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ABSTRACT 

 

 

EVALUATING THE INTERACTIVE EFFECTS OF TRAFFIC VOLUMES AND 

ACCESS DENSITY ON CRASH FREQUENCY 

 

ALI ALSUBEAI 

2017 

 

 

Control of access points (e.g., driveway density) is an important consideration in 

roadway access management. Research has shown that by limiting the number of access 

points, there is a reduction in the number of conflict points along a roadway, resulting in 

improved safety. The effects of managing access points on crash frequency are 

documented as Crash Modification Factors/Functions (CMF) in the Highway Safety 

Manual (HSM) and the federal Highway Administration’s CMF Clearinghouse. The 

CMFs from the HSM indicate that the impacts of Access Density (AD) on crash 

frequency are a function of both AD and traffic volume (for rural roads). It does not 

include traffic volume in the CMFs for urban roads. Although the function could be 

calculated manually, both AD and traffic volume data from research in this thesis were 

compared to the ranges provided on the CMF Clearinghouse website.   The function is 

available from the CMF Clearinghouse website, but it does not show the interactive 

effects of AD and traffic volume, and the majority of CMFs do not provide associated 

confidence intervals. The objectives of the current research were to develop CMFs for 
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AD, as well as associated confidence intervals through time for various towns and cities 

in Minnesota.  The data used was collected and provided by the following: (1) Highway 

Safety Information Systems (HSIS) over a period of five years at the same sites, (2) the 

Institute of Transportation Engineers (ITE), (3) and Google Earth. The methodology used 

in this study was cross-sectional longitudinal with multivariate statistical analysis. 

Multiple functional classifications of urban roadways were considered, with a focus on 

major/minor collectors and minor arterials. The CMFs were developed for total number 

of crashes, fatal, injury, rear-end, and side-swipe crashes. The interaction between AD 

and traffic volume was considered. Confidence intervals for the resulting CMFs were 

determined. The results of this research will be useful for engineers and planners in 

determining when AD should be changed or limited. 

 

 

 

 

 

 

 

 

 

 

 



1 

 

 

 

CHAPTER 1: INTRODUCTION 

 

1.1 Background 

According to the Institute of Transportation Engineers, access management may be 

described as follows:  

. . . the process or development of a program intended to ensure 

that the major arterials, intersections and freeway systems serving a community 

or region will operate safely and efficiently while adequately meeting the access 

needs of the abutting land uses along the roadway. The use of access 

management techniques is designed to increase roadway capacity, manage 

congestion and reduce crashes. (Institute of Transportation Engineers, 2004, p. 

1)  

 

Access management is a proven method for maintaining and improving roadway 

capacity; traffic flow; and the safety of traffic, pedestrians, and bicyclists on rural and 

urban highways and streets (Gluck & Lorenz, 2010). Improvements to operational 

efficiency and safety lead to reductions in transportation costs. Reductions in delay and 

improvements to traffic flow also reduce vehicle emissions, reducing the environmental 

impacts of transportation. Research has shown that access management related 

improvements to traffic operations and safety have a positive impact on the local 

economy (Benz, et al., 2015). One of the most basic access management methods is 

controlling access density. This can be accomplished by the following.  

1. Managing access ingress and egress to driveways (Figure 1.1)    

2. Using frontage roads (Figure 1.2)  

3. Requiring driveways to access side roads or alleys  

 4. Using combined/shared driveways.  
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These methods can be applied in both urban and rural settings. The ability of engineers 

and planners to predict safety outcomes related to access density is essential in 

determining when control of access points should be implemented. It is also important in 

communicating the benefits of access management to stakeholders including local 

governments, businesses, and property owners.  
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Figure 1.1. Managing ingress and egress to roadways 

(after Garcia, 2014, p. 91) 
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Figure 1.2.  Using frontage roads adjacent to freeways 

(after Garcia, 2014, p.137) 
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1.2 Scope and Objectives  

 

The objective of this research is to develop CMFS for AD using data from 

Minnesota over a five-year period. Multiple functional classifications of urban roadways 

will be considered with a focus on major/minor collectors and minor arterials. CMFS will 

be developed for total, fatal and injury, multiple vehicle collision, and traffic Crash 

occurrences on a driveway access. The interaction between AD and traffic volume will be 

considered. Confidence intervals for the resulting CMF will also be provided. It is 

anticipated that the results of this research will be useful for engineers and planners in 

determining when AD should be changed or limited. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 General Review  

It is important to understand how transportation engineers use the concept of 

Crash Modification Factors/Functions (CMFs), and that information is presented first in 

this section.  Presented next are other important concepts: the impact of traffic volume on 

crash frequency and the importance of access density. That is followed by research 

sources that recognize increasing traffic density and volume that is becoming a 

worldwide problem, with some examples in the United States (US).  This section 

concludes with results of a traffic volume study that was similar to the research that is the 

subject of this thesis, although that study and the current study each have slightly 

different variables.   

2.1.1 CMFs 

The effects of several access management methods on crash frequency are 

documented as Crash Modification Factors/Functions (CMFs) in the Highway Safety 

Manual (Gluck & Lorenz, 2010) and in the Federal Highway Administration's (2017) 

CMF Clearinghouse. The CMFs indicate the relative change in crash frequencies 

compared to base conditions with a value of 1 indicating no change, a value smaller than 

1 indicating a crash reduction, and a value larger than 1 indicating an increase in crash 

frequency. The CMF Clearinghouse provides a quality rating of CMFs based on 

evaluations of the study design, sample size, standard error, potential bias, and the 

diversity of the data (i.e., if the data includes locations from more than a single state). The 

ratings range from one-star (the lowest rating) to Five-stars (the highest rating). The 
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CMFs from the CMF Clearinghouse include the following treatments related to driveway 

density: 

1. Closure or relocation of all driveways from the functional area of an 

intersection (CMFs of 0.93-1.17 for total crashes and 1.41-1.67 for fatal and 

injury crashes, with one-star quality ratings) (Lall, 1995); and 

2. Modifying access point density (a function of access point density and traffic 

volume, the quality is typically unrated) (Mauga & Kaseko, 2010).  

The majority of CMFs are available in the CMF Clearinghouse (Federal Highway 

Administration, 2017) for predicting changes in safety related to driveway density, are 

low quality or are unrated. A search for literature related to the safety impacts of rural 

access control found research that used crash rate analysis (Gattis et al., 2005), which is 

known to result in biased estimates (Hauer, 1995). Other evaluations of the safety 

impacts of access management in the literature, with the majority focusing on the density 

of access points (Gross, et al., 2013), also used crash rate analysis. Overall, managing 

driveway access density reduces both the number and severity of crashes. There is a gap 

in the literature for research into the interaction between access density and traffic 

volume related to crash frequency.  

2.1.2 Research sources that recognize increasing traffic density and volume that is 

becoming a worldwide problem 

The impacts of driveway access management on traffic operations has been 

shown to have several benefits in most cases within two major categories: 1) reductions 

in speed variation and 2) total network travel timesaving (Gluck & Lorenz, 2010). While 
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access management treatments may result in increased travel distances, the increase in 

overall traffic speeds and decreased variation in traffic speeds typically lead to lower 

overall travel times, although not true in every case. The specific benefits related to 

differences in total network travel time are specific to each application and local traffic 

conditions. The majority of such research is based on case studies that use simulation 

software to analyze specific conditions (Du, et al. 2015). For example, Shadewald and 

Prem (2004) conducted speed variation research of taxis in Shanghai, China, equipped 

with GPS to collect data, with speeds at specific locations allowing for comparison of 

access density and variation in taxi speeds. 

2.1.3 The impact of traffic volume on crash frequency and the importance of access 

density 

Traffic volumes have increased in the last decade throughout the world. Traffic 

volume increase impacts safety, a problem that needs to be addressed. For example, in 

Utah (Grant, 2010), reported that traffic volumes have been growing, especially in 

arterial roadways which often have high traffic volume in peak hours. Grant and others 

(2010) conducted research designed to improve highway safety in areas with high traffic 

volume.  Their data was derived from a geographic information system–enabled, web-

delivered data almanac. Their results showed locations of high crash impacts in dense 

traffic and provided some statistics of which lane was the most dangerous in the roadway.  

Data from the MnDOT generally confirms that high traffic volume increases the 

probability of crash occurrences from 1999-2001 and 2003-2004 in Sarasota, FL shown 

in (Table 2.1). 
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Table 2.1. Crash data and access point density for University Parkway in Sarasota, FL 

(after Schultz et al., 2007, p. 80)   

 

AADT = (Total volume of vehicle traffic for 1 year) / 365 days 

Where:  

AADT = Annual Average Daily Traffic 
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Table 2.2. Traffic safety statistics summary, 1965-2014 from MnDOT (2014, p.9)   
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Table 2.3. Traffic crash trends, 2009-2014 from MnDOT (2014, p.10)     
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CHAPTER 3: RESEARCH METHODOLOGY 

 The methodology used in this study was cross-sectional longitudinal with 

multivariate statistical analysis. The methodology is described in this chapter. 

3.1 Cross-Sectional  

           Cross sectional study, design is a methodology to assess diverse types of 

observational data. Cross sectional method is used to evaluate a data that gathered at a 

particular point in time across many entities. The outcome of the comparison group is 

assumed a good indication of ‘what would have been’ for the treatment group if the 

treatment had not been implemented. In order to illustrate the effects of the treatment, 

using the regression is an efficient method after comparing the two groups of the 

outcomes. Regression adjustments are assumed to account for differences impacting the 

outcome between the treated and comparison groups. The effects of the treatment can be 

estimated via use of continuous variables in the regression models. Cross sectional study 

is sensitive to issues such as measurement error, selection bias, and omitted variable bias. 

To illustrate, measurement error is simply error in the measurements of different 

observations. Omitted variables bias happens when the important variables are removed 

from the model. That would lead to incorrect results because there will be biased 

parameters in the model. 
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3.2 Longitudinal Studies 

 In contrast, of cross sectional method, longitudinal study is a method, which 

observes the data in long period (i.e., repeated measurements over time). Longitudinal 

study is used to detect the correlations between variables that are in the data. Also, this 

methodology has two types panel and cohort. The panel data used in this research, were 

collected over five years. These data are defined and identified based on route number, 

beginning point, end point, urban code, county name, city name and others. The major 

benefit of using longitudinal study are providing a clear vision for the researchers to 

observe the difference that might happen on the data over time.  

3.3 Multivariate Statistical Analysis  

  Three statistical models were considered for this study: (1) Negative Binomial 

(NB), (2) Random Parameter Negative Binomial (RPNB), and (3) Poisson Regression, 

although only NB And RPNB were used for the thesis. Both NB and RPNB regression 

models were applied on the four types of crashes (Total, Fi, Mc, and Access).     
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CHAPTER 4: DATA COLLECTION 

4.1 Data sources and collection 

The data were provided by the Highway Safety Information System (HSIS). The 

HSIS provides data with quality that meets FHWA requirements. Data were collected in 

Minnesota State in the years 2009 through 2014. Route number, AADT, number of lanes, 

right shoulder widths, left shoulder widths, lane width, and beginning and ending 

milepost were included in the database for this project. A total of 413 road segments were 

checked in 2009 through 2014 using Google Earth. The reason of collecting data in five 

years was to deal with the changing in the traffic regulations such as changing in speed 

limit, signal light, stop sign and other variables might existed by the time and test the 

system in different situations.  

In addition, HSIS provides data with route ID, county name, city name, and the 

type of the roadway. The pervious information are effective to locate the segment 

accurately and account the number of access points from the intersections, the number of 

access points from the minor roadways/driveways and the horizontal curves. Google 

Earth and Google street view are used to find the total number of access points and the 

horizontal curves. However, Google Earth does not show the start and end point of the 

segment. Therefore, using MnDOT Base Map is an assistant tool beside Google Earth to 

locate the segment and find the required information. This data was collected on urban 

roadways (principal arterials, minor arterials, and urban collectors). The descriptive 

statistics for the data shown in Table 4.1 and 4.2 respectively (after Nujjetty & Sharma, 

2015). Table 4.3 provides mean, standard deviation, minimum, and maximum value for 

each estimated variable in this research.  
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Table 4.1. Variable descriptions   

 

Variable 

Notation 

Variable Description 

ID. Site number 

Year The respective year for the data 

RTSYSNBR Combined route system/route number 

Route Route number 

LENGTH Segment length (miles) 

Access Control of access (1=Yes, 0=No) 

LSHLDWID Left shoulder width (ft) 

RSHLDWID Right shoulder width (ft) 

FUNC_CLS Functional class 

FED_AID Federal Aid System (1=Yes, 0=No) 

NO_LANES Total Number of Lanes 

LANEWID Lane Width (ft) 

RODWYCLS Roadway Classification 

Start_MP Beginning milepost of segment 

End_MP Ending milepost of segment 

NO_INTS Number of intersections 

NO_ACCES Number of Access Points 
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Table 4.2 Variable descriptions (continued)  

Variable 

Notation 

Variable Description 

NO_HC Number of Horizontal Curves 

INT_DENS Intersection density (intersections per mile) 

ACC_DENS Access density (points per mile) 

HC_DENS Horizontal curve density (curves per mile) 

AADT  Annual Average Daily Traffic  

Total Crash The Total Number of Crashes 

Fi Crash The Number of fatal and injury crashes 

Mc Crash Multiple Vehicle Collision (i.e., crash involves more than one 

vehicle) 

Access Crash Traffic Crash occurs on a driveway access  

LN_AADT Natural logarithm of AVE_AADT 

LN_LEN Natural logarithm of Length 

Access_Daily_T

rips_wkdy 

Average Number of Vehicle Trips from the Access Points During 

the Weekdays 

Access_Daily_T

rips_wkend 

Average Vehicle Trips from the Access Points During the Weekend 

Post- Speed 

MPH 

Post speed MPH 
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Table 4.3. Descriptive statistics for urban roadways data  

 

 urban roadways (N= 413) 

Variable Mean Std. Dev. Min Max 

LSHLDWID 2.14 3.37 0.00 12.00 

RSHLDWID 2.20 3.50 0.00 22.00 

FUNC_CLS 17.05 1.75 14.00 19.00 

AADT 4457.00 5193.40 64.00 32310.00 

Length 0.27 0.19 0.01 0.99 

Access 1.00 0.05 1.00 2.00 

LN_LEN -1.50 0.70 -4.60 -0.003 

LN_AADT 7.68 1.29 4.15 10.38 

PRINC_AT 0.16 0.36 0.00 1.00 

MINOR_AR 0.18 0.39 0.00 1.00 

URBAN_CO 0.65 0.47 0.00 1.00 

Fed_aid 16335.00 NA 0.00 16666.00 

Rodwycls 3.00 26.39 3.00 99.00 

NO_LANES 2.0 0.00 2.00 2.00 

LANEWID 11.88 0.62 10.00 13.00 

NO_INTS 1.24 1.38 0.00 6.00 

NO_ACCES 9.92 6.40 1.00 39.00 

NO_HC 0.33 0.56 0.00 3.00 

INT_DENS 6.45 10.25 0.00 105.26 

ACC_DENS 51.29 52.35 1.36 615.38 

HC_DENS 1.89 5.92 0.00 100.00 

TOTAL 1.16 2.35 0.00 22.00 

FI 0.02 0.17 0.00 3.00 
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Mc_crash 0.90 2.01 0.00 23.00 

Access_crash 0.04 0.26 0.00 3.00 

Access_Daily_Trips_wkdy 2317.84 1311.46 

 

144.00 4967.00 

Access_Daily_Trips_wkend 1524.82 

 

842.72 

 

113.00 3200.00 

Post- Speed MPH 40.00 9.37 25.00 65.00 
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 Figure 4.1. A screenshot of MnDOT basemap (after MnDOT, 2017, n.p.) 
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4.2 Access Density  

            Access density is defined as the number of access points per mile. Access density 

impacts safety on roadways. Safety impacts could exist as crashes. Increasing the access 

density in a particular area could either affect the operational performance on roadways 

in the short or long term by increasing travel times, fuel consumption, and vehicular 

emissions. Access point counts were collected using Google Earth for each segment in 

this study. By knowing the access points and the segment length, access density was 

measured as:  

Access Density = access points / segment length (mile) 

Overall, the minimum access density is 2.133 and the maximum is 34.55 

In table 4.4, the access density is the term most often used in comparisons including 

signal density, median density, and driveway density.  

 

Table 4.4. Number of online hits in 2009 for access related terms from the TRB  

(after Saxena, 2010, p. 3.) 

No Term Number of hits in TRR 

(TRB) 

1 Access Density 1039 

2 Signal Density 767 

3 Median Density 458 

4 Driveway Density 108 
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4.3 Comparison between Access Density before – after rechecking locations 

After calculating access density based on the data derived from HSIS, 145 

locations out of 413 locations had high density (greater than 50 points per mile) 

according to locations on the Google Earth. These were re-checked for errors. It was 

found that these locations had counted access points on both sides of the street. To correct 

these measurements, the distances between access points were measured and the average 

value was calculated for each segment. 

 

Table 4.5. The variance in density before and after checking 

  

Access Density Before 

Rechecking 

 

Access Density After 

Rechecking 

Mean 51.29 

 

20.67 

Standard Deviation 52.35 

 

7.75 

 

Min 1.36 2.13 

Max 615.38 34.55 
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4.4 Traffic volume  

Traffic volume is the number of vehicles crossing a section of road per unit time 

at any selected period. In this research, traffic volume is represented in two variables: 

Annual Average Daily Traffic (AADT) and the annual daily trips. The AADT was 

provided by HSIS in this study. The AADT is estimated using permanent counting 

stations, temporary coverage counts (i.e., counts taken on different segments for a few 

days once every couple of years), and adjustment factors. The ITE trip generation manual 

is used to predict the number of trips generated by specific land use types. This is used 

when it is not possible to collect trip generation data, which is different from AADT and 

road traffic volumes. For instance, to calculate the annual daily trips for a general light 

industrial, the manual provides the number of studies that have been creating in the same 

category, average number of users, and the directional distribution. It provides an 

equation in order to get a specific number of annual daily trips based on the situation that 

shall be studies.  Figure 4.2 shows the evolution of the traffic volume in 1970- 2015 

provided by MnDOT.  
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Figure 4.2.  The evolution of traffic volume from 1970 to 2015  

(after MnDOT, 2014, p.3)   
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4.5 Crash Data 

Each state in the USA maintains a crash database. For the states that participate in 

the HSIS system, these data are provided and stored in a data repository. The data is 

gathered from multiple sources of information and assists in the planning of safety 

programs and projects. It is important that the data is accurate and timely. According to 

MnDOT (2017) , the basic components in the hazard identification process are as 

follows. 

1. Establish a crash records database and safety objectives.  

2. Review the crash records.  

3. Identify crash frequencies/rates.  

4. Compare to safety objectives and identify potential problem locations. 

5. Develop alternative mitigation strategies.  

6. Implement safety projects.  

7. Evaluate the effectiveness of safety projects through a before/after or other 

appropriate study.  

In 2014, there were about 32,675 traffic fatalities throughout the country (based on the 

most recent available data from 2014) and 411 in Minnesota (MnDOT, 2015, p.1). The 

respective fatality rates per hundred million miles of travel were 1.07 and 0.70.  The 

MnDOT and the HSIS provided an overview of historical and recent data describing the 

overall situation for the state of Minnesota traffic system (Tables 4.5 through 4.6) as a 

starting point for the research in this thesis. Table 4.6 provides the number of fatalities 

per year since 1910 until 2015 retrieved from MnDOT and the following figure shows 

trend of traffic deaths, vehicle miles traveled, and fatality rate respectively. Also, Table 
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4.7 describes roadway categories and mileage numbers of each type in the state of 

Minnesota (Nujjetty & Sharma, 2015). The remarkable types for this research are urban 

multilane divided non-freeways which covers 1,012.572 miles and urban multilane 

undivided non- freeways which covers 542.74 miles. The total mileage of Minnesota 

roadways is 142,977.1 and the urban freeways represent 1,555.312 miles, which is 1.00% 

of the total number.  
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Table 4.6. The number of Minnesota traffic fatalities from 1910-2015 (after MnDOT, 

2015, p. 4) 
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Table 4.7. The HSIS roadway mileage by roadway category for the state of Minnesota, 

2012 data (Nujjetty & Sharma, 2015, p.8)    

  

Roadway Category  Mileage 

Urban freeways>= 4 Lanes 409.905 

Urban freeways < 4 Lanes 2.28 

Urban multilane divided non-freeways  1,012.572 

Urban multilane undivided non- freeways  542.74 

 

Urban 2 In highways  15,948.9 

Rural freeways>= 4 Lanes  662.84 

Rural freeways < 4 Ins  0.00 

Rural multilane divided non-freeways  912.173 

Rural multilane undivided non-freeways 85.447 

Rural 2 In highways  39,053.78 

Other  84,775.09 

Total  142,977.1 
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CHAPTER 5.  STATISTICAL REGRESSION MODELS 

 Three statistical models were considered for this thesis: (1) Negative Binomial 

(NB), (2) Random Parameter Negative Binomial (RPNB), and (3) Poisson Regression, 

although only NB and RPNB were used.    

5.1 Poisson Regression Model 

Theoretically, Poisson Regression consider as a nonlinear regression model in 

case the response outcomes are discrete (Kutner et al., 2008).  Poisson Regression is 

useful when the outcome is a count. The general model of Poisson regression can be 

stated as follows: 

  Yj = E {Yi } + ∑I                 i = 1,2,….. , n 

And there are some commonly used functions for Poisson regression: 

µj= µ (Xi, β) = Xi β 

µj = µ (Xi, β) = exp (Xi, β) 

µj = µ (Xi, β) = log (Xi, β) 

The mean responses µi must be nonnegative in all three cases. 

Poisson Regression is valuable if the mean approximately equal to the variance otherwise 

there are another models could be used in order to mitigate the “over dispersion”.   

In this case, the independent variable appears as the expected number of crashes of type i 

on segment j represented as µj.  The other variables represent the dependent variables 

where:  

Xj = a set of traffic and geometric variables characterizing segment j; 

β= regression coefficients estimated with maximum likelihood that quantify the 

relationship between E(Yij) and variables in X; 
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The following Figure describes the relationship between the variance and the mean. 

5.2 Negative Binomial Model 

Clearly, NB has many features as same as Poisson only if the variance is identical 

to the mean. In other words, in Poisson regression, the variance and mean are equal that 

means there are no over-dispersion in the data, which fit is the Poisson model. In the 

other hand, negative binomial could account for that added dispersion in the data (Wood 

et al. 2016). The NB is the essential statistical method applied in this research in order to 

detect the frequency of crashes in different segment and locations.  

 The following parameters describe the model: 

μij = E(Yij) = exp(Xjβ + ln Lj)  

Where: 

μij = E(Yij) = the expected number of crashes of type i on segment j; 

Xj = a set of traffic and geometric variables characterizing segment j; 

β= regression coefficients estimated with maximum likelihood that quantify the 

relationship between E(Yij) and variables in X; 

Lj = length of segment j; and, 

ln Lj = the natural logarithm of segment length. 
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The mean-variance relationship of the negative binomial regression model is expressed 

as: 

VAR(Yij) = E(Yij) + α[E(Yij)]2 

Where:  

E(Yij) = the expected number of crashes of type i on segment j; 

VAR(Yij) = variance of crashes of type i on segment j; and 

α = over dispersion parameter. 

5.3 Comparison between Poisson and Negative Binomial Models 

Poisson and NB Models have been the preferred tools to evaluate traffic accident 

in the years 1980-2000. As with any tool, there are limitations in use and strategy, which 

give an incentive to develop the idea and performance. In Poisson case, the variance-to-

mean ration of the accident data requires to be about 1, which is not possible in many 

cases. In addition, accident data needs to be uncorrelated in time in both Poisson and 

negative binomial models (Lawless, J., 1987). The NB regression models have more 

options to illustrate clearly the correlation between accident occurrence and the site 

geometric characteristics. Therefore, in order to reach to high level of accuracy, the data 

needs to be assessed and evaluated by another type of regression model that would be 

more suitable.  

5.4 Random Parameter Negative Binomial (RPNB) Model   

The previous comparison between Poisson and NB shows some weak points that 

need to be treated in a proper way in order to get accurate estimates. Therefore, the 

RPNB is the appropriate model with the variety of properties that provided in analyzing 

accident frequency and the effects of the interaction of different variables (Chin & 
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Quddus, 2003). In addition, the random parameters allows correcting for heterogeneity 

that can appear from a number of different elements interacts in the model 

(Venkataraman et al., 2013). However, the RPNB is the primary model besides the 

standard negative binomial in this research. 
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CHAPTER 6. DATA ANALYSIS AND RESULTS 

6.1 Data analysis and results for the Negative Binomial Regression Model   

 The output of NB Regression Model determines the interactive variables that have 

impacts on crash frequency are presented in this section. All segments were assessed 

using data from urban roads. Negative binomial models to detect the influences on crash 

frequency tested three major variables. Traffic volume has an impact on crash occurrence 

in this model and it is calculated by monitoring two factors, which are the Annual 

Average Daily Traffic (AADT) and the access daily trips. Also, access density has an 

essential impact on crash frequency and it is represented in the model by access density. 

Negative binomial regression models were applied on four types of crashes. Total crash, 

Fi crash, Mc crash, and Access crash are the crash types were evaluated in this research. 

In Total crash, Fi crash, Mc crash, and Access crash models, the regression parameters 

associated with the natural logarithm of AADT and with length, include the following 

variables: access density, lane width, intersection density, and access daily trips. The 

coefficients of the regression are very important in order to make a decision whether 

positive effect or impact. The negative coefficient represents that there is a decreasing 

crash frequency rate, and the variable has a positive impact on the model. On the other 

hand, the positive coefficients represent that the crash rate will grow because of these 

variables, which interact in the model, and require appropriate adjustment.  The standard 

negative binomial regression model was used on four types of crashes (1=Total, 2= Fi, 3= 

Mc, 4=Access) with the following results by type (Tables 10-21). 
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6.1.1. Total crash results 

There were four types of crashes examined in the NB model in this thesis: (1) 

Total crash, (2) Fi crash, (3) Mc crash, and (4) Access crash.  The assumption was that 

most of variables that were tested would increase total crashes.  That was the case 

throughout the results; however, two variables would decrease total crashes.  In the case 

of total crash results, however, the responses obtained do not make sense and were not 

logically predictable.  For example, in Table 6.1.1.1, the Intercept and the AD interacting 

with AADT are two negative values.  That means that the increase in crash frequency is 

smaller (from the main effect of each variable) at larger values of the variables than at 

small values. The other variables in Table 6.1.1.1 will likely have effects to increase total 

crashes.  
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Table 6.1.1.1.  NB effects of access density on total crashes  

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.4546 

Associated standard error for Alpha = 0.0277 

t-statistic for the alpha value = 16.41 

Log likelihood = -5566.8000  
 

Variables Coef Std. Error z value Pr(>|z|) [95% Conf. Interval] 

(Intercept) -7.047 1.05 -6.70 <0.0001 -9.14 -4.96 

lnaadt 
 

0.4448  0.07    6.30 <0.0001 0.30 -0.58 

 

lnlength 
 

0.8818   0.07   11.95   <0.0001 0.73 1.02 

 

access_dens 
 

0.02207 0.007    3.15 0.001588 0.01 0.03 

 
lanewid 0.3572 0.07   4.78 <0.0001 0.20 0.51 

 
Divaadt = 1/aadt 109.1   29.20    3.73 0.000187 53.57 166 

 

int_dens 

 
0.01914  0.004    4.40 <0.0001 0.01 0.03 

 

access_daily_trip

s_wkdy   
0.000312

4   

<0.0001 0.97 0.33 <0.0001 <0.0001 

access_dens:aadt 

 

-0.000000

3   

<0.0001 -0.37 0.71 <0.0001 <0.0001 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.1.1.2.  NB effects of Access Density on total crashes   

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.4539 

Associated standard error for Alpha = 0.0276  

t-statistic for the alpha value = 16.44 

Log likelihood = -5567.7130  

Variables Coef Std. Error z 

value 

Pr(>|z|) [95% Conf. Interval] 

(Intercept) -6.99   1.04 -6.70 <0.0001 -9.08 -4.91 

lnaadt 

 
0.43 0.07 6.25 <0.0001 0.29 0.57 

lnlength 

 
0.88 0.07 11.93 <0.0001 0.73 1.02 

 

access_dens 

 
0.02 0.007 3.24 0.001 0.009 0.03 

lanewid 0.36 0.07 4.88 <0.0001 0.21 0.51 

 

Divaadt = 

1/aadt 
108.00 29.10 3.72 0.0001 52.80 165 

int_dens 

 
0.02 0.004 4.32 <0.0001 0.009 0.03 

 

access_dens:aa

dt 

 

<0.0001 <0.0001 -0.23 0.81 <0.0001 <0.0001 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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 Table 6.1.1.3.   NB effects of access density on total crashes  

 

 

 

 

 

 

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.4546  

Associated standard error for Alpha = 0.0277  

t-statistic for the alpha value = 16.41 

Log likelihood = -5566.9460  

 

Variables Coef Std. Error z value Pr(>|z|) [95% Conf. Interval] 

(Intercept) -6.88 0.95 -7.24 <0.0001 -8.80 -4.98 

lnaadt 
 

0.42 0.04 9.72 <0.0001 0.33 0.50 

 

lnlength 
 

0.88 0.07 11.98 <0.0001 0.74 1.02 

access_dens 
 

0.02 0.006 3.50 0.0004 

 

0.009 0.03 

lanewid 0.35 0.07 4.80 <0.0001 0.21 0.51 

Divaadt = 1/aadt 104.00 26.80 3.90 <0.0001 54.00 157.00 

int_dens 

 
0.02 0.004 4.42 <0.0001 0.01 0.02 

access_daily_tri

ps_wkdy   

<0.0001 <0.0001 0.92 0.35 <0.0001 <0.0001 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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6.1.2 Fi Crashes  

In the case of Fi crash results, the estimates made sense and were logically 

predictable.  For example, in Table 6.1.2.1, the Intercept is a negative value. The variable 

of AD interacting with AADT is a positive value, which means that it has a negative 

effect on the model (increasing the Fi crash frequency).  

Table 6.1.2.1. NB effects of access density on Fi Crashes   

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.1576  

Associated standard error for Alpha = 0.0786 

t-statistic for the alpha value = 2.00 

Log likelihood = -397.7030   

 

Variables Coef Std. Error z 

value 

Pr(>|z|) [95% Conf. Interval] 

(Intercept) 10.70 4.64 -2.32 0.02 -20.50 -2.09 

 
lnaadt 

 
0.55 0.28 1.93 0.05 0.01 1.12 

 
lnlength 

 
1.28 0.31 4.13 <0.0001 0.67 1.94 

 
access_dens 

 
0.02 0.03 0.60 0.54 -0.04 0.08 

 

lanewid 0.25 0.34 0.73 0.46 -0.38 0.96 

 
Divaadt = 1/aadt 173.00 119.00 1.45 0.14 -94.10 383 

 
int_dens 

 
0.02 0.01 1.15 0.24 -0.02 0.05 

 
access_daily_trips_wk

dy   
<0.0001 <0.0001 1.26 0.20 <0.0001 <0.0001 

access_dens:aadt 

 
<0.0001 <0.0001 0.97 0.32 <0.0001 <0.0001 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.1.2.2. NB effects of access density on Fi Crashes   

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.1515  

Associated standard error for Alpha = 0.0759  

t-statistic for the alpha value = 1.99 

Log likelihood = -399.2770   

 

Variables Coef Std. Error z 

value 

Pr(>|z|) [95% Conf. Interval] 

(Intercept) 10.22 4.65 -2.19 0.02 -20.10 -1.50 

lnaadt 

 
0.52 0.28 1.83 0.06 

 

-0.02 1.09 

 

lnlength 

 
1.28 0.31 4.15 <0.0001 0.68 1.94 

 

access_dens 

 
0.02 0.03 0.79 0.42 -0.03 0.08 

lanewid 0.25 0.34 0.74 0.45 -0.38 0.98 

 

Divaadt = 1/aadt 165.00 119.00 1.38 0.16 -101.00 375.00 

int_dens 

 
0.02 0.02 1.08 0.27 -0.02 0.05 

 

access_dens:aadt 

 

<0.0001 <0.0001 0.95

7 

0.33 <0.0001 <0.0001 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.1.2.3. NB effects of access density on Fi Crashes  

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.1545  

Associated standard error for Alpha = 0.0777  

t-statistic for the alpha value = 1.98 

Log likelihood = -398.6170 

Variables Coef Std. Error z 

value 

Pr(>|z|) [95% Conf. Interval] 

(Intercept) 12.50 4.29 -2.92 0.003 -21.70 -4.53 

 

lnaadt 

 
0.76 0.18 4.11 <0.0001 0.41 1.13 

 

lnlength 

 
1.25 0.31 4.06 <0.0001 0.65 1.91 

 

access_dens 

 
0.03 0.02 1.48 0.13 -0.01 0.08 

 

lanewid 0.24 0.33 0.73 0.46 -0.38 0.96 

 

Divaadt = 

1/aadt 
220.00 106.00 2.07 0.03 -21.80 406.00 

int_dens 

 
0.02 0.01 1.26 0.20 -0.02 0.06 

 

access_daily

_trips_wkdy   

<0.0001 <0.0001 1.25 0.20 <0.0001 <0.0001 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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6.1.3 Mc crash 

In the case of Mc crash results, the largest impact came from the variable 

(Divaadt). The following variables lnlength, lnaadt, and lanewid have significant impacts 

on the model based on the variables signs and magnitudes.  

Table 6.1.3.1 NB effects of access density on MC Crashes   

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.3847 

Associated standard error for Alpha = 0.0253  

t-statistic for the alpha value = 15.20 

Log likelihood =  -4863.8390  

Variables Coef Std. Error z 

value 

Pr(>|z|) [95% Conf. Interval] 

(Intercept) -7.84 1.17 -6.68 <0.0001 -10.20 -55.30 

 
lnaadt 

 
0.42 0.07 5.41 <0.0001 0.26 0.57 

 
lnlength 

 
0.89 0.08 10.9

7 

<0.0001 0.73 1.05 

access_dens 

 
0.02 0.007 2.93 0.003 0.007 0.03 

 
lanewid 0.41 0.08 4.98 <0.0001 0.24 0.58 

Divaadt = 

1/aadt 
103.00 32.40 3.18 0.001 41.90 166.00 

 

int_dens 

 
0.02 0.02 4.91 <0.0001 0.01 0.03 

 
access_daily_tr

ips_wkdy   
<0.0001 <0.0001 1.18 0.23 <0.0001 <0.0001 

access_dens:aa

dt 

 

<0.0001 <0.0001 -0.42 0.67 <0.0001 <0.0001 

 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.1.3.2. NB effects of access density on MC crashes 

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.3836 

Associated standard error for Alpha = 0.0252 

t-statistic for the alpha value = 15.20 

Log likelihood =   -4865.1880  

 

Variables Coef Std. Error z 

value 

Pr(>|z|) [95% Conf. Interval] 

(Intercept) -7.79 1.16 -6.68 <0.0001 -10.10 -5.47 

 

lnaadt 

 
0.40 0.07 5.33 <0.0001 0.25 0.56 

lnlength 

 
0.89 0.08 10.94 <0.0001 0.73 1.05 

access_dens 

 
0.02 0.007 3.04 0.002 0.008 0.03 

 

lanewid 0.42 0.08 5.09 <0.0001 0.25 0.59 

 

Divaadt = 1/aadt 102.00 32.20 3.17 0.001 41.20 165.00 

 

int_dens 

 
0.02 0.003 4.82 <0.0001 0.01 0.03 

 

access_dens:aadt 

 

<0.0001 <0.0001 -0.28 0.77 <0.0001 <0.0001 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italic. 
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Table 6.1.3.3. NB effects of access density on MC crashes 

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.3847  

Associated standard error for Alpha = 0.0253 

t-statistic for the alpha value = 15.20 

Log likelihood = -4864.0310   

Variables Coef Std. Error z 

value 

Pr(>|z|) [95% Conf. Interval] 

(Intercept) -7.64 1.06 -7.17 <0.0001 -9.80 -5.51 

lnaadt 

 
0.39 0.04 8.21 <0.0001 0.29 0.48 

 

lnlength 

 
0.89 0.08 11.01 <0.0001 0.74 1.05 

access_dens 

 
0.02 0.006 3.20 0.001 0.008 0.03 

 

lanewid 0.42 0.08 5.00 <0.0001 0.24 0.59 

 

Divaadt 

 = 1/aadt 
97.30 29.80 3.26 0.001 41.86 155.00 

 

int_dens 

 
0.02 0.004 4.94 <0.0001 0.01 0.03 

 

access_daily

_trips_wkdy   

<0.0001 <0.0001 1.13 0.25 <0.0001 1.09 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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6.1.4 Access crash 

In the case of Access crash results, the largest impact on the model came from the 

(Divaadt) variable. The following variables lnlength, lnaadt, and lanewid have significant 

impacts on the model based on the variables signs and magnitudes. 

Table 6.1.4.1. NB effects of access density on Access crashes 

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.2050  

Associated standard error for Alpha = 0.0673 

t-statistic for the alpha value = 3.04 

Log likelihood =  -758.8470  

Variables Coef Std. Error z 

value 

Pr(>|z|) [95% Conf. Interval] 

(Intercept) 17.40 3.41 -5.10 <0.0001 -24.90 -10.60 

 

lnaadt 

 
0.62 0.20 2.97 0.002 0.21 1.05 

lnlength 

 
0.73 0.20 3.53 0.0004 0.36 1.12 

access_dens 

 
0.04 0.02 1.98 0.04 0.001 0.08 

 

lanewid 0.77 0.24 3.15 0.001 0.29 1.30 

Divaadt = 

1/aadt 
224.00 70.40 3.17 0.001 74.60 369.00 

int_dens 

 
0.02 0.01 1.50 0.13 -0.008 0.04 

 

access_daily

_trips_wkdy   

<0.0001 <0.0001 2.25 0.02 <0.0001 <0.0001 

access_dens:

aadt 

 

<0.0001 <0.0001 -1.29 0.19 <0.0001 <0.0001 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.1.4.2. NB effects of access density on Access crashes 

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.1992  

Associated standard error for Alpha = 0.0662  

t-statistic for the alpha value = 3.00 

Log likelihood =   -763.7940  

Variables Coef Std. Error z 

value 

Pr(>|z|) [95% Conf. Interval] 

(Intercept) 16.10 3.37 -4.77 <0.0001 -23.30 -9.47 

lnaadt 

 
0.52 0.20 2.56 0.01 0.12 0.93 

 

lnlength 

 
0.74 0.20 3.53 0.0004 0.36 1.13 

access_dens 

 
0.04 0.02 2.07 0.03 .003 0.08 

 

lanewid 0.76 0.24 3.13 0.001 0.28 1.29 

Divaadt = 

1/aadt 
206.60 70.00 2.95 0.003 59.30 350.00 

 

int_dens 

 
0.01 0.01 1.44 0.14 -0.009 0.04 

 

access_dens:aa

dt 

 

<0.0001 <0.0001 -1.00 0.31 <0.0001 <0.0001 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.14.3. NB effects of access density on Access crashes 

Number of obs = 2065 

Prob > chi2 =0.0000 

Alpha = 0.2032  

Associated standard error for Alpha = 0.0668 

t-statistic for the alpha value = 3.04 

Log likelihood = -760.6270  

Variables Coef Std. Error z 

value 

Pr(>|z|) [95% Conf. Interval] 

(Intercept) -15.60 3.14 -4.97 <0.0001 -22.40 -9.40 

lnaadt 

 
0.39 0.12 3.23 0.001 0.15 0.63 

 

lnlength 

 
0.76 0.20 3.65 0.0002 0.38 1.14 

access_dens 

 
0.02 0.01 1.49 0.13 -0.006 0.05 

lanewid 0.78 0.24 3.17 0.001 0.29 1.31 

Divaadt = 

1/aadt 
177.10 60.39 2.76 0.005 43.68 304.55 

 

int_dens 

 
0.01 0.01 1.43 0.15 -0.009 0.04 

 

access_daily_t

rips_wkdy   

<0.0001 <0.0001 2.07 0.03 <0.0001 <0.0001 

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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6.2. Data analysis and results for the Random Parameter Negative Binomial (RPNB) 

Model results and discussion 

 

 

 The output of the Random Parameter Negative Binomial (RPNB) regression 

model determines the interactive variables that have impacts on crash frequency and 

safety, and they are presented in this section. All segments were estimated using urban 

road data. The random parameter negative binomial model to detect their influences on 

crash frequency tested two major variables. Traffic volume has an impact on crash 

occurrence in this model and it is calculated by monitoring two factors, which are the 

AADT and the access daily trips. Also, access density has an essential impact on crash 

frequency and it is represented in the model by access density, intersection density, and 

horizontal density. Random parameter negative binomial regression model were applied 

on four types of crashes. Total crash, Fi crash, Mc crash, and Access crash are the crash 

types were evaluated in this research. In Total crash, Fi crash, Mc crash, and Access 

crash models, the regression parameters associated with natural logarithm of the AADT 

and length in addition to access density, lane width, intersection density and access daily 

trips. The essential indicator is the coefficients of the regression. The negative coefficient 

represents that there is a decreasing on the crash frequency and the variable has a positive 

impact on the model. On the other hand, the positive coefficients represent that the crash 

rate will grow because of these variables, which needs to be taken into consideration 

when using this model. The standard negative binomial regression models were used on 

the different types of crashes (Total, Fi, Mc, and Access), and the results are shown in 

Tables 22-33.  
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6.2.1. Total crashes  

 There were four types of crashes examined in the RPNB model in this thesis: (1) 

Total crash, (2) Fi crash, (3) Mc crash, and (4) Access crash.  The assumption was that 

most of variables that were tested would increase total crashes.  That was the case 

throughout the results; however, three variables would decrease total crashes.   In the case 

of total crash results, however, the responses obtained do not make sense and were not 

logically predictable.  For example, in Table 6.2.1.1, the Intercept, the AD interacting 

with AADT, and the access daily trips in week days are three negative values.  That 

means that they have an effect on the model beside their magnitudes. The other variables 

in Table 6.2.1.1 will likely increase total crashes.  
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Table 6.2.1.1. RPNB on Total crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.101 

Associated standard error for Alpha = 0.026 

t-statistic for the alpha value = 3.88 

Log likelihood = -2368.75 

 

Variables Coef Std. Error z 

value 

Pr(>|z|) Variance StdDev 

(Intercept) -3.59 0.83 -4.29 <0.0001 1.97 1.40 

lnaadt 

 
0.46 0.09 4.79 <0.0001   

lnlength 

 
0.95 0.14 6.53 <0.0001   

access_dens 

 
0.02 0.01 2.25 0.02   

Divaadt = 1/aadt 57.50 34.80 1.65 0.09   

int_dens 

 
0.02 0.008 2.78 0.005   

access_daily_tri

ps_wkdy 

<0.0001 <0.0001 -0.33 0.73   

access_dens:aad

t 

 

<0.0001 <0.0001 -1.94 0.05   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.2.1.2. RPNB on Total crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.10 

 

Associated standard error for Alpha = 0.025 

 

t-statistic for the alpha value = 4.00 

Log likelihood = -2370.63  

 

Variables Coef Std. Error z value Pr(>|z|) Variance StdDev 

(Intercept) -2.46 0.59 -4.13   <0.0001 1.97 1.40 

lnaadt 

 
0.32 0.06 4.98   <0.0001   

lnlength 

 
0.96 0.14 6.57   <0.0001   

access_dens 

 
0.02 .01 1.69    0.09   

Divaadt = 1/aadt 31.50 32.00 0.98    0.32   

int_dens 

 
0.02 0.008 2.67    0.007   

access_daily_tri

ps_wkdy 

<0.0001 <0.0001 -0.48    0.63   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.2.1.3. RPNB on Total crashes  

Number of obs = 2065 

Id: 413 

Alpha = 0.10 

Associated standard error for Alpha  = 0.025 

 

t-statistic for the alpha value = 4.00 

Log likelihood = -2368.81 

 

Variables Coef Std. Error z value Pr(>|z|) Variance StdDev 

(Intercept) -3.67    0.80 -4.56   <0.0001 1.97 1.40 

lnaadt 

 
0.46 .09 4.89   <0.0001   

lnlength 

 
0.95 0.14 6.53   <0.0001   

access_dens 

 
0.02 0.01 2.23    0.02   

Divaadt = 1/aadt 58.10 34.80 1.67    0.09   

int_dens 

 
0.02 0.008 2.80    0.005   

access_dens:aadt <0.0001 <0.0001 -1.97    0.04   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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6.2.2. Fi Crash  

 In the case of Fi crash results, all variables are positive which means that crash 

occurrence is likely to increase which is predictable and logical.  For example, in Table 

6.2.2.1, the Intercept, the AD interacting with AADT, and the access daily trips in week 

days, and the other variables are positive values.  That means that they have a negative 

effect on the model, which based on the variables sign and magnitude.  

Table 6.2.2.1. RPNB on Fi crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.15 

Associated standard error for Alpha = 0.001 

t-statistic for the alpha value = 150.00 

Log likelihood = -199.134  

Variables Coef Std. Error z 

value 

Pr(>|z|) Variance StdDev 

(Intercept) -7.89 2.48 -3.18 0.001 <0.0001 0.002 

lnaadt 

 
0.56 0.28 2.02 0.04   

lnlength 

 
1.30 0.32 4.01 <0.0001   

access_dens 

 
0.02 .03 0.65 0.51   

Divaadt = 1/aadt 168.00 114.00 1.47 0.14   

int_dens 

 
0.02 0.02 1.10 0.27   

access_daily_tri

ps_wkdy 

<0.0001 <0.0001 1.26 0.20   

access_dens:aad

t 

 

<0.0001 <0.0001 0.95 0.34   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.2.2.2. RPNB on Fi crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.15 

Associated standard error for Alpha = 0.001 

 

t-statistic for the alpha value = 150.00 

Log likelihood =  -199.579  

Variables Coef Std. Error z value Pr(>|z|) Variance StdDev 

(Intercept) -9.67 1.69 -5.72 <0.0001 <0.0001 0.003 

lnaadt 

 
0.75 0.18 4.27 <0.0001   

lnlength 

 
1.28 0.32 3.95 <0.0001   

access_dens 

 
0.03 0.02 1.49 0.13   

Divaadt = 1/aadt 214.00 102.00 2.11 0.03   

int_dens 

 
0.02 0.02 1.21 0.22   

access_daily_tri

ps_wkdy 

<0.0001 <0.0001 1.24 0.21   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.2.2.3. RPNB on Fi crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.15 

Associated standard error for Alpha = 0.001 

t-statistic for the alpha value = 150.00 

Log likelihood = -199.923  

Variables Coef Std. Error z value Pr(>|z|) Variance StdDev 

(Intercept) -7.27 2.45 -2.97 0.003 <0.0001 0.005 

lnaadt 

 
0.53 0.28 1.90 0.05   

lnlength 

 
1.31 0.32 4.05 <0.0001   

access_dens 

 
0.02 0.03 0.83 0.40   

Divaadt = 1/aadt 159.00 114.00 1.39 0.16   

int_dens 

 
0.02 0.01 1.03 0.30   

access_dens:aadt <0.0001 <0.0001 0.93 0.35   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italic. 
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6.2.3. Mc crash  

 In the case of Mc crash results, however, the responses obtained do not make 

sense and were not logically predictable.  For example, in Table 6.2.3.1, the Intercept, the 

AD interacting with AADT, and the access daily trips in week days are three negative 

values. That means that they have a positive effect on the model based on the variables 

sign and magnitude. The other variables in Table 6.2.3.1 will likely increase total crashes.         

Table 6.2.3.1. RPNB on Mc crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.12 

Associated standard error for Alpha = 0.006 

t-statistic for the alpha value = 20.00 

Log likelihood = -2064.37 

Variables Coef Std. Error z 

value 

Pr(>|z|) Variance StdDev 

(Intercept) -3.97 0.93 -4.24 <0.0001 2.31 1.52 

lnaadt 

 
0.45 0.10 4.19 <0.0001   

lnlength 

 
0.99 0.16 6.09 <0.0001   

access_dens 

 
0.03 0.01 2.43 0.01   

Divaadt = 1/aadt 57.80 39.10 1.48 0.13   

int_dens 

 
0.03 0.009 3.21 0.001   

access_daily_tri

ps_wkdy 

<0.0001 <0.0001 -0.34 0.73   

access_dens:aadt 

 

<0.0001 <0.0001 -1.71 0.08   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.2.3.2. RPNB on Mc crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.13 

 

Associated standard error for Alpha = 0.008 

 

 

t-statistic for the alpha value = 16.25 

Log likelihood =  -2065.84  

 

Variables Coef Std. Error z value Pr(>|z|) Variance StdDev 

(Intercept) -2.85 0.66 -4.31 <0.0001 2.31 1.52 

 

lnaadt 

 
0.31 0.07 4.34 <0.0001   

lnlength 

 
0.99 0.16 6.13 <0.0001   

access_dens 

 
0.02 0.01 1.96 0.05   

Divaadt = 1/aadt 32.30 36.10 0.89 0.37   

int_dens 

 
0.03 0.009 3.10 0.001   

access_daily_tri

ps_wkdy 

<0.0001 <0.0001 -0.46 0.64   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.2.3.3. RPNB on Mc crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.13 

 

Associated standard error for Alpha  = 0.008 

 

t-statistic for the alpha value = 16.25 

Log likelihood =  -2064.43  

 

Variables Coef Std. Error z value Pr(>|z|) Variance StdDev 

(Intercept)  -4.06 0.90 -4.50 <0.0001 2.31 1.52 

lnaadt 

 
0.45 0.10 4.27 <0.0001   

lnlength 

 
0.99 0.16 6.10 <0.0001   

access_dens 

 
0.03 0.01 2.42 0.01   

Divaadt = 1/aadt 58.40 39.00 1.50 0.13   

int_dens 

 
0.03 0.009 3.23 0.001   

access_dens:aadt <0.0001 <0.0001 -1.74 0.08   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 

 

 

 

 

 

 



57 

 

 

 

6.2.4 Access crash  

 In the case of Access crash results, however, the responses obtained do not make 

sense and were not logically predictable.  For example, in Table 6.2.4.1, the Intercept and 

the AD interacting with AADT are two negative values. That means that they have a 

positive effect on the model based on the variables sign and magnitude. The other 

variables in Table 6.2.4.1 will likely increase total crashes.   

Table 6.2.4.1. RPNB on Access crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.002 

 

Associated standard error for Alpha = <0.0001 

t-statistic for the alpha value = 4166.60 

Log likelihood = -337.113  

Variables Coef Std. Error z 

value 

Pr(>|z|) Variance StdDev 

(Intercept) -9.30 2.40 -3.87 0.0001 3.57 1.89 

lnaadt 

 
0.57 0.27 2.11 0.03   

lnlength 

 
0.81 0.30 2.64 0.008   

access_dens 

 
0.03 0.02 1.22 0.22   

Divaadt = 1/aadt 192.00 94.50 2.03 0.04   

int_dens 

 
0.01 0.01 0.94 0.34   

access_daily_trip

s_wkdy 

<0.0001 <0.0001 1.57 0.11   

access_dens:aadt 

 

<0.0001 <0.0001 -0.29 0.77   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.2.4.2. RPNB on Access crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.002 

Associated standard error for Alpha = <0.0001 

 

t-statistic for the alpha value = 500,000.00 

Log likelihood =  -337.155 

 

Variables Coef Std. Error z value Pr(>|z|) Variance StdDev 

(Intercept) -8.77 1.56 -5.61 <0.0001 3.61 1.90 

lnaadt 

 
0.51 0.16 3.10 0.001   

lnlength 

 
0.81 0.31 2.66 0.007   

access_dens 

 
0.03 0.02 1.25 0.21   

Divaadt = 1/aadt 180.00 84.00 2.14 0.03   

int_dens 

 
0.01 0.01 0.92 0.35   

access_daily_trip

s_wkdy 

<0.0001 <0.0001 1.55 0.12   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 
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Table 6.2.4.3. RPNB on Access crashes 

Number of obs = 2065 

Id: 413 

Alpha = 0.002 

Associated standard error for Alpha = <0.0001 

 

t-statistic for the alpha value = 609.75 

Log likelihood =  -338.34 

 

Variables Coef Std. Error z value Pr(>|z|) Variance StdDev 

(Intercept) -8.36 2.32 -3.61 0.0003 3.75 1.93 

lnaadt 

 
0.51 0.27 1.88 0.06   

lnlength 

 
0.81 0.31 2.63 0.008   

access_dens 

 
0.03 0.02 1.32 0.18   

Divaadt = 1/aadt 179.00 94.20 1.90 0.05   

int_dens 

 
0.01 0.01 0.87 0.38   

access_dens:aadt <0.0001 <0.0001 -0.11 0.90   

Variables have impact of increasing the crash frequency are shown in bold. 

Variables have impact of decreasing the crash frequency are shown in italics. 

 

6.3 Limitations of the study  

Access traffic volume numbers (daily trips) were estimated using the Institute of 

Transportation Engineers (ITE) Trip Generation Manual (Institute of Transportation 

Engineers, 2004). These are simple estimates and may be associated with measurement 

error and unobserved heterogeneity. However, the random parameters models all 

indicated that the access daily trips was not random, providing evidence that either the 

access daily trips were not a practically significant predictor of crash frequency and/or 
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that the estimates are close enough for the predictions in the regression models. The 

RPNB results are also more accurate because variables are correlated with time of crash 

occurrence, compared to NB data, Poisson and other statistic regression models.    
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CHAPTER 7.  SUMMARY AND CONCLUSIONS 

Access control is of major importance in roadway management throughout the 

US. By limiting access points on roadways, there are fewer points of potential conflict, 

resulting in improved safety and reduction in property loss.  The Highway Safety 

Information System (HSIS), Institute of Transportation Engineers (ITE) Trip Generation 

Manual, and Google Earth were used to develop the database for the state of Minnesota 

used in this thesis. The methodology was cross-sectional longitudinal with multivariate 

statistical analysis. Multiple functional classifications of urban roadways were 

considered, with a focus on major/minor collectors and minor arterials. The CMFs were 

developed for Total number of crashes, Fi, Mc, and Access.  The NB Regression models 

and RPNB Regression models were developed. Independent variables were Total crashes, 

Fi, Mc, and Access-related.  Dependent variables were AD, annual daily trips, lane width, 

length, AADT, and others. Results indicated that AD and traffic volume (represented in 

this thesis as annual daily trips) influenced crash frequency over the period 2009-2014 

throughout the roadway system in Minnesota. The results of this research may be useful 

for transportation engineers and roadway planners in determining when AD should be 

reconsidered and controlled.  
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CHAPTER 8.  RECOMMENDATIONS FOR FUTURE WORK 

Future studies could include in both statistical models, more variables such as, 

limiting access by vehicle types, pedestrian safety, and bicycle lanes.  All those data are 

available from the MnDOT and are easily accessible.   
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APPENDIX 

      APPENDIX FIGURES     

Figure 1. A screenshot of the data that was used in this thesis  
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Figure 2. A screenshot of the data that was used in this thesis (continued)  
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Figure 3. A screenshot of Rstudio that was used for analyzing in this thesis  
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Figure 4. A screenshot of Google Earth that was used for gathering data in this thesis. 
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Figure 5. A plot compares between the residual and the leverage of the Total crash NB 

regression model  
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Figure 6. A plot compares between the residual and the fitted of the Total crash NB 

regression model  
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Figure 7. A plot shows the normal Q-Q of the Total crash NB regression model  
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Figure 8. A plot shows the scale location of the Total crash NB regression model  
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