect to a par-

ticular loss function. Based on these results, it is believed that decisions based on

the Neyman-Pearson approximation, with respect to the “0-1” loss function, will be

statistically admissible rules for the forensic identification of source problems.
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CHAPTER 8

Interval Quantifications

Disclaimer: This chapter is based in part on Ommen et al. [54].

Many legal and scientific scholars in the various forensic science disciplines agree that

the value of evidence should be reported as a likelihood ratio or a Bayes Factor [24].

Recent analytical developments paired with modern statistical computational tools

have led to the proliferation of ad-hoc techniques for quantifying these probative

values of forensic evidence. Therefore, quantifications for the value of evidence are

subjected to many sources of variability and uncertainty. There is currently a debate

on how to characterize the reliability of the value of evidence [9, 13, 18, 50, 54, 71,

72, 74, 68]. Some authors have proposed associating a confidence interval or credible

interval with the value of evidence assigned to a collection of forensic evidence. In

this chapter, a method of providing reasonable credible intervals for the likelihood

ratio is introduced.

8.1 Introduction

First, as discussed by Taroni et al. [71], the Bayes Factor already incorporates the

uncertainty associated with the unknown parameters into the final assessment of the

evidence. Therefore, it is clearly redundant to include an interval estimate for the

Bayes Factor and intervals should not be used to characterize this type of uncer-

tainty associated with the Bayes Factor. Hence, only interval quantifications for the
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likelihood ratio will be considered in this chapter.

Some researchers have suggested using various credible or confidence intervals for the

likelihood ratio [6, 8, 19]. Some examples of credible intervals include the highest pos-

terior density, equal tails, and approximate normal posterior interval constructions

presented in Buckleton and Curran [14, 19]. It is unclear whether the entire interval,

although informative, can be used in the Bayesian paradigm to make a logical and co-

herent decision. Although no stance regarding interval quantifications for the value of

evidence is taken in this dissertation, a potential solution for those who wish to quan-

tify uncertainty regarding a likelihood ratio with a credible interval in an appropriate

manner is presented. The two non-standard forms for the Bayes Factor provided in

Section 5 facilitate the Bayesian asymptotic theory leading to the derivation of three

approximately equal credible intervals for the likelihood ratio.

In Ommen et al. [54], one of the arguments against presenting intervals for the

likelihood ratio is that the resulting quantification tends to misrepresent the value of

evidence. For this result, Jensen’s inequality is used to show that the posterior mean

of the likelihood ratio (given e
s

and e
a

) is at least as large as the Bayes Factor. The

result is reproduced for clarity below.

Z
LR

ss

(✓; e
u

)d⇧(✓|e
s

, e
a

) =

Z Z
f(e

u

|✓
s

)

f(e
u

|✓
a

)
d⇧(✓

a

|e
a

)d⇧(✓
s

|e
s

)

=

Z
f(e

u

|✓
s

)d⇧(✓
s

|e
s

)

Z
1

f(e
u

|✓
a

)
d⇧(✓

a

|e
a

)

�
Z

f(e
u

|✓
s

)d⇧(✓
s

|e
s

)
1R

f(e
u

|✓
a

)d⇧(✓
a

|e
a

)
(8.1)
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ss

(e)

It should be noted that in order for this inequality to hold, there is a strong assumption

that the prior distribution for ✓
s

is statistically independent of the prior distribution

for ✓
a

. Notice that, in this case, the expectation of the likelihood ratio is taken



178

with respect to the joint posterior distribution of the parameters given e
s

and e
a

. In

contrast, if the posterior distribution of the parameters given the entire set of evidence

under the defense model is used when taking the expectation of the likelihood ratio,

the result is Equation 5.6 for the specific source problem and Equation 5.1 for the

common source problem. This means that there is a direct equality between the

expected value of the likelihood ratio and the Bayes Factor. Therefore, the credible

interval for the likelihood ratio based on this posterior distribution for the parameters

given the entire set of evidence under the defense model will not misrepresent the value

of evidence like the result above.

8.2 Credible Intervals for the Likelihood Ratio

As a culmination of the results presented thus far relating the Bayes Factor to the

likelihood ratio, the Bayes Factor can be used as the center-point to construct an

approximate 1� ↵ credible intervals for the likelihood ratio. The Jensen’s inequality

result, given by Equation 8.1, provides motivation for a posterior distribution of the

parameters which results in the posterior mean of the likelihood ratio being unbiased

towards the Bayes Factor. This led to the derivation of the alternative form of the

value of evidence given by Equations 5.1 and 5.6. Using the posterior distribution

suggested by these Bayes Factors, a posterior distribution for the likelihood ratio

is derived. The Bernstein-von Mises Theorem implies that a scaled version of this

posterior distribution is shown to be asymptotically normal. This result is formalized

in Theorem 8.1 below.

First, some notation will be defined to facilitate the result. Let � denote the likelihood

ratio function defined in Equation 3.3 for a fixed observation of the unknown source

evidence. The notation here is generalized so that the results in this section will
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apply generally to both the common source and specific source identification problem.

Since the Bernstein-von Mises Theorem uses the rescaled parameter
p
n(✓� ✓0), then

consider the rescaled version of the likelihood ratio function

⇤
n

(✓) =
p
n[�(✓)� �(✓̂d

n

)]

where n = n
s

= n
a

and ✓̂d
n

is a consistent maximum likelihood estimate of ✓ under

the defense model M
d

(✓̂d
n

P✓0�! ✓0 as n ! 1). Next, let �0(✓̂d
n

) denote the vector of

first partial derivatives of �(✓) with respect to ✓ and I�1

✓̂

d
n
denote the inverse observed

Fisher’s information matrix evaluated at ✓̂d
n

. For the following set of results, the

metric || · ||
TV

denotes the total variation norm (see van der Vaart [75] or van de Geer

[73]), and N
✏

(x) denotes an ✏-neighborhood of the point x. For two measures P and

Q on (X ,A), the total variation distance between P and Q is given by ||P �Q||
TV

=

sup
A2A |P (A) � Q(A)|. Finally, let e

n

denote the entire set of evidence where the

unknown source evidence always has a fixed number of samples (n
u

for specific source,

and n
u1 and n

u2 for the common source) and where the control samples have a varying

size n (recall n
a

is the number of sources in the alternative source population evidence

and n
s

is the number of samples in the specific source evidence).

Theorem 8.1 (Asymptotic Posterior Distribution for the LR):

Suppose that ✓ 2 N
"

(✓0) for any " > 0 and let ⇧(⇤
n

(✓)|e
n

,M
d

) denote the

posterior distribution of ⇤
n

(✓) given the entire set of evidence e
n

under

M
d

. If the assumptions of the Bernstein-von Mises Theorem hold, then

as n ! 1

���
���⇧(⇤

n

(✓)|e
n

,M
d

)� �(⇤
n

(✓); 0, �d
n

)
���
���
TV

P

n
✓0�! 0

where the convergence is with respect to the total variation norm and
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�d
n

= �0(✓̂d
n

)T I�1
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n
�0(✓̂d
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).

Proof: Consider the following Taylor’s expansion for either the specific source or com-

mons source likelihood ratio function:
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)

where ✓̂d
n

is the maximum likelihood estimate for the parameter ✓ under the defense

model for the evidence, �0(✓) denotes the vector of first partial derivatives of the

likelihood ratio function, �00(✓) denotes the matrix of second partial derivatives of the

likelihood ratio function, and ✓̃d
n

is between ✓ and ✓̂d
n

. Note that for this derivation,

we will assume that ✓̂d
n

P✓0�! ✓0 as n ! 1 where ✓0 is the true parameter value for

✓ (in the frequentist sense). Next, consider the corresponding Taylor’s expansion of

⇤
n
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By the Bernstein-von Mises Theorem, we have that as n ! 1
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and therefore,
p
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(1).

By the assumptions of the Bernstein-von Mises Theorem, then �00(✓) is bounded in

probability for any ✓ in a neighborhood of ✓̂d
n

. This implies that as n ! 1

�00(✓̃d
n

)p
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= o
P

n
✓0
(1).
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By Slutsky’s Lemma, as n ! 1
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This means that the limiting distribution of ⇤
n

(✓) is determined by the limiting

distribution of the scaled parameter.
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By Bernstein-von Mises Theorem and by Slutsky’s Lemma, then as n ! 1
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Because the posterior distribution for the likelihood ratio is asymptotically normal,

we can construct an approximate 1� ↵ credible region for the likelihood ratio based

on this posterior distribution. This result is formalized in the theorem below.

Corollary 8.1.1 (Approximate 1� ↵ Credible Interval for the LR):

Let let the assumptions of the Bernstein-von Mises Theorem hold. Then

for 0 < ↵ < 1, as n = n
s

= n
a

! 1

⇧(�(✓) 2 I
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|e
n

,M
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) ! 1� ↵,

where I
n

is the interval such that I
n

= �(✓̂d
n

) ± ��1(1 � ↵

2
)
p
�d
n

/n and
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��1 represents the standard normal quantile function. Therefore, the ex-

istence of an approximate 1�↵ credible interval for the likelihood ratio is

guaranteed.

Proof: Consider

⇧(�(✓) 2 I
n

|e
n

,M
d

) = ⇧(�(✓) 2 I
n

)|e
n

,M
d

, ✓ 2 N
"

(✓0)) ⇧(✓ 2 N
"

(✓0)|en,Md

)

+ ⇧(�(✓) 2 I
n

)|e
n

,M
d

, ✓ /2 N
"

(✓0)) ⇧(✓ /2 N
"

(✓0)|en,Md

)

By the equivalent unscaled result for Theorem 8.1 and the Extended Continuous

Mapping Theorem [76], there exists an "1 > 0 such that, as n ! 1
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By the unscaled version of Bernstein-von Mises Theorem given in Equation 2.12, there

exists "2 > 0 such that, as n ! 1
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Letting " = min{"1, "2}, then as n ! 1 and by Slutsky’s Lemma [75], we have that
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This proves the existence of a 1 � ↵ credible interval for the likelihood ratio that

covers the true likelihood ratio which is based on the posterior distribution for the

likelihood ratio given the entire set of evidence under the defense model. ⌅
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As a consequence of the result above, there are three types of common intervals that

will be considered for the likelihood ratio, the approximate normal-based interval, the

highest posterior density interval, and the equal tails interval [14, 19]. As a result of

Theorems 5.1 and 5.2, these intervals for the likelihood ratio will cover the the Bayes

Factor with 1 � ↵ coverage (for su�ciently large n), and cover the true likelihood

ratio with approximate 1� ↵ coverage. The following theorem formalizes this result.

Corollary 8.1.2 (Unbiased Credible Intervals for the LR):

Let the assumptions of the Bernstein-von Mises Theorem hold. Then the

following approximate 1� ↵ credible intervals for the likelihood ratio, �
✓

,

are all approximately equivalent:

Approximate Normal-Based : V (e
n

)± ��1(1� ↵

2
) �

n

where �
n

denotes the posterior standard deviation for the likelihood

ratio and ��1 represents the standard normal quantile function;

Equal Tails:
⇣
⇧�1

�|en(
↵

2
),⇧�1

�|en(1�
↵

2
)
⌘

where ⇧�1
�|en represents the quantile function of the posterior distribu-

tion for the likelihood ratio, ⇧(�
✓

|e
n

,M
d

);

Highest Posterior Density : C
n

= {�
✓

: ⇡(�
✓

|e
n

,M
d

) � c}

where c is chosen such that

Z

Cn

⇡(�
✓

|e
n

,M
d

) d�
✓

= 1� ↵

and ⇡(�
✓

|e
n

,M
d

) is the density corresponding to ⇧(�
✓

|e
n

,M
d

).

Proof: From Theorem 5.1 and Theorem 5.2, we get that the Bayes Factor is the

posterior mean of the likelihood ratio. From Theorem 8.1 we get that the posterior
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distribution of the likelihood ratio will be approximately symmetric for su�ciently

large n. From Theorem 8.1.1 we get that the approximate coverage of these intervals

is 1�↵. Therefore, since the normal distribution is symmetric and unimodal, each of

the three credible intervals will be approximately centered on the Bayes Factor with

the exact same coverage probability of 1� ↵. ⌅

8.3 Simulation Study

A simulation example has been designed to investigate how the three di↵erent credible

intervals for the likelihood ratio (approximate normal, equal tails, and highest pos-

terior density) behave as the number of samples from the specific source population

(n
s

) and the number of sources in the alternative source population (n
a

) increase. For

this simulation, let N be a su�ciently large constant denoting the number of samples

to increase n
s

and n
a

to. In Section 8.2, there is a constraint on the evidence sets

that the initial number of samples from the specific source and the initial number

of sources in the alternative source population are equal (n
s

= n
a

). Therefore, this

simulation study will use the simulated glass data for the evidence with N = 100 and

with five unknown source fragments and 5 fragments within each source in e
a

.

8.3.1 Details of Simulation Methodology

For a given sample size (n
s

= n
a

= n = 1, 2, . . . , N), the simulation will draw multi-

ple samples of the likelihood ratio from its posterior distribution given the entire set

of evidence generated under M
d

using a method similar to the parametric bootstrap

technique [23]. For both the common source and specific source problem, two di↵er-

ent sets of prior distributions for the parameters are used, resulting in two di↵erent

posterior distributions. The first set of prior distributions are centered on the true
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values of the parameters used for simulating the glass data, refer to Section 5.3.2

for details. All of the degrees of freedom hyperparameters are set to three and the

value of K is ten. For the second set of prior distributions, the priors suggested using

groups 2 and 3 of the observed glass data given in Section 4.3.1 are used. These

posterior likelihood ratio samples will be used to compute the three di↵erent credible

intervals defined in Corollary 8.1.2. The algorithms for the simulating the posterior

LR samples for both the specific source and common source problems are given in

Algorithms 8 and 9 below. The initial evidence sets for the simulation are composed

of the simulated glass data described in Section 5.3.2.

Algorithm 8: Specific Source Posterior Likelihood Ratio Simulation

Input: Evidence set e(n) = {e
u

, e(n)
s

, e(n)
a

} with sample size n
for m = 1, 2, ...,M do

Draw ✓⇤
s

from ⇧(✓
s

|e(n)
s

,M
d

)

Draw ✓⇤
a

from ⇧(✓
a

|e
u

, e(n)
a

,M
d

)

Compute �(n)
✓,m

= f(e
u

|✓⇤
s

)/f(e
u

|✓⇤
a

)

end

Output: {�(n)
✓,m

: m = 1, 2, . . . ,M} a sample from ⇧(�
✓

|e(n),M
d

)

Algorithm 9: Common Source Posterior Likelihood Ratio Simulation

Input: Initial evidence set e(n) = {e
u1 , eu2 , e

(n)
a

} with sample size n
for m = 1, 2, ...,M do

Draw ✓⇤
a

from ⇧(✓
a

|e
u1 , eu2 , e

(n)
a

,M
d

)

Compute �(n)
✓,m

= f(e
u1 , eu2 |✓⇤a,Mp

)/f(e
u1 , eu2 |✓⇤a,Md

)

end

Output: {�(n)
✓,m

: m = 1, 2, . . . ,M} a sample from ⇧(�
✓

|e(n),M
d

)

Once the posterior LR samples have been simulated, the credible intervals for the

likelihood ratio are computed from these samples. As a result of Equations 5.1 and

5.6, the Bayes Factors, which serve as the centers of the approximate normal-based

credible intervals, are computed using the sample mean of the posterior LR sample

for a given sample size n. And, as a result of Theorem 8.1.1, the posterior standard

deviations for the approximate normal-based credible interval are computed using
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the sample standard deviation of the posterior LR samples for a given sample size

n. Next, the equal tails credible intervals are computed using the sample quantile

function for the posterior LR samples. Finally, the highest posterior density credible

intervals are computed using the implementation in the ‘HDInterval’ package in R

[48].

8.3.2 Simulation Results

The results of the simulation are provided in the Figures 8.1-8.8. Figure 8.1 shows

the behavior of the credible intervals for the specific source likelihood ratio under

the H
p

scenario as the sample size increases for both the number of samples in the

specific source evidence and the number of sources in the alternative source population

evidence. As Figure 8.1 shows, under the first prior choice, the credible intervals for

the likelihood ratio contain the true value of the likelihood ratio for the simulated

data, plotted with the red dotted line. However, this is not the case under the

second prior choice (which was shown to be mismatched to the specific source data

in Section 4.3.4). In Figure 8.1(b), due to the mismatched prior choice, the credible

intervals for the likelihood ratio point in the incorrect direction (all the interval centers

are less than one instead of greater than one). Also, as the sample size increases, the

widths of the intervals tends to decrease for the first choice of prior distributions. In

contrast, as the sample sizes increases using the second choice of prior distributions,

the interval widths tend to increase. This result is shown in Figure 8.3.

Figure 8.2 shows the behavior of the credible intervals for the specific source likelihood

ratio under the H
d

scenario as the sample size increases. As Figure 8.2 shows, under

the first prior choice, the centers of the credible intervals for the likelihood ratio are

very close to the value of the likelihood ratio for the simulated data, plotted with the

red dotted line. Again, this is not the case under the second prior choice. It should be
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Figure 8.1: Credible intervals for the specific source likelihood ratio under the H
p

scenario. The center of the intervals is plotted with a � and the endpoints of the
intervals are plotted with a �. The true value of the likelihood ratio is plotted with
a red dotted line.
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Figure 8.2: Credible intervals for the specific source likelihood ratio under the H
d

scenario. The center of the intervals is plotted with a � and the endpoints of the
intervals are plotted with a �. The true value of the likelihood ratio is plotted with
a red dotted line.
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Figure 8.3: The log-10 widths of each of the intervals for the specific source problem
under the H

p

scenario.
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Figure 8.4: The log-10 widths of each of the intervals for the specific source problem
under the H

d

scenario.
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noted that the y-axes in Figure 8.2(a) are not plotted on the same scale. Therefore,

Figure 8.4 can be referenced to better compare the widths of the intervals. It can be

seen in Figure 8.4 that under the first prior choice, the widths of the intervals tend to

decrease, which is the desired behavior. When the prior distributions are mismatched

to the observed evidence, as is the case for the second choice of prior, the intervals

tend to become more spread out.

Figure 8.5 shows the behavior of the credible intervals for the common source like-

lihood ratio under the H
p

scenario as the sample size increases. Like the common

source problem, the credible intervals for the first choice of prior distributions con-

tains the true values of the likelihood ratio for the simulated evidence. However,

the credible intervals for the mismatched, second choice of prior distributions do not

contain the true value of the likelihood ratio. Figure 8.7 shows that the widths of

the intervals drop o↵ quickly, and then stabilize. Also, the credible intervals tend to

be shorter for the first prior choice compared to the credible intervals for the second

prior choice.

Figure 8.6 shows the behavior of the credible intervals for the common source like-

lihood ratio under the H
d

scenario as the sample size increases. It is di�cult to

determine from the figure, but none of the credible intervals for the second choice of

prior contain the true value of the likelihood ratio for the simulated evidence. Fig-

ure 8.8 shows that the widths of the intervals drop o↵ quickly, and then increases

significantly. The odd behavior of these intervals indicates that maybe the number of

posterior likelihood ratio samples should be increased, or that the simulated evidence

for the second unknown source is potentially very rare. This might cause the compu-

tational algorithms to su↵er from issues concerning ratios of very small probabilities

which fluctuate considerably.
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Figure 8.5: Credible intervals for the common source likelihood ratio under the H
p

scenario. The center of the intervals is plotted with a � and the endpoints of the
intervals are plotted with a �. The true value of the likelihood ratio is plotted with
a red dotted line.
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Figure 8.6: Credible intervals for the common source likelihood ratio under the H
d

scenario. The center of the intervals is plotted with a � and the endpoints of the
intervals are plotted with a �. The true value of the likelihood ratio is plotted with
a red dotted line.
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Figure 8.7: The log-10 widths of each of the intervals for the common source problem
under the H

p

scenario.
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Figure 8.8: The log-10 widths of each of the intervals for the common source problem
under the H

d

scenario.
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8.4 Discussion

It should be noted that as a result of Corollary 7.6.1, that the Neyman-Pearson

approximation may replace the Bayes Factor for an approximately equivalent credible

interval for the likelihood ratio. Also, similar to the Bayes Factor, these credible

intervals for the likelihood ratio are dependent on the prior choice. In fact, if the

prior distributions are changed, then the credible intervals for the likelihood ratio

will change accordingly. If a chosen prior is particularly mismatched to the observed

evidence, then the resulting credible intervals for the likelihood ratio may not contain

the true value of the likelihood ratio. Regardless, these intervals may play a significant

role in the determination of proper sample sizes for the forensic identification of source

problems. This is a topic of particular interest to the forensic science community that

will require future research.
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CHAPTER 9

Conclusion

9.1 Concluding Remarks

Due to the intractability of computing the marginal likelihoods which compose the

numerator and denominator of the Bayes Factor, Monte Carlo integration methods

were implemented for computing the Bayes Factor. Since two separate approxima-

tions are used for computing the numerator and denominator, it was necessary to

develop methods for quantifying the numerical standard error associated with the

computation of the entire Bayes Factor by Monte Carlo methods. The results of

this preliminary study clearly demonstrate that the prior choice for the nuisance pa-

rameters is one of the main causes of di↵erences between the Bayes Factor and the

likelihood ratio. This research motivated the development of the Bernstein-von Mises

and Neyman-Pearson approximations.

The central result of this dissertation is the formal development of a generalization

of the Neyman-Pearson likelihood ratio test statistic which serves as an approxima-

tion to the Bayes Factor. To the best of my knowledge, the results in Chapter 7

are the first results demonstrating that a non-Bayesian statistic can be used as an

approximation to the subjective Bayes Factor in all aspects of the forensic identifi-

cation of source problems. These results are applicable to both the common source

and specific source identification problems, and for a large class of reasonable prior

distributions for the indexing parameters on the class of probability models for the
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evidence. The Neyman-Pearson approximation can replace the Bayes Factor in the

Bayesian decision-making process and in all intermediate steps, including reasonable

interval quantifications for the likelihood ratio. One of the main advantages of the

Neyman-Pearson approximation is that this method avoids the complications associ-

ated with choosing a subjective prior distribution for the nuisance parameters.

In the process of developing the Neyman-Pearson approximation, it was necessary to

consider a normal approximation to the posterior distribution for the nuisance param-

eters. This lead to an approximation of the Bayes Factor based on the Bernstein-von

Mises Theorem which has similar asymptotic properties as the Neyman-Pearson ap-

proximation. While this Bernstein-von Mises approximation of the Bayes Factor

also avoids any subjective determination of prior distributions, it possesses similar

computational issues as the Bayes Factor. Therefore, methods for the computa-

tional implementation of the Bernstein-von Mises approximation were developed us-

ing Monte Carlo integration in Chapter 6. To avoid some of these computational

issues, the Laplace approximation of the Bayes Factor can be used. However, the

Laplace approximation still requires subjective prior determinations for the nuisance

parameters.

One of the preliminary results necessary to study the asymptotic properties of the

value of evidence develops a relationship between the subjective Bayes Factor and

its limiting form, the likelihood ratio. In addition, a new expression for the common

source and specific source Bayes Factors was developed. This new expression takes the

form of the expected value of the corresponding likelihood ratio function with respect

to the posterior distribution for the entire set of evidence under the defense model.

These new non-standard expressions for the Bayes Factor facilitate the derivation of

a posterior distribution of the likelihood ratio. This posterior distribution allows for

a number of interval quantifications of the value of evidence that have the property
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that the center of the interval is the Bayes Factor. These intervals avoid the bias

properties typical of most interval-based value of evidence approaches.

9.2 Future Research

As a consequence of the results in this dissertation, I would like to focus my future

research e↵orts on demonstrating that when the Neyman-Pearson approximation is

used as a surrogate for the Bayes Factor, the resulting decision will be a statistically

admissible decision rule for selecting between the prosecution and defense models for

the forensic identification of source problems.

Conjecture:

For the forensic identification of source problems, choosing the model with

the highest approximate posterior probability, where the approximate pos-

terior odds are determined by multiplying the Neyman-Pearson approxi-

mation of the Bayes Factor by the prior odds, is the (generalized) Bayes

Rule with respect to the “0-1” loss function.

It should be noted that a (generalized) Bayes Rule is a decision rule which minimizes

the posterior expected loss with respect to the “0-1” loss functions and the (im-

proper) prior distribution [10]. Several theorems from Berger [10] provide conditions

under which (generalized) Bayes Rules are statistically admissible. It is expected that

decisions based on the conjecture stated above will be statistically admissible. Al-

though the Bernstein-von Mises approximation has asymptotic properties similar to

the Neyman-Pearson approximation, it is not expected that using the Bernstein-von

Mises approximation will lead to a statistically admissible decision rule.

As a natural extension of the results related to interval quantifications for the value of

evidence, I would like to use a simulation algorithm to determine how many control

samples are needed, relative to a given choice of categorical/verbal scale used in
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the presentation of evidence [24], to guarantee that the reported value of evidence

is reasonably close to the actual likelihood ratio. The algorithm will use posterior

predictive distributions for the evidence in a manner similar to a parametric bootstrap

to generate several samples from the posterior distribution for the likelihood ratio.

The lengths of the resulting credible intervals for the likelihood ratio, in conjunction

with the categorical scale, will be used as a metric to determine an appropriate

sample size that will guarantee that the reported value of evidence is reasonable.

The development of these methods will allow modern Bayesian methods for designing

clinical trials to be used in sample size determinations for the forensic identification

of source problems [12]. This research will be conducted with Dr. Saunders and Dr.

Neumann to fulfill the requirements for the final phase of the National Institute of

Justice grant listed in the acknowledgements.

Finally, the results of the simulation study for computing Bayes Factors revealed

that the Bayes Factors are particularly sensitive to the choice of prior distribution

for the nuisance parameters, especially for the specific source identification problem.

Therefore, it would be beneficial to perform a systematic study of reference priors for

various types of common forensic evidence. In this context, a reference prior is a prior

distribution that would be used in all applications of a similar nature to mitigate any

di↵erences in reported values of evidence as a consequence of di↵erent practitioners

choosing di↵erent prior distributions. These reference priors could then be managed

by the various agencies for practical standards in forensic science, such as the National

Institute for Standards and Technology in the United States.
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