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ABSTRACT 

 

USING REMOTE SENSING TO ESTIMATE CROP WATER USE TO IMPROVE 

IRRIGATION WATER MANAGEMENT 

 

ARTURO REYES-GONZÁLEZ 

2017 

Irrigation water is scarce. Hence, accurate estimation of crop water use is 

necessary for proper irrigation managements and water conservation. Satellite-based 

remote sensing is a tool that can estimate crop water use efficiently.  

Several models have been developed to estimate crop water requirement or actual 

evapotranspiration (ETa) using remote sensing. One of them is the Mapping 

EvapoTranspiration at High Resolution using Internalized Calibration (METRIC) model. 

This model has been compared with other methods for ET estimations including 

weighing lysimeters, pan evaporation, Bowen Ratio Energy Balance System (BREBS), 

Eddy Covariance (EC), and sap flow. However, comparison of METRIC model outputs 

to an atmometer for ETa estimation has not yet been attempted in eastern South Dakota. 

The results showed a good relationship between ETa estimated by the METRIC model 

and estimated with atmometer (r2 = 0.87 and RMSE = 0.65 mm day-1). However, ETa 

values from atmometer were consistently lower than ETa values from METRIC. 

The verification of remotely sensed estimates of surface variables is essential for 

any remote-sensing study. The relationships between LAI, Ts, and ETa estimated using 

the remote sensing-based METRIC model and in-situ measurements were established. 
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The results showed good agreement between the variables measured in situ and estimated 

by the METRIC model. LAI showed r2 = 0.76, and RMSE = 0.59 m2 m-2, Ts had r2 = 0.87 

and RMSE 1.24 °C and ETa presented r2= 0.89 and RMSE = 0.71 mm day-1.  

Estimation of ETa using energy balance method can be challenging and time 

consuming. Thus, there is a need to develop a simple and fast method to estimate ETa 

using minimum input parameters. Two methods were used, namely 1) an energy balance 

method (EB method) that used input parameters of the Landsat image, weather data, a 

digital elevation map, and a land cover map and 2) a Kc-NDVI method that use two input 

parameters: the Landsat image and weather data. A strong relationship was found 

between the two methods with r2 of 0.97 and RMSE of 0.37 mm day-1. Hence, the Kc-NDVI 

method performed well for ETa estimations, indicating that Kc-NDVI method can be a 

robust and reliable method to estimate ETa in a short period of time. 

Estimation of crop evapotranspiration (ETc) using satellite remote sensing-based 

vegetation index such as the Normalized Difference Vegetation Index (NDVI). The 

NDVI was calculated using near-infrared and red wavebands. The relationship between 

NDVI and tabulated Kc’s was used to generate Kc maps. ETc maps were developed as an 

output of Kc maps multiplied by reference evapotranspiration (ETr). Daily ETc maps 

helped to explain the variability of crop water use during the growing season. Based on 

the results we can conclude that ETc maps developed from remotely sensed multispectral 

vegetation indices are a useful tool for quantifying crop water use at regional and field 

scales. 
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CHAPTER 1: General Introduction 

1.1 Evapotranspiration 

Evapotranspiration (ET) is the largest component of the hydrologic cycle after 

precipitation (Irmak, 2011; Shoko, Dube, Sibanda, & Adelabu, 2015). However, for 

irrigated areas in arid and semi-arid regions ET may be is the largest component. ET is 

the loss of water from the land surface to the atmosphere through two separate processes, 

viz. evaporation (E) from soil and water surfaces and transpiration (T) from vegetative 

surfaces (R. G. Allen, Pereira, Raes, & Smith, 1998; Gowda, Chavez, et al., 2008). Both 

processes are driven by the available energy and the drying potential of the air, but 

transpiration depends also on the capacity of plants to replenish the leaf tissue with water 

coming from the root zone (Irmak, 2011). Evaporation of water from the soil and 

transpiration from the stomatal cavities of plants account for more than 98 percent of the 

crop water use of most plant species (USDA-SCS, 1993). When the crop is small, water 

is lost by soil evaporation, but once the crop is well developed and completely cover the 

soil, transpiration becomes the main process (R. G. Allen et al., 1998). Crops lose their 

water through stomata. Stomata are little pores on the leaf surface that regulates the 

transpiration (R. G. Allen et al., 1998). Energy is required to evaporate water from the 

stomatal cavity (R. G. Allen et al., 1998; Tasumi, 2003). The largest energy source is 

from solar radiation. ET can be limited by either the amount of available energy or water 

available in the soil profile (R. G. Allen et al., 1998; USDA-SCS, 1993).  

There are several factors that affect the ET rates such as weather factor (e.g., solar 

radiation, air temperature, wind speed, and the vapor pressure), crop factor (e.g., crop 



2 

 

type, crop variety, and growth stages), and soil factor (e.g., hydraulic properties, water 

retention capacity, and soil salinity) (R. G. Allen et al., 1998). ET varies according to 

several factors, understanding these variations, an accurate estimation of ET is essential 

for improving irrigation water management. Thus, ET continues to be of foremost 

importance in irrigation agriculture.  

Various methods have been developed to estimate ET directly or indirectly such 

as weighing lysimeters, pan evaporation, soil water balance, atmometer, Bowen Ratio 

Energy Balance System (BREBS), Eddy covariance (EC), and sap flow (R. G. Allen, 

Pereira, Howell, & Jensen, 2011). However those methods are in situ point measurement 

and do not provide information at regional scale (Gowda, Chavez, et al., 2008; Knipper, 

Hogue, Scott, & Franz, 2017; Shoko et al., 2015) also some of them requires maintenance 

and are expensive (He et al., 2017; Maeda, Wiberg, & Pellikka, 2011; Xu et al., 2015). 

To overcome this problem, remote sensing techniques are alternative to estimate ET at 

regional scale in less time and with less cost (R. Allen, A. Irmak, R. Trezza, J. M. 

Hendrickx, et al., 2011; J Kjaersgaard, Allen, & Irmak, 2011). ET varies in both space 

and time. It is variable in space because of the wide spatial variability of precipitation, 

hydraulic properties of soil, and vegetation types. It is variable in time because of 

variability of climate and development or senescence of vegetation (R. Allen, Trezza, 

Tasumi, & Kjaersgaard, 2014). For these reasons satellite images are a useful tool for 

determining and mapping the spatial and temporal variability of ET (R. Allen et al., 

2014).   

To estimate ET at regional scale, two types of remote sensing approaches have 

been developed (R. G. Allen et al., 2011; Gowda, Chavez, et al., 2008; Neale, Jayanthi, & 
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Wright, 2005; Trezza, Allen, & Tasumi, 2013). The first approach computes ET using the 

energy balance (EB) method, obtaining ET as a residual of the energy balance equation 

(R. G. Allen, Tasumi, & Trezza, 2007) computed as: 

𝐿𝐸 =  𝑅𝑛 − 𝐺 − 𝐻                                                                                                           (1)    

where 𝐿𝐸 is the latent heat flux (W m-2), or ETa (mm day-1), 𝑅𝑛 is the net 

radiation (W m-2), 𝐺 is the soil heat flux (W m-2), and 𝐻 is the sensible heat flux (W m-2). 

The second approach estimates ET using vegetation indices (VI) derived from 

canopy reflectance values to compute crop coefficient (Kc) values (Glenn, Neale, 

Hunsaker, & Nagler, 2011; Gontia & Tiwari, 2010). The Kc values are multiplied by the 

reference evapotranspiration (ETr) to estimate actual evapotranspiration (ETa), which is 

computed as follows: 

𝐸𝑇𝑎 = 𝐾𝑐  ×  𝐸𝑇𝑟                                                                                                               (2) 

The second approach can be an alternative to estimate crop water requirements at 

regional and field scale in regions where digital elevation, land cover map, and thermal 

infrared data are not available for ETa estimations. 

1.2 The METRIC Model 

In the last decades several models have been used to estimate ETa at different 

scales using remotely sensed data (Gowda, Chavez, et al., 2008). The models include 

Surface Energy Balance Algorithm for Land (SEBAL) (W. G. Bastiaanssen, M. Menenti, 

R. Feddes, & A. Holtslag, 1998), Surface Energy Balance System (SEBS) (Su, 2002), 

Mapping EvapoTranspiration at High Resolution with Internalized Calibration 

(METRIC) (R. G. Allen, Tasumi, & Trezza, 2007), Atmosphere-Land Exchange Inverse 

(ALEXI) (Martha C Anderson, Norman, Mecikalski, Otkin, & Kustas, 2007), and 
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Simplified Surface Energy Balance (SSEB) (Senay, Budde, Verdin, & Melesse, 2007). 

The foundation of the SEBAL model was developed in the mid-1990 for the purpose of 

estimating ET over agricultural areas using satellite surface energy fluxes (W. G. 

Bastiaanssen et al., 1998). The METRIC model uses the innovative SEBAL method for 

estimating sensible heat flux by using the near surface to air temperature gradient (dT) for 

each pixel within an image based on a regression relationship between the dT and 

radiometric surface temperature of two anchor pixels. The anchor pixels represent the 

conditions of an agricultural field with full vegetation cover and maximum crop ET (cold 

condition) and a bare agricultural field with no vegetation cover (hot condition) (see 

Appendix (Table A1)) (R. G. Allen, Tasumi, & Trezza, 2007; JH Kjaersgaard et al., 

2008). Entire details of how the METRIC model calculates 𝐿𝐸, 𝑅𝑛, 𝐺, and 𝐻 is described 

in the next chapter in section 2.3.3. 

One of the advantages of the METRIC model compared to previous surface 

energy balance-based models for use in arid areas is that it utilizes reference 

evapotranspiration (ETr) for estimating actual evapotranspiration (ETa) at the cold pixel 

condition (R. G. Allen, Tasumi, & Trezza, 2007). Because ETr is based on ground-based 

meteorological measurements, and because ETr is calibrated to account for atmospheric 

conditions common in arid and semi-arid conditions, such as horizontal advection, the 

METRIC model is particularly useful for ETa estimations under arid or semi-arid 

conditions (R. G. Allen, Tasumi, & Trezza, 2007). In METRIC all weather data should be 

subjected to a rigorous quality control prior to be used in any calculations as suggested by 

R. G. Allen et al. (1998). Also, METRIC utilizes hourly ETr to auto calibrate the sensible 

heat calculations for each overpass image. This internal calibration makes ETa estimates 



5 

 

more precise and robust (He et al., 2017). The METRIC model is also one of the most 

appropriate models for estimating ETa over agricultural fields during the growing season 

(R. G. Allen, Tasumi, Morse, et al., 2007). For these reasons the METRIC model was 

used in this dissertation to development accurate ETa maps and estimate crop water use at 

regional and field scales.   

1.3 Vegetation Indices 

Remote sensing techniques can estimate crop coefficients (Kc) based on spectral 

reflectance of vegetation indices such as the Normalized Difference Vegetation Index 

(NDVI) (Glenn et al., 2011). Kc developed from NDVI determine ETc better than a 

tabulated Kc because it represents the actual crop growth conditions and capture the 

spatial variability among different fields (Gontia & Tiwari, 2010; Kullberg, DeJonge, & 

Chávez, 2017; Lei & Yang, 2012; Neale et al., 2005). However, under periods with little 

vegetation the Kc developed from NDVI is less accurate. The NDVI is the difference 

between near-infrared (𝑁𝐼𝑅) and Red band reflectances divided by their sum (Rouse Jr, 

Haas, Schell, & Deering, 1974). NDVI is calculated as follows: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
                                                                                                               (3) 

where 𝑁𝐼𝑅  and 𝑅𝑒𝑑  are the near-infrared and red bands, respectively.  

Also NDVI values are related with physiological processes that depend on light 

absorption by the canopy including ET (Glenn et al., 2011). Neale, Bausch, and Heerman 

(1989) related the crop canopy reflectance to Kc for corn, developing a successful 

technique for estimating ETa. 
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1.4 Objectives 

The specific objectives of this dissertation were to: 

- Compare METRIC model and atmometer methods for estimating actual 

evapotranspiration (chapter 2) 

- Assess the relationship between leaf area index (LAI), surface temperature (Ts), 

and actual evapotranspiration (ETa) estimated using the remote sensing-based 

METRIC model and in-situ measurements (chapter 3) 

- Compare actual evapotranspiration estimated with energy balance and vegetation 

index methods (chapter 4) 

- Estimate crop evapotranspiration (ETc) using satellite remote sensing-based 

vegetation index (chapter 5) 

1.5 Dissertation Organization 

The dissertation is organized in six chapters. The first chapter presents a general 

introduction. The second chapter compares the METRIC model and atmometer for ETa 

estimations, this study was carried out in three corn fields at three sites (Brookings, 

Volga, and Oak Lake) in eastern South Dakota. The third chapter assess the relationship 

between LAI, Ts, and ETa estimated with METRIC model and in situ measurements, this 

research was carried out at a commercial field in eastern South Dakota. LAI and Ts were 

measured in situ with AccuPAR and infrared thermometer, respectively and ETa was 

estimated using an atmometer and a Kc. The fourth chapter compares ETa estimated with 

energy balance and estimated with vegetation index (NDVI), this study was carried out in 

five corn field during two growing seasons in Brookings, SD. The energy balance method 
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used four input parameters including Landsat image, weather data, a digital elevation 

map, and a land cover map, while NDVI method used two input parameters including 

Landsat image and weather data for ETa estimations. The fifth chapter estimates ETc 

using remote sensing-based vegetation index, this research was carried out in five silage 

corn fields during four growing seasons in northern México. The sixth chapter gives a 

general conclusions. 

1.6 Dissertation Contributions 

This dissertation contributes to: 

- Improving the estimation of crop water demands at regional and field scale  

- Determining proper irrigation scheduling  

- Improving irrigation water management 

- Better water resource planning 

- Estimating crop water use using minimum input parameters 

- Helping to conserve irrigation water  

1.7 Importance and implications of the dissertation 

As groundwater is depleted, food and fiber production are threatened. This 

dissertation is important because developed tools to help to minimize the groundwater 

depletion, based on accurate estimation of crop water use using satellite remote sensing 

techniques. 

 The implications of the research were: 

- Daily ET maps generated in this research will be used for irrigation scheduling 

because it show when and how much water is required by the crop 
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- Policy makers and consultants will have accurate estimates of crop water use 

using satellite remote sensing methods developed in this research 

- Producers will use crop coefficients generated in this dissertation to have better 

irrigation water management 

- Farmers will implement the results of this research to reduce their seasonal water 

application amounts by 18% just by using actual ET instead of reference ET  

- Atmometers will be used to measure reference ET in places where weather 

stations are unavailable or impractical  
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CHAPTER 2: Comparative Analysis of METRIC Model and Atmometer Methods 

for Estimating Actual Evapotranspiration  
 

2.1 Abstract 

Accurate estimation of crop evapotranspiration (ET) is a key factor in agricultural 

water management including irrigated agriculture. The objective of this study was to 

compare ET estimated from the satellite-based remote sensing METRIC model to in situ 

atmometer readings. Atmometer readings were recorded from three sites in eastern South 

Dakota every morning between 8:15 and 8:30 AM for the duration of the 2016 growing 

season. Seven corresponding clear sky images from Landsat 7 and Landsat 8 (Path 29, 

Row 29) were processed and used for comparison. Three corn fields in three sites were 

used to compare actual evapotranspiration (ETa). The results showed a good relationship 

between ETa estimated by the METRIC model (ETa-METRIC) and ETa estimated with 

atmometer (ETa-atm) (r2 = 0.87, Index of agreement of 0.84, and RMSE = 0.65 mm day-

1). However, ETa-atm values were consistently lower than ETa-METRIC values. The 

differences in daily ETa between the two methods increase with high wind speed values 

(>4 m s-1). Results from this study are useful for improving irrigation water management 

at local and field scales.  
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2.2 Introduction 

With increasing demands placed on freshwater resources worldwide, it is necessary 

to accurately estimate crop water consumption efficiently. Uses for crop water use 

information is needed for a range of applications, including improving agricultural water 

management, irrigation and crop selection, water resource planning, water rights 

management, and water regulations (R. Allen, A. Irmak, R. Trezza, J. M. Hendrickx, et 

al., 2011; Martha C. Anderson, Allen, Morse, & Kustas, 2012; Marvin E Jensen & Allen, 

2016). Irrigated agriculture produces 40% of global food and fiber supply from 20% of 

the world’s croplands (Thenkabail, Hanjra, Dheeravath, & Gumma, 2010). In arid areas, 

up to 90% of all water withdrawals may be for irrigation purposes (Bos, Kselik, Allen, & 

Molden, 2008). With increasing population and water uses a scarce water supply is put 

under additional pressure and other water users relying on the same water supply may 

experience insufficient water allocations. At the same time, a reduction of irrigation water 

supply may result in loss of production and, ultimately, threatened food security. There is 

an opportunity, however, to optimize the management of water in agricultural production 

systems, and the accurate estimation of evapotranspiration (ET) is critical in that regard.  

ET is the loss of water from the land surface to the atmosphere through two 

processes, viz. evaporation (E) from soil and water surfaces and transpiration (T) from 

vegetative surfaces (R. G. Allen, Tasumi, Morse, et al., 2007; Gowda, Chavez, et al., 

2008). ET rates are affected by weather conditions such as solar radiation, air 

temperature, wind speed and air vapor pressure deficit, and plant and soil characteristics 

conditions (R. G. Allen et al., 1998; George, Reddy, Raghuwanshi, & Wallender, 2002). 

Different methods, direct and indirect exist to estimate ET. Direct methods include 
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weighing lysimeters and soil water balance estimations while indirect methods include 

pan evaporation, atmometer, Bowen Ratio Energy Balance System (BREBS), Eddy 

covariance (EC), scintillometer, sap flow, and remote sensing (R. G. Allen et al., 2011). 

An attractive property of satellite-based remote sensing ET estimates using Landsat 

imagery is its coverage on a field by field basis at a regional scale (R. Allen, A. Irmak, R. 

Trezza, J. M. Hendrickx, et al., 2011; R. G. Allen, Tasumi, & Trezza, 2007; J 

Kjaersgaard et al., 2011). 

Several models have been developed to estimate ET using remote sensing. One of 

them is the Mapping EvapoTranspiration at High Resolution using Internalized 

Calibration (METRIC) Model. METRIC utilizes the innovative Surface Energy Balance 

Algorithm for Land (SEBAL) method for estimating sensible heat flux. METRIC uses 

the near surface to air temperature gradient (dT) for each pixel within an image based on 

a regression relationship between the dT and radiometric surface temperature of two 

anchor pixels. The anchor pixels represent the conditions of an agricultural field with full 

vegetation cover and maximum crop ET (cold condition) and a bare agricultural field 

with no vegetation cover (hot condition)(R. G. Allen, Tasumi, & Trezza, 2007; JH 

Kjaersgaard et al., 2008).  

One of the advantages of the METRIC model compared to previous surface energy 

balance-based models for use in arid areas is that it utilizes reference evapotranspiration 

(ETr) for estimating actual evapotranspiration (ETa) at the cold pixel condition (R. G. 

Allen, Tasumi, & Trezza, 2007). Because ETr is based on ground-based meteorological 

measurements, and because ETr is calibrated to account for atmospheric conditions 

common in arid and semi-arid conditions, such as horizontal advection, the METRIC 
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model is particularly useful for ETa estimations under arid or semi-arid conditions (R. G. 

Allen, Tasumi, & Trezza, 2007). 

Previous studies have compared METRIC model outputs to other methods of ETa 

estimation such as weighing lysimeter (R. G. Allen, Tasumi, & Trezza, 2007), soil water 

balance (Chavez, Gowda, Howell, Marek, & New, 2007), Bowen Ratio Energy Balance 

System (BREBS) (Carrasco-Benavides et al., 2014; Hankerson, Kjaersgaard, & Hay, 

2012; Healey et al., 2011; Singh & Irmak, 2009), Eddy Correlation (EC) (e. g., (Folhes, 

Rennó, & Soares, 2009; Gordillo Salinas, Flores Magdaleno, Tijerina Chávez, & Arteaga 

Ramírez, 2014; Liebert, Huntington, Morton, Sueki, & Acharya, 2016; Zhang, Anderson, 

& Wang, 2015), Large Aperture Scintillometer (LAS) (Mkhwanazi, Chávez, & 

Rambikur, 2012) and the METRIC-MODIS method (Trezza et al., 2013). These studies 

showed from moderate to strong relationships between observed and METRIC-estimated 

ETa, indicating that the METRIC model is a useful tool for estimating accurate ETa at 

local and field scales. In addition, the METRIC model has been compared with other 

models such as water balance model (Santos, Lorite, Tasumi, Allen, & Fereres, 2008), 

trapezoid interpolation model (TIM) (Choi, Kim, Park, & Kim, 2011; Choi et al., 2009), 

two-source energy balance model (TSEB) (French, Hunsaker, & Thorp, 2015; Gonzalez-

Dugo et al., 2009), SIMDualKc model (Paço et al., 2014), and the Landsat-MODIS 

fusion model (Bhattarai, Quackenbush, Dougherty, & Marzen, 2015). However, 

comparison of METRIC model outputs to an atmometer for ETa estimation has not yet 

been attempted, indicating that a knowledge gap exist in developing a method to estimate 

crop water requirements using both the remote sensing-based METRIC model and the 

atmometer method. 
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An atmometer is a device that measures the amount of water evaporated from wet 

porous surface to the atmosphere (Broner & Law, 1991) Atmometers are simple and 

inexpensive devices, that consists of a ceramic evaporation plate (Bellani plate) covered 

by a green canvas, mounted on top of a cylindrical water reservoir, to provide a visual 

interpretation of atmospheric demand for pulling water out of the vegetation and the soil 

(Alam & Trooien, 2001; Magliulo, d’Andria, & Rana, 2003). The standard model with 

number 54 green canvas is recommended for measuring alfalfa ETr similar to the alfalfa-

based Penman-Monteith ETr, while number 30 green canvas is designed to simulate grass 

ETr similar to the grass-based Penman-Monteith ETo (Alam & Trooien, 2001; S. Irmak, 

Dukes, & Jacobs, 2005).  

Research demonstrated that ETr estimated with atmometers was moderate 

correlated (r2 = ~0.70) with weighing lysimeters values (Casanova, Messing, Joel, & 

Cañete, 2009; Mendonça, Sousa, Bernardo, Dias, & Grippa, 2003), strongly correlated (r2 

= 0.90) to pan evaporation values (Kidron, 2005; Pelton, 1964), and strongly correlated 

(r2 = 0.92) to agrometeorological data values (e.g., (Knox, Rodriguez-Diaz, & Hess, 

2011; Lamine, BODIAN, & DIALLO, 2015; Peterson, Bremer, & Fry, 2015; A. Reyes-

Gonzalez et al., 2016; Taghvaeian, Chávez, Bausch, DeJonge, & Trout, 2014).  

The objective of this study was to compare ETa estimated from satellite-based 

remote sensing METRIC model to ETa estimated with atmometers in corn fields in 

eastern South Dakota.  



18 

 

2.3 Material and Methods 

2.3.1 Study Area 

The study was carried out at three sites in eastern South Dakota at Brookings (44° 

19'N, 96° 46'W), Volga (44° 18'N, 96° 55'W), and Oak Lake (44° 30'N, 96° 31'W) at 

elevations 500, 497, and 574 m above sea level, respectively. Three corn fields near to 

each atmometer (nine total fields) were selected and considered to estimate ETa (Figure 

2.1). The population density was approximately 78,000 plants ha-1 in all fields. Corn 

fields in Brookings and Volga had 0-2% slope, while the Oak Lake had 2-6% slope 

(NRCS Web Soil Survey, 2016 http://websoilsurvey.nrcs.usda.gov). All fields used 

in this study are in corn - soybean crop rotation system. The average annual precipitation 

is 533 mm, of which ¾ typically falls during the growing season April through October. 

The mean annual maximum temperature is 12.4 °C, minimum 0.89 °C, and mean 6.63 

°C. The climate of the study area is classified as moist subhumid according to the 

Thornthwaite climate classification system (Keim, 2010).  

 

 

 

 

 

 

 

 

http://websoilsurvey.nrcs.usda.gov/
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Figure 2.1 South Dakota with county boundaries. The red rectangle shows the study area 

in eastern South Dakota (left). Landsat 8 with false color composite (bands 4, 3, 2) 

indicates the atmometer locations and the nine yellow triangles show corn field sites 

(right). 

 

2.3.2 Landsat Images 

We used seven clear-sky images from Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+) and Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor 

(TIRS) (Path 29, Row 29), Table 2.1. The images were downloaded from the United 

States Geological Survey (USGS) EROS Datacenter (http://glovis.usgs.gov). The 

images were selected based on the temporal coverage and cloud-free conditions. Images 

with cloud located >10 km from all study sites were considered acceptable. The images 

were processed using the METRIC model running in ERDAS Imagine Software 

environment (J Kjaersgaard & Allen, 2010). The time of satellite overpass of both 

Landsats ranged from 11:11 to 11:14 AM., local time (Table 2.1). Landsat 7 and 8 have a 

pixel resolution of 30 m by 30 m in the shortwave bands and 60 m by 60 m and 100 m by 

100 m in the thermal band, respectively.  

Atmomete

Atmomete

Atmomete

http://glovis.usgs.gov/
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The wedge-shaped gaps appearing within the Landsat 7 images as a result of the 

SLC-off issue were removed using the Imagine built-in focal analysis tool. During the 

process, the gap are filled iterative based on information from nearby pixels. The gap 

filling is completed prior to image processing (http://landsat.usgs.gov/gap-filling-

landsat-7-slc-single-scenes-using-erdas-imagine). An example of the process is 

shown in Figure 2.2. 

  

 

 

 

 

 

 

 

 

Figure 2.2 Stripes removed from Landsat 7 image. Original image with nine yellow 

triangles that indicate corn field sites (left) and final image without stripes, where SLC-

off image filled after employing the focal analysis tool two times (right). 

 

Table 2.1 Day of year (DOY), selected acquisition dates, Landsat satellite, path/row, and 

overpass time during corn growing season 2016, used for ETa estimations. 

DOY Acquisition Dates Satellite Path/Row 
Overpass time 

(local) 

154 06/02/16 Landsat 8 29/29 11:11:03 AM 

178 06/26/16 Landsat 7 29/29 11:13:56 AM 

194 07/12/16 Landsat 7 29/29 11:13:55 AM 

202 07/20/16 Landsat 8 29/29 11:11:21 AM 

218 08/05/16 Landsat 8 29/29 11:11:24 AM 

234 08/21/16 Landsat 8 29/29 11:11:30 AM 

258 09/14/16 Landsat 7 29/29 11:14:05 AM 
 

 

http://landsat.usgs.gov/
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2.3.3 METRIC Model 

ETa estimations using the METRIC model approach as described by R. G. Allen, 

Tasumi, and Trezza (2007) and R. Allen, A. Irmak, R. Trezza, J. M. Hendrickx, et al. 

(2011).  

METRIC model is a remote sensing image processing model that computes 

instantaneous ET values as a residual of the surface energy balance equation (R. Allen, 

A. Irmak, R. Trezza, J. M. Hendrickx, et al., 2011; R. G. Allen, Tasumi, Morse, et al., 

2007; Bastiaanssen et al., 2005; Tasumi, Allen, Trezza, & Wright, 2005): 

𝐿𝐸 =  𝑅𝑛  −  𝐺 –  𝐻                                                                                                           (1) 

where 𝐿𝐸 is the latent heat flux (W m-2), or ET (mm day-1), 𝑅𝑛 is the net radiation 

(W m-2), 𝐺 is the soil heat flux (W m-2), and 𝐻 is the sensible heat flux (W m-2). 

Net radiation (𝑅𝑛) is calculated using surface reflectance and surface temperature 

(Ts) derived by satellite imagery. 𝑅𝑛 is the difference between incoming shortwave 

radiation and outgoing longwave radiation compute as: 

𝑅𝑛 =  𝑅𝑆↓ −  𝛼𝑅𝑆↓  +  𝑅𝐿↓  −  𝑅𝐿↑  − (1 −  𝜀𝑜) 𝑅𝐿↓                                                        (2) 

where 𝑅𝑆↓  is the incoming shortware radiation (W m-2) (solar radiation), α surface 

albedo (dimensionless), 𝑅𝐿↓ is the incoming longware radiation (W m-2), 𝑅𝐿↑  is the 

outgoing longware radiation (W m-2), and 𝜀𝑜 is the surface thermal emissivity 

(dimensionless). 

Soil heat flux (𝐺) is the magnitude of the heat flux stored or released into the soil. 

𝐺 was computed using the following equations described by Tasumi (2003). 

G

Rn
= 0.05 +  0.18 e−0.521 LAI                                               LAI ≥ 0.5                             (3) 

G

Rn
= 1.80 (Ts − 273.16) Rn + 0.084⁄                                LAI < 0.5                             (4) 
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Sensible heat flux (𝐻) was determined using the aerodynamic based heat transfer 

equation as follows: 

𝐻 =  𝜌𝑎𝑖𝑟 𝐶𝑝  
𝑑𝑇

𝑟𝑎ℎ
                                                                                                                (5) 

where 𝜌𝑎𝑖𝑟 is the air density (kg m-3), 𝐶𝑝 is the air specific heat (1004 J kg-1 K-1), 

𝑑𝑇 is the temperature difference between two heights z1 (0.1 m) and z2 (2 m), and 𝑟𝑎ℎ is 

the aerodynamic resistance to heat transfer (s m-1). 

For the 𝐻 estimations, the METRIC model uses the CIMEC (Calibration using 

Inverse Modeling of Extreme Conditions) procedure described by W. Bastiaanssen, M. 

Menenti, R. Feddes, and A. Holtslag (1998) and R. G. Allen, Tasumi, and Trezza (2007) 

to calibrate the near surface to air temperature difference for each pixel within an image 

based on a regression relationship between the dT and Ts of two anchor pixels (hot and 

cold). The advantage of the CIMEC approach within the METRIC model reduces 

possible impacts of biases in estimation of aerodynamic stability correction and surface 

roughness (R. G. Allen, Tasumi, & Trezza, 2007).  

In this study, hot and cold pixels were selected for each image in agricultural 

fields near to the weather stations (<15 km). The hot pixel was selected in a bare 

agricultural field with no vegetation cover, based on high temperature values (~308 °K 

(33.85 °C)), albedo (~0.17), low biomass (LAI) (~0.85), and low NDVI (~0.3), while the 

cold pixel was selected in an agricultural field with full vegetation cover, based in low 

temperature values (~298 °K (24.85 °C)), albedo (~0.21), high biomass (LAI) (~5.6), 

and high NDVI (~0.82). 

Based on LE values, the instantaneous values of ET was computed for each pixel 

as: 
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𝐸𝑇𝑖𝑛𝑠𝑡 = 3600 
𝐿𝐸

𝜆𝜌𝑤
                                                                                                           (6) 

where  𝐸𝑇𝑖𝑛𝑠𝑡  is the hourly instantaneous ET (mm h-1), 3600 is used to convert to 

hours, 𝐿𝐸 is the latent heat flux (W m-2) consumed by ET, 𝜌𝑤 is the density of water 

(1000 kg m-3), and 𝜆 is the latent heat of evaporation (j kg-1), which is computed as: 

𝜆 = (2.501 − 0.00236(𝑇𝑠 − 273.15)  × 106)                                                                (7) 

The reference ET fraction (ETrF) or crop coefficient (Kc) was calculated based on 

ETins for each pixel and ETr was obtained from locally weather data. 

𝐸𝑇𝑟𝐹 =  
𝐸𝑇𝑖𝑛𝑠𝑡

𝐸𝑇𝑟
                                                                                                                    (8) 

Daily values of ET (ET24) (mm day-1) for each pixel was calculated as follows: 

𝐸𝑇24 = 𝐸𝑇𝑟𝐹 ×  𝐸𝑇𝑟24                                                                                                    (9) 

where 𝐸𝑇𝑟𝐹 is the reference ET fraction, 𝐸𝑇𝑟24 is the cumulative alfalfa reference 

for the day (mm day-1), and 𝐸𝑇24 is the actual evapotranspiration for the entire 24-hour 

period (mm day-1). 

Daily ET was estimated by the assumption that the ETrFins at satellite overpass 

time is the same as the ET over the 24-hour average (R. G. Allen et al., 1998). 

Monthly and seasonal ETa are calculated by interpolating daily values of ETrF 

between images and multiplying by ETr for each day and then integrated over the specific 

month (R. G. Allen, Tasumi, & Trezza, 2007). The interpolation values of ETrF are made 

using a linear interpolation or a curvilinear interpolation function such as a spline 

function (Wright, 1982). According to R. G. Allen, Tasumi, and Trezza (2007) one 

cloud-free satellite image per month is enough to develop ETrF curves for seasonal ETa 

estimations. 
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2.3.4 Meteorological Data 

Hourly weather data was used for the internal calibration of the METRIC model. 

The weather observations were taken from the automatic Brookings, Volga, and Oak 

Lake stations. All weather stations are located in Brookings County, SD. The weather 

stations at Brookings and Oak Lake sites are surrounded by grass, whereas the weather 

station at Volga is surrounded by corn fields.  

The ETr values were calculated using weather dataset using the Penman-Monteith 

equation (R. G. Allen et al., 1998; ASCE-EWRI, 2005) as follows: 

𝐸𝑇𝑟𝑒𝑓 =  
0.408 ∆(𝑅𝑛− 𝐺)+ 𝛾

𝐶𝑛
𝑇+273

 𝑢2(𝑒𝑠−𝑒𝑎)

∆ + 𝛾(1 +𝐶𝑑𝑢2)
                                                                           (10) 

where 𝐸𝑇𝑟𝑒𝑓 is the alfalfa reference (mm day-1), ∆ is the slope pressure versus air 

temperature curve (kPa °C-1), 𝑅𝑛 is the net radiation at the crop surface (MJ m-2 day-1), 𝐺 

is the soil heat flux at the soil surface (MJ m-2 day-1), 𝑇 is the mean air temperature at 1.5 

to 2.5 m height (°C), 𝑢2 is the mean daily wind speed at 2 m height (m s-1), 𝑒𝑠 is the 

saturation vapor pressure of the air (kPa), 𝑒𝑎 is the actual vapor pressure of the air (kPa), 

𝛾 is the psychrometric constant (0.0671 kPa °C-1), 𝑒𝑠 − 𝑒𝑎 is the vapor pressure deficit 

(kPa), 𝐶𝑛 is the numerator constant (1600 K mm s3 Mg-1 day-1), 𝐶𝑑 is the denominator 

constant (0.38 s m-1) for alfalfa reference, and 0.408 is the coefficient constant (m2 mm 

MJ-1). 

All weather data, were subjected to quality control (QC) prior to being used in 

any calculations as suggested by R. G. Allen et al. (1998) and ASCE-EWRI (2005). 

Hourly QC included the following weather variables such as solar radiation, air 

temperature (maximum and minimum), wind speed, and air vapor pressure deficit. 
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Therefore, accurate estimations of ETa depends of the quality weather data. Some outputs 

of quality control are shown in the Appendix (Figures A1 and A2). 

2.3.5 Atmometers  

Three atmometers were used to measure daily ETr. One automated atmometer 

Model E (ETgage Company, Loveland, Colorado, USA) was placed adjacent to the Oak 

Lake weather station.  The automated atmometer Model E was connected to the 

automated Oak Lake weather station controlled by a CR1000 datalogger (Cambell 

Scientific, CSI, Logan, UT, USA), where the evaporated data were recorded every 5 

minutes. Two manual atmometers were located adjacent to the Brookings and to the 

Volga weather station, respectively. Manual atmometers were manually recorded every 

morning between 8:00 and 8:30 AM at the Brookings and Volga sites, respectively. The 

evaporated water from the green canvas in manual atmometers was measured as the 

difference between the observed water levels on consecutive days (Gavilán & Castillo-

Llanque, 2009).  

All atmometers were covered with a number 54 green canvas that mimics 

evaporation rates of alfalfa reference crop. The atmometers were installed on a vertical 

wooden post using metal brackets and with the top of the ceramic evaporation surface 1.0 

m above the ground surface. The atmometers were surrounded by grass at the Brookings 

and Oak Lake sites, while at the Volga site the atmometer was surrounded by rainfed 

corn fields (<5 m) in all directions. Due to rodent damage to the canvas, the wooden post 

at Volga site was replaced by a metal rod in early August (DOY 217) as shown in Figure 

2.3 which prevented further damage and resulting loss of ETr data.  
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The atmometer observation period was from May 17, 2016 (DOY 138) to 

September 18, 2016 (DOY 262), during this period the atmometers were refilled two 

times with distilled water. Distilled water was used in the atmometer reservoir to prevent 

accumulation of solutes in and on the top of the plate that can decrease the porosity of the 

plate and affect the evaporation rates (S. Irmak et al., 2005). 

 

 

 

 

 

 

 

 

Figure 2.3 Atmometer mounted in wooden post damaged by mice (left) and mounted on a 

metal post (right) at Volga site. 

 

2.3.6 Development of Crop Coefficient (Kc) Curves 

Kc curves were developed for each corn field at three sites based on the alfalfa 

reference crop coefficient using Manual 70 (Appendix E) method (Marvin E Jensen & 

Allen, 2016). This method uses percent of time from planting to effective cover and days 

after effective cover to harvest for Kc calculations. In our study, the effective cover for 

corn fields occurred around 55 days after emergence (DAE) based on field observations. 

Thus the effective cover was used such as a reference point to calculate local Kc values. 

Local Kc values for different corn growth stages were calculated and adjusted using 

DAE. According to S. Irmak, Odhiambo, Specht, and Djaman (2013) the DAE is more 

Wooden post 

Metal post 
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accurate because it ignores the period prior to emergence and is more closely related with 

to the corn growing period, from emergence until physiological maturity.  

The Kc curves generated in this study for different corn fields (Figure 2.6) were 

multiplied by the ETr obtained from atmometers to estimate ETa (ETa-atm) and compare 

it with ETa estimated with the METRIC model (ETa-METRIC). 

2.3.7 Statistical Analysis between ETa-METRIC and ETa-atm. 

Statistical comparison between ETa-METRIC and ETa-atm was established using 

a simple linear regression. For the simple regression the model was 𝑦 = 𝑎 + 𝑏𝑥, where 𝑦 

is ETa-atm and 𝑥 is ETa-METRIC. Other statistical evaluations such as mean bias error 

(MBE) (Eq. 11), root mean square error (RMSE) (Eq. 12), coefficient of determination 

(r2) (Eq. 13), and Willmott index of agreement “d” (Eq. 14) were used to determine 

agreement between ETa-atm and ETa-METRIC (Willmott, 1981).  

𝑀𝐵𝐸 =  
1

𝑛
 ∑𝑖=1

𝑛 (𝑥𝑖 −  𝑦𝑖)                                                                                               (11) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑𝑖=1

𝑛  (𝑥𝑖 − 𝑦𝑖)²                                                                                         (12) 

𝑟2 =   
∑𝑖=1

𝑛 (𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑦̅)

√∑𝑖=1
𝑛 (𝑥𝑖 − 𝑥̅)² ∑𝑖=1

𝑛  (𝑦𝑖− 𝑦̅)² 
                                                                                        (13) 

𝑑 = 1 −  
∑𝑖=1

𝑛 (𝑥𝑖 − 𝑦𝑖)² 

∑𝑖=1
𝑛 (|𝑥𝑖−𝑥̅|+|𝑦𝑖− 𝑥̅|)² 

                                                                                            (14) 

where 𝑛 is the observation number, 𝑥𝑖 is the estimated value with the METRIC 

model, 𝑦𝑖 is estimated value using atmometer, and the bars above the variables indicate 

averages. 
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2.4 Results and Discussion 

2.4.1 Precipitation and Reference Evapotranspiration (ETr) 

The cumulative precipitation values for the growing period were 450 mm, 497 

mm, and 380 mm for Brookings, Volga, and Oak Lake, respectively. In 2016 the 

cumulative precipitation for the three sites were greater than the average rain (~360 mm) 

that typically falls during the growing season (April-October). The precipitation events 

had good distribution during the corn growing season due to the major events occurred in 

development stage (vegetation stage (V5) (June, 17) and tassel stage (VT) (July 10) 

(Figure 2.3). In the tassel stage corn is sensitive to water stress. 

Daily values of ETr from atmometers (ETr-atm) varied from 0.5 to 10, 0.5 to 9.5 

and 0.5 to 7.6 mm day-1 for Brookings, Volga, and Oak Lake, respectively (Figure 2.4). 

The ETr from Penman-Monteith equation (ETr-PM) varied from 1.3 to 9.1 mm day-1 for 

Brookings, 1.0 to 10.4 mm day-1 for Volga, and 1.3 to 9.6 mm day-1 for Oak Lake (Figure 

2.4). The highest ETr-atm values recorded in the three sites were in early June (day of the 

year (DOY) 161) and the lowest were in early September (DOY 249). The highest ETr-

PM values registered in the three sites were in early June (DOY 157) and the lowest 

values were in middle of September (DOY 259). Even so, moderate correlations between 

ETr-PM values and ETr-atm values in the three sites were found with r2 of 0.64, 0.59, and 

0.67 for Brookings, Volga, and Oak Lake sites, respectively (Figure 2.5). 
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Figure 2.4 Daily ETr and precipitation for three different sites during the 2016 growing 

season in eastern South Dakota. 
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Figure 2.5 Relationship between ETr-PM values and ETr-atm values at the Brookings, 

Volga, and Oak Lake sites throughout the corn growing season 2016. 

 

2.4.2 Development of Crop Coefficient (Kc) Curves 

The trends of Kc for each corn field at three different sites during the growing 

season are shown in Figure 2.6. The Kc curves showed similar tendencies for all corn 

fields, where Kc values increased from initial stage (vegetation stage (V3)) to mid-season 

stage (VT). In this period the Kc values increase as a function of time between 10% of 

crop cover to 100% of effective cover. In the mid-season the Kc remains constant (Kc = 

1.0), while in the late season the Kc values gradually decreased indicating the crop 

senescence. At the end of the season (reproductive stage (R6)) the Kc values are low 

again (Kc = ~0.5)  

The Kc curves depend of vegetation index, soil water content, weather conditions, 

crop variety, and growing degree days (R. G. Allen et al., 1998; Djaman & Irmak, 2012; 
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S. Irmak et al., 2013; Reyes-González, Trooien, Kjaersgaard, Hay, & Reta-Sánchez, 

2016). In this study, Kc curves for corn fields presented little variability because of 

rainfall events, emergence days, and air temperature were almost homogenous in our 

study area.  

The maximum Kc values observed in this study were similar to the Kcr (from 

alfalfa-reference) values reported by Djaman and Irmak (2012), who reported maximum 

Kcr values from 50 to 70 DAE in corn with rainfed treatment. Also, Wright (1982) found 

maximum Kcr values at the 100% of effective full cover for a corn field. However, our Kc 

values are different from those reported by other researchers A Irmak and Irmak (2008) 

and Singh and Irmak (2009). They found the peak Kcr values (~1.0) from late July to 

early August (~70 DAE) for corn fields planted in south central Nebraska.    

 

Figure 2.6 Crop coefficient curves based on the alfalfa-reference crop coefficient in three 

fields at the Brookings, Volga, and Oak Lake sites. The red circles indicates images 

dates.   
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2.4.3 ETa Maps and variation of ETa throughout the growing season  

Spatial and temporal distribution of ETa maps during the growing season were 

generated by the METRIC model for Brookings, Volga, and Oak Lake (data no showed). 

However, Figure 2.7 shows two ETa maps for Brookings site, one ETa map displays high 

ETa-METRIC values in a corn field at mid-season (DOY 194) and another ETa map 

shows low ETa-METRIC values at the end of the season (DOY 258). 

Figure 2.8 shows the variation of ETa-METRIC values throughout the growing 

season at three sites.  ETa-METRIC values for Brookings ranged from 2.2 to 8.2 mm day-

1, for Volga ranged from 2.6 to 8.0 mm day-1, and for Oak Lake ranged from 2.2 to 8.8 

mm day-1. In general the ETa-METRIC values for corn were low in early stage when the 

corn height was around 0.22 m and 30% canopy cover, were high in mid-season when 

corn height was ~2.3 m and 100% canopy cover and then decrease in the late season 

when corn showed 60% of canopy cover. Early October all corn fields presented yellow 

leaves indicating that the growing season is almost finished. Early November all corn 

fields were harvested.  

The ETa maps developed by the METRIC model in this study were similar to 

other ET maps generated by the METRIC model and reported by Chavez et al. (2007), 

Santos et al. (2008), Folhes et al. (2009), Droogers, Immerzeel, and Lorite (2010), Healey 

et al. (2011), Carrillo-Rojas, Silva, Córdova, Célleri, and Bendix (2016), where they 

reported the spatial and temporal distribution of daily ETa for different crops including 

corn. In other situations, Chavez et al. (2007) reported maximum ETa values (14.1 mm 

day-1) due to high wind speed values (7.0 m s-1) at the time of satellite overpass in corn 

field in Texas High Plains, USA.     
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Figure 2.7 ETa maps developed by the METRIC model. White small rectangle show the 

corn field selected on DOY 194 and DOY 258. These dates showed high and low ETa-

METRIC values throughout the growing season 2016 at the Brookings site.  

Field selected Field selected 
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Figure 2.8 Evolution of ETa-METRIC values at three sites in eastern South Dakota. Ten 

randomly pixels were selected within a field in each site. The values from those same 

pixels were observed throughout the growing season. 
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2.4.4 ETa Correlations between the METRIC Model and Atmometer 

In the METRIC model ETa was taken from ten randomly selected pixels in three 

corn fields at three locations for each satellite image, while for the atmometer method the 

ETa was the result of multiplying ETr (from atmometer) by Kc values generated in this 

study for each corn field. 

The linear relationship between ETa-METRIC values and ETa-atm values in three 

fields at three sites are shown in Figure 2.9. Brookings and Volga sites demonstrated 

good distribution of points around the 1:1 line, whereas Oak Lake shows that the points 

were distributed below the 1:1 line, this means that ETa-METRIC values overestimated 

ETa-atm values except on DOY 154. Even so, a strong relationships were observed for 

Brookings and Oak Lake, and a good relationship was observed for Volga (Table 2.2). In 

addition, the sum for all corn fields, the ETa-METRIC values and the ETa-atm values 

correlated well (Table 2.3). 

In general the difference between ETa-METRIC (5.36 mm day-1) and ETa-atm 

(4.95 mm day-1) at three sites was approximately 8%. The coefficient of determination 

(r2) and index of agreement (“d”) were 0.87 and 0.84 respectively. The corresponding 

MBE was 0.41 mm day-1 and RMSE was 0.65 mm day-1 (Table 2.3). According to RMSE 

value, this can be acceptable assuming an average daily ETa-METRIC value of 5.36 mm 

day-1 and average daily ETa-atm value of 4.95 mm day-1.   

Similar results in r2 (~0.86) were reported by Healey et al. (2011), Morton et al. 

(2013), Gordillo Salinas et al. (2014), French et al. (2015), Liebert et al. (2016), who 

compared ETa estimated with the METRIC model and ETa measured with Bowen Ratio 

Energy Balance System (BREBS) and Eddy Covariance (EC) methods. Similar results (r2 



36 

 

= ~0.85) were found in ETr measured with atmometers by other researchers (Alam & 

Trooien, 2001; Gleason, Andales, Bauder, & Chávez, 2013), although different ETr 

results (low r2 = ~0.70) where reported by F. Chen and Robinson (2009) and Lamine et 

al. (2015). All these authors compared ETr measured using atmometer covered with a No 

54 green canvas (alfalfa-reference) with ETr estimated using agrometeorological data 

under different weather conditions. 

 

Figure 2.9 Relationship between ETa-METRIC and ETa-atm at three sites and nine corn 

fields in eastern South Dakota for the growing season 2016. The black line represents the 

1:1 line.  

 

Table 2.2 Regression coefficients between ETa-METRIC values and ETa-atm values for 

three corn fields at three sites.  

  Brookings    Volga    

Oak 

Lake  
Corn Slope  Interc. r2  Slope  Interc. r2  Slope  Interc. r2 

Field 1 0.73 1.28 0.92  0.90 0.61 0.79  0.65 0.73 0.93 

Field 2 0.72 1.20 0.91  0.97 0.32 0.81  0.66 0.75 0.88 

Field 3 0.78 1.14 0.87  0.98 0.33 0.82  0.64 0.86 0.88 
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Table 2.3 Statistics comparing between ETa-METRIC and ETa-atm at the Brookings, 

Volga, and Oka Lake sites.  

Site 

ETa-METRIC 

(mm day-1) 

ETa-atm 

(mm day-1) 

MBE        

(mm day-1) 

RMSE       

(mm day-1) r2 d 

Brookings 5.71 5.44 0.27 0.56 0.89 0.91 

Volga 4.88 5.07 -0.19 0.91 0.81 0.89 

Oak Lake 5.50 4.35 1.15 0.48 0.90 0.73 

       

Average 5.36 4.95 0.41 0.65 0.87 0.84 
 

 

2.4.5 ETa Differences between the METRIC Model and Atmometer 

The difference between the daily ETa estimated with the METRIC model (ETa-

METRIC) and ETa estimated by atmometer (ETa-atm) is presented in Figure 2.10. 

Negative values indicated that the ETa-METRIC estimates are lower than ETa-atm, while 

positive values indicated that the ETa-METRIC estimates exceeds ETa-atm. 

In Brookings, the daily ETa difference ranged from -0.95 to 1.32 mm day-1, found 

in field 1 (DOY 154) (V3) and field 2 (DOY 202) (R1) respectively. The more negative 

values were presented early in the growing season (DOY 154) (V3) due to high Kc value 

(0.51) used with atmometer method compared to the low Kc value (0.38) used in the 

METRIC model method. In addition, on DOY 178 (V7) the corn field 3 shows negative 

value (-0.4 mm day-1), this is attributed to hailstorm, which occurred on DOY 169 (V5) 

nine days before that satellite image overpass. The high positive values (DOY 178, 194, 

and 202) were related to high wind speed values (>4 m s-1) at the time of satellite 

overpass (Figure 2.11). On DOY 218, 234, and 258 the difference between ETa-METRIC 

and ETa-atm were small (~0.5 mm day-1).     

At the Volga site, the daily ETa difference varied between -1.93 and 1.33 mm day-

1. These values were found in field 1 for DOY 194 (VT) and for DOY 178 (V7) 
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respectively. The higher positive values were during the development stage (DOY 178) 

(V7) when the corn was 1 m tall. The lower negative values were during the mid-season 

(DOY 194) (VT) when the crop was 2 m tall. This discrepancy was due to not only to the 

wind speed values but also to ETr recorded in atmometer on DOY 194 (VT). The ETr 

recorded in this date was one of the highest values registered during the corn growing 

season (Figure 2.4, Volga). After DOY 202 (R1) the difference between ETa-METRIC 

and ETa-atm were minimal (<0.6 mm day-1), because of the average wind speed values 

were less than 0.8 m s-1 (Table 2.4) and ETr-PM were around of 10% lower than the ETr-

atm. It is important to mention that at the Volga site the weather station was surrounded 

by corn fields of 2 m tall and the wind speed is reduced by the corn height. So, when low 

wind speed is used to estimate the ETr using the P-M equation, the resulting ETr are too 

low. For this reason the wind speed did not affect the ETa difference between ETa-

METRIC and ETa-atm from mid-season to late-season period.  

At the Oak Lake site, the daily ETa difference ranged from -0.62 to 2.61 mm day-

1, reported for field 3 (DOY 154) (V3) and for field 1 (DOY 194) (VT), respectively. The 

negative values were found on DOY 154 (V3) for the three fields, this is attributed to the 

ETa-atm was calculated using a Kc equal to 0.5, while ETa-METRIC used a Kc (ETrF) 

equal to 0.35, indicating an overestimation of 30% with ETa-atm method. The higher 

positive (overestimated) values were observed in DOY 194 (VT) (2.6 mm day-1). At the 

Oak Lake site, the ETa-METRIC values tends to overestimate the ETa-atm values in 

almost all corn growing season. This noticeable difference is due to the high wind speed 

values registered throughout the growing season (Figure 2.11, Table 2.4). These high 

values of wind speed may be attributed to the elevation of the weather station (574 m 
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above sea level), which is 13% higher than Brookings and Volga elevations. Also, at the 

Oak Lake site the weather station and automated atmometer were located in smooth hill. 

On the other hand, we observed different ETa values on DOY 178 (V7) between corn 

fields. This difference is attributed to hailstorm, which effect the canopy cover in the 

fields 2 and 3 respectively (Figure 2.10, Oak Lake).  

In general the daily ETa differences were attributed to high wind speed values (>4 

m s-1) at time of satellite overpass (Figure 2.11). The ETa-atm values were lower than 

values observed in ETa-METRIC. Hence, as the wind speed increases, the ETa difference 

increases. Similar results were found by Choi et al. (2011), who reported ET difference 

between -2.2 and 2.5 mm day-1 for different land cover types using METRIC model and 

Trapezoid Interpolation Model (TIM). They found high discrepancy in ET due to low 

values of elevation, also they reported that as elevation increase the TIM model slightly 

overestimate the METRIC ET. On the contrary, low ET difference (~1.0 mm day-1) was 

reported by Chavez et al. (2007) who compare ET estimated by METRIC and ET 

derivate from soil water balance in irrigation corn in Texas. Also, Healey et al. (2011) 

and Hankerson et al. (2012) reported ET difference ranged from -1.0 to 1.0 mm day-1 

between the METRIC model and BREBS method in different crops.  
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Figure 2.10 Daily ETa difference between ETa-METRIC and ETa-atm at three different 

sites throughout the corn growing season 2016. 

 



41 

 

2.4.6 Hourly Wind Speed at Three Sites 

Hourly average wind speed (m s-1) for each overpass date at the Brookings, 

Volga, and Oak Lake sites are shown in Figure 2.11. The wind speed recorded at Volga is 

similar to Brookings and Oak Lake early in the season, but then is quite a bit lower later 

during the growing season. This is because Volga weather station is too close to the corn 

fields, and the wind speed is reduced by the corn crop. On the contrary, at the Oak Lake 

site higher average wind speed values were found, especially at time of satellite overpass 

(Figure 2.11). Also, the Oak Lake weather station recorded the maximum wind speed 

values throughout the season as shown in Table 2.4.  

Based on the results from our study, ETr values from atmometer need to be adjust 

during the windy days. The adjustment factors (average ratio of ETr-atm to ETr-

METRIC) for Brookings, Volga, and Oak Lake were 0.83, 0.87, and 0.68 respectively. 

These adjustment factors can be used to adjust the ETr-atm values to get close estimates 

to the ETr-PM values on windy days (>4 m s-1). These adjustment factors are necessary to 

correct ETr-atm values to obtain accurate ETa estimations.  

In Maui Island, USA, for example, R. Anderson, Wang, Tirado-Corbala, Zhang, 

and Ayars (2015) and Zhang et al. (2015) reported high variation in evapotranspiration 

due to high wind speeds values in sugarcane fields. Similar to our results were reported 

by Westerhoff (2015) who found that as the wind speed increases the ETa values slightly 

increases. In addition, Gleason et al. (2013) reported ET underestimation with high wind 

speed conditions. Mokhtari, Ahmad, Hoveidi, and Busu (2013) reported that as the wind 

speed increase the ETa decrease, also they concluded that the METRIC-based ET is 

highly sensitive to surface temperature, but less sensitive to wind speed values.  
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Figure 2.11 Hourly average wind speed values at three sites in eastern South Dakota. The 

red columns denote the time of satellite overpass (~11:12 AM). 

 

Table 2.4 Daily average and maximum wind speed recorded during satellite overpass at 

Brookings, Volga, and Oak Lake sites. 

 Daily wind speed (m s-1) 

 Average Maximum 

DOY Brooking Volga Oak Lake Brooking Volga Oak Lake 

154 1.19 0.93 1.64 3.99 3.54 3.62 

178 2.75 1.83 3.85 6.06 4.76 7.21 

194 3.64 0.94 4.34 6.49 3.05 6.62 

202 4.52 0.79 4.72 5.69 2.47 5.90 

218 0.50 0.15 1.91 2.12 0.82 4.01 

234 0.67 0.06 1.60 2.34 0.53 3.56 

258 2.13 0.32 1.70 4.15 1.35 3.97 
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2.5 Conclusions 

Results of our study showed a good relationship between ETa-METRIC and ETa-

atm with an r2 of 0.87, “d” of 0.84, and RMSE of 0.65 mm day-1. In general, the ETa-atm 

values were lower than ETa-METRIC values. The total difference or error between ETa-

METRIC (5.12 mm day-1) and ETa-atm (4.74 mm day-1) at three sites was approximately 

8%.  

The daily difference between ETa-METRIC and ETa-atm for Brookings site ranged 

from -0.95 to 1.32 mm day-1, for Volga from -1.93 to 1.33 mm day-1, and for Oak Lake 

ranged from -0.62 to 2.61 mm day-1. Negative values indicated that the ETa-METRIC 

estimates are lower than ETa-atm, while positive values indicated that the ETa-METRIC 

estimates exceeds ETa-atm. The higher positive values were related with high wind speed 

values. In general, daily ETa differences is attributed to high wind speed values (>4 m s-1) 

at the time of satellite image overpass. Hence, as the wind speed increases, the ETa 

difference increases. However, based on our results, ETr values from atmometer need to 

be adjust during the windy days. The adjustment factors were 0.83, 0.87, and 0.68 for 

Brookings, Volga, and Oak Lake sites, respectively. These adjustment factors can be used 

to adjust the ETr-atm to get close estimates to the ETr-PM values for windy days (>4 m s-

1).  

In conclusion the results of this study can be used by policy makers, researchers, 

and producers for estimating actual evapotranspiration and improve irrigation water 

management at local and field scales, using both satellite-based remote sensing METRIC 

model method and atmometer method, respectively. 
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CHAPTER 3: Assessing the Relationship between Leaf Area Index, Surface 

Temperature, and Actual Evapotranspiration Estimated using the Remote Sensing-

based METRIC model and in-situ Measurements 

 

3.1 Abstract 

The verification of remotely sensed estimates of surface variables including leaf 

area index (LAI), surface temperature (Ts), and actual evapotranspiration (ETa) is 

essential for any remote-sensing study. The objective of this study was to assess the 

relationship between LAI, Ts, and ETa estimated using the remote sensing-based 

METRIC model and in-situ measurements collected at the satellite overpass time. The 

study was carried out at a commercial corn field in eastern South Dakota. Six clear sky 

images from Landsat 7 and Landsat 8 (Path 29, Row 29) were processed and used for the 

assessment. LAI, Ts, and ETa were estimated using the METRIC model and measured in 

situ. LAI and Ts were measured with AccuPAR and infrared thermometers respectively 

and ETa was estimated using an atmometer and crop coefficient values developed for this 

study. The results revealed good agreement between the variables measured in situ and 

estimated by the METRIC model. LAI showed r2 = 0.76, and RMSE = 0.59 m2 m-2, the 

Ts comparison had an agreement of r2 = 0.87 and RMSE 1.24 °C and ETa presented r2= 

0.89 and RMSE = 0.71 mm day-1.  

3.2 Introduction 

The verification of remotely sensed estimates of surface variables is essential for 

any remote-sensing study (Jones & Vaughan, 2010; Qu, Zhu, Han, Wang, & Ma, 2014). 

A robust assessment of variables such as leaf area index (LAI), surface temperature (Ts), 



55 

 

and actual evapotranspiration (ETa) collected in situ are needed for determining the 

accuracy of the information derived from remote sensing technologies. 

Leaf area index (LAI) is a dimensionless measure of the one-sided area of canopy 

foliage (m2) per unit ground surface area (m2) (Asner, Scurlock, & A Hicke, 2003). 

Direct and indirect in situ methods can be used to determine LAI (Bréda, 2003; Garrigues 

et al., 2008; Weiss, Baret, Smith, Jonckheere, & Coppin, 2004). Direct methods involves 

harvesting the foliage for analysis and are labor intensive, time consuming, and 

destructive. Indirect methods are faster and non-destructive. The AccuPAR sensor 

(Decagon, Pullman, WA, USA) is an indirect method that estimates LAI from 

measurements of light above and below the canopy (Stewart et al., 2003; Tewolde, 

Sistani, Rowe, Adeli, & Tsegaye, 2005; Wilhelm, Ruwe, & Schlemmer, 2000). Image-

based remote sensing are used to estimate LAI using empirical relationships between LAI 

and spectral vegetation indices (VIs) (S. Gao, Niu, Huang, & Hou, 2013; Gowda et al., 

2015) at the scale of the input imagery (e.g., 30 m for Landsat imagery). The result is 

spatially distributed estimates of LAI are generated in less time and with less cost. The 

relationships between LAI and VIs derived from satellite-estimated information has been 

evaluated by Colombo, Bellingeri, Fasolini, and Marino (2003), S. Gao et al. (2013) 

Nguy-Robertson et al. (2012), Zipper and Loheide II (2014), while other studies 

compared the relationship between ground-based LAI and remote sensing based LAI 

estimates (Hosseini, McNairn, Merzouki, & Pacheco, 2015; Liang et al., 2015; Qu et al., 

2014; Tang et al., 2011). However comparison between LAI measured in situ with 

AccuPAR and LAI estimated using the METRIC model has not been done in eastern 

South Dakota. LAI values derived from remote sensing vary in space and time (Liang et 
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al., 2015). Because of those variation, is essential to validate remote sensing based LAI 

values with ground-based LAI measurement data.  

Canopy surface temperature (Ts) is a useful method to monitor and quantify water 

stress in plants (Colaizzi, Evett, O’Shaughnessy, & Howell, 2012; Han, Zhang, DeJonge, 

Comas, & Trout, 2016). The Ts increases when solar radiation is absorbed and decreases 

when that radiation energy is used to evaporate water (plant transpiration) rather than 

heat the plant surfaces (DeJonge, Taghvaeian, Trout, & Comas, 2015). Under water 

deficit conditions, as the stomata resistance increase and transpiration decreases, the 

foliage gets warmer (Bijanzadeh, 2012; Colaizzi et al., 2012; Sandholt, Rasmussen, & 

Andersen, 2002). The difference between air temperature (Ta) and Ts have been used to 

quantify crop water stress and several crop water stress indices based in Ts have been 

developed (for example CWSI, (Idso, Jackson, Pinter, Reginato, & Hatfield, 1981). 

Numerous researchers have utilized infrared thermometer (IRTs) to measure Ts. IRTs 

manually handled (S. Irmak, Haman, & Bastug, 2000; López-López, Ramírez, Sánchez-

Cohen, Bustamante, & González-Lauck, 2011; Taghvaeian, Chávez, Altenhofen, Trout, 

& DeJonge, 2013) and IRTs mounted on center pivot irrigation systems (O'Shaughnessy 

& Evett, 2010; Peters & Evett, 2008). Other researchers have utilized multispectral and 

infrared thermal image cameras mounted on unmanned aerial vehicles (UAV) (Bellvert, 

Zarco-Tejada, Girona, & Fereres, 2014; Berni, Zarco-Tejada, Suárez, & Fereres, 2009; 

Ortega-Farías et al., 2016; Sepúlveda-Reyes et al., 2016) and mounted on truck-cranes 

(Alchanatis et al., 2010; Cohen et al., 2015). Estimation of Ts based satellite remote 

sensing have been reported at large scale (km2) and field scale (m2) by M. Anderson and 

Kustas (2008), Gowda et al. (2015), and Senay, Friedrichs, Singh, and Velpuri (2016), 
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respectively. However, there is no evidence of comparisons between ground–based Ts 

measurements and satellite-based remote sensing Ts estimates in corn field. Thus, 

assessment of Ts values derived from the METRIC model with in situ measurements still 

not well examined in eastern South Dakota.  

Evapotranspiration (ET) is the loss of water from the land surface to the 

atmosphere through two processes, viz. evaporation (E) from soil and water surfaces and 

transpiration (T) from vegetative surfaces (R. G. Allen, Tasumi, & Trezza, 2007; Gowda, 

Chavez, et al., 2008). ET has been estimated using satellite-based remote sensing at 

regional and field scales (R. G. Allen, Tasumi, Morse, et al., 2007; J Kjaersgaard et al., 

2011). Estimations of ET using satellite imagery is economical, efficient and non-

destructive. Numerous models have been developed to estimate actual ET (ETa) using 

remote sensing techniques. One of them is the Mapping EvapoTranspiration at high 

Resolution using Internalized Calibration (METRIC) model. Studies reported good 

relationships between the METRIC model and methods for ETa estimation such as 

weighing lysimeter (R. G. Allen, Tasumi, Morse, et al., 2007), soil water balance 

(Chavez et al., 2007), Bowen Ratio Energy Balance Systems (BREBS) (Carrasco-

Benavides et al., 2014; Hankerson et al., 2012), Eddy Covariance (EC) (Liebert et al., 

2016; Zhang et al., 2015), and Large Aperture Scintillometer (LAS) (Mkhwanazi et al., 

2012). However, little is known about relationship between the METRIC model and 

atmometer for ET estimation. An atmometer is an instrument that measures the amount of 

water evaporated to the atmosphere from wet porous surface (Broner & Law, 1991) An 

atmometer is a simple and economical device, and provides a visual interpretation of 

reference ET (ETr) data and is very useful for practical applications of on-farm water 
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management (Alam & Trooien, 2001). There is a need to estimate the representativeness 

of atmometer readings located at a location where a user would place it (e.g., near the 

edge of a field) to the ET of the field it is adjacent to.  

The objectives of this study were to 1) assess the relationship between actual ET 

(ETa) estimated by atmometer and estimate to spatially distributed ET estimates 

generated using the METRIC model and 2) assess the relationship between leaf area 

index and surface temperature, estimated by remote sensing-based METRIC model and 

in-situ measurements at the same time of satellite image overpass over a corn field in 

eastern South Dakota.  

3.3 Material and Methods 

3.3.1 Study Area 

The study was carried out at a commercial corn field in eastern South Dakota 

(Figure 3.1). The corn field is located at 43° 56' N latitude and 96° 45' W longitude, and 

495 m above sea level. The corn row direction was from north to south, the row spacing 

was 0.76 m and 6 plants per linear meter. The final population density was 78, 000 plants 

ha-1. The sources of fertilizer were beef manure or inorganic fertilizer supplied at the 

beginning of the growing season to achieve a yield goal of 180 bu. acre-1. Beef manure 

was applied only at East (E) location. The field is in a corn - soybean rotation, which 

represent the most common cropping system in eastern South Dakota. The soil at the 

experimental site is silt loam with a field capacity (FC) of 0.31 m3 m-3 and a permanent 

wilting point (PWP) of 0.15 m3 m-3. The particle size distribution is 18% sand, 56% silt, 

and 26% clay, with 1-3.5% organic matter content. The average annual precipitation at 
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the field site is 23 inches (584 mm), of which ¾ typically falls during the growing season 

from April to October. The mean daily maximum and minimum temperatures are 12.3 

°C, and 0.3 °C, respectively, and the annual mean temperature is 6.3 °C. Five observation 

locations were georeferenced to collect in situ measurements (Figures 3.1 and 3.2, and 

Table 3.1). The in situ data were collected from 2 June (day of year (DOY) 154) to 14 

September (DOY 258) during the 2016 growing season. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 South Dakota with county boundaries, the red rectangle shows the study area 

in eastern South Dakota (a). Landsat 8 with false color composite (bands 4, 3, 2), the 

white rectangle indicates the experimental corn field (b), and the aerial photo with area of 

interest shows measurement points (yellow circles) and moisture sensors (blue triangles) 

at the five observation locations (S-E, S, N, E and E-E) (c). 
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Table 3.1 Observation locations, altitude, soil texture, field capacity (FC) and permanent 

wilting point (PWP). 

Site Latitude (N) 
Longitude 

(W) 

Altitude 

(m) 
Soil texture 

FC        

(m3m-3) 

PWP       

(m3m-3) 

South-east 

(S-E) 43° 56' 20.7" 96° 45' 11.6" 495 

silt clay 

loam 0.33 0.19 

South (S) 43° 56' 20.8" 96° 45' 15.7" 493 silt loam 0.31 0.15 

North (N) 43° 56' 27.6" 96° 45' 19.5" 501 

silt clay 

loam 0.33 0.19 

East (E)  43° 56' 25.6" 96° 45' 11.5" 493 silt loam 0.31 0.15 

East-east 

(E-E) 43° 56' 23.0" 96° 45' 10.0" 492 silt loam 0.31 0.15 
 

 

 

 

Figure 3.2 Elevation map of corn field with 2 m contour and area of interest (red 

rectangle) and five observation locations. 

 

3.3.2 Landsat Images 

Six clear sky images collected by Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+) and Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor 

(TIRS) (Path 29, Row 29), Table 3.2 during 2016 was used for the analysis. The images 

were downloaded from the United States Geological Survey (USGS) EROS Datacenter 

N 

E 

E-E 

S-E S 
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(http://glovis.usgs.gov). The images were selected based on temporal coverage and 

cloud-free conditions. Images with cloud located >10 km from the area of interest were 

considered acceptable. The images were processed using the METRIC model running in 

ERDAS Imagine (R. Allen, A. Irmak, R. Trezza, J. M. Hendrickx, et al., 2011; R. G. 

Allen, Tasumi, & Trezza, 2007; J Kjaersgaard & Allen, 2010).  

Table 3.2 DOY, acquisition dates, satellite platform, path/row, and overpass time of the 

imagery used for the 2016 growing season. 

DOY 
Acquisition 

Dates 
Satellite Path/Row 

Overpass time 

(local) 

178 06/26/16 Landsat 7 29/29 11:13:56 a.m. 

194 07/12/16 Landsat 7 29/29 11:13:55 a.m. 

202 07/20/16 Landsat 8 29/29 11:11:21 a.m. 

218 08/05/16 Landsat 8 29/29 11:11:24 a.m. 

234 08/21/16 Landsat 8 29/29 11:11:30 a.m. 

258 09/14/16 Landsat 7 29/29 11:14:05 a.m. 
 

 

3.3.3 METRIC Model 

METRIC uses physically based equations to estimate leaf area index, surface 

temperature and actual evapotranspiration described by R. G. Allen, Tasumi, and Trezza 

(2007), R. Allen, A. Irmak, R. Trezza, J. M. Hendrickx, et al. (2011). 

Leaf area index (LAI) was calculated using surface reflectance data and was 

calculated as follows: 

𝐿𝐴𝐼 =
ln[(0.69− 𝑆𝐴𝑉𝐼𝐼𝐷/0.59)]

0.91
                                                                                                (1) 

where soil adjusted vegetation index (𝑆𝐴𝑉𝐼𝐼𝐷) is computed using bands 3 and 4 

for Landsat 7 and bands 4 and 5 for Landsat 8. 

For Landsat 7 𝑆𝐴𝑉𝐼𝐼𝐷 is calculated as follows: 

𝑆𝐴𝑉𝐼𝐼𝐷 =
(1+𝐿)(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 4 − 𝑅𝑒𝑑𝑏𝑎𝑛𝑑 3)

𝐿+ (𝑁𝐼𝑅𝑏𝑎𝑛𝑑 4 + 𝑅𝑒𝑑𝑏𝑎𝑛𝑑 3)
                                                                                  (2) 

http://glovis.usgs.gov/
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For Landsat 8 𝑆𝐴𝑉𝐼𝐼𝐷 is calculated as follows: 

𝑆𝐴𝑉𝐼𝐼𝐷 =
(1+𝐿)(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 5 − 𝑅𝑒𝑑𝑏𝑎𝑛𝑑 4)

𝐿+ (𝑁𝐼𝑅𝑏𝑎𝑛𝑑 5 + 𝑅𝑒𝑑𝑏𝑎𝑛𝑑 4)
                                                                                  (3) 

where 𝐿 is a constant (𝐿 = 0.1) (Tasumi, 2003). 

Surface temperature (Ts) is computed using the following equation: 

𝑇𝑠 =
𝐾2

ln(
𝜀𝑁𝐵 𝐾1

𝑅𝑐
+1)

                                                                                                                (4) 

where 𝜀𝑁𝐵 is narrow band emissivity corresponding to the satellite thermal sensor 

wave length band. 𝑅𝑐 is the corrected thermal radiance from the surface. 𝐾1 and 𝐾2 are 

constants, 𝐾1 = 666.1 and 𝐾2 = 1282.7 for Landsat 7 (Band 6) and 𝐾1 = 480.9 and 𝐾2 = 

1201.1 for Landsat 8 (Band 10). 

Actual evapotranspiration (ETa) was estimated using METRIC model approach as 

described by R. G. Allen, Tasumi, and Trezza (2007), R. Allen, A. Irmak, R. Trezza, J. 

M. Hendrickx, et al. (2011). 

3.3.4 Meteorological Data 

Weather dataset were taken from the Brookings automated weather station 

operated by the South Dakota Climate Office. The Brookings station is located at 44° 19' 

N, 96° 46' W and 500 m above sea level. The Brookings weather station is located 

approximately 40 km from the study site. The reference ET (ETr) was calculated using 

the Penman-Monteith equation (R. G. Allen et al., 1998; ASCE-EWRI, 2005). All 

weather dataset, were subjected to quality control (QC) prior to being used in any 

calculations as suggested by R. G. Allen et al. (1998) and ASCE-EWRI (2005). Hourly 

QC included solar radiation, air temperature, wind speed, and air vapor pressure deficit.  
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3.3.5 In Situ Measurements 

3.3.5.1 Leaf area index with AccuPAR 

Leaf area index (LAI) was measured using AccuPAR model Lp-80 PAR/LAI 

Ceptometer (Decagon Devices, Inc. Pullman, WA, USA). The AccuPAR calculates LAI 

based on the above and below canopy photosynthetically active radiation (PAR) 

measurements. The LAI measurements were collected starting 2 June (DOY 154) 

(vegetation stage (V3)) to 14 September (DOY 258) (reproductive stage (R6)) 2016. The 

probe was positioned at a 45° angle across the center row to measure PAR interception 

along the probe as shown in Figure 3.1 (II). PAR interception was measured at five 

geolocated locations, each location (30 m x 30 m) with five points and five replications 

per point above and below the corn canopy. The readings were taken between 11:00 AM. 

and 12:00 noon every eight days on clear days to minimize diffuse radiation from sky and 

clouds (Stewart et al., 2003). The LAI values in situ with AccuPAR corresponding pixels 

were compared with the LAI values of corresponding METRIC pixels. The in situ 

measurement of LAI obtained during the time of satellite overpass was used to assess the 

LAI by the METRIC model at the same pixel and the same time throughout the season. 

At the same time, the corn height was measured in the same dates of LAI measurements. 

The plant height was taken by measuring the distance between the soil surface and the tip 

of the longest leaf or tassel using a measuring tape. Ten plants were chosen randomly 

(within pixel) for plant height measurements at each location site. The location site has 

the same area as a pixel (30 m x 30 m). 
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3.3.5.2 Surface Temperature Measured with Infrared Thermometer 

Surface temperature (Ts) was measured with infrared thermometer model 42530 

(Extech instruments Inc. Boston, MA, USA). Ts was measured every eight days from 26 

June (V6, DOY 178) when the corn height was ~1.0 m, LAI = 4.5 m2 m-2, and canopy 

cover 80% to 14 September (R6, DOY 258). Ts measurements were taken in cloud free 

and no windy days. The infrared thermometer was held approximately 0.2 m above the 

corn canopy at about a 15° angle below the horizontal as shown in Figure 3.1 (III). The 

infrared thermometer had an 8:1 field of view (8 ft. away the area measured is 1 ft. in 

diameter). At each location site, ten readings were taken, five readings pointing north and 

five pointing south perpendicular to the row directions, and then averaged. When the corn 

height was around 2.0 m, Ts measurements were taken using a bench to reach the desired 

height and were taken almost at the same time of satellite overpasses (~11:12: AM.). The 

Ts measurements of five location sites were taken at the same period of time as the LAI 

readings (11:00 AM. and 12:00 noon).  

3.3.5.3 Actual Evapotranspiration estimated with an Atmometer  

Actual evapotranspiration (ETa) was the result of multiplying reference ET (ETr) 

from atmometer located in Brookings SD by a crop coefficient (Kc). The Kc values were 

calculated based on the alfalfa-reference crop coefficient from the ASCE Manual 70 

(Appendix E) method (Marvin E Jensen & Allen, 2016). This method uses percent of 

time from planting to effective cover and days after effective cover to harvest for 

calculating Kc values. For our study, effective cover occurred at 55 days after emergence 

(DAE) when the ground cover was 100% (V12). Thus the effective cover was used as a 

reference point to calculate local Kc values of corn crop.  
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3.3.5.4 Soil Moisture measured with Soil Moisture Sensors  

Soil water content was measured at three depths within the profile (0.1, 0.5, and 

1.0 m) using 5TM soil moisture sensors (Decagon Devices, Inc. Pullman, WA, USA). 

The soil moisture sensors measure the volumetric water content (VWC) between 0% and 

100% with an accuracy of ~1.0% (5TM manual Decagon Devices, Inc.). The sensors 

were connected to Em50 dataloggers (Decagon Devices, Inc. Pullman, WA, USA) and 

measurements were recorded every 30 minutes during the corn growing season. The 

information recorded was downloaded every eight days using ECH2O utility software 

(Decagon Devices, Inc. Pullman, WA, USA) (Figure 3.1 (I)). The soil moisture sensors 

were installed on May 30, 2014, blue triangles in Figure 1.1 (c). 

3.3.6 Statistical Analysis between METRIC Model and in situ Measurements 

Linear relationships between LAI, Ts, and ETa estimated using the METRIC 

model and in situ measurements were established. Other statistical evaluations such as 

coefficient of determination (r2) (Eq. 5), mean bias error (MBE) (Eq. 6), and root mean 

square error (RMSE) (Eq. 7) were computed to assess the performance of the METRIC 

model.  

𝑟2 =   
∑𝑖=1

𝑛 (𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑦̅)

√∑𝑖=1
𝑛 (𝑥𝑖 − 𝑥̅)² ∑𝑖=1

𝑛  (𝑦𝑖− 𝑦̅)² 
                                                                                        (5) 

𝑀𝐵𝐸 =  
1

𝑛
 ∑𝑖=1

𝑛 (𝑥𝑖 −  𝑦𝑖)                                                                                               (6) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑𝑖=1

𝑛  (𝑥𝑖 − 𝑦𝑖)²                                                                                         (7) 
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where 𝑛 is the number of observations, 𝑥𝑖 is the estimated value with the METRIC 

model, 𝑦𝑖 is the measured value in situ, and the bars above the variables indicate 

averages. 

3.4 Results and discussion 

3.4.1 Precipitation and Soil Water Content  

The total precipitation during the period of study was 365.75 mm (21 May to 22 

September 2016). The precipitation data were collected and recorded using a tipping 

bucket rain gauge (TE525, Texas Instrument, Houston, Texas) located near to the S 

observation site. The rainfall data were reported every 30 minutes to be the same 

recorded as the soil moisture sensors data (30 min.).  

Seasonal trends of soil water content (average depth) at the five locations and 

precipitation observed throughout the growing season are shown in Figure 3.3. The 

movements of the graph shows that the soil water content increase after major rain events 

and decreases as the crop extract water from the root zone. All plot sites showed similar 

soil moisture trend during the growing season. The soil water content was at or near field 

capacity early stages (VE) and then decreased towards the end of the season (R6). 

Rainfall was well distributed during the growing season providing adequate amount of 

water for the crop. Although low moisture levels were observed at South-East and North 

locations at time of satellite overpass, low water content may be attributed to higher the 

higher landscape position of these two location sites (Table 3.1 and Figure 3.2). The 

satellite overpass dates are indicated with black bars (Figure3.3).  
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Figure 3.3 Seasonal trends of soil water content (average depths) at the five observation 

locations. The blue bars indicate precipitation throughout the corn growing season and 

the red bars denoted remote sensing overpass dates (METRIC). 

 

3.4.2 LAI Maps, Relationship and Comparison of LAI between the METRIC 

model and AccuPAR  

Spatial LAI maps (30 m resolution) of the entire corn field were generated as an 

output using the METRIC model. The LAI maps captured corn growth stages extending 

from the middle of the corn vegetative phase (V6, DOY 178) to late season (R6, DOY 

258). Example of the resulting maps are presented in Figure 3.4, with an example of high 

LAI values near the peak of leaf area (R1, DOY 202) and lower LAI values as the crop 

senesces (R6, DOY 258). The LAI maps developed in this study were similar to LAI 

maps derived from remote sensing applications by J. M. Chen et al. (2002), Colombo et 

al. (2003), Martínez, García-Haro, and Camacho-de Coca (2009), Liang et al. (2015), 

who reported LAI maps for one overpass date in corn fields. However, Qu et al. (2014) 

reported seasonal LAI maps ranged between 1.0 and 6.0 m2 m-2, where LAI values 

increased from 1.0 m2 m-2 (DOY 151) to 6.0 m2 m-2 (DOY 192) and then decrease at 2.0 
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m2 m-2 (DOY 263) at the end of the season, the corn was planted and observed during the 

2012 growing season in the Heihe watershed of northwest China.    

  

Figure 3.4 Spatial and temporal LAI maps developed from the METRIC model for two 

overpass dates (DOY 202 and DOY 258). The red rectangle indicates the area of interest 

within the corn field.  

 

The in situ measurements of LAI obtained during the time of satellite overpass 

was compared to the LAI estimates by the METRIC model. The progression and 

comparison of calculated and measured LAI values at the five observations locations 

during the 2016 growing season are shown in Figure 3.5 and Table 3.3. In the METRIC 

model the maximum LAI reached (6.0 m2 m-2) was found in the mid-season stage (R1, 

DOY 202) and then drop at 2.2 m2 m-2 at the end of the growing season (R6, DOY 258). 

In in situ measurements at the beginning of the season the crop presented LAI values 

around 0.27 m2 m-2 on DOY 154 (V3) and then gradually increased from 0.67 m2 m-2 in 

development stage (V4) to 7.0 m2 m-2 in mid-season stage, which occurred in the silk and 

kernel formation period (VT-R4, DOY 194 - 226), and then the LAI values decreased at 

3.5 m2 m-2 in the late season, which occurred in the physical maturity period (R6, DOY 
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258). The standard deviation (vertical bars) of LAI values collected in situ with 

AccuPAR during the corn growing season are presented in Figure 3.5. 

The lowest LAI values observed at the North and South-East locations during the 

season may be attributed to the limited soil moisture due to those locations are located at 

a higher elevation (Table 3.1 and Figure 3.2). Limited moisture values affects crop 

canopy development which led to low LAI values (Igbadun, Salim, Tarimo, & Mahoo, 

2008). Low moisture values also affected the corn height (Figure 3.6). The METRIC LAI 

values were slightly smaller than AccuPAR LAI values, this was attributed mainly to 

different LAI scales, for the METRIC model the range was from 0 to 6 m2 m-2, while in 

the AccuPAR the range was 0 to 7 m2 m-2. METRIC model estimates the average LAI for 

all plants with a 30 m by 30 m grid, whereas the AccuPAR measures the PAR 

interception of few plants within a pixel (30 x 30 m).  However, both methods have errors 

in METRIC model for example LAI is capped at 6 m2 m-2, the LAI is derived from SAVI 

and thus not a direct measurement (Eq. 1). Exist different factors that over or 

underestimate LAI values when measure with AccuPAR, for example row spacing,  crop 

height, time of measurement and placement of the meter (Tewolde et al., 2005). In our 

study, choosing the correct placement of the sensor bar and choosing the time of day 

(same at satellite overpass) were used for effective use of the AccuPAR to measure LAI 

values. In general LAI values measured in situ with AccuPAR were greater than the LAI 

values estimated with the METRIC model by about 12% (Table 3.3).  
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Figure 3.5 Seasonal progression and comparison of LAI estimated with the METRIC 

model (average of the five locations in each date) (red circles) and measured with 

AccuPAR (five locations, each location with five points and five replications per 

location) throughout the season. Vertical bars represent standard deviations of LAI values 

measured in situ with AccuPAR. 

 

 

 

Figure 3.6 Season progression of corn height at five observation locations throughout the 

2016 growing season. 
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Table 3.3 Comparison of LAI values estimated with the METRIC (MT) model and 

measured with AccuPAR (AP) at five locations during the 2016 growing season, for 

assessing the LAI by the METRIC model.  

  LAI (m2 m-2) 

DOY 
 South-

East  South  North  East  

East-

East 
 MT AP  MT AP  MT AP  MT AP  MT AP 

178  3.6 4.5  4.0 4.8  3.8 4.7  4.1 5.0  3.8 4.9 

194  4.6 5.9  6.0 7.0  4.7 6.6  5.5 6.8  5.3 6.4 

202  6.0 5.8  6.0 6.7  6.0 6.4  6.0 6.8  6.0 6.1 

218  6.0 5.9  6.0 7.0  6.0 5.9  6.0 6.7  6.0 6.3 

234  6.0 4.7  6.0 6.2  6.0 5.7  6.0 5.2  6.0 5.7 

258  1.3 3.0  2.6 3.7  2.4 3.4  2.3 3.3  2.5 3.8 
 

 

The relationship between LAI calculated with the METRIC model and LAI 

measured in situ with AccuPAR is showed in Figure 3.7. A good linear correlation was 

found between in situ measured and estimated LAI, with a coefficient of determination 

(r2) of 0.76, MBE of 0.61 m2 m-2 and RMSE of 0.59 m2 m-2. The large scatter at LAI (6.0 

m2 m-2) is because the METRIC model is capped at LAI = 6 m2 m-2, while in the 

AccuPAR LAI values ranged from 4.72 to 7.0 m2 m-2. Higher coefficient of 

determination values (0.89) were found by Liang et al. (2015). They compared LAI 

measured in ground-based with LICOR LAI-2000 Plant Canopy Analyzer versus LAI 

estimated from several vegetation indices using satellite remote sensing in different crops 

including corn.  
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Figure 3.7 Relationship between LAI values estimated with the METRIC model and LAI 

values measured with AccuPAR in five observation locations during the 2016 corn 

growing season. The red dashed line represent the 1:1 line. 

 

The relationship and seasonal progression between average crop height and LAI 

measured with AccuPAR is illustrated in Figure 3.8. A strong relationship (r2 = 0.95) was 

found between corn plant height and LAI values until DOY 226 (R4) (Figure 3.6 (a)). 

Similar relationship value (r2 = 0.99) was reported by Tasumi (2003), who made 

relationships between crop height and LAI for agricultural crops including corn crop in 

Kimberly, Idaho, and by S. Gao et al. (2013)) (r2 = 0.92), who took from 5 to 10 

representative corn plants to determine their mean height and correlated with the LAI 

values. For our study, the average crop height started with 0.17 m (DOY 154) (V3) 

before plateauing at 2.2 m around DOY 202 (R1) (Figure 3.8 (b)). 
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Figure 3.8 Relationship between average crop height and average LAI (a). Seasonal 

progression of crop height (ten reading average for each location) and LAI measured with 

AccuPAR (average of five locations, each location with five points and five replications 

per location) throughout the 2016 growing season (b).  

 

3.4.3 Ts Maps, Relationship and Comparison of Surface Temperature between 

METRIC and Infrared Thermometer.  

Surface temperature (Ts) maps were derived from the METRIC model using 

Landsat 7 and Landsat 8 with 60 m and 100 m spatial resolution in the thermal band 

respectively. Ts varied from low values (20.8°C) to high values (29.5 °C) for DOY 258 

and for DOY 202, respectively during the growing season as shown in Figure 3.9 and 

Table 3.4. Ts is impacted by the water status of the plant, soil moisture content, and 

climatic conditions (Gallardo, 1992). Similar land surface temperature maps at field scale 

were developed by other researchers (Gowda et al., 2015; Senay et al., 2016), using 

satellite remote sensing. 

(a) (b) 
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Figure 3.9 Maps of land surface temperature derived from the METRIC model acquired 

using Landsat 7 (DOY 258) and Landsat 8 (DOY 202) with 60 m and 100 m spatial 

resolution respectively, throughout the 2016 corn growing season. The red rectangle 

indicates the area of interest within corn field. 

 

The variation of instantaneous Ts calculated with METRIC model and measured 

in situ with infrared thermometer in five locations are illustrated in Figure 3.10 and Table 

3.4. A wide range of Ts was observed during the period of study (19 - 31 °C), where the 

coolest temperature (~19 °C) occurred at the end of the season (R6, DOY 258) and the 

warmer temperature (~31°C) occurred at the mid-season (R1, DOY 202) for both 

methods. Slightly higher Ts values were observed at the North and South-East locations, 

whereas the lowest temperatures values were observed at the South, East, and East-East 

locations. The highest Ts values registered at the North and South-East locations may be 

due to high altitude (Table 3.1) and lower moisture content in the root zone (Figure 3.3). 

In addition as the soil moisture decreases, the Ts increases, this result coincide with the 

results reported by other researchers e.g., (M. Anderson & Kustas, 2008; Bellvert et al., 

2014; Cohen et al., 2015; Durigon & van Lier, 2013). They reported that the crop canopy 

temperature increases as soil water content decreases. Also M. Anderson and Kustas 
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(2008) and Durigon and van Lier (2013) reported that low water content in the root zone 

leads to stomatal closure, reduce transpiration and increase Ts. 

During the growing season the METRIC Ts values were slightly higher than 

infrared thermometer Ts values for corresponding location, except on DOY 202. (Figure 

3.10 and Table 3.4), however for the whole season the METRIC model were higher than 

the in situ values by 0.85 °C. The slightly difference between Ts estimated by the 

METRIC model and measured by infrared thermometer could be attributed to the 

measurements, which were carried out at different scales and different parts of the plant 

for example Landsat look down from nadir and sees canopy and some soil, while in situ 

measurements canopy only, and at a different angle than Landsat. Another could be 

attribute at the error in both methods. In the METRIC model the potential bias in Ts 

calculations are reduced by internal calibration technique CIMEC (calibration using 

inverse modeling at extreme conditions) (R. Allen, A. Irmak, R. Trezza, J. M. Hendrickx, 

et al., 2011; R. G. Allen, Kjaersgaard, Garcia, Tasumi, & Trezza, 2008). In in situ 

measurements the bias were attributed to the time of readings (11:00 AM. to 12:00 noon) 

assuming that readings at 11:00 AM. are slightly colder than readings at noon, also some 

Ts reading were affected by the wind speed at the time of satellite overpass. Jones and 

Vaughan (2010) mentioned that instantaneous Ts measured in the field is very sensitive to 

climatic factors (e.g. cloud cover, wind speed, and solar radiation). In our study, 

instantaneous Ts was affected by wind speed and cloud cover from 1 to 2 °C and from 3 

to 4 °C, respectively, lower than normal (no wind and no cloud conditions) Ts values. 

However, instantaneous Ts values affected by wind speed and cloud cover were excluded 

in our analysis. 
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In our study, standard deviation of canopy temperature (CTSD) values were lower 

than 2.0 °C among observation locations for each date throughout the season (Figure 

3.10). Han et al. (2016) used the CTSD to classify corn water stress into three levels: 

severe stress when CTSD is greater than 3.0 °C, intermediate stress when CTSD is 

between 2.0 and 3.0 °C, and no stress when CTSD is less than 2.0 °C. On the other hand, 

Zia et al. (2011), Romano et al. (2011), and Taghvaeian et al. (2013), reported differences 

in canopy temperature between corn plants ranged of 2.2 – 3.0 °C for corn under different 

irrigation treatments.  

  

Figure 3.10 Seasonal and comparison of instantaneous Ts calculated with the METRIC 

model red circles (values at the time of satellite overpass date for corresponding location) 

and measured in situ with infrared thermometer (ten readings average in each location). 

Vertical bars represent standard deviations of Ts values measured with infrared 

thermometer. 

 

Table 3.4 Comparison of Ts values between the METRIC (MT) model and infrared 

thermometer (IT) at five locations and five dates during the corn growing season. 

  Ts (oC) 

  South-East  South  North  East  East-East 

DOY  MT  IT  MT  IT  MT  IT  MT  IT  MT  IT 

194  26.4 25.6  26.4 24.5  25.9 24.7  25.9 23.9  25.9 24.0 

202  29.5 31.0  28.2 30.1  27.7 29.7  26.9 28.9  28.3 30.2 

218  26.7 25.3  26.6 24.6  26.9 25.1  26.2 24.5  26.1 24.4 

234  24.8 23.8  24.6 22.8  24.7 23.5  24.2 23.5  24.2 22.8 

258  20.9 19.7  21.2 19.2  20.9 19.4  20.9 20.4  20.8 19.7 
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The relationship between Ts estimated with the METRIC model and Ts measured 

in situ with infrared thermometer is presented in Figure 3.11. Good correlation (r2 = 

0.87), and acceptable values of MBE (0.85 °C) and RMSE (1.24 °C) were found. Similar 

RMSE values were reported by Neukam, Ahrends, Luig, Manderscheid, and Kage 

(2016), who reported RMSE less than 2.0 °C between simulated and measured canopy 

temperatures.  

 

Figure 3.11 Linear correlation of Ts between the METRIC model and infrared 

thermometer of corn throughout growing season. The red dashed line represent the 1:1 

line. 

 

3.4.4 ETa Maps, Crop Coefficient, Relationship and Comparison of ETa between 

METRIC and Atmometer  

Spatially distributed maps of ETa were calculated with the METRIC model for the 

corn field. The estimated ETa values ranged between 2.7 to 9.7 mm day-1 (Table 3.5). 

Two ETa maps for the mid-season (DOY 194) and late season (DOY 258) are shown in 

Figure 3.12. The maps show the highest (VT, DOY 194) and the lowest (R6, DOY 258) 

ETa values estimated with the METRIC model during the corn growing season. 

Generally, high ET rates are related to high crop water demands, which normally 
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occurred in the mid-season period (VT-R4, DOY 194 - 226), while low ET rates occurred 

in the late season (R6, DOY 258) when the crop is in the senescence stage. ETa maps 

have been developed by remote sensing in hourly, daily, monthly and annually basis from 

individual field scale to global scale e.g., (Choi et al., 2011; Gowda, Chávez, Howell, 

Marek, & New, 2008; Ke, Im, Park, & Gong, 2016; Li, Zhao, & Deng, 2015; Liebert et 

al., 2016; Maeda et al., 2011; Santos et al., 2008; Senay et al., 2016; Simons et al., 2016; 

Weiß & Menzel, 2008; Zipper & Loheide II, 2014), where some of them used the 

METRIC model to generated ETa maps.   

  

Figure 3.12 Daily ETa maps developed by the METRIC model for mid-season (DOY 

202) and late season (DOY 258) during the 2016 corn growing season. The red rectangle 

indicates the area of interest within corn field.  

 

Table 3.5 ETa values estimated by the METRIC model for five observation locations and 

six overpass dates during the corn growing season. 

  METRIC ETa (mm day-1)  
DOY South-east South North East East-east Average 

178 7.98 8.06 7.68 8.45 8.22 8.08 

194 9.40 9.41 8.87 9.72 9.45 9.37 

202 7.16 7.08 7.10 7.14 7.26 7.15 

218 4.63 4.63 4.56 4.82 4.92 4.71 

234 3.91 3.96 3.93 4.23 4.23 4.05 

258 2.69 2.87 2.75 2.60 2.67 2.72 
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Figure 3.13 shows the Kc curve developed for the corn field based on the alfalfa-

reference crop coefficient (Marvin E Jensen & Allen, 2016). From the initial (V3, DOY 

154) to mid-season stage (VT, DOY 194) the Kc values increase as a function of time 

between 30% of crop cover to 100% of effective cover, which occurred around 55 days 

after emergence. In late season the Kc values gradually decreased indicating the crop 

senescence. At the end of the season (R6, DOY 158) the Kc value is low again (Kc = 

~0.6). 

 

Figure 3.13 Crop coefficient curve based on the alfalfa-reference crop coefficient of corn 

field throughout the growing season. The red circles denote satellite overpass dates.  

  

The comparison between ETa estimated by the METRIC model and by the 

atmometer is illustrated in Figure 3.14. In general, the highest ETa values were found on 

DOY 194 (VT) for the METRIC model was 9.7 mm day-1 and for atmometer was 8.0 mm 

day-1 and the smallest were observed on DOY 258 (R6) for the METRIC model was 2.7 

mm day-1 and for atmometer was 2.3 mm day-1. Those dates coincided with the biggest 

and the smallest ETrF and Kc values for the METRIC model method and for the 

atmometer method, respectively.  
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Figure 3.14 shows that ETa values estimated with the METRIC model were 

greater than ETa values estimated by atmometer, however on DOY 218 and DOY 234 the 

ETa values estimated with the METRIC model were lower than ETa values estimated 

with atmometer, this was because the wind speed values at time of satellite overpass were 

low (~1.0 m s-1) (Figure 3.16). The largest difference in ETa between the METRIC model 

and atmometer was on DOY 194 (VT) with 1.4 mm day-1, this was attributed to the high 

wind speed values at time of satellite overpass (5.9 m s-1) (black line in Figure 3.16). 

According to S. Irmak et al. (2005) the atmometer readings are not altered by windy 

actions, however when high wind speed value is used to estimate ETr using Penman-

Monteith equation, the resulting ETr values are high.  

Results of daily ETa estimations error for each image date between the METRIC 

model and the atmometer ranged between 4 to 17%. These error values are in agreement 

with R. G. Allen, Tasumi, and Trezza (2007) and Gowda, Chavez, et al. (2008), who 

reported that daily ETa estimates from METRIC model has ETa error from 10 to 20%. 

(Chavez et al., 2007), who compared daily ETa values derived from the METRIC model 

and derived from soil water budget at four commercial fields, concluded that daily ETa 

estimates error were below than 15%. Healey et al. (2011), they compared daily estimates 

of ETa from the METRIC model and from (BREBS) at three locations, they found daily 

ETa error around 20%. Gordillo Salinas et al. (2014) compared daily ETa values 

calculated from the METRIC model and calculated from (EC) reported average daily ETa 

error of 7%.  
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Figure 3.14 Progression and comparison between daily ETa estimated by the METRIC 

model (average values of each overpass date) and estimated by atmometer and Kc during 

the corn growing season 2016. 

 

The relationship of ETa between the METRIC model and atmometer are presented 

in Figure 3.15. In the METRIC model ETa values were taken from the ETa maps, where 

nine average pixels of ETa around each measure point were chosen by each observation 

location and then average. In the atmometer method the ETa was the result of multiplied 

ETr measured with atmometer by a Kc, which was developed based on alfalfa reference 

crop coefficient (Figure 3.11). The ETa values derived from atmometer was for entire 

area of interest for each overpass date. The relationship revealed good agreement 

between ETa estimations, with a coefficient of determination equal to 0.89, MBE and 

RMSE equal to 0.34 and 0.71 mm day-1, respectively. Researchers have reported similar 

coefficients of determination (0.86) (French et al., 2015; Liebert et al., 2016), while 

higher coefficients (0.97) were found by Ayse Irmak et al. (2011), Mkhwanazi and 

Chávez (2012), Gordillo Salinas et al. (2014), and lower coefficients (0.79) were reported 

by Healey et al. (2011). All these authors estimated daily ETa in agricultural crops using 

the METRIC model. 
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Figure 3.15 Relationship between ETa estimated by the METRIC model and estimated by 

atmometer during the period of study. The red dashed line represent the 1:1 line. 

 

 

Figure 3.16 Hourly average wind speed values at the Brookings weather station. The red 

column represent the time of satellite overpass (METRIC) (~11:12 AM). 

 

3.5 Conclusions 

This paper assess the relationship between, leaf area index (LAI), surface 

temperature (Ts), and actual evapotranspiration (ETa) estimated by remote sensing-based 

METRIC model and in-situ measurements at the same time of satellite overpass over a 

corn field in eastern South Dakota. In order to assess the METRIC model performance 
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the coefficient of determination (r2), mean bias error MBE), and root means square error 

(RMSE) were considered. 

The in situ measurements of LAI obtained with AccuPAR during the time of 

satellite overpass was compared to the LAI estimates by the METRIC model. The output 

of LAI values from the METRIC model were slightly smaller (12%) than the LAI values 

derived from AccuPAR, this slightly difference was attributed to the different LAI scales. 

METRIC model estimated the average LAI for all plants with a 30 m by 30 m grid, while 

the AccuPAR measured the LAI only in few plants within a pixel (30 x 30 m). However, 

good linear correlation was found between in situ measured and estimated LAI, with a 

coefficient of determination (r2) of 0.76 and RMSE of 0.59 m2 m-2.  

Surface temperature maps were derived from the METRIC model using Landsat 7 

and Landsat 8 with 60 and 100 m spatial resolution in the thermal bands respectively. For 

whole season the Ts estimated using the METRIC model was higher than the Ts measured 

in situ using infrared thermometer by 0.85 °C. The slightly difference was attributed to 

the measurements, which were carried out at different scales and different parts of the 

plant. A good correlation (r2 = 0.87), and acceptable value of RMSE (1.24 °C) were 

found between estimated and measured Ts. The Ts measurements were affected by soil 

water content, wind speed, and cloud cover.   

Result of comparisons between estimated ETa during the 2016 corn growing season 

showed that ETa values estimated with the METRIC model were greater than ETa values 

estimated by atmometer.  The largest difference in daily ETa between the METRIC 

model and atmometer was 1.4 mm day-1, this was attributed to the high wind speed 

values at time of satellite overpass. Daily ETa estimations error for each image date 
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between the METRIC model and the atmometer ranged between 4 to 17%. The 

relationship revealed good agreement between ETa estimations, with high coefficient of 

determination (r2 = 0.89) and low RMSE (0.71 mm day-1). 

Finally, the landscape position of observation locations were affected by soil water 

content, which lead to low crop height, low LAI, and high Ts in both methods using 

remote sensing and in situ measurements.   
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CHAPTER 4: Comparison of Actual Evapotranspiration Estimated with Energy 

Balance and Vegetation Index Methods 

 

4.1 Abstract 

The estimation of actual crop evapotranspiration (ETa) maps using complex 

equations and remotely sensed shortwave and thermal infrared imagery can be 

challenging and time consuming. Thus, there is a need to develop a simple and fast 

method to estimate ETa maps using minimum input parameters for situations where 

limited input data is available or greater uncertainty in the resulting ET estimates are 

acceptable. We estimated ETa using vegetation indices input parameters based on remote 

sensing techniques on maize fields during two growing seasons in eastern South Dakota, 

USA. Clear sky images from Landsat 7 and Landsat 8 were processed and used for the 

ETa estimations. Two methods were used, namely 1) an energy balance method (EB 

method) utilizing Landsat imagery, weather data, a digital elevation map and a land cover 

map, and 2) a Kc-NDVI method that use two input parameters: the Landsat image and 

weather data. Results showed that the ETa values from the Kc-NDVI method were lower 

than the ETa values from the EB method by 18% for 2015 and 11% for 2016 growing 

seasons. During the period of study the accuracy of ETa estimation decreased 17% with 

the Kc-NDVI method. However, a strong relationship between the two methods during two 

seasons was found with r2 of 0.97 and RMSE of 0.37 mm day-1. Hence, the Kc-NDVI 

method performed well for ETa estimations during the two growing seasons, indicating 

that Kc-NDVI method can be a robust and reliable method to estimate ETa maps with 

minimum input parameters at focused regional and field scales for short time periods. 
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4.2 Introduction 

The precise estimation of crop evapotranspiration (ET) plays an important role in 

irrigation water management such as in system planning and design, and irrigation 

scheduling (Garatuza-Payan & Watts, 2005). ET varies regionally and seasonally 

according to the weather data such as solar radiation, wind speed, air temperature, and air 

vapor pressure deficit and plant and soil conditions (R. G. Allen et al., 1998; George et 

al., 2002; Hanson, 1991). 

In irrigated agriculture a widely used and recommended method for estimating crop 

water requirements or actual evapotranspiration (ETa) is multiplying reference 

evapotranspiration (ETr) with a crop coefficient (Kc) (R. G. Allen et al., 1998; ASCE-

EWRI, 2005; Marvin Eli Jensen, Burman, & Allen, 1990) (Eq. 1).  

𝐸𝑇𝑎  =  𝐸𝑇𝑟  ×  𝐾𝑐                                                                                                             (1) 

ETr is estimated based on meteorological information from local weather stations, 

using the Penman-Monteith equation (R. G. Allen et al., 1998; ASCE-EWRI, 2005). The 

Kc is typically taken from literature values (R. G. Allen et al., 1998; 2005; Marvin E 

Jensen & Allen, 2016).  

As an alternative to using Kc values from the literature, there are several methods 

for measuring ET directly to estimate Kc values over homogeneous surfaces. Methods 

include weighing lysimeter to measure water consumed through ET directly based on a 

mass balance, flux measurements using Bowen Ratio Energy Balance System (BREBS), 

Eddy Covariance technique (EC) or scintillometers that measure components of the 

surface energy balance to estimate crop ET (R. G. Allen et al., 2011; Gowda, Chavez, et 

al., 2008), or soil water balance methods. However, a limitation of these systems is that 
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they provide point or near point measurements that may not fully represent the ET from a 

larger population of fields other than where the measurement was conducted (Ayse Irmak 

et al., 2011; Santos et al., 2008). To overcome this problem of estimating ET from 

multiple fields, satellite-based remote sensing ET methods are becoming a popular 

methodology for estimating crop water use, providing ET estimates on a field-by-field 

basis at a regional scale (R. G. Allen, Tasumi, Morse, et al., 2007b; 2011a; J Kjaersgaard 

et al., 2011). 

Several models have been developed to estimate actual evapotranspiration (ETa) 

using remote sensing at different scales (Gowda, Chavez, et al., 2008). One of them is the 

Mapping EvapoTranspiration at High Resolution using Internalized Calibration 

(METRIC) Model (R. G. Allen, Tasumi, & Trezza, 2007a; 2011a; Tasumi et al., 2005). 

The METRIC model estimates ET as a residual of the surface energy balance equation 

(R. G. Allen, Tasumi, & Trezza, 2007) computed as:  

𝐿𝐸 =  𝑅𝑛 − 𝐺 − 𝐻                                                                                                           (2)    

where 𝐿𝐸 is the latent heat flux (W m-2) which are converted to ET (mm day-1) 

using the latent heat of evaporation, 𝑅𝑛 is the net radiation (W m-2), 𝐺 is the soil heat flux 

(W m-2), and 𝐻 is the sensible heat flux (W m-2).  

In the last decade the METRIC model has been used to estimate ETa at field and 

regional scales in different crops including cotton (Chavez et al., 2007; French et al., 

2015), wheat (Droogers et al., 2010; Santos et al., 2008), banana orchard (Folhes et al., 

2009), soybean (Choi et al., 2009), corn (Ayse Irmak et al., 2011; Singh & Irmak, 2009), 

cover crops (Hankerson et al., 2012), alfalfa (Mkhwanazi & Chávez, 2012), pistacho 

(Mokhtari et al., 2013), vineyard (Carrasco-Benavides et al., 2014; Gordillo Salinas et al., 
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2014), olive orchard (Paço et al., 2014), sugarcane (Zhang et al., 2015), and forest in the 

Amazon (Numata, Khand, Kjaersgaard, Cochrane, & Silva, 2017).  

Use of remotely sensed vegetation indices such as the Normalized Difference 

Vegetation Index (NDVI), has been used to estimate Kc (Glenn et al., 2011; Rouse Jr et 

al., 1974) for ETa estimation using Eq. 1. NDVI is a commonly used remote sensing 

product that provides an indication of the density and robustness of surface vegetation 

(Rafn, Contor, & Ames, 2008) and reflects the actual crop conditions (Garatuza-Payan & 

Watts, 2005; Glenn et al., 2011; Gontia & Tiwari, 2010). For well watered crops there 

is typically a linear relationship between NDVI and Kc. For more than 30 years local 

regression relationship between NDVI and Kc have been established for agricultural 

crops for ETa estimations e.g., (Bausch, 1995; Campos, Neale, Calera, Balbontín, & 

González-Piqueras, 2010; Duchemin et al., 2006; Er-Raki, Rodriguez, Garatuza-Payan, 

Watts, & Chehbouni, 2013; Garatuza-Payan, Tamayo, Watts, & Rodríguez, 2003; Gontia 

& Tiwari, 2010; González-Dugo & Mateos, 2008; Hunsaker, Pinter Jr, Barnes, & 

Kimball, 2003; 2005; Jayanthi, Neale, & Wright, 2007; Neale et al., 1989; Pôças, Paço, 

Paredes, Cunha, & Pereira, 2015; Arturo Reyes-Gonzalez, Hay, Kjaersgaard, & Neale, 

2015; 2016; Singh & Irmak, 2009; Tasumi et al., 2005; Trout, Johnson, & Gartung, 2008; 

Wright, 1982).  

We used the two satellite-based approaches to estimate ETa for irrigation 

applications namely 1) the energy balance method using METRIC and 2) the Kc vs NDVI 

method (R. G. Allen et al., 2011; Barbagallo, Consoli, & Russo, 2009; Neale et al., 2005; 

Yebra, Van Dijk, Leuning, Huete, & Guerschman, 2013). The energy balance method 

(EB method) is complex, computational involved and data intensive and require trained 
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personnel. In contrast, the Kc vs NDVI method, which will be referred to as Kc-NDVI 

method henceforth is simpler, less data intensive and can be completed within a shorter 

timeframe, and at the same spatial resolution as the energy balance (R. G. Allen et al., 

2011; Barbagallo et al., 2009; Morton et al., 2013; Rafn et al., 2008). The comparison 

between these methods for ETa estimation has not been clearly determined in eastern 

South Dakota. The objective of this study was to compare the accuracy of Kc-NDVI method 

to calculate ETa compared to EB method calculated by the METRIC model over two 

growing seasons in eastern South Dakota.   

4.3 Material and Methods 

4.3.1 Study Area 

The study was carried out in eastern South Dakota during the 2015 and 2016 

growing seasons (Figure 1 (a)). The study area had an average latitude of 44° 19' N and 

longitude of 96° 46' W and elevation of 500 m above sea level. Five maize fields near to 

the Brookings weather station (< 15 km) in each growing season were used in the study 

(Figure 1 (c)). All fields were in a maize - soybean crop rotation system common to the 

region. The soils were silty clay loam with 0-2% slope (NRCS Web Soil Survey 2016). 

The maize was planted in late April and harvested in late October. The maize plant 

population density was around 78, 000 plants ha-1 and the fields were managed using 

common agricultural practices used in the region. The crop was not considered subjects 

to growth-limiting stress from pests, weed or nutrient deficiencies. The maize fields were 

around 64 hectares in size. Irrigation is uncommon in the study area and none of the 

study fields were irrigated. The normal average annual precipitation is 533 mm, of which 



101 

 

¾ typically falls during the growing season (April-October). The mean annual maximum 

temperature is 12.3 °C, minimum 0.3 °C, and mean 6.3 °C. The climate of the study area 

is classified as moist subhumid according to the Thornthwaite climate classification 

system (Keim, 2010).  

 

 

 Figure 4.1 Map of South Dakota outline and counties with the red rectangle showing the 

study area (a). Landsat image shown with false color composite (bands 4, 3, 2) (path 29, 

row 29) with the yellow rectangle indicating the study area (b), and Landsat NDVI 

values map on July 18, 2015, the white and black rectangles indicating maize fields 

selected in 2015 and 2016, respectively and the blue star showing the weather station 

location (c). 

Brookings, SD 
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4.3.2 Landsat Images 

Clear sky images from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and 

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (Path 29, 

Row 29) were used for the ETa estimations (Table 1). The images were downloaded from 

the United States Geological Survey (USGS) EROS Datacenter. The images were 

selected based on the temporal coverage and cloud-free conditions. Images with clouds 

present more than 10 km from the study area were considered acceptable for ETa 

comparisons. The images were processed using the METRIC model running in the 

ERDAS Imagine software environment (J Kjaersgaard & Allen, 2010). Landsat 7 and 8 

have a pixel resolution of 30 m by 30 m in the shortwave bands and 60 m by 60 m and 

100 m by 100 m in the thermal band, respectively. 

 

Table 4.1 The year, acquisition dates, Landsat satellite, path/row, image overpass time for 

the imagery used for the ETa estimations. 

Year 
Acquisition 

Dates 
Satellite Path/Row 

Overpass 

time (local) 

2015 June 8 Landsat 7 29/29 11:10:58 AM 

 July 10 Landsat 7 29/29 11:11:06 AM 

 July 18 Landsat 8 29/29 11:10:57 AM 

 August 3 Landsat 8 29/29 11:11:00 AM 

 September 12 Landsat 7 29/29 11:11:18 AM 

 September 20 Landsat 8 29/29 11:11:21 AM 

2016 June 2 Landsat 8 29/29 11:11:03 AM 

 June 26 Landsat 7 29/29 11:13:56 AM 

 July 12 Landsat 7 29/29 11:13:55 AM 

 July 20 Landsat 8 29/29 11:11:21 AM 

 August 5 Landsat 8 29/29 11:11:24 AM 

 August 21 Landsat 8 29/29 11:11:30 AM 

 September 14 Landsat 7 29/29 11:14:05 AM 
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4.3.3 Pixel selection 

During the study ten pixels for each field were selected and extracted from NDVI, 

Kc and ETa maps. Those pixels were located within each maize field for each overpass 

date during two growing seasons. The same pixels were used throughout each growing 

season. The number of pixels (10) were assumed to be representative of the entire maize 

field.    

4.3.4 METRIC Model and Input Parameters 

METRIC model version 3.0 was used to estimate ETa using the energy balance 

(EB) method. Please see (R. G. Allen, Tasumi, & Trezza, 2007a; 2011a; 2014) for a 

detailed discussion of the model calculations.  

In the METRIC model four primary input parameters are used to estimate ETa 

namely the Landsat image, digital elevation map, land cover map, and weather data 

(Figure 2). National elevation data (USGS NED N44 W097) and National land cover 

dataset (NLCD 2011_LC N42 W096) for the study area were downloaded from 

http://viewer.nationalmap.gov. The elevation data and land cover map were reprojected 

in meters to the same pixel size as the Landsat image (30 m x 30 m). 

Hourly and daily weather observations (e.g. maximum and minimum air 

temperature, wind speed, relative humidity, solar radiation precipitation and ETr) were 

taken from the automated agricultural weather station located by Brookings, South 

Dakota. All weather data were subjected to a rigorous quality control prior to be used in 

any calculations as suggested by R. G. Allen et al. (1998).  

 

http://viewer.nationalmap.gov/
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The ETr values were calculated using the Penman-Monteith (R. G. Allen et al., 

1998; ASCE-EWRI, 2005)as follows:                                                                 

𝐸𝑇𝑟𝑒𝑓 =  
0.408 ∆(𝑅𝑛− 𝐺)+ 𝛾

𝐶𝑛
𝑇+273

 𝑢2(𝑒𝑠−𝑒𝑎)

∆ + 𝛾(1 +𝐶𝑑𝑢2)
                                                                             (3) 

where 𝐸𝑇𝑟𝑒𝑓 is the alfalfa reference (mm day-1), ∆ is the slope pressure versus air 

temperature curve (kPa °C-1), 𝑅𝑛 is the net radiation at the crop surface (MJ m-2 day-1), 𝐺 

is the soil heat flux at the soil surface (MJ m-2 day-1), 𝑇 is the mean air temperature at 1.5 

to 2.5 m height (°C), 𝑢2 is the mean daily wind speed at 2 m height (m s-1), 𝑒𝑠 is the 

saturation vapor pressure of the air (kPa), 𝑒𝑎 is the actual vapor pressure of the air (kPa), 

𝛾 is the psychrometric constant (0.0671 kPa °C-1), 𝑒𝑠 − 𝑒𝑎 is the vapor pressure deficit 

(kPa), 𝐶𝑛 is the numerator constant (1600 K mm s3 Mg-1 day-1), 𝐶𝑑 is the denominator 

constant (0.38 s m-1) for alfalfa reference, and 0.408 is the coefficient constant (m2 mm 

MJ-1). 
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Figure 4.2 Examples of the input information needed for the ETa estimation using 

METRIC, namely the Landsat image (a) here shown in false color, digital elevation map 

(b), land cover map (c), and weather data (d). 

 

4.3.5 Flow chart of the METRIC model 

A summary of the ETa estimation with the METRIC model with the primary input 

parameters is showed in Figure 3.  

 

 

(a) (b) 

(c) (d) 
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Figure 4.3 The flow chart of the METRIC using primary input parameters to estimate 

ETa. 

 

4.3.6 NDVI Calculations 

The NDVI is defined as the difference between near-infrared (𝑁𝐼𝑅) and red band 

reflectances divided by their sum (Rouse Jr et al., 1974). NDVI values range from -1.0 to 
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1.0, with water having negative values and dense vegetation having high positive values 

(Bannari, Morin, Bonn, & Huete, 1995; Bausch, 1993).  

For Landsat 7 NDVI was calculated as: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 4−𝑅𝑒𝑑𝑏𝑎𝑛𝑑 3)

(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 4+𝑅𝑒𝑑𝑏𝑎𝑛𝑑 3)
                                                                                            (4) 

For Landsat 8 NDVI was calculated as: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 5−𝑅𝑒𝑑𝑏𝑎𝑛𝑑 4)

(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 5+𝑅𝑒𝑑𝑏𝑎𝑛𝑑 4)
                                                                                            (5) 

where NIRband and Redband  are the corrected spectral radiance in the near-infrared 

and red bands, respectively.  

4.3.7 Coefficient coefficients (Kc) curves for NDVI based method 

The Kc values were calculated based on the alfalfa reference crop coefficient from 

ASCE Manual 70 (Appendix E) method (Marvin E Jensen & Allen, 2016) for 2015 and 

2016 crop growing seasons. For Kc calculations this method divides the growing season 

into two periods, viz. percent of time from planting to effective cover and days after 

effective cover to harvest. The effective cover of maize for our study occurred in middle 

of July for 2015 and early July for 2016 based on field observations of the crop 

phenology.  

4.3.8 Relationship between NDVI and Kc and Kc and ETa maps 

A relationship between NDVI derived from NDVI maps and Kc’s values from 

ASCE Manual 70 (Appendix E) (Marvin E Jensen & Allen, 2016) corresponding to each 

overpass date was established. This relationship was used to develop a linear regression 

equation for both seasons. Those linear regression equations were used to generate Kc 

maps. The Kc values derived from the Kc maps were multiplied by ETr to create ETa 
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maps for both seasons using the Kc-NDVI method. Finally, the ETa values from ETa maps 

were compared with ETa values obtained from the EB method for each overpass date and 

for each growing season.  

4.3.9 Average ratio of ETa Kc-NDVI to ETa EB and their relationship  

The average ratio of ETa Kc-NDVI to ETa EB was calculated to quantify the 

accuracy and performance of the Kc-NDVI method for ETa estimations. A linear 

relationship between ETa Kc-NDVI values and ETa EB values was established for the 2015 

and 2016 growing seasons. 

4.3.10 Flow chart of ERDAS Imagine software (model maker) 

A summary of ETa estimation with ERDAS Imagine software using Kc-NDVI 

method with two input parameters is presented in Figure 4.4.  
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Figure 4.4 The flow chart of ERDAS Imagine software (model maker) using Kc-NDVI 

method for ETa estimation. 

4.4 Results and discussion 

4.4.1 Mean Temperature and Precipitation 

The minimum daily mean temperature during the growing season was 2.12 °C for 

2015 and 4.69 °C for 2016 both recorded during May and the maximum daily mean 

temperature were 26.34 and 27.91 °C for 2015 and for 2016, respectively, both recorded 

on July (Figure 5).  

The total precipitation during the crop growing season for 2015 was 460 mm and 

for 2016 was 483 mm. The major precipitation events for 2015 occurred in the 

reproductive stages (R1, R2, and R3) July 25, August 6, and 18 respectively (Figure 4.5 
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(2015)), while in 2016 occurred in development stage (vegetation stage (V5) (June, 17) 

and tassel (VT) (July 10) (Figure 4.5 (2016)).  

  

Figure 4.5 Mean daily temperature and precipitation data observed at the Brookings 

automated weather station for the 2015 and 2016 growing seasons.   

 

4.4.2 NDVI generated with ERDAS Imagine software using Kc-NDVI method  

Figure 4.6 shows the seasonal evolution of NDVI of ten average selected pixels in 

each maize field and average Kc for two growing seasons. In both seasons the NDVI values 

were very similar. For both years, NDVI increased from initial stage (±0.3) (V3) (June 4) 

to full cover (±0.83) (VT) (July 12), reached its maximum values and it remains constant 

over plateau characterizing the mid-season stage (VT through R3) and then slightly 

decrease at the end of the season (±0.65) (R6) (September 14). The maximum NDVI values 

reported in this study were similar to reported by Tasumi et al. (2005) and Singh and Irmak 

(2009) in rainfed corn, however highest NDVI values were reported by Kamble, Kilic, and 

Hubbard (2013) (0.89) and  DeJonge, Mefford, and Chávez (2016) (0.91) in irrigated corn. 

Irrigation systems often have higher wetting frequencies than rainfed system, resulting in 

higher NDVI values (R. G. Allen, Tasumi, et al., 2005). Therefore, maximum NDVI values 

in irrigated corn were greater than NDVI values in rainfed corn.  
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Similar temporal evolution of NDVI of maize were reported by Neale et al. 

(1989), Jackson et al. (2004), P.-Y. Chen, Fedosejevs, Tiscareno-Lopez, and Arnold 

(2006), Thomason, Phillips, and Raymond (2007),  de Souza, Mercante, Johann, 

Lamparelli, and Uribe-Opazo (2015) and F. Gao et al. (2017). All these researchers found 

low NDVI values (0.2) at the initial stage, maximum values (0.8) at mid-season stage and 

medium values (0.6) at the end of season. In addition, in northern México A. Reyes-

Gonzalez, U., J.G., and Reta-Sánchez (2012) found similar evolution of NDVI values 

estimated with remote sensing for forage corn during two years (unpublished). On the 

other hand, Bausch (1993) and González-Dugo and Mateos (2008) reported that NDVI is 

sensitive to soil background before full cover and leaf senescence at the end of growing 

season. They made ground radiometric measurements of NDVI in agricultural crops 

including corn.  

  

Figure 4.6 Temporal progression of NDVI and Kc curves at five maize fields for 2015 

and 2016 growing seasons. 
 

4.4.3 Relationship between NDVI and Kc  

Linear relationships between NDVI and Kc values over six and seven satellite 

overpass dates for 2015 and for 2016 respectively are shown in Figure 4.7. A strong 

relationship between NDVI and Kc values was showed with coefficient of determination 
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(r2) values of 0.96 for 2015 and 0.93 for 2016 (Figure 4.7), which indicate that NDVI is a 

robust indicator of crop coefficients values. Higher coefficient of determination values in 

corn were reported by Rocha, Perdigão, Melo, and Henriques (2012) and Arturo Reyes-

Gonzalez et al. (2015), they reported r2 values of 0.99 and 0.97, respectively, however 

lower values of r2 were found by Singh and Irmak (2009) (0.83) and Kamble et al. (2013) 

(0.81) in Nebraska, USA. 

The NDVI computed from Landsat images and Kc’s obtained from ASCE manual 

70 (Appendix E) were used to develop the linear regression equations. The relationship 

between NDVI and Kc for 2015 and for 2016 growing seasons were found as the 

following linear equations: 

K𝑐 = 1.1887 NDVI − 0.033         (2015)                                                                         (6) 

K𝑐 = 1.2508 NDVI − 0.093         (2016)                                                                         (7) 

Several researchers have shown linear relationships for NDVI not only with Kc 

values but also with canopy ground cover e.g., (DeJonge et al., 2016; Er-Raki et al., 

2013; Glenn et al., 2011; Zhang et al., 2015), corn dry weight (Hong, Schepers, Francis, 

& Schlemmer, 2007), corn grain yield (Thomason et al., 2007), and leaf area index (LAI) 

(Colombo et al., 2003; Duchemin et al., 2006; Nguy-Robertson et al., 2012; Paz-Pellat et 

al., 2007). Strong relationships (r2 = ±0.95) were observed with canopy ground cover and 

LAI, while good relationship (r2 = ±0.80) were observed with corn dry weight, and corn 

grain yield.  
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Figure 4.7 Linear correlation between NDVI and Kc of five maize fields during 2015 and 

2016 growing seasons in eastern South Dakota. The black dashed line indicates 1:1 line. 

 

4.4.4 Kc maps developed with ERDAS Imagine software using Kc-NDVI method and 

Kc values throughout the growing seasons.   

Based on the regressions developed in equations 6 and 7 and maps of NDVI from 

Landsat imagery, spatial maps of Kc was developed. Figure 4.8 shows an example of the 

spatial and temporal evolution of Kc of maize fields during the 2015 growing season. The 

lower Kc values are presented in early season (June 8) (light green color) and then 

gradually increased until mid-season, where the Kc values remains constant (July 18 - 

August 3) (dark blue color) and finally decreased at the end of the season (September 20) 

(light green color), indicating the crop maturity.  

Similar spatial and temporal Kc maps derived from a vegetation index has been 

reported by different agricultural crops around the world. For example, Neale et al. 

(2005) developed Kc maps for potato in Idaho, USA, Garatuza-Payan and Watts (2005) 

developed Kc for wheat in Northwest México, Singh and Irmak (2009) developed Kc 

maps for corn, soybean, sorghum, and alfalfa in Nebraska, USA, Gontia and Tiwari 

(2010) developed Kc for wheat in West Bengal, India, Rocha et al. (2012) developed Kc 

maps for corn in Caia, Portugal, Vanino et al. (2015) developed Kc maps for vineyard in 
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Apulia, Italy, El-Shirbeny, Ali, Badr, and Bauomy (2014) developed Kc maps for wheat 

in El-Kassaseen Egypt, Zhang et al. (2015) developed Kc maps for sugarcane in Maui, 

Hawaii, and Reyes-González et al. (2016) developed Kc maps for silage corn in northern 

México. 

Average Kc values derived from ten pixels for each satellite overpass date during 

the 2015 and 2016 growing seasons are shown in Table 4.2. In both seasons the Kc values 

increased from initial stage (0.27) to mid-season stage (0.95) reached their full canopy 

cover and transpired water at potential rates and then decreased at the end of the growing 

season (0.7). During the development stage (July 10 for 2015 and June 26 for 2016) and 

late season (September 20 for 2015 and September 14 for 2016) crop presented more 

variability in Kc, this probably due to variation in management practice, different soil 

moisture content and different maize hybrids maturity or simply Kc values varied due to 

soil background and vegetation senescence as reported by Bausch (1993), González-

Dugo and Mateos (2008), and Martha C. Anderson et al. (2012). 
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Figure 4.8 Spatial and temporal Kc maps generated using the ERDAS Imagine software 

(model maker) and ArcGIS version 10.3.1 for the 2015 growing season. 

 

Table 4.2 Average Kc values derived from ten pixels for five maize fields in each 

overpass date throughout the 2015 and 2016 growing seasons. 

2015 

Corn field 

Kc 

Jun 8 Jul 10 Jul 18 Aug 3 Sep 12 Sep 20 

Field 1 0.27 0.88 0.98 0.96 0.84 0.69 

Field 2 0.27 0.82 0.97 0.96 0.85 0.74 

Field 3 0.24 0.90 0.97 0.97 0.83 0.67 

Field 4 0.24 0.83 0.96 0.95 0.84 0.70 

Field 5 0.23 0.89 0.96 0.96 0.82 0.69 
 

 

2016 

Corn field  

Kc 

Jun 2 Jun 26 Jul 12        Jul 20 Aug 5 Aug 21 Sep 

Field 1 0.32 0.87 0.95 0.94 0.92 0.86 0.61 

Field 2 0.28 0.90 0.96 0.94 0.94 0.90 0.62 

Field 3 0.26 0.84 0.94 0.95 0.96 0.90 0.71 

Field 4 0.31 0.94 0.98 0.95 0.94 0.89 0.69 

Field 5 0.27 0.90 0.97 0.94 0.92 0.89 0.73 
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4.4.5 ETa maps and Daily Spatial distribution of ETa Comparison 

The METRIC model was used to estimate daily ETa maps using all input 

parameters (EB method) and ERDAS Imagine software (model maker) was used to 

estimate daily ETa maps using only two input parameters (Kc-NDVI method) for ETa 

comparisons of both growing seasons. Figure 4.9 shows an example of ETa maps 

developed by EB method and developed by Kc-NDVI method on July 20, 2016. The ETa 

Kc-NDVI method map shows more dark blue color than in ETa EB method, this is due to 

mainly to pixel resolution between these methods. The pixel resolution in the ETa Kc-NDVI 

method is 30 by 30 m, while in ETa EB method the thermal pixel resolution for Landsat 7 

is 60 by 60 m and for Landsat 8 is 100 by 100 m. Thus, this visual difference is because 

the ETa EB method was affected by the thermal band at 100 m for Landsat 8.  

 

  

 

 

Figure 4.9 ETa maps generated using EB method and using Kc-NDVI method on July 20, 

2016. 

 

ETa EB method                                 ETa Kc-NDVI method                                 
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Similar comparison of ETa maps over agricultural areas generated by the 

METRIC model using energy balance and using vegetation index data were reported by 

R. Allen, A. Irmak, R. Trezza, J. M. H. Hendrickx, et al. (2011) and Martha C. Anderson 

et al. (2012) in Twin Falls, Idaho. Mokhtari et al. (2013), found that the METRIC-based 

ET is highly sensitive to surface temperature, but less sensitive to NDVI.  

For the 2015 season, Figure 4.10 shows that the ETa values were lower at the 

beginning and at the end of the season for EB method was around 4.2 mm day-1 and for 

Kc-NDVI method was around 3.0 mm day-1, indicating that less water is transpired by the 

crop. However, the highest ETa values were showed in the mid-season (July 18) 7.93 and 

7.68 mm day-1 for EB method and Kc-NDVI method, respectively.  

For the 2016 season, Figure 4.10 shows that the low ETa values were observed at 

the beginning of the growing season 2.78 and 1.72 mm day-1 for EB method and for Kc-

NDVI method, respectively. Moderate ETa values were presented at the end of the season 

for EB method was 4.23 mm day-1 and for Kc-NDVI method was 3.04 mm day-1. High ETa 

values were observed in the mid-season (July 12) with 8.87 mm day-1 for EB method and 

8.66 mm day-1 for Kc-NDVI method.  

In general, the ETa values estimated with EB method were higher than the ETa 

values estimated with Kc-NDVI method by 18 and 11% for 2015 and 2016 growing 

seasons, respectively. Because the Kc-NDVI method overwhelmingly considers 

transpiration from green vegetation, and only to a small extent evaporation from bare 

soil, some underestimation during the shoulder periods of the growing season is common. 

These results coincides with those in previous studies reported by Martha C. Anderson et 
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al. (2012), they reported that ETa calculated from vegetation index data only 

underestimate seasonal ETa values in irrigated area in Idaho.  

  

Figure 4.10 ETa EB and ETa Kc-NDVI values comparisons throughout the 2015 and 2016 

growing seasons. 

 

4.4.6 Average ratio of ETa Kc-NDVI method to ETa EB method  

The average ratio distribution of ETa Kc-NDVI to ETa EB method for 2015 and 

2016 corn growing seasons are showed in Figure 4.11. This figure shows that all average 

ratios are below 1, which is denoted by the thick blue line. This means that the Kc-NDVI 

method underestimated the ETa EB values during the two growing seasons. In early and 

late season the Kc-NDVI method showed the far values from 1, while in the mid-season the 

values were close to 1. Indicating that Kc-NDVI is more accurate for ETa estimations during 

the mid-season than early and late seasons, this probably due to in the early and late 

seasons the crop had low vegetation cover, high soil evaporation, and leaf senescence (R. 

Allen, A. Irmak, R. Trezza, J. M. H. Hendrickx, et al., 2011; Martha C. Anderson et al., 

2012; González-Dugo & Mateos, 2008; Tasumi et al., 2005). Therefore, Kc-NDVI method 

give less accurate estimation of ETa during early and late season periods, but for 

irrigation scheduling purposes, where the crop water demand is highest during the middle 

of the growing season, the Kc-NDVI method may be acceptable. However, ETa values from 
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Kc-NDVI method need to be adjusted during early and during late season to get close or 

accurate estimates to ETa EB values. The adjustment factor (ETa Kc-NDVI / 0.66 = ETa EB) 

for 2015 growing season was 0.66 and adjustment factor (ETa Kc-NDVI / 0.71 = ETa EB) 

for 2016 growing season was 0.71.  

For entire 2015 growing season the percent of error or underestimation was 21 

and for the mid-season only (excluding early and late seasons) was 12%, while for entire 

2016 growing season the percent of error was 13 and for mid-season was 7%. The total 

average percent of error for two growing seasons was 17%. This general percent of 

underestimation with the Kc-NDVI method is satisfactory compared with error for an 

experienced expert reported by R. G. Allen et al. (2011b), who reported error of 10-30% 

with remote sensing using vegetation indices. However, the average error for both 

growing seasons during the mid-season stage was less than 10%.  

 

  

Figure 4.11 Average ratio of ETa Kc-NDVI to ETa EB for 2015 and 2016 growing seasons. 

The thick blue line denotes 1 or 100% accuracy with ETa EB method. Bars in time series 

indicates standard deviation of ETa values. 
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4.4.7 Relationship between ETa EB method and ETa Kc-NDVI method 

A strong relationship was found between ETa EB method and ETa Kc-NDVI method 

during the period of study (2015 and 2016 seasons) with r2 of 0.97 (Figure 4.12). The 

corresponding mean bias error (MBE) (0.81 mm day-1) and root mean square error 

(RMSE) (0.37 mm day-1) were acceptable, assuming an average daily ETa of 5.3 mm day-

1.   

In this study, the Kc-NDVI method performed well for ETa estimations during the 

two growing seasons, indicating that Kc-NDVI method can be a robust and reliable method 

to estimate crop water requirements at regional and field scale in regions where digital 

elevation, land cover map and thermal infrared data are not available for ET estimations.  

 

 

Figure 4.12 Relationship between ETa EB method and ETa Kc-NDVI for maize fields 

during two growing seasons in eastern South Dakota. The black dashed line indicates the 

1:1 line. 

 

4.5 Conclusions 

The linear relationships between NDVI derived from NDVI maps and Kc obtained 

based on literature values (ASCE manual 70) were K𝑐 = 1.1887 NDVI − 0.033 for 2015 



121 

 

and K𝑐 = 1.2508 NDVI − 0.093for 2016. These linear equations were used to generate 

Kc maps. The Kc values derived from the Kc maps were multiplied by ETr to estimate ETa 

values during two growing seasons using the Kc-NDVI method. The METRIC model was 

used to estimate ETa using the full suite of input parameters (Landsat image, weather 

data, digital elevation map, and land cover map) (EB method). 

Results showed that the ETa values estimated with Kc-NDVI method were lower than 

the ETa values estimated with EB method by 18% for 2015 and 11% for 2016 growing 

season. The ETa Kc-NDVI values were less than the ETa EB values during the two seasons 

especially early and late in the growing seasons when the vegetation cover is incomplete 

and soil evaporation is not fully captured by the Kc-NDVI method. As a result, the accuracy 

of ETa estimation with the Kc-NDVI method decreased 17% compared with EB method 

during the period of study (2015 and 2016 growing seasons). Finally, Kc-NDVI method 

give less accurate estimation of ETa during early and late seasons, but for irrigation 

scheduling purposes, where the crop water demand is highest during the middle of the 

growing season, the Kc-NDVI method may be acceptable. Nevertheless, ETa values from 

Kc-NDVI method need to be adjusted during early and late seasons to get close or accurate 

estimates to ETa EB values. 

The results of this study showed a strong relationship between the Kc-NDVI method 

and the EB method throughout two growing seasons with r2 of 0.97 and RMSE of 

0.37mm day-1. In conclusion, the Kc-NDVI method performed well for ETa estimations 

during two seasons, indicating that this method can be a robust and reliable method to 

estimate ETa with minimum input parameters at regional and field scales for short time 

periods. 
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CHAPTER 5: Estimation of Crop Evapotranspiration using Satellite Remote 

Sensing-based Vegetation Index 

 

5.1 Abstract  

As population increases, the scarcity of fresh water increases. Thus better 

estimations of irrigation water requirements are essential to conserve fresh water. The 

objective was estimate crop evapotranspiration (ETc) using satellite remote sensing-based 

vegetation index. The study was carried out in northern México during four growing 

seasons. Six, eleven, three, and seven clear Landsat images were acquired for 2013, 2014, 

2015, and 2016, respectively for the analysis. The NDVI was calculated using near-

infrared and red wavebands. The relationship between NDVI and tabulated Kc’s was used 

to generate Kc maps using Model Maker tool of ERDAS Imagine Software. Spatially ETc 

maps were generated as an output of Kc maps multiplied by reference evapotranspiration 

(ETr), which was taken from a local automatic weather station. The results showed that 

ETc was low at initial and early development stages, while high ETc was found from mid-

season to harvest stage. Daily ETc maps helped to explain the variability of crop water 

use during the growing season. Based on the results we can conclude that ETc maps 

developed from remotely sensed multispectral vegetation indices are a useful tool for 

quantifying crop water consumption at regional and field scales. Using ETc maps, 

farmers can supply appropriate amount of irrigation water corresponding to each growth 

stage, leading to water conservation. 
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5.2 Introduction 

As population increases, the scarcity of fresh water increases. Agriculture is the 

major consumer of fresh water (Gontia & Tiwari, 2010; Heermann & Solomon, 2007), 

but it is not necessary used efficiently due to farmers supplying more water than is 

consumed by the crop. Thus better estimation of irrigation water requirements is essential 

to conserve fresh water and avoid threatened food security. To achieve water 

conservation is necessary that the farmers adopt new technologies for estimating crop 

water requirements more efficiently. 

Crop evapotranspiration (ETc) represents crop water requirements and is affected 

by microclimate and actual crop conditions (Adamala, Rajwade, & Reddy, 2016; Parmar 

& Gontia, 2016). A useful method to estimate ETc or crop water requirements in cropland 

areas is to multiplying reference evapotranspiration (ETr) by a crop coefficient (Kc) 

values (Eq. 1). ETr is estimated based on meteorological information (e.g., solar 

radiation, wind speed, air temperature, and air vapor pressure deficit) from a local 

weather station, using the Penman-Monteith equation. The Kc is typically taken from 

literature values and is affected by soil water content, crop variety, and crop density (R. 

G. Allen, Clemmens, Burt, Solomon, & O’Halloran, 2005; R. G. Allen et al., 1998; 

Marvin E Jensen & Allen, 2016). ETc has been estimated using conventional methods 

e.g., weighing lysimeters, evaporation pan, soil water balance, atmometer, Bowen Ratio 

Energy Balance System (BREBS), and Eddy covariance (EC). However, these methods 

are recognized as the point-based measurements. To overcome this problem, satellite-

based remote sensing can estimate crop water requirements and its spatial and temporal 

distribution on a field-by-field basis at a regional scale (R. Allen, A. Irmak, R. Trezza, J. 
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M. H. Hendrickx, et al., 2011; R. G. Allen, Tasumi, & Trezza, 2007; Bastiaanssen et al., 

2005; J Kjaersgaard et al., 2011). 

𝐸𝑇𝑐 = 𝐸𝑇𝑟  ×  𝐾𝑐                                                                                                               (1) 

Remote sensing is a technology that can estimate ETc at regional and local scale 

in less time and with less cost (R. G. Allen, Tasumi, & Trezza, 2007; J Kjaersgaard et al., 

2011). Remotely sensed can also estimate crop coefficients based on spectral reflectance 

of vegetation indices (VIs) (Adamala et al., 2016; Neale et al., 2005). The normalized 

difference vegetation index (NDVI) is the most common VIs (Glenn et al., 2011). NDVI 

takes into account the reflectance of red and near infrared wavebands (Rouse Jr et al., 

1974), where red waveband is strong absorbed by chlorophyll in leaves of the top layers, 

while near infrared wavebands is reflected by the mesophyll structure in leaves, 

penetrating into deeper leaf layers in a healthy vegetation (Figure 5.2) (Glenn, Nagler, & 

Huete, 2010; Glenn et al., 2011; Romero-Trigueros et al., 2016). High values of NDVI 

are related with healthy and dense vegetation, which presents high reflectance values in 

the NIR band and low reflectance values in the red band (Toureiro, Serralheiro, 

Shahidian, & Sousa, 2016). Crop coefficients generated from VIs determine ETc better 

than a tabulated Kc because it represents the actual crop growth conditions and capture 

the spatial variability among different fields (Gontia & Tiwari, 2010; Kullberg et al., 

2017; Lei & Yang, 2012). 

Several studies have used multispectral vegetation indices derived from remote 

sensing to estimate Kc values on agricultural crops including corn crop (e.g., (Bausch, 

1995; Campos et al., 2010; Duchemin et al., 2006; Garatuza-Payan et al., 2003; Gontia & 

Tiwari, 2010; González-Dugo & Mateos, 2008; Hunsaker et al., 2003; Jayanthi et al., 
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2007; Kamble et al., 2013; Neale et al., 1989; Arturo Reyes-Gonzalez et al., 2015; 

Tasumi et al., 2005; Trout et al., 2008). Crop coefficients derived from remotely sensed 

vegetation index also have used to generate local and regional ETc maps (Farg, Arafat, 

El-Wahed, & El-Gindy, 2012; Gontia & Tiwari, 2010; Vanino et al., 2015; Zhang et al., 

2015), however in northern México ETc maps using satellite remote sensing-based 

vegetation index remains unexplored. 

The objectives of this study were to 1) calculate NDVI values for each corn field 

for each growing season, 2) develop a simple linear regression model between NDVI 

derived from satellite-based remote sensing and tabulated Kc obtained of alfalfa-based 

crop coefficient from ASCE Manual 70, 3) generate Kc maps using the linear regression 

equation obtained between NDVI and Kc values, and 4) create ETc maps with high spatial 

resolution at regional and field scales.    

5.3 Material and methods 

5.3.1 Study Area 

The study was carried out in northern México (Comarca Lagunera) during four 

growing seasons. The Comarca Lagunera had an average latitude of 25° 40' N and 

longitude of 103° 18' W, and elevation of 1115 m above mean sea level (Figure 5.1). In 

the Comarca Lagunera forage crops (alfalfa, corn, sorghum, and oat (planted in winter 

season)) occupied more than 75% of the total irrigated area (SAGARPA, 2016). Silage 

corn is the most important crop after alfalfa in this region. Five silage corn fields in each 

growing season were selected for NDVI calculations. The corn fields were irrigated using 

surface irrigation system. The plant population density was 78, 000 plants ha-1. Silage 
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corn is typically planted from late March to early April and chopped for silage from late 

July to early August depends on the crop variety. The corn fields selected ranged between 

10 and 20 hectares in size. The soil texture for this region is clay loam soil. The mean 

annual maximum temperature is 28 °C, minimum 13 °C, and mean 21 °C. (Pedro & del 

Consuelo, 2002). The mean annual precipitation is 200 mm, while the annual potential 

evapotranspiration is 2,000 mm (Levine, 1998). 

 

 

Figure 5.1 Location of the study area at northern México (left map). The subset of the 

area of interest, Landsat with false color composite (bands 4, 3, 2), the yellow rectangles 

represent five locations where we selected the corn fields, and the white star indicates 

weather station (right image).   

 

5.3.2 Landsat Images 

Clear sky images from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and 

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (Path 30, 

Row 42) were used to estimate NDVI, Kc and ETc values. The images were downloaded 

Torreon, Coah. 
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from the United States Geological Survey (USGS) EROS Datacenter. Six, eleven, three, 

and seven clear Landsat images were acquired for 2013, 2014, 2015, and 2016, 

respectively (Table 5.1). The satellite images were processed using the Model Maker tool 

of ERDAS Imagine Software.  

Table 5.1 The year, acquisition dates, day after planting (DAP), Landsat satellite, and 

path/row for 2013, 2014, 2015, and 2016 growing seasons. 

Year 
Acquisition 

dates 
DAP Satellite Path/Row 

2013 April 14 10 Landsat 8 30/42 

 April 22 18 Landsat 7 30/42 

 April 30 26 Landsat 8 30/42 

 May 16 42 Landsat 8 30/42 

 June 9 66 Landsat 7 30/42 

 June 17 74 Landsat 8 30/42 

2014 April 17 8 Landsat 8 30/42 

 May 3 24 Landsat 8 30/42 

 May 11 32 Landsat 7 30/42 

 May 19 40 Landsat 8 30/42 

 May 27 48 Landsat 7 30/42 

 June 4 56 Landsat 8 30/42 

 June 12 64 Landsat 7 30/42 

 June 28 80 Landsat 7 30/42 

 July 6 88 Landsat 8 30/42 

 July 14 96 Landsat 7 30/42 

 July 22 104 Landsat 8 30/42 

2015 April 28 22 Landsat 7 30/42 

 May 30 54 Landsat 7 30/42 

 July 17 102 Landsat 7 30/42 

2016 April 14 8 Landsat 7 30/42 

 May 16 40 Landsat 7 30/42 

 June 9 64 Landsat 8 30/42 

 June 25 80 Landsat 8 30/42 

 July 3 88 Landsat 7 30/42 

 July 11 96 Landsat 8 30/42 

 July 19 104 Landsat 7 30/42 
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5.3.3 Pixel selection 

Ten pixels for each corn field and each season were selected and extracted from 

NDVI maps. The pixels were located in the center of each corn field for each overpass 

date during the four growing seasons. The same pixels were observed throughout the corn 

growing season. We assumed that the pixels are representative of the entire corn field. All 

corn fields had flat terrain. The number of pixels per year are presented in Table 5.2. 

Table 5.2 The year and number of pixels selected throughout the growing season. 

Year No. pixels 

2013 300 

2014 550 

2015 150 

2016 350 
 

 

5.3.4 NDVI Calculations 

The NDVI is the difference between near-infrared (𝑁𝐼𝑅) and red waveband 

reflectances divided by their sum (Rouse Jr et al., 1974). NIR and red wavebands present 

different reflectance on healthy vegetation as shown in Figure 5.2. NDVI values range 

between -1 and +1, where water presents negative values and dense canopy presents high 

positive values (Bannari et al., 1995; Bausch, 1993; Toureiro et al., 2016). The NDVI 

was calculated for each overpass date and for each growing season using Model Maker 

tool of ERDAS Imagine Software as shown in the next equations: 

For Landsat 7 was calculated as: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 4−𝑅𝑒𝑑𝑏𝑎𝑛𝑑 3)

(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 4+𝑅𝑒𝑑𝑏𝑎𝑛𝑑 3)
                                                                                                                        (2) 
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For Landsat 8 was calculated as: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 5−𝑅𝑒𝑑𝑏𝑎𝑛𝑑 4)

(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 5+𝑅𝑒𝑑𝑏𝑎𝑛𝑑 4)
                                                                                                                       (3) 

where 𝑁𝐼𝑅𝑏𝑎𝑛𝑑  and 𝑅𝑒𝑑𝑏𝑎𝑛𝑑  are the near-infrared and red wavebands, 

respectively. 

 

 

Figure 5.2 Absorbance and reflectance of NIR and Red wavebands on healthy vegetation. 

5.3.5 Crop coefficient (Kc) values from Manual 70 

The Kc values were taken from ASCE Manual 70 (Appendix E) and were adjusted 

according to different corn growth stages throughout the growing season. For Kc 

estimations the ASCE Manual 70 divides the growing season into two periods, viz. 

percent of time from planting to effective cover and days after effective cover to harvest. 

The effective cover and harvest of corn in our study occurred around 55 and 105 DAP, 

respectively based on the crop phenology. 

5.3.6 Relationship between NDVI and Kc and Kc maps development 

The relationships between NDVI derived from Landsat images and tabulated Kc’s 

values obtained from ASCE Manual 70 (Appendix E) (Marvin E Jensen & Allen, 2016) 

NIR Red 

Absorbance 

Reflectance 
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corresponding to each satellite overpass date for 2013, 2014, 2015, and 2016 corn 

growing seasons were established. These relationships were used to generate an average 

linear regression equation for entire period of study.   

5.3.7 Reference Evapotranspiration (ETr) calculations 

The meteorological information was taken from an automated weather station. 

The weather station was located at the National Institute of Forestry, Agriculture, and 

Livestock Research (INIFAP) Matamoros Coahuila, México (Figure 5.1). The ETr values 

were taken from the weather station, where ETr was calculated using the Penman-

Monteith equation (R. G. Allen et al., 1998; ASCE-EWRI, 2005) as follows: 

𝐸𝑇𝑟𝑒𝑓 =  
0.408 ∆(𝑅𝑛− 𝐺)+ 𝛾

𝐶𝑛
𝑇+273

 𝑢2(𝑒𝑠−𝑒𝑎)

∆ + 𝛾(1 +𝐶𝑑𝑢2)
                                                                                                   (4) 

where 𝐸𝑇𝑟𝑒𝑓 is the alfalfa reference (mm day-1), ∆ is the slope pressure versus air 

temperature curve (kPa °C-1), 𝑅𝑛 is the net radiation at the crop surface (MJ m-2 day-1), 𝐺 

is the soil heat flux at the soil surface (MJ m-2 day-1), 𝑇 is the mean air temperature at 1.5 

to 2.5 m height (°C), 𝑢2 is the mean daily wind speed at 2 m height (m s-1), 𝑒𝑠 is the 

saturation vapor pressure of the air (kPa), 𝑒𝑎 is the actual vapor pressure of the air (kPa), 

𝛾 is the psychrometric constant (0.0671 kPa °C-1), 𝑒𝑠 − 𝑒𝑎 is the vapor pressure deficit 

(kPa), 𝐶𝑛 is the numerator constant (1600 K mm s3 Mg-1 day-1), 𝐶𝑑 is the denominator 

constant (0.38 s m-1) for alfalfa reference, and 0.408 is the coefficient constant (m2 mm 

MJ-1). 

5.3.8 Crop Evapotranspiration (ETc) maps 

The Kc values taken from the Kc maps were multiplied by ETr (Eq. 1) to create 

ETc maps with high spectral resolution (30 m) for 2014 growing season, using Model 
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Maker tool of ERDAS Imagine Software and ArcGIS version 10.3.1. The ETc maps were 

designed to monitoring the spatial distribution and temporal evolution of the crop water 

requirements during the growing season.  

5.3.9 Flowchart of estimation of ETc  

A summary of estimation of ETc using satellite remote sensing-based vegetation 

index is showed in Figure 5.3. The Landsat images and weather data are the two major 

inputs parameters in the vegetation index method. 

      

      

      

      

      

      

 

Figure 5.3 Flowchart of crop evapotranspiration estimation. 
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5.4 Result and Discussion 

5.4.1 NDVI curves 

The NDVI average values (10 pixels) selected and extracted from NDVI maps for 

five corn fields and for different corn growing seasons are shown in Figure 5.4. The 

figures show similar NDVI curves for 2014 and 2016, while for 2013 and 2015 the 

curves are not well pronounced due to lack of clear sky images during the growing 

seasons. In general NDVI values at initial stage were low around 0.15 in early April 

(DAP 8), and then increase as the crop develops reaching its maximum value (0.8) at 

mid-season stage followed by plateau from late May to middle July (DAP 55-95) and 

slight decreasing (0.7) at the end of the season by the end of July (DAP 105). Several 

researchers reported similar seasonal NDVI curves for corn (P.-Y. Chen et al., 2006; de 

Souza et al., 2015; F. Gao et al., 2017; Jackson et al., 2004; Kamble et al., 2013; Neale et 

al., 1989; Singh & Irmak, 2009; Tasumi et al., 2005; Thomason et al., 2007; Toureiro et 

al., 2016). All NDVI curves developed by these researchers showed low corn NDVI 

values at early stage and then increased at mid-season stage and decline at late stage. 

However, Thomason et al. (2007) reported NDVI curves of forage corn, where NDVI 

values gradually increase and then remains longer plateau until the end of the season.   

In this study, the NDVI values derived from Landsat 8 (L8) were greater than 

NDVI derived from Landsat 7 (L7), not only in mid-season stage (Figure 5.4 (2014 and 

2016)) but also in early stage (Figure 5.4 (2013)). The difference between L8 and L7 

ranged from 0.03 to 0.09 (data no shown), those difference values are in agreement with 

values reported by Flood (2014) (0.04) and  Ke, Im, Lee, Gong, and Ryu (2015) (0.06), 

but greater than reported by D. Roy et al. (2016) (0.02). The difference between L8 and 
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L7 was due to L8 has narrowed near-infrared waveband (L7 = 0.77-0.90μm, L8 = 0.85-

0.88μm), higher signal to noise ratio (SNR), and higher 12-bit radiometric resolution 

(Flood, 2014; Holden & Woodcock, 2016; Ke et al., 2015; D. P. Roy et al., 2014). These 

features provide less influenced by atmospheric conditions, more sensitive to surface 

reflectance and more precise measurements (Flood, 2014; Holden & Woodcock, 2016; 

Ke et al., 2015). Although the comparison of NDVI between L8 and L7 was not objective 

of this study, it is important to mention that inconsistent or unreliable values of NDVI can 

produce poor estimates of crop evapotranspiration (Ke et al., 2015).  

  

  

Figure 5.4 Seasonal evolution of NDVI at five corn fields for 2013, 2014, 2015, and 2016 

growing seasons in northern México. 

 

5.4.2 Relationship between NDVI and Kc  

The NDVI values were taken from NDVI maps generated as an output using 

Landsat 7 and Landsat 8, while Kc’s values were taken from ASCE Manual 70 (Appendix 



145 

 

E) table for 2013, 2014, 2015, and 2016 corn growing seasons. Figure 5.5 shows the 

relationship between NDVI of five corn fields and tabulated Kc values for four growing 

seasons. Strong relationships were observed for 2013 and 2015 growing seasons, with r2 

equal to 0.99, whereas for 2014 and 2016 the r2 was equal to 0.96. The slightly low 

values of r2 found in 2014 and 2016 seasons, probably were due to major numbers of 

NDVI values, where some of them were lower than Kc values, especially in development 

growth stage. Similar values of coefficients of determination (0.99) between NDVI and 

Kc for corn crop were found by Rocha et al. (2012) and  Reyes-González et al. (2016) but 

low coefficients were reported by Singh and Irmak (2009), Kamble et al. (2013), and 

Toureiro et al. (2016), who reported values of r2 equal to 0.83, 0.81, and 0.82, 

respectively.  

The NDVI computed from Landsat images and Kc’s obtained from ASCE manual 

70 (Appendix E) were used to develop the linear regression equations. Linear 

relationships between NDVI and Kc for 2013, 2014, 2015, and 2016 were establish as the 

following equations: 

𝐾𝑐 = 1.3301 𝑁𝐷𝑉𝐼 + 0.0021          (2013)                                                                                                (5) 

𝐾𝑐 = 1.2234 𝑁𝐷𝑉𝐼 + 0.0242          (2014)                                                                                                (6) 

𝐾𝑐 = 1.4556 𝑁𝐷𝑉𝐼 + 0.0618          (2015)                                                                                               (7) 

𝐾𝑐 = 1.0968 𝑁𝐷𝑉𝐼 + 0.1054          (2016)                                                                                                (8) 

Similar linear equations for corn were reported by other researchers e.g., (Neale et 

al., 1989; Rafn et al., 2008; Reyes-González et al., 2016; Rocha et al., 2012), all these 

authors used alfalfa-reference crop coefficient for generating linear equations. 
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Figure 5.5 Linear relationship between NDVI derived from NDVI maps and Kc from 

ASCE manual 70 for four growing seasons. The dashed line indicates the 1:1 line.  

 

The four year linear regression equations were compared using the t test method to 

test statistical difference between two independent regressions (Steel & Torrie, 1980). 

Table 5.3 shows the results of all comparisons, where all t values were less than tabulated 

t values, which means that there were no statistical differences between linear regression 

equations. Based on these results all data from the four years were pooled to create a 

general linear equation as shown in Figure 5.6. This linear equation was used to create Kc 

maps for 2014 season.    
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Table 5.3 Comparisons between linear regression equations using the t test method. 

Compared 

years t value  

t  from 

table 

2013 to 2014 1.14 2.16 

2013 to 2015 0.96 2.57 

2013 to 2016 2.13 2.26 

2014 to 2015 1.53 2.22 

2014 to 2016 1.08 2.14 

2015 to 2016 2.31 2.44 
 

 

 

 

Figure 5.6 Linear relationship between NDVI and Kc for all data. The dashed line 

indicates the 1:1 line. 

  

5.4.3 Kc maps and Kc values 

Previous empirical linear equation between NDVI and Kc were used to generate 

Kc maps using Landsat images processed in ERDAS Imagine (Model Maker) for 2014 

growing season. Figure 5.7 shows spatial and temporal variability of Kc values 

throughout the 2014 growing season. The Kc maps showed low Kc values early in the 

growing season (DAP 8) (light blue-green color) and gradually increase at mid-season 

stage (DAP 56), where remains plateau until harvest (DAP 105) (brown color). Similar 

Kc maps of corn were developed by Singh and Irmak (2009), Ayse Irmak et al. (2011), 
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Rocha et al. (2012), and Reyes-González et al. (2016), who reported maps of daily spatial 

distribution of Kc for six, four, seven, and four overpass dates, respectively. However, 

satellite overpasses date used in this study for 2014 growing season were almost an 8-day 

observation intervals. These Kc maps show how the Kc values increase (from 0.2 to 1.0), 

as the silage crops develop increases. 

    

    

    

Figure 5.7 Spatial and temporal evolution of Kc generated with ERDAS Imagine 

Software (Model Maker) and ArcGIS version 10.3.1 during the 2014 growing season in 

northern México.  
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The Kc values obtained from Kc maps based on ten selected pixels average within 

a corn field in five corn fields for each overpass date are shown in Table 5.4. In general, 

the minimum Kc value (0.24) was presented in early season, while the maximum Kc value 

(1.00) was presented in the mid-season stage. The standard deviation values of Kc were 

equal or lower than 0.07 throughout the growing season (Table 5.4), this means that 

planting dates, management practice, and maturity dates among corn fields did not affect 

too much the Kc values during the season. 

Table 5.4 DAP, Landsat satellite, crop coefficient (Kc), and standard deviation (Std. 

Dev.) throughout the 2014 growing season. 

DAP Satellite Kc Std. Dev. 

8 Landsat 8 0.24 0.01 

24 Landsat 8 0.32 0.05 

32 Landsat 7 0.40 0.05 

40 Landsat 8 0.56 0.07 

48 Landsat 7 0.76 0.07 

56 Landsat 8 0.97 0.03 

64 Landsat 7 0.94 0.03 

80 Landsat 7 0.98 0.02 

88 Landsat 8 1.00 0.02 

96 Landsat 7 0.97 0.04 

104 Landsat 8 0.88 0.02 
 

 

The relationship between Kc calculated derived from Kc maps and Kc from tables 

is showed in Figure 5.8. A strong relationship was found with r2 = 0.96. This means that 

Kc values derived from vegetation index (Kc calculated) can be a robust parameter to 

calculate actual crop evapotranspiration. The main difference between Kc calculated and 

Kc tabulated is that the Kc tabulated comes from well-water reference crop (e.g. alfalfa), 

whereas Kc calculated comes from the actual crop growth conditions, where some Kc 

values derived from reflectance of vegetation index are reduced by soil water content. In 
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this study the little difference between Kc calculated and Kc tabulated was found in the 

development growth stage (DAP 40-48).   

 

 

Figure 5.8 Relationship between Kc calculated and Kc tabulated for corn during 2014 

growing season. The dashed line indicates the 1:1 line. 

5.4.4 ETc maps and ETc values  

Spatially ETc maps of 30 m resolution were generated as an output of Kc maps 

multiplied by ETr values for corresponding day using ERDAS Imagine Software (Model 

Maker) for 2014 growing season (Figure 5.9). The maps showed low ETc values (2.0 mm 

day-1) (light green color) at initial stage and high ETc values (8.0 mm day-1) (red color) at 

mid-season stage. The ETc maps created in this study are in agreement with other 

researchers e.g., (Adamala et al., 2016; Gontia & Tiwari, 2010; Rossato, Alvala, Ferreira, 

& Tomasella, 2005). They generated crop evapotranspiration maps using Kc derived from 

remote sensing based vegetation indices. Other researchers reported that the Kc derived 

from canopy reflectance based vegetation index had the potential to estimate crop 

evapotranspiration at regional and field scale e.g., (Campos et al., 2010; Gonzalez-Dugo 

et al., 2009; Lei & Yang, 2012; Murray, Nagler, Morino, & Glenn, 2009; Rafn et al., 

2008; Toureiro et al., 2016). 
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Figure 5.9 Spatial and temporal ETc maps generated with ERDAS Imagine Software 

(Model Maker) and ArcGIS version 10.3.1 for 2014 growing season in northern México.  

 

Daily ETc values for 2014 growing season are shown in Table 5.5. The ETc values 

were obtained from ten selected pixels average within a corn field in five corn field for 

each overpass date. It can be observed from Table 5.5 that the ETc values varied during 

the growing season from 1.40 to 7.41 mm day-1. The results showed that ETc was low at 

initial and early development stage, while high ETc were found from mid-season to 

harvest stage. These two seasons were characterized because in the initial stage crop 

needs smaller water requirements, whereas in the mid-season crop needs higher water 
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requirements, as we can see in the next section. Low standard deviation values (<0.5 mm 

day-1) were registered among corn fields during the growing season (Table 5.5), however 

the higher standard deviation were found in development stage. In this particular stage 

the crop evapotranspiration is affected by soil type, soil water content, and crop 

architecture. 

Table 5.5 DAP, Landsat satellite, crop evapotranspiration (ETc), and standard deviation 

(Std. Dev.) for 2014 growing season.  

DAP Satellite ETc Std. Dev. 

8 Landsat 8 1.40 0.09 

24 Landsat 8 1.87 0.26 

32 Landsat 7 2.62 0.33 

40 Landsat 8 3.87 0.48 

48 Landsat 7 4.95 0.43 

56 Landsat 8 6.46 0.18 

64 Landsat 7 5.37 0.15 

80 Landsat 7 4.78 0.10 

88 Landsat 8 7.41 0.17 

96 Landsat 7 4.78 0.20 

104 Landsat 8 5.32 0.15 
 

 

5.4.5 ETc maps at a field scale 

Daily ETc maps helps explain the variability of crop water requirement during the 

growing season of croplands as shown in Figure 5.10. These images at a field scale level 

show the corresponding ET values according to each growth stage, this indicates that 

each stage requires different amount of water throughout the growing season. For 

example minimum water requirements (2.0 mm day-1) are need at the initial stage, 

whereas maximum water requirements are needed at mid-season stage (8.0 mm day-1). 

Understating the different crop growth stages and applying the accurate amount of 
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volumetric water, farmers can improve their irrigation scheduling, improve water 

management, and enhance irrigation water sustainability.  

Similar ETc maps at a field scale for agricultural crops including corn were 

reported by Farg et al. (2012), Zipper and Loheide II (2014), and Senay et al. (2016), they 

reported minimum and maximum ETc values at different crop growth stages, where the 

higher evapotranspiration rates were found at the mid-season growth stage and lowest 

evapotranspiration rates were found at early growth stage.   

    

    

    

Figure 5.10 ETc maps at a field scale (e.g., silage corn) generated with ERDAS Imagine 

Software (Model Maker) and ArcGIS version 10.3.1 using Landsat 7 and Landsat 8 

satellite images for the 2014 growing season. The red, light green, and dark blue color 

within the corn field (black rectangle) indicates low, medium and high ETc values. 
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5.4.6 Comparison between ETr and ETc 

The ETr values were taken directly from a local weather station, while ETc values 

were derived from ETc maps. Figure 5.11 shows the comparison between ETr and ETc for 

2014 growing season. This figure illustrated that the daily ETr were higher than the daily 

ETc outputs at the beginning of the growing season, but similar outputs were recorded at 

mid-season stage. For 2014 growing season, in early stage (DAP 1-20) the ETr values 

were around 6.0 mm day-1, while the ETc values were around 2.0 mm day-1. In 

development stage (DAP 20-55) the ETr values continue around 6 mm day-1, while ETc 

values increase from 2 to 6 mm day-1. In the mid-season stage (DAP 55-95) both ETr and 

ETc values were very similar around 7.0 mm day-1. At the end of the growing season 

(DAP 95-105) the ETr values were slightly greater than ETc values by 0.5 mm day-1. 

From early to mid-development stage the ETc values were lower than ETr values, this 

means that in those particular stages we can save irrigation water (grey wide column in 

the graph), because in those stages the crops need small water requirements, due to the 

crop canopy is no yet fully developed. In general, the ETc values from ETc maps could be 

used by farmers in their irrigation scheduling programs because it shows when and how 

much water is required by the crop during different growth stages. 

Reyes-González et al. (2016), reported that the farmers should be use ETc instead 

of ETr for irrigation scheduling in arid and semi-arid regions where irrigation water is 

scarce.  Kebede, Fisher, Sui, and Reddy (2014) reported that the farmers in the 

Mississippi Delta use four primarily methods to determine to irrigate: the first was visual 

observation of crop condition method (47%), the second was the soil feel method (24%), 

the third was daily crop evapotranspiration method (10%), and the fourth was personal 
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calendar schedule method (8%). Also they reported that these methods were similar to the 

national average, however personal calendar scheduling was slightly higher (10%) than 

crop evapotranspiration method (3%). Thus, there is a necessity to the farmers adopt new 

technologies or new methods (crop evapotranspiration) to determine when to supply 

irrigation water. 

 

 

Figure 5.11 Comparison between ETr and ETc for 2014 growing season in northern 

México. The grey wide column indicates the time interval where producers can save 

irrigation water. 

5.5 Conclusions 

The general objective of this study was estimate crop evapotranspiration using 

satellite remote sensing-based vegetation index in northern México.  

The relationships between NDVI derived from Landsat images and tabulated Kc’s 

obtained from ASCE Manual 70 (Appendix E) were established for four growing 

seasons. These empirical linear equations were used to generate an average linear 

regression equation. 

Spatially ETc maps were created as an output of Kc maps multiplied by ETr 

values. The ETc values ranged from 1.40 to 7.41 mm day-1 during the period of study. 
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The results showed that ETc values were low at the beginning of the growing season, 

while high ETc values were found from mid-season to harvest season. Daily ETc maps 

helped to explain the variability of crop water use throughout the growing season.  

Farmers in the northern México region currently use ETr in their irrigation 

scheduling methods. The results indicate that farmers could reduce their seasonal water 

application amounts by 18% just by using ETc appropriately in their irrigation scheduling 

methods. 

The information generated in this study is essential for irrigation scheduling 

because it shows when and how much water is required by the crop during different crop 

growth stages. 

Based on the results we can conclude that ETc maps developed from remotely 

sensed multispectral vegetation indices are a useful tool for quantifying accurate crop 

water consumption from space at regional and field scales. 
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CHAPTER 6: General Conclusions 

 

 
The first objective (chapter 2) of this research was to compare ET estimated from 

the satellite-based remote sensing METRIC model to in situ atmometer readings. Results 

of our study showed a good relationship between ETa-METRIC and ETa-atm with an r2 

of 0.87, “d” of 0.84, and RMSE of 0.65 mm day-1. In general, the ETa-atm values were 

lower than ETa-METRIC values. Daily difference between ETa-METRIC and ETa-atm 

for Brookings site ranged from -0.95 to 1.32 mm day-1, for Volga from -1.93 to 1.33 mm 

day-1, and for Oak Lake ranged from -0.62 to 2.61 mm day-1. Negative values indicated 

that the ETa-METRIC estimates are lower than ETa-atm, while positive values indicated 

that the ETa-METRIC estimates exceeds ETa-atm. The higher positive values were 

related with high wind speed values. Daily ETa differences was attributed to high wind 

speed values (>4 m s-1) at the time of satellite image overpass. Hence, as the wind speed 

increases, the ETa difference increases. However, based on our results, ETr values from 

atmometer need to be adjust during the windy days. The adjustment factors were 0.83, 

0.87, and 0.68 for Brookings, Volga, and Oak Lake sites, respectively. In conclusion the 

results of this study can be used by policy makers, researchers, and producers for 

estimating actual evapotranspiration and improve irrigation water management at local 

and field scales, using both satellite-based remote sensing METRIC model method and 

atmometer method. 

The second objective (chapter 3) was to assess the relationship between, leaf area 

index (LAI), surface temperature (Ts), and actual evapotranspiration (ETa) estimated by 

remote sensing-based METRIC model and in-situ measurements at the same time of 
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satellite overpass over a corn field in eastern South Dakota. In order to assess the 

METRIC model performance the coefficient of determination (r2), mean bias error 

MBE), and root means square error (RMSE) were considered. The in situ measurements 

of LAI obtained with AccuPAR during the time of satellite overpass was compared to the 

LAI estimates by the METRIC model. The output of LAI values from the METRIC 

model were slightly smaller (12%) than the LAI values derived from AccuPAR, this 

slightly difference was attributed to the different LAI scales. METRIC model estimated 

the average LAI for all plants with a 30 m by 30 m grid, while the AccuPAR measured 

the LAI only in few plants within a pixel (30 x 30 m). However, good linear correlation 

was found between in situ measured and estimated LAI, with a coefficient of 

determination (r2) of 0.76 and RMSE of 0.59 m2 m-2. For whole season the surface 

temperature (Ts) estimated using the METRIC model was higher than the Ts measured in 

situ using infrared thermometer by 0.85 °C. The slightly difference was attributed to the 

measurements, which were carried out at different scales and different parts of the plant. 

A good correlation (r2 = 0.87), and acceptable value of RMSE (1.24 °C) were found 

between estimated and measured Ts. Result of comparisons between estimated ETa 

during the 2016 corn growing season showed that ETa values estimated with the 

METRIC model were greater than ETa values estimated by atmometer.  Daily ETa 

estimations error for each image date between the METRIC model and the atmometer 

ranged between 4 to 17%. The relationship revealed good agreement between ETa 

estimations, with high coefficient of determination (r2 = 0.89) and low RMSE (0.71 mm 

day-1). Finally, the landscape position of observation locations were affected by soil water 
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content, which lead to low crop height, low LAI, and high Ts in both methods using 

remote sensing and in situ measurements.  

The third objective (chapter 4) was to compare the accuracy of Kc-NDVI method to 

calculate ETa compared to EB method calculated by the METRIC model over two 

growing seasons. The linear relationships between NDVI derived from NDVI maps and 

Kc obtained based on literature values were K𝑐 = 1.1887 NDVI − 0.033 for 2015 and 

K𝑐 = 1.2508 NDVI − 0.093 for 2016. These linear equations were used to generate Kc 

maps. The Kc values derived from the Kc maps were multiplied by ETr to estimate ETa 

values during two growing seasons using the Kc-NDVI method. The METRIC model was 

used to estimate ETa using the full suite of input parameters (Landsat image, weather 

data, digital elevation map, and land cover map) (EB method). Results showed that the 

ETa values estimated with Kc-NDVI method were lower than the ETa values estimated with 

EB method by 18% for 2015 and 11% for 2016 growing season. The ETa Kc-NDVI values 

were less than the ETa EB values during the two seasons especially early and late in the 

growing seasons when the vegetation cover is incomplete and soil evaporation is not fully 

captured by the Kc-NDVI method. As a result, the accuracy of ETa estimation with the Kc-

NDVI method decreased 17% compared with EB method during the period of study. 

Finally, Kc-NDVI method give less accurate estimation of ETa during early and late 

seasons, but for irrigation scheduling purposes, where the crop water demand is highest 

during the middle of the growing season, the Kc-NDVI method may be acceptable. The 

results of this study showed a strong relationship between the Kc-NDVI method and the EB 

method throughout two growing seasons with r2 of 0.97 and RMSE of 0.37mm day-1. In 

conclusion, the Kc-NDVI method performed well for ETa estimations during two seasons, 
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indicating that this method can be a robust and reliable method to estimate ETa with 

minimum input parameters at regional and field scales for short time periods. 

The fourth objective (chapter 5) was to estimate crop evapotranspiration (ETc) 

using satellite remote sensing-based vegetation index. Spatially ETc maps were created as 

an output of Kc maps multiplied by ETr values. The ETc values ranged from 1.53 to 7.65 

mm day-1 during period of study. The results showed that ETc values were low at the 

beginning of the growing season, while high ETc values were presented from mid-season 

to harvest season. Daily ETc maps helped to explain the variability of crop water use 

throughout the growing seasons. Farmers in the northern México region currently use ETr 

in their irrigation scheduling methods. The results indicate that farmers could reduce their 

seasonal water application amounts by 18% just by using ETc appropriately in their 

irrigation scheduling methods. The information generated in this study is essential for 

irrigation scheduling because it shows when and how much water is required by the crop 

according to different growth stages. Based on the results we can conclude that ETc maps 

developed from remotely sensed multispectral vegetation indices are a useful tool to 

quantifying accurate crop water consumptions from space at regional and field scales. 

In conclusion, in all chapters satellite remote sensing was used to developed ETa 

maps, which can be used by policy makers, researchers, and farmers for estimating crop 

water use to improve irrigation water management.   
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APPENDIX 

 

Example of output of hourly quality control for solar radiation (Rs), air temperature 

(Ta) and dew point temperature (Td) in August 2016 growing season. 

 

 

 

Figure A.1 Hourly quality control samples for Rs, Ta, and Td. 
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Example of output of daily quality control for solar radiation (Rs), minimum and 

maximum relative humidity (RH), minimum and maximum air temperature (Ta), and 

wind speed (WS) for 2016 growing season. 
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Figure A.2 Daily quality control for solar radiation (Rs), minimum and maximum relative 

humidity (RH), minimum and maximum air temperature (Ta), and wind speed. 

The weather data used in this research did not require any adjustment to solar 

radiation, relative humidity, air temperature, and wind speed. For example, on clear sky 

days solar radiation (Rs) should approach the theoretical clear sky solar radiation (Rs0) 
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curve, 3 - 5% upper or below of Rs0 curve need calibration. Maximum relative humidity 

(RH) should be between 95 - 100% and minimum RH stay above ±15%. Minimum air 

temperature and dew point temperature are within 2 - 3°C. Wind speed generally average 

about 2 ms-1 for agricultural setting, less than 1 ms-1 may indicate problems.   

 

Hot and cold pixels selected during the 2016 growing season. 

Table A.1 Hot and cold pixels used for the analysis. 

    Coordinates  
Elevation 

(m) 

   
Ts           

(K) DOY Pixel 

X 

(UTM) 

Y 

(UTM) ETrF Albedo NDVI LAI  

154 
Cold 687390 4931490 1.05 584 0.19 0.82 6.00 296.56 

Hot 691470 4928280 0.35 597 0.15 0.22 0.18 309.83 

187 
Cold 676860 4918080 1.05 508 0.19 0.83 4.78 300.75 

Hot 687480 4908330 0.35 505 0.18 0.41 0.47 312.94 

194 
Cold 667652 4907809 1.05 492 0.23 0.84 5.34 296.63 

Hot 688784 4914143 0.35 526 0.17 0.39 0.42 306.97 

202 
Cold 680222 4867647 1.05 497 0.21 0.83 6.00 299.93 

Hot 675631 4914700 0.35 512 0.18 0.46 1.85 308.06 

218 
Cold 693029 4904941 1.05 514 0.21 0.89 6.00 296.8 

Hot 672877 4912705 0.35 500 0.18 0.49 2.39 303.85 

234 
Cold 692517 4928836 1.05 591 0.16 0.78 6.00 294.05 

Hot 689106 4923735 0.35 558 0.15 0.47 1.96 299.46 

258 
Cold 675770 4914916 1.05 516 0.19 0.84 5.16 289.86 

Hot 683416 4922914 0.35 532 0.14 0.28 0.16 300.16 
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