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ABSTRACT 

THRESHOLD MODELS FOR GENOME-WIDE ASSOCIATION MAPPING OF 

FAMILIAL BREAST CANCER INCIDENCE IN HUMANS 

NASIR ELMESMARI 

2017 

Breast cancer is the second most fatal cancer in the world and one of the most highly 

harmful cancers from which people suffer. Breast cancer studies have been able to uncover 

some knowledge about genetic susceptibility for familial breast cancer in humans. Hence, 

determining genetic factors may potentially help track the disease, as well as discover the 

cancer in early stages, or perhaps before it starts. In addition, this may allow early 

determination of possible treatment strategies which will make it easier to prevent the 

disease. In this context, it is important to determine whether the heritability of breast cancer 

incidence is greater than zero, which can be investigated if there is a potential genetic 

component playing a role in the incidence of the disease. Traits with zero heritability are 

said to be completely subject to environmental factors, so genetics has no effect at all. 

Heritability is important because it indicates the extent of genetic variations which could 

provide a reason for the infection. In the case that heritability is found to be greater than 

zero, it is useful to estimate the single nucleotide polymorphism (SNP) effects, which may 

potentially determine the genes or the genomic regions that are associated with the 

incidence of breast cancer. 

This study used data for three families with BRCAx as exome sequences provided 

by the University of Nebraska Medical Center and the Institutional Review Boards of 
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Creighton University. Specifically, the data consisted of pedigree information for 167 

individuals from three families, including information on whether each person had breast 

cancer or not (binary trait, positive or negative). Genomic data was available for 22 

individuals among the 167. Theoretically, heritability as well as SNP effects can be 

estimated using a variety of approaches, but given the data available for this study, the best 

strategy was to combine both the pedigree-based data and the genomic data in one matrix. 

This matrix offers an advantage over other approaches that use only one of these datasets. 

The data was analyzed using a threshold model and Gibbs sampling algorithm to estimate 

the heritability of breast cancer incidence, as well as to predict SNP effects. The binary 

response variable for breast cancer incidence was modeled such that gender (2 levels) and 

family (3 levels) were the fixed effects. The effect of the subjects was the only random 

effect in the model. 

 The heritability estimate was approximately 28%, indicating that there is a 

considerable genetic component underlying the incidence of breast cancer. In addition, the 

Genome-Wide Association Study (GWAS) analysis revealed that breast cancer is a 

complex trait, possibly controlled by many genes. However, some areas on the genome 

(specifically, chromosomes 1, 2, 4, 8, 14 and 16) may include candidate genes associated 

with breast cancer incidence. These genes might be responsible for this type of cancer and 

play important roles in susceptibility for the disease. The 20 SNPs with highest effects 

explained more than 3.5 % of the genetic variance, which is a good indicator that their 

genes are associated with breast cancer. The results of this study open the door for more 

research on breast cancer incidence. Despite the limitations related to the small sample 

used, the results of this study could be considered a first step for future work and 
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investigation. Further studies using larger data sets may reveal more information on this 

complex trait.         
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Introduction 

According to the World Health Organization (WHO), the number of patients who 

die from cancer has raised up from 8.2 million in 2012 to 8.8 million in 2015. This high 

number of deaths has been attributed to late diagnosis and lack of proper treatment. The 

delay of diagnosis occurs even in countries that have excellent health systems [1]. In the 

United States, the 2016 annual report noted 1,685,210 new cases of cancer diagnosed, as 

well as 595,690 cancer deaths [2]. 

Developing a cure for various cancers has been a worldwide initiative in the past 

two decades because it is considered to be one of the leading causes of death [3]. For 

instance, breast cancer is ranked the second deadliest cancer in the world. In order to 

appropriately determine cures or treatments for any disease, it is imperative that the cause 

is uncovered. Understanding a disease at the point of origin will also enable earlier 

diagnosis. Additionally, various types of cancer are more easily eradicated in the early 

stages. Some studies have indicated that heritability is a major contributing factor for the 

disease. Measuring heritability is, therefore, an important step in revealing the extent of 

the variation in response attributed to biological effect. Many breast cancer studies have 

been able to uncover the significance of genetic influences [4]. 

The history of heritability goes back to at least the 19th century. However, the 

ideas surrounding heritability estimates were developed by Wright (1920) [5]. He used 

the concept of heritability in his study on the coat color of guinea pigs [6]. This term is 
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significant because scientists use it to assess the interaction of genes and environment to 

determine the survivor species under the law of natural selection. Moreover, it is vital to 

estimating the potential for diseases in plants, animals and humans [7]. In a study 

conducted by Taylor (1975), he found a strong relationship between cancer and a 

predisposition due to exposure to ion radiation. Many patients showed extensive cell 

damage which led to breast cancer. In addition, the age of the patients did not have any 

role in causing cancer [8]. 

 Roberts et al (1999) used a mixed model based on lognormal distributions to 

estimate the heritability of breast cancer [9]. Two studies of twins were used to evaluate 

this hypothesis, showing that the density of tissues in mammography at a given age had 

high heritability [10]. Moreover, other researchers have stated that the variance and 

covariance component models are useful in evaluating the heritability of breast density 

measures, serum sex-hormone levels, and volumetric mammographic density [11, 12].  

 The most common method used to estimate heritability is the linear mixed effect 

model (LME). Speed et al (2012) used an innovative approach GWAS to estimate 

heritability, discovering that kinship coefficients can be computed from genome-wide 

SNP genotypes, rather than from a known pedigree [13]. Cheng et al (2014) proposed a 

new inferential model that was able to evaluate the heritability coefficient [14]. 

Heckerman et al (2016) used a linear mixed effect model for the genomic random effect 

by using the kinship matrix (identity-by-descent estimates) from accurately phased 

genome-wide data [15]. Fong et al (2010) presented a GWAS Analyzer; this helps to 

limit a huge amount of phenotypic and genotypic data to predict the candidate gene that 

causes the severity of a disease by using SNPs [16]. 
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 In animal science, Misztal et al (2009) proposed a methodology to incorporate 

genomic information in addition to pedigree and phenotypic information, in one matrix 

[17]. A year later, Aguilar et al (2010) used this matrix to predict breeding value [18]. El-

Dien et al (2016) presented a study in plant science as a first attempt to replace pedigree 

information (numerator matrix) with the genomic relationship matrix (G-matrix). They 

were then able to calculate more realistic variance components and heritability estimates 

for forest trees [19]. The use of animal and plant information may help us better 

understand genetic structure in humans as well. 

 Based on previous GWAS studies, approximately 100 common breast cancer 

susceptibility alleles have been identified [20]. Genetic studies on breast cancer have 

been conducted by a group from the University of Nebraska Medical Center. The authors 

Wen et al (2014) observed specific and novel variances in each family related to familial 

breast cancer. Moreover, they strongly recommended that adding and analyzing 

phenotypic data might dramatically enhance genetic prediction and the accuracy of 

disease diagnosis [21]. 

 By following the recommendation stated in Wen et al (2014), we have used the 

genomic and phenotypic combination data to predict the SNP effect. To assure that this 

procedure is a novel study, we searched and compared all the studies that were cited in 

Aguilar et al (2010) by using Google Scholar and the Web of Science. As far as we 

know, this work is the first study focusing on human breast cancer that has used this 

innovative methodology. 
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1.2 Data 

 The data in this study was gathered from three families with BRCAx as exome 

sequences, as examined in a study by Wen et al (2014). This data has also been described 

in another study from the University of Nebraska Medical Center by Lynch et al (2013) 

[22]. The use of this data in both studies was approved by the University of Nebraska 

Medical Center and the Institutional Review Boards of Creighton University. All 

members of these families had signed a consent form to participate in cancer research, 

with the understanding that personal information would be kept confidential, as required 

by institutional privacy policies. A detailed discussion of the data can be found in the data 

preparation section of Chapter 3. 

1.3 The Objects of This Study 

 The goal of this study was to estimate the genetic parameters of this disease by 

combining both the phenotypic and genomic information available to us. In addition, this 

study aims to find genomic regions and specific genes with major effects associated with 

familial breast cancer incidences. The general objectives this study were: 

1. Prepare appropriate data for GWAS. This includes mapping to the reference 

genome, removing duplicate reads, calling variants for each individual, and 

merging them with the reference genome. 

2. To estimate variance components and heritability for familial breast cancer 

incidence. 

3. To find genomic regions and specific genes with major effects associated with 

familial breast cancer incidences using both genomic and phenotypic data. 

To achieve these goals, the dissertation is organized as follows: 
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  In Chapter 2, we present GWAS. Chapter 3 deals with the data preparation and 

also defines standard terminologies in genomic studies, such as the structure of DNA, 

gene, SNP, data and families. Additionally, the data preparation steps include mapping, 

removing duplicates, SNPs calling, converting SNPs to integers and quality control for 

genomic data. Chapter 4 describes the methods used, including linear mixed effects 

models, maximum likelihood estimation, numerator relationship matrix, the heritability 

coefficient, genomic relationship matrix, threshold model and the Gibbs sampling 

method. In Chapter 5, multi-trait models will be presented, while Chapter 6 explains the 

analysis using the software FORTRAN90/95 for variance components heritability and for 

prediction of SNP effects and the R software for graphics. The last Chapter is the 

discussion and conclusion. Figure 1.1 shows the version datasets and matrices used in the 

data analysis. 

 

 

 

 

 

Figure 1.1 Flowchart of the data and model matrices. 
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CHAPTER 2 

CANCER AND GENOME-WIDE ASSOCIATION 

2.1 Introduction 

 Cancer is the general name used to refer to a variety of similar diseases, all of 

which involve some cells in the body that are continuously dividing and taking over the 

tissues surrounding the affected area. Cancer can start just about anywhere in the human 

body. In a healthy body, human cells divide to produce replacement cells when needed. 

These new cells replace old damaged ones when they stop working. The development of 

cancer in the body, however, breaks down this otherwise methodical progression. As 

abnormality takes over, the cells that should die and be replaced actually endure, and 

replacement cells continue to form even when they are not required. The extra cells 

multiply endlessly and become tumors. 

 Most common types cancer produce solid tumors or masses of tissue. However, 

blood cancers, such as leukemia, do not typically form tumors. When a tumor is 

cancerous, it is referred to as “malignant”, which means it can attack nearby tissues.  As 

these tumors grow, some cancer cells can even break away from the original mass and 

migrate to other areas in the body through the bloodstream or the lymph system. They 

then start new tumors in locations other than the original site. Benign tumors differ from 

malignant tumors. Though they can also be quite large, they do not take over or attack 

nearby tissues. Benign tumors can be successfully removed and typically there is a big 

chance that will not come back again. However, malignant cancers can be removed but 

can continue to be produced in the body after removal. Benign brain tumors can be life 

threatening but most other benign tumors are not [23]. 
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 Remarkable advancements in cancer study into the past 50 years have provided 

insights into the development of cancer cells. Cancer is now defined as a disease in which 

there are changes or mutations in the cell genome. These changes, or Deoxyribonucleic 

acid (DNA) mutations, produce a protein that upsets the protocol between the cell 

division stage and the dormancy stage, allowing continuous cell division and the 

formation of cancer. At the point when cancer cells relocate to different parts of the body 

where they form new tumors and crowd out normal cells, it is called "metastasis" [25]. 

2.2 Genes Related to Breast Cancer 

 Breast cancer is a main cancer in women. It affects nearly a quarter of a million 

women each year in the United States alone. About 10–15% of breast cancers have 

genetic ties, affecting multiple family members over generations. Recognizing that a 

genetic predisposition increases susceptibility is a big step in unraveling the cause of 

breast cancer for early detection, diagnosis, prognosis, and treatment [26]. 

 Broca was the person to recognize a family with a high prevalence of breast 

cancer in 1866. His wife was inflicted with early onset breast cancer. When Broca trailed 

her family tree, he found four generations with a history of breast [24]. The "Broca" 

report was of many that tied breast cancer to genetic predisposition, passing from one 

generation to the next. He also discovered 16 cases of cancer across five generations in 

one family. Fifteen were female, nine of which had breast cancers [27]. 

 In 1972, Lynch et al. linked breast cancer with a predisposition to colon cancer. 

His findings showed that the members of some families with breast cancer also had a 

comparatively high predilection for cancer of the colon; some showed higher 

predispositions for gastric, ovarian, and endometrial carcinoma, and some demonstrated 
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higher odds for brain tumors, sarcoma, and leukemia. Hall et al (1990) started mapping 

the genes accountable for hereditary breast cancer, which allowed for the identification of 

early lesions that are a signature of the development of breast cancer. He theorized that 

Chromosome 17q21 appeared to be the position of the gene indicating a predisposition to 

breast cancer in families with a history of early-onset diseases. Shortly thereafter, in 

1991, Lenoir et al. demonstrated an association to this same gene position with HBOC 

syndrome. The gene has since become known as "BRCA1". In 1994, Miki and Swensen 

noticed a strong potential for the BRCA1 gene, as it affects the predisposition to breast 

and ovarian cancer. It has also been known for its positional cloning method, which is a 

method to identify genes [29, 32]. 

A study by Wooster et al (1994) provided evidence of another locus to breast 

cancer susceptibility, BRCA2, to a 6-centimorgan interval on chromosome 13q12-13. 

Initial findings suggest that BRCA2 assumes a higher risk of breast cancer but, unlike 

BRCA1, does not impose any elevated risk of ovarian cancer. Mutations in BRCA 1 and 

BRCA 2 are found in most of the families having six or more cases of breast cancer, 

which is aligned with dominant inheritance [34]. However, Shih et al (2002) and Easton 

et al (1999) said that, overall, the identified susceptibility genes are estimated to be 

accountable for less than 25% of familial breast cancer, demonstrating a strong 

possibility that other susceptibility genes are yet to be discovered [36]. Antoniou et al 

(2003) said genetic mutations in BRCA1 and BRCA2 genes can increase the risk of 

breast cancer (60-85%) and ovarian cancer (15-40%) over a lifetime. Researchers have 

attempted to discover an assumed BRCAx gene using linkage analysis to support the 

genetic context for high-risk families. However, the results seem to show that many 
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genes are probably contributors to a predisposition to breast cancer [22, 37]. Others 

hypothesized that the genetic predispositions in many BRCAx family breast cancer cases 

may be specific variations [21]. Correspondingly, several studies showed that the risk of 

breast cancer could be increased with mutations in the following genes: P53, PTEN, 

CHEK2, ATM, PLAB2, FGFR2 and TNRC9; other genes are still being vetted [21]. 

Current evidence suggest that three types of genetic predisposition exist for 

familial breast cancer: (a) high-risk genes with rare mutations, but high penetrance 

causing high risk of breast cancer, e.g., BRCA1 and BRCA2; (b) intermediate-risk genes 

with rare mutations causing intermediate risk of breast cancer, e.g., CHEK2, ATM, 

BRIP1, and PALB2; and (c) common modest risk genetic variants, such as the SNPs in or 

close to FGFR2, TNRC9, MAP3K1, and LSP1[22].  

2.3 Genome-Wide Association Analysis for Breast Cancer  

 Identifying and understanding genetic risk factors for complex diseases is the 

main goal of human genetics. GWAS is one of several beneficial technologies used to 

study designs and examine the results of analytical tools in order to identify genetic risk 

factors. GWAS examines the whole genome in different individuals to see if there are 

any genetic regions related to a specific trait. Determining a genetic factor will help in 

tracking the disease and in discovering cancer in early stages. In addition, this can lead 

the way to additional possible treatments. This information can be used in fine mapping 

genes [38]. 

 The first scientific report using genome-wide screening was in 2005 [39]. The 

researchers examined patients with age-related macular degeneration and found two 

SNPs with significantly different allele frequencies compared to healthy control subjects. 
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Many similar studies that have been reported successfully using the genome-wide 

association analysis to determine genetic variations that might contribute to a risk of type 

2 diabetes, Parkinson's disease, heart disorders, obesity, Crohn's disease and prostate 

cancer, as well as genetic variations that influence responses to antidepressant 

medications [39, 40]. 

 In recent years, several genetic SNPs related to breast cancer risk have also been 

identified via GWAS [22]. Haiman et al (2011) combined GWAS data from women of 

African ancestry (1,004 ER-negative cases from 2,745 controls) and European ancestry 

(1,718 ER-negative cases out of 3,670 controls), with replication testing conducted in an 

additional 2,292 ER-negative cases and 16,901 controls of European ancestry. A common 

risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 

5p15 (rs10069690) was discovered. The variant was also implicitly linked to triple-

negative (ER-negative, progesterone receptor (PR)-negative and human epidermal 

growth factor-2 (HER2)-negative) breast cancer, particularly in younger women (<50 

years of age) [41]. 

 Another study in GWAS cited single-nucleotide polymorphisms at 1p11.2 and 

14q24.1 as loci for breast cancer susceptibility. The early GWAS leaned in the direction 

of strong effects for both loci for ER-positive tumors. Using data from the Breast Cancer 

Association Consortium (BCAC), Figueroa et al (2011) sought to determine whether 

risks differ by ER, progesterone receptor (PR), human epidermal growth factor receptor 2 

(HER2), grade, node status, tumor size, and ductal or lobular morphology. The data was 

derived from 46,036 invasive breast cancer cases and 46,930 controls from 39 studies. 

Analyses by tumor characteristics focused on subjects identifying as white women of 
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European ancestry and were based on 25,458 cases, of which 87% had ER data. The SNP 

at 1p11.2 revealed pointedly stronger associations with ER-positive tumors [42]. 

 In the Triple Negative Breast Cancer Consortium (TNBCC) Stevens et al (2011) 

explored 22 common breast cancer susceptibility SNPs in 2,980 Caucasian women with 

triple negative breast cancer and 4,978 healthy controls. Six SNPs significantly related 

with risk of triple negative breast cancer were also identified, including: rs2046210 

(ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 

(19p13.11) and rs8100241 (19p13.11) [43].  
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CHAPTER 3 

DATA PREPARATION 

3.1 Introduction 

 In GWAS studies, researchers use complicated datasets, with the data needed for 

the final statistical modeling usually prepared in multiple steps. In this chapter, we tried 

to describe the various data preparation steps we used in our study. These steps include 

mapping, remove duplicates, SNPs calling, converting SNPs to integers and quality 

control for genomic data. We also give a short overview to the standard terminology used 

in genomic studies.   

3.2 The Structure and Function of DNA 

In the 1940s, biologists struggled to understand how DNA could be the key to our 

genetic make-up, due to the assumed simplicity of its configuration. There was awareness 

that DNA was comprised of four similar types of subunits laced together on a long 

polymer, and that each of the four subunits resembled one another chemically. In the 

early 1950s, DNA was studied by way of a procedure known as x-ray diffraction 

analysis, that distinguished the three-dimensional atomic structure of molecules. The 

preliminary findings of the x-ray diffraction exposed that the configuration of DNA was 

formed by two polymer strands spiraled into a helix (Figure 3.1 [147]). The detection of 

the two-stranded structure of DNA was revolutionary, becoming one of the most 

prominent pieces of evidence that led to the Watson-Crick Model for DNA structure. It 

was only once this model was proposed in 1953 that DNA's capacity for replication and 

material encoding become evident [44]. 
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DNA is the hereditary material in humans and almost all other living organisms; 

in fact, the same DNA is present in almost every cell in a human body. DNA is most 

generally located in the cell nucleus. This type of DNA is called nuclear DNA. Small 

amounts of DNA are also found in mitochondria; this type of DNA called mtDNA. 

 

 

 

 

 

 

 

 

 

 The information in DNA is stored as a code made up of four chemical bases: The 

The four nucleobases that comprise the chemistry of DNA are Adenine (A), Guanine (G), 

Cytosine (C), and Thymine (T). More than 99 percent of the roughly 3 billion bases of 

which human DNA is comprised are identical in all people. The bases line up in different 

arrangements in order to regulate the information needed to create and sustain an 

organism, much like individual letters of the alphabet can combine in different orders to 

form a variety of words and phrases [45]. 

 Base pairs occur when two DNA bases attach to each other, such as A joins with 

T and C joins with G. Additionally, every base pair adds a sugar and a phosphate 

molecule. So the nucleotide is a combination of sugar and phosphate. Nucleotides join 

together to create the famous double helix building of DNA. The double helix is formed 

Figure 3.1 The two strands of DNA. 
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in a ladder-like spiral, with the base pairs connecting horizontally, much like ladder 

rungs, while the sugar and phosphate molecules create long vertical strands. Possibly the 

most important characteristic of DNA is its ability to produce exact duplicates of itself. 

 The critical process of cell division relies on the exact replication of the DNA to 

create a new cell so each new cell is a perfect copy of the original. Each double-stranded 

DNA molecule has the ability to reproduce its base pairs in sequence [44]. 

3.3 What is a Gene 

 DNA molecules (comprised of base pairs) make up the standard material and 

practical element of heredity, known as a gene. Genes, in turn, contain the information 

necessary to create molecules called proteins, which are essential for maintaining the 

body’s muscles, tissues, and organs (Figure 3.2 [148]). Human genes, for example, show 

a great variety in size, ranging from just a few hundred base pairs to more than 2 million. 

Research from the Human Genome Project indicates humans may have up to 25,000 

genes. Over 99 percent of the genes are identical in every human. Each parent passes on a 

complete set of its genes; as a result, each person has two copies of every gene. In fewer 

than 1 percent of genes, the gene pairs have different patterns in their DNA bases; those 

gene pairs are known as alleles. Alleles are responsible for each person’s individual 

corporeal differences [44]. 
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Figure 3.2 A part of a DNA molecule coding. 

3.4 Single Nucleotide Polymorphisms 

 As discussed above, DNA patterns are made up of chains of nucleotide bases (A, 

C, G and T). A difference at a specific location in a DNA pattern of an individual is 

known as a single nucleotide polymorphism, or SNP (Figure 3.3 [149]). This deviation 

can be classified as an SNP only if it is present in less than 1 percent of a given 

population. A gene can be considered to have two alleles if an SNP occurs in that gene. 

An SNP inside a gene can alter the pattern of the amino acids. SNPs do not only occur 

within genes, but can also be found in DNA molecules that do not carry instructions for 

producing proteins, which named noncoding region.  

Figure 3.3 Single nucleotide polymorphism in six persons. 
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 Although a particular SNP may not create a disorder, some SNPs are related to 

the occurance of certain diseases. These associations enable scientists to search for SNPs 

in order to assess an individual's genetic predisposition to developing a disease. 

Additionaly, if certain SNPs are understood to be correlated with a trait, then scientists 

may inspect stretches of DNA near these SNPs in an effort to detect the gene or genes 

responsible for that trait. Researchers are hopeful that awareness of an individual’s SNP 

genotype will afford a basis for evaluating susceptibility to diseases and the ideal choice 

of therapies [46]. A key challenge in understanding these potentials is comprehending 

how and when the variants may cause a disease. 

3.5 Data 

 This study used exome sequencing data. The data was previously analyzed in the 

study by Wen et al (2014) to test genetic predispositions; in their study, only genomic 

data was used. They matched all variants that were identified in the databases, while all 

known variants were removed. The study includes data from three families with BRCAx 

familial breast cancer (refer to Figure 3.5-3.7 and Appendix A); the families included 

seventeen members with cancer, and five members without. In the first family, seven 

members had cancer and one member was healthy, while in the second family, five 

members had cancer and three did not. The third family included five members who had 

cancer and one who remained unaffected. Data in this work were collected as blood 

samples from family that have members affected by cancer, as well as those who were 

not affected. The thorough genetic testing of individuals in each family displayed no 

mutation in BRCA1 or BRCA2. Family members over two generations were chosen for 

exome sequencing based on the pedigree’s hereditary pattern of breast cancer, as well as 
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the accessibility of DNA samples. Exome sequences were collected with a HiSeq™ 2000 

sequencer (Illumina, San Diego, CA) with a paired-end (2 × 100).  

3.6 Paired-End Reads 

       Paired-end reads permit users to sequence both ends of a fragment, which generates 

superior sequence data that can be easily aligned (Figure 3.4 [150]). In addition to gene 

fusions and unusual transcripts, paired-end sequencing enables detection of genomic 

changes and elements of a repetitive sequence.  

        Subsequently, paired-end reads are more able to line up to a reference, and the value 

of the total data set is much improved. All Illumina next-generation sequencing (NGS) 

structures are capable of paired-end sequencing. 

 

Figure 3.4 Paired-end sequencing. 
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Figure 3.5 The pedigree information of family 1. 

 

Figure 3.6 The pedigree information of family 2. 
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Figure 3.7 The pedigree information of family 3. 

3.7 Pipelines 

 Pipelines are series of computational or data manipulation steps that result with 

specific data called “variants”, which are analyzable in the next-generation sequencing 

studies, all these steps are shown in (Figure 3.8). Before we go to detail let us define 

some terms; Reads: are sequences obtained of DNA, where each nucleotide sequences 

called read. Usually each read has 100 base pair; Bowtie 2: is a tool to align sequencing 

reads to reference sequences; Picard: is a tool to operate specific format such as SAM, 

bam and VCF file; SAMtools: is a tool that use alignments in BAM format; BCFtools: 

this tool to call variant as VCF and BCF format. 
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Figure 3.8 Flowchart of data preparing steps. 

3.7.1 Mapping with Bowtie 2 

 The primary measure in several relative genomic pipelines is aligning sequencing 

reads to a reference genome, such as variant calling, isoform quantitation, and differential 

gene expression. In many instances, the alignment step is the longest, since for each read, 

the aligner has to resolve the difficult computational problem of ascertaining the read’s 

most likely point of origination regarding a reference genome. Most aligners use a 

genome index to quickly narrow down the list of potential alignment locales. The full-

text minute index is a fast and memory-efficient index that is being utilized by aligners. 

Index-assisted aligners function by looking for all the potential ways to mutate the read 

string into a string. This also happens to the reference point, which is of course, an 

alignment rule, and thereby limits the number of changes. Even though this search space 

is vast, several areas can be bypassed (pruned) without loss of precision. Pruning 
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approaches such as double indexing and bidirectional Burrows-Wheeler Transform 

(BWT) allow a rapid and thorough alignment of short reads [47]. 

 For each read, Bowtie 2 is conducted in four steps (Supplementary Note and 

Supplementary). Step 1 of Bowtie 2 involves extracting ‘seed’ substrings from the read 

and its reverse complement. In step 2, the removed substrings are aligned to the reference 

without gaps, using the full-text minute index. For step 3, the seed alignments are ranked, 

and their locations in the reference genome are determined from the index. Finally, in 

step 4, the seeds are stretched into full alignments by executing SIMD-accelerated 

dynamic programming. 

 Langmead and Salzberg (2012) likened Bowtie 2 to four other full-text minute 

index–based read aligners. Included in their comparison was Burrows-Wheeler Aligner 

(BWA), BWA’s Smith-Waterman Alignment (BWA-SW) and Short Oligonucleotide 

Alignment Program 2 (SOAP2), and Bowtie. They attained 100-by-100 nucleotide (nt) 

paired-end HiSeq (2000) reads from a human resequencing study and took out an 

arbitrary subsection of 2 million pairs. They found that the Bowtie 2 default mode was 

quicker than the other BWA modes and was faster by more than 2.5 times over the BWA 

default mode.  All of the Bowtie 2 modes aligned a larger number of reads than either 

BWA or SOAP2. In summary, they found in all cases, Bowtie 2 and BWA found more 

accurate alignments than SOAP2 and Bowtie. Bowtie 2 also presented more accurate and 

fewer inaccurate alignments for the unpaired reads than BWA presented over an area of 

charting quality limits. For paired-end reads, the disparity was reduced. 

 We have mapped data in this study while considering the human genome (hg 19) 

as a reference sequence using Bowtie 2 with default parameters. The rate of overall 
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alignment for each subject was around 92% see Appendix B for statistics from Bowtie 2. 

The output was formatted as a SAM file, then we converted it to the BAM format using 

SAMtools utility [47]. 

3.7.2 Getting Rid of Duplicates using Picard 

 It has been observed that some reads pile up with the same beginning and ending 

coordinates. These may be a product of PCR duplicates. The occurrence of these 

replicates injected by PCR expansion is a key problem in paired short reads from next 

generation sequencing. These replicates should be removed from BAM files as they may 

have a critical and adverse effect on research applications. Even more crucial is the fact 

that the precision of paired reads alignment could be compromised by genomic variations 

that are broadly dispersed among individuals, such as copy number variations, extensive 

structural variations, minor insertion or deletion (indels) variations, and SNPs. Duplicates 

for this study were removed using Picard Mark Duplicates, which is the favored method 

for this purpose [48]. 

3.7.3 Recalibration and Interrelation 

 The Genome Analysis ToolKit (GATK) is a software capable of incorporating the 

evidence for variants from several samples with joint genotyping. It enables the use of 

validated SNPs and indels to augment the accuracy of variant calling [49]. However, 

many research communities lack the large, validated collections of SNPs and indels 

needed to test using GATK’s Best Practices procedures due to the investment required to 

obtain and curate such collections [50]. To work around the necessity for large-scale 

variant validation studies, McCormick et al (2015) created the Recalibration and 

Interrelation of genomic sequence data with the GATK workflow. This development 
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integrated data from multiple genomic sources and identified reliable sets of variants. A 

variety of factors exist that could cause erroneous results: inadequate or incorrect 

reference assemblies, mistaken realignment of reads to the reference genome (mainly in 

lower complexity regions and around indels), inexact base quality scores, and suboptimal 

variant filtration parameters [49, 51]. Additionally, the recalibration tool tries to improve 

variation quality with the machine cycle and sequence context, and by doing so, provides 

not only more precise quality scores but also more broadly dispersed ones [52]. 

 We recalibrated the base quality scores of the sequencing by synthesizing reads 

into an aligned BAM file. Once completed, the quality scores in the QUAL field of each 

read in the output BAM were more precise, in that the reported quality score was closer 

to its actual probability of mismatching the reference genome. 

3.7.4 SNPs Calling via SAMtools and BCFtools 

 One of the standard tasks for NGS studies is the detection of SNPs and indels in 

an individual sample. SAMtools enables users to call both types of variants concurrently 

using the mpileup output. In this study, variants have been called as BCF format using a 

specific parameter (--skip-indels).  At each position, the SAMtools searches for variants 

that qualify under user-defined minimum conditions for sequence reporting. The 

conditions included the quantity of supporting reads. After using BCFtools to call SNP’s 

variants with the parameters -c -v (call genotypes and output variant sites only), files are 

output in the Variant Call Format (VCF) format [53]. See Appendix C for output from 

SAMtools to call SNP.   
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3.7.5 Converting SNPs to Integers 

 VCF is a text file format used for the storage of marker and genotype data. The 

following example (Table  [54]) explains how VCF encodes data for SNPs. 

Table 3.1 Variant Call Format. 

 

 

 

 Each column included after first nine has genomic information called genotype.  

For sample data, GT alleles are numeric; the reference REF is 0, the first ALT is 1, and 

so on. As an example, the genotypes for SAMP001 (The tenth column in Table ) are a 

homozygous reference first, followed by a heterozygous and third, a missing record. 

 Missing observations with levels of SNP data in some genetic analysis can offer 

good estimations of genetic parameters; however, little is known about the influence of a 

missing level that is higher than 90%.  Traditionally, if the missing level is 15% or below, 

it is known to eliminate genetic markers with incomplete observations [55, 56]. Missing 

genotypes data will not include the calculations, so but we coded them 5 following 

VanRaden (2008) method [57].  

 Our data included 22 subjects (columns) with approximately 16 million SNPs 

(rows), so the rows with more than two missing SNPs were removed. This resulted in 

more than 10% of the missing levels being eliminated to obtain estimations of genetic 

parameters reliability. Refer to the following table (Table 3.2) which shows some of the 

SNP data used. This sample represents family 1, which has eight individuals x1- x8. The 
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numbers 0 and 2 represent recessive and dominant homozygous genes, with 1 being 

heterozygous and 5 denoting missing alleles. We will use this data set in matrix 𝐌 which 

is a genomic relationships matrix (𝑮). Refer to Section 4.7 for additional details.  

Table 3.2 SNPs coded data. 

CHROM POS x1 x2 x3 x4 x5 x6 x7 x8 

1 808922 2 2 2 0 0 0 2 2 

1 880238 0 0 0 0 0 0 0 0 

1 883625 0 2 0 0 0 5 0 5 

1 887560 2 0 1 1 1 1 0 1 

1 887801 0 0 0 0 0 0 0 0 

1 888639 2 0 0 0 2 0 0 2 

1 888659 0 0 2 0 0 2 0 0 

1 889158 0 0 0 0 0 0 0 0 

1 889159 2 0 2 0 2 0 0 0 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

22 43520263 0 2 0 0 2 0 0 1 

22 43528793 2 2 2 0 2 0 0 1 

3.8 Quality Control for Genomic Data 

 Quality control (QC) of genotypes is vital to avoid false results in genome-wide 

association studies. Maintaining long-term data integrity is also of the utmost importance, 

especially in situations with ongoing genotyping. Some SNP data was problematic to 

score because of an irregular genotype clustering pattern. Procedures were performed to 

improve SNP data (25394 SNP's), including the following steps: 

1) 22 markers were removed from the mitochondrial chromosome. 390 were 

removed from chromosome X because some noteworthy biological insights could be 

garnered by the exclusion of the X chromosome in the GWAS analysis. 
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2) SNPs with a low Minor Allele Frequency (MAF) were removed. As a rule, an 

MAF threshold of 1-2% is used, but studies with smaller sample sizes might require a 

higher threshold [58]. 25% was the threshold used to determine the MAF for calling 

SNPs. 

3) Because the precision of genotyping is extremely reliant on the quality of the 

genotypes, repeated genotyping of the same samples could be misread as originating 

from different individuals when call rates drop under 90% [59]. Therefore, all SNPs with 

a call rate < 90% were ignored. 

4)  Most GWAS studies choose to eliminate markers that display significant 

deviation from Hardy-Weinberg Equilibrium (HWE) because it can indicate a genotyping 

or genotype calling error. On the other hand, variances from HWE might also show 

selection; a sample can display deviations from HWE at loci related to a disease; it would 

clearly be counter-productive to exclude these loci from a deeper inquiry. In practice, 

many SNPs with an HWE p-value less than 0.001 will be extracted. However, robustly 

genotyped SNPs, even if under this threshold, will remain under study. Upon checking, 

the departure of heterozygous from Hardy-Weinberg Equilibrium using default value 

0.15 resulted in 17857 SNPs that were ready to use [58, 60]. 
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CHAPTER 4 

METHODOLOGY 

4.1 Introduction 

 This chapter focuses on the methodologies that are used in the estimation of 

heritability coefficient and prediction of SNP’s effects. Because the response variable in 

this study is binary (affected or normal), threshold model is employed. The idea of this 

technique is based on linear mixed effects models (LME) which are suitable methods in 

case of continuous response variables. In order to estimate the variance components, we 

utilize Gibbs Sampling. 

4.2 Literature Review on GWAS  

 For modeling population relationships in Genome-Wide Association studies, 

LME models have been recommended [61]. LME models expand on the work initially 

described in the literature dealing with animal breeding. Later it was developed in the 

human genetics literature, in which, an interesting genetic effect (e.g., the number of 

copies of a specific allele at a specific test SNP) as a random effect, with an added fixed 

effect is incorporated to model the genetic relationship between individuals [62]. In the 

first few years of GWAS, linear mixed effects models were not used much due to 

computational issues [63]. In more recent years, a wide array of LME methods/software 

packages have surfaced [62]. 

 In statistical analysis, needless to mention, it is critical to know the nature of our 

dependent variable and model it using appropriate methods. Tong et al (1976, 1977) and 

Berger and Freeman (1978) translated the categorical response into a quantitative 
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response by assigning m ordered numerical values or "scores" to the m categories. They 

then proceeded as though this discrete quantitative response followed a linear mixed 

effects models. Unfortunately, the assumptions implicit in many common linear mixed 

effects models, including those of homogeneity of variances, may be much less 

reasonable when the model is applied to a discrete response than when it is applied to a 

continuous response [67]. 

 Linear mixed effects models have commonly been used in the study of continuous 

traits (e.g., see Anderson et al (2010)). They are grounded in the supposition of normality 

and are easily implemented using the software that is available to the public. In the case 

of  longitudinal data we refer to Molenberghs and Verbeke (2000) and Fitzmaurice et al 

(2011). However, results from a linear mixed effects models may be unreliable under 

certain circumstances, such as, if the assumed Gaussian distribution of the response 

variable is not met, for instance, due to the occurrence of outliers or skewness. 

Alternatives include data transformation or a more adaptable modeling tactic [71, 72]. 

Ordered categorical traits are usually studied applying the threshold liability model, 

which was first used by Wright (1934) in the analysis of the quantity of digits in guinea 

pigs (normally have four front feet). It was also used by Bliss (1935) in toxicology trials. 

In the threshold model, it is hypothesized that there is an underlying or latent variable 

(liability) that has a continuous distribution [73]. A response in a specified category is 

noted if the value of liability lies between the thresholds, determining the suitable 

category [74-76].  

 When variability originates from two sources, linear mixed effects models and 

threshold model with two variance components are commonly used. In genetic studies, 
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variation in observations can be credited to biological and environmental influences. The 

heritability coefficient is an essential quantity that gauges the percentage of overall 

variability owing to biological influences [14]. Recently, Bayesian methods have been 

developed for variance components estimation [77-81]. As Broemeling (1985) had 

observed, each of these reviews discovered analytically intractable joint posterior 

distributions of variance components. Additional marginalization regarding dispersion 

parameters appears to be problematic or impossible by means of analytic. New 

developments in computing have fostered the use of numerical methods in Bayesian 

inference. For instance, following studies by Hammersley and Handscomb (1964), Kloek 

and Van Dijk (1978), and Rubinstein and Kroese (1981) have been used these numerical 

methods in econometric and Bauwens (1984,1988) in binary responses models [90]. 

 Markov Chain Monte Carlo (MCMC) methods have granted computation of 

multidimensional integrals so analytic approximations can thus be avoided. Usage of the 

Gibbs sampler to analyze ordered categorical traits has been described by Zeger and 

Karim (1991) and Albert and Chib (1993). It was used by McCulloch et al (1994) and 

Sorensen (1995) to estimate variance components for binary data [75]. 

4.3 Linear Mixed Effects Models 

 Linear mixed effects models are beneficial in a variety of physical, biological, and 

social scientific applications with variability coming from multiple sources [94, 95]. 

Linear mixed effects models are extensions of standard linear models (e.g., linear 

regression and ANOVA). Linear mixed effects models contain fixed and random effects 

hence called linear mixed effects. 
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A linear mixed effects model is given by 

𝒀 = 𝑿𝜷 + 𝒁𝒅 + 𝜺                                                       (4.1) 

where 𝒀 is a vector of observations with dimension 𝑛 × 1, 𝜷 is a vector of fixed effects 

with dimension p×1, 𝒅 is a vector of random effects with dimension 𝑞 ×  1. 𝑿 and 𝒁 are 

design matrices for the fixed and random effects with dimensions 𝑛 × 𝑝 and 𝑛 × 𝑞, 

respectively. The vector of random effects is distributed as normal with mean 0 and 

variance-covariance matrix 𝛀, 𝒅~𝑁(𝟎,𝛀). And 𝜺 is a vector of normal random errors 

with means 0 and variance-covariance matrix 𝑹, 𝜺~𝑁(𝟎,𝐑). The vectors of random 

effects 𝒅 and error term 𝜺 are assumed to be independent. Therefore, 

𝑉𝑎𝑟 [
𝒅
𝜺
] = [

𝛀 𝟎
𝟎 𝑹

] 

The expected value of 𝒀 is 

𝐸(𝒀) = 𝐸(𝑿𝜷 + 𝒁𝒅 + 𝜺) = 𝑿𝜷     ;       since 𝐸(𝒅) =  𝐸(𝜺) = 𝟎. 

The variance-covariance matrix of 𝐘 is 

 𝐕 = 𝑉𝑎𝑟(𝒀) = 𝑉𝑎𝑟(𝑿𝜷 + 𝒁𝒅 + 𝜺)   

= 𝑉𝑎𝑟(𝒁𝒅 + 𝜺) =  𝐙𝛀𝒁′  +  𝐑 ; since 𝒅 and 𝜺 are independent. 

The distribution of 𝐘 can be defined in two ways: 

i. The marginal distribution of 𝒀 not knowing the random effects 𝒅 is normal with 

mean 𝑿𝜷 and variance-covariance matrix 𝐕. In other words 

𝒀~𝑁(𝑿𝜷, 𝑽). Hence, the pdf of 𝒀 is: 
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𝑓(𝒚) =
1

(2𝜋)𝑛/2|𝑽|1/2  exp [
−1

2
 (𝒚 − 𝑿𝜷)′𝑽−𝟏(𝒚 − 𝑿𝜷)]. 

 One difficulty in linear mixed effects models is that 𝐕 =  𝐙𝛀𝒁′ +  𝐑 is large and 

often non-diagonal. Therefore, 𝐕−1 is difficult or impossible to compute by common 

methods [96]. In general, the inverse of 𝐕 is given by: 

𝐕−1 = 𝑹−1 − 𝑹−1𝒁( 𝒁′𝑹−1𝐙 + 𝛀−1)𝒁′𝑹−1 

This is true since for three nonsingular matrices A, B and C 

(𝑨 + 𝑪𝑩𝑪′)−1 = 𝑨−1 + 𝑨−1𝑪(𝑩−1 + 𝑪′𝑨−1𝑪)𝑪′𝑨−1 

and                              (𝑨𝑩𝑪)−1 = 𝑪−1𝑩−1𝑨−1 

ii. The conditional distribution of the dependent variable 𝒀 given the random effects 

𝒅 is normal with mean 𝑿𝜷 + 𝒁𝒅 and variance-covariance matrix 𝑹. In other 

words, 𝒀|𝒅~𝑁(𝑿𝜷 + 𝒁𝒅,𝑹). Therefore, the pdf is given by 

𝑔(𝒚|𝒅) =
1

(2𝜋)𝑛/2|𝑹|1/2 exp [
−1

2
 (𝒚 − 𝑿𝜷 − 𝒁𝒅)′𝑹−𝟏(𝒚 − 𝑿𝜷 − 𝒁𝒅)]. 

4.4 Maximum Likelihood Estimation of Parameters 

4.4.1 Case I: 𝛀 and 𝑹 are known 

 If matrices 𝛀 and 𝑹 are known, then 𝜷̂ is the best linear unbiased estimation 

(BLUE) of 𝜷 and 𝒅̂ is the best linear unbiased prediction (BLUP) of 𝒅 [97-100]. The 

estimates of 𝜷 and 𝒅 can be found by maximizing the likelihood in 𝜷 and 𝒅 in the joint 

density function of 𝒀 and 𝒅 as follows. 

𝑓(𝒚, 𝒅 ) = 𝑔(𝒚|𝒅)ℎ(𝒅), 
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where ℎ(𝒅) is the pdf of 𝒅. The likelihood function is 

𝐿(𝜷, 𝒅) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × exp [
−1

2
 (𝒚 − 𝑿𝜷 − 𝒁𝒅)′𝑹−𝟏(𝒚 − 𝑿𝜷 − 𝒁𝒅) −

1

2
𝒅′𝛀−𝟏𝒅].  

The log-likelihood function is 

𝑙(𝜷, 𝒅) = log(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) −
1

2
 [(𝒚 − 𝑿𝜷 − 𝒁𝒅)′𝑹−𝟏(𝒚 − 𝑿𝜷 − 𝒁𝒅) + 𝒅′𝛀−𝟏𝒅]. 

For 𝜷:  

𝜕𝑙(𝜷, 𝒅)

𝜕𝜷
= −

1

2
 [(𝒚 − 𝑿𝜷 − 𝒁𝒅)′𝑹−𝟏(−2𝑿)] 

= [(𝒚 − 𝑿𝜷 − 𝒁𝒅)′𝑹−𝟏(𝑿)] 

By equating this partial derivative to zero and taking transpose, we get: 

𝑿′𝑹−𝟏𝑿𝜷 + 𝑿′𝑹−𝟏𝒁𝒅 = 𝑿′𝑹−𝟏𝒀                                            (4.2) 

For 𝒅: 

𝜕𝑙(𝜷, 𝒅)

𝜕𝒅
=  −

1

2𝜎2
 [(𝒚 − 𝑿𝜷 − 𝒁𝒅)′𝑹−𝟏(−2𝒁) − 2𝒅′𝛀−𝟏] 

−
1

2𝜎2
 [(𝒚 − 𝑿𝜷 − 𝒁𝒅)′𝑹−𝟏(−2𝒁) − 2𝒅′𝛀−𝟏] 

Equating this partial derivative to zero and taking transpose we get: 

𝒁′𝑹−𝟏𝑿 𝜷 + (𝒁′𝑹−𝟏𝒁 + 𝛀−𝟏)𝒅 = 𝒁′𝑹−𝟏𝒚                               (4.3) 

From Equations (4.2) and (4.3), the mixed model equations in matrix notation will be: 
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[𝑿
′𝑹−1𝑿 𝑿′𝑹−1𝒁

𝒁′𝑹−1𝑿 𝒁′𝑹−1𝒁 + 𝛀−1] [
𝜷̂

𝒅̂
] = [

𝑿′𝑹−1𝒚

𝒁′𝑹−1𝒚
]                                   (4.4) 

For further technical details, we refer to [101-103]. 

From Equation (4.3) we have 

(𝒁′𝑹−1𝒁 + 𝛀−1)𝒅̂ =  𝒁′𝑹−1(𝒀 − 𝑿𝜷̂ ) 

⇔          𝒅̂ =  (𝒁′𝑹−1𝒁 + 𝛀−1)−1 𝒁′𝑹−1(𝒀 − 𝑿𝜷̂ )                                 (4.5) 

and from Equation (4.2) we have 

𝑿′𝑹−1𝑿 𝜷̂ + 𝑿′𝑹−𝟏𝒁 𝒅̂ =  𝑿′𝑹−1𝒚. 

Substituting the solution for 𝒅̂ into this equation gives: 

𝑿′𝑹−1𝑿 𝜷̂ + 𝑿′𝑹−1𝒁 [(𝒁′𝑹−1𝒁 + 𝛀−1)−1 𝒁′𝑹−1(𝒚 − 𝑿𝜷̂ )] =  𝑿′𝑹−1𝒚. 

Let 𝐔 = (𝒁′𝑹−1𝒁 + 𝛀−1)−1, then we have 

                            𝑿′𝑹−1𝑿 𝜷̂ + 𝑿′𝑹−1𝒁 𝑼 𝒁′𝑹−1(𝒀 − 𝑿𝜷̂ ) =  𝑿′𝑹−1𝒀 

⇔         𝑿′𝑹−1𝑿 𝜷̂ − 𝑿′𝑹−1𝒁 𝑼 𝒁′𝑹−1𝑿𝜷̂ = 𝑿′𝑹−1𝒀 − 𝑿′𝑹−1𝒁 𝑼 𝒁′𝑹−1𝒀  

⇔                   𝑿′(𝑹−1 − 𝑹−1𝒁 𝑼 𝒁′𝑹−1)𝑿𝜷̂ = 𝑿′(𝑹−1 − 𝑹−1𝒁 𝑼 𝒁′𝑹−1)𝒀  

⇔       𝑿′𝑽−1𝑿 𝜷̂ =  𝑿′𝑽−1𝒀, 

where  𝑽−1 = 𝑹−1 − 𝑹−1𝒁𝑼𝒁′𝑹−1 

⇔            𝜷̂ = (𝑿′𝑽−1𝑿) −1 𝑿′𝑽−1𝒀.                                                 (4.6) 
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Hence 𝜷̂ is called the generalized least-square estimate of 𝜷. By plugging this estimator 

into Equation (4.5), we obtain estimate for the vector of random effects 𝒅. 

 In case of general linear models with homoscedastic variance and independent 

residuals, note that 𝐕 = 𝜎𝜀
2𝑰𝑛. Therefore, the least square estimator of 𝜷 will be 

 𝜷̂ =  (𝑿′𝑿)−1𝑿′𝒀. If the matrix 𝑿′𝑿 is singular, we use a generalized inverse (e.g., see 

Penrose (1955)) [103, 105-107]. 

If the matrix in Equation (4.4) is singular, then the solution for  𝜷̂ and 𝒅̂ will be based on 

generalized inverse [100] 

[
𝜷̂

𝒅̂
] = [𝑿

′𝑹−1𝑿 𝑿′𝑹−1𝒁
𝒁′𝑹−1𝑿 𝒁′𝑹−1𝒁 + 𝛀−1]

−

[
𝑿′𝑹−1𝒚

𝒁′𝑹−1𝒚
] 

where 𝐌−1 denote the generalized inverse of a matrix 𝐌. 

4.4.2 Case II: 𝜴 and 𝑹 are unknown 

 The matrices 𝑿 and 𝒁 in model (4.1) are known, but the elements of the matrices  

𝜴 and 𝑹 maybe functions of an unobserved parameter vector  𝜽 = (𝜽1, … , 𝜽𝑚)′ . In 

ordinary mixed effects and random ANOVA models, there is some number c of random 

factors, with the ith factor having 𝑞𝑖 levels. These levels are uncorrelated with each other. 

Associated with the ith random factor is a parameter 𝜎𝑖
2 which represent the common 

variance of its levels. Also, the residual effects have common variance 𝜎𝑐+1
2 . The 

variances 𝜎1
2, … , 𝜎𝑐+1

2  are called variance components. Let 𝑚 = 𝑐 + 1 denote the number 

of variance components then, 

𝜃𝑖 = 𝜎𝑖
2  , (𝑖 = 1,2, … ,𝑚),     𝑹 = 𝜃𝑚𝐈 ,     𝜴 = diag[𝜃1𝐈, … , 𝜃𝑚−1𝐈], 
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𝐕 = 𝜃𝑚𝑰 + ∑ 𝜃𝑖𝒁𝑖𝒁𝑖
′

𝑚−1

𝑖=1

 

where 𝒁𝑖 is a 𝑛 × 𝑞𝑖matrix defined by the partitioning 𝒁 = (𝒁1, … , 𝒁𝑚−1). 

The ANOVA models are sometimes parameterized in terms of 𝛾𝑐+1 = 𝜎𝑐+1
2  and 𝛾𝑖 =

𝜎𝑖
2

𝜎𝑐+1
2  

(𝑖 = 1,… , 𝑐) rather than in terms 𝜎1
2, … , 𝜎𝑐+1

2 . If we had taken 𝛾𝑖 = 𝜃𝑖   , (𝑖 = 1,2, … ,𝑚), 

instead of taking 𝜽, we would have had  

𝜴 = 𝜃𝑚diag[𝜃1𝐈, … , 𝜃𝑚−1𝐈], 

and  

𝐕 = 𝜃𝑚 (𝑰 + ∑ 𝜃𝑖𝒁𝑖𝒁𝑖
′

𝑚−1

𝑖=1

). 

 We will consider both maximum likelihood [28] and restricted maximum 

likelihood (REML) estimators for the variance components. We maximize the full log-

likelihood function 𝑙𝐹 in , 𝜎𝑐+1
2 , and 𝜽: 

𝑙𝐹(𝜷, 𝜎𝑐+1
2 , 𝜽|𝒚) = −

1

2
 log|𝐕| −

1

2
 (𝒚 − 𝑿𝜷)′𝐕−𝟏(𝒚 − 𝑿𝜷). 

 A criticism of the ML estimators for the variance component is that they are 

biased downward because they do not consider the loss of degrees of freedom from the 

estimation of 𝜷. The ML estimator for the single “variance component” 𝜃1 has 

expectation (𝑛 − 𝑝∗)/𝑛, that it is biased downward by an amount 𝜃1𝑝
∗/𝑛, which can be 

significant if the degree of freedom 𝑛 − 𝑝∗ is sufficiently small. Here 𝑝∗ is the rank of the 

design matrix 𝑿. 
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 The REML method corrects for this by defining estimators of the variance 

components as the maximizers of the log-likelihood based on linearly independent error 

contrasts, where 𝑛 is the total number of observations from all individuals. This log-

likelihood 𝑙𝑅 that is derived by Harville (1974) is given as, 

𝑙𝑅(𝜷̂(𝜽), 𝜎𝑐+1
2 , 𝜽|𝒚) = −

1

2
 log|𝑿′𝐕−𝟏𝑿| + 𝑙𝐹(𝜷̂(𝜽), σ𝑐+1

2 , 𝜽|𝒚) 

= −
1

2
 log|𝐕| −

1

2
 log|𝑿′𝐕−𝟏𝑿| −

1

2
 (𝒚 − 𝑿𝜷)′𝐕−𝟏(𝒚 − 𝑿𝜷). 

For more details on maximum likelihood and related problems we refer to Harville et al 

(1977) [108]. 

  There are computational methods that can be used to obtain ML, and REML. For 

example Newton-Raphson (NR) and Fisher Scoring algorithms [60]. The NR algorithm is 

an iterative procedure that computes new parameter values 𝜎𝑐+1
2  and 𝜽 from their current 

values [109]. After estimating the variance-covariance matrices 𝜴 and 𝑹, the mixed 

model equations will become [110]: 

[𝑿
′𝑹̂−1𝑿 𝑿′𝑹̂−1𝒁

𝒁′𝑹̂−1𝑿 𝒁′𝑹̂−1𝒁 + 𝛀̂−1
] [

𝜷̂

𝒅̂
] = [𝑿

′𝑹̂−1𝒀
𝒁′𝑹̂−1𝒀

]                                   (4.7) 

 To model biological data, there is often interest in genetic relationships that arise 

from the biology of a situation. A matrix that a counts for whatever genetic relationships 

that exists among individuals is called the relationship matrix or numerator relationship 

matrix; we denote this matrix by (𝐀) as described in Henderson (1976) [111]. Given the 

matrix 𝐀, then, for the variance of the vector of random effects 𝒅 becomes 
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𝑣𝑎𝑟(𝒅) = 𝜎𝑑
2 𝑨 . The use of 𝑨 also extends to the case of multiple traits. For example, for 

two traits, with data vectors  𝒚1, and 𝒚2, we have  

𝑣𝑎𝑟(𝒅) = [
𝜎𝑑1

2 𝑨 𝜎𝑑1𝑑2
𝑨

𝜎𝑑2𝑑1
𝑨 𝜎𝑑2

2 𝑨
] = [

𝜎𝑑1

2 𝜎𝑑1𝑑2

𝜎𝑑2𝑑1
𝜎𝑑2

2 ]⨂𝑨, 

where 𝒅1 and 𝒅2 are the corresponding vectors of random effects [112]. 

 In genetics the matrices 𝑹 = 𝜎𝜀
2 𝑰 and 𝛀 = 𝜎𝑑

2 𝑨, where the variances 𝜎𝜀
2 and 𝜎𝑑

2 

denote residuals and additive variances. Mammals are genetically related to each other 

and undergoing asexual to produce an offspring that is expected to be correlated, unless 

𝜎𝑑
2 is 0 [113]. Thus, if 𝑑𝑖 is the genetic effect for subject i then 𝑣(𝑑𝑖) = 𝑎𝑖𝑖𝜎𝑑

2 and 

𝑐𝑜𝑣(𝑑𝑖, 𝑑𝑗) = 𝑎𝑖𝑗𝜎𝑑
2, where the values 𝑎𝑖𝑖 and 𝑎𝑖𝑗 can be calculated in different ways 

depending on whether the parents of subject i are known or not. 

 Note that 𝑨 is a positive-definite matrix (unless identical twins or clones are in the 

pedigree, in which case it would be positive semi-definite) [114]. Next section will show 

how to calculate the elements of 𝑨.  

If the matrices 𝑹 and 𝛀 are nonsingular, since 𝑹−1 is an identity matrix, we can rewrite 

the system (4.4) as the following: 

[
𝑿′𝑿 𝑿′𝒁
𝒁′𝑿 𝒁′𝒁 + 𝜹𝑨−1] [

𝜷̂

𝒅̂
] = [

𝑿′𝒚

𝒁′𝒚
], 

where  𝜹 =  
𝜎𝜀

2

𝜎𝑑
2 . Therefore: 

[
𝜷̂

𝒅̂
] = [

𝑿′𝑿 𝑿′𝒁
𝒁′𝑿 𝒁′𝒁 + 𝜹𝑨−𝟏]

−1

[
𝑿′𝒚

𝒁′𝒚
]. 
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4.5 The Numerator Relationship Matrix 

 The numerator relationship (𝑨) is a component of BLUP. When we multiply this 

matrix by the additive genetic variance, it will give the variance-covariance matrix 

among random subject effects. Each element (𝑎𝑖𝑗) is a probability that a random gene 

from a given subject i is identical by descent (IBD) to a gene in the same locus from a 

subject j. In some studies termed the coefficients of kinship [115]. The dimensions of this 

matrix let say we have 𝑞 subjects, then the dimensions will be (𝑞 × 𝑞), also it is 

symmetric. The diagonal element (𝑎𝑖𝑖) represents twice the probability that two gametes 

taken at random from animal i will carry identical alleles by descent. The off-diagonal 

element (𝑎𝑖𝑗) equals the probability that an allele selected randomly from subject i and an 

allele selected randomly from subject j at the same locus are identical alleles by descent 

[116]. The matrix 𝑨 can be computed using a recursive method which was described by 

Henderson (1976). Initially, subjects in the pedigree are coded 1 to n and ordered such 

that parents precede their progeny. The following are rules to calculate the elements of 

this matrix. 

If both parents (f and m) of subject i are known: 

𝑎𝑗𝑖 = a𝑖𝑗 = 0.5(𝑎𝑗𝑓 + 𝑎𝑗𝑚);   𝑗 = 1 𝑡𝑜 (𝑗 − 1)   

𝑎𝑖𝑖 =  1 + 0.5(𝑎𝑓𝑚) 

If only one parent f is known and assumed unrelated to the mate: 

𝑎𝑗𝑖 = 𝑎𝑖𝑗 = 0.5(𝑎𝑓𝑚);   𝑗 = 1 𝑡𝑜 (𝑗 − 1) 

𝑎𝑖𝑖 =  1 

https://en.wikipedia.org/wiki/Identity_by_descent
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If both parents are unknown and are assumed unrelated: 

𝑎𝑗𝑖 = 𝑎𝑖𝑗 = 0;   𝑗 = 1 𝑡𝑜 (𝑗 − 1) 

𝑎𝑖𝑖 =  1 

Example: 

The pedigree for a family included seven individuals  

Table 4.1 Pedigree for a family of seven individuals. 

Individual Father Mother 

3 

4 

5 

6 

7 

1 

Unknown 

3 

3 

3 

2 

Unknown 

4 

4 

4 

 

Figure 4.1. Pedigree of seven individuals. 

The calculations to find the numerator relationship matrix for the pedigree table are: 
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𝑎11 =  1                    Both parents of individual 1 are unknown 

𝑎12 = 𝑎21 = 0           both parents of individual 1 or 2 are unknown 

⋮ 

𝑎77 =  1 + 0.5(𝑎𝑓𝑚) = 1 + 0.5(0) = 1     both parents of individual are known 

The A matrix is:  

  

 In this matrix, the diagonal element for subject i (𝑎𝑖𝑖) is equal to 1 + 𝐹𝑖, where 𝐹𝑖 

is called the inbreeding coefficient of subject i [107, 116]. We are going to use the 

numerator relationship matrix 𝑨 in LME and threshold model in next section. The matrix 

𝑨 can also be calculated using pedigreemm package in R (see Appendix D for R code): 

 In our case, we have 𝒀 is a vector which represents breast cancer incidence 

(affected = 1 and normal = 0) with dimension 167×1, and factors namely gender and 

family which will treated as fixed effects, and 𝑿 is design matrix with dimensions 167×5, 

where 5 is the number of levels for fixed effects (male and female and 3 families), 𝜷 is 

5×1 vector of parameters of fixed effects. 𝒁 is 167×167 design matrix associated with the 

vector of genetic effects 𝒅. 





























15.05.05.05.025.025.0

5.015.05.05.025.025.0

5.05.015.05.025.025.0

5.05.05.01000

5.05.05.0015.05.0

25.025.025.005.010

25.025.025.005.001
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4.6 The Heritability Coefficient 

 In biological applications, the quantities 𝒅 and 𝜷 in (4.1) denote the genetic and 

environmental effects, respectively. Given that “a central question in biology is whether 

observed variation in a particular trait is due to environmental or biological factors” [57]. 

The heritability coefficient is ℎ2 = 
𝜎𝑑

2

𝜎𝑑
2+𝜎𝜀

2 which represents the proportion of phenotypic 

variance attributed to variation in genotypic values, is a fundamentally important 

quantity. Indeed, linear mixed effects models and inference on the heritability coefficient 

has been applied recently in genome-wide association studies [117, 118]. 

4.7 Genomic Relationships Matrix  

 In linear mixed effects models that include genomic relationships matrix (𝑮) will 

be more accurate than those that use expected relationships from pedigrees matrix. The 

numerator relationship matrix 𝑨 uses the only pedigree information to obtain 

probabilities that gene pairs are identical by descent [116]. But Genomic relationship 

matrix 𝑮 uses the genotypic information to estimate the segment of DNA that two 

individuals share [119].  

 To obtain the matrix, 𝑮, let 𝑴 be the matrix that stipulates which marker alleles 

were inherited by everyone, with dimensions of 𝑛𝑔 ×  𝑠, where 𝑛𝑔 is number of 

individuals with genomic information and  𝑠 is number of SNP’s. 𝑴 has elements from 0, 

1, 2 and 5, representative of homozygote, heterozygote, other homozygote, and missing 

SNP marker, correspondingly. Let 𝑷 be 𝑛𝑔 ×  𝑠 matrix contain frequencies 𝑝𝑖 of the 

second allele at each locus. Therefore, column i of 𝑷 is 2(𝑝𝑖 − 0.5) where 𝑖 = 1,2, … , 𝑆 
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[57, 119]. A 𝑮 is genomic relationship matrix can be found with three different methods. 

First method is: 

𝑮 =
(𝑴 − 𝑷)(𝑴 − 𝑷)′

2∑𝑝𝑖(1 − 𝑝𝑖)
 

Dividing by  2∑𝑝𝑖(1 − 𝑝𝑖) scales matrix 𝑮 to be analogous to the numerator relationship 

matrix  𝑨. In frequency estimates, missing genotypes (coded as 5 in the data) will not be 

included in our calculations. The elements of matrix 𝑴 − 𝑷 set to be zero, which is the 

mean of frequency of missing genotypes, other elements of 𝑴 − 𝑷 will standardized for 

each individual’s proportion of missing genotypes [57]. 

 The genomic inbreeding coefficient for individual 𝑗 is simply 𝐺𝑗𝑗 − 1, and 

genomic relationships between individuals 𝑗 and 𝑘, which are analogous to the 

relationship coefficients of Wright (1922), these coefficients are obtained by dividing 

elements 𝐺𝑗𝑘 by square roots of diagonals 𝐺𝑗𝑗 and 𝐺𝑘𝑘. 

 The second method for obtaining 𝑮 weights markers by reciprocals of their 

expected variance instead of summing expectations across loci and then dividing: 

𝑮 = (𝑴 − 𝑷)𝐃(𝑴 − 𝑷)′, where 𝐃 is diagonal with 𝑫𝑗𝑗 =
1

𝑚[2𝑝𝑖(1−𝑝𝑖)]
. This formula was 

proposed by Amin et al (2007) and Leutenegger et al (2003) [120, 121]. 

 The third method to obtain 𝑮 does not require all ele frequencies and instead 

adjusts for mean homozygosity by regressing 𝑴𝑴′ on 𝑨 and 𝑮 using the following 

model: 

𝑴𝑴′ = 𝛾0𝟏𝟏′ + 𝛾1𝑨 + 𝑬, 
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Where 𝛾0and 𝛾1 are the intercept and slope, respectably.  

Here is an example showed how to calculate G matrix, suppose we have three individuals 

and two SNP’s and suppose we have encoded AA=2, Aa=1, and aa=0. 

So, matrix M with dimensions 3 × 2. 

𝑴 = [
0 0
0 2
1 2

]   ⇒  [
𝑎𝑎 𝑎𝑎
𝑎𝑎 𝐴𝐴
𝑎𝐴 𝐴𝐴

] 

Also, matrix 𝑷3×2 

Frequency A for locus 1 (SNP1) = 𝑝̂1 = 
1

6
= 0.16       

Frequency A for locus 2 (SNP2) = 𝑝̂2 = 
4

6
= 0.667  

First column in P matrix is 2(𝑝̂1 − 0.5) =  2(0.16 − 0.5) =  −0.68  

Second column in P matrix is 2(𝑝̂2 − 0.5) =  2(0.667 − 0.5) =  0.32  

𝑷 = [
−0.68 0.32
−0.68 0.32
−0.68 0.32

] 

For the denominator 2∑p𝑗(1 − 𝑝𝑗) = 2 ∗ [0.16 ∗ (1 − 0.16) + 0.667 ∗ (1 − 0.667)] 

       Misztal et al (2009) proposed that it is possible to modify a numerator based 

relationship matrix 𝑨 to a matrix 𝑯 that takes in both pedigree-based relationships and 

genomic information 𝑨∆ [17]: 

𝑯 = 𝑨 + 𝑨∆. 

Let indices 1 and 2 denote ungenotyped and genotyped animals. Then 
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𝑨 = [
𝑨11 𝑨12

𝑨21 𝑨22
], 

𝑯 = [
𝑨11 𝑨12

𝑨21 𝑮
] = 𝑨 + [

0 0
0 𝑮 − 𝑨22

] 

And           𝑨∆ = [
0 0
0 𝑮 − 𝑨22

] 

The inverse of 𝑯 can be calculated as following: 

Let the inverse of matrix 𝑨 be 

𝑨−1 = [𝑨
11 𝑨12

𝑨21 𝑨22], 

 To derive an inverse function of the combined relationship matrix of [122], using 

the properties of the inverse of a partitioned matrix, identities from 𝑨−1𝑨 = 𝑰 are:     

                                  𝑨11𝑨11 + 𝑨12𝑨21 = 𝑰                                       𝐴1 

𝑨21𝑨12 + 𝑨22𝑨22 = 𝑰                                       𝐴2 

𝑨11𝑨12 + 𝑨12𝑨21 = 𝟎                                       𝐴3 

𝑨21𝑨11 + 𝑨22𝑨21 = 𝟎, and                                𝐴4 

(𝑨11 + 𝑨12𝑨22
−1𝑨21)

−1 = 𝑨11                             𝐴5  

Using [A1] through [A4], then multiplying the whole-population matrix [18], 

𝑯 = 𝐴 + [
𝑨12𝑨22

−1(𝑮 − 𝑨22)𝑨22
−1𝑨21 𝑨12𝑨22

−1(𝑮 − 𝑨22)

(𝑮 − 𝑨22)𝑨22
−1𝑨21 𝑮 − 𝑨22

] 

                                         𝑯−1 = 𝑨−1 + [
𝟎 𝟎
𝟎 𝑮−1 − 𝑨22

−1] 
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4.8 Threshold model 

 This model is totally flexible. The distribution of the elements of error can be 

taken to be some non-normal (e.g. logistic) distribution. Threshold model can be simply 

extended to multiple responses; some are ordered categorical and others that are 

quantitative. The previous study on the threshold model seems to have been confined 

primarily to the case where the underlying linear model is a fixed-effects model. 

McCullagh (1980) gave a comprehensive discussion of this case. Curnow and Smith 

(1975) reviewed genetic applications of threshold models. Thompson and Baker (1981) 

presented a device, termed a composite link function that allows threshold models to be 

embedded in the framework of the generalized linear models due to Nelder and 

Wedderburn (1972). The threshold model in which it is assumed that the observed 

category is determined by the value of an underlying unobservable continuous response. 

[67]. 

 Suppose we have n indicate the number of observable “individuals”, and 𝜆𝑖 

denote an underlying continuous-response variable associated with the ith of these 

individuals. Take 𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑛)′.  

Let 𝝀 follows a linear mixed effects model; 

𝝀 = 𝑿𝜷 + 𝒁𝒅 + 𝜺                                                        (4.8) 

matrices 𝑿 and 𝒁 and vectors 𝜷, 𝒅 and 𝜺 were described in model (4.1); the only different 

is the vector 𝝀 which contains 𝑛 × 1 unobserved continuous variable. Give the ordered 

categories numbers from 1 to m. It is assumed that 𝜆𝑖 is unobserved, but we observe the 
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category into which the ith individual falls or the category number 𝑂𝑖, 𝑖 = 1,2, … , 𝑛. 

These categories determined into following relationship: 

𝜏𝑘𝑖−1
< 𝜆𝑖 ≤ 𝜏𝑘𝑖 

⇔ 𝑂𝑖 = 𝑘 ,                                            (4.9) 

where 𝑘 ∈ {1,2, … ,𝑚}, 𝜏0 = −∞, 𝜏𝑚 = +∞ and 𝜏1, … , 𝜏𝑚−1are unknown thresholds 

which partition the real numbers into m categories. Therefore, when the realized value of 

𝜆𝑖 belongs to the 𝑘 interval, the observed values 𝑂𝑖 = 𝑘. 

Following this assumption, the probability-mass function of 𝑂1, …𝑂𝑛 is  

𝑝(𝑂1, … , 𝑂𝑛) = 𝑝𝑟{𝑂𝑖 = 𝑜𝑖(𝑖 = 1,… , 𝑛)} 

= 𝑝𝑟{𝜏𝑜𝑖−1
< 𝜆𝑖 ≤ 𝜏𝑜𝑖 

(𝑖 = 1,… , 𝑛)} 

Harville (1984) indicate to this model for the vector 𝒐 = (𝑂1, …𝑂𝑛)′ of categorical 

responses as the “threshold model”. 

 In implementing the threshold model, there is a request to make inferences about 

various functions of  𝜏1, … , 𝜏𝑚−1, 𝜷 , and sample of the random vector 𝒅 say 𝒅𝑐. In 

special, we need to make inferences about the quantity as following: 

𝑝𝑘,𝑘′ = p𝑟{𝜏𝑘 < 𝑥′𝜷 + 𝑧′𝒅 + 𝜀 ≤ 𝜏𝑘′ |𝒅 = 𝒅𝑐}                               (4.10) 

where 𝑘 < 𝑘′, 𝑥 and 𝑧 are specified vectors, and 𝜀 is distributed 𝑁(0, 𝜎2) and 

independent on 𝒅. The best choice of  and 𝑧 , which represents the condition probability 

when (𝒅 = 𝒅𝑐) that an (𝑛 + 1) individual (which follows the same model as the 𝑛 

observable individuals) will belong to one of the categories 𝑘 + 1,… , 𝑘′.  

Note that we can re-express the inequality (4.10) as the following: 
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𝜏𝑘𝑖−1
< 𝜆𝑖 ≤ 𝜏𝑘𝑖 

 

(𝜏𝑘−1
− 𝜏1)/𝜎 < 𝑊𝑖 ≤ (𝜏𝑘 − 𝜏1)/𝜎                                   (4.11) 

Where 𝑊𝑖 = (𝜆𝑖 − 𝜏1)/𝜎, 𝑖 = 1,2, … , 𝑛, 𝑘 = 1,2, … ,𝑚.  

In matrices notations if we have 𝒘 = (𝑊1,𝑊2, … ,𝑊𝑛)′ and using vector of ones 1, we 

can write; 

𝒘 = (𝟏, 𝑿) [
−𝜎−1𝜏1

−𝜎−1𝜷
] + 𝒁(𝜎−1𝒅) + 𝜎−1𝜺                                       (4.12) 

Therefore, the threshold model can be reformulated in terms of a second threshold model 

whose underlying continuous response variables correspond to (𝜆𝑖 − 𝜏1)/𝜎, 𝑖 =

1,2, … , 𝑛, whose boundaries correspond to (𝜏𝑘 − 𝜏1)/𝜎 , 𝑘 = 1,2, … ,𝑚 − 1, and whose 

vectors of ‘fixed’, ‘random’ and ‘residual’ effects correspond  to 𝜎−1(−𝜏1, 𝜷
′) to 𝜎−1𝒅, 

and to 𝜎−1𝜺, respectively. In the latter, the threshold model, the residual variance equals 

1, the first boundary point equals 0. 

From now, we assume that 𝜎 = 1 and 𝜏1 = 0, also the first column of 𝑿 equals 𝟏. While 

these assumptions are met, we refer to the threshold model as the 'standardized threshold 

model' [67]. If we suppose that 𝝀 is observed, we could use Henderson's Best linear 

unbiased prediction (BLUP) procedure to estimate 𝑥′𝜷 + 𝑧′𝒅. The BLUP would be 

𝑥′𝜷̃ + 𝑧′𝒅̃ where 𝜷̃ and 𝒅̃  denote any solution to the system of linear equations, 

[
𝑿′𝑿 𝑿′𝒁
𝒁′𝑿 𝒁′𝒁 + 𝛀−𝟏] [

𝜷̃

𝒅̃
] = [

𝑿′𝝀
𝒁′𝝀

] 

There is one way to obtain the mixed model equations and hence at the BLUP, that is 

finding values of 𝜷 and 𝒅 that maximize 
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𝜙𝑁+𝑞 ([
𝝀
𝜷
] ; [

𝑿𝜷
𝟎

] , [
𝚺 𝒁𝛀

𝛀𝒁′ 𝒁′𝒁
]) =  𝜙𝑁(𝝀;𝑿𝜷 + 𝒁𝒅𝑐, 𝐼)𝜙𝑞(𝒅𝑐; 𝟎, 𝛀) 

= 𝜙𝑞(𝒅𝑐; 𝟎, 𝛀) ∏𝜙𝑁

𝑛

𝑖=1

(𝝀𝑖 − 𝑥𝑖
′𝜷 − 𝑧𝑖

′𝒅𝑐),                             (4.13)  

 where 𝑥𝑖
′ and 𝑧𝑖

′ represent the ith rows of 𝑿 and 𝒁, respectively. Note that (4.13) is the 

joint probability density function of 𝝀 and 𝒅.  

Now let us apply to the standardized threshold model (𝝀 is unobserved) an approach 

analogous to the maximization (4.12). 

𝜓(𝑜1, 𝑜2, … , 𝑜𝑛; 𝝉, 𝜷, 𝒅𝑐) =  ∏ ∫ 𝜙(𝝀𝑖 − 𝑥𝑖
′𝜷 − 𝑧𝑖

′𝒅𝑐)

𝜏𝑜𝑖

𝜏𝑜𝑖−1

𝑛

𝑖=1

 𝑑𝝀𝑖 

= ∏{Φ(𝜏𝑜𝑖
− 𝑥𝑖

′𝜷 − 𝑧𝑖
′𝒅𝑐) − Φ(𝜏𝑜𝑖−1

− 𝑥𝑖
′𝜷 − 𝑧𝑖

′𝒅𝑐)}

𝑛

𝑖=1

.            (4.14) 

This procedure consists of estimating 𝒘′𝝉 − 𝑥𝑖
′𝜷 − 𝑧𝑖

′𝒅𝑐 by 𝒘′𝝉̂ − 𝑥𝑖
′𝜷̂ − 𝑧𝑖

′𝒅̂𝑐, and 𝝉̂ =

(𝜏̂2, 𝜏̂3, … , 𝜏̂𝑚−1), 𝜷̂ and 𝒅̂𝑐 denote any values of 𝝉, 𝜷 and 𝒅𝑐 that maximize 

𝜓(𝑂1, 𝑂2, … , 𝑂𝑛; 𝝉, 𝜷, 𝒅𝑐)𝜙𝑞(𝒅𝑐; 𝟎, 𝛀)                                   (4.15) 

We consider the problem of computing 𝝉̂ , 𝜷̂ and 𝒅̂𝑐 that maximize the function (4.15). 

Given that 𝜔′ = [𝝉′, 𝜷′, 𝒅𝑐
′], Gianola and Foulley (1983) proceeded to find the estimator 

𝜔̂ that maximizes the log of the density 𝐿(𝜔). They therefore provided the following 

non-linear iterative system of equations based on the first and second derivatives, 

assuming a normal distribution, to obtain solutions for Δ𝝉, Δ𝜷 and 𝚫𝒅𝑐 
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[
𝑸 𝑳′𝑿 𝑳′𝒁

𝑿′𝑳 𝐗′𝑻𝑿 𝑿′𝑻𝒁
𝒁′𝑳 𝒁′𝑻𝑿 𝒁′𝑻𝒁 + 𝛀−𝟏

] [
Δ𝝉
Δ𝜷
𝚫𝒅𝑐

] = [
𝑷

𝑿′𝑽
𝒁′𝑽 − 𝛀−𝟏𝚫𝒅𝑐

]                    (4.16) 

The calculation of some of these matrices involves 𝑝𝑖𝑘, which defines the probability of a 

response being observed in category k assuming a normal distribution of the ith row.  

𝑝𝑖𝑘 =  Φ(𝜏𝑘 − 𝑥𝑖
′𝜷 − 𝑧𝑖

′𝒅𝑐) − Φ(𝜏𝑘−1 − 𝑥𝑖
′𝜷 − 𝑧𝑖

′𝒅𝑐) 

This distribution is a function of the distance between 𝑥𝑖
′𝜷 − 𝑧𝑖

′𝒅𝑐 and the threshold, 

Likewise, the height of the normal curve at 𝜏𝑘 under the conditions of the ith row 

becomes:  

𝜙𝑖𝑘 =  𝜙(𝜏𝑘 − 𝑥𝑖
′𝜷 − 𝑧𝑖

′𝒅𝑐) 

To compute the various matrices and vectors in (10.3): 

𝑉𝑖 = ∑ 𝑛𝑖𝑘

𝑚

𝑘=1

(
ϕ𝑖𝑘−1 − 𝜙𝑖𝑘

𝑝𝑖𝑘
) 

Where 𝑛𝑖𝑘 is the number of counts in category k of response in row i, and for the 

elements of the matrix 𝑻, which is a weighting factor, are computed as: 

𝑇𝑖𝑖 = ∑ 𝑛𝑖.

𝑚

𝑘=1

(
𝜙𝑖𝑘−1 − 𝜙𝑖𝑘

𝑝𝑖𝑘
) 

And  𝑛𝑖. = ∑ 𝑛𝑖𝑘
𝑚
𝑘=1   

The matrix 𝑸 is an (m-1) by (m-1) banded matrix and the diagonal elements are 

calculated as: 
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𝑞𝑘𝑘 = ∑𝑛𝑖.

𝑚

𝑖=1

(
𝑝𝑖𝑘 − 𝑝𝑖(𝑘+1)

𝑝𝑖𝑘𝑝𝑖(𝑘+1)
)𝜙𝑖𝑘

2 , 𝑘 = 1,… , (𝑚 − 1) 

and for the off-diagonal elements are: 

𝑞(𝑘+1)𝑘 = −∑𝑛𝑖.

𝑚

𝑖=1

𝜙𝑖(𝑘+1)𝜙𝑖𝑘

𝑝𝑖(𝑘+1)
, for 𝑘 = 1,… , (𝑚 − 2) 

and  𝑞(𝑘+1)𝑘 = 𝑞𝑘(𝑘+1). 

The matrix 𝑳 is of order 𝑛 by (m − 1) and its elements are calculated as: 

𝑙𝑖𝑘 = − 𝑛i.𝜙𝑖𝑘 (
𝜙𝑖𝑘 − 𝜙𝑖(𝑘−1)

𝑝𝑖𝑘
−

𝜙𝑖(𝑘+1)− 𝜙𝑖𝑘

𝑝𝑖(𝑘+1)
) 

The elements of the vector 𝑷 are: 

𝑝𝑘 = {∑ [
𝑛𝑖𝑘

𝑝𝑖𝑘
−

𝑛𝑖(𝑘+1)

𝑝𝑖(𝑘+1)
]𝑛

𝑖=1 𝜙𝑖𝑘} ; 𝑘 = 1,… ,𝑚 − 1. 

The matrices L and P are then substituted in the system of  equation (4.16) [107]. 

4.9 Gibbs Sampling Method 

 This is a numerical integration method based on all possible conditional posterior 

distributions. It was first implemented by Geman and Geman (1984). In this method, the 

marginal posterior distributions generate random drawings by taking iterative samples 

[107]. Wang et al (1993) used Gibbs sampling to estimate variance components in 

univariate linear mixed effects model [124].  
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4.9.1 Prior and Posterior Distributions 

 Suppose we have the following univariate linear mixed effects model: 

𝒀 = 𝑿𝜷 + 𝒁𝒅 + 𝜺 

Where 𝒀 is a vector of observations with dimension 𝑛 × 1; 𝜷 is a vector of fixed effects 

with dimension p×1; 𝒅 is a vector of random effects with dimension 𝑞 ×  1; 𝜺 is a vector 

of errors; 𝑿 and 𝒁 are design matrices for the fixed and random effects with dimensions 

𝑛 × 𝑝 and 𝑛 × 𝑞 respectively. The conditional distribution that generates the vector 𝒀 is: 

𝒀|𝜷, 𝒅, 𝜎𝑒
2~𝑁(𝑿𝜷 + 𝒁𝒅,𝑹𝜎𝑒

2) 

The matrix 𝑹 here assumed to be identity with 𝑛 × 𝑛 dimension and 𝜎𝑒
2 is residual 

variance. 

 Bayesian analysis required to determine prior distributions to the unidentified 

parameters. Nonetheless, the prior distributions of 𝜷, 𝒅, 𝜎𝑒
2 and 𝜎𝑑

2 are needed to fulfill 

the Bayesian condition of the model [124]. Commonly a flat, improper prior distribution 

was used for vector 𝜷, as follows:      

P(𝜷) ~ constant                                                  (4.17) 

Also, a multivariate normal distribution (MVN) was used for 𝒅: 

𝒅 ~MVN(0, 𝑨𝜎𝑑
2)                                                (4.18) 

Where 𝑨 is a numerator relationship matrix. In addition, for variance components 𝜎𝑒
2 and 

𝜎𝑑
2 the priors are the scaled inverted Chi-squared distribution form: 

𝑝(𝜎𝑒
2|𝑣𝑒 , 𝑠𝑒

2) ∝ (𝜎𝑒
2)

−𝑣𝑒
2

−1 exp(
−1

2
𝑣𝑒𝑠𝑒

2/𝜎𝑒
2)                           (4.19) 
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And 

𝑝(𝜎𝑑
2|𝑣𝑑 , 𝑠𝑑

2) ∝ (𝜎𝑑
2)

−𝑣𝑑
2

−1 exp(
−1

2
𝑣𝑑𝑠𝑑

2/𝜎𝑑
2)                           (4.20) 

 The parameters are degrees of belief 𝑣𝑒 , 𝑣𝑑, and 𝑠𝑒
2, 𝑠𝑑

2 for (4.19) and (4.20) 

respectively. The assumption for the degrees of belief parameters 𝑣𝑒 and 𝑣𝑑 equal to zero 

to find the improper priors: 

𝑝(𝜎𝑒
2) ∝ (𝜎𝑒

2)−1 ;  𝑝(𝜎𝑑
2) ∝ (𝜎𝑑

2)−1                                        (4.21) 

The proper uniform prior is: 

𝑝(𝜎2) ∝ {𝑘  0 ≤ 𝜎2 ≤ 𝜎2
𝑚𝑎𝑥

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 The common technique for calculating the conditional densities required for 

Gibbs sampling is to use the conditional independence in models (4.17-4.21) to write the 

joint posterior density as: 

𝑝(𝜷, 𝒅, 𝜎𝑒
2, 𝜎𝑑

2|𝐲)  ∝
1

(𝜎𝑒
2)

𝑛
2
+1

 exp (−
1

2𝜎𝑒
2 (𝐲 − 𝑿𝜷 − 𝒁𝒅)′(𝐲 − 𝑿𝜷 − 𝒁𝒅)) 

×
1

(𝜎𝑑
2)

𝑞
2
+1

 exp (−
1

2𝜎𝑑
2 𝒅′𝑨−1𝒅)                                   (4.22) 

 In Gibbs sampling method, the full conditional posterior for each parameter is 

needed; the scaled inverted Chi-square is the full conditional posterior for residual 

variance 𝜎𝑒
2 which given by: 

𝑝(𝜎𝑒
2|𝜷, 𝒅, 𝜎𝑑

2, 𝐲)  ∝  
𝑝(𝜎𝑒

2, 𝜷, 𝒅, 𝜎𝑑
2
|𝐲) 

∫ 𝑝(𝜎𝑒
2, 𝜷, 𝒅, 𝜎𝑑

2
|𝐲) 𝑑𝜎𝑒

2
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∝

1

(𝜎𝑒
2)

𝑛
2
+1

exp (−
1

2𝜎𝑒
2 (𝐲 − 𝑿𝜷 − 𝒁𝒅)′(𝐲 − 𝑿𝜷 − 𝒁𝒅))

1

(𝜎𝑑
2)

𝑞
2
+1

 exp (−
1

2𝜎𝑑
2 𝒅′𝑨−1𝒅)

1

(𝜎𝑑
2)

𝑞
2
+1

 exp (−
1

2𝜎𝑑
2 𝒅′𝑨−1𝒅)∫

1

(𝜎𝑒
2)

𝑛
2
+1

exp (−
1

2𝜎𝑒
2 (𝐲 − 𝑿𝜷 − 𝒁𝒅)′(𝐲 − 𝑿𝜷 − 𝒁𝒅))𝑑𝜎𝑒

2

 

∝

1

(𝜎𝑒
2)

𝑛
2
+1

exp (−
1

2𝜎𝑒
2 (𝐲 − 𝑿𝜷 − 𝒁𝒅)′(𝐲 − 𝑿𝜷 − 𝒁𝒅))

∫
1

(𝜎𝑒
2)

𝑛
2
+1

exp (−
1

2𝜎𝑒
2 (𝐲 − 𝑿𝜷 − 𝒁𝒅)′(𝐲 − 𝑿𝜷 − 𝒁𝒅))𝑑𝜎𝑒

2

 

Because the denominator is constant with respect to 𝜎𝑒
2 then: 

𝑝(𝜎𝑒
2|𝜷, 𝒅, 𝜎𝑑

2, 𝐲)  ∝ (𝜎𝑒
2)

−𝑛

2
−1exp (−

1

2𝜎𝑒
2 (𝐲 − 𝑿𝜷 − 𝒁𝒅)′(𝐲 − 𝑿𝜷 − 𝒁𝒅))             (4.23) 

Where the parameters are 𝑣𝑒 = 𝑛 and 𝑠𝑒
2 = (𝐲 − 𝑿𝜷 − 𝒁𝒅)′(𝐲 − 𝑿𝜷 − 𝒁𝒅)/𝑛. Each of 

the Gibbs conditionals can be computed in this manner [125]. So, the full conditional 

posterior for additive variance 𝜎𝑑
2 is the scaled inverted Chi-squared: 

𝑝(𝜎𝑑
2|𝜷, 𝒅, 𝜎𝑒

2, 𝐲)  ∝ (𝜎𝑑
2)

−𝑞

2
−1exp (−

1

2𝜎𝑑
2 𝒅′𝑨−𝟏𝒅)                                 (4.24) 

With the parameters 𝑣𝑒 = 𝑞 and 𝑠𝑒
2 = 𝒅′𝑨−𝟏𝒅/𝑞. 

The full condition posterior of  𝜷 is: 

𝜷| 𝒅, 𝜎𝑒
2, 𝜎𝑑

2, 𝐲 ~ 𝑁[𝜷̃, (𝑿′𝑿)−1𝜎𝑒
2]                                (4.25) 

Where 𝜷̃ = (𝑿′𝑿)−1𝑿′(𝐲 − 𝒁𝒅) 

For the random vector 𝒅: 

𝒅| 𝜷, 𝜎𝑒
2, 𝜎𝑑

2, 𝐲 ~ 𝑁[𝒅̃, (𝒁′𝒁 + 𝑨−1 𝜎𝑒
2

𝜎𝑑
2)

−1

𝜎𝑒
2]                                (4.26) 
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Where 𝒅̃ = (𝒁′𝒁 + 𝑨−1 𝜎𝑒
2

𝜎𝑑
2)

−1

𝒁′(𝐲 − 𝑿𝜷 − 𝒁𝒅) 

After defining these four posterior distributions, implementing Gibbs sampling steps can 

be shown below: 

i. setting arbitrary initial values of  𝜷, 𝒅, 𝜎𝑒
2, 𝜎𝑑

2; 

ii. generate 𝜎𝑒
2 from (4.23), and update it; 

iii. generate 𝜎𝑑
2 from (4.24), and update it; 

iv. generate 𝒅 from (4.26), and update it; 

v. generate 𝜷 from (4.25), and update it; 

vi. repeat steps (ii to v) k times, and update the values each time, where k denoted the 

length of Gibbs chain (iteration). Let (𝜎𝑒
2)(𝑘), (𝜎𝑑

2)(𝑘), (𝒅)(𝑘) and (𝜷)(𝑘) are the 

sample points with kth iteration. Then: 

vii. repeat steps (i-vi) 𝑚 times, to get 𝑚 Gibbs samples. Then we have: 

(𝜎𝑒
2)1

(𝑘)
, (𝜎𝑒

2)2
(𝑘)

, … , (𝜎𝑒
2)𝑚

(𝑘)
~𝑝(𝜎𝑒

2|𝐲) 

(𝜎𝑑
2)1

(𝑘)
, (𝜎𝑑

2)2
(𝑘)

, … , (𝜎𝑑
2)𝑚

(𝑘)
~𝑝(𝜎𝑑

2|𝐲) 

(𝒅)1
(𝑘)

, (𝒅)2
(𝑘)

, … , (𝒅)𝑚
(𝑘)

~𝑝(𝒅|𝐲) 

(𝜷)1
(𝑘)

, (𝜷)2
(𝑘)

, … , (𝜷)𝑚
(𝑘)

~𝑝(𝜷|𝐲) 

Since the interest is to estimate the variance components 𝜎𝑒
2 and 𝜎𝑑

2, we will not monitor 

vectors 𝒅 and 𝜷 [124].  
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 After getting samples, and as noted by Casella and George (1992) and Gelfand 

and Smith (1990), the estimator of the marginal density of 𝜎𝑒
2 is: 

𝑝̂(𝜎𝑒
2|𝒚) =

1

𝑚
∑𝑝(𝜎𝑒

2|(𝜷)𝑗
(𝑘)

, (𝒅)𝑗
(𝑘)

, (𝜎𝑑
2)𝑗

(𝑘)
,

𝑚

𝑗=1

𝒚) 

Similarly, the estimator of the marginal density of 𝜎𝑑
2 is: 

𝑝̂(𝜎𝑑
2|𝒚) =

1

𝑚
∑𝑝(𝜎𝑑

2|(𝜷)𝑗
(𝑘)

, (𝒅)𝑗
(𝑘)

,

𝑚

𝑗=1

𝒚) 

 For threshold model; the response variable 𝑂𝑖 for each individual takes on two 

possible values 1 or 0; The variable is the expression of latent continuous variable 𝜆𝑖; this 

liability of individual 𝑖. The variable 𝑂𝑖 takes 1 if 𝜆𝑖 exceeds an unknown fixed threshold 

𝜏 and 0 otherwise. The variable 𝜆𝑖 is distributed normal with mean 𝜃 and variance 1. 

Hence: 

𝜆𝑖|𝜃~𝑁(𝑤𝑖
′𝜃, 1) 

Where 𝜃′ = (𝜷′,𝒅′) and 𝜷, 𝒅 as defined in model (4.8), also 𝑤𝑖
′  is a row incidence vector 

related to individual 𝑖. The conditional posterior of thresholds and liabilities are uniforms 

and truncated normals, respectively. The remaining parameters (𝜷, 𝒅, 𝜎𝑒
2, 𝜎𝑑

2 ) are the 

same in linear mixed effect model [87]. 
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For giving 𝜃, the conditional distributions of 𝜆𝑖 are independent. Therefore, the joint 

density is given by 

𝑝(𝝀|𝜃) = ∏ 𝜙𝜆𝑖
(𝑤𝑖

′𝜃, 1) = 𝜙𝜆(𝐖𝛉, 𝐈)𝑛
𝑖=1                             (4.27) 

Where 𝜙𝜆 (.) is a normal density, also in (4.27) put 𝐖𝛉 = 𝑿𝜷 + 𝒁𝒅 + 𝜺. However, given 

the model, we have: 

𝑝(𝑂𝑖 = 1|𝜃, 𝜏) = 𝑝(𝜆𝑖 > 𝜏|𝛉, τ) = ∫ 𝜙(𝑥)
∞

𝜏−𝑤𝑖
′𝜃

𝑑𝑥 = Φ(−(𝜏 − 𝑤𝑖
′𝜃))       (4.28) 

Where Φ (.) is the cumulative distribution function of a standard normal. We can set the 

constant τ to 0. So the model (4.28) can be write as: 

𝑝(𝑂𝑖 = 1|𝜃) = Φ(𝑤𝑖
′𝜃)                                          (4.29) 

Distribution of 𝜆𝑖 conditional on 𝜃 and on 𝑂𝑖 = 𝑜𝑖 follows a truncated normal 

distribution. So for 𝑜𝑖 = 1: 

𝑝(𝜆𝑖|𝜃, 𝑂𝑖 = 1) =
𝜙𝜆𝑖(𝑤𝑖

′𝜃,1)

Φ(𝑤𝑖
′𝜃)

 1(𝜆𝑖 > 0)                                   (4.30) 

Where 1 (𝑋 ∈ 𝑅) is the indicator function that takes 1 if  𝑋 is contained in the set 𝑅, and 

0 otherwise [87]. For 𝑜𝑖 = 0 , the density is  

𝑝(𝜆𝑖|𝜃, 𝑂𝑖 = 0) =
𝜙𝜆𝑖(𝑤𝑖

′𝜃,1)

Φ(−𝑤𝑖
′𝜃)

 1(𝜆𝑖 ≤ 0)                                   (4.31) 
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4.10 Predicting SNP effects 

           Let the random effects vector 𝒅 be decomposed into those for genotyped (𝒅𝑔) and 

ungenotyped (𝒅𝑛) individuals. The random effects of genotyped individuals are a 

function of SNP effects 𝒈: 

𝒅𝑔 = 𝒁𝑔𝒈 

SNP effects can be projected using genomic liability 𝒅 ̂, 𝑫 which is a diagonal matrix of 

weights for the variances of SNPs. 𝒁𝑔 is a matrix linking the genotype of each locus per 

the following: 

𝒈̂ = 𝑫𝒁𝒈
`[𝒁𝒈𝑫𝒁𝒈

`]−𝟏𝒅̂𝒈 

Dimensions: 𝒈̂ is 𝑆 ×  1, D is 𝑆 ×  𝑆 and 𝒅𝑔 ̂  is 𝑛𝑔  ×  1. This is the best predictor for 

SNP effects [102].  
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CHAPTER 5 

MULTITRAITS MODELS 

5.1 Introduction 

 The excellent method to evaluate the subjects on different traits is a multiple trait 

analysis, because it considers the relationship between these traits. Analysis of multiple 

traits includes the simultaneous evaluation of subjects for more than one trait and makes 

use of the genetic and phenotypic correlations between the traits. Henderson and Quaas 

(1976) applied the first BLUP in multiple traits. We will present the multivariate BLUP 

(MBLUP) in this chapter and give examples in its application [107]. 

5.2 Multiple Trait Model 

 The method is based on an extension of Henderson's method for practical of 

relatives records in single trait model. Furthermore, the main advantage of MBLUP is 

that the increase of accuracy. This accuracy depends on the absolute difference between 

the residual and genetic correlations between the traits. The larger the enhancement in 

efficiency is due the larger of differences in these correlations. 

 Suppose we have 𝑛 related jubects each with records on 𝑡 traits, for each of the 

traits we have a stack of the univariate models as following: 

[
𝒀1

⋮
𝒀𝑡

] = [

𝑿1 𝟎 … 𝟎
𝟎 𝑿2 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝑿𝑡

] [

𝑩1

⋮
𝑩𝑞

] + [

𝒁1 𝟎 … 𝟎
𝟎 𝒁2 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝒁𝑡

] [
𝒅1

⋮
𝒅𝑡

] + [

𝒆1

⋮
𝒆𝑡

] 
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Where 𝒀𝑖 is avector of the response observations for trait 𝑖, 𝑩𝑖 and 𝒅𝑖 are vectors of fixed 

and random effects for the trait 𝑖, 𝒆𝑖 is vector of residuals effects for trait 𝑖, and matrices 

𝑿𝑖 and 𝒁𝑖 are design matrices related to fixed and random effects, respectively [107]. 

5.3 Equal Design Matrices 

 If all traits are affected by the same fixed effect and records of all subjects are 

taken for all traits, then the same design matrices 𝑿 and 𝒁 are use for all traits. 

Forexample, we have two traits and for each trait we can write the model as follows: 

For the first trait: 

𝒀𝟏 = 𝑿𝟏𝜷𝟏 + 𝒁𝟏𝒅𝟏 + 𝜺𝟏 

The second trait is: 

𝒀𝟐 = 𝑿𝟐𝜷𝟐 + 𝒁𝟐𝒅𝟐 + 𝜺𝟐 

If we order the subjects with respect traits, we could write the multivariate model in the 

following form: 

[
𝒀1

𝒀2
] = [

𝑿1 𝟎
𝟎 𝑿2

] [
𝑩1

𝑩2
] + [

𝒁1 𝟎
𝟎 𝒁2

] [
𝒅1

𝒅2
] + [

𝒆1

𝒆2
]                                        (5.1) 

It is assumed that the variance of random effects 𝒅𝑖 and residuals 𝒆𝑖 given by: 

𝑉𝑎𝑟 [

𝒅1

𝒅2

𝒆1
𝒆2

] = [

𝑔11𝑨 𝑔12𝑨 0 0
𝑔21𝑨 𝑔22𝑨 0 0

0 0 𝑟11𝑰 𝑟12𝑰
0 0 𝑟21𝑰 𝑟22𝑰

] 

Where 𝑮 = [
𝑔11 𝑔12

𝑔21 𝑔22
] is additive variance-covariance matrix for random effects. The 

elements of matrix 𝑮 are; 𝑔11 is additive variance for direct effect of trait 1; 𝑔12 = 𝑔21 is 
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additive convariance between traits 1 nad 2; 𝑔22 is additive variance for direct effect of 

trait 2; 𝑨 is the numerator relationship matrix (see section 4.5); 𝑹 = [
𝑟11 𝑟12

𝑟21 𝑟22
] is 

variance-convariance matrix of residuals. 

The heritability for trait i can be calculated using the following formula [128]: 

ℎ𝑖
2 =

𝑔𝑖𝑖

𝑔𝑖𝑖 + 𝑟𝑖𝑖
 

To solve the multivariate model (5.1) we can use mixed model equations system as the 

following: 

[
𝑿′𝑹−1𝑿 𝑿′𝑹−1𝒁
𝒁′𝑹−1𝑿 𝒁′𝑹−1𝒁 + 𝑨−1⨂ 𝑮−1] [

𝜷̂

𝒅̂
] = [

𝑿′𝑹−1𝒚

𝒁′𝑹−1𝒚
]                                      (5.2) 

Where 

𝑿 = [
𝑿1 𝟎
𝟎 𝑿2

], 𝜷̂ = [
𝜷̂1

𝜷̂2

], 𝒁 = [
𝒁1 𝟎
𝟎 𝒁2

], 𝒅̂ = [
𝒅̂1

𝒅̂2

] and 𝒚 = [
𝒚1

𝒚2
] 

We can rewrite MME for multivariate model with two traits as follows: 

[
 
 
 
 
𝑿1

′ 𝑹11𝑿1 𝑿1
′ 𝑹12𝑿2 𝑿1

′ 𝑹11𝒁1 𝑿1
′ 𝑹12𝒁2

𝑿2
′ 𝑹12𝑿1 𝑿2

′ 𝑹22𝑿2 𝑿2
′ 𝑹21𝒁1 𝑿2

′ 𝑹22𝒁2

𝒁1
′ 𝑹11𝑿1 𝒁1

′ 𝑹12𝑿2 𝒁1
′ 𝑹11𝒁1 + 𝑨−1𝑔11 𝒁1

′ 𝑹12𝒁2 + 𝑨−1𝑔12

𝒁2
′ 𝑹21𝑿1 𝒁2

′ 𝑹22𝑿2 𝒁2
′ 𝑹21𝒁1 + 𝑨−1𝑔21 𝒁2

′ 𝑹22𝒁2 + 𝑨−1𝑔22]
 
 
 
 

[
 
 
 
 
𝜷̂1

𝜷̂2

𝒅̂1

𝒅̂2]
 
 
 
 

=

[
 
 
 
 
𝑿1

′ 𝑹11𝒚1 + 𝑿1
′ 𝑹12𝒚2

𝑿2
′ 𝑹21𝒚1 + 𝑿2

′ 𝑹22𝒚2

𝒁1
′ 𝑹11𝒚1 + 𝒁1

′ 𝑹12𝒚2

𝒁2
′ 𝑹21𝒚1 + 𝒁2

′ 𝑹22𝒚2]
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Where 𝑔𝑖𝑗 are the elments of the inverse of the additive variance-covariance matrix, 𝑮−1. 

Note that if the two traits are uncorrelated then 𝑹12 and 𝑔12 will be zero. In this case the 

matirces in the equation above reduce two the single trait model [107]. 

[
 
 
 
 
𝑿1

′ 𝑟11𝑿1 0 𝑿1
′ 𝑟11𝒁1 0

0 𝑿2
′ 𝑟22𝑿2 0 𝑿2

′ 𝑟22𝒁2

𝒁1
′ 𝑟11𝑿1 0 𝒁1

′ 𝑟11𝒁1 + 𝑨−1𝑔11 0

0 𝒁2
′ 𝑟22𝑿2 0 𝒁2

′ 𝑟22𝒁2 + 𝑨−1𝑔22]
 
 
 
 

[
 
 
 
 
𝜷̂1

𝜷̂2

𝒅̂1

𝒅̂2]
 
 
 
 

=

[
 
 
 
 
𝑿1

′ 𝑟11𝒚1

𝑿2
′ 𝑟22𝒚2

𝒁1
′ 𝑟11𝒚1

𝒁2
′ 𝑟22𝒚2]

 
 
 
 

 

Example: 

The data below are the pre-weaning gain (WWG) and postweaning gain (PWG) for five 

beef calves, we interested to estimate the fixed effect (sex) and random effect (breeding 

values) for all animals: 

Table 5.1. Pre-weaning gain and post-weaning gain (kg) for five beef calves. 

Calf Sex Sire Dam WWG PWG 

4 Male 1 - 4.5 6.8 

5 Female 3 2 2.9 5.0 

6 Female 1 2 3.9 6.8 

7 Male 4 5 3.5 6.0 

8 Male 3 6 5.0 7.5 

 

Using MBLUP analysis. Assume that the additive genetic covariance 𝑮 Matrix is: 

𝑮 =
𝑊𝑊𝐺
𝑃𝑊𝐺

[
20 18
18 40

] 

And the residual covariance matrix is:  

𝑹 =
𝑊𝑊𝐺
𝑃𝑊𝐺

[
40 11
𝑟21 30

] 
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Since the matrices are too large, the MME have not presented. The solutions of the 

system given below: 

Table 5.2 Solutions of multiple traits model. 

Effects WWG PWG 

Sex 

1 

 

4.361 

 

6.800 

2 3.397 5.880 

Animal 

1 

 

0.151 

 

0.280 

2 −0.015 −0.008 

3 −0.078 −0.170 

4 −0.010 −0.013 

5 −0.270 −0.478 

6 0.276 0.517 

7 −0.316 −0.479 

8 0.244 0.392 

 

Where for fixed effect, 1 = male and 2 = female. 

5.4 Unequal Design Matrices 

 In multivariate analysis, the model called unequal (unbalanced) if traits are 

affected through different fixed or random effects. For example, the multiple traits model 

of yields in different locations. However, in this case we can apply Henderson et al 

(1976) for evaluation [128]. 
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Example: 

We have fat yield in each parity as different traits shown in the table below: 

Cow Sire Dam HYS1 HYS2 FAT1 FAT2 

4 1 2 1 1 201 280 

5 3 2 1 2 150 200 

6 1 5 2 1 160 190 

7 3 4 1 1 180 250 

8 1 7 2 2 285 300 

 

For parity 1 and 2 the herd-year-season are HYS1 and HYS2, respectively; FAT1 and 

FAT2 fat yield in parity 1 and 2. To estimate the breeding values (FAT1 and FA2), 

assume the genetic and environmental parameters are: 

𝑮 = [
35 28
28 30

]     and        𝑹 = [
65 27
𝑟21 70

] 

For the inverses are: 

𝑮−𝟏 = [
0.113 −0.105

−0.105 0.132
]     and        𝑹 = [

0.018 −0.007
−0.007 0.017

] 

[
 
 
 
 
𝜷̂1

𝜷̂2

𝒅̂1

𝒅̂2]
 
 
 
 

=

[
 
 
 
 
𝑿1

′ 𝑹11𝑿1 𝑿1
′ 𝑹12𝑿2 𝑿1

′ 𝑹11𝒁1 𝑿1
′ 𝑹12𝒁2

𝑿2
′ 𝑹12𝑿1 𝑿2

′ 𝑹22𝑿2 𝑿2
′ 𝑹21𝒁1 𝑿2

′ 𝑹22𝒁2

𝒁1
′ 𝑹11𝑿1 𝒁1

′ 𝑹12𝑿2 𝒁1
′ 𝑹11𝒁1 + 𝑨−1𝑔11 𝒁1

′ 𝑹12𝒁2 + 𝑨−1𝑔12

𝒁2
′ 𝑹21𝑿1 𝒁2

′ 𝑹22𝑿2 𝒁2
′ 𝑹21𝒁1 + 𝑨−1𝑔21 𝒁2

′ 𝑹22𝒁2 + 𝑨−1𝑔22]
 
 
 
 
−1

×

[
 
 
 
 
𝑿1

′ 𝑹11𝒚1 + 𝑿1
′ 𝑹12𝒚2

𝑿2
′ 𝑹21𝒚1 + 𝑿2

′ 𝑹22𝒚2

𝒁1
′ 𝑹11𝒚1 + 𝒁1

′ 𝑹12𝒚2

𝒁2
′ 𝑹21𝒚1 + 𝒁2

′ 𝑹22𝒚2]
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The matrix 𝑿1 relates HYS1 effect and 𝑿2 relates to HYS2 effect. The transposes of 

these unequal matrices are: 

𝑿1
′ = [

1 1 0 1 0
0 1 0 0 1

]               and           𝑿2
′ = [

1 0 1 1 0
0 1 0 0 1

] 

The solutions of MME are: 

Effects FAT1 FAT2 

HYS 

1 

 

175.7 

 

243.2 

2 219.6 240.6 

Animal 

1 

 

8.969 

 

8.840 

2 −2.999 −2.777 

3 −5.970 −6.063 

4 11.754 11.658 

5 −16.253 −15.824 

6 −17.314 −15.719 

7 8.690 8.138 

8 22.702 20.931 
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CHAPTER 6 

ANALYSIS 

6.1 Introduction 

 The variance components and heritability estimates for familial breast cancer 

incidence were calculated with a threshold model using the recorded binary observations 

linked to the probit function (transformation). This chapter will present these programs 

and the steps used for analysis. Four programs in Fortran 90/95 and R software were 

used to analyze the data. All graphs in this chapter were created using R software, in 

order to show the distributions and the autocorrelation functions of variance components 

and heritability estimates. We estimated heritability using two methods; first, we used the 

MCMCglmm Package in R for phenotypic data only and second, we included genomic 

data (SNP) using the THRGIBBS1F90 program. 

6.2 The MCMCglmm R Package 

For the binary phenotype variable, the model is defined on an underlying latent variable: 

𝝀 = 𝑿𝜷 + 𝒁𝒅 + 𝜺                                                     (6.1) 

Where 𝑿 and 𝒁 are design matrices relating to fixed and random effects, respectively. 

These matrices have associated parameter vectors 𝜷 and 𝒅, while 𝜺 is a residual vector. 

The distribution of vectors 𝒅 and 𝜺 are assumed to be multivariate normal distribution as: 

𝒅~𝑁(𝟎, 𝑮) and 𝜺~𝑁(𝟎, 𝑹). The matrices 𝑮 and 𝑹 are (co)variances of the random 

effects and residuals, respectively. The structure form of 𝑮 in MCMCglmm is: 

𝑮 = (𝑽1⨂𝑨1)⨁(𝑽2⨂𝑨2)⨁…                                          (6.2) 
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Typically, the (co)variance matrices (𝑽) are low-dimensional and the structured matrices 

are (𝑨) high dimensional. The terms are separated by a direct sum (⨁) as component 

terms and each component term is formed through the Kronecker product (⨂). So if we 

have two component terms, we can write matrix 𝑮 as: 

𝑮 = [
(𝑽1⨂𝑨1) 𝟎

𝟎 (𝑽2⨂𝑨2)
] 

By the same manner, we can get 𝑹:  

 𝑹 = (𝑽𝑒1⨂𝑰1)⨁(𝑽𝑒2⨂𝑰2)⨁…                                          (6.3) 

Where 𝑽𝑒1, 𝑽𝑒2 are residual variances and 𝑰1, 𝑰2 are identity matrices [129]. 

To fit the binary data 𝑦𝑖 for one trait, we use a probit link and a Bernoulli distribution: 

𝑦𝑖 = 𝐵(𝑝𝑟𝑜𝑝𝑡−1(𝜆𝑖)) 

Since we want to calculate heritability for the model (6.1), it is necessary to take into 

account a supplementary source of variance coming from the probit link.  

ℎ̂2 =
𝜎𝑑

2

𝜎𝑑
2 + 𝜎𝑒

2 + 1
 

This is justified by the fact that, to be strictly equivalent to a threshold model (where y is 

1 if 𝜆 > 0), we need to include the “variance” of the link transformation into the total 

variance, which is 1 for a probit link [130]. 

 In MCMCglmm, the prior distribution of the (co)variances is an inverse-Wishart 

and a normal prior for the fixed effect. For a single variance component, an inverse-

Gamma distribution with parameters nu and v (𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎 (
𝑛𝑢

2
,
𝑛𝑢×𝑣

2
)) is a 
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common choice. The possible set of parameters would be nu=0.002 and v=1, which is 

actually 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(0.001,0.001)[131] because 𝛼 =
𝑛𝑢

2
 , 𝛽 =

𝑛𝑢 𝑉

2
. In a binary 

variable, the residual variance (𝑉𝑅) will be fixed to 1 and an estimate additive 

variance (𝑉𝐺). Also, when we want to estimate the heritability of binary data, it is advised 

to use chi-square prior [132]. 

 Our estimation of heritability is 0.03947 using 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(0.001,0.001) 

which is the common prior. Using chi-square with 1 degree of freedom as prior, 

heritability is 0.3369; refer to the R code in Appendix E. The diagnostic of the results 

from both priors is described as follows.  

 Before we consider our estimation as a final estimation, we need to check the 

convergence and autocorrelation of samples. In MCMCglmm output, there are two main 

components (model$Sol and model$VCV) where Sol is the posterior distribution 

solution, including fixed effects, and VCV is a posterior distribution of (co)variance 

matrices. First, let us look at the trace of samples from 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(0.001,0.001) 

prior (Figure 6.1 and Figure 6.2). 
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Figure 6.1 Trace of the fixed effects using inverse-Gamma (0.001, 0.001). 
 

As we can see for each graph of the samples (Figures 6.1 and 6.2), the values are widely 

spread. While the values in the graphs of samples (Figures 6.3 and 6.4) are spread 

(fluctuated) in a small range, these samples were generated using chi-square with 1 

degree of freedom as prior.   
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Figure 6.2 Trace of the variance components inverse-Gamma (0.001, 0.001). 

Also, little autocorrelation is found in the samples that were generated from 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 −

𝐺𝑎𝑚𝑚𝑎(0.001,0.001), especially in the family, animal and units (Table 1.1). However, 

the autocorrelation is reasonable for the sample of additive variance generated from Chi-

square (6.2). Note that we fixed the residual variance to 1 in this prior (Figure 6.3 and 

Figure 6.4). 
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Figure 6.3 Trace of the fixed effects using chi-square. 
 

  

Table 1.1 The autocorrelation of samples from 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎. 

 Intercept sex Family Animal      

Lag 0 1.000000 1.000000 1.000000 1.000000 

Lag 40 0.107780 0.227881 0.581473 0.782403 

Lag 200 0.077046 0.168276 0.520311 0.531336 

Lag 400 0.045379 0.141118 0.433896 0.335605 

Lag 2000 0.032968 0.038969 0.125210 0.024426 
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Table 6.2 The autocorrelation of samples from Chi-square. 

 Intercept sex Family Animal      

Lag 0 1.000000 1.000000 1.000000 1.000000 

Lag 40 0.171016 0.072454 0.007925 0.438784 

Lag 200 0.006327 0.004607 -0.010548 0.043452 

Lag 400 0.011712 0.015504 0.001981 -0.004161 

Lag 2000 -0.008358 0.004110 -0.013991 0.010373 

 

 

Figure 6.4. Trace of the variance component using chi-square. 
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In MCMCglmm, the convergence is often very fast. Therefore, we used the Heidelberg 

stationarity test to see if the convergence is reasonable; if the p-value exceeds 0.05, that 

means the sample is from a stationary distribution. 

Table 6.3 Convergence test of samples generated from inverse-Gamma. 

 Stationarity test Start iteration p-value 

animal passed 1 0.513 

Units passed 1 0.399 

 

 

Table 6.4 Convergence test of sample generated from Chi-square. 

 Stationarity test Start iteration p-value 

animal passed 1 0.435   

6.3 BLUPF90 in Fortran 90/95  

 The analysis in this research was also completed using BLUPF90 in Fortran 

90/95. These programs were originally developed as exercises for a class taught by 

Ignacy Misztal at the University of Georgia [133]. Gradually, they have been upgraded 

and improved by many contributors. This a family of programs for mixed-models 

computations. The programs can execute data conditioning, estimate variances using 

several methods, compute BLUP for very large data sets, calculate approximate accuracy, 

and use SNP data for improved accuracy of breeding values for GWAS studies [134]. 

The programs have been designed with three goals:  

i. Flexibility to support a large set of models found in animal breeding applications. 

ii. Software simplicity to abate errors and enable modifications. 
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iii. Productivity at the algorithmic level. 

The four programs used in this study are RENUMF90, THRGIBBSxF90, 

POSTGIBBSF90 and POSTGSF90 [133].  

a. RENUMF90 

 This is a program for renumbering in the BLUPF90 family of programs. It 

supports multiple traits, dissimilar effects per trait, alphanumeric and numeric 

fields. The program provides data statistics, preforms comprehensive pedigree 

checking, and supports unknown parent groups. 

b. THRGIBBS1F90 

 This program performs a Gibbs sampler for threshold-linear mixed effect 

models involving multiple categorical and linear variables. The original program 

THRGIBBSF90 was composed by DeukHwan Lee in 2001, and rewritten by 

Shogo Tsuruta in 2004. This program should be used after the renumbering 

program RENUMF90. 

c. POSTGIBBSF90 

 This program was designed to calculate posterior means, standard 

deviation and diagnosis of convergence. The program reads gibbs_samples and 

fort.99 files from Gibbs sampling (THRGIBBS1F90) programs. The output files 

from this program are postgibbs_samples, postmean, postsd and postout. 

d. POSTGSF90 

 This program is used to obtain the prediction of SNP effects. The output 

files from this program are snp_sol, chrsnp, chrsnpvar and snp_pred (the second 

file contains the values of SNP effects used in Manhattan plots). 
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6.3.1 The THRGIBBS1F90 

 The joint posterior distribution was estimated using the MCMC method based on 

Gibbs sampling with the THRGIBBS1F90 software [134]. The number of iterations is 

250000, with 50000 samples discarded as burn-in for convergence, with the remaining 

samples being thinned using intervals of 20 samples. Ten thousand (10000) samples were 

stored and used to calculate the posterior features of interest, such as posterior means and 

standard deviations. The derived variance components and heritability estimates for 

familial breast cancer incidence are shown in Table 6.5. 

Table 6.5 Variance components and heritability estimates. 

  Additive Effect Residuals variance Heritability 

Mean 0.0590174 0.1471117 0.2812776 

SD 0.02835517 0.02496394 0.1166282 

Confidence Interval 2.5%    97.5% 

0.0147    0.1225 

2.5%    97.5% 

0.1019     0.19910 

2.5%      97.5% 

0.0765    0.5187 

 

 The heritability coefficient is an estimate of the amount of variation in a 

phenotypic trait in a population due to genetic variation among individuals in that 

population. Here it is 28% variation in the response variable, as explained by genetic 

variations (SNPs). 

6.4 Plots of Estimators 

 If we look at the histogram graphs (see Figure 6.5), each graph clearly shows 

more data around the average, where the highest "bump" is located, indicating this as 

“symmetrical." This is a good sign that the averages (for each estimator) are 

approximately in the center of the data. 
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Figure 6.5 Histogram with density of the variances and heritability estimates. 

6.5 History and Autocorrelation Function Plots 

The series of estimated values show a consistent trend, as noted in Figure 6.6. The series 

of additive variance estimates fluctuate around the same value, which is approximately 

0.059. Likewise, the same behavior is seen for the other two estimated values, where the 

residuals variance fluctuates around 0.147 and heritability is close to 0.28. Furthermore, 

the autocorrelation function (ACF) measures the correlation between pairs of random 

variables. The optimal plot of ACF decays reasonably rapidly to zero, either from above 

or below. We can see that all ACFs (Figure 6.7) have decayed to zero before lag 10, 

which indicates that the series of samples are independent.  
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Figure 6.6 Sample series plots of the variances and heritability estimates. 

 

 

Figure 6.7 Autocorrelation functions of the variances and heritability estimates. 
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 It is essential to check the convergence to determine whether we are as close to 

the actual value as possible. The burn-in value, at 50000, was sufficient to reach 

convergence. Also, to avoid an autocorrelation issue, we used a thinning interval of 20 

and noted that the autocorrelation function went to zero after a few lags, which was good. 

6.6 Manhattan Plot 

GWAS analysis typically reports a visualization of genome-wide association of 

SNPs using a Manhattan plot. The SNP effects are displayed as their absolute values (y-

axis) against SNP location (x-axis: chromosomes and SNP positions). The higher dots 

represent high SNP effects at a given position associated with familial breast cancer [96]. 

In this context, gene mapping based on a Manhattan plot (Figure 6.8) showed that there are 

some areas on the genome (chromosomes 1, 2, 4, 8, 14 and 16) that may include candidate 

genes associated with breast cancer incidence and susceptibility.  

 

Figure 6.8 Manhattan Plot of SNPs effects. 
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In the Manhattan plot (Figure 6.8), we do not use thresholds, or p-values, because 

two problems may arise when we use a single SNP regression. First, thousands of tests will 

be run and SNP effects will be over-estimated. Second, it is difficult to define a genomic 

region with the true mutation [135, 136]. To avoid these two problems, we fitted SNP 

effects simultaneously.  

The 20 markers with the highest effects are shown in Table . These SNPs explained 

more than 3.5% of the genetic variance, which indicates that this group of SNPs, and hence 

their genes, are highly associated with the incidence of this disease.  

Table 6.6 Ordered SNP effects with locations. 

No SNP Effects CHROM POS GENE 

1 4.371465 2 223793480 ACSL3 

2 4.349453 4 187534542 FAT1 

3 4.198865 1 225611661 LBR 

4 3.800145 1 150999863 PRUNE 

5 3.787771 4 187534375 FAT1 

6 3.736460 4 187535169 FAT1 

7 3.661992 8 27147716 TRIM35 

8 3.661992 8 27147939 TRIM35 

9 3.653323 2 44547909 SLC3A1 

10 3.649030 2 224569668 PREPL 

11 3.647262 14 50094913 NEMF/ DNAAF2 

12 3.641489 2 44547574 SLC3A1 

13 3.641489 2 44550290 PREPL 

14 3.641489 2 44570804 PREPL 

15 3.641489 2 44617324 CAMKMT 

16 3.617063 16 71668800 MARVELD3 

17 3.544095 2 217123958 MARCH4 

18 3.51585 2 44550233 PREPL 

19 3.498177 2 178936373 PDE11A 

20 3.496521 4 187077393 FAM149A 
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CHAPTER 7 

DISCUSSION AND CONCLUSION 

Among various types of cancer, breast cancer has been reported as the second most 

deadly cancer in the world. In addition, patients who have been diagnosed as positive for 

this disease face the issue that no treatment is currently available to prevent or reduce the 

occurrence of this cancer [4]. For this reason, more consideration is being given to genomic 

studies that are based on advanced statistical models and methodologies to track the cause 

of this disease, with promising progress being achieved [26]. Finding a genetic component, 

as well as a genomic region, that could be associated with breast cancer will facilitate the 

diagnosis of those most likely to be infected with breast cancer in the future. This does not 

just raise caution, but will also allow for early treatment, which may lead to preventing the 

disease from progressing to advanced stages. In this study, we estimated the heritability of 

breast cancer incidence based on the presence of breast cancer in 167 people, of which 22 

had genomic information. Since the response variable was binary, a threshold model was 

used [21]. In order to maximize the usage of this small data set, we decided to combine 

both the pedigree data and the genomic data in one analysis [17]. This approach has been 

widely used with accurate results [18]. The challenge was to scale the genomic data to the 

pedigree data, so the two sources of information can be reasonably combined. 

The heritability estimate for breast cancer incidence obtained in this study indicates 

that genetic tracking can be used to investigate the probability of the incidence of the 

disease. Furthermore, a genetic component becomes a simple indicator that a genomic 

region on the DNA is associated with the incidence of this disease. For any trait with a non-

zero heritability, the genetic effects must be located somewhere on the chromosomes [137]. 
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The heritability estimates showed that genetics plays a key role in the incidence of this type 

of cancer. In other words, there is a genetic component that can be further investigated to 

determine the genes or genomic regions that might be associated with breast cancer. It is 

then a matter of locating that genetic effect and genotyping the appropriate DNA. 

Since the heritability estimate was higher than zero, we decided to apply a GWAS, 

which will predict the effect of each marker (SNP) we have in the genomic data and provide 

the extent of the genetic variation that can be explained by markers. The GWAS revealed 

that several genes, with small effects for each, might be responsible for breast cancer 

incidence. Specifically, SNPs on chromosomes 1, 2, 4, 8, 14 and 16 could be related to the 

incidence of the disease. Some of these results confirm findings from other similar studies 

[138]. Seven genes were mentioned in previous studies as related to breast cancer. The 

ACSL3 (acyl-CoA synthetase long chain family member 3) gene may be one that enhances 

the amount of cytotoxicity if it gets suppressed, while SREBPs are responsible for aberrant 

proliferation of breast cancer cells [139]. FAT1 (FAT atypical cadherin 1) is one of the 

FAT family of genes which are vital to suppress cancer cells based on their ability of 

homozygous deletion; they can also help to determine oncogenic status [140]. The gene 

PRUNE (prune exopolyphosphatase 1) is related to metastasis in breast cancer; when h-

PRUNE gets suppressed by dipyridamole, the connection with nm23-H1 increases, which 

leads to increasing the cellular movement in the metastasis process [141]. TRIM35 

(tripartite motif containing 35) cooperates in the process of the formation and increase in 

the size of cell cancers [142]. SLC3A1 (solute carrier family 3 member 1) is crucial because 

it promotes the cysteine uptake and antioxidant N-acetylcysteine. Also it is considered 

therapeutic in the treatment of breast cancer [143]. A strong relationship has been noted 
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between SNPs and breast cancer risk, with one of these SNPs called "re8410," located in 

the PREPL (prolyl endopeptidase-like) gene [144]. Gene MARVELD3 (MARVEL domain 

containing 3) is very helpful for paracellular ion connections [145]. 

We also found new seven genes that could be related to breast cancer. These genes 

are: LBR (lamin B receptor); NEMF (nuclear export mediator factor); DNAAF2 (dynein 

axonemal assembly factor 2); CAMKMT (calmodulin-lysine N-methyltransferase); 

MARCH4 (membrane associated ring-CH-type finger 4); PDE11A (phosphodiesterase 

11A) and FAM149A (family with sequence similarity 149 member A).  

The results of this study demonstrate that breast cancer is a complex disease, 

probably controlled by many genes with small effects. Finding genes that show major 

effects is uncommon for disease traits. Such traits are usually influenced by many 

biological components and function factors controlled by a large number of genes. 

Furthermore, disease traits are affected by environmental factors. 

 The main limitation of this work was the sample size. Collecting a larger sample, 

as well as pedigree information in humans, is not an easy task. Further studies depend upon 

the availability of larger datasets, which may then reveal more information on this complex 

trait. It may also help to reduce the number of genes potentially associated with breast 

cancer. Also, including the SNPs that have higher effects through fine mapping and 

pathway analysis may uncover more knowledge about breast cancer incidence and help in 

determining various ways to reduce and prevent the disease in the future [146]. 
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Future works: 

1) Estimating heritability coefficient using Aguilar et al (2010) approach in R software. 

2) Increase the size of data by adding family or more available to get more knowledge 

about breast cancer.  

3) Making check these SNPs that have higher effects in pathway analysis to see if they 

biological related to familial breast cancer. 
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APPENDIX A 

ID SEX DAD MAM Y family 

1 M NA NA 0 1 

2 F NA NA 0 1 

3 M NA NA 0 1 

4 F 1 2 1 1 

5 F 1 2 0 1 

6 F 1 2 0 1 

7 M 1 2 0 1 

8 F NA NA 0 1 

9 M NA NA 1 1 

10 F 3 4 1 1 

11 F 3 4 0 1 

12 F 3 4 0 1 

13 F 3 4 1 1 

14 M NA NA 0 1 

15 M 3 4 1 1 

16 F NA NA 0 1 

17 M 3 4 1 1 

18 F NA 5 0 1 

19 M NA 5 1 1 

20 M NA 6 0 1 

21 F NA 6 0 1 

22 F NA 6 0 1 

23 F 7 8 0 1 

24 F 7 8 1 1 

25 M 7 8 0 1 

26 M 7 8 0 1 

27 F 7 8 1 1 

28 M 7 8 0 1 

29 F 7 8 0 1 

30 F 7 8 1 1 

31 M 7 8 0 1 

32 M 7 8 0 1 

33 F 9 10 1 1 

34 M 9 10 1 1 

35 M 9 10 1 1 

36 F 9 10 1 1 

37 F 0 12 0 1 

38 M 0 12 0 1 

39 M 14 13 0 1 
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40 F 14 13 0 1 

41 M 15 16 1 1 

42 F 15 16 0 1 

43 F 15 16 1 1 

44 M 15 16 0 1 

45 M 15 16 0 1 

46 M 15 16 0 1 

47 F 17 NA 0 1 

48 M 17 NA 0 1 

49 M NA 18 0 1 

50 M 19 NA 0 1 

51 F NA 21 0 1 

52 M NA 23 0 1 

53 M 25 24 0 1 

54 F 25 24 1 1 

55 M 28 27 0 1 

56 F 28 27 0 1 

57 M 28 27 0 1 

58 F NA 29 0 1 

59 F NA 29 0 1 

60 F NA 29 0 1 

61 F 31 30 0 1 

62 F 31 30 0 1 

63 M NA NA 0 2 

64 F NA NA 0 2 

65 M 63 64 1 2 

66 F NA NA 0 2 

67 F 63 64 1 2 

68 M NA NA 0 2 

69 F 63 64 0 2 

70 M NA NA 0 2 

71 F 63 64 1 2 

72 M NA NA 0 2 

73 F 63 64 1 2 

74 M NA NA 0 2 

75 M 63 64 0 2 

76 F NA NA 0 2 

77 M 63 64 1 2 

78 F NA NA 0 2 

79 F 65 66 0 2 

80 M 65 66 0 2 

81 M 65 66 0 2 

82 M 68 67 0 2 
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83 M 68 67 0 2 

84 M 68 67 0 2 

85 F 68 67 0 2 

86 F 70 69 0 2 

87 F 70 69 1 2 

88 F 70 69 1 2 

89 M 70 69 0 2 

90 F 72 71 0 2 

91 M 74 73 0 2 

92 F 74 73 0 2 

93 M 74 73 0 2 

94 F 75 76 0 2 

95 M 75 76 0 2 

96 M 77 78 0 2 

97 M NA NA 0 3 

98 F NA NA 0 3 

99 M NA NA 0 3 

100 F 97 98 1 3 

101 F 97 98 0 3 

102 M 97 98 1 3 

103 F NA NA 1 3 

104 F 97 98 1 3 

105 M NA NA 0 3 

106 M 97 98 0 3 

107 F NA NA 0 3 

108 M 97 98 0 3 

109 F 99 100 0 3 

110 M NA NA 0 3 

111 M 99 100 1 3 

112 M 99 100 1 3 

113 F 99 100 1 3 

114 M 99 100 0 3 

115 F 99 100 0 3 

116 F 99 100 1 3 

117 M 99 100 0 3 

118 F 99 100 1 3 

119 M NA NA 1 3 

120 F 99 100 0 3 

121 M 99 100 0 3 

122 M 99 100 0 3 

123 F 99 100 1 3 

124 F 102 103 0 3 

125 M 102 103 0 3 
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126 M 105 104 0 3 

127 M 106 107 0 3 

128 M 106 107 1 3 

129 M 108 NA 0 3 

130 F NA NA 0 3 

131 M 108 NA 0 3 

132 F 108 NA 0 3 

133 F 108 NA 0 3 

134 F 108 NA 0 3 

135 F 110 109 0 3 

136 F 110 109 0 3 

137 F 110 109 0 3 

138 F 110 109 0 3 

139 F 110 109 1 3 

140 F 119 118 1 3 

141 M 119 118 0 3 

142 M 119 118 0 3 

143 F 119 118 0 3 

144 F 119 118 1 3 

145 M 119 118 0 3 

146 M 119 118 0 3 

147 M 119 118 0 3 

148 M 119 118 0 3 

149 F NA 124 0 3 

150 M NA 124 0 3 

151 F 125 NA 0 3 

152 M 125 NA 0 3 

153 F 129 130 0 3 

154 M 129 130 0 3 

155 F 129 130 1 3 

156 F 129 130 1 3 

157 F 129 130 1 3 

158 F 129 130 1 3 

159 F 129 130 0 3 

160 F 131 NA 0 3 

161 M 131 NA 0 3 

162 F NA 132 0 3 

163 F NA 132 0 3 

164 F NA 132 0 3 

165 F NA 133 0 3 

166 M NA 133 0 3 

167 F NA 134 0 3 
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APPENDIX B 

bowtie2 mapping statistics 
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