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ABSTRACT 

RESPONSE SURFACE METHODOLOGY AND ITS APPLICATION IN 

OPTIMIZING THE EFFICIENCY OF ORGANIC SOLAR CELLS 

RAJAB SULIMAN 

2017 

Response surface methodology (RSM) is a ubiquitous optimization approach used 

in a wide variety of scientific research studies. The philosophy behind a response surface 

method is to sequentially run relatively simple experiments or models in order to 

optimize a response variable of interest. In other words, we run a small number of 

experiments sequentially that can provide a large amount of information upon 

augmentation. In this dissertation, the RSM technique is utilized in order to find the 

optimum fabrication condition of a polymer solar cell that maximizes the cell efficiency. 

The optimal device performance was achieved using 10.25 mg/ml polymer concentration, 

0.42 polymer-fullerene ratio, and 1624 rpm of active layer spinning speed. The cell 

efficiency at the optimum stationary point was found to be 5.23% for the 

Poly(diketopyrrolopyrrole-terthiophene) (PDPP3T)/PC60BM solar cells.  Secondly, we 

explored methods for constructing a confidence region for the stationary point in RSM. In 

particular, we developed methods for constructing simultaneous confidence intervals for 

the coordinates of a stationary point in a quadratic response surface model. The methods 

include Bonferroni adjustment, a plug-in approach based on the asymptotic distribution 

of maximum likelihood estimators, and bootstrapping. The simultaneous coverage 

probabilities of the proposed methods are assessed via simulation. The coverage 



xv 

probabilities for the Bonferroni and plug-in approaches are pretty close to the nominal 

levels of 0.95 for large sample sizes. The metaheuristic method is also considered in 

order to search for an alternative solution to the design matrix that may be near to the 

optimal solution. Finally, we explored recent developments in RSM including 

generalized linear models and the case of multivariate response variables.  
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CHAPTER 1 

GENERAL INTRODUCTION 

It is important to any system to increase performance in order to increase the yield 

at low cost.  One technique used for such a purpose is the so-called optimization.  

Response surface methodology (RSM) is the most common optimization technique and it 

has been employed in many fields such as exploring chemical and biochemical processes. 

This technique is used to fit an empirical model to the experimental data. Usually, we 

consider several potential input variables that influence the system performance. Toward 

this aim, the lower order polynomial models are used in order to explore the system under 

study, and therefore, to describe an experimental design until the conditions is optimized. 

This dissertation focuses on various topics in RSM research. The specific objectives are: 

i. Use RSM to find the optimum conditions that will optimize cell efficiency of 

organic solar cell.  

ii. Develop methods for constructing simultaneous confidence intervals for the 

location of a stationary point.  

iii. Utilize a metaheuristic approach in order to find an alternative optimum order of 

the design points. 

iv. Explore recent developments in RSM research. 

In order to achieve these objectives, the dissertation is organized as follows. 

 In Chapter 2, general introduction to RSM and various RSM designs and their 

properties will be explored. In Chapter 3, organic solar cell data is analyzed using 

response surface methodology in order to optimize cell efficiency. These data have been 
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collected with the help of the Department of Electrical Engineering and Computer 

Science (EECS), South Dakota State University. The RSM technique will allow us to 

find the combination of input variables that will optimize a response variable of interest. 

In Chapter 4, methods for simultaneous inference concerning a stationary point of a 

quadratic response surface model are discussed. Three methods for constructing 

simultaneous confidence intervals for the coordinates of a stationary point are developed. 

The coverage probabilities of these methods, namely, Bonferroni simultaneous 

confidence intervals, plug-in method (based on an equi-coordinate critical point of a 

multivariate normal distribution), and the bootstrap technique are assessed using 

simulation. Chapter 5 presents a metaheuristic search method popular in Operations 

Research. By this approach, one searches for an alternative order in the default design 

matrix associated with RSM. This approach consists of a random search and swapping 

within three blocks (cube, foldover, and star) to find an alternative solution. Chapter 6 

deals with recent and advanced RSM topics such as generalized linear models (e.g., when 

the dependent variable is a count or binary in nature) and multivariate RSM with regard 

to robustness. Finally, Chapter 7 is devoted to discussions, conclusions, and some future 

research. 
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CHAPTER 2 

INTRODUCTION TO RESPONSE SURFACE METHODOLOGY 

2.1 Introduction 

An essential part of any business is improving the performance of its processes 

and increasing the yields of the systems without increasing the associated costs. This 

process is referred to as optimization. A specific variable change in the general 

application can be determined under optimum conditions while holding the other 

variables at a constant level. This is often referred to as a one variable technique. One 

main disadvantage of using this technique is that it will not contain the interaction effects 

between the variables and, additionally, it will not fully describe the effects of the 

variables on the procedure. In order to solve these problems, optimization studies can be 

achieved using the technique of response surface methology (RSM).  

The RSM process is a group of statistical and mathematical methods used in 

developing, and optimizing process, in which a response surface of interest is effected by 

several variables.  RSM is a powerful technique which has important applications in the 

design of an experiment, the development and design of a new product, and in the 

optimization of existing products and process designs. It defines the effects of the 

important factors, alone or in combination with the involved processes [1].  

2.2 Overview and stages for RSM application   

Several different methodologies for the response surface process were first 

introduced in the 1950s by Box and others [2, 3]. In fact, the term “response surface” 

comes from a graphical perspective created using a mathematical model. RSM is 
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commonly used in chemometrics, food science, and biochemistry since that time. 

Response surface models are techniques that are based on fitting an experimental model 

to the experimental data obtained in regard to an experimental design [3]. 

Most applications of RSM for optimization involve of the following several stages: 

First, a screening factor is run to reduce the number of factors (independent) variables to 

a relative few, so the procedure will be more efficient and require smaller number of runs 

or tests. Secondly, determination is made on current levels of the major effect factors 

resulting in a value for the response that is close to the optimum region. If the current 

levels of the factors are not consistent with optimum performance, then the experimenter 

must adjust the process variables that will lead the process toward the optimum level. 

Thirdly, researchers carry out the chosen experimental design according to the selected 

experimental matrix. Next, mathematical/statistical models of the experimental design 

data are developed by fitting linear or quadratic polynomial functions. The fitness of the 

models then needs to be evaluated. Lastly, the stationary points (optimum values) are 

obtained for the variables [3]. These stages are summarized in the flowchart provided in 

Figure 2.1. 
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 2.3 Screening experiment  

The vast majority of applications of RSM have a sequential nature, with the 

process being affected by numerous variables. It is necessary to choice control variables 

that have main effects because it is not possible to identify the effects of all potential 

control variables. Instead, the process of factorial design may be utilized for this purpose. 

After identifying the important variables, the direction in which developments lie can be 

identified, and the levels of the factors are then determined. Determination of these 

settings is important because the achievement of process optimization directly relates to 

these settings; wrongly chosen levels result in an ineffective optimization. When the 

process nears its optimum, an accurate approximation of the true response surface is 

needed, so the experimenter requires a model that describes the response within a 

reasonably small area nearby the optimal region. Due to the true response surface 

typically exhibitions a curvature near the optimum region, a higher degree model will be 

used, such as a quadratic model. When an proper model has been found, this model may 

be investigated to find the optimal conditions for the system [3].  

2.4 Empirical model building  

In most RSM analysis, the relationship among the response surface and the 

independent variables is unknown. Thus, a first stage in RSM is to find a appropriate 

approximation for the true efficient relationship between the response variable and a set 

of independent variables. Many researchers choose response surface design over other 

designs, with the central composite design being most popular. Several properties are 

considered when the select of response surface designs is preformed, according to Myers 

and Montgomery (1995). 
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  Figure 2.2. Full 32 factorial design (k = 2). 

  

The response surface designs produce a good fit of the model to the data, provide 

sufficient information to test for lack of fit, and offer an estimate of the pure experiments 

error. The design allows the experiment to be done in blocks, making it cost efficient. It 

also uses linear, quadratic, or polynomial functions to describe the effects of control 

variables on the outcome variable of interest. RSM also has the property of providing a 

good distribution (the scale prediction variance (SPV) through the design space should be 

reasonably constant) of 𝑉𝑎𝑟[�̂�(𝑋)] 𝜎2⁄  throughout the design space; it does not require a 

high number of design runs and requires few levels of the independent variables. Some 

computer packages such R package, Design-Expert and JMP are available which provide 

optimal designs using specific measures and independent variables from the user [4]. 

Each design is unique with respect to its choice of experimental runs, as well as the 
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number of deign points and blocks. When design collection, the model is defined, and 

coefficients of the model are estimated. 

Typically at the beginning, a low-degree polynomial in some area of the 

independent variables is used [4, 5]. For its application, consider the relationship between 

the response and the associated independent variables denoted by 𝑥1, 𝑥2, … , 𝑥𝑘. 

Generally, such a relationship is unknown, but can be approximated using a low-degree 

polynomial of the form  

𝑌 = 𝜷⊤𝑓(𝒙) + 𝜀                                                           (2.1) 

where 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑘)
⊤, 𝑓(𝒙) is a multivariable vector function of 𝑝 components that 

consists of power terms and cross-power terms of 𝑥1, 𝑥2, … , 𝑥𝑘 up to a certain degree 

𝑑 (≥ 1), 𝜷 is a 𝑝-dimensional vector containing the regression coefficients, and 𝜀 is a 

random error assumed to have a zero mean and homoscedastic variance. Under these 

assumptions, model (2.1) provides an appropriate representation of the response. 

Moreover, the 𝜷⊤𝑓(𝒙) term is the mean response 𝜇(𝒙), i.e., the expectation of response 

variable 𝑌. 

Specifically, approximating the relationship among the response variable and the 

input variables by a first-degree polynomial gives rise to the first-order model: 

                                       𝑌 = 𝛽0 +∑ 𝛽𝑖𝑥𝑖 + 𝜀
𝑘
𝑖=1                                                              (2.2) 

As a result, the responses shoud not exhibit any curvature. To assess curvature, a 

higher-degree model will be used.  A two level factorial designs are utilized to estimate 

the linear terms, but they fail with additional terms, such as quadratic terms. As a result, a 

central run in two level factorial designs can be employed for assessing curvature. 
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Usually, a response surface is represented graphically. For instance, suppose that an 

organic solar cell data, we wish to find the settings of polymer concentration (𝑥1), 

polymer-fullerene ratio (𝑥2) and active layer spinning speed (𝑥3) on the cell efficiency (y) 

[6].  This can be seen in Figure 2.3 (a), where y is plotted versus the levels of 𝑥1 and 𝑥3. 

To help visualize the figure of a response surface, the contour of the response surface is 

often plotted as shown in Figure 2.3 (b). The contour graph of constant response surface 

is shown in the 𝑥1 and 𝑥3 plane. Each contour relates to a specific height of the response 

surface.   

                        The next level of the polynomial model should have an additional terms which 

perform the interaction between the different experimental factors. Therefore, a model for 

a second-degree interaction is given  

𝑌 = 𝛽0 +∑ 𝛽𝑖𝑥𝑖 + ∑ ∑   𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑘
𝑗=1
𝑖<𝑗

𝑘
𝑖=1 + 𝜀𝑘

𝑖=1                                                  (2.3) 

Figure 2.3. (a) The expected efficiency (y) as a function of 𝑥1 and 𝑥3 and (b) the 

contour plot. 



10 

where 𝛽𝑖𝑗 represents the coefficients of the interaction parameters. In order to determine a 

critical point (maximum, minimum, or saddle), it is necessary for the polynomial function 

to contain quadratic terms according to the following model 

𝑌 = 𝛽0 +∑ 𝛽𝑖𝑥𝑖 + ∑ ∑   𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑘
𝑗=1
𝑖<𝑗

𝑘
𝑖=1 + ∑ 𝛽𝑖𝑖

𝑘
𝑖=1 𝑥𝑖

2  + 𝜀                             𝑘
𝑖=1 (2.4) 

 where 𝛽𝑖𝑖 denotes the coefficients of the quadratic terms. 

To estimate the parameters in Equation (2.4), the experimental design has to assure that 

all process variables are preformed using at least three-factor levels. 

In each run of the experiment, the response 𝑌 is measured for the specified 

settings of the input variables. The experimental settings constitute the so-called response 

surface design. This can be represented by a design matrix, denoted by D, of 

dimension 𝑛 × 𝑘: 

𝑫 = [

𝑥11 𝑥12  ⋯ 𝑥1𝑘
𝑥21 𝑥22  ⋯ 𝑥2𝑘

⋮
𝑥𝑛1 𝑥𝑛2  ⋯ 𝑥𝑛𝑘

]                                                              (2.5) 

where 𝑥𝑢𝑖 denote the 𝑢-th design setting of the 𝑖th input variable  𝒙𝒊 (𝑖 = 1,2, … , 𝑘; 𝑢 =

1,2, … 𝑛). Each row of 𝑫 is referred to as a design point in a 𝑘-dimensional space. Let 𝑦𝑢 

denote the response value obtained as a result of applying the 𝑘-th setting of 𝒙, 

namely, 𝒙𝑢 = (𝑥𝑢1, 𝑥𝑢2, … , 𝑥𝑢𝑘)
⊤ for  (𝑢 = 1,2, … , 𝑛) From Equation (2.1), we have 

𝒚𝑢 = 𝛽
⊤𝑓(𝒙𝑢) + 𝜀𝑢, 𝑢 = 1,2, … , 𝑛                                     

where 𝜀𝑢 denotes the random error from the 𝑢-th experimental run. Model (2.4) can be 

expressed in matrix notation as follows 
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𝒀 = 𝑿𝜷 + 𝜺                                                                        (2.6) 

where 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛)
⊤, 𝜲 is the matrix of dimension 𝑛 × 𝑝 whose 𝑘-th row 

is 𝑓⊤(𝒙𝑢), and 𝜺 = (𝜀1, 𝜀2, … , 𝜀𝑛)
⊤. Note that the first column of 𝜲 is the column of 

ones 𝟏𝑛. 

The error 𝜺 has a zero mean and a variance-covariance matrix given by 𝜎2. The 

ordinary least-square estimator of 𝜷 is  

�̂� = (𝜲⊤𝜲)−1𝜲⊤𝒚                                                       (2.7) 

The variance-covariance matrix of  �̂� is given by  

𝑉𝑎𝑟(�̂�) = (𝜲⊤𝜲)−1𝜲⊤(𝜎2𝑰𝑛)𝚾(𝜲
⊤𝜲)−1                      

= 𝜎2  (𝜲⊤𝜲)−1                                                              (2.8) 

Using �̂�, an estimate, �̂�(𝒙𝑢), of the predicted response at 𝒙𝑢 is  

�̂�(𝒙𝑢) =   �̂�
⊤𝑓(𝒙𝑢),   𝑢 = 1,2, … , 𝑛                    

The quantity �̂�⊤𝑓(𝒙𝑢) also gives the predicted response, �̂�(𝒙𝑢) at the 𝑢-th design 

point (𝑢 = 1,2, … , 𝑛).  In general, at any point 𝒙 in an experimental space, denoted by 𝑅, 

the predicted response �̂�(𝒙) is 

�̂�(𝒙) = �̂�⊤𝑓(𝒙), 𝒙 ∈ 𝑅.                                                 (2.9) 

Since �̂� is an unbiased estimator of 𝜷, �̂�(𝒙) is also an unbiased estimator of 

𝜷⊤𝑓(𝒙), which is the mean response at 𝒙 ∈ 𝑅. Using Equation (2.9), the prediction 

variance of  �̂�(𝒙) is  

𝑉𝑎𝑟[�̂�(𝒙)] = 𝜎2𝑓⊤(𝒙)(𝜲⊤𝜲)−1𝑓(𝒙).                                                (2.10) 
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By choosing the proper design, the size of the prediction variance is based on the 

design matrix 𝑿. This facilitates determination of the optimal response quantities to 

obtain the optimal value of  �̂�(𝒙) over the design region 𝑅. Moreover, it is important that 

the prediction variance is as small as possible.   

2.5 Encoding of input variable levels 

The encoding of the input variable levels is based on transforming each studied 

real value into coordinates inside a scale with dimensionless values. These transformed 

values must satisfy the condition of being proportional in their localization in the 

experimental space. When the original units are used, we can find different numerical 

results as compared to the coded unit analysis, and often these results will be difficult to 

interpret [4]. Encoding is a simple linear transformation of the actual measurement scale 

[5]. If the “High” value is 𝑥ℎ and the “Low” value is 𝑥𝑙 (in the actual scale), then the 

scaling takes any actual 𝑥 value and converts it to (𝑥 − 𝑎)/𝑏, where 𝑎 =  (𝑥ℎ + 𝑥𝑙)/2 

and 𝑏 =  (𝑥ℎ − 𝑥𝑙)/2. Note that −1 ≤ (𝑥 − 𝑎)/𝑏 ≤ +1. One can easily convert the 

coded values to the original scales. 

2.6   First-order model 

For a first-degree design, the most common approach is a two-level factorial design (2k 

factorial designs where k the number of variables). 

2.6.1 Two-level factorial designs 

When it is necessary to investigate the joint effect of several variables on a response, 

factorial designs are widely used, especially in experiments involving more than one 

factor. However, the general factorial design in several special cases is important; this is 

due to their wide use in research work. In a two-level factorial design, each factor is 
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measured at two levels, with encoded values, -1, +1, that regarding to the low and high 

levels, respectively, of each factor. Through this design, all possible combinations of such 

levels of the 𝑘 factors are considered and evaluated. The row of the design matrix 𝑫 

represents a combination of 1s and -1s that describe a specific treatment design runs. In 

such cases, the number, 𝑛, of design runs is equal to 2k, providing all possible 

combinations without replication [7].  

2.6.2 Two-level fractional factorial designs 

As the number of variables in a two-level factorial design increases, the number of 

design runs for a complete replication of the design rapidly increases. 

In this section, we focus on a significant class of designs called fractional factorial 

designs. Throughout, we assume that: (i) the variables are fixed, (ii) the designs are 

completely randomized, and (iii) assumptions of normality are satisfied. The 2𝑘−1design 

is principally helpful in the early phases of experimental work when a large number of 

factors are likely to be studied. Through it, we are provided with the minimum number of 

runs with which k variables can be preformed in a complete factorial design. Therefore, 

these designs are commonly used in variable screening experiments. Since there are only 

two-levels for each variable, we consider that the response is approximately linear over 

the region of the factor levels chosen. As is the case with many factor-screening 

experiments, when the process or the system is in the beginning stages of testing, this is 

found to be a reasonable assumption [4]. 

The method of fractional factorial designs frequently results in excessive 

economy and effectiveness in experimentation, especially if the runs of the experiment 

are sequential in nature. For instance, suppose that the experimenters are investigating 
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𝑘 = 3 with all total possible runs (23 = 8 runs) plus 8 center point repetitions. The 

preferred method is to run a 23−1 fractional design (4 runs) with 4 repetitions at the 

center of each half-fraction and then analyze the results. The information obtained from 

this process is used to make decisions on a set of the design runs to perform next. 

Whenever it becomes necessary to solve ambiguity, we are able to run the alternate 

fraction and the entire number of design runs in a central composite design (𝑛 = 2𝑘 +

2𝑘 + 𝑛0 = 24 runs), where 𝑛0 is the center point  [3]. 

For example, the corresponding 23 design matrix is as follows:  

𝑫 =

[
 
 
 
 
 
 
 
−1 −1 −1
   1 −1 −1
−1    1 −1
   1    1 −1
−1 −1   1
   1 −1   1
−1    1   1
   1    1   1 ]

 
 
 
 
 
 
 

 

where the columns are the factor levels and the rows represent all possible combinations 

of the three factors (k = 3).             

 2.7 Blocking in response surface designs  

 When response surface designs are used, it is required to consider blocking in 

order to exclude noise variables. For example, problems may occur when a second-

degree design is collected sequentially from a first-degree design. Extensive time may 

elapse among the fitting of the first-degree design and the running of the additional 

experiments required in order to build quadratic design. In fact, check conditions may 

change throughout this time, more requiring blocking. A response surface design, which 

blocks orthogonally, the block effect will not effect the parameter estimates of the model. 
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In other words, if a 2k or 2k-p design is used as a first-degree response surface design, the 

center points should be allocated equally among the blocks [4]. 

For a second-order design to block orthogonally, two conditions must be fulfilled. If 

there are 𝑛𝑏 design runs in the 𝑏𝑡ℎ block, then these conditions are as follows: 

Each block for a first-degree must be orthogonal design; that is, 

∑ 𝒙𝑖𝑢𝒙𝑗𝑢 = 0     𝑖 ≠ 𝑗 = 0,1, … , 𝑘   
𝑛𝑏
𝑢=1  for all blocks. 

where 𝒙𝑖𝑢 and 𝒙𝑗𝑢 are the levels of 𝑖𝑡ℎ and jth variables in the uth point of the experiment 

with 𝒙0𝑢 = 1 for all u. 

The portion of the total sum of squares for each factor donated by every block must be 

equal to the fraction of the entire runs that occur in the block, as seen in the following: 

∑ 𝒙𝑖𝑢
2𝑛𝑏

𝑢=1

∑ 𝒙𝑖𝑢
2𝑁

𝑢=1
= 

𝑛𝑏

𝑁
       𝑖 = 1, 2, … , 𝑘   for all blocks 

where N is the number of total runs in the design. 

As an example of a central composite design with 𝑘 = 2 factors and 𝑁 = 12 runs, and 

star point 𝛼, the levels of  𝑥1 and 𝑥2  for this design in the design matrix are: 

𝐷 =

[
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
−1 −1
  1 −1
−1   1

 
 1    1
 0    0
0    0]

 
 
 
 
 

}
 
 

 
 

    𝐵𝑙𝑜𝑐𝑘 1

[
 
 
 
 
 
𝛼 0
−𝛼   0
0  𝛼
  0  −𝛼
 0     0
 0    0 ]

 
 
 
 
 

}
 
 

 
 

    𝑏𝑙𝑜𝑐𝑘 2

]
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Note that the design is organized into two blocks with the first block containing the 

factorial portion of the design with two center runs, and the second block containing the 

additional points with center runs. 

2.8 Steepest ascent 

More often than not, the initial estimate of the optimal conditions will be far away 

from the original optimum. In such situations, the aim of the experimenter is to change to 

the optimum as rapidly as possible by running a simple and economically effective 

experimental process [4]. When the results are far from the optimum region, we usually 

assume that a linear model is an appropriate approximation of the true response surface in 

a small region of the 𝑥 ,s. This method, known as the steepest ascent, is a technique 

developed to move sequentially to optimize the response. We use the fitted first-order 

model which given by 

�̂� = �̂�0 +∑�̂�𝑖𝑥𝑖

𝑘

𝑖=1

 

The contours of 𝑦,̂ is a series of parallel lines. The direction of steepest ascent is the 

direction in which a process increases most rapidly, a direction which is typical for the 

fitted response surface. More often than not, the path of steepest ascent is taken, as it is 

the line through the center of the space of interest and the results show normally 

improving values of the response surface. As such, we see that the steps along the path 

are proportional to the regression coefficients. The actual step size is determined by the 

experimenter based on process knowledge or other practical considerations [4]. 

Experiments are conducted along the path of steepest ascent until an increase in 

response is no longer observed. At this point, a new first-degree model may be more 
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appropriate, a new path of steepest ascent is determined, and the procedure continues. 

Eventually, the experimenter will reach a result that is near the optimum; this is usually 

indicated by the lack of fit of a first-order model. At this time, additional experiments are 

accompanied in order to estimate optimum more precisely.   

Before exploring the method of steepest ascent, one must first investigate the 

adequacy of the first-order model. The 22 design with center points helps the 

experimenter to obtain an estimate of error, check for interactions in the model, and 

determine the existence of any quadratic effects (curvature). 

It is easy to provide a general process that help in determining the coordinates of a 

design point on the path of steepest ascent. Assume the point 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑘 = 0  is 

the base or origin point. Next, we choose a step size in one of the process variables, such 

as ∆𝑥𝑖. Usually, the variable is selected based on accumulated data, or is the one with the 

largest absolute regression coefficient |�̂�𝑖|. The step size in the other variables is 

∆𝑥𝑖 =
�̂�𝑖

�̂�𝑗 ∆𝑥𝑗⁄
   𝑖 = 1, 2, … , 𝑘   𝑖 ≠ 𝑗                                (2.11) 

Then convert of ∆𝑥𝑖 from coded variables to natural variables. The experimenter 

computes the design points along this path by observing the outcome (yields) at these 

design points using formula (2.11), until a change in response is noted, For example, 

Figure 2.4 show the change point. Although the mathematical computations are based on 

the coded variables, the actual variables must be used in running the experiments.  

For example, a chemical engineering is wished to determine the operating conditions that 

maximize the yield of the process. Two independent variables affect the process 

response: reaction time and reaction temperature [4].  The experimental region for fitting 



18 

the linear model should be (30, 40) minutes of reaction time and (150, 160) Fahrenheit. 

The experimental design is shown in Table 2.1. 

The fitted first-order model in coded variables: 

�̂� = 40.44 + 0.775 𝑥1 + 0.325 𝑥2 

The adequacy of the linear model should be studied before the steepest ascent procedure. 

The 22 design with center points allows us to check for interaction and quadratic effects 

(curvature). 

 

Figure 2.4. Response along the path of the steepest ascent. 

 

Table 2.1. ANOVA for the first-order model. 

Sources 
Sum of 

square DF 
Mean 

square 
P-Value 

Regression 2.825 2 1.4125  

Residual 0.1772 6 0.0295  

Interaction 0.0025 1 0.0025 0.8215 

Curvature 0.0027 1 0.0027 0.8142 

Total 3.0022 8   
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Table 2.2. Steepest ascent experiment. 

 Coded values Original values  

Steps 𝑥1 𝑥2 Reaction 

time (𝜉1) 

Reaction  

temperature (𝜉2) 

Response 

Origin 0 0 35 155 - 

Δ 1 0.42 5 2 - 

Origin + Δ 1 0.42 40 157 41.0 

Origin + 2Δ 2 0.84 45 159 42.9 

Origin + 3Δ 3 1.26 50 161 47.1 

Origin + 4Δ 4 1.68 55 163 49.7 

Origin + 5Δ 5 2.10 60 165 53.8 

Origin + 6Δ 6 2.52 65 167 59.9 

Origin + 7Δ 7 2.94 70 169 65.0 

Origin + 8Δ 8 3.36 75 171 70.4 

Origin + 9Δ 9 3.78 80 173 77.6 

Origin +10Δ 10 4.20 85 175 80.3 

Origin +11Δ 11 4.62 90 179 76.2 

Origin +12Δ 12 5.04 95 181 75.1 

 

From the ANOVA Table, there is no exhibit of the curvature, and the interaction is not 

significant, whereas the F-test is significant of overall regression. 

The path of steepest ascent to move away from the design center toward the optimum 

region, the experimenter would move 0.775 units of 𝑥1 direction for every 0.325 units of 

𝑥2 direction. The path of steepest ascent will pass through the design center (𝑥1 = 0, 

𝑥2 = 0) with slope 0.325 0.775⁄ . Based on the relationship between 𝑥1 and 𝜉1, the 

experimenter decided to utilize 5 minutes of reaction time as step size. The step size is 

based on the largest regression coefficient of 𝑥1. In coded values, Δ𝑥1 = 1. Therefore, the 

step size of temperature will be 

Δ𝑥2 = 
�̂�2

�̂�1 Δ𝑥1⁄
=

0.325

(0.775/1)
= 0.42. 
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To convert the coded step size to original units, we use the relationships 

Δ𝑥1 =
Δ𝜉1

5
  and Δ𝑥2 =

Δ𝜉2

5
 

which results in 

Δ𝜉1 = Δ𝑥1(5) = 1(5) = 5 𝑚𝑖𝑛 

and                                         Δ𝜉2 = Δ𝑥2(5) = 0.42(5) = 2∘𝐹. 

Furthermore, Figure 2.4 exhibits all the steps beyond the tenth point when the response 

starts to decrease. Therefore, another first-degree model will be fitted around the new 

region.  

Table 2.3. Data for quadratic model. 

Original values Coded values  

Reaction time Reaction  temperature 𝑥1 𝑥2 Response 

80 170 -1 -1 76.5 

80 180 -1 1 77.0 

90 170 1 -1 78.0 

90 180 1 1 79.5 

85 175 0 0 79.9 

85 175 0 0 80.3 

85 175 0 0 80.0 

85 175 0 0 79.7 

85 175 0 0 79.8 

 

The fitted first-order model in coded values for the data in Table 2.3 is 

�̂� = 78.97 + 1.00 𝑥1 + 0.50 𝑥2 

From the ANOVA Table, the interaction and curvature checks show that the linear model 

is not an appropriate approximation. The curvature of the true response surface indicates 

that we are near to the optimum. At this point, augmenting more design points to fit 
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higher degree model, such as the quadratic model in order to obtain the optimum 

conditions [4]. 

Table 2.4. ANOVA for quadratic model. 

Sources 
Sum of 

square DF 
Mean 

square 
P-Value 

Regression 5.00 2 
 

 

 

 

Residual 11.1200 6   

Interaction 0.2500 1 0.2500 0.0955 

Curvature 10.6580 1 10.6580 0.0001 

Total 16.12 8   

 

  2.9 A second-order experimental design 

  2.9.1 Full 3K factorial designs 

A full 3k factorial design is a design matrix with very limited application in RSM 

when the number of variables is greater than two. This is due to the large number of 

experiments required for such a design (calculated by expression N=3k, where N is a total 

experiment run, and k is the number of variables). Therefore, its efficiency is lost when 

modeling quadratic functions. Because of this, full three-level factorial designs for more 

than two factors require more experimental runs than are commonly accommodated in 

practice. Designs are containing a smaller number of design points, such as the Box–

Behnken, central composite, and Doehlert designs are more frequently used [4]. For two 

variables, the efficiency can be compared with designs such as central composite [8]. 
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Table 2.5. Design matrix for three-level factorial design with two factors 

x1 x2 

-1 -1 

-1  0 

-1  1 

0 -1 

0  0 

0  1 

1 -1 

1  0 

1 1 

 

Figures 2.5 (a) and (b) show the representation of the three-level factorial designs for the 

optimization of two and three variables, respectively. Table 2.5 presents the experimental 

matrix for the optimization of two variables using this design. 

 2.9.2 Box–Behnken designs (BBD) 

 Box and Behnken [9] suggested a means to select design points from the three-

level factorial arrangement, while also allowing for the efficient estimation of the linear 

and quadratic terms of the model. In this way, the designs are more efficient, as well as 

more economical than their corresponding 3k designs, mainly for a high number of 

factors. Figure 2.5(c) presents the BBD for three-factor optimization with 13 

experimental points. In comparison with the original 33 design with 27 experiments is 

shown in Figure 2.5(b), this design is noted as being both more economical and more 

efficient. Table 2.6 presents the coded values of this design for three factors. In its 

application, it is much smaller than the central composite design. However, the 

disadvantages of BBD are that it provides a poor quality of prediction over the entire 

design region and it also requires that variable levels not be outside the region of the 

variables in the factorial analysis [5]. 



23 

                  Table 2.6. Design matrix for Box–Behnken design with three factors. 

x1 x2 x3 

-1 -1  0 

 1 -1  0 

-1  1  0 

 1  1  0 

-1  0 -1 

 1  0 -1 

-1  0  1 

 1  0  1 

 0 -1 -1 

 0  1 -1 

 0 -1  1 

 0  1  1 

 0  0  0 

 

 

 

Figure 2.5. The three-level factorial design of (a) two factors and (b) three factors and (c) 

Box–Behnken design of three factors. 

 

2.9.3 The central composite design (CCD) 

The Box-Wilson Central Composite Design, commonly called a Central 

Composite Design (CCD), is the most popular of all second-order designs. This design 

consists of the following parts: i) a complete (or a fractional of) 2𝑘 factorial design whose 

factors’ settings are coded as (Low = −1, High = 1); this is called the factorial portion; ii) 

an additional design, star points, which provides justification for selecting the distance of 

the star points from the center; the CCD always contains twice as many star points as 

there are factors in the design (2𝑘); iii) 𝑛0 central point. Thus, the total number of design 
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points in a CCD is 𝑛 = 2𝑘 + 2𝑘 + 𝑛0. A CCD is obtained by augmenting the first-order 

design of a 2𝑘 factorial with additional experimental runs, the 2𝑘 axial points, and the 𝑛0 

center-point replications. This design is consistent with the sequential nature of a 

response surface investigation. The analysis starts with a first-order design and a fitted 

first-degree model, followed by the addition of design points to fit a higher second-degree 

model. The first-order design in the preliminary phase gives initial information about the 

response system and assesses the importance of the factors in a given experiment. The 

additional experimental runs are performed for the purpose of obtaining more 

information. This information helps to determine the optimum operating conditions of the 

independent variables by using the second-degree model. In the CCD, the values of α 

and 𝑛0, are chosen for their desirable properties, where α is the axial point and 𝑛0 the 

number of center point replicates.  For instance, to ensure that a CCD has a rotatable, 

orthogonal, and uniform precision property, all three factors are studied at five 

levels (−𝛼, −1, 0, +1,+𝛼), as will be discussed in section 2.13. The orthogonality of a 

second-order design is achieved when the quadratic model is expressed in terms of 

orthogonal polynomials. The value of 𝑛0 can be determined for a rotatable CCD to have 

either the additional orthogonality property or the uniform precision property. For further 

details, we refer to Khuri and Cornell [7, 10]. 
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            Table 2.7. Design matrix for central composite design with three factors. 

 x1 x2 x3 

 

 

 

Design point 

-1 -1 -1 

 1 -1 -1 

-1  1 -1 

 1  1 -1 

-1 -1  1 

 1 -1  1 

-1  1  1 

 1  1  1 

 

Star point 

 

 

 

−𝛼  0  0 

 𝛼  0  0 

 0 −𝛼  0 

 0  𝛼  0 

 0  0 −𝛼 
 0  0  𝛼 

Central point  0  0  0 

 

This design has orthogonal, rotatable, and uniform precision property.  

 

Figure 2.6. CCD (a) two factors with 𝛼 = √2 and (b) three factors with α = 1.68. 

 

2.9.4 Doehlert design   

Doehlert developed an equation such that when a simplex optimization with two 

variables comes to the point where it encircles the optimum, a hexagon is formed. The 

Doehlert designs allow for the calculation of a response surface through a minimum of 

experimentation. An additional attractive feature of this design is that a neighboring 

domain can be easily explored through the addition of a few experiments [5, 11].   The 



26 

design matrices for Doehlert designs with two and three factors are given in Tables 2.8. 

(a), and (b), respectively. 

       Table 2.8. Doehlert matrices (a) with two variables, and (b) with three variables. 

(a)  (b)   

X1 X2 X1 X2 X3 

0 0 0 0 0 

1 0 0 -1 0 

0.5 0.866 1 0 0 

-1 0 0 1 0 

-0.5 -0.866 -1 0 0 

0.5 -0.866 -0.5 -0.5 0.707 

-0.5 0.866 0.5 -0.5 0.707 

  0.5 0.5 0.707 

  -0.5 0.5 0.707 

  -0.5 -0.5 -0.707 

  0.5 -0.5 -0.707 

  0.5 0.5 -0.707 

  -0.5 0.5 -0.707 

 

 

Figure 2.7. Doelhert design (a) two factors (b) three factors originated by the two-plane. 

The second-order model is commonly used in response surface methodology for 

several reasons. Firstly, the quadratic model is very flexible, in that it will often work 

efficiently as an estimation of the true response surface. Secondly, the method of least 
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squares can be used in order to estimate the parameters (the 𝜷′𝑠) in the second-degree 

model. Finally, there is significant practical experience showing that quadratic models 

work well in explaining real response surface problems [3]. 

2.10 Lack-of-fit test   

In RSM application, usually the experimenters are fitting the regression model to 

data from the experimental design. Frequently, it is useful to have two or more replicates 

on the response at the same levels of the independent variables. This allows us to test for 

lack-of-fit of the regression model. Assume that there are 𝑛𝑖 observations of the response 

at the ith settings of independent variable 𝑥𝑖, 𝑖 = 1,2, … ,𝑚.  Let 𝑦𝑖𝑗 denote the jth 

observation on the response at 𝑥𝑖, 𝑖 = 1,2, … ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛𝑖. Moreover, 𝑛 =

  ∑ 𝑛𝑖
𝑚
𝑖=1 . Thus, the residual sum of square can be partioned into two component,   

𝑆𝑆𝐸 = 𝑆𝑆𝑃𝐸 + 𝑆𝑆𝐿𝑂𝐹, 

∑∑(𝑦𝑖𝑗 − �̂�𝑖)
2

𝑛𝑖

𝑗

𝑚

𝑖

=∑∑(𝑦𝑖𝑗 − �̅�𝑖)
2

𝑛𝑖

𝑗

𝑚

𝑖

+∑∑(�̅�𝑖 − �̂�𝑖)
2

𝑛𝑖

𝑗

𝑚

𝑖

 

where 𝑆𝑆𝑃𝐸 is the sum of square of pure error, 𝑆𝑆𝐿𝑂𝐹 is the sum of square associated with 

lack-of-fit, and �̅�𝑖 is the average of the 𝑛𝑖 observations at 𝑥𝑖. 

 Analysis of variance (ANOVA) is a useful way to evaluate the performance of a 

fitted regression model.  ANOVA is based on the idea of partitioning the total variation in 

the dependent variable into various components. The ANOVA table for lack-of-fit test is 

shown in Table 2.9.  The mean square is an estimate of population variance; it is obtained 

by dividing the sum of squares by the corresponding number of degrees of freedom. The 

F-value compares the mean square with the residual mean square. The corresponding p-
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value (Prob > F) is the probability of obtaining an Fvalue equal to or more extreme than 

what we observed in our sample assuming the null hypothesis is true (there is no 

significant difference of factor effects).  

Table 2.9. ANOVA table for lack-of-fit test. 

Variance source Sum of the square df Mean square  

Regression 

𝑆𝑆𝑟𝑒𝑔 =∑∑(�̂�𝑖 − �̅�)
2

𝑛𝑖

𝑗

𝑚

𝑖

 

𝑝 − 1 
𝑀𝑆𝑟𝑒𝑔 =

𝑆𝑆𝑟𝑒𝑔

𝑝 − 1
 

Residuals 

𝑆𝑆𝑟𝑒𝑠 =∑∑(𝑦𝑖𝑗 − �̂�𝑖)
2

𝑛𝑖

𝑗

𝑚

𝑖

 

𝑛 − 𝑝 
𝑀𝑆𝑟𝑒𝑠 =

𝑆𝑆𝑟𝑒𝑠
𝑛 − 𝑝

 

Lack of fit 

𝑆𝑆𝑙𝑜𝑓 =∑∑(�̅�𝑖 − �̂�𝑖)
2

𝑛𝑖

𝑗

𝑚

𝑖

 

𝑚 − 𝑝 
𝑀𝑆𝑙𝑜𝑓 =

𝑆𝑆𝑙𝑜𝑓

𝑚 − 𝑝
 

Pure error 

𝑆𝑆𝑝𝑢𝑟𝑒 =∑∑(𝑦𝑖𝑗 − �̅�𝑖)
2

𝑛𝑖

𝑗

𝑚

𝑖

 

𝑛 −𝑚 
𝑀𝑆𝑝𝑢𝑟𝑒 =

𝑆𝑆𝑝𝑢𝑟𝑒

𝑛 −𝑚
 

Total 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =∑∑(𝑦𝑖𝑗 − �̅�)
2

𝑛𝑖

𝑗

𝑚

𝑖

 

𝑛 − 1  

 

where 𝑛𝑖 is number of observations; 𝑚 the total number of factor levels in the design; 𝑝 is 

the model parameters; 𝑦�̂� the estimated value by the model at level 𝑖; �̅� overall mean; 𝑦𝑖𝑗 

repetitions performed at each individual levels; and �̅�𝑖 the mean of replicates at the same 

set of experimental combinations. There are different F-tests for testing the linear, 

interactions, quadratic effects, and lack-of-fit, we want to select the model that have 

insignificant lack-of-fit.   
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2.11    Variance dispersion graph  

A variance dispersion graph (VDG) is a graph capable of displaying the 

minimum, maximum, and average prediction variances for a specific design and response 

model versus the distance between the design point and the center of the design space. 

The distance, or radius, usually differs from zero (the design center) in that in a spherical 

design, the radius is the distance to the farthest point from the center. Normally, one plots 

the scaled prediction variance (SPV) as 

𝑁 𝑉[�̂�(𝒙)] 𝜎2⁄ = 𝑁 𝒙𝑇(𝑿𝑇𝑿)−1𝒙                                    (2.12) 

Note that the SPV is the prediction variance in Equation (2.12) multiplied by the number 

of design runs (𝑁) and divided by the error variance 𝜎2. Dividing by 𝜎2 makes the 

quantity scale-free and multiplying by 𝑁 often helps to facilitate the comparison of 

designs of different sizes. 

Figure 2.8.(a) is a VDG for the rotatable CCD with 𝑘 = 3 variables and five 

center runs. Since the design is rotatable, the minimum, maximum, and average SPV are 

identical for all points that are equidistant from the center of the design. As a result, there 

is only one line on the VDG. Next, observe how the graph displays the behavior of the 

SPV over the design space, with nearly constant variance out to a radius, and then it 

increases steadily from there to the boundary of the design. Figure 2.8.(b) is a VDG for a 

spherical CCD with 𝑘 = 3 variables and five center runs. Notice that there is little to no 

difference between the three lines for minimum, maximum, and average SPV; we can 

therefore conclude that any practical differences between the two types of central 

composite designs (the rotatable and spherical) versions of this design are minimal. 

Figures 2.9 (a) and (b) are the VDGs for a rotatable CCD with 𝑘 = 3 variables and 𝛼 =
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1.68, √2. In this VDG, the number of center points in the design varies from 𝑛0 = 1 

to 𝑛0 = 5. The VDG clearly shows us that a design with too few center points will have 

an unstable distribution of prediction variance; the prediction variance quickly stabilizes, 

however, with increasing values of 𝑛0. The use of either four or five center runs will give 

reasonably stable prediction variance over the design space. These recommendations are 

based on VDG studies on the effects of changing the number of center points in the 

response surface design [4]. 

 

-  

Figure 2.8. VDG with three factor, five center point with α = 1.68 and α = 1.732. 

 

Figure 2.9. VDG with k = 3 and α = 1.68 with α = √2 (noe to five center point). 

An additional benefit of using center points can be found when a factorial 

experiment is performed for an ongoing process [4]. Consider using the current operating 

(a) (b) 
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conditions (or recipe) as the center point in the design; this is done to assure the operating 

personnel that at least some of the runs in the experiment are going to be performed under 

familiar conditions. As such, the results obtained are not likely to be worse than those 

typically obtained. When the center point in a factorial experiment corresponds to a real-

life process, the experimenter can use the observed responses at the center point to note 

whether anything unusual occurred during the experiment. That is, the responses of the 

center point should be very similar, if not identical, to any responses observed historically 

in the routine process. Often times, operating personnel will keep a control chart for 

monitoring process performance [3]. When they do so, the center point responses can be 

plotted directly on the control chart to check the behavior of the process within the 

experiment. Consider running the replicates at the central in nonrandom order, run one or 

two center points at or close to the beginning of the experiment, one or two near the 

center, and one or two near the end. By spreading the center points out over the course of 

the experiment, the experimenter obtains a rough check on the stability of the process. 

For instance, if a trend appears during the performance of the experiment, plotting the 

center point responses against the time order may reveal this.  

In other cases, experiments must be performed in situations where there is little or 

no previous information regarding variability in the process. In such cases, running two 

or three center points in the design will be helpful for the first few runs. These runs 

provide a preliminary estimate of variance. If the magnitude of the variability appears to 

be reasonable, then additional runs can be done. On the other hand, if variability is larger 

than anticipated, no further runs should be done. It is then prudent to determine why the 

variability is so large before performing additional experiments. Usually, center points 
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are applied when the design variables are quantitative. However, there will sometimes be 

one or more qualitative or categorical factors among several quantitative ones. Center 

points can still be utilized in these cases. For example, consider an experiment with two 

quantitative variables, each variable at two levels, and a single qualitative variable, also 

with two levels. In such a case, the central points should be located on the opposing faces 

of the cube that includes the quantitative variables. In other words, center points can be 

employed at the high- and low levels for treatment combinations of the qualitative 

variables, so long as those subspaces include only quantitative variables [4].  

 2.12 The Common design properties  

In an experimental setting, the choice of design depends on the desired properties. 

The classical design properties to be considered in developing an RSM include 

orthogonality, rotatability, and uniform precision property. 

2.12.1 Orthogonality 

 A design is said to be orthogonal if the matrix 𝜲⊤𝜲 is diagonal, where 𝑿 is the 

design matrix. This approach causes the elements of �̂� to be independent because the off-

diagonal elements of the variance-covariance matrix 𝑉𝑎𝑟(�̂�) in Equation (2.8) will be 

zero. Assuming normal distribution for error vector 𝜺~ 𝑁(𝟎, 𝜎2𝑰𝒏) in Equation (2.6), the 

OLS estimates of the regression coefficients will be stochastically independent and 

normally distributed. This makes statistical inference of the unknown parameters in the 

model easier [7].  

 2.12.2 Rotatability 

The concept of rotatability was first introduced by Box and Hunter (1957) and has since 

become an important design criterion. A design matrix is said to be rotatable if the 
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prediction variance in Equation (2.10) is constant at all points with equal distance from 

the center of the design, which, by a proper coding of the input variables, can be chosen 

as the point of origin of the 𝑘-dimensional coordinates system. Thus, if the design is 

rotatable, 𝑉𝑎𝑟[�̂�(𝒙)] is constant at all points that fall on the surface of a hyper-sphere 

centered at the origin. This property makes the prediction of variance constant under any 

rotation of the coordinate axes. In addition, if optimization of �̂�(𝒙) is desired on 

concentric hyperspheres, as in the application of ridge analysis, it would be desirable for 

the design to be rotatable. Comparing the values of �̂�(𝒙) on a given hypersphere becomes 

easier since such values have constant variance. Box and Hunter [12] reported the 

necessary and sufficient conditions for an experimental design to be rotatable. A recent 

development by Khuri [10] measured rotatability as a function of the moments of the 

design under consideration. In applying this property to compare two or more second-

order designs, rotatability may be ‘sacrificed’ to satisfy some other desirable design 

properties [7, 13, 14].  

 2.12.2.1 Design moment matrix 

Many properties found in experimental designs are associated with the manner in 

which the design points are distributed throughout the space of experimentation. 

Specifically, the distribution of design points in the region has a profound effect on the 

distribution of the scaled prediction variance 𝑁 𝑉𝑎𝑟[ (𝒙)]/𝜎2. The distribution of design 

points is quantified by its design moments. The term moments has the same conceptual 

meaning as sample moments. In the case of RSM, the moments reflect important 

geometric properties in the design, which are a function of the model being fit (linear or 

quadratic model) [3]. 
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Recall that 

𝑉𝑎𝑟[�̂�(𝒙)] = 𝜎2 𝒙(𝑚)
𝑇
(𝑿𝑇𝑿)−1𝒙(𝑚)                                (2.13) 

is the prediction variance and,  

𝑁 𝑉[�̂�(𝒙)] 𝜎2⁄ = 𝑁 𝒙(𝑚)
𝑇
(𝑿𝑇𝑿)−1𝒙(𝑚)                            (2.14) 

is the scaled prediction variance and  𝒙(𝑚) is a function of the location in the design 

variables at which one predicts. Indeed, the 𝑚 in 𝒙(𝑚) denotes to the model. In case of 

first-degree model, we have 

𝒙(1)
𝑇
= [1, 𝑥1, 𝑥2, … , 𝑥𝑘] 

For a k = 2 the model contains 𝑥1, 𝑥2 with the interaction terms, we have 

𝒙(1)
𝑇
= [1, 𝑥1, 𝑥2,  𝑥1𝑥2] 

Important moments can be derived from the moment matrix M given by  

𝑴 =
1

𝑁
𝑿𝑇𝑿 

Design moments are important in characterizing the variance properties of the 

experimental design, which is a function of the order of the model. For example, in the 

case of a two-level factorial design, the moments throughout order two are important, 

since the design matrix contains moments with order two. Given a model matrix 

𝑿 = [

1 𝑥11 𝑥12 … 𝑥1𝑘
1 𝑥21 𝑥22 … 𝑥2𝑘
⋮ ⋮ ⋮ … ⋮
1 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑘

] 

 

where each of the 𝒙𝑖𝑗  entries are ±1, according to the design moments: 
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[𝑖] =
1

𝑁
∑𝒙𝑖𝑢

𝑁

𝑢=1

,     𝑖 = 1,… , 𝑘 

[𝑖𝑖] =
1

𝑁
∑𝒙𝑖𝑢

2

𝑁

𝑢=1

,    𝑖 = 1,… , 𝑘    

[𝑖𝑗] =
1

𝑁
∑𝒙𝑖𝑢𝒙𝑗𝑢,    𝑖, 𝑗 = 1,… , 𝑘

𝑁

𝑢=1

 ; 𝑖 ≠ 𝑗 

Therefore, for a first-order model design 

𝑿𝑇𝑿

𝑁
=

[
 
 
 
 
1 [1] [2] [3] … [𝑘]

[11] [12] [13] … [1𝑘]

[22] [23] … [2𝑘]

⋱ … ⋮
[𝑘𝑘]]

 
 
 
 

 

For an orthogonal first-degree design  

𝑿𝑇𝑿

𝑁
=

[
 
 
 
 
1 0 0 0 … 0

[11] 0 0 … 0

[22] 0 … 0

⋱ … ⋮
[𝑘𝑘]]

 
 
 
 

 

An odd moment is any moment with at least one design factor that has an odd power. For 

instance, [𝑖]; [𝑖𝑗];  [𝑖𝑗𝑗];  [𝑖𝑖𝑖] are the odd moments. The remaining moments are called 

even moments. 

 2.12.2.2 Rotatable conditions for first-order design 

A first-order design is rotatable if and only if all odd moments are zero and all even 

second-degree moments are equal. In other words, [𝑖] = 0, [𝑖𝑗] = 0, 𝑎𝑛𝑑 [𝑖𝑖] = 𝑐2,   

where the magnitude of 𝑐2 is determined by the scaling of the design factors. 

For a quadratic model, the design matrix will contain columns for the intercept, 

linear terms, quadratic terms, and interaction terms. Then, in addition to the first-degree 

model moments, the important design moments for the quadratic model are: 



36 

[𝑖𝑖𝑖] =
1

𝑁
∑𝒙𝑖𝑢

3

𝑁

𝑢=1

 

[𝑖𝑖𝑗] =
1

𝑁
∑𝒙𝑖𝑢

2

𝑁

𝑢=1

𝒙𝑖𝑢,    [𝑖𝑗𝑘] =
1

𝑁
∑𝒙𝑖𝑢𝒙𝑗𝑢

𝑁

𝑢=1

𝒙𝑘𝑢 

[𝑖𝑖𝑖𝑖] =
1

𝑁
∑𝒙𝑖𝑢

4

𝑁

𝑢=1

 

[𝑖𝑖𝑖𝑗] =
1

𝑁
∑𝒙𝑖𝑢

4

𝑁

𝑢=1

, [𝑖𝑖𝑗𝑗] =
1

𝑁
∑𝒙𝑖𝑢

2

𝑁

𝑢=1

𝒙𝑗𝑢
2   

[𝑖𝑖𝑗𝑘] =
1

𝑁
∑𝒙𝑖𝑢

2

𝑁

𝑢=1

𝒙𝑗𝑢𝒙𝑘𝑢, [𝑖𝑖𝑘𝑙] =
1

𝑁
∑𝒙𝑖𝑢𝒙𝑗𝑢𝒙𝑘𝑢𝒙𝑙𝑢

𝑁

𝑢=1

  

 

For instance, when 𝑘 = 3 then 

𝑿 =

[
 
 
 
1 𝑥11 𝑥21 𝑥31 𝑥11

2 𝑥31
2 𝑥11𝑥21 𝑥11𝑥31 𝑥21𝑥31

1 𝑥12 𝑥22 𝑥32 𝑥12
2 𝑥32

2 𝑥12𝑥22 𝑥12𝑥32 𝑥22𝑥31
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥1𝑁 𝑥2𝑁 𝑥3𝑁 𝑥1𝑁

2 𝑥3𝑁
2 𝑥1𝑁𝑥2𝑁 𝑥1𝑁𝑥3𝑁 𝑥2𝑁𝑥3𝑁]

 
 
 

 

The following is the necessary form of  
𝑿𝑇𝑿

𝑁
 of a rotatable k-variable second-order design: 

𝑿𝑇𝑿

𝑁
= 

[
 
 
 
1 𝟎1×𝑘 𝟎1×𝑘∗ 𝑐2𝑱𝑘

𝑇

𝟎𝑘×1 𝑐2𝑰𝑘 𝟎𝑘×𝑘∗ 𝟎𝑘×𝑘
𝟎𝒌∗×1 𝟎𝑘∗×𝑘 𝑐4𝑰𝑘∗ 𝟎𝑘∗×𝑘
𝑐2𝑱𝑘 𝟎𝑘×𝑘 𝟎𝑘×𝑘∗ 𝑐4(2𝑰𝑘 + 𝑱𝑘

𝑇𝑱𝑘)]
 
 
 

 

where 𝑰𝑘 is the identity matrix of dimension 𝑘 × 𝑘 and 𝑱𝑘 is vector of ones of dimension 

𝑘.  

 2.12.2.3 Rotatability conditions for a second-order design  

For all 𝑖 and 𝑗, where 𝑖 ≠ 𝑗 a second-order design is rotatable if all odd moments are zero, 

and  
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[𝑖𝑖] =
1

𝑁
∑𝒙𝑖𝑢

2 = 𝑐2

𝑁

𝑢=1

,    𝑖 = 1,… , 𝑘    

[𝑖𝑖𝑖𝑖] =
1

𝑁
∑𝒙𝑖𝑢

4 = 3𝑐4

𝑁

𝑢=1

 

[𝑖𝑖𝑗𝑗] =
1

𝑁
∑𝒙𝑖𝑢

2

𝑁

𝑢=1

𝒙𝑗𝑢
2 = 𝑐4 

The magnitudes of 𝑐2 and 𝑐4 are determined by the scaling of the design factors, and all 

other moments containing order four are zero. In order to avoid singularity in the related 

regression investigation, the proportion of 𝑐4 𝑐2
2⁄  need over 𝑘/(𝑘 + 2), nevertheless, this 

is can be archived by running more center points. The relationship in [𝑖𝑖𝑗𝑗] among the 

two kinds of fourth-order moments (the pure fourth moment must be three times as big as 

the mixed-fourth moment) will be useful to achieve rotatablitiy for CCDs [12].  

Recall that the conditions [𝑖𝑖𝑖𝑖] and [𝑖𝑖𝑗𝑗] can be combined into a single condition as 

follows: 

[𝑖𝑖𝑖𝑖]

[𝑖𝑖𝑗𝑗]
= 3  ;   𝑖 ≠ 𝑗 

For additional details, see Montgomery, Myers, and Anderson-Cook [3]. 

2.12.2.4 Rotatability of the CCD 

For any central composite design (CCD), all odd moments are equal to zero due to 

orthogonality property between the 𝒙𝑖, 𝒙𝑖
2, and 𝒙𝑖𝒙𝑗 columns. Nonorthoganality exists 

among the column of ones and the 𝒙𝑖
2 columns and between the 𝒙𝑖

2 and 𝒙𝑗
2 columns 

(𝑖 ≠ 𝑗).  Therefore, to have a rotatable CCD, the choice of α must be appropriate so that 

𝑿𝑻𝑿 𝑁⁄  satisfies the rotatability condition [𝑖𝑖𝑖𝑖] [𝑖𝑖𝑗𝑗]⁄ = 3;   𝑎𝑛𝑑  𝑖 ≠ 𝑗 where [𝑖𝑖𝑖𝑖] and 

[𝑖𝑖𝑗𝑗] are the moments according to the products between the 𝒙𝑖
2 columns. Furthermore, 
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for any CCD, [𝑖𝑖𝑖𝑖] = 𝐹 + 2𝛼4 and [𝑖𝑖𝑗𝑗] = 𝐹 where 𝐹 is the number of factorial design 

points. Thus, to determine rotatability: 

[𝑖𝑖𝑖𝑖]

[𝑖𝑖𝑗𝑗]
=
𝐹+ 2𝛼4

𝐹
= 3  ;   𝑖 ≠ 𝑗 

Solving this fraction for 𝛼 yields 𝛼 = √𝐹
4
. For a CCD to be rotatable, 𝛼 =  √𝐹

4
= (𝐹)

1

4. 

If 𝛼 = √𝑘 is used, then at least one center point is required to run the CCD. Otherwise, 

(𝑿𝑇𝑿)−1 does not exist, and therefore, 𝑉𝑎𝑟[�̂�(𝒙)], does not exist [3].  

2.13 Uniform precision 

A rotatable design is said to have an additional uniform precision property if 

𝑉𝑎𝑟[�̂�(𝒙)] at the origin is equal to its value at a distance of one from the origin. Box and 

Hunter [12] introduced this property to provide an approximate uniform distribution of 

the prediction variance inside a hypersphere of radius one. This may result in stability of 

the prediction variance in the locality of the design center [7, 12]. 

In the next chapter, RSM is employed in order to find the optimum device 

performance of organic polymer solar cells using three factors.  
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CHAPTER 3 

MODELING OF ORGANIC SOLAR CELL USING RESPONSE SURFACE 

METHODOLOGY 

Suliman, Rajab, Abu Farzan Mitul, Lal Mohammad, Gemechis D. Djira, Yunpeng Pan, and 

Qiquan Qiao. "Modeling of the organic solar cell using response surface methodology." Results in 

Physics (2017).  

 

Abstract  
 

Polymer solar cells have drawn much attention during the past few decades due to 

their low manufacturing cost and compatibility in flexible substrates. In solution 

processed organic solar cells, the optimal thickness, annealing temperature, and 

morphology are key components to achieving high efficiency. In this paper, we have 

utilized response surface methodology (RSM) to find optimal fabrication conditions for 

polymer solar cells. In order to optimize cell efficiency, central composite design (CCD) 

was performed using different parameters such as polymer concentration, polymer-

fullerene ratio, and active layer spinning speed. Optimal device performance was 

achieved using 10.25 mg/ml polymer concentration, 0.42 polymer-fullerene ratio, and 

1624 rpm of active layer spinning speed. The predicted response (the efficiency) at the 

optimum stationary point was found to be 5.23% for the Poly(diketopyrrolopyrrole-

terthiophene) (PDPP3T)/PC60BM solar cells. Moreover, 97% of the variation in the 

device performance was explained by our best model. Finally, our experimental results 

are consistent with the CCD prediction, which proves that this is a promising and 

appropriate model for optimum device performance and fabrication conditions. 

Keywords: organic photovoltaics; performance measures; response surface; 

experimental design; optimization 
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3.1 Introduction and background 

 

Renewable energy sources are considered to be clean and a great benefit for the 

economy and the environment. Solar, winds, geothermal, hydroelectric and bio-mass are 

the popular renewable energy sources. The sun is a source of enormous energy, and a 

great deal of research has been devoted to solar energy conversion. The challenge is to 

harvest solar energy efficiently at a low manufacturing cost. Solar cell devices based on 

inorganic semiconductors have been found to harvest solar energy more efficiently to 

produce electricity. However, these are not economically feasible. Organic photovoltaic 

(OPV) materials offer a promising alternative to solving this problem due to their 

inherently low cost, abundant availability, and flexibility. Researchers have already made 

much progress in the development of low cost organic light-emitting diodes, which has 

opened the path for OPV research.  

A solution-processed bulk-heterojunction (BHJ) polymer solar cell not only 

requires a simpler fabrication technique but also offers a reduced manufacturing cost. 

Usually, this BHJ solar cell is comprised of electron donating organic semiconductor 

polymers and electron-withdrawing fullerides as active layers. This composite active 

layer can be coated over a large area using spray coating, inkjet-coating, and roller- 

casting. During the last few years, the power conversion efficiency (PCE) of polymer 

solar cells has improved significantly [15]. The PCE of a solar cell is largely dependent 

on three major factors: open circuit voltage (Voc), the short circuit current (Jsc) and the 

fill factor (FF). The Voc of a solar cell can be determined by the energy difference 

between the highest occupied molecular orbital (HOMO) of the donor (conjugated 

polymer or small molecule) and the lowest unoccupied molecular orbital (LUMO) of the 
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acceptor (typically a fullerene derivative). The Jsc can be calculated from the absorption 

spectrum and absorption depth of the organic donor and the transport of photogenerated 

carriers through the morphology of the active layer. During the past few years, 

researchers have worked to increase the PCE of bulk heterojunction (BHJ) organic solar 

cells (OSCs) over 9.2%. The active layer of high efficiency devices consists of low 

bandgap donor-acceptor copolymers as electron donors and fullerene-based derivatives as 

electron acceptors [16]. Much research is continuing in order to improve device 

performance since the properties of the materials have a great impact on the overall 

performance of solar cells [17].  

The solar energy conversion in OPV devices mainly follows four major steps: 1) 

absorption of sunlight by the absorber and generation of excitons; 2) diffusion of the 

excitons to find donor–acceptor interface, 3) dissociation of the excitons and generation 

of charges; and 4) charge transport and charge collection. Ideally, polymers should have 

wide absorption spectra in order to harvest solar energy efficiently.  To achieve optimized 

device performance, polymer concentration, the polymer-fullerene ratio in the solvent, 

selection of solvent, and thickness of the active layer are important. The electronic 

properties, crystallinity, maximum charge transport, and minimal recombination within 

the active layer largely depend on the fine tuning of the polymer-fullerene mixture [18]. 

Therefore, the polymer-fullerene mixture, polymer concentration, and active layer 

thickness can change the optoelectronic properties of the organic solar cells and affect 

device performance. Also, the individual components have some unique properties, e.g., 

absorption coefficient, charge carrier mobility, crystalline/amorphous structure, which 

also significantly influence device performance.  



42 

Here, we have used response surface methodology (RSM) to optimize organic 

solar cell performance to be more efficient and precise.  RSM is a popular optimization 

tool which has already been successfully used to optimize many biological and chemical 

processes.  All variables to be optimized are simultaneously adjusted in a systematic 

manner, such as maximizing cell efficiency and cell thickness while maintaining the 

acceptable characteristics.  Beg et al. (2003) used RSM methodology to attain 

Optimization of alkaline protease production from bacillus mojavensis. They investigated 

the effects of various factors, including the casamino acids concentration, glucose 

concentration, inoculum age, incubation time, and agitation rate, on the response. First, 

they determined the effects of the independent variables on protease production in shake 

flask cultures using RSM, and then the optimum variables were used in a bioreactor [19]. 

Senanayake et al.(2002) used the RSM technique to investigate lipase that in a 

biochemical reaction, with the incorporation of docosahexaenoic acid (DHA) into borage 

oil. They studied the effects of three independent variables, namely the reaction time, the 

amount of enzyme, and the reaction temperature, on the yield of DHA incorporation. This 

study was a good model for the determination of the range of the independent variables. 

In the preliminary work, the effect of the independent variables on response was 

investigated by varying one parameter at a time while the others were held constant. The 

relationship between the response variable and the independent parameters was explained 

using a second-order model equation [20]. In another example of RSM use, the 

performance of pectolytic enzymes during hydrolysis of a pectic substrate under assay 

conditions was investigated by Panda et. al. (1999). The parameters, both physical 

(temperature and pH) and chemical (volume of substrate and enzyme solution) were 
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optimized using central composite design (CCD). In addition to using substrate and 

enzyme concentrations as the independent variables, the volumes of substrate and 

enzyme solutions were used. Use of volume as an independent parameter is 

disadvantageous because both substrate and enzyme concentrations vary when changing 

the volume of the substrate or enzyme; this causes a change in the total reaction volume 

[21]. Desirability function methodology was used to optimize osmotic dehydration of 

cantaloupe by Corzo et. al. (2004). Three responses (water loss, mass loss, and Brix 

increase) were affected by three independent factors (temperature, concentration, and 

time); these were investigated at five levels in the central composite design (CCD). This 

work demonstrates a significant difference from the other RSM studies which calculated 

an individual desired function that varied from 0 to 1 (lowest to highest) for each 

response. Here, for all the desirable functions, the overall desired function was defined. A 

high value in the overall desirability function was called the best function of the system, 

which was considered to be the optimum solution of the system. Three model equations 

were predicted using the experimental design and the observed values of the response 

variables [22].  

Another study by Faveri et al. (2004) explored the combined effects of initial 

xylitol supersaturation value, and cooling temperature on xylitol crystallization from 

synthetic solutions using the RSM technique. The 32 full-factorial design was applied to 

optimize the operational conditions. They fitted a second-order model to the responses, 

xylitol crystallization yield, and purity degree. After excluding the insignificant terms, the 

first-order equation for xylitol crystallization yield and a second-order equation excluding 

the interaction term for the purity degree (PD) were obtained. A higher PD was 
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considered to be the optimal condition as it enabled the achievement of total purity of the 

crystals (approx.) and a cooling temperature near zero [23, 24].  

In this study, we have worked with three important performance determining 

factors of a polymer solar cell: polymer concentration, polymer- fullerene ratio in the 

solvent and active layer thickness. These three factors have great impact on the charge 

transport mechanisms within the device. Our results show that RSM can optimize overall 

device performance in terms of these three major factors. We have found the statistical 

significance in the full quadratic models (p-value < 9.784×10-8) and the lack of fit was 

insignificant (p-value = 0.55, in the ANOVA table).  Most significantly, the stationary 

point is close to the design center, since all three eigenvalues (-0.150, -0.668, -1.190) are 

negative, indicating that the stationary point is a maximum. This indicates that the best 

combination is around 10.34 mg/ml polymer concentration, 0.42 polymer- fullerene ratio, 

and 1624 rpm active layer spinning speed. This is an ideal situation for response surface 

methodology, and clear evidence that the current setting of the independent parameters is 

consistent with optimum performance.  

3.1 Materials, device fabrication and characterization  

 

3.1.1 Materials 

 

Poly(diketopyrrolopyrrole-terthiophene) (PDPP3T) was purchased from Solarmer 

Materials, Inc. PC60BM was ordered from Nano-C. MoO3, Zinc Acetate, Aluminum 

Nitrate and nonahydrate Ethanol were purchased from Sigma Aldrich. Silver was 

purchased from Kurt J. Lesker Company. All materials were used without further 

purification. AZO sol-gel was synthesized as described by Stubhan et al.[25]. For the 

AZO sol-gel synthesis, 2.17 gm of zinc acetate dehydrate [Zn(CH3COO)2•2H2O] and 3.8 



45 

mg of aluminum nitrate nonahydrate [Al(NO3)3•9H2O] were dissolved in 100 ml ethanol 

at 80 °C for 2.5 hours. Precipitation from the AZO sol-gel was removed using a 0.45 µm 

PVDF filter.  

3.1.2 Single-junction device fabrication 

 

ITO coated glass slides were kept in ultra-sonication for 20 minutes in detergent water. 

After that, the ITOs were rinsed in de-ionized water and again maintained in ultra-

sonication for 20 minutes. Finally, the ITOs were ultra-sonicated in acetone and 2-

propanol for another 20 minutes. The ITO substrates were then subjected to oxygen 

plasma cleaning for 25 minutes before spin-coating with an AZO layer. AZO was spin 

coated at 4500 rpm for 1 minute and then kept on a hot plate at 150 °C for ten minutes to 

remove residual solvent. The AZO-coated substrates were then moved to a nitrogen-filled 

glove box having an O2 and H2O concentration of less than 1 ppm. The blend of 

PDPP3T:PCBM solution was spin-coated at different rpm for 45 seconds. Then, the 

sample was moved to a thermal evaporator where 10 nm of MoO3 and 80 nm of silver 

(Ag) were thermally evaporated in a vacuum below 2 × 10-6 Torr.  

3.1.3 Current density – voltage (J-V) characterization 

 

An Agilent 4155C semiconductor parameter analyzer was used for the current 

density-voltage (J-V) characteristic measurements of the solar cell devices. A Newport 

xenon lamp was used as a solar simulator (AM 1.5). Before performing the 

characterization of solar cells, a National Renewable Energy Laboratory (NREL) 

calibrated silicon photo detector was used in order to calibrate the light source. The light 

source had an intensity of 100 mWcm-2. In order to measure the external quantum 
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efficiency (EQE) of the devices, a xenon lamp was attached to a Newport 

monochromator. Light wavelength from the monochromator was varied from 350 nm to 

850 nm.  

3.2 Experimental design 

 

A Central Composite Design (CCD) was generated in pieces, using the cube, 

foldover, and star functions to optimize the efficiency from an inverted polymer solar 

cell. Three independent variables, namely polymer concentration (x1), the polymer-

fullerene ratio (x2), and active layer spinning speed (x3) were investigated at two levels 

with four repetitions at the central point. This involves adding quantities such as the alpha 

(star points) values for rotatability and orthogonal blocking to the complete 23 design.  

For each of the three factors studied, high (coded value: +1) and low (coded value: -1) set 

points have been selected according to the results obtained with polymer solar cell 

systems and the required experimental conditions were taken into consideration to 

achieve phase optimization of the efficiency (Table 3.2). All possible combinations that 

were performed for the central composite design are shown in Table 3.1. The analysis 

was based on combining the cube clock, foldover, and the star block. R package 

(programming language) was used to generate the design experiments and to fit the 

model and analyze the results [26, 27]. 
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       Table 3.1. Design matrix of the CCD and the corresponding experimental results. 

Run Block X1 X2 X3 y 

1 1 0 0 0 5.59 

2 1 0 0 0 5.13 

3 1 -1 -1 1 3.08 

4 1 0 0 0 5.25 

5 1 1 1 1 3.18 

6 1 1 -1 -1 3.4 

7 1 0 0 0 5.1 

8 1 -1 1 -1 2.43 

9 2 -1 -1 -1 3.17 

10 2 0 0 0 4.54 

11 2 0 0 0 5.14 

12 2 -1 1 1 2.2 

13 2 0 0 0 4.69 

14 2 0 0 0 4.7 

15 2 1 1 -1 3.11 

16 2 1 -1 1 3.45 

17 3 0 0 √2 4.14 

18 3 0 0 0 5.15 

19 3 −√2 0 0 2.05 

20 3 0 0 −√2  3.48 

21 3 0 √2 0 4.28 

22 3 √2 0 0 3.51 

23 3 0 0 0 5.1 

24 3 0 −√2 0 5.4 

 

 

     Table 10.2. The three factors and the levels utilized in the CCD. 

Factors(variables) 

Low level Center level High level 

(-1) 0 (+1) 

Polymer concentration (X1) 6.5 10 13.5 

Polymer-fullerene ratio (X2) 0.585 0.5 0.415 

Active layer spinning speed (X3) 1200 1600 2000 

 

The eight treatment combinations as result of 23 factorial designs can be displayed as 

a cube, as shown in Figure 3.1. Using the “+ and -” notation as an indication of the high 

and low levels of each independent variable, all possible combinations of this design are 

listed in tabular format as described in Table 3.3. This tabular is usually called a design 
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matrix [3]. The numbers in the corners of the cube in Figure 3.1 represent the observed 

values of the efficiency associated with the eighth treatment combinations of the 23 

factorial designs. 

 

Figure 3.1. The 2
3 factorial design with a geometric view. 

               Table 3.3. The design matrix of 23 factorial design. 

Run 
Factor 

X1 X2 X3 

1 - - - 

2 + - - 

3 - + - 

4 + + - 

5 - - + 

6 + - + 

7 - + + 

8 + + + 

 

3.3 Result and discussion 

3.3.1. Model fitting for first order design 

It is  important to check the capability of the design before running any experiments, the 

variance function (varfcn in R package) obtained, this function is a useful tool [26] in 
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RSM which provides information for the system to test the variance of the predictions. 

This function with particular design, an approprate model, and a different design point 

from the central to plot the scaled prediction variance.  By looking either at a profile plot 

or at a contour plot, which both are shown in Figure 3.2 (a) and (b): 

 

 

Figure 3.2. Variance function plots for a cube design (a) Profile plot and (b) Contour plot. 

 The variance increases, as it goes more out, and it is more suitable at the center.  

The contour plots of varaince function for this design, which is generated using a 𝑐𝑢𝑏𝑒 

function are circular. Hence, this design is rotatable. Then the first-degree model can be 

fitted. Notably, before having any data, the variance function is a helpful tool to ensure 

that the model can be fitted. 
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       Table 3.4. The significance of the first-order effects according to the cube design. 

  Estimate Std. Error t p-value 

(Intercept) 4.145 0.565 7.331 0.0018 

X1 0.268 0.799 0.335 0.755 

X2 -0.218 0.799 -0.272 0.799 

X3 0.108 0.799 0.134 0.899 

 

According to Table 3.4, none of first-order terms are statistically significant, nor 

they are together significant (p-value = 0.97 in the ANOVA table). Therefore there is no 

evidence for a specific direction. It is better to move to a better region and collect more 

data for more reliability. 

The initial design was a half fractional factorial with additional center points 

generated using a 𝑐𝑢𝑏𝑒 function. So, more information can be obtained by doing a full 

factorial design for a first-order model. This was done using the 𝑓𝑜𝑙𝑑𝑜𝑣𝑒𝑟 function, by 

switching the certain signs of some or all of the coded variables.  In this paper, the first 

experiment was generated using 𝑥3 = 𝑥1𝑥2, so by switching 𝑥1, then x3= - 𝑥1𝑥2, thus the 

second fractional of the design [28].  

Note that the other design has different design point [e.g., (6.5, 0.415, and 1200)]. For 

analysis, a 𝑐𝑢𝑏𝑒 fraction and a 𝑓𝑜𝑙𝑑𝑜𝑣𝑒𝑟 design combined using a djoin function. Note 

that djoin creates a new blocking factor.  It is important to include a block effect in the 

model because there were two separately randomized experiments. From the ANOVA 

table, the first-order terms are not significant (p-value = 0.8294), and the lack of fit test is 

significant (p-value < 0.0001).  Response surface experimentation is different from other 

kinds of experiment designs, in such situation, it is essentially good to have insignificant 

terms, especially first-order ones. It seems that the process might be close to the optimum 

region. 
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The analysis of variance exhibits no significant main effect and there was 

evidence of curvature in the response surface over the region of study (p-value < 0.0001). 

That is, the null hypothesis 𝐻0: ∑ 𝛽𝑖𝑖 = 03
𝑖=1  rejected, concluding that there was an 

indication of quadratic terms; that is, a linear model is not appropriate in describing the 

data, a polynomial of higher order must be used, such as quadratic model.   

3.3.2 Moment matrix and rotatability conditions  

Given the following design matrix X with one center point, we will check the rotatability 

conditions using moment matrix 

𝑿 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 −1 −1 −1   1    1     1 1 1 1
1 −1   1 −1 −1    1 −1 1 1 1
1   1 −1 −1 −1 −1   1 1 1 1
1   1   1 −1   1 −1 −1 1 1 1
1 −1 −1  1   1 −1 −1 1 1 1
1 −1   1  1 −1 −1    1 1 1 1
1   1 −1  1 −1 1 −1 1 1 1
1   1   1  1  1 1 1 1 1 1
1 1.68   0  0  0 0 0 2.82 0 0
1 −1.68   0  0  0 0 0 2.82 0 0
1  0 1.68  0  0 0 0 0 2.82 0
1  0 −1.68  0  0 0 0 0 2.82 0
1  0  0 1.68  0 0 0 0 0 2.82
1  0   0 −1.68  0 0 0 0 0 2.82
1  0 0  0  0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The moment matrix is  
𝑿𝑇𝑿

𝑁
 and is equal to 

 

[
 
 
 
1 𝟎1×𝑘 𝟎1×𝑘∗ 𝑐2𝑱𝑘

𝑇

𝟎𝑘×1 𝑐2𝑰𝑘 𝟎𝑘×𝑘∗ 𝟎𝑘×𝑘
𝟎𝒌∗×1 𝟎𝑘∗×𝑘 𝑐4𝑰𝑘∗ 𝟎𝑘∗×𝑘
𝑐2𝑱𝑘 𝟎𝑘×𝑘 𝟎𝑘×𝑘∗ 𝑐4(2𝑰𝑘 + 𝑱𝑘

𝑇𝑱𝑘)]
 
 
 

 

As it can be seen, for a rotatable first-order design, all odd moments are zero, and all even 

quadratic moments are equal to the quantity 𝑐2 (from section 2.13.2.3). 

[𝑖] = 0, [𝑖𝑗] = 0, [𝑖𝑖] = 𝑐2 = 13.64 15.⁄   
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3.4. Augmenting further to fit a quadratic response surface 

 A second-order rotatable design is achieved by adding 𝑠𝑡𝑎𝑟 points. By collecting 

more data these star points, the second-degree model can be fitted. The 𝑠𝑡𝑎𝑟 function in 

rsm package runs this block for us [26, 28].  The value of parameter alpha (α) in 𝑠𝑡𝑎𝑟 

block is orthogonal to the 𝑐𝑢𝑏𝑒 and 𝑓𝑜𝑙𝑑𝑜𝑣𝑒𝑟 blocks. The variance of the predictions, 

and the profile plot or a contour plot after combining the 𝑐𝑢𝑏𝑒 block, 𝑓𝑜𝑙𝑑𝑜𝑣𝑒𝑟 fraction, 

and 𝑠𝑡𝑎𝑟 block are shown in Figure 3.3 (a), and (b): 

 

Figure 3.3. Variance function plot for quadratic model: (a) Profile plot (b) Contour plot. 

 

The second-order is rotatable design with star points added to the complete 23 design, 

since it has a reasonable variance function properties. Based on augmenting this design a 

quadratic model can be fitted. Furthermore, based on the design matrix the conditions of 

block orthogonality satisfied for the quadratic model as follows: 
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For cube block: 

∑𝒙𝑖𝑢𝒙𝑗𝑢 = ∑𝒙𝑖𝑢𝒙𝑗𝑢 = 0 ,     𝑖 ≠ 𝑗 = 1,2, … , 8

8

𝑢=1

𝑛𝑏

𝑢=1

. 

This is first-order orthogonal design. 

∑ 𝒙𝑖𝑢
2𝑛𝑏

𝑢=1

∑ 𝒙𝑖𝑢
2𝑁

𝑢=1

= 
𝑛𝑏
𝑁

 

∑ 𝒙𝑖𝑢
28

𝑢=1

∑ 𝒙𝑖𝑢
224

𝑢=1

= 
𝑛𝑏
𝑁

 

The conditions of block orthogonality are satisfied, we have 

4

12
=  

8

24
  ,   i = 1,2, … , 8 
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For rotatable second-degree design all odd moments are equal to zero, and  

[𝑖𝑖] =
1

𝑁
∑𝒙𝑖𝑢

2 = 𝑐2

𝑁

𝑢=1

= 
13.64

15
    

[𝑖𝑖𝑖𝑖] =
1

𝑁
∑𝒙𝑖𝑢

4 = 3𝑐4 = (3)
8

15

𝑁

𝑢=1

 

[𝑖𝑖𝑗𝑗] =
1

𝑁
∑𝒙𝑖𝑢

2

𝑁

𝑢=1

𝒙𝑗𝑢
2 = 𝑐4 =

8

15
 

Notably, the last two conditions can be combined, that is, a CCD is rotatable since 

𝐗T𝐗 N⁄  (moment matrix) satisfies the rotatability conditions. 

[𝑖𝑖𝑖𝑖]

[𝑖𝑖𝑗𝑗]
=
24 15⁄

8 15⁄
= 3 

In addition, for rotatability in CCD, [𝑖𝑖𝑖𝑖] = 𝐹 + 2𝛼4 and [𝑖𝑖𝑗𝑗] = 𝐹  

[𝑖𝑖𝑖𝑖]

[𝑖𝑖𝑗𝑗]
=
𝐹 + 2𝛼4

𝐹
=
8 + 2(1.68^4)

8
= 3  ;   𝑖 ≠ 𝑗 

where 𝐹 is the number of factorial points.  

Solving for 𝛼 yields 𝛼 = √𝐹
4
 . Therefore, 

𝛼 = √𝐹
4

= √8
4

=  1.682. 

This value of 𝛼 will maintain the rotatability property of CCD. 

The response surface was fitted using 𝑟𝑠𝑚 package in R software. The model is 

specified using the functions FO, SO, TWI, and PQ (representing first-order, second-

order, two-way interaction, and pure quadratic, respectively) as shown in 3.5.  
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Table 3.5.  ANOVA table for lack-of-fit test. 

 

Table 3.5. Shows important quadratic terms (p-value < 0.0001) and the lack of fit 

is now insignificant (p-value = 0.156).  The second-order response surface model 

involved a polymer solar cell process in which Polymer concentration, polymer-fullerene 

ratio, and active layer spinning speed were studied, and the response variable was the cell 

efficiency. The fitted model by following the same procedure in (Myers and 

Montgomery, 2009) is presented as  

�̂� = 5.057 + 0.36 𝑥1 − 0.31 𝑥2 + 0.06 𝑥3 + 0.13 𝑥1𝑥2 + 0.06 𝑥1𝑥3 − 0.02 𝑥2𝑥3 −

1.18 𝑥1
2 − 0.15 𝑥2

2 − 0.67 𝑥3
2                                                                       (3.1) 

and the contour plots of this model are shown in Figure 3.4. 

The nature of the stationary point was determined using the signs of the 

eigenvalues. The estimated stationary point of the response surface is (0.099, -0.975, and 

0.061) which is within the design space; this means there is no suggestion of a rising 

ridge since there is no direction of improvement out of the experimental space, and the 

predicted response at this stationary point is 𝑦�̂� = 5.23. In the original units, the 

stationary points are: 

Polymer concentration =10 + 3.5 × (0.099) = 10.35 mg/ml 

Response Source Df Sum Sq Mean Sq F-value p-value 

Efficiency 

FO(X1,X2,X3) 3 2.784 0.928 11.968 0.00064 

TWI(X1,X2,X3) 3 0.166 0.056 0.716 0.561 

PQ(X1,X2,X3) 3 23.077 7.692 99.204 9.78E-09 

Residuals 12 0.931 0.078   

Lack of fit 5 0.577 0.1154 2.284 0.156 

  Pure error 7 0.354 0.051     
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Polymer- fullerene ratio = 0.5 + 0.085 × (-0.975) = 0.42 

Active layer spinning speed = 1600 + 400 × (0.06061492) = 1624 rpm 

This is in close agreement with the location of the optimum that would be obtained by 

visual inspection of Figure 3.4. Since all eigenvalues (-0.150, -0.668, -1.190) are 

negative, the stationary point is a maximum (as is obvious from the inspection of Figure 

3.5 (a), (b), and (c)). 

 

         Figure 3.4. Contour plot of the efficiency. 
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The R codes for all analyses can be found in appendix A. 

3.5. Device structure 

Figure 3.6 shows the PDPP3T:PCBM device structure. Experimentally, it was found that 

the optimized device fabrication procedure is 10 mg/ml polymer concentration, 1:2 

polymer-fullerene ratio and 1600 rpm of active layer spinning speed. J-V characteristic 

curves are shown in Figure 3.7 (a), (b), and (c). It is obvious that due to low spinning 

speed, the active layer turns out to be thick, which may increase absorption as well as JSC. 

A thick active layer can also increase device resistance/ interfacial resistance, which 

adversely affects the FF of the overall device. In a closely intermixed donor-acceptor 

blend, the individual stages have a certain extend to allow for efficient transport of 

charges via percolated pathways towards the respective electrodes [29]. In order to 

 Figure 3.5. Response surface plot for solar cell efficiency. 
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maintain efficient charge transport avoiding recombination within the device, there is 

always an optimum donor-acceptor ratio and polymer concentration in the solvent. The 

experimental results successfully coincide with the RSM methodology in device 

performance optimization. 

 

Figure 3.6. Device layout of PDPP3T-PCBM single junction polymer solar cell. 
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Figure 3.7. J-V Characteristic curves of (a) cube, (b) foldover, and (c) star functions. 
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3.6. Residual analysis for fitted quadratic model 

A residual analysis is performed in order to validate the model assumptions. Normal Q-Q 

plot, Cook’s distance are generated of the residuals as shown in Figure 3.8. 

     Table 3.6. Observed values, Predicted values, Residuals, and other diagnostics. 

Observation 𝑦𝑖 �̂�𝑖 𝑒𝑖 ℎ𝑖𝑖 𝐷𝑖 

1 5.59 5.15 0.44 0.18 0.06 

2 5.13 5.15 -0.02 0.18 0.00 

3 3.08 3.25 -0.17 0.80 0.63 

4 5.25 5.15 0.10 0.18 0.00 

5 3.18 3.42 -0.24 0.80 1.30 

6 3.4 3.55 -0.15 0.80 0.51 

7 5.1 5.15 -0.05 0.18 0.00 

8 2.43 2.34 0.09 0.80 0.17 

9 3.17 2.94 0.23 0.80 1.23 

10 4.54 4.88 -0.34 0.18 0.03 

11 5.14 4.88 0.26 0.18 0.02 

12 2.2 2.06 0.14 0.80 0.47 

13 4.69 4.88 -0.19 0.18 0.01 

14 4.7 4.88 -0.18 0.18 0.01 

15 3.11 2.95 0.16 0.80 0.58 

16 3.45 3.54 -0.09 0.80 0.19 

17 4.14 3.89 0.25 0.63 0.31 

18 5.15 5.14 0.01 0.18 0.00 

19 2.05 2.26 -0.21 0.63 0.23 

20 3.48 3.72 -0.24 0.63 0.28 

21 4.28 4.39 -0.11 0.63 0.06 

22 3.51 3.28 0.23 0.63 0.26 

23 5.1 5.14 -0.04 0.18 0.00 

24 5.4 5.28 0.12 0.63 0.07 

 

Figure 3.8 shows the normal probability plot and the residuals versus the predicted 

values �̂�𝑖. None of these plots reveal any model inadequacy. Also, the hat matrix 𝑯 =

𝑿(𝑿𝑇𝑿)−1𝑿𝑇 is useful to identify influential observations. The average size of the 

diagonal elements in the hat matrix 𝑯 is 𝑝 𝑛⁄ . As a guideline, if the diagonal elements of 



60 

the hat matrix ℎ𝑖𝑖 is greater than 2𝑝 𝑛⁄ , then the observation 𝑖 is a high-leverage point. By 

applying this to the organic solar cell data, note that 2𝑝 𝑛⁄ = 2(10)/24 = 0.83. Table 

3.6 indicates that none of the ℎ𝑖𝑖 exceeds 0.83, concluding that there is no leverage point 

in the organic solar cell data. 

 

Figure 3.8. The residual analysis for fitted quadratic model. 

In many surface analyses, it is preferable to work with scaled residuals, as these often 

provide more information than ordinary least squares residuals. 

2.0 2.5 3.0 3.5 4.0 4.5 5.0

-0
.4

-0
.2

0
.0

0
.2

0
.4

Fitted values

R
e
s
id

u
a
ls

Residuals vs Fitted

1

10

11

5 10 15 20

0
.0

0
.4

0
.8

1
.2

Obs. number
C

o
o
k
's

 d
is

ta
n
c
e

Cook's distance

5
9

3

0
.0

0
.4

0
.8

1
.2

Leverage  hii

C
o
o
k
's

 d
is

ta
n
c
e

0.1 0.4 0.6 0.7 0.8

0

0.5

11.52

Cook's dist vs Leverage  hii 1 hii

5
9

3

-2 -1 0 1 2

-2

-1

0

1

2

QQ Plot

norm quantiles

N
o
rm

a
l 
%

 p
ro

b
a
b
lit

y

5

9
1



61 

 

Figure 3.9. The standardized and studentized residual. 

As can be seen from Figure 3.9, most of the standardized and studentized residuals lie in 

the interval (-3, 3), which indicate that there are no outliers in the organic solar cell data.   

In the next chapter, we will address inference for the stationary point and also perform 

canonical analysis to assess if there is a rising ridge. 
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CHAPTER 4 

SIMULTANEOUS INFERENCE FOR THE LOCATION OF A STATIONARY POINT 

In this chapter, we will develop confidence region and simultaneous confidence 

intervals associated with the stationary point of a quadratic response surface model. First, 

we focus on the confidence region and later we will propose simultaneous confidence 

intervals for the coordinates of a stationary point. The simultaneous coverage probability 

of the proposed method will be assessed via small simulation. 

4.1 Location of a stationary point 

 

A stationary point is a point at which the expected value of the response variable of 

interest is optimized. This can be the minimum or the maximum depending on the 

problem. A quadratic model for a response surface with 𝑘 quantitative factors is given by 

𝐸(𝑌) = 𝛽0 +∑𝛽𝑖𝑥𝑖 +∑∑  𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=1
𝑖<𝑗

𝑘

𝑖=1

+∑𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

𝑘

𝑖=1

     

The model in matrix notation is 

𝐸(𝑌) = 𝛽0 + 𝒙
𝑇𝜷+ 𝒙𝑇𝑩𝒙                                             (4.1) 

where 𝛽0, 𝜷, and 𝑩 are the  intercept, a vector of coefficients for the linear terms, and the 

matrix 𝑩 contains the coefficients associated with the quadratic and interaction terms, 

respectively. Indeed, 𝒙𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑘), 𝜷
𝑇 = (𝛽1, 𝛽2, … , 𝛽𝑘) and 𝑩 is a symmetric 

matrix of dimension 𝑘 × 𝑘 given by  
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𝑩 = [

𝛽11 𝛽12 2⁄ …𝛽1𝑘 2⁄    

𝛽12 2⁄ 𝛽22 …𝛽2𝑘 2⁄
⋮ ⋮ ⋮

𝛽1𝑘 2⁄ 𝛽2𝑘 2⁄ …𝛽𝑘𝑘

] =
1

2
 [

2𝛽11 𝛽12 …𝛽1𝑘   
𝛽12 2𝛽22 …𝛽2𝑘
⋮ ⋮ ⋮
𝛽1𝑘 𝛽2𝑘 …2𝛽𝑘𝑘

]                 

   To find the stationary point, we need to derive the partial derivatives of the quadratic 

regression function with respect to the quantitative factors 𝑥1, 𝑥2, … , 𝑥𝑘 and equate them 

to zero. This point could describe the point of minimum, the point of maximum, or a 

saddle point. These three cases can be determined using the sign of the eigenvalues of the 

matrix 𝑩. Let 𝜆1, 𝜆2, … , 𝜆𝑘 denote the eigenvalues of the matrix 𝑩 determined from 

|𝑩 − 𝝀𝑰| = 𝟎. 

i. If all eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑘 are negative, the stationary point is a point 

of maximum response. 

ii.  If all the eigenvalues are positive, the stationary point is a point of 

minimum response. 

iii. If the eigenvalues have mixed signs, the stationary point is a saddle point. 

Let us first consider quadratic models with 𝑘 = 1, 2, and 3.  

For a quadratic model with only one factor 𝑥1, the regression function is 

 𝐸(𝑌) = 𝛽0 + 𝛽1𝑥1 + 𝛽11𝑥1
2 and 

𝜕𝐸(𝑌)

𝜕𝑥1
= 𝛽1 + 2𝛽11𝑥1 

Therefore, the stationary point is  
𝜕𝐸(𝑌)

𝜕𝑥1
= 0  ⟺ 𝛽1 + 2𝛽11𝑥1 = 0 ⟺ 𝑥𝑠 =

−𝛽1

2𝛽11
 

This point is of interest when 𝛽11 ≠ 0.  
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Similarly, the stationary point in the case of two factors is as follows. 

𝐸(𝑌) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1𝑥2 

𝜕𝐸(𝑌)

𝜕𝑥1
= 𝛽1 + 2𝛽11𝑥1 + 𝛽12𝑥2 

𝜕𝐸(𝑌)

𝜕𝑥2
= 𝛽2 + 2𝛽22𝑥2 + 𝛽12𝑥1 

𝜕𝐸(𝑌)

𝜕𝑥1
= 0  ⟺  2𝛽11𝑥1 + 𝛽12𝑥2  = −𝛽1 

𝜕𝐸(𝑌)

𝜕𝑥2
= 0  ⟺ + 𝛽12𝑥1 +  2𝛽22𝑥2 = −𝛽2 

⟺ [
2𝛽11 𝛽12
𝛽12 2𝛽22

] [
𝑥1
𝑥2 
] = [

−𝛽1
−𝛽2

] 

⟺ [
𝑥𝑠1
𝑥𝑠2
] = [

2𝛽11 𝛽12
𝛽12 2𝛽22

]
−1

[
−𝛽1
−𝛽2

] 

⟺ [
𝑥𝑠1
𝑥𝑠2
] =

1

4𝛽11𝛽22 − 𝛽12
2 [

2𝛽22 −𝛽12
−𝛽12 2𝛽11

] [
−𝛽1
−𝛽2

] 

Thus 

𝑥𝑠1 =
−2𝛽22𝛽1

4𝛽11𝛽22 − 𝛽12
2 +

𝛽12𝛽2

4𝛽11𝛽22 − 𝛽12
2  

=
−2𝛽22𝛽1 + 𝛽12𝛽2

4𝛽11𝛽22 − 𝛽12
2  

And  

𝑥𝑠2 =
𝛽12𝛽1

4𝛽11𝛽22 − 𝛽12
2 +

2𝛽11𝛽2

4𝛽11𝛽22 − 𝛽12
2  
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=
𝛽12𝛽1 + 2𝛽11𝛽2

4𝛽11𝛽22 − 𝛽12
2  

And the location of a stationary point with three factors is  

𝐸(𝑌) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽2𝑥3 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽33𝑥3
2 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3

+ 𝛽23𝑥2𝑥3 

𝜕𝐸(𝑌)

𝜕𝑥𝑖
= 0,    𝑖 = 1,2,3 ⟺ 

[

2𝛽11 𝛽12 𝛽13
𝛽12 2𝛽22 𝛽23
𝛽13 𝛽23 2𝛽33

] [

𝑥1
𝑥2
𝑥3
] = [

−𝛽1
−𝛽2
−𝛽3

] 

⟺ [

𝑥𝑠1
𝑥𝑠2
𝑥𝑠3
] = [

2𝛽11 𝛽12 𝛽13
𝛽12 2𝛽22 𝛽23
𝛽13 𝛽23 2𝛽33

]

−1

[

−𝛽1
−𝛽2
−𝛽3

] 

𝑥𝑠1 =
−𝛽1(2𝛽222𝛽33 − 𝛽23

2 ) + 𝛽2(2𝛽33𝛽12) − 𝛽23𝛽13 − 𝛽3(𝛽12𝛽23 − 2𝛽22𝛽13)

𝐷𝑒𝑡(𝑩)
 

𝑥𝑠2 =
𝛽1(𝛽122𝛽33 + 𝛽13𝛽22 − 𝛽2(2𝛽112𝛽33 + 𝛽12

2 ) + 𝛽3(2𝛽11𝛽23 − 𝛽13)

𝐷𝑒𝑡(𝑩)
 

𝑥𝑠3 =
−𝛽1(𝛽12𝛽23 + 2𝛽22𝛽13) + 𝛽2(2𝛽11𝛽23 − 𝛽12𝛽13) − 𝛽3(2𝛽112𝛽22 + 𝛽12

2 )

𝐷𝑒𝑡(𝑩)
 

where 𝐷𝑒𝑡(𝑩) = 2𝛽11(4𝛽22𝛽33 − 𝛽23
2 ) − 𝛽12(2𝛽12𝛽33 − 𝛽13𝛽23) + 𝛽13(𝛽12𝛽23 −

2𝛽13𝛽22) is the determinant of the matrix 𝑩. 

In general, using matrix notation, the stationary point of a quadratic model with 𝑘 

quantitative factors can be determined as follows.  

𝐸(𝑌) = 𝛽0 + 𝒙
𝑇𝜷+ 𝒙𝑇𝑩𝒙 
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Using matrix differentiation, 

                                                        
𝜕𝐸(𝑌)

𝜕𝒙
= 𝜷 + 2𝑩𝒙 

Equating this partial derivative to zero and solving for 𝒙, the stationary point denoted by 

𝒙𝑠 will be 

𝒙𝑠 = −
1

2
𝑩−1𝜷 

A point estimate for 𝒙𝑠 can be obtaining by plugging the point estimates of the regression 

coefficients in 𝜷 and 𝑩 as  

�̂�𝑠 = −
1

2
 �̂�−1𝒃 

where 𝒃 and �̂� are the estimates of 𝜷 and 𝑩 [3]. In other words, 𝒃𝑇 = (𝑏1, 𝑏2, … , 𝑏𝑘) and 

�̂� is 

�̂� = [

𝑏11 𝑏12 2⁄ …𝑏1𝑘 2⁄    

𝑏12 2⁄ 𝑏22 …𝑏2𝑘 2⁄
⋮ ⋮ ⋮

𝑏1𝑘 2⁄ 𝑏2𝑘 2⁄ …𝑏𝑘𝑘

]. 

In the next two sections, we will discuss and develop different methods to perform 

simultaneous inferences for the location of a stationary point.  

4.2 Confidence region for the location of a stationary point 

First, we will explore existing methods for establishing a confidence region for the 

location of a stationary point.  
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4.2.1 Box and Hunter 

This useful confidence region was developed by Box and Hunter (1954) [30]. 

Consider the fitted quadratic response surface model. Let 

𝐸(𝑌)̂ = 𝑏𝟎 +∑𝑏𝑖𝑥𝑖 +∑∑  𝑏𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=1
𝑖<𝑗

𝑘

𝑖=1

+∑𝑏𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

𝑘

𝑖=1

     

𝐸(𝑌)̂ = 𝑏0 + 𝒙
𝑇𝒃 + 𝒙𝑇�̂�𝒙                                                      (4.2) 

The 𝑗𝑡ℎ derivative 𝑑𝑗(𝒙) of the fitted model in Equation 4.2 with respect to 𝑥𝑗 is given by  

𝑑𝑗(𝒙) =  𝑏𝑗 + 2�̂�𝑗
𝑇𝒙 , 𝑗 = 1,2, … , 𝑘. 

where the vector  �̂�𝑗
𝑇 is the 𝑗𝑡ℎ row of the matrix �̂�. We denote the vector of these 

derivatives as a k-dimensional vector 𝒅(𝒙). Note that 𝒅(𝒙) is a simple linear function of 

𝒙 and the estimated regression coefficients. Now, we consider these derivatives evaluated 

at 𝒖, where the coordinates of 𝒖 are the coordinates of the true stationary point of the 

process which are unknown. If the residuals of the quadratic response model are normally 

distributed as 𝑁(0, 𝜎2), then 

𝒅(𝒖)~ 𝑁(𝟎, 𝑉𝑎𝑟(𝒅(𝒖))) 

where 𝑉𝑎𝑟(𝒅(𝒖)) is the variance- covariance matrix of 𝒅(𝒖). Normality holds since 

linear combinations of normally distributed random variables are also normally 

distributed. Since the partial derivatives are necessarily zero at the stationary points, we 

have that 𝐸(𝒅(𝒖)) = 𝟎 [3]. 

Therefore,  
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𝒅𝑇(𝒖)[𝑉𝑎�̂�(𝒅(𝒖))]−1𝒅(𝒖)

𝑘
 ~𝐹𝑘,𝑛−𝑝                                               (4.3) 

where 𝑉𝑎𝑟[𝒅(𝒖)] is a 𝑘 × 𝑘 matrix that includes the error variance 𝜎2 as a multiplier. 

And 𝐹𝑘,𝑛−𝑝 is an F-distribution with 𝑘 and 𝑛 − 𝑝 degrees of freedom, where p is the 

number of regression coefficients in the quadratic model in Equation 4.1. For k factors, 

𝑝 = 1 + 2𝑘 +
𝑘(𝑘−1)

2
. It is also clear that 𝑉𝑎𝑟[𝒅(𝒖)] is a function of 𝒖. For instance, in 

the case of two factors (k = 2), 

𝑑1(𝒖) = 𝑏1 + 2(𝑏11𝑢1 +
𝑏12
2
𝑢2) 

𝑑2(𝒖) = 𝑏2 + 2(𝑏22𝑢2 +
𝑏12
2
𝑢1) 

And  

𝑉𝑎𝑟[𝒅(𝒖)] =  [
𝑉𝑎𝑟[𝑑1(𝒖)] 𝐶𝑜𝑣[𝑑1(𝒖), 𝑑2(𝒖)]

𝐶𝑜𝑣[𝑑1(𝒖), 𝑑2(𝒖)] 𝑉𝑎𝑟[𝑑2(𝒖)]
] 

𝑑1(𝒖) = 𝑏1 + 2(𝑏11𝑢1 +
𝑏12
2
𝑢2) 

= [0 1 0 𝑢2 2𝑢1 0]

[
 
 
 
 
 
𝑏0
𝑏1
𝑏2
𝑏12
𝑏11
𝑏22]

 
 
 
 
 

 

= 𝒂1
𝑇�̂� 

where 𝒂1
𝑇 = [0 1 0 𝑢2 2𝑢1 0] and �̂� =   (𝑿𝑇𝑿)−1𝑿𝑇𝒚 ,  𝑿 is the design matrix 

associated with the second degree model. 
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𝑉𝑎𝑟(𝒂1
𝑇�̂�) =  𝒂1

𝑇𝑉𝑎𝑟(�̂�)𝒂1 

                                                                    = 𝒂1
𝑇 𝜎2(𝑿𝑇𝑿)−1𝒂𝟏 

                                                                    =  𝜎2𝒂1
𝑇(𝑿𝑇𝑿)−1𝒂1 

The elements in this matrix are computed from (𝑿𝑇𝑿)−1𝜎2, the variance-covariance 

matrix for the estimated regression coefficients. To estimate [𝑉𝑎�̂�𝒅(𝒖)], we replace 𝜎2 

by the mean-squared error (MSE) from the ANOVA table.   

 Now according to (4.3) we have 

𝑃𝑟 {𝒅𝑇(𝒖)[𝑉𝑎�̂�(𝒅(𝒖))]
−1
𝒅(𝒖) ≤ 𝑘𝐹𝛼;𝑘,𝑛−𝑝} = 1 − 𝛼                             (4.4) 

where the 𝒖 is unknown, and all other quantities in (4.4) are known, the 𝐹𝛼;𝑘,𝑛−𝑝 is the 

upper 𝛼𝑡ℎ  percentile of the F-distribution with 𝑘, 𝑛 − 𝑝 degrees of freedom. The values 

of 𝑢1, 𝑢2, … , 𝑢𝑘 that satisfy  

�̂�𝑇(𝒖)[𝑉𝑎�̂�(𝒅(𝒖))]
−1
�̂�(𝒖) ≤ 𝑘𝐹𝛼;𝑘,𝑛−𝑝                                         (4.5) 

will constitute a 100(1 − 𝛼)% confidence region for the true stationary point. 

4.2.2 Asymptotic confidence region for stationary point 

 

Here we utilize the asymptotic distribution of an estimator for the stationary point. Under 

the normality of the error terms, the point estimator  

�̂�𝑠 =
1

2
�̂�−1𝒃 
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derived in the previous section is also the maximum likelihood estimator. This holds due 

to the invariance property of maximum likelihood estimators [31]. Since maximum 

likelihood estimators are asymptotically normally distributed, we have 

�̂�𝑠~ 𝑁(𝒙𝑠, 𝑉𝑎𝑟(�̂�𝑠)),                                                     (4.6) 

For example, for 𝑘 = 1,  the stationary point is a ratio of regression coefficients �̂�𝒔 =

−𝑏1 2𝑏11⁄  and, 

�̂�𝑠~ 𝑁 (
−𝛽1
2𝛽11

, 𝑉𝑎𝑟(�̂�𝑠)) 

Using Taylor series expansion for a function of two variables [32], an approximate 

variance for the ratio of two random variables U and V is  

𝑉𝑎𝑟 (
𝑈

𝑉
) ≈ (

𝜇𝑈

𝜇𝑉
)
2

 [
𝜎𝑈
2

𝜇𝑈
2 + 

𝜎𝑉
2

𝜇𝑉
2 − 

2𝐶𝑜𝑣(𝑈,𝑉)

𝜇𝑈𝜇𝑉
] . 

 In our case, 𝑈 = −𝑏1 𝑎𝑛𝑑 𝑉 = 2𝑏11. Therefore, the approximate variance is  

𝑉𝑎𝑟 (
−𝑏1
2𝑏11

) =  0.25 ∗ 𝑉𝑎𝑟 (
𝑏1
𝑏11
) ≈ 0.25 ∗ (

𝛽1
𝛽11

)
2

 [
𝜎𝑏1 
2

𝜇𝑏1 
2 + 

𝜎𝑏11
2

𝜇𝑏11
2 − 

2𝐶𝑜𝑣(𝑏1 , 𝑏11)

𝜇𝑏1 𝜇𝑏11
] 

For 𝑘 = 2, �̂�𝑠 will have an asymptomatic bivariate normal distribution. Using the delta 

method, the variance-covariance matrix can be derived as follows:  

To derive the asymptotic variance-covariance matrix for �̂�𝑠, we need to derive the 

derivatives of 𝑥𝑠1 and of 𝑥𝑠2with respect to the regression parameters in a quadratic 

model. For k = 2,  

𝑥𝑠1 =
−2𝛽22𝛽1 + 𝛽12𝛽2

4𝛽11𝛽22 − 𝛽12
2  
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𝜕𝑥𝑠1
𝜕𝛽0

= 0 

𝜕𝑥𝑠1
𝜕𝛽1

=
−2𝛽22

4𝛽11𝛽22 − 𝛽12
2  

𝜕𝑥𝑠1
𝜕𝛽2

=
𝛽12

4𝛽11𝛽22 − 𝛽12
2  

 

𝜕𝑥𝑠1
𝜕𝛽12

=
𝛽12
2 𝛽2 − 4𝛽22𝛽1𝛽12 + 4𝛽22𝛽2𝛽11

(4𝛽11𝛽22 − 𝛽12
2 )2

 

 

𝜕𝑥𝑠1
𝜕𝛽11

=
−4𝛽22(−2𝛽22𝛽1 + 𝛽12𝛽2)

(4𝛽11𝛽22 − 𝛽12
2 )2

 

 

𝜕𝑥𝑠1
𝜕𝛽22

=
2𝛽1𝑏12

2 − 4𝛽12𝛽2𝛽11

(4𝛽11𝛽22 − 𝛽12
2 )2

 

The derivatives of 𝑥𝑠2 with respect to the regression parameters: 

𝑥𝑠2 =
𝛽12𝛽1 − 2𝛽11𝛽2

4𝛽11𝛽22 − 𝛽12
2  

𝜕𝑥𝑠2
𝜕𝛽0

= 0 

𝜕𝑥𝑠2
𝜕𝛽1

=
𝛽12

4𝛽11𝛽22 − 𝛽12
2  

𝜕𝑥𝑠2
𝜕𝛽2

=
−2𝛽11

4𝛽11𝛽22 − 𝛽12
2  

𝜕𝑥𝑠2
𝜕𝛽12

=
4𝛽1𝛽11𝛽22 + 𝛽12

2 𝑏1 − 4𝛽12𝛽11𝛽2

(4𝛽11𝛽22 − 𝛽12
2 )2

 

𝜕𝑥𝑠2
𝜕𝛽11

=
2𝛽12

2 𝛽2 − 4𝛽12𝛽1𝛽22

(4𝛽11𝛽22 − 𝛽12
2 )2
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𝜕𝑥𝑠2
𝜕𝛽22

=
−4𝛽11(𝛽12𝛽1 − 2𝛽11𝛽2)

(4𝛽11𝛽22 − 𝛽12
2 )2

 

Let’s denote the derivatives of 𝑥𝑠1 and 𝑥𝑠2 with respect to the six regression parameters 

by 𝑮 and 𝑯, respectively. That is,  𝑮𝑇 = (𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6) and 𝑯𝑇 =

(ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6). 

Then, 

�̂�𝑠~𝑁([
𝑥𝑠1
𝑥𝑠2
] , 𝚺𝑠) 

where,  𝚺�̂�𝑠 = [
𝑮𝑇

𝑯𝑇]
2×6

𝚺6×6[𝑮 𝑯]6×2    and 𝚺 = 𝜎2(𝑿𝑇𝑿)−1. 

Now using the asymptotic distribution in Equation 4.6, the set of points 𝒖 =

(𝑢1, 𝑢2, … , 𝑢𝑘)
𝑇for which  

(𝒖 − �̂�𝑠)
𝑇𝑉𝑎𝑟(�̂�𝑠)(𝒖 − �̂�𝑠) ≤ 𝑘𝐹𝛼,𝑘,𝑛−𝑝 

will constitute a (1 − 𝛼)100% confidence region for 𝒙𝑠 [31]. 

4.3 Simultaneous confidence intervals for the coordinate of a stationary point 

The confidence regions discussed in the previous sections are non-rectangular in shape, 

and this makes their interpretations difficult. In this section, we propose two methods for 

constructing simultaneous confidence intervals for the coordinate of a stationary point.  

Simultaneous confidence intervals are rectangular in shape and therefore, they are easy to 

interpret. 

Case 1: One factor 

In the case of one factor (𝑘 = 1), methods for constructing confidence intervals for  
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𝑥𝑠 =
−𝛽1
2𝛽11

 

are well developed. Note that the parameter 𝑥𝑠 is a ratio of linear combinations of the 

regression coefficients. Popular methods to estimate 𝑥𝑠 by a confidence interval include 

the, (i) delta method, (ii) Fieller method, (iii) bootstrap (e.g, see Dilba et al. 2006; Hare et 

al. 2007) [33, 34]. 

The delta method is based on the asymptotic distribution discussed in the previous 

section. A  (1 −  𝛼)100% confidence interval for 𝑥𝑠 is given by 

�̂�𝑠 ± 𝑧1−𝛼 2⁄
∗ 𝑆𝐸(�̂�𝑠) 

𝑆𝐸(�̂�𝒔)̂ = √(
𝑏1
𝑏11
)
2

[
𝑠𝑏1
2

𝑏1
2 +

𝑠𝑏11
2

𝑏11
2 −

2𝐶𝑜𝑣(𝑏1, 𝑏11)

𝑏1𝑏11
]  

The Fieller method [35, 36]  works as follows.  

Suppose that �̂�1, �̂�11 have a bivariate normal distribution with mean vector (𝛽1, 𝛽11)
𝑇 

and the variance- covariance matrix [
𝑣11 𝑣12
𝑣21 𝑣22

], where  𝑣11 , 𝑣22 , and 𝑣12 = 𝑣21 denote 

the variance and the covariance of �̂�1 and  �̂�11, respectively. Now, 𝑥𝑠 = −
𝛽1

2𝛽11
 implies 

that 𝛽1 + 𝛽11𝑥𝑠
2 = 0. Therefore, 

𝑏1 + 𝑏11𝑥𝑠
2 ~ 𝑁(0, 𝜎2) 

where 𝜎2 = (𝑣11 + 2𝑥𝑠𝑣12 + 𝑥𝑠
2𝑣22) [35, 36]. 

A (1 − 𝛼)% Fieller’s confidence interval is a set of 𝑥𝑠 values that satisfy the inequality 
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(�̂�1+2�̂�11𝑥𝑠)
2

𝑣11+2𝑥𝑠𝑣12+𝑥𝑠
2𝑣22

 < 𝑧𝛼 2⁄
2                                        (4.7) 

As seen in (4.7), it is quadratic function in 𝑥𝑠, by solving (4.7) for 𝑥𝑠 leads to the 

confidence intervals as: 

�̂�𝑠 + (
𝑔

1 − 𝑔
) (�̂�𝑠 +

𝑣12
𝑣22

) ± 
𝑧𝛼 2⁄

�̂�11(1 − 𝑔)
{𝑣11 + 2�̂�𝑠𝑣12 + �̂�𝑠

2𝑣22 − 𝑔(𝑣11 −
𝑣12
2

𝑣22
)}

1
2

 

where 𝑔 = 𝑧𝛼 2⁄
2 𝑣22

�̂�11
2 . 

In general, we also refer to the mratios library in the R software (Djira et al., 2012) for 

constructing Fieller simultaneous confidence intervals for ratios of linear combinations of 

the coefficients in the general linear models. 

Case 2:  Two or more factors (𝑘 ≥ 2) 

For two or more factors, to our knowledge, there is no method available to construct 

simultaneous confidence intervals for the coordinates of a stationary point. We propose 

three methods for doing this. 

4.3.1 Bonferroni adjustment 

The first simple, but conservative method we can use is to adjust the marginal asymptotic 

confidence intervals for the coordinates using Bonferroni correction. For k factors, each 

confidence interval will be constructed at 1 − 𝛼/(2𝑘) confidence level. Therefore, a (1 −

𝛼 ) 100% Bonferroni simultaneous confidence intervals for the k coordinates is given by 

�̂�𝑠,𝑗 ± 𝑧1−𝛼 (2𝑘)⁄ ∗ 𝑆𝐸(�̂�𝑠,𝑗),  j = 1, 2,…, k. 
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In simultaneous confidence interval estimations, (1 − 𝛼 )100% is also known as the 

family confidence interval [37]. 

4.3.2 Multiplicity adjustment based on equi-coordinate critical point  

In this section, we propose a multiplicity adjustment for the critical point based on the 

asymptotic distribution of the estimated stationary point. Multiplicity adjusted critical 

points from multivariate normal or multivariate t distribution can be calculated using the 

mvtnorm R package by Genz and Bretz (2009). Similar to the plug-in estimate for the 

covariance matrix in ratio estimations (Dilba et al 2006; Djira and Schaarschmidt, 2010), 

the asymptotic variance-covariance matrix are functions of the regression coefficients. 

Plug-in estimates are obtained by plugging the estimated regression coefficients in the 

variance-covariance.  

For k factors, a two-sided equi-coordinate critical point 𝑐1−𝛼 from a k-variate normal or t 

distribution is calculated as  

𝑝{|𝑍𝒋| ≤ 𝑐1−𝛼, 𝑗 = 1,… , 𝑘} = 1 − 𝛼                               (4.8) 

In our case, an estimator for stationary point follows approximate multivariate normal 

distribution, 𝑁𝑘(𝝁𝑠, 𝚺𝑠) ; 𝝁𝑠 is the true stationary point and 𝚺𝑠  is the variance-covariance 

matrix of the estimated stationary point. Thus, simultaneous confidence interval estimates 

with a given (1 − 𝛼 ) 100% family confidence level are determined as  

�̂�𝑠,𝑗 ± 𝑐1−𝛼 ∗ 𝑆𝐸(�̂�𝑠,𝑗),  j = 1, 2,…, k. 
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4.3.3 Bootstrap confidence intervals 

Bootstrapping is a computer intensive technique that involves resampling of the original 

sample several times. The number of bootstrap samples needed depends mainly on the 

purpose of the inference. For estimating standard errors, about five hundred bootstrap 

samples might be enough. In estimating probabilities of quantiles, one may need a few 

thousand bootstrap samples. A simple procedure to construct approximate bootstrap 

confidence intervals is by setting up a 1 − 𝛼 confidence interval using the reflection 

method [37]. The confidence intervals for 𝑥𝑠 is based on the (𝛼 2⁄ )100 and 

(1 − 𝛼 2⁄ )100 percentiles of the bootstrap distribution of 𝑥𝑠
∗. These percentiles can be 

denoted by 𝑥𝑠
∗(𝛼 2⁄ ) and 𝑥𝑠

∗(1 − 𝛼 2⁄ ), and 

𝑑1 = �̂�𝑠 − 𝑥𝑠
∗(𝛼 2⁄ ) 

𝑑2 = 𝑥𝑠
∗(1 − 𝛼 2⁄ ) − �̂�𝑠 

where 𝑑1 and 𝑑2 are the distances based on the percentiles from 𝑥𝑠 and the estimate of 

𝑥𝑠 from the actual sample. 

Then, 

𝑥𝑠
∗ − 𝑑2 ≤ 𝑥𝑠 ≤ 𝑥𝑠

∗ + 𝑑1 

an approximate (1 − 𝛼)% confidence intervals for 𝑥𝑠. 

And a bootstrap confidence intervals using Bonferroni-type adjustment of the empirical 

distribution is 

𝑑1 = �̂�𝑠 − 𝑥𝑠
∗(𝛼 2 ∗ 𝑘⁄ ) 

𝑑2 = 𝑥𝑠
∗(1 − 𝛼 2 ∗ 𝑘⁄ ) − �̂�𝑠 
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𝑥𝑠
∗ − 𝑑2 ≤ 𝑥𝑠 ≤ 𝑥𝑠

∗ + 𝑑1                                                 (4.9) 

4.4 Simulation study 

In this section, we perform a small simulation study to assess the coverage 

probabilities of the methods proposed in the previous section in the case of two factors (k 

= 2). We generated the observed values of 𝑦 randomly from a quadratic model with a 

given parameter configurations (𝛽0, 𝛽1, 𝛽2, 𝛽12, 𝛽11, 𝛽22) and the error term is assumed to 

follow a normal distribution, 𝜀 ∽ 𝑁(0, 1). The sample sizes are 12, 24, and 48. For 𝑛 =

12, the number of center point is four and the size of design point is twice as the sample 

size increases. The design points are 𝑥1 = (−1, 1, −1, 1, −√2,√2, 0, 0, 0, 0, 0, 0) 

and 𝑥2 = (−1, 1, −1, 1, 0,0, −√2, √2, 0, 0, 0, 0). The number of simulation runs is set 

to 104, and the number of bootstrap samples is 2000. The linear terms are set at different 

values 𝛽1 = 0, 0.4, 𝛽2 = 0, 1.6 and the interaction term 𝛽12 = 0, 1 and the coefficients of 

the quadratic terms are set at -1 and -2. See Figures 4.1 and 4.2 for the response surface 

and the associated contours for t of the scenarios considered in our simulation. The 

nominal simultaneous coverage probability is 0.95. The true coverage probabilities 

associated with the three proposed methods are estimated by simulation. See Table 4.1 

for the summary of the estimates.  

 

Figure 4.1. The surface and contour plots of the true regression function when  𝛽12 = 0. 



78 

 

 

Figure 4.2. The surface and contour plots of the true regression function when  𝛽12 = 1. 

 

Table 4.1. Estimates of the coverage probability (𝑛𝑜𝑚𝑖𝑛𝑎𝑙: 1 − 𝛼 = 0.95). 

n Parameter settings Stationary point Bonferroni Plug-in Bootstrap 

12  

𝛽1 = 0,  𝛽2 = 0,  

𝛽12 = 0 

 

[
0
0
] 

0.9362 0.9187 0.7645 

24 0.9576 0.9348 0.8854 

48 0.9529 0.9524 0.9222 

 12  

𝛽1 = 0.4,  𝛽2 =

1.6,  

𝛽12 = 0 

 

[
0.2
0.4
] 

0.926 0.9239 0.7762 

24 0.9461 0.9431 0.8835 

48 0.9615 0.9345 0.9245 

12  

𝛽1 = 0.4,  𝛽2 =

1.6,  

𝛽12 = 1 

 

[
0.4571
0.5143

] 

0.8911 0.8876 0.8464 

24 0.9258 0.9218 0.9388 

48 0.9334 0.9319 0.9461 

 

In Table 4.1, the estimates of coverage probabilities for the proposed methods of 

constructing simultaneous confidence intervals for the location of the stationary point are 

displayed for various scenarios. As can be seen, the estimates of the coverage 
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probabilities are the largest for the Bonferroni SCI for all different sample size followed 

by the plug-in approach. For the Bonferroni and plug-in approaches, the estimates of the 

coverage probabilities with increasing the sample size are pretty close to the nominal 

levels of 0.95. 

 

Figure 4.3. A bivariate kernel density when 𝛽1 = 0, 𝛽2 = 0, 𝑎𝑛𝑑 𝛽12 = 0. 

 

Figure 4.4. Bivariate kernel density estimate, estimated stationary point when   𝛽1 = 0.4,
𝛽12 = 1.6, 𝛽12 = 0. 
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Figure 4.5.  Bivariate kernel density estimate, estimated stationary point when   𝛽1 = 0.4,
𝛽12 = 1.6, 𝛽12 = 1. 

As shown in Figures 4.3, 4.4 and 4.5, the kernel density plots are effective ways 

to visualize the sampling distribution. Most of the estimated stationary points are located 

around the true stationary point of the true quadratic model. The bold black dot in the 

middle of the graph is the true stationary point (maximum point). Note that some the 

estimated stationary points are saddle point as shown by small black dots in figures. In 

other words, even if the true model has a maximum, the sample data may lead to a saddle 

point in some cases. The R codes used for the simulation are in appendix B. 

4.5   Assessing the solar cell data using the bootstrap technique 

 

 A simple bootstrap procedure is useful to understand how well the stationary point is 

estimated. We simulated a 5000 re-fits of the quadratic model, and the residuals were 

added back to the fitted values; then the etimated values from the fitted quadratic model 

were plotted along with the stationary point. The bootstarp estimates for the stationary 

point are shown in Figure 4.6 using three bivariate scatter plots.  
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Figure 4.6. Bootstrap estimate for best combination of organic solar cell. 

 

The estimate of the stationary point from the original sample in coded values 

is (0.099,−0.975, 0.061). The dynamic of Figure 4.6 is similar to the confidence region 

for the best combination, in that most of the bootstrap estimates are located around the 

optimum combination. 

The second–order model obtained (in encoded values) for the response variable 

(the efficiency) can be described by the following equation:   

�̂� = 12.28 + 1.75 𝑥1 + 13.97 𝑥2 + 0.0066 𝑥3 +  0.45 𝑥1𝑥2 +

0.000039 𝑥1𝑥3 0.00044 𝑥2𝑥3 −  0.097𝑥1
2 − 21.40 𝑥2

2 −

  0.0000042 𝑥3
2                                                        

The coefficient of determination for the fitted model is 97%,  meaning that the fitted 

quadratic model explains 97% of the variation in the cell efficiencey. 
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As can be seen, the estimated stationary point falls inside of the design space.  

As can be seen, from the Figures 4.8 and 4.9 the simultaneous confidence 

intervals are more liberal than the exact and asymptomatic confidence regions. 
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Figure 4.7. Stationary point of organic solar cell, the design region is shown in red box. 
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        Figure 4.8. 90% Confidence regions and simultaneous confidence intervals. 

 

       Figure 4.9. 95% Confidence regions and simultaneous confidence intervals.  

4.6 Rising ridge in quadratic surfaces  

A common technique for exploring the fitted second-order response surfaces is 

canonical analysis.  This method allows us to identify the rising ridge behavior in 

response surfaces to optimize the response. However, determining whether there is a 
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rising ridge or a stationary ridge helps us decide whether to continue setting process 

variables. 

4.6.1 Canonical analysis and confidence intervals for eigenvalues  

 

Canonical analysis of a quadratic response surface model states that the model in 

a new coordinate system is defined by new variables, denoted by 𝒛 = (𝒛1, 𝒛2, … , 𝒛𝑘). 

These a new variables are a linear combination of the actual variables, but the coordinate 

axes have been rotated in order to be associated with the natural directions of the fitted 

quadratic response surface. In other words, the new axes are parallel to the first axes of 

the quadratic response surface [38]. So by denoting 𝑖𝑡ℎ to normalized eigenvector of �̂� 

by �̂�𝑖,  then  

�̂� = [�̂�1, �̂�2, … , �̂�𝑘] 

A new rotation with the canonical factors 𝒛 can be expressed as a function of the actual 

factors 𝑿 as follows: 

𝒛 =  �̂�𝑇𝑿 

Now let î be the corresponding eigenvalue to the �̂�𝑖  then the fitted surface of the 

coordinate rotated system is given by 

𝐸(𝑦)̂ = �̂�0 + 𝑧
𝑇�̂� + 𝑧𝑇Λ̂𝑧                                                 (4.9) 

where  �̂� = (�̂�1, �̂�2, … , �̂�𝑘)
𝑇 = �̂�𝑇�̂� and Λ̂ =  �̂�𝑇𝑩 ̂ �̂� = 𝑑𝑖𝑎𝑔(�̂�1 , �̂�2 , … , �̂�𝑘 ). Since Λ̂ 

is a diagonal matrix and the canonical model does not contain any of the interaction 

terms. Usually the magnitudes and signs of the eigenvalues of matrix 𝑩 ̂ , which depends 

on the pure second-order terms of the canonical model, allow the researcher to visualize  

the shape of the surface.  
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4.6.2 The double linear regression method  

 

The double linear regression (DLR) method is a new technique for finding the 

standard error for the eigenvalues �̂� of a fitted quadratic response surface model. Based 

on these estimated parameters we can then compute the matrix �̂�. The basic idea is that 

by rotating the actual coordinate factors 𝑿, they are replaced by the new axes 

corresponding to the canonical axes 𝒛 using 𝒛 =  �̂�𝑇𝑿 of the response [39].  

Finally, we use the regression to refit the second-degree model using the new rotated 

coordinated 𝒛 as follows: 

𝐸(�̂�) = �̂�0
∗ + 𝑧𝑇�̂�∗ + 𝒛𝑇�̂�∗𝒛                                     (4.10) 

Where �̂�∗ = (𝑏1
∗, 𝑏2

∗, … , 𝑏𝑘
∗)𝑇 and 

�̂�∗ =
1

2
[

2𝑏11
∗ 𝑏12

∗ … 𝑏1𝑘
∗

𝑏12
∗ 2𝑏22

∗ … 𝑏2𝑘
∗

⋮ ⋮ ⋱ ⋮
𝑏1𝑘
∗ 𝑏2𝑘

∗ … 2𝑏𝑘𝑘
∗

] 

The standard error of 𝑖𝑡ℎ diagonal elements of �̂�∗is approximately the standard error of

î , the 𝑖𝑡ℎ eigenvalue of �̂�. Thus the estimate of the standard error for the eigenvalues is 

computed by any linear regression to achieve this quadratic regression model. The next 

section focuses on describing the DLR method step-by-step. 

Consider an experiment, with one response 𝑦, and 𝑘 independent variables indicated by 

𝑿 = (𝑥1, 𝑥2, … , 𝑥𝑘)
𝑇.  

Suppose there are 𝑛 design runs, then, the design matrix denoted by 𝑿𝐷, is an 𝑛 × 𝑘 

matrix. This matrix contains the (𝑖, 𝑗)th element of 𝑿𝐷 which is the level of 𝑥𝑗 in the ith 

observation. The full quadratic model has 𝑝 = (𝑘 + 1)(𝑘 + 2) 2⁄  parameters. The steps 

of the DLR method is as follows: 
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i. Use the ordinary least square (OLS) to fit a full quadratic model in Equation (4.1) 

and obtain the value of �̂�0, �̂� , … , 𝑩.̂  

ii. Compute the eigenvalues, 𝜆𝑖 , 𝑖 = 1,2, … , 𝑘, and the associated eigenvectors of �̂�, 

as well as the rotation matrix �̂� which is the matrix of eigenvectors from the 

standard canonical relationships as follows: 

𝜆𝑖 is the 𝑖𝑡ℎ eigenvalues of �̂�; 

�̂� = [�̂�1, �̂�2, … , �̂�𝑘]; �̂�𝑖are the 𝑖𝑡ℎ normalized eigenvectors of �̂�. 

iii. Rotate the coordinate original vectors, so the design runs in the new coordinate 

system are 𝒛 = �̂�𝑇𝑿 = (𝑧1, 𝑧2, … , 𝑧𝑘)
𝑇. This step is done for all design points by 

multiplying the actual design matrix by �̂� . The new design matrix is then 

𝒛𝐷 = 𝑿𝐷�̂� 

iv. Based on the design matrix, 𝑧𝐷, the full quadratic model in Equation (4.1) is again 

fitted using OLS. 

v. From step 4 the values of  �̂�𝑖𝑗
∗ ′𝑠 will be close to zero, the 

*ˆ
iiB , 𝑖 = 1,2, … , 𝑘 will be 

equal to, �̂�𝑖 and the standard error 𝑠𝑒( �̂�𝑖𝑖
∗ ) provided by a linear regression routine 

for 𝑏𝑖𝑖
∗  is utilized as an approximate standard error for the 𝜆𝑖 . 

vi. The construction of the following equation yields an approximate 100(1 − 𝛼)% 

confidence interval for �̂�𝑖: 

�̂�𝑖 ± 𝑡1−𝛼 2⁄ ,𝑛−𝑝 𝑠𝑒( �̂�𝑖𝑖
∗) 

where n is the total number of the design, 𝑝 is the number of parameters, and the 

𝑡1−𝛼 2⁄ ,𝑛−𝑝 is 1 − 𝛼 2⁄  quantile of student’s t-distribution with n-p degrees of freedom. 

Notably, in case all the eigenvalues are to be tested individually, the Bonferroni 
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confidence interval replaces 𝑡1−𝛼 2⁄ ,𝑛−𝑝 with 𝑡1−𝛼 2𝑘⁄ ,𝑛−𝑝, where the k is the eigenvalues 

being compared to zero. 

Now the computation and details of DLR will be shown. However, let us review the last 

steps of the quadratic regression and how the 𝑠𝑒(�̂�𝑖𝑖
∗ ) in step 4 is estimated. The 𝑍 is an 

𝑛 × 𝑝 matrix is given 

𝒁 = [𝟏, 𝒛1, … , 𝒛𝑘, 𝒛12, 𝒛(𝑘−1)𝑘, 𝒛11… , 𝒛𝑘𝑘] 

In this section, we will discuss more details of steps of the DLR approach using the 

organic solar cell experiment. 

All three steps are taken as one large trial, with the matrix 𝑿𝐷, and the observed vector is 

as given below: 

𝑿𝐷 = [𝒙1, 𝒙2, 𝒙3] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0
0 0 0
−1 −1 1
0 0 0
1 1 1
1 −1 −1
0 0 0
−1 1 −1
−1 −1 −1
0 0 0
0 0 0
−1 1 1
0 0 0
0 0 0
1 1 −1
1 −1 1

0 0 √2
0 0 0

−√2 0 0

0 0 −√2

0 √2 0

√2 0 0
0 0 0

0 √2 0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   𝑎𝑛𝑑   𝒚 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.59
5.13
3.08
5.25
3.18
3.4
5.1
2.43
3.17
4.54
5.14
2.2
4.69
4.7
3.11
3.45
4.14
5.15
2.05
3.48
4.28
3.51
5.1
5.4 ]
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The columns of the matrix for fitting the full quadratic model is 

𝑿 = [𝟏, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟏𝟐, 𝒙𝟏𝟑, 𝒙𝟐𝟑, 𝒙𝟏𝟏, 𝒙𝟐𝟐, 𝒙𝟑𝟑] 

Using OLS to fit the model, we find that: 

�̂� = [
−1.18 0.07 0.03
0.07 −0.15 −0.01
0.03 −0.01 −0.67

],    �̂� = [
0.36
−0.31
0.06

] , �̂�0 = 5.15 

Based on these estimates, the matrix of the eigenvalues of �̂� is Λ̂ = 𝑑𝑖𝑎𝑔(�̂�1, �̂�2, �̂�3) =

(−1.19,−0.67, −0.15) and their coordinate eigenvectors, �̂� = [�̂�1, �̂�2, �̂�3] to be  

�̂� = [
−1.19 0 0
0 −0.67 0
0 0 −0.15

] 

and 

�̂� = [
0.997 0.054 −0.064
−0.064 0.008 −0.998
−0.054 0.999 0.011

] 

The estimated stationary points are (0.099, - 0.975, and 0.061) and the estimated response 

at this stationary point is 5.23. Since the stationary point is within the design space, in 

such cases, B-canonical is usually fit for model explanation, which can be written as 

follows: 

𝐸(𝑦) = 5.23 − 1.19𝑤1
2 − 0.67 𝑤2

2 − 0.15 𝑤3
2 

where = (𝑤1, 𝑤2, 𝑤3)
𝑇 = �̂�𝑇(𝑿 − 𝑿𝑠) , the coefficients are the eigenvalues of matrix �̂�. 

Now the DLR method is employed to obtain an approximate confidence interval for the 

eigenvalues. The A-canonical analysis uses 𝒛 = �̂�𝑇𝑿 for each experiment in the design 

matrix 𝑿𝐷 by multiplying 𝑿𝐷 by �̂�. Thus the design matrix for the quadratic model in the 

DLR method is given  
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𝒁𝐷 = 𝑿𝐷�̂� = [𝒛1, 𝒛2, 𝒛3] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0
0 0 0

−0.986 0.937 1.073
0 0 0

0.879 1.060 −1.050
1.114 −0.952 0.923
0 0 0

−1.007 −1.045 −0.945
−0.879 −1.060 1.050
0 0 0
0 0 0

−1.114 0.952 −0.923
0 0 0
0 0 0

0.986 −0.937 −1.073
1.007 1.045 0.945
−0.076 1.412 0.016
0 0 0

−1.409 −0.077 0.090
0.076 −1.412 −0.016
−0.091 0.011 −1.411
1.409 0.077 −0.090
0 0 0

0.091 −0.011 1.411 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ; 𝒚 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.59
5.13
3.08
5.25
3.18
3.4
5.1
2.43
3.17
4.54
5.14
2.2
4.69
4.7
3.11
3.45
4.14
5.15
2.05
3.48
4.28
3.51
5.1
5.4 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Based on coordinate rotation, the new full second-order model is fitted in the new 

coordinate process 

𝐸(𝑦) = 𝑏0
∗ + 𝑏1

∗𝑧1 + 𝑏2
∗𝑧2 + 𝑏3

∗𝑧3 + 𝑏12
∗ 𝑧1𝑧2 + 𝑏13

∗ 𝑧1𝑧3 + 𝑏23
∗ 𝑧2𝑧3 + 𝑏11

∗ 𝑧1
2 + 𝑏22

∗ 𝑧2
2

+ 𝑏33
∗ 𝑧3

2 

The columns of the matrix 𝒁𝐷 of regressor for fitting the full second-order model with 

regression is performed element-by-element to obtain  

𝒁 = [𝟏, 𝒛𝟏, 𝒛𝟐, 𝒛𝟑, 𝒛𝟏𝟐, 𝒛𝟏𝟑, 𝒛𝟐𝟑, 𝒛𝟏𝟏, 𝒛𝟐𝟐, 𝒛𝟑𝟑] 

The pure quadratic terms from the fitted regression 𝑏11
∗ , 𝑏22

∗ , and  𝑏33
∗ , are equal to the 

eigenvalues of �̂� from the initial regression. 

Now 𝑆𝜆 is the variance-covariance matrix for the pure quadratic coefficients obtained by 

the usual OLS. This 𝑆𝜆 is a 3 × 3 submatrix of 𝑠2(𝑍𝑇𝑍)−1 where 𝑠2 is the estimated 
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residual variance. The square root of the diagonal elements of 𝑆𝜆 is the approximated 

standard error of the eigenvalues. For this data, 

𝑺𝜆 = [
0.010 −0.002 −0.002
−0.002 0.010 −0.002
−0.002 −0.002 0.010

] 

Using 𝑆𝜆, provides an approximate 100(1 − 𝛼)% confidence interval for 𝜆𝑖 as given by: 

î ± 𝑡1−𝛼 2⁄ ,𝑛−𝑝(𝒆𝒊
𝑻𝑺𝜆𝒆𝒊)

1/2 

where 𝒆𝒊 is a vector containing zeros excepting for the one in the 𝑖𝑡ℎ position and  

𝑡1−𝛼 2⁄ ,𝑛−𝑝 is 1 − 𝛼/2 quantile of student’s t-distribution with 𝑛 − 𝑝 degree of freedom. 

Note that this calculation was already found by the standard regression model. In this 

case, 𝑡1−𝛼 2⁄ ,𝑛−𝑝 = 𝑡0.975,14 = 2.1448. The estimated eigenvalues, associated standard 

error and the approximate 95% confidence interval are shown in Table 4.3. 

Table 4.2. The estimated second-order regression model  

 Estimate Std. Error 

(Intercept) 5.057 0.094 

x1 0.360 0.088 

x2 -0.314 0.088 

x3 0.061 0.088 

x1:x2 0.133 0.108 

x1:x3 0.055 0.108 

x2:x3 -0.015 0.108 

x1^2 -1.185 0.100 

x2^2 -0.155 0.100 

x3^2 -0.670 0.100 

 

Table 4.3 shows the estimation of the eigenvalues with associated an approximate 

standard errors calculated utilizing the DLR method and corresponding approximate 95% 

confidence interval for the organic solar cell. 
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Table 4.3. The approximate 95% confidence interval for estimated eigenvalues. 

Canonical 

 parameter 

DLR regression 

parameter 

Estimate Standard error Approximate 

95% CI 

�̂�1 𝑏11
∗  -1.190 0.10 (-1.40, -0.97) 

�̂�2 𝑏22
∗  -0.668 0.10 (-0.88, -0.45) 

�̂�3 𝑏33
∗  -0.150 0.10 (-0.36, 0.06) 

 

The confidence interval of the first two eigenvalues does not contain zero. Moreover, the 

confidence interval for �̂�3 contains zero by a small margin as shown Figure 4.10. This is 

an indication that there might be rising ridge in the surface with a maximum in the third 

canonical axis.  

 

Figure 4.10. The individual approximate CI for the eigenvalues. 
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follows: 
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î ± 𝑡1−𝛼 2⁄ 𝑘,𝑛−𝑝(𝒆𝒊
𝑻𝑆𝜆𝒆𝒊)

1/2 

where 𝑡1−𝛼 2𝑘⁄ ,𝑛−𝑝 is 1 − 𝛼/2 quantile of student’s t-distribution with 𝑛 − 𝑝 degree of 

freedom. Note that this calculation was already found by the standard regression model. 

In this case 𝑡1−𝛼 2𝑘⁄ ,𝑛−𝑝 = 𝑡0.975,14 = 2.6245 when constructing Bonferroni confidence 

intervals. 

The estimated eigenvalues with their standard error and the approximate 95% Bonferroni 

confidence interval are summarized in Table 4.4. 

Table 4.4. The approximate 95% Bonferroni confidence interval for estimated 

eigenvalues. 

Canonical 

 parameter 

DLR regression 

parameter 

Estimate Standard error Approximate 

95% CI 

�̂�1 𝑏11
∗  -1.190 0.10 (-1.45, -0.92) 

�̂�2 𝑏22
∗  -0.668 0.10 (-0.93, -0.40) 

�̂�3 𝑏33
∗  -0.150 0.10 (-0.41, 0.11) 

 

As shown, the Bonferroni intervals for the first two eigenvalues are both negative, and for 

the third eigenvalue the Bonferroni confidence intervals includes zero as shown in Figure 

4.11. 
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Figure 4.11. The individual approximate 95% Bonferroni CI for the eigenvalues. 

In the following chapter, a metaheuristic search method is addressed in order to 

find an alternative solution for our design matrix that might be closer to the optimum 

solution. 
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CHAPTER 5 

COMBINATORIAL OPTIMATIZATION FOR DESIGN POINTS 

 Generally, combinatorial optimization problems are sufficiently complicated that 

it might not be possible to find the optimal solution. In such situations, heuristic methods 

are often used to obtain a near optimal solution. The RSM is silent about what to do with 

the partial experimental results obtained using CCD during the course of completing all 

design points. Can any useful insights be gleaned from the progressively available data in 

order to adapt the experimental research process in light of new and current information 

obtained?  RSM (CCD) also does not provide guidance in regards to the order in which 

design points should be carried out. Is the performance of the experiments reliable by 

following the design points as shown in the design matrix (best performance)? Would 

choosing an alternative design matrix (design points) lead to any improvement?  

To answer to these questions, the metaheuristic search method [40] from Operations 

Research can be employed to search for more optimum solution. 

5.1 Metaheuristics 

 

Metaheuristic algorithms, which are a class of approximation techniques, were 

developed in the 1980’s. The term “heuristic” originates from the ancient Greek word 

“heuriskein”, meaning the art of determining new strategies that can resolve problems. 

Also the suffix “meta” is a Greek word, meaning the upper level approach. Fred Glover 

(1986) first presented the term metaheuristic in the paper “Futhure Paths for Interger 

Programming and Links to Artificial Intelligence” (Talbi, 2009, p.1). Furthermore, some 

problems are so complicated according to the Operation Research (OR) models that it 
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may not be easy find the optimum solution. In such situations, it is still worthwhile to 

search for a feasible solution that could be reasonably close to optimal, so heuristic 

techniques commonly are utilized to search for such a solution.  

A heuristic method is a process of searching for a reasonably good solution (not 

necessarily the optimal solution) for a specific problem being studied.  No such evidence 

can guarantee the quality of the solution obtained, but a better solution that is nearly 

optimal can usually be obtained by a well-designed heuristic method. Additionally, the 

method should be sufficiently effective to deal with large-scale problems.  

Heuristic approaches are frequently based on a reasonably simple idea for 

obtaining a better solution. These ideas need to be carefully designed to fit the particular 

problem of interest.  

For many years, the OR team would need to start from scratch to improve a 

heuristic technique to fit the problem at hand, wherever a procedure for finding an 

optimum solution was not available. This has all improved in modern years with the 

development of the powerful metaheuristic method. A metaheuristic is a general solution 

approach that provides both a common structure and approach guidelines for developing 

a particular heuristic method to fit a specific kind of problem. Furthermore, the 

metaheuristics is one of most important techniques in the tool of OR practitioners. 

 Metaheuristics are applied to find answers to problems when there is very little available 

information and knowledge, regarding the characteristics of the optimal solution. 

Sometimes we do not know how to go in finding the optimal solution in principled 

manner, and a brute-force exploration is out of the question because the solution space is 
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too large, such as in genetics research. But if we are given a candidate solution, we can 

verify it and evaluate its appropriateness. That is, we know a good solution when it is 

available. 

There is no guarantee based on metaheuristics that an optimum solution can be found for 

many classes of problems [41]. Many metaheuristics implement some form of stochastic 

optimization, so that the solution found is dependent on the set of random variables 

generated [42]. In combinatorial optimization, by searching over a large set of reasonable 

solutions, metaheuristics can often find a better solutions with less computational effort 

than optimization processes, iterative approaches, or simple heuristics [41]. As such, they 

are useful methods for optimization problems [42]. 

 

The simplest strategy in some situation is a Random Search, trying random sets of 

solutions as long as there is time, and return the best one found. Then a small, random 

modification is made to it and the new version is tried. If the new version is better, the old 

one is thrown away, if not, the original is modified in another way. If this newest version 

is better, the current version is discarded; if not, the newest version is discarded and the 

older version is modified yet again. This process is repeated as long as exit conditions 

have not yet been met. 

5.2 Properties 

 

The properties that characterize the most metaheuristics [41]: 

i. Metaheuristics are approaches that guide the search process. 

ii. The aim is to capably discover the search region in order to find near optimum 

solutions. 
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iii. Metaheuristic procedures are approximate and commonly nondeterministic. 

iv. Metaheuristics are not problem specific. 

As mentioned above, the metaheuristic search method is applied because the CCD 

does not provide guidance in regards to which design points should be used to precisely 

optimize the solar device performance. Furthermore, the design points of fractional 

factorial designs frequently result in great low-cost and effectiveness in research, 

especially if the runs of the experiment can be made successively. For instance, consider 

that the experimenters were exploring 𝑘 =  3 intendent variables as we have in this work 

with a total of all possible runs (23 = 8 𝑟𝑢𝑛𝑠) plus 8 center point repetitions. The 

preferred method is to run a 23−1 fractional design (4 runs) with 4 repetitions at the 

center of each half-fraction, and then analyze the results. The information obtained from 

this process is used to make a decision about the best set of points to implement next. 

Whenever it becomes essential to solve ambiguity, we are able to run the alternate 

fraction and the total number of design runs in a CCD (𝑛 = 2k + 2𝑘 + 𝑛0 = 24 runs). 

To apply the metaheuristic search method, the full factorial design was generated using a 

generator (~ 𝑥1 + 𝑥2 + 𝑥3) based on the cube function and then combined to the star 

block to obtain all possible combinations of CCD. One hundred random samples were 

simulated with different orders to determine the behavior of the design points of CCD, as 

shown in Figure 5.1 below. The preliminary results show that the permutation is indeed 

important with respect to the first-order model. Moreover, in an RSM application, by 

using a few data points some design points are discarded due to the singularities; one of 

these design points is then brought back to the design and the singularities determined 
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using generalized inverse (g-inverse), which estimates the coefficients when the matrix is 

not full rank. For more details on generalized inverse, please refer to Graybill et al. [43]. 

This design point was added to Figure 5.2 with a bold yellow line, note the behavior of 

this discarded design point as compared with the 100 simulated samples and default 

design points (design matrix in Table 3.1). A brief overview of the generalized inverse is 

presented next. 

5.3 Generalized and conditional inverse 

If a matrix 𝑨 has an inverse, the matrix 𝑨 must be square and the determinant 

must be nonzero. The theory of linear models, which includes a large part of theoretical 

and applied statistics, involves the solutions of a system of linear equations 

𝑨𝒖 = 𝑿    

if A is an 𝑛 × 𝑛 nonsingular matrix, the solution to the system in the Equation (4) exists, 

is unique, is given by 𝒖 = 𝑨−1𝑿 . However, there are cases where 𝑨 is not a square 

matrix or 𝑨 is a square matrix but is singular. In these situations, there may still be a 

solution to the system, and a unified theory to treat all situations is desirable. One such 

theory involves the use of generalized and conditional inverses of matrices. 

Let 𝑨 be an 𝑚 × 𝑛 matrix of rank 𝑟. The investigation of the matrix denoted by 𝑨− which 

has many of properties that the inverse of the matrix 𝑨 would have if the inverse existed, 

is in the next section. 

5.3.1 Generalized inverse 

Let 𝑨 be an 𝑚 × 𝑛 matrix. If a matrix denoted by 𝑨− exists that satisfies the four 

conditions below, it will be defined as a generalized inverse of 𝑨. 
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i. 𝑨𝑨− is symmetric; 

ii. 𝑨− 𝑨 is symmetric; 

iii. 𝑨𝑨− 𝑨 = 𝑨 

iv. 𝑨− 𝑨𝑨− = 𝑨− 

The terminology “g-inverse” is used to denote the generalized inverse. If A is 

nonsingular, it is clear that 𝑨− satisfies the conditions of a g-inverse. However, if 𝑨− is a 

square matrix and singular, or if 𝑨 is not a square matrix, then the problem remains at to 

whether a matrix 𝑨− exists that satisfies with 𝑨− 𝑨𝑨− = 𝑨−.  Finally, for each matrix 𝑨, 

a g-inverse matrix 𝑨− exists and is unique [43]. 

Generalized Inverse (g-inverse) is used to solve the singularities for the discarded design 

point as follows: 

𝑨 =

[
 
 
 
 
 
 
 
−1 1 −1
0 0 0
−1 −1 1
0 0 0
0 0 0
1 1 −1
0 0 0
1 −1 1 ]

 
 
 
 
 
 
 

  ;      𝑨𝑇 = [
−1 0 −1 0 0 1 0 1
1 0 −1 0 0 1 0 −1
−1 0 1 0 0 −1 0 1

] 

𝑨1 = 𝑨𝑇𝑨 = [
4 0 0
0 4 −4
0 −4 4

] 

If the matrix 𝑨𝑇𝑨 has zero determinant, then the matrix 𝑨𝑇𝑨 is not invertible (that is, a 

singular matrix). A g-inverse matrix 𝑨− exists for the matrix 𝑨𝑇𝑨 that satisfies 

𝑨− 𝑨1𝑨
− = 𝑨−is given as: 
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𝑨− = [
0.25 0 0
0 0.063 −0.063
0 −0.063 0.063

] 

𝑨1𝑨
− = [

1 0 0
0 0.5 −0.5
0 −0.5 0.5

]   𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 

𝑨−𝑨1 = [
1 0 0
0 0.5 −0.5
0 −0.5 0.5

]   𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 

𝑨1𝑨
− 𝑨1 = [

4 0 0
0 4 −4
0 −4 4

] = 𝑨𝑇𝑨 

𝑨− 𝑨1𝑨
− = [

0.25 0 0
0 0.063 −0.063
0 −0.063 0.063

] = 𝑨− 

The g-inverse matrix 𝑨− exists for the  

matrix 𝑨𝑇𝑨1 and is unique. 

 

 Figure 5.1. The dynamic of default design points. 
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As seen in Figure 5.1 the dynamic of discarded design combination during the 

first few runs has around 60% relative error. Furthermore, after a few experiments are 

added, it has around 10% of error which initially leads to the summary that those design 

points which have been discarded by the RSM due to singularity have an important effect 

in the CCD as compared to those that have been kept in the design. 

5.4 The relative error with respect to the quadratic fitted model 

Even if the design points are proven to be important based on random search with 

respect to the first-degree model, how we can systematically search with respect to the 

second-order model for an optimal or near-optimal design combination in CCD to be cost 

effective. For this purpose, a neighboring rows was based on swapping the location of 

two elements within the three blocks (cube, foldover, and star blocks) of the permutation 

to search for a better feasible solution which generated 276 matrices as shown in Table 

5.3. In addition, the strategy is to search for a better solution for each swap with respect 

to the quadratic model, the relative error is obtained based on a given candidate solution 

(default matrix). If the new swap version has less relative error, then the old one is 

discarded; if it does not, then discard the newest version. Repeat this process as long as a 

better solution (better improvement) is obtained. The scenario is that for each 

permutation, a second-degree model is fitted, starting with eighteen design points, 

because the quadratic model requires eight design points for 𝑘 = 3, four center points, 

and six star points (total runs 𝑛 = 18). Then the rest of the design points are added 

cumulatively to fit the quadratic model and the relative error computed each time. 
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          Table 5.1. The first permutation matrix (swap) generated within the blocks. 

Block X1 X2 X3 Y Run 

1 0 0 0 5.13 2 

1 0 0 0 5.59 1 

1 -1 -1 1 3.08 3 

1 0 0 0 5.25 4 

1 1 1 1 3.18 5 

1 1 -1 -1 3.4 6 

1 0 0 0 5.1 7 

1 -1 1 -1 2.43 8 

2 -1 -1 -1 3.17 9 

2 0 0 0 4.54 10 

2 0 0 0 5.14 11 

2 -1 1 1 2.2 12 

2 0 0 0 4.69 13 

2 0 0 0 4.7 14 

2 1 1 -1 3.11 15 

2 1 -1 1 3.45 16 

3 0 0 √2 4.14 17 

3 0 0 0 5.15 18 

3 −√2 0 0 2.05 19 

3 0 0 −√2 3.48 20 

3 0 √2 0 4.28 21 

3 √2 0 0 3.51 22 

3 0 0 0 5.1 23 

3 0 −√2 0 5.4 24 
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            Table 5.2. The last permutation matrix (swap) generated within the blocks. 

Block X1 X2 X3 Y Run 

3 0 −√2 0 5.4 24 

3 0 0 0 5.1 23 

3 √2 0 0 3.51 22 

3 0 √2 0 4.28 21 

3 0 0 −√2 3.48 20 

3 −√2 0 0 2.05 19 

3 0 0 0 5.15 18 

3 0 0 √2 4.14 17 

2 1 -1 1 3.45 16 

2 1 1 -1 3.11 15 

2 0 0 0 4.7 14 

2 0 0 0 4.69 13 

2 -1 1 1 2.2 12 

2 0 0 0 5.14 11 

2 0 0 0 4.54 10 

2 -1 -1 -1 3.17 9 

1 -1 1 -1 2.43 8 

1 0 0 0 5.1 7 

1 1 -1 -1 3.4 6 

1 1 1 1 3.18 5 

1 0 0 0 5.25 4 

1 -1 -1 1 3.08 3 

1 0 0 0 5.13 2 

1 0 0 0 5.59 1 

Table 5.1 and Table 5.2 represent an alternative design matrix of first and last swap out of 

the 276 swaps. 

The relative error is calculated as:  

𝑫 =∑𝒅𝑖

𝑝

𝑖=1

 

where 𝒅𝑖 is the Euclidean distance between the columns of matrix �̂�  which is given by 

the Pythagorean formula: 
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𝒅𝑖 = 𝑑(�̂�𝑖𝑗, �̂�𝑝𝑗 ) = √∑(�̂�𝑖𝑗 − �̂�𝑝𝑗)2

𝑝

𝑖=1

√∑( �̂�𝑝𝑗)2
𝑚

𝑗=1

⁄ ,   𝑖 = 1, 2, … , 𝑝; 𝑗 = 1,2, … ,𝑚 

and 

�̂� =

[
 
 
 
𝑏11
𝑏12

𝑏21
𝑏22

⋯
𝑏𝑝1
𝑏𝑝2

⋮ ⋱ ⋮
𝑏1𝑚 𝑏2𝑚 ⋯ 𝑏𝑝𝑚]

 
 
 

 

 where 𝑝 = 6 which represents the number of fitted quadratic models according to the 

cumulative design points and 𝑚 = 10 is number of parameters (intercept, main effects, 

interaction effects, and quadratic effects of a second-order model). 

For example the matrix  �̂� for the design matrix in Table 5.1 is: 

  �̂� =

[
 
 
 
 
 
 
 
 
 
5.03 5.03 5.03 5.04 5.05 5.06
0.28 0.28 0.29 0.36 0.36 0.36
−0.27 −0.27 −0.28 −0.26 −0.26 −0.31
−0.03 0.06 0.06 0.06 0.06 0.06
0.13 0.13 0.13 0.13 0.13 0.13
0.06 0.06 0.06 0.06 0.06 0.06
−0.02 −0.02 −0.02 −0.02 −0.02 −0.02
−1.29 −1.29 −1.27 −1.15 −1.15 −1.18
−0.31 −0.13 −0.16 −0.24 −0.24 −0.15
−0.43 −0.61 −0.60 −0.63 −0.64 −0.67]

 
 
 
 
 
 
 
 
 

 

and       𝒅1 = 𝑑(�̂�1𝑗, �̂�6𝑗  ) = √∑ (�̂�1𝑗 − �̂�6𝑗)2
6
𝑖=1 √∑ ( �̂�6𝑗)2

10
𝑗=1⁄ = 0.06 

Similarly for 𝑑2 = 0.03, 𝑑3 = 0.03, 𝑑4 = 0.02, 𝑑5 = 0.02, 𝑑6 = 0, the relative error is 

given 
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𝐷 =∑𝑑𝑖  = 0.06 + 0.03 + 0.03 + 0.02 + 0.02 + 0 = 0.16

6

𝑖=1

 

Also, the relative error is computed in the same manner for all permutations (swaps) as 

shown in Table 5.3. 

             Table 5.3.The relative error according to the 276 permutation matrices. 

Relative Error Permutation 

0.05 3 

0.06 1 

0.07 11 

0.08 11 

0.09 4 

0.1 14 

0.11 13 

0.12 13 

0.13 8 

0.14 20 

0.15 7 

0.16 50 

0.17 1 

0.18 17 

0.19 8 

0.2 15 

0.21 3 

0.22 20 

0.23 5 

0.24 2 

0.25 3 

0.26 1 

0.27 3 

0.29 8 

0.31 2 

0.32 30 

0.34 1 

0.38 1 

0.39 1 
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According to Table 5.3, there are 150 an alternative a better solution of our design matrix 

based on the relative error that might be close to the optimum solution, a fifty of them has 

the same relative error of the default matrix, and the rest are worse as shown in figures 

5.2 and 5.3.  

 

Figure 5.2. The histogram of current solutions according to the relative error. 

 

Figure 5.3. The current solution corresponding to the relative error. 
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Table 5.4. The candidate trial solution (swap 44) with respect to the second-order model. 

Blocks X1 X2 X3 y Run 

3 0 −√2 0 5.4 24 

3 √2 0 0 3.51 22 

1 0 0 0 5.59 1 

1 0 0 0 5.13 2 

1 -1 -1 1 3.08 3 

1 0 0 0 5.25 4 

1 1 1 1 3.18 5 

1 1 -1 -1 3.4 6 

1 0 0 0 5.1 7 

1 -1 1 -1 2.43 8 

2 -1 -1 -1 3.17 9 

2 0 0 0 4.54 10 

2 0 0 0 5.14 11 

2 -1 1 1 2.2 12 

2 0 0 0 4.69 13 

2 0 0 0 4.7 14 

2 1 1 -1 3.11 15 

2 1 -1 1 3.45 16 

3 0 0 √2 4.14 17 

3 0 0 0 5.15 18 

3 −√2 0 0 2.05 19 

3 0 0 −√2 3.48 20 

3 0 √2 0 4.28 21 

3 0 0 0 5.1 23 
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Table 5.5. The candidate trial solution (swap 183) with respect to the second-order 

model. 

Block X1 X2 X3 y Run 

3 0 −√2 0 5.4 24 

3 0 0 0 5.1 23 

3 √2 0 0 3.51 22 

3 0 √2 0 4.28 21 

3 0 0 −√2 3.48 20 

3 −√2 0 0 2.05 19 

3 0 0 0 5.15 18 

3 0 0 √2 4.14 17 

2 1 -1 1 3.45 16 

2 0 0 0 4.69 13 

1 0 0 0 5.59 1 

1 0 0 0 5.13 2 

1 -1 -1 1 3.08 3 

1 0 0 0 5.25 4 

1 1 1 1 3.18 5 

1 1 -1 -1 3.4 6 

1 0 0 0 5.1 7 

1 -1 1 -1 2.43 8 

2 -1 -1 -1 3.17 9 

2 0 0 0 4.54 10 

2 0 0 0 5.14 11 

2 -1 1 1 2.2 12 

2 0 0 0 4.7 14 

2 1 1 -1 3.11 15 

 

 

 

 

 

 



109 

Table 5.6. The candidate trial solution (swap 184) with respect to the second-order 

model. 

Block X1 X2 X3 y Run 

3 0 −√2 0 5.4 24 

3 0 0 0 5.1 23 

3 √2 0 0 3.51 22 

3 0 √2 0 4.28 21 

3 0 0 −√2 3.48 20 

3 −√2 0 0 2.05 19 

3 0 0 0 5.15 18 

3 0 0 √2 4.14 17 

2 1 -1 1 3.45 16 

2 0 0 0 4.7 14 

1 0 0 0 5.59 1 

1 0 0 0 5.13 2 

1 -1 -1 1 3.08 3 

1 0 0 0 5.25 4 

1 1 1 1 3.18 5 

1 1 -1 -1 3.4 6 

1 0 0 0 5.1 7 

1 -1 1 -1 2.43 8 

2 -1 -1 -1 3.17 9 

2 0 0 0 4.54 10 

2 0 0 0 5.14 11 

2 -1 1 1 2.2 12 

2 0 0 0 4.69 13 

2 1 1 -1 3.11 15 
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             Table 5.7. The relative error according to each swap with their iteration. 

Iteration Swap Relative Error 

1 21 0.27 

2 44 0.05 

3 63 0.22 

4 82 0.1 

5 85 0.13 

6 100 0.18 

7 103 0.24 

8 119 0.16 

9 120 0.19 

10 138 0.15 

11 139 0.25 

12 151 0.2 

13 167 0.31 

14 168 0.32 

15 180 0.07 

16 183 0.05 

17 184 0.05 

18 236 0.26 

19 239 0.23 

20 244 0.21 

21 245 0.38 

22 246 0.39 

23 251 0.29 

24 254 0.34 

25 258 0.09 

26 259 0.06 

27 263 0.14 

28 265 0.08 

29 268 0.17 

30 272 0.11 

31 273 0.12 
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 Figure 5.4. The dynamic of default design points with respect to the second-order model. 

 

As seen from Figure 5.4 the three candidates solution that have a minimum relative error 

with blue, green and red bold colors are associated with swapping 44, 183, and 184. 

 

Figure 5.5. The candidate solution with the relative error. 

1 2 3 4 5 6

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Candidate Solution

R
e
la

tiv
e
 E

rr
o
r 

(s
to

p
p
in

g
 c

ri
te

ri
o
n
)

0 50 100 150 200 250 300

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
0

.3
0

0
.3

5
0

.4
0

Candidate solution

R
e

la
ti
v
e

 E
rr

o
r

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

1617

18

19

20

21
22

23

24

25

26

27

28

29

30
31



112 

Metaheuristics is employed in this chapter to search for a near- optimal solution.  

The neighboring trial move (or swap) within the three blocks (cube, foldover, and star) is 

utilized to search for the best neighborhood candidate solution. The neighborhood search 

moves from the current candidate solution to the best neighboring trial solution at each 

iteration (at each swap) by occasionally allowing a non-improving swap when an 

improving swap is not available. In summary, according to these the candidate solutions 

(permutations 44, 183, and 184) which have a minimum relative error (0.05) as it can be 

seen from Figure 5.5, as well as the swapping 180, 256, and 259 that have following 

minimum relative errors (0.06, 0.07, and 0.08), respectively. All these candidate solutions 

(swaps with minimum relative error) should start with the axial points (star) rather than 

the corner points with respect to the fitted quadratic model. This is reasonable because 

CCDs provide high quality predictions over the entire design space while requiring (star 

point) variables settings outside the region of variables in the factorial design. Notably, 

when it is possible to run the CCD before starting a factorial analysis, factor regions can 

be reduced to ensure the ±𝛼 for each encoded variable exists according to reasonable 

(feasible) levels. It would seem to be a good starting point to run a CCD based on the 

organic solar cell data, but we cannot make such a generalization based on a random 

dataset without theoretical justifications from mathematics and statistics or by 

considering various scenarios via simulations. 

Finally, in last chapter, we will discuss the recent development of RSM. 
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CHAPETER 6 

RECENT DEVELOPMENT OF RESPONSE SURFACE METHODOLOGY 

In this chapter, we briefly explore to recent development of response surface methodology, 

multivariate response surface optimization, robust parameter design, and generalized linear 

models. 

6.1 Multivariate response optimization 

In most response surface designs, the problem is to find the optimum operating 

conditions for a single response. However, in some cases, the researchers are interested in 

optimizing multivariate responses simultaneously. In this case, the simplest method is a 

visual inspection. The surfaces can be investigated in order to find the design space that 

optimizes the entire responses studies [44, 45]. 

It has been shown to be significantly more challenging to find the operating 

conditions that will simultaneously optimize all responses when the optimum values for 

each response are located in different regions. The difficulty of this process increases if 

the optimum conditions become more faraway from each other and fail to overlap. In 

fact, it is not unusual to observe the cases where the response surfaces found do not 

present an optimal regarding the same design region. Thus, changes in one factor’s level 

can improve one particular response, while also having a significant negative impact on 

another response. One method for resolving such problem of the optimization of 

multivariate responses is by using a multi-criteria methodology. This criteria is employed 

whenever multiple responses to be considered simultaneously. The Derringer function, 

also known as the desirable function [46], is the most frequently employed multi-criteria 

methodology in optimizing an analytical process. This method is primarily based on the 
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calculation of a desirable function for each response individually.  Essentially, the stately 

properties for every response are changed into a dimensionless of individual desirable 

function (di) scale. Based on these individual desirable functions, an analysis may 

introduce the conditions that each individual response must meet throughout the 

measured process. The scale of each desirable function lies between d = 0, for a fully 

undesired response, and d = 1, for a completely desirable response; anything out this 

rating would not be importance to the analyst. This method allows us combining the 

results attained for the properties that are measured through changed orders of scale. Now 

that we have obtained the individual desirable functions, it is possible to find the overall 

desirable (D). The overall desirable function D is a weighted geometric mean of each 

individual desirable function (di), as follows: 

𝐷 = √𝑑1𝑑2… 𝑑𝑚
𝑚

 

where m represents the number of responses studied. Thus, the simultaneous optimization 

procedure is reduced so that we may obtain the levels of independent variables which 

demonstrate maximum overall desirability. 

There are different types of transformation are potential to obtain the individual desirable 

function. As such, when (T) the target value for the response y is to be a maximized, the 

individual desirable function is given 

𝑑 = {

0  ;   𝑦 < 𝐿

(
𝑦 − 𝐿

𝑇 − 𝐿
)
𝑠

 ;   𝐿 ≤ 𝑦 ≤ 𝑇

1 ;     𝑦 > 𝑇
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where L is the lower accepting value to the response surface and s represents the weight. 

Thus, when s = 1, the desirable function is linear.  In case of s > 1 major significance is 

given to the points that is near the target value. When s < 1, it would have no importance 

to the analyst. 

When response y is to be minimized, though, desirable function (d) is given 

𝑑 =

{
 

 
 1    ;   𝑦 < 𝑇

(
𝑈 − 𝑦

𝑈 − 𝑇
)
𝑡

 ;   𝑇 ≤ 𝑦 ≤ 𝑈

0    ;     𝑦 > 𝑈

 

where U is the upper accepting value to the response and t represents the weight. The 

same principle for s is also applied to t. If the target value (T) is filled among L and U, 

then, a two-sided desirable function must be utilized. This function is as follows: 

𝑑 =

{
 
 

 
 

0 ;      𝑦 < 𝐿

(
𝑦 − 𝐿

𝑇 − 𝐿
) ;     𝐿 ≤ 𝑦 ≤ 𝑇

(
𝑈 − 𝑌

𝑈 − 𝑇
)
𝑡

;     𝑇 ≤ 𝑦 ≤ 𝑈

0  ;     𝑦 > 𝑈

 

As we have previously shown, t and s control the variation rate of the desirable 

functions.  

6.2 Robust parameter design 

Robust parameter design is a technique to produce realization events that focuses 

on selecting the settings of independent variables in a process. Firstly, it ensures that the 

average of the response variable has achieved a desirable level. Secondly, it confirms that 
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the variability nearby this level is minimized. This technique was developed by Genichi 

Taguchi. 

6.2.1 Taguchi’s approach  

Robust parameter design is a technique developed in order to improve the quality of the 

yield by studying the robustness of the variability that caused by the uncontrollable 

factors occur in the production procedure. Genichi Taguchi introduced parameter design 

in US during the 1980s, a several studies have been published, such as Kackar [47], 

Taguchi and Wu [48], Taguchi [49], Nair and shoemaker [50] as well as a textbooks 

authored by Khuri and Cornell, and Taguchi [51] , Phadke [52], and others. There were 

two types of process variables; the first are the independent variables which are under 

control, and the second are uncontrollable variables that in general the reason of the 

variations in a production system. The main purpose of studying the parameter robustness 

is to identify the levels of the independent variables that the response of the process is 

robust to the variability in the process, the variability that caused by uncontrollable 

variables.  In order to reach such goal, Taguchi supported using the crossed arrays, a 

process achieved by crossing the orthogonal runs of independent variables with the noise 

factors. 

Through this method, Taguchi was able to identify three specific goals in an experiment: 

i. The smaller, the better that will minimize the response. 

ii. The larger, the better that will maximize the response. 

iii. Achieving a specific target. 

Based on the signal-to-noise ratio (S/N), the three goals are defined as follows: 
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i. The smaller is better;  −10 log [
1

𝑛
 ∑ 𝑦𝑖

2𝑛
𝑖=1 ] . 

ii. The larger, the better; −10 log [
1

𝑛
 ∑

1

𝑦𝑖
2

𝑛
𝑖=1 ] . 

iii. The target is achieved (the best)  −10 log  (
𝑠2

�̅�2
) where 𝑦𝑖 is response values,  �̅� is 

the sample mean and 𝑠2  is the sample variance.  

All the three S/N ratios must be maximized. Taguchi method in more details were 

discussed by Myers and Montgomery [3], Box [53, 54], Easterling [55], Pignatiello and 

Ramberg [56], Nair and Pregibon[57], and Nair [58]. 

6.3 Generalized linear models 

Generalized linear models (GLMs) are extensions of the general linear models 

(example, regression and standard ANOVA models).  GlMs developed by Nelder and 

Wedderburn [59].  For further details, see for example McCullagh and Nelder [60], and 

more books by Lindsey [61], Dobson [62], McCulloch and Searle[63] and Agresti [64]. 

Typically, the response variable in GLMs  is assumed to follow a distribution from an 

exponential family [60]. The mean response is modeled as 

𝑔(𝜇) =  𝑿𝑇𝜷 

where 𝑔 is link function (it can be logit or log), 𝑿 is the design matrix, and β is a vector 

of regression coefficient, which usually estimated using MLE method.  A well-designed 

equation is the one that has a small prediction variance or small mean square error of the 

prediction [65]. However, these criteria for the GLMs are dependent on the unknown 

parameters of the fitted model. So, a prior knowledge of these parameters is required in 

order to minimize the criteria [66].  We will now explore some solutions to these issues. 
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6.3.1 Local optimum designs  

GLMs designs are dependent upon the unknown parameters of the fitted equation. 

Because of this dependency, a prior knowledge of the parameters is required in order to 

calculate these equations.  Optimal measure, such as D-optimality or A-optimality, is 

called locally optimum. These designs involve optimization criteria that minimize the 

variance of the regression coefficients for a pre-specified model, as well as select the 

design runs that maximize the determinant of 𝑿𝑇𝑿 [67]. 

6.3.2 Sequential designs 

This technique does not stop at the initial step, the estimates of the unknown 

parameters are repeated and used to obtain an additional design runs that the process will 

convergence with respect to some optimality manner, such as, D-optimality [68-70].  

6.3.3 Robust design technique 

This method is a minimax approach that often used in order to acquire designs which are 

robust in relation to a weak estimation of the initial parameters. When using this 

technique, D-optimality and Fieller confidence intervals for the median response dose are 

used in order to construct optimality functions for these procedures [7, 71]. 

Several recent works have been published regarding GLMs, including Dror and 

Steinberg [72], Woods et al. [73], and Russell et al. [74]. These studies concentrated on 

GLMs that contains multiple independent variables, while the previous studies discussed 

design issues found in GLMs with solely surface response. There was not much work has 

been done to understand multivariate GLMs, specifically designing such models. The 

models using multiple responses can be investigated for each level of a group of 

controllable factors; they are also considered when multiple responses are sufficiently 
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represented by GLMs. More discussion and analysis of multiple response models  for 

GLMs have been published by McCullagh and Nelder [60] , and Fahrmeir and Tutz [75]. 

Some authors have studied  optimal designs as a key to multivariate GLMs [76, 

77]. In fact, Heise and Myers [76] studied bivariate logistic regression in the pursuit of 

optimal design, whereas Zocchi and Atkinson’s [77] work is based on optimum designs 

for multinomial logistic models. More recently, Mukhopadhyay and Khuri [78] compared 

designs for multiple response GLMs through use of quantile dispersion graphs.  The 

optimization issue in a GLMs application unable to improve closely to the linear models. 

In case of using a single response approach with GLMs, Paul and Khuri used 

modification of rising ridge analysis in order to optimize the response [79]. Moreover, 

Paul and Khuri [79] optimized the linear variables rather than optimizing the mean 

response. Mukhopadhyay and Khuri [80] decided to use the generalized distance 

approach; a technique, which was initially developed for multiple response GLMs, that 

optimized several linear response surface models simultaneously. They used this 

technique to effectively optimize a multivariate GLM situation and also studied the mean 

as a function of both the inner and the noise variables, while the variance was a function 

of the independent variables only. Engel and Huele [81] followed single response model 

of Myers et al. [82], assuming the existence of non-constant error variances. In their 

work, the variance was based on both the non-controllable factors and the residual 

variance. They are modeled the residual variance through the use of an exponential 

model, in order to guarantee non negative variance estimates; a model which was 

formerly utilized by Box and Meter [83], Grego [84], Chan and  Mak [85]. 
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CHAPTER 7 

 

DISCUSSION AND CONCLUSION 

 

7.1 Discussion and conclusions 

Optimization of organic solar cells is one of the greatest challenges in organic 

photovoltaics (OPV) technology. Several mathematical tools were introduced in order to 

simplify and understand the solar cell performance. In this work, one of our objectives 

was to find the optimum polymer solar cell performance using a statistical model. RSM is 

employed to find the optimum device structure of organic polymer solar cell. The central 

composite design for a second-order model was used with three independent variables, 

namely polymer concentration, polymer-fullerene ratio, and active layer spinning speed. 

Optimal device performance was achieved using 10.25 mg/ml polymer concentration, 

0.42 polymer-fullerene ratio, and 1624 rpm of active layer spinning speed.  The 

efficiency at the optimum stationary point was found to be 5.23% for the 

Poly(diketopyrrolopyrrole-terthiophene) (PDPP3T)/PC60BM solar cells. Moreover, 97% 

of the variation in the device performance was explained by quadratic  model, which 

might help in approaching the optimum device performance efficiently. The solar cell 

experimental results are consistent with the CCD prediction, which proves that this is a 

promising and appropriate model for optimum device performance and fabrication 

conditions as well as the RSM was very useful in precisely optimizing solar device 

performance. We recommend RSM approach for future use to reduce cost and time. The 

ad-hoc technique used 60 experiments whereas CCD required only 24 experiments.   
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Canonical analysis was performed to explore the fitted second-order response 

surface. This method is useful to identify rising ridge behavior. Studying whether a ridge 

is rising ridge or stationary is useful to decide about how to continue for setting the 

process variables or explore in the response surface.  To determine if the ridge is 

stationary or rising is by checking whether the stationary point of the fitted quadratic 

model falls inside the design space, if this stationary point is within the design region, 

then there is suggestion of stationary in a response surface (no rising ridge) because there 

is no direction of improvement out of the design region. Also, a ridge identification can 

be studied using the double linear regression (DLR) method for estimating the standard 

error of the eigenvalues. Then we construct the confidence intervals of the eigenvalues. 

The eigenvalues who’s the confidence intervals contain zero, suggest of rising ridge.  For 

the organic solar cell, the confidence intervals for the first two the eigenvalues are clearly 

negative, and the surface show that the confidence interval of the eigenvalue 𝜆3 contains 

zero which might be an indication of rising ridge with surface. 

Simultaneous inference for the location of a stationary point in quadratic response 

surface model was addressed by constructing confidence regions and developing methods 

for construct rectangular simultaneous confidence intervals for the stationary point. 

Simulation is used to compare the coverage probabilities of the Bonferroni adjusted 

confidence intervals, the plug-in approach, and the bootstrap. The estimates of coverage 

probabilities for the three methods of constructing simultaneous confidence intervals for 

the location of the stationary point with various scenarios shown that the estimates of the 

coverage probabilities are the largest for the Bonferroni SCI followed by the plug-in 
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approach. For the Bonferroni and plug-in approaches, the estimates of the coverage 

probabilities as the sample size increases are pretty close to the nominal levels of 0.95. 

Metaheuristic approach is employed in order to find an alternative order to the 

design point.  Based on this technique, starting at the star point is an alternative better 

solution instead of starting at the corner point. This is reasonable because of CCDs 

provide high quality of predictions over the entire design space at the star points for the 

region of variables in factorial design. 

7.2 Future research 

This research can be extended in a couple of ways. The first theoretical problem of 

interest relates to further simultaneous inferences on the stationary point of a quadratic 

response surface model. The second theoretical problem is the justification of the 

metaheuristic approach using simulation techniques or theoretical considerations.  
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APPENDIX A 

Code for organic solar cell data 

######################### Organic polymer solar cell ####################### 

install.packages("rsm") 

library(rsm)  

set.seed(123) 

 cube= cube(~ x1 + x2,  x3 ~ x1 * x2, n0 = 4,  

 coding = c(x1 ~ (concentration - 10)/3.5, x2 ~ (ratio - .5)/.085, x3 ~ (speed - 1600)/400))  

as.data.frame(cube) 

par(mfrow=c(1,2)) 

 varfcn(cube, ~ FO(x1,x2,x3)) 

 varfcn(cube, ~ FO(x1,x2,x3), contour = TRUE) 

cube$efficiency= c(5.59,5.13,3.08,5.25,3.18,3.4,5.10,2.43) 

anal1 = rsm(efficiency~ FO(x1,x2,x3), data=cube) 

 summary(anal1) 

set.seed(123) 

foldover= foldover(cube, variable = "x1") 
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foldover$efficiency=c(3.17,4.54,5.14,2.2,4.69,4.7,3.11,3.45) 

anal2 = rsm(efficiency~ Block + FO(x1,x2,x3), data = djoin(cube,foldover)) 

 summary(anal2) 

set.seed(123) 

star= star(cube, n0 = 2, alpha = "orthogonal") 

 par(mfrow=c(1,2)) 

 comb = djoin(cube, foldover, star) 

 varfcn(comb, ~ Block + SO(x1,x2,x3)) 

 varfcn(comb, ~ Block + SO(x1,x2,x3), contour = TRUE) 

 star$efficiency=c(4.14,5.15,2.05,3.48,4.28,3.51,5.10,5.4) 

anal5 = rsm(efficiency~ Block + SO(x1,x2,x3), data = djoin(cube, foldover, star)) 

 summary(anal5) 

################## Bootsrap for organic solar cell ############################ 

fits = predict(anal5) 

resids = resid(anal5) 

boot.raw = replicate(1000, xs(update(anal5, fits + sample(resids, replace=TRUE) ~ .))) 

 boot = code2val(as.data.frame(t(boot.raw)), codings=codings(anal5)) 
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 par(mfrow = c(1,3)) 

 plot(ratio ~ concentration, data = boot, col = "blue"); points( 10.3465404, 0.4171534, col 

= "red", pch = 7 , xlim=c(0,12),ylim=c(-2,2)) 

 plot(speed ~ concentration, data = boot, col = "blue"); points( 10.3465404, 

1624.2459681, col = "red", pch = 7, xlim=c(0,12),ylim=c(1000,2000)) 

 plot(speed ~ ratio, data = boot, col = "blue"); points(0.4171534, 1624.2459681, col = 

"red", pch = 7, xlim=c(-2,2),ylim=c(1000,2000)) 

################ Contour plot for organic solar cell ########################### 

png.hook <- list() 

 png.hook$pre.plot <- function(lab) 

 png(file = paste(lab[3], lab[4], ".png", sep = "")) 

 png.hook$post.plot = function(lab) 

 dev.off() 

 contour (anal5, ~x1+x2+x3, image = TRUE, at = xs, hook = png.hook) 

par(mfrow = c(1,3)) 

persp (anal5, ~ x1+x2+x3, at = xs, 

 col = rainbow(50), contours = "colors") 

##################### Design space for solar cell data ####################### 

par(mfrow=c(1,3)) 
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contour(anal5, x1 ~ x2, bounds = list(x1=c(-8,8), x2=c(-10,10)), 

         zlim=c(-100,100), col="gray", decode = FALSE);points( -0.97466554,0.09901154  

, col = "blue", pch = 7, lwd=2) 

 lines(c(-1,1,1,-1,-1), c(-1,-1,1,1,-1), col="red") # design region 

 points(x1 ~ x2, data=canonical.path(anal5), col="gray", pch=1+7*(dist==0)) 

contour(anal5, x1 ~ x3, bounds = list(x1=c(-8,8), x3=c(-10,10)), 

         zlim=c(-100,100), col="gray", decode = FALSE);points(0.06061492,0.09901154 , 

col = "blue", pch = 7,lwd=2) 

lines(c(-1,1,1,-1,-1), c(-1,-1,1,1,-1), col="red") # design region 

 points(x1 ~ x3, data=canonical.path(anal5), col="gray", pch=1+7*(dist==0)) 

contour(anal5, x2 ~ x3, bounds = list(x2=c(-15,15), x3=c(-12,12)), 

         zlim=c(-100,100), col="gray", decode = FALSE);points( 0.06061492 ,-0.97466554 

, col = "blue", pch = 7,lwd=2) 

 lines(c(-1,1,1,-1,-1), c(-1,-1,1,1,-1), col="red") # design region 

 points(x2 ~ x3, data=canonical.path(anal5), col="gray", pch=1+7*(dist==0)) 

######################################################################## 
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APPENDIX B 

Code for simulation 

############## Confidence regions for the stationary point with simulation ####### 

install.packages("mvtnorm") 

library(mvtnorm) 

install.packages("rsm") 

library(rsm) 

  k=2 

alpha = 0.05 

XS=c(-0.1716,-0.1806) 

x1=c(-1,1,-1,1,-1.414,1.414,0,0,0,0,0) 

x2=c(-1,-1,1,1,0,0,-1.414,1.414,0,0,0) 

x1x2 = x1*x2 

x1sqr = x1^2 

x2sqr = x2^2 

Xsub1=x1-XS[1] 

Xsub2=x2-XS[2] 
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A=matrix(c( -2.78112 , -0.77500 /2,-0.77500 /2, -2.52355),nr=2) 

y=c(88.55,85.80,86.29,80.44,85.50,85.39,86.22,85.70,90.21,90.85,91.31) 

Combined=matrix(c(Xsub1,Xsub2),nr=2) 

mod2=rsm(y ~ SO(x1,x2)) 

summary(mod2) 

coef(mod2) 

X1 = matrix(c((x1-0.1716275)^2,(x2-0.1806102)^2),nr=11) 

X2 = matrix(c((x1-0.1716275)*(x2-0.1806102)),nr=11) 

I = rep(1,11) 

XZ=matrix(c(I,X1,X2),nr=11) 

M5=2*A%*%Combined #  M matrix ### 

Sigma = 3.1635 

M6=M5%*%t(M5)-M5%*%XZ%*%solve(t(XZ)%*%XZ)%*%t(XZ)%*%t(M5) 

V= solve(solve(M6)*sigma) 

B = coef(mod2) 

vcov.b = vcov(mod2) 

par(mfrow=c(1,1)) 
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L = -1.8 

U = 1.8 

Grid =100 

t1= seq(L,U, length=grid) 

t2 = t1 

Fcritical = 2*qf(1-alpha,2,5) 

plot(0,0, col="white", xlim=c(L,U), ylim=c(L,U), xlab="Xs1", ylab="Xs2", ) 

points( -0.17,-0.18  , col = "blue", pch = 7, lwd=2) 

 for (i in 1:grid) { 

for(j in 1:grid) { 

d1=-1.095 - 5.562*t1[i]- 0.775*t2[j] 

d2=-1.045-0.775*t1[i]-5.048*t2[j] 

d=c(d1,d2) 

var1=3.1635*(1/8 +4*t1[i]*t1[i]*0.1772+t2[j]*t2[j]/(4)) 

var2=3.1635*(1/8+ t1[i]*t1[i]/(4) + 4*t2[j]*t2[j]*0.1772) 

cov12=3.1635*(4*0.0521*t1[i]*t2[j] + t1[i]*t2[j]/(4)) 

 vard=matrix(c(var1,cov12,cov12,var2), nc=2) 
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 if (t(d)%*%solve(vard)%*%d <= Fcritical){ 

points(t1[i], t2[j], pch=".", cex=3, col="blue") 

  } 

  } 

  } 

lables=c("Bonf", "plug-in", "boot") 

legend("bottomleft",lables,  lwd=2, col=c("red","green", "purple"), lty=c(6,3,2)) 

######################## Asymptotic confidence region ##################### 

for (i in 1:grid) { 

for(j in 1:grid) { 

d1=t1[i]-XS[1] 

d2=t2[j]-XS[2] 

d=c(d1,d2) 

if (t(d)%*%V%*%d <= Fcritical){ 

points(t1[i], t2[j], pch=".", cex=3, col="gray70") 

  } 

  } 
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  } 

###################### SCI of Bon & ASY & Boot ########################## 

################ Variance covariance matrix of stationary point ################# 

vcovf.statn <- function (n,b, vcov.b) { 

  b0 = b[1] 

  b1= b[2] 

  b2 = b[3] 

  b12 = b[4] 

  b11 = b[5] 

  b22 = b[6] 

    bottom = 4*b11*b22-(b12^2) 

  dx1s.b0 = 0 

  dx1s.b1= -2*b22/(bottom) 

  dx1s.b2 = b12/(bottom) 

    u1= ((b12^2)*b2) 

  u2=-4*b22*b1*b12 

  u3=4*b22*b2*b11 
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  u4=(bottom^2) 

  u5=u1+u2+u3 

  dx1s.b12=u5/u4 

   dx1s.b11=-4*b22*(-2*b22*b1+b12*b2)/u4 

  w1=(2*b1*(b12^2)) 

  w2=-4*b12*b2*b11 

  w3=w1+w2 

  dx1s.b22=w3/u4 

  dx2s.b0=0 

  dx2s.b1=b12/bottom 

  dx2s.b2=-2*b11/bottom 

    v1=4*b1*b11*b22 

  v2=((b12^2)*b1) 

  v3=-4*b12*b11*b2 

  v4=v1+v2+v3 

  dx2s.b12=v4/u4 

   q1=2*(b12^2)*b2 
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  q2=-4*b12*b1*b22 

  q3=q1+q2 

  dx2s.b11=q3/u4 

   t1=-4*b11*(b12*b1) 

   t2=-4*b11*(-2*b11*b2) 

  t3=t1+t2 

  dx2s.b22=t3/u4 

  g1=dx1s.b0 

  g2=dx1s.b1 

  g3=dx1s.b2 

  g4=dx1s.b12 

  g5=dx1s.b11 

  g6=dx1s.b22 

  h1=dx2s.b0 

  h2=dx2s.b1 

  h3=dx2s.b2 

  h4=dx2s.b12 
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  h5=dx2s.b11 

  h6=dx2s.b22 

  G=matrix(c(g1,h1,g2,h2,g3,h3,g4,h4,g5,h5,g6,h6),nr=2) 

  vcov.statn=G%*%vcov.b%*%t(G) 

  }   

# end of function 

############################### Critical point qmvnorm #####################  

sigma2 = vcovf.statn(n, b,vcov.b )[] 

Aysc95=qmvnorm(1- alpha ,corr = cor(sigma2), tail="both" )$quantile 

  ######################### Asymptotic with 95% ########################### 

 AsySCI1 = -0.1716+c(-1,1)*Aysc95*sqrt(sigma2[1,1]) 

 AsySCI1  

 AsySCI2 = -0.1806+c(-1,1)*Aysc95*sqrt(sigma2[2,2]) 

 AsySCI2 

################################ Bonferroni ############################## 

   Bonxs1= -0.1716+c(-1,1)*qnorm(1-alpha/(2*k))*sqrt(sigma2[1,1]) 

   Bonxs1 
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  Bonxs2= -0.1806 +c(-1,1)*qnorm(1-alpha/(2*k))*sqrt(sigma2[2,2]) 

  Bonxs2 

   B = 2000 

 Boot.statnp = matrix(numeric(B),nrow=B,ncol=2,byrow = TRUE) 

xs1.boot = rep(NA,B) 

xs2.boot = rep(NA,B) 

sqrt2 = sqrt(2) 

x1= c(-1,1,-1,1,-sqrt2,sqrt2,0,0,0,0,0) 

x2 = c(-1,-1,1,1,0,0,-sqrt2,sqrt2,0,0,0) 

y=c(88.55,85.80,86.29,80.44,85.50,85.39,86.22,85.70,90.21,90.85,91.31) 

fit.quad = lm(y ~ x1 + x2 + x1x2 + x1sqr + x2sqr ) 

resid.quad =  fit.quad$resid 

x1sqr = x1^2 

x2sqr = x2^2 

x1x2 = x1*x2 

Beta.0 = 90.790 

Beta.1 = -1.095 
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Beta.2 = -1.045 

Beta.12 = -0.775 

Beta.11 = -2.781 

Beta.22 = -2.524 

y.hat = Beta.0 + Beta.1*x1 + Beta.2*x2 + Beta.12*x1x2 + Beta.11*x1sqr + 

Beta.22*x2sqr 

resid.quad =  fit.quad$resid 

############################ Bootstrap sample ############################# 

  for(b in 1:B) { 

resid.boot = sample(resid.quad, replace = TRUE) 

y.boot= y.hat + resid.boot 

fit.quad.boot= lm (y.boot ~ x1 + x2 + x1x2 + x1sqr + x2sqr) 

############## Bootstrap for Estimating the stationary point ##################### 

b.boot= fit.quad.boot$coeff 

Boot.vec = c( b.boot[2],  b.boot[3]) 

Boot.mat = 0.5*matrix (c(2* b.boot[5],  b.boot[4],  b.boot[4], 2* b.boot[6]), nc=2 ) 

 Boot.statnp[b,] = -0.5*solve(Boot.mat) %*% Boot.vec 
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  } 

## End.Boot 

xs1.boot = Boot.statnp[,1] 

xs2.boot = Boot.statnp[,2] 

 alpha.adj = alpha/ (2*k) 

points(-0.1716, -0.1806, col = "black", pch = 16) 

q.boot1= quantile(xs1.boot , c( alpha.adj , 1- alpha.adj ))  

q.boot2 = quantile(xs2.boot , c( alpha.adj , 1- alpha.adj ))  

segments(q.boot1[1], q.boot2[1], q.boot1[2], q.boot2[1], col = "purple", lwd=2, lty=6) 

segments(q.boot1[1], q.boot2[1], q.boot1[1], q.boot2[2], col = "purple",lwd=2, lty=6) 

segments(q.boot1[2], q.boot2[1], q.boot1[2], q.boot2[2], col = "purple", lwd=2, lty=6) 

segments(q.boot1[1], q.boot2[2], q.boot1[2], q.boot2[2], col = "purple", lwd=2, lty=6) 

segments(AsySCI1[1], AsySCI2[1], AsySCI1[2], AsySCI2[1], col = "green", lwd=3, lty=3) 

segments(AsySCI1[1], AsySCI2[1], AsySCI1[1], AsySCI2[2], col = "green", lwd=3, lty=3) 

segments(AsySCI1[2], AsySCI2[1], AsySCI1[2], AsySCI2[2], col = "green", lwd=3, lty=3) 

segments(AsySCI1[1], AsySCI2[2], AsySCI1[2], AsySCI2[2], col = "green", lwd=3, lty=3) 

segments(Bonxs1[1], Bonxs2[1], Bonxs1[2], Bonxs2[1], col = "red", lwd=2, lty=2) 
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segments(Bonxs1[1], Bonxs2[1], Bonxs1[1], Bonxs2[2], col = "red", lwd=2, lty=2) 

segments(Bonxs1[2], Bonxs2[1], Bonxs1[2], Bonxs2[2], col = "red", lwd=2, lty=2) 

segments(Bonxs1[1], Bonxs2[2], Bonxs1[2], Bonxs2[2], col = "red", lwd=2, lty=2) 

############## Probablity coverage of Bonferroni & plug-in & bootstrap  ########## 

  install.packages("mvtnorm") 

library(mvtnorm) 

install.packages("rsm") 

library(rsm) 

Nsim=10000  

k= 2                                                                                

statnp = matrix (rep(NA, 2*Nsim), nc=k)  

eigen.sign = rep(NA,Nsim) 

alpha=0.05 

n=12 

sqrt2 = sqrt(2) 

x1=c(-1,1,-1,1,-sqrt2,sqrt2,0,0,0,0,0,0) 

x2=c(-1,-1,1,1,0,0,-sqrt2,sqrt2,0,0,0,0) 
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x1sqr = x1^2 

x2sqr = x2^2 

x1x2 = x1*x2 

Beta.0  = 100 

Beta.1  =   0.4 

Beta.2  =   1.6 

Beta.12 =   1 

Beta.11 =  -1 

Beta.22 =  -2 

Sigma2 = 1 

b.kwn = c(Beta.1, Beta.2)  

B.kwn = matrix (c(2*Beta.11, Beta.12, Beta.12, 2*Beta.22), nc=2 ) 

  Xs.kwn  = -0.5*solve(B.kwn) %*%b.kwn 

  Xs.kwn 

eigen(B.kwn)$value 

############# Variance covariance matrix of estimated stationary point ########### 

vcovf.statn <- function (n,b, vcov.b) { 
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  b0=b[1] 

  b1=b[2] 

  b2=b[3] 

  b12=b[4] 

  b11=b[5] 

  b22=b[6] 

     bottom=4*b11*b22-(b12^2) 

  dx1s.b0=0 

  dx1s.b1=-2*b22/(bottom) 

  dx1s.b2=b12/(bottom) 

    u1=((b12^2)*b2) 

  u2=-4*b22*b1*b12 

  u3=4*b22*b2*b11 

  u4=(bottom^2) 

  u5=u1+u2+u3 

  dx1s.b12=u5/u4 

    dx1s.b11=-4*b22*(-2*b22*b1+b12*b2)/u4 
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    w1=(2*b1*(b12^2)) 

  w2=-4*b12*b2*b11 

  w3=w1+w2 

  dx1s.b22=w3/u4 

  dx2s.b0=0 

  dx2s.b1=b12/bottom 

  dx2s.b2=-2*b11/bottom 

    v1=4*b1*b11*b22 

  v2=((b12^2)*b1) 

  v3=-4*b12*b11*b2 

  v4=v1+v2+v3 

  dx2s.b12=v4/u4 

    q1=2*(b12^2)*b2 

  q2=-4*b12*b1*b22 

  q3=q1+q2 

  dx2s.b11=q3/u4 

    t1=-4*b11*(b12*b1) 
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   t2=-4*b11*(-2*b11*b2) 

  t3=t1+t2 

  dx2s.b22=t3/u4 

  g1=dx1s.b0 

  g2=dx1s.b1 

  g3=dx1s.b2 

  g4=dx1s.b12 

  g5=dx1s.b11 

  g6=dx1s.b22 

  h1=dx2s.b0 

  h2=dx2s.b1 

  h3=dx2s.b2 

  h4=dx2s.b12 

  h5=dx2s.b11 

  h6=dx2s.b22 

  G=matrix(c(g1,h1,g2,h2,g3,h3,g4,h4,g5,h5,g6,h6),nr=2) 

  vcov.statn=G%*%vcov.b%*%t(G) 
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  }  

# end of function 

############################### Simulation loop start ###################### 

plot(0.1,0.2,col= "white", xlim=c(-3,3), ylim=c(-3,3), xlab="x1.c", ylab="x2.c") 

count.Bon  = 0    # Counts the number of times the true stationary falls in the estimated 

SCI 

count.plug = 0 

for(i in 1:Nsim) 

  { 

  ################################# Create b and vcovb ##################### 

  y=Beta.0 + Beta.1*x1 + Beta.2*x2 + Beta.12*x1x2 + Beta.11*x1sqr + Beta.22*x2sqr + 

rnorm(n,0,sqrt(Sigma2)) 

    SecoOrd.fit = lm(y~x1+x2+x1x2+x1sqr + x2sqr) 

  b =  SecoOrd.fit$coeff 

  vcov.b = vcov(SecoOrd.fit) 

      b.vec = c(b[2], b[3]) 

  B.mat = matrix (c(2*b[5], b[4], b[4], 2*b[6]), nc=2 ) 
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  eigen.sign [i] = prod(sign(eigen(B.mat)$value)) 

  statnp[i,]  = -0.5*solve(B.mat) %*%b.vec 

  vcov.statn = vcovf.statn(n,b,vcov.b)    

    var.xs1=vcov.statn[1,1] 

  var.xs2=vcov.statn[2,2] 

   Critical.Bon = qnorm(1-alpha/(2*k))   

  Bon.xs1 = statnp[i,1] + c(-1,1)*Critical.Bon*sqrt(var.xs1) 

  Bon.xs2 = statnp[i,2] + c(-1,1)*Critical.Bon*sqrt(var.xs2) 

     if (  ((Xs.kwn[1] >= Bon.xs1[1]) & (Xs.kwn[1] <= Bon.xs1[2])) &  

         ((Xs.kwn[2] >= Bon.xs2[1]) & (Xs.kwn[2] <= Bon.xs2[2])) ) 

       { 

        count.Bon = count.Bon + 1 

           } 

  Critical.Equi = qmvnorm(1- alpha, mean = statnp[i,], corr =  cor(vcov.statn), tail="both" 

)$quantile   

  Asy.xs1 = statnp[i,1] + c(-1,1)*Critical.Equi*sqrt(var.xs1) 

  Asy.xs2 = statnp[i,2] + c(-1,1)*Critical.Equi*sqrt(var.xs2) 
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    if (  ((Xs.kwn[1] >= Asy.xs1[1]) & (Xs.kwn[1]<=Asy.xs1[2])) &  

        ((Xs.kwn[2] >= Asy.xs2[1]) & (Xs.kwn[2]<=Asy.xs2[2])) ) 

      { 

    count.plug = count.plug + 1 

      } 

      points(statnp [i,][1], statnp [i,][2], col="gray70", pch = ".", cex=2) 

       }  

# end of simulation loop 

points(Xs.kwn[1],Xs.kwn[2], pch=16, col="red") 

table(eigen.sign) 

coverage.Bon = count.Bon /Nsim 

coverage.Bon 

coverage.plug = count.plug /Nsim 

coverage.plug 

points(statnp [,1][eigen.sign==-1],statnp [,2][eigen.sign==-1], pch = ".", cex=3, col= 

"black") 

##################### A bivariate kernel density estimates  ################### 
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install.packages("MASS") 

library(MASS) 

plot(statnp[,1], statnp[,2], col="gray70", xlim=c(-2,2),ylim=c(-2,2), xlab="xs1", 

ylab="xs2", pch=".",cex=2) 

par(new=TRUE) 

f1 <- kde2d( n = 50, lims = c(-2,2,-2,2),h = rep(0.9,1)) 

contour(f1, levels  =  c(0.001,0.002, 0.02,0.01,0.02,0.07, 0.3, 0.5, 0.6 , 0.8, 0.1 ,0.4) 

,col="green" ,lwd=1) 
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APPENDIX C 

 

Code of metaheuristic 

install.packages("rsm") 

library(rsm) 

c = 0 

c = as.numeric(c) 

X1= matrix(0,1,6) 

for(k in 1:23) 

  { 

for(j in (1+k):24) 

  { 

for(i in 1:6) 

  { 

X1[1,i]=M1[k,i] 

M1[k,i]=M1[j,i] 

M1[j,i]=X1[1,i] 

  } 
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c=c+1 

filename=paste("libALL", c ,".csv") 

write.tabletabletable(M1, filename , append = TRUE,sep = ",", 

row.names=TRUE,col.names=TRUE) 

  } 

  } 

for(i in 1:276) 

  { 

filename=paste("libALL", i ,".csv") 

#write.table(M1, filename , append = TRUE,sep = ",", 

row.names=TRUE,col.names=TRUE) 

dat1=read.csv(filename,header=TRUE) 

beta1=matrix(0,10,14) 

for (k in 19:24){ 

x3=dat1[1:k,] 

fit=rsm(x3[,5]~SO(x3[,2],x3[,3],x3[,4])) 

beta1[,k-10]=t(t(fit$coeff)) 
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  } 

beta1=beta1[,-1:-8] 

p1=0 

p1=as.list(p1) 

for (d in 1:6){ 

p1[[d]]=sqrt(sum((beta1[,d]-beta1[,6])^2))/(sqrt(sum((0-beta1[,6])^2))) 

  } 

p21=t(t(p1)) 

filename1=paste("p", i ,".csv") 

write.csv(p21,filename1) 

   } 
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