
South Dakota State University South Dakota State University 

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional 

Repository and Information Exchange Repository and Information Exchange 

Electronic Theses and Dissertations 

2014 

Availability and Preservation of Scholarly Digital Resources Availability and Preservation of Scholarly Digital Resources 

Jason Hennessey 
South Dakota State University 

Follow this and additional works at: https://openprairie.sdstate.edu/etd 

Recommended Citation Recommended Citation 
Hennessey, Jason, "Availability and Preservation of Scholarly Digital Resources" (2014). Electronic Theses 
and Dissertations. 2052. 
https://openprairie.sdstate.edu/etd/2052 

This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public 
Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research 
Access Institutional Repository and Information Exchange. For more information, please contact 
michael.biondo@sdstate.edu. 

https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F2052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd/2052?utm_source=openprairie.sdstate.edu%2Fetd%2F2052&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu


 

 

AVAILABILITY AND PRESERVATION OF SCHOLARLY DIGITAL RESOURCES 

 

 

 

 

BY  

JASON HENNESSEY 

 

 

 

 

 

 

 

 

 

A dissertation submitted in partial fulfillment of the requirements for the 

Doctor of Philosophy 

Major in Computational Science and Statistics 

South Dakota State University 

2014





iii 

 

ACKNOWLEDGEMENTS 

We do not exist in a vacuum; there are many, some named, some unnamed and 

some unknown, to whom I owe a great debt of gratitude for helping me during this stage 

of life. I would like to thank: 

Most of all, my God for saving me from death and giving me life; with him all 

things are possible. 

Especially my advisor, mentor and committee chair, Dr. Xijin Ge, for his wisdom, 

patience and guidance as well as the other members of my committee for the same: Drs. 

Michael Hildreth, George Hamer, Matthew Biesecker and Donald Auger. 

Dr. Steve Strassmann for his idea on using VMs to help the scientific community. 

The wonderful Math & Statistics department faculty who shared their time and 

wisdom at various points along the way: Drs. Kurt Cogswell (department chair), Thomas 

Brandenburger, Gemechis Djira and Christopher Saunders. 

The many faculty at South Dakota State in other departments who spent time 

beyond that required to convey knowledge, wisdom and friendship, among whom were: 

Drs. Volker Brözel, Buyung Hadi and CY Wang. 

My fellow students, who offered their camaraderie and help in various ways: 

James Ban, Adam Schmitz, Brian Vachta and Matthew Whipple. 

Last and far from least, my mother, who taught me about sacrificial love despite 

enduring my teenage years. 



iv 

 

TABLE OF CONTENTS 

Table of Contents .................................................................................... iv 

List of figures ........................................................................................... v 

List of tables ........................................................................................... vi 

Abbreviations ......................................................................................... vii 

Abstract ................................................................................................ viii 

Chapter 1 - Introduction and Overview .................................................... 1 

Chapter 2 – Link Decay ........................................................................... 8 

Chapter 3 - Logic Capsule ...................................................................... 37 

Appendix ............................................................................................... 68 

Bibliography (Comprehensive) ............................................................ 138 

Glossary ............................................................................................... 143 

 

 

  



v 

 

LIST OF FIGURES 

Figure 2.1 - Growth of scholarly online resources .............................................. 11 

Figure 2.2 - Flowchart of the study procedures ................................................... 14 

Figure 2.3 - Accessibility of URLs highly correlated with publishing year ......... 16 

Figure 2.4 – Predictor importance for URL availability. ..................................... 21 

Figure 2.5 - URL presence in the archives .......................................................... 22 

Figure 2.6 - Archival engine coverage of the URL list at different times............. 28 

Figure 3.1 – Properties of a collision resistant cryptographic hash function. ....... 47 

Figure 3.2 - Open Source use in PubMed. .......................................................... 52 

Figure 3.3 - Overview of Logic Capsule workflow. ............................................ 55 

Figure 3.4 - The Logic Capsule home page ........................................................ 57 

Figure 3.5 - The submission form for a new VM. ............................................... 59 

Figure 3.6 - Data-centric architecture of Logic Capsule. ..................................... 60 

Figure 3.7 – Execution-centric architecture for Logic Capsule. ........................... 62 

  

file:///J:/School/SDSU/dissertation/dissertation-submitted-2.docx%23_Toc395285366
file:///J:/School/SDSU/dissertation/dissertation-submitted-2.docx%23_Toc395285367
file:///J:/School/SDSU/dissertation/dissertation-submitted-2.docx%23_Toc395285368
file:///J:/School/SDSU/dissertation/dissertation-submitted-2.docx%23_Toc395285369
file:///J:/School/SDSU/dissertation/dissertation-submitted-2.docx%23_Toc395285370
file:///J:/School/SDSU/dissertation/dissertation-submitted-2.docx%23_Toc395285371
file:///J:/School/SDSU/dissertation/dissertation-submitted-2.docx%23_Toc395285372


vi 

 

LIST OF TABLES 

Table 2.1 - Link decay has been studied for several years in specific areas ......... 13 

Table 2.2 - Comparison of certain statistics based on a URL’s subject ................ 17 

Table 2.3 - Results of fitting a survival regression to the unique URLs ............... 19 

Table 3.1 – Selected cyber locker services. ......................................................... 61 

 



vii 

 

ABBREVIATIONS 

DOI Digital Object Identifier 

IA Internet Archive (http://archive.org) 

IP Intellectual Property 

PURL Persistent Uniform Resource Locator 

URL Uniform Resource Locator 

VM Virtual Machine 

VMDK Virtual Machine DisK 

WC WebCite (http://www.webcitation.org/) 

WOS Thomson Reuters' Web of Science (http://webofknowledge.com/WOS) 

WWW  World Wide Web 

  

http://archive.org/
http://www.webcitation.org/
http://webofknowledge.com/WOS


viii 

 

 

ABSTRACT 

AVAILABILITY AND PRESERVATION OF SCHOLARLY DIGITAL RESOURCES 

JASON HENNESSEY 

2014 

The dynamic, decentralized world-wide-web has become an essential part of 

scientific research and communication, representing a relatively new medium for the 

conveyance of scientific thought and discovery. Researchers create thousands of web 

sites every year to share software, data and services. Unlike books and journals, however, 

the preservation systems are not yet mature. This carries implications that go to the core 

of science: the ability to examine another's sources to understand and reproduce their 

work. These valuable resources have been documented as disappearing over time in 

several subject areas. This dissertation examines the problem by performing a cross-

disciplinary investigation, testing the effectiveness of existing remedies and introducing 

new ones.  

As part of the investigation, 14,489 unique web pages found in the abstracts within 

Thomson Reuters’ Web of Science citation index were accessed. The median lifespan of 

these web pages was found to be 9.3 years with 62% of them being archived. Survival 

analysis and logistic regression identified significant predictors of URL lifespan and 

included the year a URL was published, the number of times it was cited, its depth as 

well as its domain. Statistical analysis revealed biases in current static web-page 

solutions. 



ix 

 

A prototype has been created to submit static web pages to the archives. It was quite 

successful, increasing coverage of the scientific webpages in the Internet Archive and 

WebCite by 22% and 255%, respectively. 

Another prototype, Logic Capsule, was created to facilitate the combination of both 

data and logic into a preserved and searchable archive of Virtual Machines. Were this to 

be widely adopted, it could represent a dramatic step forward in preserving these tools in 

their original habitat, reproducing the statistical analyses, interactive web applications 

and other computer-based work of others. It would also permit scientists to make use of 

complex software stacks without expertise in the underlying technologies. 

Disappearing digital resources continue to be a problem, though existing remedies for 

static web pages are addressing these problems well. Using an automated submission tool 

can markedly improve the archival engines' coverage of scholarly URLs. Logic Capsule 

represents an improved solution for sites with server-based logic and covers a gap in the 

currently deployed archival methods.



1 

CHAPTER 1  - INTRODUCTION AND 

OVERVIEW 

Reproducing the work of others is a time-honored tradition that forms a basic 

pillar of science. So also is the passing of knowledge and the sources relied upon to gain 

that knowledge, allowing many generations to see further by "standing on the shoulders 

of giants". For the previous few millennia, this recorded knowledge has been passed and 

widely disseminated using written media such as books and journals, and society has 

generally learned how to archive and make available this knowledge. Over the past two 

decades, a new medium for the conveyance of information has become popular, the 

World Wide Web (WWW), a subset of the Internet's functionality. It is so popular in fact 

that 2 of the 5 most cited papers from the previous decade
1
 included Internet resources. 

This new medium has vastly increased the speed, efficiency and efficacy of the 

propagation of knowledge. But being relatively new, there are immaturities that raise 

certain questions. What is the prevalence in modern science of producing WWW-based 

resources? Do they disappear? What are the current archiving mechanisms? Are there 

gaps in their coverage? If so, what are some solutions? This dissertation attempts to 

respond to these questions. 

In order to produce a comprehensive cross-disciplinary study of scientific online 

resources and their current preservation, in Chapter 2 an analysis of the problem is 

undertaken where URLs were extracted from the corpus of a very large bibliographic 

database, Thomson Reuters' Web of Science (WOS). It is in this document that the 

                                                
1 "MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0" and "The 

Protein Data Bank". Citation count based on Web of Science 



2 

current prevalence of the disappearance problem is addressed, as well as an analysis of its 

pattern and an assessment of the effectiveness of the current solutions. An enhancement 

is then proposed to compliment the current archival mechanisms. 

In 0, a gap in the current solutions, the packaging and archiving of scholarly 

resources with data and complex logic, is addressed with a novel proposal. This proposal 

also addresses needs that have been called for by many in the scientific community, 

reproducible research. Finally, in Error! Reference source not found., the findings are 

summarized , conclusions are put forward and future work is discussed. 

Importance of online resources 

How important are online resources? Quantitative evaluation can be viewed from 

a couple of perspectives. On the one hand, one can look at the steadily rising number and 

proportion of peer-reviewed, scholarly publications containing an Internet-based resource 

(see [2] and Figure 2.1). On the other, one can look at the citations received by the 

publishing papers. Among the papers publishing a URL that were surveyed in Chapter 2, 

the average number of citations was 29, with the median being 6. The maximum number 

of citations for a single paper was 9,076
2
. 

Qualitatively speaking, Dimitrova and Bugeja note that "The goal of rhetoric is to 

persuade. The goal of the footnote is to prove."[3], indicating that the veracity of a work 

of scholarship can be examined by viewing its citations. After discussing how Bacon and 

Locke's works provoked Enlightenment thinkers to reconsider the source, they concluded 

that changing or disappearing Internet resources attack the heart of scholarship and 

                                                
2"The Protein Data Bank". Nucleic Acids Research, 2000. 



3 

research by destabilizing our fixed language and original source material. Because 

websites are in some cases used as a modern equivalent to the classic footnote, they can 

embody the basis upon which further scholarship and ideas are based. 

Disappearing research 

The problem of disappearing online resources has been documented in many 

specific subject areas, with Table 2.1 containing a large list of these subject-specific 

studies. In terms of wide, cross-disciplinary analyses, the closest thus far are those of the 

biological and medical MEDLINE and PubMed databases by Ducut [2] and Wren [4, 5], 

in addition to Yang’s study of the Social Sciences within the Chinese Social Sciences 

Citation Index[6]. 

Comparing the Internet to H.G. Wells' "World Brain" in the conclusion to his 

1999 study, Koehler commented that if the Internet were the world brain, it could be seen 

to have a short memory and change its mind a lot[7]. In his study and witty commentary, 

Koehler drew attention to the fact that not only do Internet-based resources disappear, but 

they also change. This phenomenon is quite eloquently demonstrated by a study showing 

that at the time of publication, 12% of Internet-based citations had already ceased to 

function[8]. 

Many reasons exist why online resources could disappear. Some of it may be 

scholars leaving institutions (especially likely with graduate students), losing their 

account. Similarly, a project's funding could be lost. A site with widely-used scientific 

resources could be shut down in the process of an effort to consolidate servers. Though 

not as likely as in the early days of the WWW, some people could be serving websites 



4 

from their desktop workstation which they then shut down when they go home on the 

weekend. Are missing resources important? 

Evaluating the importance and impact of missing resources is an ongoing area of 

research. According to Wren, link decay has only been documented as a general trend; 

whether "important" URLs are affected more than others is unknown[4]. Quantitatively 

speaking, in response to a survey sent to corresponding authors of missing online 

resources in the field of Dermatology, the majority (55%) indicated that the missing 

information was important to their publication[9]. Examining the data in Chapter 2, out 

of the ten most cited papers containing a URL in the abstract, three link to websites that 

are no longer available
3
. 

Many scientists find it difficult to reproduce the work of others, especially the 

complex statistical analyses that are common in modern research[10]. This led to the 

growing Reproducible Research movement, where scientists are encouraged to package 

their findings in a way that allows another to readily replicate their work. Recognizing 

the widespread impact of the problem, a 2011 issue of the cross-disciplinary journal 

Science published a special section calling attention to the problem[11]. In [12], Wicherts 

relates reproducibility to aviation: a co-pilot can check every action of the captain and 

there is a black box that records each action. He also demonstrated that the unwillingness 

of authors to share data in his field (psychology) is associated with weaker statistical 

results as well as more errors[13]. Several helpful suggestions have come out of this 

widespread push for reproducible research, some of which are discussed in 0. 

                                                
3 These are http://www.stats.ox.ac.uk/~pritch/home.html (4349 citations; published in 2000), 

http://www.lirmm.fr/w3ifa/MAAS/ (3680 citations; 2003) and http://www.cbs.dtu.dk/services/SignaIP/ 

(2703 citations; 2004) 

http://www.stats.ox.ac.uk/~pritch/home.html
http://www.lirmm.fr/w3ifa/MAAS/
http://www.cbs.dtu.dk/services/SignaIP/


5 

Existing methods of preservation 

There are several ways that an online resource can disappear. Correspondingly, 

there are several methods to address it which are not exclusive. For websites that are still 

on the Internet but have simply changed locations (for example, http://www.sdstate.edu 

moving to http://www2.sdstate.edu), redirection services exist. The simplest form of this 

is when one has access to the former web server, where a URL redirection can be used to 

seamlessly send the browser to the new location using a variety of methods. Some of 

these methods consist of using the HTTP protocol itself, specifically the 301 and 302 

statuses as well as the "Location" header, as well as using browser-implemented methods 

such as the "Refresh" metatag or JavaScript. Dedicated redirecting services, such as the 

Digital Object Identifier (DOI) System [14] and Persistent Uniform Resource Locator 

(PURL) [15], provide a mechanism where one can pre-register a fixed URL that then 

redirects the user to the destination site using the same methods outlined above. These 

methods, combined with other mechanisms that can help locate resources (such as using a 

web search engine) could help address 30-60% of the cases of link rot [9, 16]. 

Other techniques exist to save static web pages which might help roughly 40% of 

missing resources[4]. Static pages are those which do not depend heavily on server logic, 

which would easily be represented by a printout. Examples include methods pages, 

tutorials and data sets. While some researchers preserve these resources using manual 

methods, such as saving them to hard drives or printing them out, two tools exist to solve 

this problem in a centralized fashion. The first one, the Internet Archive (IA) [17], 

employs an algorithm that crawls the Internet at large, storing snapshots of pages it 

encounters along the way and has been operating since the mid-1990s. The second, 

http://www.sdstate.edu/
http://www2.sdstate.edu/


6 

WebCite (WC) [18], stores pages upon request and targets the scientific community and 

seeks to partner with publishers. The study in Chapter 2 showed that these two tools 

rescued 49% of published URLs from WOS that were missing. 

Several recommendations for addressing reproducible research concerns have 

been made. The first (and likely easiest) is to simply include the code used for 

computation as part of a document's supplement[19], though even with this there may 

exist complex configurations which require expertise. In [20], Peng outlines a spectrum 

of reproducibility. At the low end is the classical publication, with its textual description, 

followed by the progression of: including the source code, the code & data, a ready-to-go 

executable form of the code and data and finally, what Peng refers to as the "Gold 

standard", complete replication of the experiment. 

Methods proposed in this dissertation 

Two new methods are proposed and prototyped in this dissertation for enhancing 

the availability of online scholarly research. In Chapter 2, a new mechanism is proposed 

and tested that augments the current static-page archival mechanisms (IA and WC) by 

proactively submitting published URLs which have not been archived. This method 

showed great success, increasing IA's coverage of the URL list by 22% and WebCite's by 

255%!  



7 

Bibliography 

2. Ducut E, Liu F, Fontelo P: An update on Uniform Resource Locator (URL) 

decay in MEDLINE abstracts and measures for its mitigation. BMC Med 

Inform Decis Mak 2008, 8:-. 

3. Dimitrova DV, Bugeja M: Consider the source: Predictors of online citation 

permanence in communication journals. Portal-Libraries and the Academy 

2006, 6:269-283. 

4. Wren JD: URL decay in MEDLINE - a 4-year follow-up study. Bioinformatics 

2008, 24:1381-1385. 

5. Wren JD: 404 not found: the stability and persistence of URLs published in 

MEDLINE. Bioinformatics 2004, 20:668-U208. 

6. Yang SL, Qiu JP, Xiong ZY: An empirical study on the utilization of web 

academic resources in humanities and social sciences based on web citations. 
Scientometrics 2010, 84:1-19. 

7. Koehler W: An analysis of Web page and Web site constancy and 

permanence. J Am Soc Inf Sci 1999, 50:162-180. 

8. Aronsky D, Madani S, Carnevale RJ, Duda S, Feyder MT: The prevalence and 

inaccessibility of Internet references in the biomedical literature at the time 

of publication. J Am Med Inform Assn 2007, 14:232-234. 

9. Wren JD, Johnson KR, Crockett DM, Heilig LF, Schilling LM, Dellavalle RP: 

Uniform resource locator decay in dermatology journals - Author attitudes 

and preservation practices. Arch Dermatol 2006, 142:1147-1152. 

10. Ioannidis JPA, Allison DB, Ball CA, Coulibaly I, Cui XQ, Culhane AC, Falchi 

M, Furlanello C, Game L, Jurman G, et al: Repeatability of published 

microarray gene expression analyses. Nature Genetics 2009, 41:149-155. 

11. Jasny BR, Chin G, Chong L, Vignieri S: Again, and Again, and Again …. 

Science 2011, 334:1225. 

12. Wicherts JM: Psychology must learn a lesson from fraud case. Nature 2011, 

480:7-7. 

13. Wicherts JM, Bakker M, Molenaar D: Willingness to Share Research Data Is 

Related to the Strength of the Evidence and the Quality of Reporting of 

Statistical Results. Plos One 2011, 6:e26828. 

14. The DOI System [http://www.doi.org/] 

15. PURL Home Page [http://purl.org] 

16. Casserly MF, Bird JE: Web citation availability: Analysis and implications for 

scholarship. College & Research Libraries 2003, 64:300-317. 

17. The Internet Archive [http://www.archive.org/web/web.php] 

18. Eysenbach G, Trudell M: Going, going, still there: Using the WebCite service 

to permanently archive cited web pages. Journal of Medical Internet Research 

2005, 7:2-6. 

19. Barnes N: Publish your computer code: it is good enough. Nature 2010, 

467:753-753. 

20. Peng RD: Reproducible Research in Computational Science. Science 2011, 

334:1226-1227. 

http://www.doi.org/
http://purl.org/
http://www.archive.org/web/web.php


8 

CHAPTER 2 – LINK DECAY 

 
A cross disciplinary study of 
link decay and the 
effectiveness of mitigation 
techniques4 

 

Abstract 

Background 

The dynamic, decentralized world-wide-web has become an essential part of 

scientific research and communication. Researchers create thousands of web sites every 

year to share software, data and services. These valuable resources tend to disappear over 

time. The problem has been documented in many subject areas. Our goal is to conduct a 

cross-disciplinary investigation of the problem and test the effectiveness of existing 

remedies. 

Results 

We accessed 14,489 unique web pages found in the abstracts within Thomson 

Reuters’ Web of Science citation index that were published between 1996 and 2010 and 

                                                
4 This chapter is based on a paper by Jason Hennessey & Xijin Ge published in the conference 

proceedings of the 2013 Mid-South Computational Bioinformatics Society, a peer-reviewed supplement 

published through BMC Bioinformatics. It may be accessed at: 

http://www.biomedcentral.com/1471-2105/14/S14/S5/ 

http://www.biomedcentral.com/1471-2105/14/S14/S5/


9 

found that the median lifespan of these web pages was 9.3 years with 62% of them being 

archived. Survival analysis and logistic regression were used to find significant predictors 

of Universal Resource Locator (URL) lifespan. The availability of a web page is most 

dependent on the time it is published and the top-level domain names. Similar statistical 

analysis revealed biases in current solutions: the Internet Archive favors web pages with 

fewer layers in the URL while WebCite is significantly influenced by the source of 

publication. We also created a prototype for a process to submit web pages to the 

archives and increased coverage of our list of scientific webpages in the Internet Archive 

and WebCite by 22% and 255%, respectively. 

Conclusion 

Our results show that link decay continues to be a problem across different 

disciplines and that current solutions for static web pages are helping and can be 

improved.  



10 

Background 

Scholarly Internet resources play an increasingly important role in modern 

research. We can see this by the increasing number of URLs published in a paper’s title 

or abstract [2](also see Figure 2.1). As the Internet is a relatively new medium for 

communicating scientific thought, the community is still figuring out how best to use it in 

a way that preserves contributions for years to come. One problem is that continued 

availability of these online resources is at the mercy of the organizations or individuals 

that host them. Many disappear after publication (and some even disappear before[8]), 

leading to a well-documented phenomenon referred to as link rot or link decay. 

The problem has been documented in several subject areas, with Table 2.1 

containing a large list of these subject-specific studies. The URLs accounting for these 

losses come from both peer-reviewed titles/abstracts as well as direct references from 

individual publications. In terms of wide, cross-disciplinary analyses, the closest thus far 

are those of the biological and medical MEDLINE and PubMed databases by Ducut [2] 

and Wren [4, 5], in addition to Yang’s study of the Social Sciences within the Chinese 

Social Sciences Citation Index[6]. 



11 

 

Figure 2.1 - Growth of scholarly online resources. Not only are the number of URL-

containing articles (those with “http” in the title or abstract) published per year increasing 

(dotted line), but also the percentage of published items containing URLs (solid line). The 

annual increase in articles according to a linear fit was 174 with R2 0.97. The linear trend 

for the percentage was an increase of 0.010% per year with R2 0.98. 

Source: Thomas Reuter’s Web of Science 

Some solutions have been proposed which attack the problem from different 

angles. The Internet Archive (IA) [17] and WebCite (WC) [18] address the issue by 

archiving web pages, though their mechanisms for acquiring those pages differ. The IA, 

beginning from a partnership with the Alexa search engine, employs an algorithm that 

crawls the Internet at large, storing snapshots of pages it encounters along the way. In 

contrast, WebCite archives only those pages which are submitted to it, and it is geared 

toward the scientific community. These two methods, however, can only capture 

information that is visible from the client. Logic and data housed on the server are not 

frequently available. 

Other tools, like the Digital Object Identifier (DOI) System [14] and Persistent 

Uniform Resource Locator (PURL) [15], provide solutions for when a web resource is 

moved to a different URL but is still available. The DOI System was created by an 

0

500

1000

1500

2000

2500

3000

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0.14%

0.16%

0.18%

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

#
 o

f 
p

u
b

li
s

h
e

d
 i
te

m
s

 w
it

h
 

U
R

L
 

%
 p

u
b

li
s

h
e

d
 i
te

m
s

 w
it

h
 U

R
L

 
 

Year Published 

Percentage of published items containing a URL

Published items containing a URL



12 

international consortium of organizations wishing to assign unique identifiers to items 

such as movies, television shows, books, journal articles, web sites and data sets. It 

encompasses several thousand "Naming Authorities" organized under a few "Registration 

Agencies" that have a lot of flexibility in their business models[21]. Perhaps 30-60% of 

link rot could be solved using DOIs and PURLs[9, 16]. However they are not without 

pitfalls. One is that a researcher or company could stop caring about a particular tool for 

various reasons and thus not be interested in updating its permanent identifier. Another is 

that the one wanting the permanent URL (the publishing author) is frequently not the 

same as the person administering the site itself over the long term, thus we have an 

imbalance of desire vs. responsibilities between the two parties. A third in the case of the 

DOI System is that there may be a cost in terms of money and time associated with 

registering their organization that could be prohibitive to authors that don't already have 

access to a Naming Authority[2]. One example of a DOI System business model would 

be that of the California Digital Library's EZID service, which charges a flat rate 

(currently $2,500 for a research institution) for up to 1 million DOIs per year[22]. 

 In this study, we ask two questions: what are the problem’s characteristics in 

scientific literature as a whole and how is it being addressed? To assess progress in 

combating the problem, we evaluate the effectiveness of the two most prevalent 

preservation engines: and examine the effectiveness of one prototyped solution. If a URL 

is published in the abstract, it is assumed that the URL plays a prominent role within that 

paper, similar to the rationale proposed by Wren [5].  



13 

Table 2.1 - Link decay has been studied for several years in specific areas. 

* denotes studies most similar to the current. 

Field Links Source/Type 
Year(s) of 

URLs 
N Citation(s) 

Biology & 

Medicine 

Science curriculum web links 2000 515 [23] 

Full text of 3 dermatology journals 1999-2004 1113 [9] 

Sample of bibliographies being 

published on PubMed 
2006 840 [8] 

References made in the Annals of 

Emergency Medicine 

2000, 2003, 

2005 
586 [24] 

References in 5 biomedical informatics 

journals. 
1999-2004 1049 [25] 

MEDLINE titles & abstracts 1994-2006 10208 [2]* 

Internet citations in 5 health care 

management journals from 2002-2004 
2009-2010 2011 [26] 

MEDLINE abstracts 1995-2007 7462 [4]* 

Communications 
Citations appearing in research articles 

in 6 leading communications journals  
2000-2003 1600 [3] 

Ecology 
URLs appearing in the full text of 4 

Ecological Society of America journals 
1997-2005 2100 [27] 

Law 

Samples from a collection of born-

digital law- and policy-related reports 

and documents 

2007-2010 2372 [28] 

Library / 

Information 

Science 

Citations appearing in 3 leading 

Information Science journals 
1997-2003 2516 [29] 

Sample of citations appearing in library 

and information science journals 
1999-2000 500 [30] 

Social Sciences 

URLs appearing in the full text of 2 

well-respected historical journals 
1999-2006 510 [31] 

Citations from articles in the Chinese 

Social Sciences Index 
1998-2007 44973 [6]* 

Various Random Collection of web URLs 1996 371 [7, 32] 

Various Citations in 3 highly circulated journals  2002-2003 672 [33] 

Various 
Supplementary information published 

in 6 top-cited journals 
2000, 2003 585 [34] 

Various Citations from conference articles 1995-2003 1068 [35] 

Various Collections    [36-39] 

 



14 

 

 

Figure 2.2 - Flowchart of the study procedures. Beneath each step is the method 

primarily used to execute it. Those ending in .py are Python programs whereas those ending 

in .R use the R language. 

Results 

Our goals are to provide some metrics that are useful in understanding the 

problem of link decay in a cross-disciplinary fashion and to examine the effectiveness of 

the existing archival methods while proposing some incremental improvements. To 

accomplish these tasks, we downloaded 18,231 Web of Science (WOS) abstracts 

containing “http” in the title or abstract from the years under study (1996-2010), out of 

which 17,110 URLs (14,489 unique) were extracted and used. We developed Python 

scripts to access these URLs over a 30-day period. For the period studied, 69% of the 

Analyze 

common_Raw.R & stats.R 

Submit Missing URLs to Archives 

submit_urls.py 

Verify URLs  Archived 

check_urls_archived.py 

Verify URLs Online 

check_urls_archived.py 

Extract URLs 

extract_urls.py 

Download Abstracts from WOS 

Manual 



15 

published URLs (67% of the unique) were available on the live Internet, the Internet 

Archive’s Wayback Machine had archived 62% (59% unique) of the total and WebCite 

had 21% (16% unique). Overall, 65% of all URLs (62% unique) were available from one 

of the two surveyed archival engines. Figure 2.3 contains a breakdown by year for 

availability on the live web as well as through the combined archives, and illustrates each 

archival engine’s coverage. The median lifetime for published URLs was found to be 9.3 

years (95% CI [9.3,10.0]), with the median lifetime amongst unique URLs also being 9.3 

years (95% CI [9.3,9.3]). Subject-specific lifetimes may be found in Table 2.2. Using a 

simple linear model, the chances that a URL published in a particular year is still 

available goes down by 3.7% for each year added to its age with an R
2
 of 0.96. Its 

chances of being archived go up after an initial period of flux (see Figure 2.3). 

Submitting our list of unarchived but living URLs to the archival engines showed 

dramatic promise, increasing the Internet Archive’s coverage of the dataset by 2080 

URLs, an increase of 22%, and WebCite’s by 6348, an increase of 255%. 



16 

 

Figure 2.3 - Accessibility of URLs highly correlated with publishing year. The 

probability of being available (solid line) declines by 3.7% every year based on a linear 

model with R
2
 0.96. The surveyed archival engines have about a 70-80% archival rate 

(dotted line) following an initial ramp time. 

How common are published, scholarly online resources? According to WOS, both 

the percentage of published items which contain a URL as well as their absolute number 

has increased steadily from 1996 until 2010 as seen in Figure 2.1. A simple linear fits 

show the URL proportion's annual increase to be a conservative 0.010 % per year with an 

R
2
 of 0.98, while the absolute number increases by 174 papers with an R

2
 of 0.97. 

A total of 189 (167 unique) DOI URLs were identified, consisting of 1% of the 

total, while 9 PURLs (8 unique) were identified. Due to cost[26], it is likely that DOIs 

will remain useful for tracking commercially published content though not the scholarly 

online items independent of those publishers. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2
0

1
0

2
0

0
9

2
0

0
8

2
0

0
7

2
0

0
6

2
0

0
5

2
0

0
4

2
0

0
3

2
0

0
2

2
0

0
1

2
0

0
0

1
9

9
9

1
9

9
8

1
9

9
7

1
9

9
6

A
v
a

il
a

b
il

it
y
 

Published Year of URL 

Web

Archived



17 

Table 2.2 - Comparison of certain statistics based on a URL’s subject. Subjects are 

assigned to journals and not specific papers. Note that in these models, a given URL could 

contribute to multiple subjects due to appearing in multiple journals which could also have 

multiple subject areas. Where possible, specific subjects were generalized (for example, 

“Computer Science, Interdisciplinary Applications” became “Computer Science”). Median 

survival estimated using R’s survfit(). “NA” indicates that an upper 95% limit was unable 

to be computed. 

Subject Total # Alive (%) 

Median Survival  

with 95% CI in 

years 

Biochemistry & Molecular 

Biology 
4585 3231 (70%) 10.8 (9.0,11.0) 

Biotechnology & Applied 

Microbiology 
2225 1586 (71%) 9.0 (8.8,9.0) 

Computer Science 2073 1225 (59%) 8.3 (7.0,9.0) 

Biochemical Research 

Methods 
2023 1463 (72%) 8.5 (8.5,8.6) 

Mathematical & 

Computational Biology 
1661 1200 (72%) 7.5 (7.5,9.0) 

Genetics & Heredity 1302 914 (70%) 8.8 (8.8,10.0) 

Physics 809 458 (57%) 8.0 (7.6,9.0) 

Engineering 703 419 (60%) 7.2 (7.1,10.5) 

Statistics & Probability 699 440 (63%) 7.6 (7.0,9.0) 

Chemistry 591 397 (67%) 11.4 (9.0,11.9) 

Biophysics 432 270 (63%) 10.1 (10.1,10.1) 

Astronomy & Astrophysics 416 268 (64%) 11.3 (11.1,NA) 

Mathematics 406 254 (63%) 10.7 (4.5,NA) 

Zoology 357 319 (89%) 11.2 (9.6,NA) 

Cell Biology 353 242 (69%) 8.0 (8.0,10.8) 

Biology 346 242 (70%) 9.8 (7.3,NA) 

Oncology 342 239 (70%) 6.9 (6.9,7.0) 

Plant Sciences 315 235 (75%) 9.8 (8.2,NA) 

Environmental Sciences 304 190 (63%) 8.0 (7.6,9.5) 

Medicine 293 219 (75%) 13.3 (10.0,NA) 

 

  



18 

                                  

  (     )      
 

      
    
 

 

Equation 2.1 - Calculations for approximating the median ( ) survival time as well 

as the survival function S() using a logistic parametric model. The survival function is the 

probability of an individual surviving beyond time t [40].    is the intercept, with         

being predictors. s is a scale parameter, in this case found to be 6.79. 

URL survival 

In order to shed some light on the underlying phenomena of link rot, a survival 

regression model was fitted with data from the unique URLs. This model, shown in  

Table 2.3, identified 17 top-level domains, the number of times a URL has been 

published, a URL’s directory structure depth (hereafter referred to as "depth", using the 

same definition as [7]), the number of times the publishing article(s) has been cited, 

whether articles contain funding text as well as 4 journals as having a significant impact 

on a URL’s lifetime at the P< 0.001 level. This survival regression used the logistic 

distribution and is interpreted similarly to logistic models as shown in Equation 2.1. To 

determine the predicted outcome for a particular URL, one takes the intercept (5.2) and 

adds to it the coefficients for the individual predictors if those predictors are different 

from the base level; coefficients here are given in years. If numeric, one first multiplies 

before adding. The result is then interpreted as the location of the peak of a bell curve for 

the expected lifetime, instead of a log odds ratio as a regular logistic model would give. 

Among URL domains, org and dk hadn't the largest positive influence by adding about 8 

years while kr had the largest negative effect, subtracting 3, though with a relatively 

smaller p value of .02. Between journals, Zoological Studies had the largest positive 



19 

impact on lifetime, adding 16 years, whereas Computer Physics Communications had the 

largest negative impact, subtracting 4 years. 

Table 2.3 - Results of fitting a survival regression to the unique URLs. Positive 

numbers indicate longer median lifetimes. Much like a logistic model, coefficients can be 

added to the intercept value (after multiplying in the case of numeric predictors) to obtain a 

median lifetime. For example, the median expected lifetime for a URL published once, with 

depth 0, whose publishing article had 1 citation, no funding text, domain au and published 

in a Journal not listed (ie- in the default) would be: (Intercept) 5.22 + Log2(1)*3.57 + 0*-

1.46 + Log2(1+1)*0.25 + 0*3.43 + 4.53 = 10 years  

Variable Value p 5% 95% 

(Intercept) 5.22 3.3E-30 4.46 5.97 

Log2(URL published) 3.57 1.4E-17 2.88 4.25 

depth -1.46 7.0E-32 -1.66 -1.25 

Log2(TimesCited + 1) 0.25 2.8E-04 0.13 0.36 

Funding text present 3.43 2.8E-11 2.59 4.28 

Domain 

au 4.53 1.5E-04 2.56 6.49 

be 3.31 1.9E-02 0.99 5.64 

ca 4.88 1.7E-06 3.20 6.56 

ch 6.45 7.2E-08 4.48 8.42 

cn 1.50 1.3E-01 -0.13 3.13 

com 6.02 2.2E-18 4.89 7.16 

de 5.74 6.1E-16 4.57 6.91 

dk 7.66 5.7E-07 5.14 10.18 

edu 3.77 1.6E-13 2.93 4.61 

es 3.05 5.4E-03 1.25 4.85 

fr 3.65 6.6E-07 2.44 4.85 

gov 5.51 1.2E-15 4.38 6.64 

il 5.92 3.6E-04 3.19 8.65 

in 4.78 2.2E-04 2.65 6.91 

it 5.51 1.4E-08 3.91 7.11 

jp 5.07 8.0E-09 3.62 6.51 

kr -3.35 2.0E-02 -5.73 -0.97 

net 7.01 4.2E-11 5.26 8.76 

nl 6.78 1.1E-06 4.49 9.07 

org 8.10 2.4E-36 7.04 9.16 

ru 3.90 2.3E-03 1.80 6.01 



20 

se 1.71 2.4E-01 -0.69 4.12 

tw 1.64 1.7E-01 -0.33 3.61 

uk 4.49 4.2E-12 3.42 5.56 

Source 

Bioinformatics -2.04 5.7E-03 -3.25 -0.83 

BMC Bioinformatics 2.69 3.9E-05 1.62 3.77 

BMC Genomics 0.88 4.7E-01 -1.13 2.89 

Comp. Physics 

Comm. 
-4.00 3.0E-05 -5.57 -2.42 

Genome Research 0.56 7.1E-01 -1.92 3.04 

Nucleic Acids 

Research 
1.28 8.6E-04 0.65 1.91 

PLoS ONE -0.39 8.0E-01 -2.95 2.18 

Zoological Studies 16.42 2.2E-15 13.01 19.83 

 

Predictors of availability 

While examining URL survival and archival, it is not only interesting to ask 

which factors significantly correlate with a URL lasting but also which account for most 

of the differences. To that end, we fit logistic models for each of the measured outcomes 

(live web, Internet Archive and Web Citation availabilities) to help tease out that 

information. To enhance comparability, a similar list of predictors (differing only in 

whether the first or last year a URL was published was used) without interaction terms 

was employed for all 3 methods and unique deviance calculated by dropping each term 

from the model and measuring the change in residual deviance. Results were then 

expressed as a percentage of the total uniquely explained deviance and are graphically 

shown in Figure 2.4. 

For live web availability, the most deviance was explained by the last year a URL 

was published (42%) followed by the domain (26%). That these two predictors are very 

important agrees with much of the published literature thus far. For the Internet Archive, 



21 

by far the most important predictor was the URL depth at 45%. Based on this, it stands to 

reason that the Internet Archive either prefers more popular URLs which happen to be at 

lower depths or employs an algorithm that prioritizes breadth over depth. Similar to the 

IA, WC had a single predictor that accounted for much of the explained deviance, with 

the publishing journal representing 49% of the explained deviance. This may reflect 

WC’s efforts to work with publishers as the model shows one of the announced early 

adopters, BioMed Central [18], as having the two measured journals (BMC 

Bioinformatics and BMC Genomics) with the highest retention rates. Therefore, WC is 

biased towards a publication’s source (journals). 

 

Figure 2.4 – Predictor importance for URL availability. This graph compares what 

portion of the overall deviance is explained uniquely by each predictor for each of the 

measured outcomes. A similar list of predictors (differing only in whether the first or last 

year a URL was published) without interaction terms was employed to construct 3 logistic 

regression models. The dependent variable for each of the outcomes under study (Live Web, 

Internet Archive and WebCite) was availability at the time of measurement. Unique 

deviance was calculated by dropping each term and measuring the change in explained 

deviance in the logistic model. Results were then expressed as a percentage of the total 

uniquely explained deviance for each of the 3 methods. 

0% 10% 20% 30% 40% 50% 60%

Year Published

Times Published

URL Depth

Times Cited

Funding Text

Domain

Journal

% Of Uniquely Explained Deviance 

P
re

d
ic

to
r 

Live Web

Internet Archive

WebCite



22 

Archive site performance 

Another way to measure the effectiveness of the current solutions to link decay is 

to look at the number of “saved” URLs, or those missing ones that are available through 

archival engines. Out of the 31% of URLs (33% of the unique) which were not accessible 

on the live web, 49% of them (47% of the unique) were available in one of the two 

engines, with IA having 47% (46% unique) and WC having 7% (6% unique). WC’s 

comparatively lower performance can likely be attributed to a combination of its 

requirement for human interaction and its still-growing adoption. 

In order to address the discrepancy, all sites that were still active but not archived 

were submitted to the engines from which they were missing. Using the information 

gleaned from probing the sites as well as the archives, URLs missing from one or both of 

the archives, yet still alive, were submitted programmatically. This included submitting 

2,662 to the Wayback Machine as well as 7,477 to WebCite, of which 2,080 and 6,348 

were successful, respectively. 

 

Figure 2.5 - URL presence in the archives. Percentage of URLs found in the archives 

of the Internet Archive (dashed line), WebCite (dotted line) or in any group (solid line). IA 

is older, and thus accounts for the lion’s share of earlier published URLs, though as time 

goes on WebCite is offering more and more. 

0%

20%

40%

60%

80%

100%

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0C
o

v
e

ra
g

e
 b

y
 A

rc
h

iv
e

 
 

Year URL Published 

Internet Archive

WebCite

Either



23 

Discussion 

Submission of missing URLs to archives 

Archiving missing URLs in each of the archival engines had their own special 

nuances. For the Internet Archive, the lack of a practical documented way of submitting 

URLs (see http://faq.web.archive.org/my-sites-not-archived-how-can-i-add-it/) 

necessitated trusting a message shown by the Wayback Machine when one finds a URL 

that isn’t archived and clicks the “Latest” button. In this instance, the user is sent to the 

URL “http://liveweb.archive.org/<url>” which has a banner proclaiming that the page 

“will become part of the permanent archive in the next few months”. Interestingly, as 

witnessed by requests for a web page hosted on a server for which the authors could 

monitor the logs, only those items requested by the client were downloaded. This meant 

that if only a page’s text were fetched, supporting items such as images and CSS files 

would not be archived. To archive the supporting items and avoid duplicating work, 

wget’s “—page-requisites” option was used instead of a custom parser. 

WebCite has an easy-to-use API for submitting URLs, though limitations during 

the submission of our dataset presented some issues. The biggest issue was WebCite’s 

abuse detection process, which would flag the robot after it had made a certain number of 

requests. To account for this and be generally nice users, we added logic to ensure a 

minimum delay between archival requests submitted to both the IA and WC. Exponential 

delay logic was implemented for WC when encountering general timeouts, other failures 

(like mysql error messages) or the abuse logic. Eventually, we learned that certain URLs 

would cause WC’s crawler to timeout indefinitely, requiring the implementation of a 

maximum retry count (and a failure status) if the error wasn’t caused by the abuse logic.  

http://faq.web.archive.org/my-sites-not-archived-how-can-i-add-it/


24 

To estimate what impact we had on the archives’ coverage of the study URLs, we 

compared a URL survey done directly prior to our submission process to one done 

afterwards; a period of about 3.5 months. It was assumed that the contribution due to 

unrelated processes would not be very large given that there was only a modest increase 

in coverage, 5% for IA and 1% for WC, over the previous period of just under a year and 

a half. 

Each of the two archival engines had interesting behaviors which required 

gauging successful submission of a URL by whether it was archived as of a subsequent 

survey rather than using the statuses returned by the engines. For the Internet Archive, it 

was discovered that an error didn’t always indicate failure, as there were 872 URLs for 

which wget returned an error but which were successfully archived. Conversely, WebCite 

returned an asynchronous status, such that even in the case of a successful return the URL 

might fail archival; the case in 955 out of a total of 7,285. 

Submitting the 2662 URLs to IA took a little less than a day, whereas submitting 

7285 to WC took over 2 months. This likely reflects IA’s large server capacity, funding 

and platform maturity due to its age. 

Generating the list of unique URLs 

Converting some of the potential predictors from the list of published URLs to the 

list of unique URLs presented some unique issues. In particular, while converting those 

based on the URL itself (domain, depth, whether alive or in an archive) were 

straightforward, those which depended upon a publishing article (number of times URL 

was published, the number of times an article was cited, publishing journal, whether there 

was funding text) were estimated by collating the data from each publishing. Only a 



25 

small amount, 8%, of the unique URLs, appeared more than once, and among the 

measured variables that pertained to the publishing there was not a large amount of 

variety. Amongst repeatedly-published URLs, 43% appeared in only one journal and the 

presence of funding text was the same 76% of the time. For calculating the number of 

times a paper was published, multiple appearances of a URL within a given title/abstract 

were counted as one. Thus, while efforts were made to provide a representative collated 

value where appropriate, it’s expected that different methods would not have produced 

significantly different results. 

Pitfalls and drawbacks 

Even though WOS’s index appears to have better quality OCR than Pub Med, it 

still has OCR artifacts. To compensate for this, the URL extraction script tried to use 

some heuristics to detect the most common sources of error and correct them. Some of 

the biggest sources of error were: randomly inserted spaces in URLs, “similar to” being 

substituted for the tilde character, periods being replaced with commas and extra 

punctuation being appended to the URL (sometimes due to the logic added to address the 

first issue). 

Likely the largest contributors to false negatives are errors in OCR and the 

attempts to compensate for them. In assessing the effectiveness of our submissions to IA, 

it is possible that the estimate could be understated due to URLs that had been submitted 

but not yet made available within the Wayback Machine. 

Dynamic websites with interactive content, if only present via an archiving 

engine, would be a source of false positives, as the person accessing the resource would 

presumably want to use it as opposed to viewing the design work of its landing page. If a 



26 

published web site goes away and another installed in its place (especially true if a .com 

or .net domain is allowed to expire), then the program will not be able to tell the 

difference since it will see a valid (though impertinent) web site. In addition, though page 

contents can change and lose relevance from their original use[41], dates of archival were 

not compared to the publication date. 

Another source of false positive error would be uncaught OCR artefacts that insert 

spaces within URLs if it truncated the path but left the correct host intact. The result 

would be a higher probability that the URL would appear as a higher level index page, 

which are generally more likely to function than pages at lower levels [9, 16]. 

Bibliographic database 

Web of Science was chosen because, compared to Pub Med, it was more cross-

sectional and had better OCR quality based on a small sampling. Many of the other 

evaluation criteria were similar between Pub Med and WOS, as both contain scholarly 

work and have an interface to download bibliographic data. Interestingly, due to the 

continued presence of OCR issues in newer articles, it appears that bibliographic 

information for some journals is not yet passed electronically. 

Conclusions 

Based on the data gathered in this and other studies, it is apparent that there is still 

a problem with irretrievable scholarly research on the Internet. We found that roughly 

50% of URLs published 11 years prior to the survey (in 2000) are still left standing. 

Interesting is that the rate of decay for late-published URLs (within the past 11 years) 

appears to be higher than that for the older ones, lending credence to what Koehler 



27 

suggested about eventual decay rate stabilization[32]. Survival rates for living URLs 

published between 1996 and 1999, inclusive, only vary by 2.4% (1.5% for unique) and 

have poor linear fits (R
2 
of .51 and .18 for unique), whereas years [2000, 2010] have 

linear slope 0.031 and R
2 
.90 (.036 and R

2
 .95 for unique URLs using the first published 

year) indicating that the availability between years for older URLs is much more stable 

whereas the availability for more recent online resources follow a linear trend with a 

predictable loss rate. Overall, 84% of URLs (82% of the unique) were available in some 

manner: either via the web, IA or WC. 

Several remedies are available to address different aspects of the link decay 

problem. For data-based sites that can be archived properly with an engine such as the 

Internet Archive or WebCite, one remedy prototyped is to submit the missing sites which 

are still alive to the archiving engines. Based on our results (illustrated in Figure 2.6), this 

method was wildly successful, increasing IA’s coverage of the study’s URLs by 22% and 

WC’s by 255%. Journals could require authors to submit URLs to both the Internet 

Archive and WebCite, or alternatively programs similar to those employed in this study 

could be used to do it automatically. Another way to increase archival would be for the 

owners of published sites to ease restrictions for archiving engines since 507 (352 

unique) of the published URLs had archiving disabled via robots.txt according to the 

Internet Archive. Amongst these, 16% (22% of the unique) have already ceased being 

valid. While some sites may have good reason for blocking automated archivers (such as 

dynamic content or licensing issues), there may be others that could remove their 

restrictions entirely or provide an exception for preservation engines. 



28 

 

Figure 2.6 - Archival engine coverage of the URL list at different times. All URLs 

marked as alive in 2011 but missing from an archive were submitted between the 2012 and 

2013 surveys. The effect of submitting the URLs is most evident in the WebCite case though 

the Internet Archive also showed substantial improvement. Implementing an automated 

process to do this could vastly improve the retention of scholarly static web pages. 

To address the control issue for redirection solutions (DOI, PURL) mentioned in 

the introduction, those who administer cited tools could begin to maintain and publish a 

permanent URL on the web site itself. Perhaps an even more radical step would be for 

either these existing tools or some new tool to take a Wikipedia approach and allow end-

users to update and search a database of permanent URLs. Considering the studies that 

have shown around at least 30% of dead URLs to be locatable using web search engines 

[4, 30], such a peer-maintained system could be effective and efficient, though spam 

could be an issue if not properly addressed. 

59% 

16% 

64% 

17% 

78% 

61% 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Internet Archive WebCite

A
rc

h
iv

a
l 

C
o

v
e

ra
g

e
 

Archival Method 

5/23/2011

10/18/2012 (before submitting)

2/5/2013 (after submitting)



29 

For dynamic websites, the current solutions are more technically involved, 

potentially expensive and less feasible. These include mirroring (hosting a website on 

another server, possibly at another institution) and providing access to the source code, 

both of which require time and effort. Once the source is acquired, it can sometimes take 

considerable expertise to make use of it as there may be complex libraries or framework 

configuration, local assumptions hard-coded into the software or it could be written for a 

different platform (Graphics Processing Unit, Unix, Windows, etc.). The efforts to have 

reproducible research, where the underlying logic and data behind the results of a 

publication are made available to the greater community, have stated many of the same 

requirements as preserving dynamic websites [42, 43]. Innovation in this area could thus 

have multiple benefits beyond just the archival. 

Methods 

Data preparation 

The then-current year (2011) was excluded to eliminate bias from certain journals 

being indexed sooner than others. For analysis and statistical modeling, the R program 

[44] and its “survival” library [45] were used (scripts included in supplement). 

Wherever possible, statistics are presented in 2 forms: one representing the raw 

list of URLs extracted from abstracts and titles and the other representing a deduplicated 

set of those URLs. The former is most appropriate when thinking about what a researcher 

would encounter when trying to use a published URL in an article of interest and also 

serves as a way to give weight to multiply-published URLs. The latter is more 



30 

appropriate when contemplating scholarly URLs as a whole or when using statistical 

models that assume independence between samples. 

URLs not the goal of this study such as journal promotions and invalid URLs 

were excluded using computational methods as much as possible in order to minimize 

subjective bias. The first method, removing 943 (26 unique), looked for identical URLs 

which comprised a large percentage of a journal’s published collection within a given 

year. Upon manual examination, a decision was then made whether to eliminate them. 

The second method, which identified 18 invalid URLs (all unique), consisted of checking 

for WebCitation’s “UnexpectedXML” error. These URLs were corrupted to the point that 

they interfered with XML interpretation of the request due either to an error in our 

parsing or the OCR. 

DOI sites were identified by virtue of containing “http://dx.doi.org”. PURL sites 

were identified by virtue of containing “http://purl.” in the URL. Interestingly, 3 PURL 

servers were identified through this mechanism: purl.oclc.org, purl.org and 

purl.access.gpo.gov. 

To make for results more comparable to prior work as well as easier to interpret 

analysis, a URL was considered available if it successfully responded to at least 90% of 

the requests and unavailable if less than that. This method is similar to the method used 

by Wren[5], and differs from Ducut’s[2] by not using a “variable availability” category 

defined as being available > 0% and < 90% of the time. Our results show that 466 unique 

URLs (3.2%) would have been in this middle category, a number quite similar to what 

Wren’s and Ducut’s would have been (3.4% and 3.2%, respectively). Being such a small 

percentage of the total, their treatment is not likely to affect analysis much regardless of 



31 

how they are interpreted. Having binary data also eases interpretation of the statistical 

models. In addition, due to the low URL counts for 1994 (3) and 1995 (22), these years 

were excluded from analysis. 

Survival model 

Survival analysis was chosen to analyze living URLs due to its natural fit; like 

people, URLs have lifetimes and we are interested in discussing them, what causes them 

to be longer or shorter and by how much. Lifetimes were calculated by assuming URLs 

were alive each time they were published, which is a potential source of error [8]. Data 

was coded as either right or left-censored; right-censored since living URLs presumably 

would die at an unknown time in the future and left-censored because it was unknown 

when a non-responding URL had died. Ages were coded in months rather than years in 

order to increase accuracy and precision. 

Parametric survival regression models were constructed using R’s survreg(). In 

selecting the distribution to use, all of those available were tried, with the logistical 

showing the best overall fit based on Akaike Information Criterion score. Better fits for 

two of the numeric predictors (number of citations to a publishing paper and number of 

times a URL was published) were obtained by taking the base 2 logarithm. Collinearity 

was checked by calculating the variance inflation factor against a logistic regression fit to 

the web outcome variable. Overall lifetime estimates were made using the survfit() 

function from R’s survival library. 

Extracting & testing URLs 

To prepare a list of URLs (and their associated data), a collection of bibliographic 

data was compiled by searching WOS for “http” in the title or abstract, downloading the 



32 

results (500 at a time), then finally collating them into a single file. A custom program 

(extract_urls.py in Appendix) was then used to extract the URLs and associated metadata 

from these, after which 5 positive and 2 negative controls were added. A particular URL 

was only included once per paper. 

With the extracted URLs in hand, another custom program (check_urls_web.py in 

Appendix) was used to test the availability of the URLs 3 times a day over the course of 

30 days, starting April 16, 2011. These times were generated randomly by scheduler.py 

(included in Appendix), the algorithm guaranteeing that no consecutive runs were closer 

than 2 hours. A given URL was only visited once per run even if it was published 

multiple times, saving load on the server and speeding up the total runtime (which 

averaged about 25 minutes due to use of parallelism). Failure was viewed as anything 

that caused an exception in python’s “urllib2” package (which includes error statuses, 

like 404), with the exception reason being recorded for later analysis. 

While investigating some of the failed fetches, a curious thing was noted: there 

were URLs that would consistently work with a web browser but not with the Python 

program or other command line downloaders like wget. After some investigation, it was 

realized that the web server was denying access to unrecognized User Agent strings. In 

response, the Python program adopted the User Agent of a regular browser and 

subsequently reduced the number of failed URLs. 

At the end of the live web testing period, a custom program 

(check_urls_archived.py in Appendix) was used to programmatically query the archive 

engines on May 23, 2011. For the Internet Archive’s Wayback Machine, this was done 

using an HTTP HEAD request (which saves resources vs. GET) on the URL formed by 



33 

“http://web.archive.org/web/*/” + <the url>. Status was judged by the resulting HTTP 

status code with 200 meaning success, 404 meaning not archived, 403 signifying a page 

blocked due to robots.txt and 503 meaning that the server was too busy. Because there 

were a number of these 503 codes, the script would make up to 4 attempts to access the 

URL, with increasing back off delays to keep from overloading IA’s servers. The end 

result still contained 18, which were counted as not archived for analysis. For WebCite, 

the documented API was used. This supports returning XML, a format very suitable to 

automated parsing [46]. For sites containing multiple statuses, any successful archiving 

was taken as a success. 

 

  



34 

References 

2. Ducut E, Liu F, Fontelo P: An update on Uniform Resource Locator (URL) 

decay in MEDLINE abstracts and measures for its mitigation. BMC Med 

Inform Decis Mak 2008, 8:-. 

3. Dimitrova DV, Bugeja M: Consider the source: Predictors of online citation 

permanence in communication journals. Portal-Libraries and the Academy 

2006, 6:269-283. 

4. Wren JD: URL decay in MEDLINE - a 4-year follow-up study. Bioinformatics 

2008, 24:1381-1385. 

5. Wren JD: 404 not found: the stability and persistence of URLs published in 

MEDLINE. Bioinformatics 2004, 20:668-U208. 

6. Yang SL, Qiu JP, Xiong ZY: An empirical study on the utilization of web 

academic resources in humanities and social sciences based on web citations. 
Scientometrics 2010, 84:1-19. 

7. Koehler W: An analysis of Web page and Web site constancy and 

permanence. J Am Soc Inf Sci 1999, 50:162-180. 

8. Aronsky D, Madani S, Carnevale RJ, Duda S, Feyder MT: The prevalence and 

inaccessibility of Internet references in the biomedical literature at the time 

of publication. J Am Med Inform Assn 2007, 14:232-234. 

9. Wren JD, Johnson KR, Crockett DM, Heilig LF, Schilling LM, Dellavalle RP: 

Uniform resource locator decay in dermatology journals - Author attitudes 

and preservation practices. Arch Dermatol 2006, 142:1147-1152. 

14. The DOI System [http://www.doi.org/] 

15. PURL Home Page [http://purl.org] 

16. Casserly MF, Bird JE: Web citation availability: Analysis and implications for 

scholarship. College & Research Libraries 2003, 64:300-317. 

17. The Internet Archive [http://www.archive.org/web/web.php] 

18. Eysenbach G, Trudell M: Going, going, still there: Using the WebCite service 

to permanently archive cited web pages. Journal of Medical Internet Research 

2005, 7:2-6. 

21. Key Facts on Digital Object identifier System 

[http://www.doi.org/factsheets/DOIKeyFacts.html] 

22. EZID: Pricing [http://n2t.net/ezid/home/pricing] 

23. Markwell J, Brooks DW: "Link rot" limits the usefulness of web-based 

educational materials in biochemistry and molecular biology. Biochemistry 

and Molecular Biology Education 2003, 31:69-72. 

24. Thorp AW, Brown L: Accessibility of internet references in Annals of 

Emergency Medicine: Is it time to require archiving? Ann Emerg Med 2007, 

50:188-192. 

25. Carnevale RJ, Aronsky D: The life and death of URLs in five biomedical 

informatics journals. International Journal of Medical Informatics 2007, 

76:269-273. 

26. Wagner C, Gebremichael MD, Taylor MK, Soltys MJ: Disappearing act: decay 

of uniform resource locators in health care management journals. J Med Libr 

Assoc 2009, 97:122-130. 

http://www.doi.org/
http://purl.org/
http://www.archive.org/web/web.php
http://www.doi.org/factsheets/DOIKeyFacts.html
http://n2t.net/ezid/home/pricing


35 

27. Duda JJ, Camp RJ: Ecology in the information age: patterns of use and 

attrition rates of internet-based citations in ESA journals, 1997-2005. 

Frontiers in Ecology and the Environment 2008, 6:145-151. 

28. Rhodes S: Breaking Down Link Rot: The Chesapeake Project Legal 

Information Archive's Examination of URL Stability. Law Library Journal 

2010, 102:581-597. 

29. Goh DHL, Ng PK: Link decay in leading information science journals. 

Journal of the American Society for Information Science and Technology 2007, 

58:15-24. 

30. Casserly MF, Bird JE: Web citation availability - A follow-up study. Libr 

Resour Tech Ser 2008, 52:42-53. 

31. Russell E, Kane J: The missing link - Assessing the reliability of Internet 

citations in history journals. Technology and Culture 2008, 49:420-429. 

32. Koehler W: A longitudinal study of Web pages continued: a consideration of 

document persistence. Information Research-an International Electronic 

Journal 2004, 9:-. 

33. Dellavalle RP, Hester EJ, Heilig LF, Drake AL, Kuntzman JW, Graber M, 

Schilling LM: Information science - Going, going, gone: Lost Internet 

references. Science 2003, 302:787-788. 

34. Evangelou E, Trikalinos TA, Ioannidis JPA: Unavailability of online 

supplementary scientific information from articles published in major 

journals. Faseb Journal 2005, 19:1943-1944. 

35. Sellitto C: The impact of impermanent web-located citations: A study of 123 

scholarly conference publications. Journal of the American Society for 

Information Science and Technology 2005, 56:695-703. 

36. Bar-Ilan J, Peritz B: The lifespan of "informetrics" on the Web: An eight year 

study (1998-2006). Scientometrics 2009, 79:7-25. 

37. Gomes D, Silva MJ: Modelling Information Persistence on the Web. In Book 

Modelling Information Persistence on the Web (Editor ed.^eds.). City; 2006. 

38. Markwell J, Brooks DW: Evaluating web-based information: Access and 

accuracy. Journal of Chemical Education 2008, 85:458-459. 

39. Wu ZQ: An empirical study of the accessibility of web references in two 

Chinese academic journals. Scientometrics 2009, 78:481-503. 

40. Klein JP, Moeschberger ML: Survival analysis : techniques for censored and 

truncated data. 2nd edn. New York: Springer; 2003. 

41. Bar-Ilan J, Peritz BC: Evolution, continuity, and disappearance of documents 

on a specific topic on the web: A longitudinal study of "informetrics". 
Journal of the American Society for Information Science and Technology 2004, 

55:980-990. 

42. Peng RD: Reproducible research and Biostatistics. Biostatistics 2009, 10:405-

408. 

43. Ince DC, Hatton L, Graham-Cumming J: The case for open computer 

programs. Nature 2012, 482:485-488. 

44. R Development Core Team: R: A Language and Environment for Statistical 

Computing. In Book R: A Language and Environment for Statistical Computing 

(Editor ed.^eds.). City: R Foundation for Statistical Computing; 2011. 



36 

45. Therneau T: A Package for Survival Analysis in S. In Book A Package for 

Survival Analysis in S (Editor ed.^eds.), 2.36-12 edition. City; 2012. 

46. WebCite Technical Background and Best Practices Guide 

[http://www.webcitation.org/doc/WebCiteBestPracticesGuide.pdf] 

http://www.webcitation.org/doc/WebCiteBestPracticesGuide.pdf


37 

CHAPTER 3 - LOGIC CAPSULE 

Using virtual machines to 
enhance digital scientific 
resources 

Abstract  

Background 

Internet-based scientific resources have had a huge impact on science and are 

widely used to facilitate the sharing of information and tools. Unfortunately, they vanish 

with regularity, having a median lifetime of about 9 years across the sciences, in a 

phenomenon known as link decay or link rot. This vanishing can limit the ability of 

future researchers to reproduce the original work. Solutions have been proposed for 

resources based on simple webpages, however these solutions cannot in many cases 

properly archive those with complex server logic which compose about 45-62% of those 

which are missing. With the rate of publication for these online resources continuing to 

grow, so too will the number that vanish.  

Additionally, concerns about the difficulty to replicate complex, computer-based 

statistical analyses have spawned a growing movement around the need for reproducible 

research. To answer these needs, technology that addresses the long term availability, 

ease of use and compatibility requirements of these interactive computing environments 

is required. 



38 

Results 

The needs for addressing the problems of archiving and utilizing complex 

interactive websites and software are examined and one possible solution involving 

virtualization technology is discussed. This solution combines virtualization with best 

practices to address archival and other issues that inhibit the use of scientific digital 

resources. Finally, a prototype that implements this solution is put forward and made 

available at http://logiccapsule.net. 

Conclusions 

Virtualization coupled with standardizing practices provides a practical 

technology ideal for archiving complex scientific applications and their data, allowing 

scientists to precisely reproduce the complex analyses of others. It has the potential to not 

only improve the quality and availability of science across several fields but can also 

improve its productivity. 

Logic Capsule provides an environment for the long-term archiving of scholarly 

applications that responds to the archival, reproducible research, format obsolescence, 

and ease of use concerns expressed by the scientific community. By making research 

more accessible, if adopted Logic Capsule or something similar could not only improve 

the quality and availability of science across several fields but also improve its 

productivity by making that science easier to use and replicate. 

Introduction 

Reproducing and scrutinizing the research of others is a time-honored tradition 

that forms a basic pillar of science. So too is the passing along of the knowledge, methods 



39 

and sources relied upon to gain that knowledge, allowing many generations to see further 

by "standing on the shoulders of giants". Until recently, the primary media for the 

dissemination and review of this information have been physical books and journals. 

Though it has taken time, society has learned and refined techniques to archive and make 

this paper media-based knowledge available to future generations. 

Over the last 20 years, the Internet has arisen as the new primary medium for 

scholarly communication. Scholarly Internet-based resources play an increasingly 

important role in modern research, demonstrated by the increasing number of Uniform 

Resource Locators (URLs) published in titles and abstracts [2, 47]. These resources 

disappear steadily, however, affecting a wide variety of subject areas [2, 4, 47]; a 

phenomenon referred to as link decay or link rot. Recognizing this problem, solutions for 

archiving static web pages arose including the Internet Archive[17] and WebCite[18]. 

These methods can help, but only when the resources are static, having the ability to be 

represented as if printed out. 

Not all resources are static, however, which can prevent these archives from 

creating an accurate reproduction. Some URLs point to interactive web applications that 

rely upon comprehensive server-side logic and data. Others have programs, code or 

documents that must be processed on the downloader’s system. [4] estimated the 

prevalence of non-static resources (classified as software programs or databases) among 

missing biomedical URLs in MEDLINE to be 62%. [9] estimated the prevalence to be 

45% within Dermatology journals. Thus, given the fairly consistent disappearance of 

Internet-based resources in general, it is clear that a significant number of missing 

scholarly URLs are not fully archivable by current solutions focused on static pages. 



40 

Even when a program is available, using it to reproduce original research could be 

hampered due to age and complexity. Format obsolescence, the lack of ability to use a 

particular file due to not being able to interpret its encoding, can render a resource 

unusable even though it can be accessed. This is especially pertinent to files created more 

than a decade or two in the past. For example, what is the likelihood that in 20 years a 

program written in version 2 of the Python programming language will still be executable 

when development efforts for the language have already been on version 3 for several 

years? In 1995, Rothenberg brought attention to this potential lack of ability to read 

media, both physically and logically[48]. 15 years later, however, Rosenthal  argued that 

obsolescence is not as pressing an issue due to a combination of more mature market 

dynamics, open source as well as the ability to use virtualization in a manner similar to 

what is presented in this paper[49]. In addition, the software configuration complexity of 

many modern analytical tools can, for many scientists, be a hindrance to their 

reproduction or even use, and are beyond the expertise of many[50]. Even for those with 

the technical skills, it can be a time-consuming chore to configure the prerequisite 

packages. A single application could conceivably require configuring several 

components, for example a web server, database and statistical software. 

Other concerns that involve reproducing the work of others center on being able 

to translate an article’s description of its statistical analysis. Reproducible research in 

this context encompasses being able to reproduce and scrutinize such an analysis. This 

can be especially important when the underlying data is difficult to reproduce due to 

time, expense, or other factors[20] and can many times be difficult to do solely using the 

steps described in an article[10]. Wicherts relates reproducibility to aviation: a co-pilot 



41 

can check every action of the captain and there is a black box that records each 

action[12]. 

Addressing these concerns, virtualization technology packages the data and logic 

needed to capture a complete computing environment into a single, executable and 

portable package that meets needs of reproducible research ideally[51]. This package is 

referred to as a Virtual Machine (VM), and may be run on any system possessing an 

emulator or hypervisor supporting x86-based VMs, which includes most desktop and 

server systems. That computation would then be available to future scholars for 

understanding, reproduction and criticism. 

Presented in the next section is a discussion of the requirements for an archival 

solution with a focus on reproducible research, their challenges and how a virtualized 

system ideally meets them. Next, a prototype implementing the ideas from the prior two 

sections called Logic Capsule is presented. After that, areas for future work are discussed, 

related work and finally conclusions. 

Requirements 

The ultimate goal for any archival system supporting reproducible research as a 

primary function is to facilitate a future researcher making use of someone else’s work. 

To that end, a few aspects of such a system make themselves clear in that the package 

and any dependencies must be: findable by researchers looking for them, available when 

needed; easily executable in the environments future users might employ and able to 

faithfully reproduce the original service or analysis. A bonus would be that it’s easy to 



42 

use, capturing the expertise of the author as much as possible to avoid needlessly 

complex configuration. 

There are primarily three classes of threats to the success of this type of project: 

natural, political and technological. Natural threats result from catastrophic events which 

can destroy either the data or the ability to access that data and include earthquake, flood, 

hail and tornado. Political threats emerge from man-made organizations and include 

funding, copyright, legal concerns and an institution’s will to continue the effort. Finally, 

technological threats represent those arising from technical implementations like having a 

VM in a format that is no longer executable. Other threats include archive corruption 

(whether accidental or purposeful) and physical storage failures. 

Directory 

A directory will likely be one of the most important aspects of a VM-based 

research archival service as it connects researchers with the resources they are searching 

for. To do its job faithfully a directory must possess two key properties. First, it must 

facilitate making its contents easy to find through a local or 3
rd

 party search engine. 

Second, entries in this directory must both be unique and immutable. 

Resources that can’t be found are not useful. Thus, a directory for a reproducible 

research VM-based service must make its contents easy to locate, both by users looking 

for resources using Internet search engines or users who specifically came to the 

directory to find the resource.  To facilitate locating entries in the directory from external 

search engines, all entries should 1) be enumerated using methods like sitemaps[52] to 

ease their indexing and 2) make their metadata available in a programmatic fashion using 



43 

markup such as RDF[53] so that third parties can integrate the directory. Required 

metadata would include the resource’s title and any associated URLs along with relevant 

citation information such as a publishing article’s title and author list. Using this 

information, one can easily foresee sites such as journal websites and citation indexes like 

Web of Science and Pubmed integrating these VMs into their interfaces. It’s also possible 

and hopeful that searches based on an article’s title would return the directory entry 

within the first set of results. Browsing the directory locally would greatly be facilitated 

by including keywords or tags, so that categories could automatically be generated. Other 

information, such as the cryptographic checksums (discussed in the below section, 

“Available”), format and usage instructions, are helpful as well, but more so after the VM 

has been located. 

Once a directory entry for a particular resource is made available, it’s important 

that prior versions are immutable (e.g. never removed or altered). A large part of 

reproducible research is being able to produce exactly the same analysis as an original 

author. Thus, it would stand to reason that once a VM has been introduced into the 

system and cited, it should remain that way for future researchers. Though this might 

sound wasteful, examples of its utility could include understanding why different results 

were seen in a later version of a particular software package or how an earlier dataset 

differed from a later, more mature one. In a similar vein, each entry should carry a unique 

identifier so that particular versions and packages can be identified, shared, downloaded 

and discussed. 



44 

Self-Contained 

The key to reproducible research is reproducing research. For an analysis 

component, this would mean that all of the logic and data a part of the original analysis 

should be included in a self-contained VM. A corollary to this requirement is that the VM 

should not depend on network resources. This is not always feasible, however. 

For most Virtual Machines, it would be expected that the logic portion (the 

Operating System (OS), analysis software and any dependencies) would take up the 

majority of space. There are cases, though, where the size of the dataset could easily 

eclipse the logic, causing very large VMs which would be difficult to transfer. These 

could include those containing Next Generation Sequencing data as well as other “big 

data” projects with large files. For example, a collection of Ensembl Annotated Human 

Genome data (usable in several bioinformatics contexts) hosted on Amazon.com is 

310GB[54]. Such large file sizes, especially if those files were shared across multiple 

projects, might inhibit the use of the VMs as the downloaders would have to wait for the 

transfers complete and have sufficient disk space available to run them. 

One solution to this problem would be to allow VMs to use the network to access 

just the portions needed for a particular computation. It may have to be enough to 

acknowledge that someone wishing to download and reproduce a computation with a 

large amount of data will have to enable access to Internet resources. As long those 

resources remain available, then reproducibility will have been preserved. VMs could 

also foreseeably make use of valuable online service such as TogoWS[55] as part of its 

workflow. 



45 

Since interfaces and file locations can change, it may make sense for a VM 

preservation service to employ a policy by which external dependencies would only be 

referenced using a method that has long term access and preservation in mind. For 

example, such a requirement could be that references must only be done through Digital 

Object Identifiers[21], or to consortiums which endeavor to maintain long-term access 

and backwards compatibility. The DataCite consortium provides exactly this type of 

unique, permanent identifier for research datasets[56]. 

Available 

For a tool to be useful, it must be accessible. This implies that it must have been 

stored in such a way that it continues to be retrievable, that it is reachable over a network 

and that the package’s integrity has been maintained. To avoid natural and political risks 

to the storage of VMs, they must be backed up and stored redundantly in geographically 

and politically diverse locations. There are a number of ways to satisfy this requirement. 

One is to have the VM storage redundantly shared and served from multiple 

organizations. By distributing the work among multiple systems and groups of people, 

the impact of a failure, whether caused by a system crash, network trouble, physical 

disaster or organizational apathy is mitigated by having other sites that can mirror and 

serve the contents. Another way is to use cloud-based object storage services such as 

Amazon’s S3 and Google’s Cloud Storage. Cloud services many times have geographical 

redundancy built in while incurring less operational effort from the implementer, less up-

front investment in hardware and in many cases an already-built Content Delivery 

Network. These benefits come at a cost, however, in that if the cloud is completely relied 

upon for redundancy and durability it can itself become a single point of failure unless 



46 

multiple providers are used at even greater recurring expense. To mitigate cloud 

concerns, a hybrid model is possible, with an organization hosting the contents both 

individually and using public cloud services to spread the load. This would have the 

advantage of simplifying the manually-managed infrastructure (perhaps only hosting at a 

single site) while gaining the redundancy and bandwidth advantages of a cloud provider 

while not being completely reliant on that provider. 

Given the long-term preservation requirement for this system, steps must be taken 

in order to facilitate recovery of the data in the face a byzantine failure. Ideally, the VMs 

and their metadata should be backed up to multiple geographies (for protection from 

natural threats) and using multiple types of media such as optical disks, hard disks and 

tape to protect against bit rot and format obsolescence. Cloud backup could be one of the 

methods used for backing up, though shouldn’t be the only one. Something as simple as 

an expired credit card could then end up jeopardizing the contents of the entire system 

when they were most needed! 



47 

 

While being available is an important aspect of a VM service, steps need to be 

taken to ensure to ensure that what is found is what was uploaded. To that end, the output 

of at least one collision resistant hash function (used here interchangeably with “hash 

function”) should be included in a directory entry. A hash function takes an arbitrarily 

sized file and quickly computes a short, fixed-size (typically 256-512 bits) summary that 

has some advantageous properties, which include 1) weak collision resistance and 2) 

strong collision resistance, for which definitions may be found in Figure 3.1 and [1]. 

These properties, if present in a hash function, ensure that it would be very difficult a 

stored VM archive to change without being detected, whether the change were intentional 

or not. Candidate functions would include any of the several which have been studied and 

are generally accepted by the cryptographic community, such as Whirlpool and those in 

the SHA-2 and SHA-3 families. Initial calculation of the hash(es) should be done as early 

as possible, preferably before the VM has left its author’s computer, in order to detect 

corruption of the archive while it is in transit. A hash should also be calculated and 

Figure 3.1 – Properties of a collision resistant cryptographic hash function. 

“Difficult” in this context may be substituted with “computationally 

infeasible”. Such functions can be used by a VM archiving service to make it 

extremely difficult for a modified VM to go undetected. Source: [1] 

Properties of a collision resistant cryptographic hash function, h() 

Weak collision resistance 

  𝐺𝑖𝑣𝑒𝑛 𝑖𝑛𝑝𝑢𝑡 𝑥 𝑖𝑡 𝑖𝑠 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑎 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑥′𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ(𝑥)  ℎ(𝑥′) 

Strong collision resistance 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ(𝑥)  ℎ(𝑥′) 



48 

checked periodically for each VM on the server as well as after downloading in order to 

ensure that it has remained unchanged since its generation. Multiple hashes using 

different functions could also be taken to avoid a breach in security of any one particular 

one such as has been seen with the broken MD5 function[57]. For improved security, 

public-key cryptography could be used to sign and later authenticate these hashes or even 

the directory entry itself.  

Storage / Transfer Optimization 

Even with a fast connection, downloading a VM can take a long time given that 

VM sizes of 20 or 30 GB are increasingly common. Long transfer times and excessive 

storage requirements, if not addressed, could cause user dissatisfaction and thus present 

an impediment to adoption. Several optimizations are possible. One is deduplication, 

which has shown significant promise in reducing VM sizes by 40%-80%[58, 59]. With it, 

redundancies within and across VMs can be detected and removed, such that only one 

copy of particular blocks need be stored or transferred. Deduplication takes advantage of 

the fact that much of the standard OS (such as a Linux distribution) is the same across 

VMs, and thus the largest amount of unique data comes from newly introduced 

functionality. Similarly, delta disks[60], otherwise known as difference disks or linked 

clones, would take this a step further if multiple VMs were dependent on the same 

popular base disk image (like the Ubuntu Cloud Image[61]). In those cases, as long as the 

same base image had previously been transferred or stored, only the changed parts 

needed to create a particular implementation would be needed. These technologies allow 

the transfer and storage price to be paid only once. Common direct compression 

programs such as zip, gzip, bzip2 and 7-zip, as well as the less common rzip[62], 



49 

lrzip[63] and zpaq[64] can achieve sizable space savings for single VMs[65]. Such 

techniques have the potential to not only reduce storage space and costs, but also 

decrease the transfer times of inter-site replication and end-user downloads. 

In addition to these optimizations, there are others that could be made to reduce 

the latency to when a VM is usable. The ability to lazily load portions of the virtual disk 

over the network as necessary would allow a VM to start running without being fully 

downloaded. This technique has been seen in Moka5’s cache priming[66], 

VMTorrent[67] and Snowflock[68]. In addition, a "Run in the Cloud" option, where the 

VM would automatically be deployed to some cloud, would gain the advantages of cloud 

deployment without being dependent on it. A hosted cloud solution such as SHARE[69] 

has the potential to offer instant access to the VM by streaming only the user interface. 

Peer to peer technology such as BitTorrent could also help in keeping storage and transfer 

costs low while increasing transfer speeds as demand rose. 

 

Format 

Given that the primary goal for this set of requirements is the long-term archival 

and ability to use research, documentation on a few aspects the VM itself will need to be 

written, tested and standardized upon. Supported file formats for the VM will need to be 

evaluated, with a goal of ensuring the ability to execute it potentially in the distant future. 

Desirable also is compatibility with a number of hypervisors. Some of the currently 

popular hypervisors and their native formats consist of: VMware’s VMDK, Virtualbox’s 

VDI, Microsoft’s VHD and KVM’s QCOW2. Each of the hypervisors mentioned support 



50 

importing VMDK-formatted VMs, making VMDK a good candidate as the standard. 

VMDK and a large number of other formats are also supported by the qemu-img 

program, which could be used to translate between formats. This program could also 

perform server-side conversion as needed. Separate author’s instructions would need to 

be written and tested with each popular hypervisor. In addition, compatibility between the 

hypervisors would need to be tested and documented periodically beyond just the format. 

For example, the virtual devices (such as network cards, processors, chipsets, etc) 

emulated by the hypervisors can differ and potentially be a cause of incompatibility. 

Similar to aspects of a VM’s format, the x86 instruction set itself could be a 

source of long term incompatibility. Current market trends, heavily driven by mobile 

computing and the use of open source systems that are processor agnostic, are reducing 

the x86’s hegemony, so it is valid to ask whether x86 VMs will be runnable in 20 or 30 

years. Two technologies will likely ensure that they are. The first, processor emulation, 

has been around for quite a long time and it is reasonable to believe that it will continue 

to be. Popular open source emulators such as qemu and Bochs have existed for some 

time. Indeed, some can currently run MS-DOS versions from close to 20 years ago[70, 

71]. Native processors and the emulation technology will likely continue to become 

faster, meaning that even emulated performance should not be an issue. The second trend, 

cloud computing, should likewise become more widely standardized and mature. This 

means that even if local devices are not able to natively make use of these archived 

scholarly works, users should still be able to use them in a cloud environment using either 

virtualization or emulation. 



51 

Copyright 

Concerns surrounding copyright and Intellectual Property (IP) violations are 

important and could be detrimental to the goals of an archival system if not addressed. 

They primarily fall into to two areas: 1) the uploading of software or other items to which 

the contributor is not authorized due to copyright, patent or trademark rights and 2) the 

release of the aforementioned rights belonging to the uploader. An archival system is in a 

similar situation to any Internet-based, user-generated content hosting service such as 

Drop Box, Youtube, or Amazon. Similar to those services, an archival system would 

employ measures to protect IP, though legal responsibility would rest with the uploader. 

The system may also need to conform to the Digital Millennium Copyright Act’s 

(DMCA) requirements to address copyright complaints. 



52 

Unauthorized uploads could be discouraged using documentation, legal and 

review based mechanisms. Documentation on the site would discuss IP concerns and 

encourage the use of open source-licensed software stacks. These software stacks are 

very popular in the Bioinformatics area and are employed widely. They include Linux 

and its many distributions; statistical environments like R (with Bioconductor), Weka and 

Mr. Bayes; many task-specific packages like BLAST and EMBOSS  and support for 

almost every popular language like C, C++, Fortran, Java, python, perl and PHP. 

Accepting contributions requires that the user agree that to the best of their 

knowledge they have the legal right to distribute all of the uploaded materials. For those 

portions to which they own copyright (such as statistical analysis scripts), they would be 

required to license to the archival system and any future partners an irrevocable , 

Figure 3.2 - Open Source use in PubMed. The adoption of open source in the 

biomedical field, quantified by having "open source" appearing in the title or abstract, 

has been steadily growing for over a decade. This indicates that a system only 

supporting open source software is only growing in relevance. 

Source: PubMed.gov

0

100

200

300

400

500

600

700

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

# 
o

f 
O

p
e

n
 S

o
u

rc
e

 it
e

m
s 

p
u

b
lis

h
e

d
 

Publishing Year 

Open Source Items Published Per Year in 
PubMed 



53 

unrestricted and perpetual license to redistribute their contributions. This may include 

selecting from a popular, standard open source license such as the BSD, GPL or Creative 

Commons. This would place the archival in the position of accepting in good-faith the 

attestation of the user that redistribution of the VM does not violate anyone’s IP rights. 

Archival systems could also implement a cursory review to see if there are any 

obvious violations before enabling redistribution of the VM. Such items could include 

using obviously copyrighted software such as the Windows OS or MATLAB. In cases 

where the previous mitigations failed, the archive’s website would publish a contact 

address and work with its legal team to draft a policy permitting copyright holders to 

register complaints, similar to what is done at many other Internet-based hosting 

services
5
. 

Cloud computing-based remote execution could also address certain copyright 

concerns, as the running of VMs would take place on a centrally managed data center 

rather than on a user’s computer. “Run in the Cloud” functionality could help broaden the 

list of acceptable contributions. For example, if two institutions (the one hosting a VM 

and the end user’s) both held licenses to run a particular piece of copyrighted software, 

the user might be able to instantly run that VM on a remote node in addition to 

downloading it. There could also be cases where running the VM remotely were allowed, 

however download was forbidden if the end user’s institution did not have the 

appropriate license. This is an exciting area to explore. SHARE employs some of these 

ideas[69]. 

                                                
5 For examples, see https://www.dropbox.com/dmca and 

https://www.youtube.com/yt/copyright/copyright-complaint.html 

https://www.dropbox.com/dmca
https://www.youtube.com/yt/copyright/copyright-complaint.html


54 

While copyright issues constrain the flexibility of downloadable VM-based 

solutions, it is an addressable legal restriction and not a technical one. While it may seem 

that only supporting open source software might be an impediment, academic adoption 

within the biomedical field has been consistently growing (see Figure 3.2). 

  



55 

 

Logic Capsule 

Logic Capsule is a prototype for a virtual machine-based archival system for 

reproducible research. It catalogs and makes available scholarly VMs, “capsules”, with 

the workflow illustrated in Figure 3.3. It endeavors to meet the requirements outlined 

above by implementing a directory, metadata, tags, checksums, documentation and 

manual intervention at the key point of VM submission. The Wordpress Content 

Management System (CMS) system and the Responsive theme were used to facilitate 

access to and the organization of pertinent data. Directory entries can be browsed 

manually by selecting tags, searching or browsing all VMs manually. Commenting on 

VMs is supported and encouraged in order to share experiences gained while using 

capsules. 

Figure 3.3 - Overview of Logic Capsule workflow. A publishing researcher 1) 

makes their VM available for download on the Internet, then 2) notifies Logic Capsule 

about their upload. At some later point, an interested party 3) searches for the 

functionality either via a general web search or Logic Capsule directly, 4) finds the VM's 

page on Logic Capsule and 5) downloads it. 



56 

In its current implementation, after packaging a VM, a publishing researcher then 

uploads it to the Internet to be hosted. For this purpose, the user can use any hosting 

available to them including free cyberlocker services (see Table 3.1). Once uploaded, the 

researcher can then go to the Logic Capsule website and submit a new entry using the 

"Submit a VM" link from the homepage (shown in Figure 3.4). Once reviewed by an 

administrator, the VM will then be publicly available through the website, whether by 

navigation, searching on the site itself or searches via the Internet. After finding a VM of 

interest, a user then uses the link(s) to download the VM(s). 



57 

Logic Capsule allows users to submit new VMs by filling out a form that is then 

reviewed before being included in the database. This form, shown in Figure 3.5, requires 

certain information needed for all VMs, including: title, description, release date (or some 

approximation), version, URL for site, contact for the VM, Citation (if applicable), 

instructions on how to use the VM, suggested tags, file size, SHA256 of the archive in 

order to verify the capsule’s integrity and links to download source(s) (preferably at least 

2). Once an entry has been posted it will not generally be updated except to fix outdated 

links. New versions and updates will require new posts. A CAPTCHA is used to prevent 

Figure 3.4 - The Logic Capsule home page The site aims to be simple and 

easy to use, presenting the most common functions such as searching, submitting or 

accessing a VM right away while also providing more sophisticated capabilities such 

as the ability to subscribe to new VM notifications. 



58 

automated bots from submitting entries. Currently, it is the uploader's responsibility to 

host the file(s) associated with this VM. Hosted, redundant storage would be a valuable 

feature that would have required additional funding. 



59 

 

Figure 3.5 - The submission form for a new VM.  Several fields are required; 

to prevent abuse, a CAPTCHA as well as manual intervention is required before the 

submission is made public. 



60 

 

The catalog makes VMs available through the homepage by either a 

comprehensive search function or direct browsing. Comments on VMs provide a social 

venue for users to help each other by providing feedback and tips. Similarly, tags may be 

applied to VMs to assist future seekers identify relevant software Documentation in the 

form of dedicated pages and FAQs are available from the home page, with new entries 

being added as feedback is received. 

Figure 3.6 - Data-centric architecture of Logic Capsule.  Various metadata 

components which make the information available and add value to it are hosted by Logic 

Capsule. Storage for VMs is currently provided by third parties. 

  

  

Logic Capsule 

Descriptions 

Ratings 

Comments 

Indexing & 
Search 

Metadata 

VM backup 

VM Storage + 
Download 

Cyberlocker or 
Project-Specific Hosting 



61 

Table 3.1 – Selected cyber locker services. These services allow the uploading of 

arbitrary files for free, with most retaining them as long as they are accessed regularly. If 

other permanent, web-accessible storage is unavailable, these can be used by researchers to 

host VMs on Logic Capsule. 

Site Max file size 

box.net 1GB 

depositfiles.com 10GB 

filedropper.com 5GB 

filehosting.org unlimited 

hotfile.com 400MB 

mightyupload.com 4GB 

putlocker.com 1GB 

rapidshare.com unlimited 

slingfile.com 2GB 

Methods 

WordPress, a popular Content Management System, is used to host the Logic 

Capsule website. It was chosen because of its ability to organize and present large 

amounts of information while at the same time facilitating social involvement among 

users. The Responsive theme was used in order to seamlessly accommodate different 

form factors, making the website easy to use from mobile devices, tablets and desktop 

computers. Metadata, as outlined in the data-centric architecture diagram in Figure 3.6, is 

kept in a mysql database. Figure 3.7 contains an execution-centric architecture diagram of 

Logic Capsule. 

Since storage was not integrated due to cost and bandwidth concerns, capsules are 

downloaded to offline storage for long term archiving before publishing a submitted VM. 

This adds redundancy in case a hosted VM later becomes unavailable. 



62 

Future Work 

Hosting of VMs in Logic Capsule is currently the publishing researcher's 

responsibility, though with additional funding this could be hosted centrally. The key to 

doing so would be ensuring enough bandwidth, replication and space to continue smooth 

operations. Maintaining consistent access to the hosted VMs would require not only 

technical measures but also institutional partnerships to prevent a single institution’s 

failure from denying access to the entire system. 

Related work  

Several existing projects produce ad-hoc VMs like CloVR [72], Bio-Linux [73] 

and RSeqFlow[74]. While providing these makes the software easy to use and ready to 

go (not requiring configuration), their usefulness for archiving is hindered by only have 

the latest version available; this is likely due to the large file size. In addition, the 

packages’ continued availability depends on the producing web site. From a reproducible 

research perspective, while these VMs provide a configured environment ready for 

analysis, the exact way a particular study used of the VM would not be available; detailed 

methods sections would bring us back to the current dilemma of relying upon imprecise 

natural language. These VMs are also not centrally catalogued, making it more difficult 

to find them. 

 

Figure 3.7 – Execution-centric architecture for Logic Capsule. Users utilize their 

web browser to interact with Wordpress via the Responsive Theme. Wordpress uses the 

MySQL database to store its information. All of this functionality is implemented on top 

of a linux-based server. 

Responsive 
Theme 

Web Server 
(Apache) 

CMS 
(Wordpress) 

Database 
(MySQL) 

Linux 
Server 



63 

SHARE[69] is a cloud-based VM solution for packaging reproducible research, 

and in many ways approaches the ideals of the system introduced in this paper. One 

distinct advantage of this method is that it can allow the use of copyrighted software due 

to institutional licenses; that software not being made available for download but being 

executed within the confines of an institution. Authors wanting to make available 

preliminary versions of their software might also appreciate the lack of the download 

ability. Running VMs in a remote datacenter also has benefits, such as permitting the use 

of relatively low powered clients (including thin clients, tablets and smartphones), better 

accommodating low-bandwidth connections (which would make downloading difficult) 

and making available vast computational resources that may not be otherwise easily 

available. Unfortunately, this comes with the drawback of many cloud-based solutions: 

reliance on a centralized operator. In the case of a data-center or network outage, instead 

of only preventing new VM downloads everyone would be prevented from making use of 

all VMs hosted in that environment. Lacking the ability to make copies could also reduce 

the chance of successful long-term archival. 

Also focusing on cloud as a solution, [75] introduced a process to reproduce 

computations that involve public cloud computing based resources. It functions by having 

a programmer write logic that can rebuild the environment that was used for a particular 

experiment or analysis, separating the logic used for building the base VMs from that 

used to install and configure the application software and data that reside on top of those 

VMs. In some ways, [75] is complimentary to the solution presented in this paper as it 

represents a method for creating and running VM-based computations (continuing to 

keep the bulk of the configuration expertise needed with the creator as opposed to the end 



64 

user) while this paper deals more in making those packages available and findable. It 

does not on its own address some of the other requirements for having a reproducible 

research system, such as ensuring that all of the software prerequisites continue to be 

available as well as ensuring the continued availability of the package itself. 

Non-virtualization-based solutions also exist, though so far they have tended to 

been applicable to very specific scenarios or have restrictive environments. Galaxy 

provides a workbench for genomics studies that allows for direct linking to results that 

display each step taken to generate them[76]. Sweave allows code using the popular R 

system to be embedded into papers written using LaTex[77]. 

Conclusions  

A VM-based archive used for reproducible research is practical, possible and 

provides an ideal environment for the long-term archiving for appropriate scholarly 

works. It addresses the archival, reproducible research, format obsolescence, and ease of 

use concerns that have been expressed by the scientific community. By making research 

more accessible, such a service stands not only to improve the quality of science across 

many fields but also improves its productivity. At the same time, there are research 

questions that need to be addressed in order to make such a service more comprehensive. 

These include referencing large data sets and reducing the overhead for the storage and 

transfer VMs, though increasing bandwidth and decreasing storage costs might mitigate 

the latter. 



65 

References 

1. Menezes AJ, Van Oorschot PC, Vanstone SA: Handbook of applied 

cryptography. Boca Raton: CRC Press; 1997. 

2. Ducut E, Liu F, Fontelo P: An update on Uniform Resource Locator (URL) 

decay in MEDLINE abstracts and measures for its mitigation. BMC Med 

Inform Decis Mak 2008, 8:-. 

4. Wren JD: URL decay in MEDLINE - a 4-year follow-up study. Bioinformatics 

2008, 24:1381-1385. 

9. Wren JD, Johnson KR, Crockett DM, Heilig LF, Schilling LM, Dellavalle RP: 

Uniform resource locator decay in dermatology journals - Author attitudes 

and preservation practices. Arch Dermatol 2006, 142:1147-1152. 

10. Ioannidis JPA, Allison DB, Ball CA, Coulibaly I, Cui XQ, Culhane AC, Falchi 

M, Furlanello C, Game L, Jurman G, et al: Repeatability of published 

microarray gene expression analyses. Nature Genetics 2009, 41:149-155. 

12. Wicherts JM: Psychology must learn a lesson from fraud case. Nature 2011, 

480:7-7. 

17. The Internet Archive [http://www.archive.org/web/web.php] 

18. Eysenbach G, Trudell M: Going, going, still there: Using the WebCite service 

to permanently archive cited web pages. Journal of Medical Internet Research 

2005, 7:2-6. 

20. Peng RD: Reproducible Research in Computational Science. Science 2011, 

334:1226-1227. 

21. Key Facts on Digital Object identifier System 

[http://www.doi.org/factsheets/DOIKeyFacts.html] 

47. Hennessey J, Ge S: A cross disciplinary study of link decay and the 

effectiveness of mitigation techniques. Bmc Bioinformatics 2013, 14:S5. 

48. Rothenberg J: Ensuring the Longevity of Digital Documents. Scientific 

American 1995, 272:42-47. 

49. Rosenthal DSH: Format obsolescence: assessing the threat and the defenses. 

Libr Hi Tech 2010, 28:195-210. 

50. Traynor C, Williams MG: Why are geographic information systems hard to 

use? 1995:288-289. 

51. Howe B: Virtual Appliances, Cloud Computing, and Reproducible Research. 

Computing in Science & Engineering 2012, 14:36-41. 

52. Sitemaps.org [http://www.sitemaps.org/] 

53. RDF Primer [http://www.w3.org/TR/2004/REC-rdf-primer-20040210/] 

54. Ensembl Annotated Human Genome Data (MySQL Release 68) 

[https://aws.amazon.com/datasets/2315] 

55. Katayama T, Nakao M, Takagi T: TogoWS: integrated SOAP and REST APIs 

for interoperable bioinformatics Web services. Nucleic Acids Res 2010, 

38:W706-W711. 

56. Brase J: DataCite - A Global Registration Agency for Research Data. 2009 

Fourth International Conference on Cooperation and Promotion of Information 

Resources in Science and Technology 2009:257-261. 

http://www.archive.org/web/web.php
http://www.doi.org/factsheets/DOIKeyFacts.html
http://www.sitemaps.org/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/


66 

57. Wang X, Yu H: How to Break MD5 and Other Hash Functions. In Advances in 

Cryptology – EUROCRYPT 2005. Volume 3494. Edited by Cramer R: Springer 

Berlin Heidelberg; 2005: 19-35: Lecture Notes in Computer Science]. 

58. Jin K, Miller EL: The effectiveness of deduplication on virtual machine disk 

images. In Book The effectiveness of deduplication on virtual machine disk 

images (Editor ed.^eds.). pp. 1-12. City: ACM; 2009:1-12. 

59. Ng C-H, Ma M, Wong T-Y, Lee PPC, Lui JCS: Live deduplication storage of 

virtual machine images in an open-source cloud. In Book Live deduplication 

storage of virtual machine images in an open-source cloud (Editor ed.^eds.). pp. 

80-99. City: International Federation for Information Processing; 2011:80-99. 

60. Linked Virtual Machines [http://pubs.vmware.com/vsphere-

50/topic/com.vmware.wssdk.pg.doc_50/PG_Ch11_VM_Manage.13.4.html] 

61. Ubuntu Cloud Images [http://cloud-images.ubuntu.com/] 

62. Tridgell A: Efficient Algorithms for Sorting and Synchronization. Australian 

National University, 1999. 

63. lrzip: Long Range ZIP or Lzma RZIP [http://ck.kolivas.org/apps/lrzip/] 

64. Data compression programs [http://www.mattmahoney.net/dc/] 

65. Smith MA, Pieper J, Gruhl D, Real LV: IZO: Applications of Large-Window 

Compression to Virtual Machine Management. In LISA. 2008: 121-132. 

66. Lam MSL, Sapuntzakis CP, Chandra RUV, Zeldovich NB, Rosenblum M, Chow 

JE, Brumley DJ: Cache-based system management architecture with virtual 

appliances, network repositories, and virtual appliance transceivers. In Book 

Cache-based system management architecture with virtual appliances, network 

repositories, and virtual appliance transceivers (Editor ed.^eds.). City: Google 

Patents; 2008. 

67. Reich J, Laadan O, Brosh E, Sherman A, Misra V, Nieh J, Rubenstein D: 

VMTorrent: scalable P2P virtual machine streaming. In Book VMTorrent: 

scalable P2P virtual machine streaming (Editor ed.^eds.). pp. 289-300. City: 

ACM; 2012:289-300. 

68. Lagar-Cavilla HA, Whitney JA, Scannell AM, Patchin P, Rumble SM, De Lara E, 

Brudno M, Satyanarayanan M: SnowFlock: rapid virtual machine cloning for 

cloud computing. In Proceedings of the 4th ACM European conference on 

Computer systems. ACM; 2009: 1-12. 

69. Van Gorp P, Mazanek S: SHARE: a web portal for creating and sharing 

executable research papers. Procedia Computer Science 2011, 4:589-597. 

70. QEMU Official OS Support List - MS-DOS: 

[http://www.claunia.com/qemu/objectManager.php?sClass=application&iId=53] 

71. Creating a MS-DOS Virtual PC under Virtualbox 

[https://mylinuxramblings.wordpress.com/2010/12/05/linux-mint-debian-edition-

lmde-first-impressions/] 

72. Angiuoli S, Matalka M, Gussman A, Galens K, Vangala M, Riley D, Arze C, 

White J, White O, Fricke WF: CloVR: A virtual machine for automated and 

portable sequence analysis from the desktop using cloud computing. Bmc 

Bioinformatics 2011, 12:356. 

73. Bio-Linux 6.0 [http://nebc.nox.ac.uk/tools/bio-linux] 

http://pubs.vmware.com/vsphere-50/topic/com.vmware.wssdk.pg.doc_50/PG_Ch11_VM_Manage.13.4.html
http://pubs.vmware.com/vsphere-50/topic/com.vmware.wssdk.pg.doc_50/PG_Ch11_VM_Manage.13.4.html
http://cloud-images.ubuntu.com/
http://ck.kolivas.org/apps/lrzip/
http://www.mattmahoney.net/dc/
http://www.claunia.com/qemu/objectManager.php?sClass=application&iId=53
http://nebc.nox.ac.uk/tools/bio-linux


67 

74. Wang Y, Mehta G, Mayani R, Lu JX, Souaiaia T, Chen YH, Clark A, Yoon HJ, 

Wan L, Evgrafov OV, et al: RseqFlow: workflows for RNA-Seq data analysis. 

Bioinformatics 2011, 27:2598-2600. 

75. Klinginsmith J, Mahoui M, Wu YM: Towards Reproducible eScience in the 

Cloud. 2011:582-586. 

76. Goecks J, Nekrutenko A, Taylor J, Galaxy T: Galaxy: a comprehensive 

approach for supporting accessible, reproducible, and transparent 

computational research in the life sciences. Genome Biol 2010, 11. 

77. Leisch F: Sweave: Dynamic generation of statistical reports using literate 

data analysis. In Compstat. Springer; 2002: 575-580. 

 



68 

APPENDIX 

From Chapter 2 – Link decay 

Readme 

Files in this directory were used for processing URLs as well as 

checking their statuses. I hope they are helpful to you! 

 

They are stated roughly in the order of running. 

 

Python programs are written for python version 2.6 or 2.7. Tunables can 

be found at the top of each file. 

R programs were run with Revolution R, Community 6, which is based on R 

2.14.2. 

 

For the programs that take CSV files for input, the most important 

columns are url and PY (Published Year). All others will be passed 

along untouched. 

 

The copyrights for all files contained herein are licensed as follows: 

Copyright (c) 2013, Jason Hennessey 

All rights reserved. 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions are 

met: 

 

    -Redistributions of source code must retain the above copyright 

notice, this list of conditions and the following disclaimer. 

    -Redistributions in binary form must reproduce the above copyright 

notice, this list of conditions and the following disclaimer in the 

documentation and/or other materials provided with the distribution. 

    -The names of contributors may not be used to endorse or promote 

products derived from this software without specific prior written 

permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 

IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 

HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

 

[you may find the original at http://opensource.org/licenses/BSD-3-

Clause] 

  

http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-3-Clause


69 

If you use these files in your published work, it would be appreciated 

if you could cite this paper. 

 

For any questions on these files, you may contact: 

jason.hennessey@jacks.sdstate.edu 

 

--- The Files --- 

README.txt: 

 This very important documentation :) 

 

extract_urls.py: 

Output one URL per line from a tab-delimited file (such as that output 

by ISI Web of Science) to a CSV. 

New columns (in addition to including all others): 

 extractText: A little bit of text surrounding the URL for some 

additional context 

 url_num: URL number in this abstract; starts at 0 

 url 

 host: hostname part of the URL 

 dom: Top level domain name of host 

 

Example: 

 $ python extract_urls.py articles.txt urls.csv 

 

Note: short descriptions of additional fields may be found at: 

http://images.webofknowledge.com/WOKRS410B4/help/WOS/h_fieldtags.html 

 

scheduler.py: 

Meant to be run once a day (perhaps from cron) in order to schedule 

check_urls_web.py to be run at random times. 

Requires the "at" command from a Unix-like environment. 

Example: 

 $ python /home/user/scheduler.py 

 

check_urls_web.py: 

Scans a list of URLs and, in a parallel fashion, checks to see if they 

are still active and valid. 

Using the same status for duplicate URLs. 

Takes a CSV for input, and outputs a CSV with the additional fields of 

"web<date&time>" and "web_reason<date&time>". 

For example:  

 web2011-04-17-11-26,web_reason2011-04-17-11-26 

Can either have separate input and output files or, if just one file is 

specified, will overwrite the specified file.  

Example: 

 $ python check_urls_web.py urls.csv 

 

check_urls_archived.py 

Checks whether URLs are included in the Internet Archive or WebCite. 

Like check_urls_web.py, takes CSV files as input and output. Creates 

new columns for each archival method requested, the names for which 

include the date.  

Example:  

 $ python check_urls_web.py urls.csv 

 

submit_urls.py 



70 

Submits URLs to either the Internet Archive Wayback Machine or WebCite 

that have both a successful web status and are not currently present in 

that archive. 

Lots of delays and other niceness built in so as to not overwhelm the 

servers. 

 

Currently depends on the 2011 web statuses, and uses the same "web 

present" status as the analysis used (up >= 90% of the time). This can 

be changed by modifying testUrls(). 

 

Unlike the check* programs, this one depends on finding web and archive 

status columns in addition to the url column. 

 

Called as: <program> <-i|-w|-iw> <input file> <output file> [-c 

output_column to continue] 

If -c passed, uses output_column in the <output file>[-n] to continue 

from where the previous run left off. Creates a new filename of <output 

file>-n where n is incremented and starts at 1. Use only the basename 

for 

<output file> and the program will figure out the latest one to use 

 

Example: 

$ python submit_urls.py -iw urls.csv urlsSubmitted.csv 

 

For R files: 

SHOW_THINKING marks some of the thought processes that went into 

decisions that were made, and has primarily been left FALSE for the 

whole development period. 

 

Near the top of stats.R, there are two functions: installLibs() and 

loadLibs() 

The commands in installLibs() will need to be run before things will 

work. 

If not running all files in order, loadLibs() canhelp during 

development to load the most used libraries. 

 

analysis/common_raw.R: 

Handles construction of the usable dataset. 

Takes as input the CSV outputted by the various python files above. 

Because the run could take a while, a few optimizations (such as saving 

RData files) were used to speed development. If you are using these, 

change READ_CACHE, WRITE_CACHE and CACHE_FILENAME to suit your needs. 

 

If modifying common_raw.R extensively, you can change the commented-out 

save/load statements to use an RData file instead of a csv every time 

(which is slower). 

 

You will have to modify the first read.csv() call to point to the 

proper input file. 

 

common_raw.R is meant to be source()'d from stats.R 

 

analysis/output.txt: 

The raw output from stats.R when run against our data set. 

 

analysis/stats.R: 

Primary statistical analysis file. 



71 

 

analysis/WOSstats.R: 

For calculating some of the fit statistics with Web of Science data.  



72 

extract_urls.py 

#!/usr/bin/python 

 

# Version 1.2 of the URL extractor 

# Copyright 2013, Jason Hennessey. See README.txt for license. 

 

# Extracts the URLs from a tab-delimited file, such as that output by 

ISI Web 

# Of Science and output them to a CSV 

 

 

### CHANGELOG 

# v1.2: Added 'badchars', which will prevent disjoint URL joining 

#       - Added single quote and charat to the badendings, which will 

be 

#       stripped 

#       - Added logic in matchUrls() to eliminate duplicate URLs from 

the same 

#       article 

 

 

import csv,re 

 

# Unlikely endings for URLs to be stripped 

badendings = '.":;)}\'<>[]' 

 

# Characters that won't be in a URL component 

badchars = ['<','>','\'', '\"', '\`'] 

            

# Number of characters before a URL to include for informational 

purposes 

appendExtraStart = 30  

 

# Number of characters after a URL to include for informational 

purposes 

appendExtraEnd = 60 

 

# These are some statistics kept for informational purposes 

corrected = 0 

total = 0 

linecnt = 0 

 

firstY = 3000 # First year seen -- will always be rounded down to 

lowest 

lastY = 0 # Last year seen -- will always be rounded up to highest 

 

filters = [re.compile("^\S*/\S*"),  # Look for a slash in the block 

           re.compile("^\S*\.html?"), # Look for .htm[|l] 

           re.compile("^~\S*"), # Catch spaces then tilde 

           re.compile("^\.\S+"), # If the domain name is in there 

           re.compile("^\S+\.\S*")] # Try to catch latent domain names 

                                    # Common error is: "www. 

domain.edu" 

 

http_next = re.compile("^\S*http\S*") # Find http in the next word 



73 

 

def addMore(extraStr): 

        '''Look for trailing URL stuff separated by a space. 

        Returns a tuple containing (any extra, a relative index of the 

last 

        character scanned to''' 

 

        if len(extraStr) < 2 or extraStr[0] != ' ' or extraStr[1] in 

badchars: 

            return ('',0) 

 

        # Lop off the first space 

        extraStr = extraStr[1:] 

 

        # Having "http" in the next word is a show stopper, since that 

        # indicates the start of a new URL 

        if http_next.search(extraStr) != None: 

            return ('',0) 

 

        # Look for each of the regexps 

        for regexp in filters: 

            a = regexp.search(extraStr) 

            if a != None: 

                end = a.end() 

                ret = extraStr[:a.end()] 

                global corrected 

                corrected += 1 

                extra, newend = addMore(extraStr[end:]) 

                return ret + extra, newend + end 

         

        return ('',0) # Didn't find anything this time 

 

#url_patt = re.compile("([0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-

9]{1,3}|(((news|telnet|nttp|file|http|ftp|https)://)|(www|ftp)[-A-Za-

z0-9]*\\.)[-A-Za-z0-9\\.]+)(:[0-9]*)?/[-A-Za-z0-

9_\\$\\.\\+\\!\\*\\(\\),;:@&=\\?/~\\#\\%]*[^]'\\.}>\\),\\\"]", 

re.IGNORECASE) 

 

# Matches just the hostname portion 

#url_patt = re.compile("https?://[a-zA-Z0-9\-\.]*", re.IGNORECASE) 

 

# Easy expression... let's start this way 

# Ensure there is at least one . somewhere... 

url_patt = re.compile("(?:ht|f)tps?://[a-zA-Z0-9\-]+\.[^\s\[\]\)]*") 

 

def matchUrls(urlStr): 

 

        '''Examines an abstract and returns a list containing tuples 

of: 

        (URL, start_offset, end_offset)''' 

 

        urls = [] 

         

        # Translate all commas into .'s. Sometimes these get mistaken. 

Also, 

        # less chance for the output CSV to be corrupted 

        urlStr = urlStr.replace(',', '.') 



74 

 

        # Replace improbable/likely OCR bug ' .' with '.' 

        urlStr = urlStr.replace(' .', '.') 

 

        # Replace instances of "similar to" with "~", as that is how 

the OCR 

        # seems to have sometimes translated it 

        urlStr = urlStr.replace('/ similar to ', '/~') 

        urlStr = urlStr.replace('/similar to ', '/~') 

        urlStr = urlStr.replace('/similar to', '/~') 

        urlStr = urlStr.replace('/ similar to', '/~') 

        urlStr = urlStr.replace('/(similar to) ', '/~') 

        urlStr = urlStr.replace('/(similar to)', '/~') 

        urlStr = urlStr.replace('/ (similar to)', '/~') 

 

 

        matches = url_patt.finditer(urlStr) 

        found = [] 

 

        prev_urls = set() 

 

        # Look for more OCR errors where there is a 

URL<space>continued_URL 

        for match in matches: 

            start = match.start() 

            end = match.end() 

            urlMatch = urlStr[start:end] 

 

            # Check for any additional things that might have been 

mistaken 

            # due to OCR 

            extraStr, extraEnd = addMore(urlStr[end:]) 

            urlMatch += extraStr 

            pre_len = len(urlMatch) 

            urlMatch = urlMatch.rstrip(badendings) 

            extraEnd -= pre_len - len(urlMatch) 

 

            # Check if we've already recorded this URL for this article 

            if urlMatch in prev_urls: 

                continue 

            prev_urls.add(urlMatch) 

            found.append((urlMatch, start, end + extraEnd)) 

 

        return found 

 

from urlparse import urlparse 

 

def extractUrls(inCSV, outCSV): 

       '''Extracts the URLs from a passed-in DictReader 

        Outputs to the given csv.writer(). We write the header to 

outCSV''' 

 

       global firstY,lastY, appendExtraStart, appendExtraEnd, linecnt 

 

       for line in inCSV: 

           # Search for URLs in the abstract 

           linecnt += 1 



75 

 

           abstract = line['AB'] 

           urls = matchUrls(abstract) 

 

           # Update the min/max year if required 

           year = int(line['PY']) if line.has_key('PY') else '' 

           if year > lastY: 

               lastY = year 

 

           if year < firstY: 

               firstY = year 

 

           url_num = 0 

           for url, start, end in urls: 

               # First - make sure it can be parsed 

               # In practice, urlparse() takes pretty much anything, 

but one 

               # can hope 

               parsed = host = '' 

               try: 

                   parsed = urlparse(url) 

               except: 

                   continue 

 

               host = parsed.hostname 

               parts = host.split('.') 

               if len(parts) > 1: 

                       dom = parts[-1] if not host.endswith('.') else 

parts[-2] 

               else: 

                       dom = '' 

 

               # Fix up start and end indexes to be included as a 

snippet 

               # Due to replacements these may not be exact, but 

               # the appendExtraStart and appendExtraEnd parameters 

should give enough 

               # leeway 

               if start - appendExtraStart < 0: 

                   start = 0 

               else: 

                   start = start - appendExtraStart 

                

               endIdx = len(abstract) 

               if end + appendExtraEnd > endIdx: 

                   end = endIdx 

               else: 

                   end = end + appendExtraEnd 

 

               line['extraText'] = abstract[start:end] 

               line['url_num'] = url_num 

               line['url'] = url 

               line['host'] = host 

               line['dom'] = dom 

 

               outCSV.writerow(line) 

 



76 

               global total 

               total += 1 

               url_num += 1 

 

import sys 

def main(args = sys.argv): 

    '''<program> <input file> <output-file>. Use "-" for stdin or 

stdout''' 

    inStr = args[1] 

    outStr = args[2] 

 

    import time 

    begin = time.time() 

 

    inF  = sys.stdin if inStr == "-" else open(inStr, "rU") 

    outF = sys.stdout if outStr == "-" else open(outStr, "wb") 

 

    try: 

        inCSV = csv.DictReader(inF, dialect="excel-tab") 

 

        # Calculate list of outputted fields 

        # Consists of new ones + sorted old ones 

        outFields = ['url', 'host', 'url_num', 'extraText', 'dom'] 

        outFields.extend(sorted(inCSV.fieldnames))  

 

        outCSV = csv.DictWriter(outF, outFields, dialect="excel") 

 

        # Create and write a header row 

        header = dict() 

        for field in outFields: 

            header[field] = field 

        outCSV.writerow(header) 

 

        extractUrls(inCSV, outCSV) 

 

    finally: 

        inF.close() 

        outF.close() 

 

    print "Total URLs corrected/processed (%.1f%%) for %s[lines = %d]:" 

\ 

    % ((corrected * 100)/(total + .0001), inStr, linecnt), corrected, 

total, \ 

    "Year range: %d-%d" %(firstY,lastY) 

    print "Total runtime: %d seconds" % (time.time() - begin) 

 

 

if __name__ == "__main__": 

    main() 

  



77 

scheduler.py 

#!/usr/bin/python 

 

### Intended to be run once a day (preferably at midnight) to schedule 

### 3 random runs during a day of a given program 

### Will only schedule runs between (midnight + spacing/2) and 

(midnight + 24 

### hours - spacing/2) in order to adhere to the spacing rules 

### Copyright 2013, Jason Hennessey. See README.txt for license. 

 

# Tunables 

spacing = 2 # Minimum time (in hours) by which runs must be separated 

spacing_secs = spacing * 3600 

num     = 3 # Number of times to schedule the script per day 

 

 

cwd = "/home/user/" 

cmdFile = "run_check_urls_web.txt" 

 

log = cwd + "/scheduler.log" 

 

 

from datetime import datetime, timedelta 

import random 

 

def getTimes(n): 

    '''Generate a list of 'num' times spaced 'spacing' number of hours 

apart''' 

    times = [] 

 

    # When is it? 

    now = datetime.now() 

 

    # Obtain midnight for calculations 

    midnight = datetime(now.year, now.month, now.day) 

 

    early = midnight + timedelta(hours=spacing/2) 

    late = midnight + timedelta(days=1) - timedelta(hours=spacing/2) 

 

    span = (late - early).seconds 

 

    # Initially populate times with integers; convert them to datetime 

    # afterwards 

    times = [random.randint(0,span)] # Pick an initial time 

    while len(times) < n: 

        candidate = random.randint(0,span) 

        tooClose = [x for x in times if abs(x - candidate) < 

spacing_secs] 

        if not tooClose: 

            times.append(candidate) 

 

    # Return times converted to datetime type 

    return [early + timedelta(seconds=x) for x in times] 

 

def logTimes(log, cmds): 



78 

    outF = open(log, "a") 

 

    outF.write("Scheduler running at %s\n" 

%(datetime.now().isoformat(),)) 

    for x in cmds: 

        outF.write("%s\n" % x) 

    outF.write('\n') 

 

    outF.close() 

 

import os 

def scheduleTimes(times): 

    '''Schedule (using at) the times listed. Returns a list of strings 

executed''' 

    os.chdir(cwd) 

 

    cmds = [] 

    for t in times: 

        execute = "at -f %s -t %s" % (cmdFile, 

t.strftime('%Y%m%d%H%M.%S')) 

        os.system(execute) 

        cmds.append("%s # %s" % (execute, t.ctime())) 

 

    return cmds 

 

import sys 

def main(args = sys.argv): 

    # Obtain a list of times 

    times = getTimes(num) 

 

    # Schedule the runs 

    cmds = scheduleTimes(times) 

 

    # Log  

    logTimes(log, cmds) 

 

if __name__ == "__main__": 

    main() 

  



79 

check_urls_web.py 

#!/usr/bin/python 

 

### Test URLs to see if they are valid or not. 

### Requires python 2.6 

### v1.1 

### Copyright 2013, Jason Hennessey. See README.txt for license. 

 

import urllib2 

from urllib2 import HTTPError, URLError, urlopen 

from httplib import HTTPException 

from urlparse import urlparse 

 

import threading 

 

import socket 

 

from multiprocessing import Pool 

import sys, time, csv, re 

 

# URL cache so we don't recheck the same URLs 

# Key: url Value: (success, code) 

urlcache = dict() 

 

## Tunables 

drop_duplines = False # Whether to omit entries for duplicate URLs 

                      # We will always use a previous lookup if one 

                      # is available in the cache 

 

timeout = 15 # socket timeout in seconds 

processes = 15 # Number of processes to create 

 

# These are some statistics kept for informational purposes 

success = 0 

success_temp = 0 

total = 0 

 

firstY = 3000 # First year seen -- will always be rounded down to 

lowest 

lastY = 0 # Last year seen -- will always be rounded up to highest 

 

def process(line, fields): 

    code = fetch = parsed = scheme = None 

 

    try: 

        global timeout 

        parsed = urlparse(line['url']) 

        scheme = parsed.scheme 

 

        req = urllib2.Request(line['url']) 

 

        # Adjust user-agent to be a desktop browser 

        req.add_header('User-Agent', 'Mozilla/5.0 (Windows; U; Windows 

NT 6.1; '\ 

        'en-US; rv:1.9.2.13) Gecko/20101203 Firefox/3.6.13') 



80 

 

        fetch = urlopen(req, timeout=timeout) 

 

    except HTTPError, e: 

        code = e.code 

    except URLError, e: 

        error = str(e.reason) 

        if ("http" in scheme and "Name or service not known" in error) 

or \ 

            ("ftp" in scheme and "No address associated with hostname" 

in \ 

            error): 

            code = "lookup failure" 

        elif "Connection refused" in error: 

            code = "connection refused" 

        else: 

            code = error 

    except HTTPException: 

        code = "unknown http error" 

    except KeyboardInterrupt: 

        print "Caught KeyboardInterrupt; exiting" 

        sys.exit() 

    except: 

        code = "unknown exception raised" 

    else: 

        fetch.close() 

 

    if (code is None): 

        status = 'True' 

        code = fetch.getcode() 

    else: 

        status = 'False' 

 

    statusF, reasonF = fields 

    line[statusF] = status 

    line[reasonF] = code 

 

    return (line,fields) 

 

outList = [] 

 

outLock = threading.Lock() 

 

# Assuming this runs in the context of the parent 

def anotherIn((line, (statusF, reasonF))): 

    global outList,outLock,total,success,success_temp,urlcache 

 

    with outLock: 

        i = len(outList) 

        outList.append(line) 

    if i % 100 == 0 and i > 0: 

        print "Success rate for group %d:" % (i,), success_temp, '%' 

        success += success_temp 

        success_temp = 0 

 

    total += 1 

    if line[statusF] == 'True': 



81 

        success_temp += 1 

 

    # Update the cache 

    urlcache[line['url']] = (line[statusF], line[reasonF]) 

 

def deferredIn(deferred, (statusF, reasonF)): 

    '''Function to complete entries not passed along due to caching''' 

    global urlcache 

     

    results = [] 

    for line in deferred: 

        status, code = urlcache[line['url']] 

        line[statusF] = status 

        line[reasonF] = code 

        results.append(line) 

 

    return results 

 

def testUrls(pool, inCSV, outCSV, fields): 

    '''pool: process Pool, inCSV: DictReader, outCSV: plain CSV 

writer''' 

 

    begin = time.time() 

    print "Starting", time.ctime() 

 

    global firstY,lastY,urlcache,outList,outLock 

 

    # Special treatment given to previously-outputted files: If we see 

    # a "success" line, pass it along verbatim (we're only trying to 

refine 

    # the failed ones) 

    recycled = True if "web" in inCSV.fieldnames else False 

 

    deferred = [] # List of dict()'s 

 

    # Fill the input queue 

    count = 0 

    for line in inCSV: 

        count += 1 

 

        if recycled and line['web'] == 'True': 

            anotherIn((line, fields)) 

            continue 

                 

        url = line['url'] 

        if url not in urlcache: 

            urlcache[url] = None 

            pool.apply_async(process, (line,fields), 

callback=anotherIn) 

            year = int(line['PY']) 

 

            # Keep year stats 

            if year > lastY: 

                lastY = year 

            if year < firstY: 

                firstY = year 

        else: 



82 

            # URL is in cache 

            if drop_duplines: 

                continue 

 

            # Add to the deferred list to be completed at the end 

            deferred.append(line) 

             

    cachecount = count - len(urlcache) if drop_duplines else 

len(deferred) 

 

    if drop_duplines: 

        print "%d lines dispatched (%d omitted). Waiting..." % 

(count,cachecount),\ 

        time.ctime() 

    else: 

        print "%d lines dispatched (%d cached). Waiting..." % 

(count,cachecount),\ 

        time.ctime() 

     

    # Need to wait for the rest of the jobs to finish, 

    # then write out their data 

    pool.close() 

    pool.join() 

 

    print "Workers done. outList = %d" % (len(outList),) 

    print time.ctime() 

 

    # Incorporate the deferred entries 

    outList.extend(deferredIn(deferred,fields)) 

 

    from operator import itemgetter 

 

    # Sort the list 

    outList.sort(key=itemgetter('PY')) 

 

    # Output format 

 

    for line in outList: 

        outCSV.writerow(line) 

 

    print "Took", round(time.time() - begin), "seconds total" 

 

    global success,success_temp,total 

    success += success_temp 

 

    print "Total found/total (%.1f%% success rate) (deduplicated %d):" 

\ 

    % ((success * 100)/((count - cachecount) + .0001), cachecount), 

success,\ 

    count, "Year range: %d-%d" % (firstY,lastY) 

 

 

import fcntl 

def main(args = sys.argv): 

    '''Called as: <program> <input file> [output file] 

    If output not specified, input file is overwritten with results''' 

 



83 

    import time 

    begin = time.time() 

 

    inStr = args[1] 

    outStr = args[2] if len(args) >= 3 else None 

 

    inF  = sys.stdin if inStr == "-" else open(inStr, "rU") 

 

    # If input and output files are the same, create a tempfile 

 

    outF = None 

    sameFile = False 

    if outStr == None or (inStr == outStr and outStr != "-"): 

        import tempfile 

        sameFile = True 

        outF = tempfile.NamedTemporaryFile(mode="wb", delete=False) 

    else: 

        outF = sys.stdout if outStr == "-" else open(outStr, "wb") 

 

    pool = None 

    normalFinish = False # Boolean to see if we finished normally 

                         # and thus should overwrite an existing output 

file 

    try: 

        # Take exclusive lock on input file 

        if inStr != "-": 

            fcntl.flock(inF, fcntl.LOCK_EX) 

 

        inCSV = csv.DictReader(inF, dialect="excel") 

 

        # The newly generated columns are formatted: 

        # web-YYYY-MM-DD-HH-MM 

        import datetime 

        cur = datetime.datetime.now() 

        timeFmt = "%04d-%02d-%02d-%02d-%02d" % (cur.year, cur.month, 

cur.day,\ 

                                      cur.hour, cur.minute) 

 

        statusF = 'web' + timeFmt 

        reasonF = 'web_reason' + timeFmt 

 

        outFields = [statusF, reasonF] 

        inFields = inCSV.fieldnames 

 

        # Check for empty input 

        if not inFields: 

            print "Error: empty input file" 

            sys.exit(1) 

 

        # Ensure we aren't creating duplicate fields 

        shouldBeEmpty = [x for x in inFields if x in outFields] 

        if len(shouldBeEmpty) > 0: 

            print "Error: column(s)", shouldBeEmpty ,"in input and 

output" 

            sys.exit(1) 

 

        # Take all incoming fields and prepend the new ones  



84 

        outFields.extend(inFields) 

 

        # Use commas for output 

        outCSV = csv.DictWriter(outF, outFields, dialect="excel") 

 

        # Create and write a header row 

        header = dict() 

        for field in outFields: 

            header[field] = field 

        outCSV.writerow(header) 

 

        # Start process pool 

        global processes 

        pool = Pool(processes=processes) 

 

        fields = (statusF, reasonF) 

        testUrls(pool, inCSV, outCSV, fields) 

 

        normalFinish = True 

 

    except KeyboardInterrupt: 

        print "Main caught Keyboard. Exiting..." 

    finally: 

        if inStr != "-": 

            fcntl.flock(inF, fcntl.LOCK_UN) 

            inF.close() 

        if outStr != "-": 

            outF.close() 

 

        # If we used a temporary file, move the temp file to the input 

file, 

        # since that was what was requested 

        if sameFile and normalFinish: 

            import shutil 

            shutil.move(outF.name, inStr) 

 

        if pool: 

            pool.terminate() 

 

        if not normalFinish: 

            print "Did NOT finish normally" 

 

 

    print "Total runtime: %d seconds" % (time.time() - begin) 

 

if __name__ == "__main__": 

    main() 

  



85 

check_urls_archived.py 

#!/usr/bin/python 

 

### Copyright 2013, Jason Hennessey. See README.txt for license. 

### Test URLs to see if they are valid or not. Purposely unthreaded, 

since we're 

### utilizing finite server resources 

### Requires python 2.6. 

### V1.1 

 

### Dependencies: httplib2 

 

# v1.1: Reduced tries to 4 after seeing that it's an optimal 

time/reward 

# balance 

 

 

## Tunables 

timeout = 60 # socket timeout in seconds 

 

give_status = 100 # Print status every 100 entries 

 

ia_enabled = True  # Internet Archive checking enabled 

wc_enabled = True # WebCitation.org checking enabled 

 

max_tries = 4   # Maximum number of tries if we get a 503 or other 

transient 

                # response from IA 

 

# Configure methods 

methods = set() 

if ia_enabled: 

    methods.add('ia') 

 

if wc_enabled: 

    methods.add('wc') 

 

# URL cache so we don't recheck the same URLs 

# Key: url Value: (success, code) 

# One URL cache per method 

urlcache = dict() 

 

for method in methods: 

    urlcache[method] = dict() 

 

## Statistics 

firstY = 3000 # First year seen -- will always be rounded down to 

lowest 

lastY = 0 # Last year seen -- will always be rounded up to highest 

 

import sys, time, csv 

 

# URL to which we append the desired URL 

ia_url = 'http://web.archive.org/web/*/' 

wc_url = 'http://www.webcitation.org/query?returnxml=true&url=' 



86 

 

 

# URL fetching stuff... 

import httplib2 

http = httplib2.Http(cache=".cache", timeout=timeout) 

 

from xml.dom import minidom 

 

def process(method, url): 

  """ Attempts to access a URL's status with the given mechanism. 

Returns the 

  status (True = Suceess; False = Failure). 

   

  Methods consist of: ia (internet archive), wc (webcitation.org) and 

web (if 

  URL is still live; not implemented)""" 

 

  code = resp = None 

 

  for tries in xrange(max_tries): 

    if tries > 0: 

        time.sleep(tries * 1.1) # Increase our backoff if the server is 

too busy 

    try: 

        if method == 'ia': 

            ialine = ia_url + url 

            resp, data = http.request(ialine, "HEAD") 

 

            status = int(resp['status']) 

 

            if status == 404: 

                return False 

            elif status == 200: 

                return True 

            elif status == 403: 

                return 'CrawlingBlocked' # Crawling blocked by 

robots.txt 

            elif status == 503: 

                print "URL(ia):", url, "status = ", status, "try", 

tries 

                continue # Let's try again 

            else: 

                print "URL(ia):", url, "status = ", status 

 

        elif method == 'wc': 

            # For Webcitation, we parse the XML returned to determine 

if 

            # the URL is archived 

            wcline = wc_url + url 

            resp, data = http.request(wcline, "GET") 

 

            status = int(resp['status']) 

            if status != 200: 

                print  "URL(wc):", url, "status = ", status 

 

            # Embed in "try" in case XML isn't what we expected 

            # Expected XML format: 



87 

            # (per 

http://webcitation.org/doc/WebCiteBestPracticesGuide.pdf) 

            #   Success is <queryresult><resultset><result status="... 

            #   Error is <queryresult><error> 

            try: 

                xml = minidom.parseString(data) 

 

                # For readability below. 

                # FC should point to either <resultset> or <error> 

                FC = xml.firstChild.firstChild 

 

                if FC.tagName == 'error': 

                    return False 

 

                for x in FC.childNodes: 

                    if x.attributes['status'].value == 'success': 

                        return True 

 

                # No success entry found, but request wasn't in error 

either 

                return 'NoSuccessXML' 

            except: 

                return 'UnexpectedXML' 

 

        else: 

            # Unimplemented method 

            print "Unimplemented method in process()!" 

            sys.exit() 

    except KeyboardInterrupt: 

        print "Caught KeyboardInterrupt; exiting" 

        sys.exit() 

    except: 

        code = "unknown exception raised" 

 

    return False 

  return '503retryExpired' # We couldn't get it after trying several 

times 

 

def testUrls(inCSV, outCSV, methodFields): 

    """Run through the URLs and check them. 

 

     inCSV: DictReader, outCSV: DictWriter, 

     fieldOut: dictionary mapping methods to their output field 

names""" 

 

    begin = time.time() 

    print "Starting", time.ctime() 

 

    global firstY,lastY,urlcache 

    # Special treatment given to previously-outputted statuses: If we 

see 

    # a "success" line, pass it along verbatim (we're only trying to 

refine 

    # the failed ones).  

    inFields = inCSV.fieldnames 

 

    count = 0 



88 

 

    # Run the tests 

    for line in inCSV: 

        count += 1 

 

        if (count % give_status) == 0: 

             print "Completed", count 

 

        # Keep year stats 

        global lastY, firstY 

         

        year = int(line['PY']) 

        if year > lastY: 

             lastY = year 

        if year < firstY: 

             firstY = year 

              

        url = line['url'] 

 

        for method,methodF in methodFields.iteritems(): 

            if url in urlcache[method]: 

                # Try to use a cached value if one exists 

                line[methodF] = urlcache[method][url] 

            else: 

                # Not cached - run it! 

                ret = process(method,url) 

                urlcache[method][url] = line[methodF] = ret 

             

        outCSV.writerow(line) 

 

    print count," lines checked;", methodFields.keys(), time.ctime() 

     

    print "Took", round(time.time() - begin), "seconds total" 

 

def main(args = sys.argv): 

    '''Called as: <program> <input file> <output file>''' 

    inStr = args[1] 

    outStr = args[2] 

 

    import time 

    begin = time.time() 

 

    inF  = sys.stdin if inStr == "-" else open(inStr, "rU") 

    outF = sys.stdout if outStr == "-" else open(outStr, "wb") 

 

    try: 

        inCSV = csv.DictReader(inF, dialect="excel") 

 

        # Keep all incoming fields, and ensure that the ones we want 

are included 

        # for output 

        inFields = inCSV.fieldnames 

        outFields = sorted(list(methods)) # Convert back to list for 

ordering 

        import datetime 

        cur = datetime.datetime.now() 

        timeFmt = "%04d-%02d-%02d" % (cur.year, cur.month, cur.day) 



89 

        fieldOut = {} # dict mapping the methods to their output 

columns 

        for m in methods: 

            fieldOut[m] = m + timeFmt 

 

        outFields = fieldOut.values() 

        outFields.extend(inFields) 

 

        outCSV = csv.DictWriter(outF, outFields, dialect="excel") 

 

        # Create and write a header row 

        header = dict() 

        for field in outFields: 

            header[field] = field 

        outCSV.writerow(header) 

 

        testUrls(inCSV, outCSV, fieldOut) 

 

    except KeyboardInterrupt: 

        print "Main caught Keyboard. Exiting..." 

    finally: 

        if inStr != "-": 

            inF.close() 

        if outStr != "-": 

            outF.close() 

 

    print "Total runtime: %d seconds" % (time.time() - begin) 

 

if __name__ == "__main__": 

    main() 

  



90 

submit_urls.py 

#!/usr/bin/python 

 

### Copyright 2013, Jason Hennessey. See README.txt for license. 

### Submit URLs to archiving engines 

### utilizing finite server resources 

### Requires python 2.6. 

### V1.1 

 

### Dependencies: httplib2 

 

# v1.1: Reduced tries to 4 after seeing that it's an optimal 

time/reward 

# balance 

 

 

## Tunables 

timeout = 300 # socket timeout in seconds. Set high due to WC 

 

give_status = 100 # Print status every 100 entries 

 

inArchiveDate = '2012-10-18' # Which archival fields to use 

 

minSleep = 3840 # Min time to sleep during WC's rate limiting 

maxSleep = 4*3600 # Max time to sleep during backoffs 

 

# For time-related names 

import datetime 

cur = datetime.datetime.now() 

timeFmt = "%04d-%02d-%02d" % (cur.year, cur.month, cur.day) 

 

# Configure debug logging 

debugFileName = "debugSubmitUrls" + timeFmt + ".txt" 

debugFile = None 

 

# Methods- set that holds which methods (ia, wc) we'll use 

methods = set() 

 

# URL cache so we don't recheck the same URLs 

# Key: url Value: (success, code) 

# One URL cache per method 

urlcache = dict() 

 

import sys, time, csv 

 

# URL to which we append the desired URL 

ia_url = 'http://liveweb.archive.org/' 

wc_url = 

'http://www.webcitation.org/archive?returnxml=true&email=jason.hennesey

@jacks.sdstate.edu&url=' 

 

# URL fetching stuff... 

 

userAgent = 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; 

rv:1.9.2.13) '\ 



91 

            'Gecko/20101203 Firefox/3.6.13' 

 

httpHeaders = {'User-Agent':userAgent} 

 

import httplib2 

http = None 

#httplib2.debuglevel = 255 

def newHttp(): 

    '''Instantiates a new httplib2 instance. Done as a function so we 

can 

    reinit later if needbe''' 

    global http 

    http = httplib2.Http(timeout=timeout) 

    #http = httplib2.Http(cache=".cache", timeout=timeout) 

 

newHttp() 

 

# For IA archiving - we spawn wget with a temp file to access the URL 

import os,tempfile,subprocess 

devnull = open(os.devnull, "wb") 

 

 

# For processing webcitation responses 

from xml.dom import minidom 

 

# For adding delays in order to be nice users of the archive services 

from datetime import datetime 

import time 

 

# Enforce a minimum delay between requests to be nice to the archive 

servers 

delay   = {'wc':130.0, 'ia':30.0} 

lastRan = {'wc':datetime.min, 'ia':datetime.min} # Use min to avoid an 

initial delay 

 

def delayMin(method): 

    '''Ensure that we sleep a minimum of 'delay' seconds in order to 

    to be nice to the archive servers''' 

 

    timeLen = datetime.now() - lastRan[method] 

    secs = timeLen.microseconds / 1000000.0 + timeLen.seconds + 

timeLen.days * 24*3600 

 

    if secs < delay[method]: 

        time.sleep(delay[method] - secs) 

 

 

import socket,httplib 

 

def webcite(wcline): 

    # For Webcitation, we parse the XML returned to determine if 

    # the URL was archived. It turns out that WC says it archived 

    # everything you throw at it (even if it can't), but maybe it 

    # could be updated 

    try: 

        resp, xmldata = http.request(wcline, "GET", 

headers=httpHeaders) 



92 

    except httplib2.HttpLib2Error, e: 

        print "httplib2 error (", wcline, "): ", e 

        print >>debugFile,"httplib2 error (", url, "): ", e 

        return 'httplib2 error' 

    except socket.error, e: 

        print 'httplib Socket error', e 

        print >>debugFile,'httplib Socket error', e 

        return 'socket' 

    except httplib.HTTPException as e: 

        print >>debugFile, "httplib error:", e 

        return 'httplib error' 

 

    print >> debugFile, xmldata 

 

    if resp.status != 200: 

        print  "URL(wc):", wcline, "status = ", resp.status 

        print  >>debugFile,"URL(wc):", wcline, "status = ", resp.status 

 

    # Check if webcite down 

    if xmldata.find('WebCite is currently unavailable') >= 0: 

        return 'wcDown' 

 

    # Embed in "try" in case XML isn't what we expected 

    # Expected XML format: 

    # (per http://webcitation.org/doc/WebCiteBestPracticesGuide.pdf) 

    #   Success is <queryresult><resultset><result status="... 

    #   Error is <queryresult><error> 

    try: 

        wcXml = minidom.parseString(xmldata) 

 

        res = wcXml.firstChild.getElementsByTagName("resultset")[0] 

 

        # Check for error 

        err = res.getElementsByTagName("error") 

        if len(err) > 0: 

            # Only one seen so far is "rate", though there could be 

others 

            return str(err[0].getAttribute("type")) + "Error" 

 

        res = res.getElementsByTagName("result") 

 

        if len(res) == 0: 

            # No resultset - don't know how to process! 

            return "NoResultNoError" 

 

        res = res[0] 

        status = res.getAttribute('status') 

 

        if status != 'success': 

            return 'status' + status 

 

        shortId = 

res.getElementsByTagName('webcite_id_short')[0].firstChild.data 

 

        return shortId 

    except: 



93 

        # Add fatal error check so that we don't end in an infinite 

loop 

        if xmldata.count("Fatal error"): 

            return 'fatalError' 

        else: 

            return 'UnexpectedXML' 

 

def process(method, url): 

    """Attempts to archive a URL with the given mechanism. Returns the 

    status (True|WC ID = Suceess; False = Failure). 

 

    Methods consist of: ia (internet archive) and wc 

(webcitation.org)""" 

 

    global wcLast, iaLast 

 

    code = resp = None 

    delayMin(method) 

 

    try: 

        if method == 'ia': 

            ialine = ia_url + url 

 

            # Using wget with -O /dev/null doesn't work due to the 

            # --page-requisites dependency processing analyzing an 

empty file, 

            # so we create a tempfile then delete it 

            tempNum,tempName = tempfile.mkstemp()  

            os.close(tempNum) 

 

            # We need to request the page requisites in order to ensure 

            # that they are archived (empirical tests show that ia only 

            # fetches explicitly requested files). 

            # Related files are stored on web.archive.org. Unrelated 

            # files (javascript, surrounding images) are stored on 

            # staticweb.archive.org. 

 

            debugFile.flush() 

 

            status = subprocess.call(['wget','-O',tempName,'--page-

requisites', 

            '-H', '-D','web.archive.org','--exclude-domains', 

            'staticweb.archive.org', '-e', 'robots=off','--wait', 

'.25', 

            ialine],stdin=devnull, stdout=debugFile, stderr=debugFile) 

 

            debugFile.flush() 

 

            os.remove(tempName) # We don't care about the contents of 

the site; we're just 

                                # fetching them so that the IA has them 

 

            iaLast = datetime.now() 

 

            if status == 0: 

                return True 

            else: 



94 

                return 'wgetStatus' + str(status) 

 

        elif method == 'wc': 

            wcline = wc_url + url 

 

            # We attempt to access webcitation in a loop since in the 

past 

            # they've a) either blocked our IP or gone down (socket 

timeout) 

            # b) served up "WebCite has flagged your IP..." errors 

            # 

            # To address these concerns, implement an exponential 

backoff that 

            # resets each time we enter with min and max values shown 

prudent 

            # by experience 

            wDelay = delay['wc'] 

            incDelay = True # Set until the first rateError so we only 

inc 

                            # delay['wc'] once 

 

            tries = 0 

 

            while tries < 10: 

                status = webcite(wcline) 

 

                if status in ['socket', 'rateError', 'UnexpectedXML', 

'wcDown']: 

                    # Exponential backoff 

                    if status == 'rateError': 

                        thisSleep = max(wDelay,minSleep) 

                    else: 

                        thisSleep = wDelay 

                    print "Received status {0}".format(status) 

                    print >> debugFile,time.ctime(),"Received status 

{0} for URL {1}. "\ 

                    "Sleeping {2} seconds (wDelay: {3})".format(status, 

url, thisSleep, wDelay) 

                    debugFile.flush() 

                    time.sleep(thisSleep) 

                    wDelay = min(wDelay*2,maxSleep) 

                    if status == 'rateError' and incDelay: 

                        '''Increment the rate delay so we can avoid 

hitting the 

                        rate limit. Only done the first time we hit a 

rate 

                        limit for a URL.''' 

                        delay['wc'] += 5 # Increment our delay to 

hopefully 

                                         # not hit this again 

                        print >> debugFile,"Incrementing wc delay to",\ 

                        delay['wc'] 

                        incDelay = False 

                    else: 

                        # Socket error - Perhaps something in httplib2 

                        # might not be working so let's create a new 

instance. 



95 

                        newHttp() 

                else: 

                    return status 

 

                # Keep looping if WC is down/limiting us rather than 

proceeding 

                if status not in ['wcDown', 'rateError']: 

                    tries += 1 

 

            else: # while 

                return 'triesExhausted' 

        else: 

            assert False, "Unimplemented method" 

 

    except KeyboardInterrupt: 

        print "Caught KeyboardInterrupt; exiting" 

        sys.exit() 

    finally: 

        lastRan[method] = datetime.now() # update time for minimum 

delay 

 

    assert False,"Shouldn't be here" 

 

 

def testUrls(inCSV, outCSV, methodFields): 

    """Run through the URLs and submit them. 

 

     inCSV: DictReader, outCSV: DictWriter""" 

 

    begin = time.time() 

    print "Starting", time.ctime() 

    print >>debugFile,"Starting", time.ctime() 

 

    inFields = inCSV.fieldnames 

    webFields = [f for f in inFields if f.startswith("web2011")] 

    lenWebFields = len(webFields) 

 

    count = iacount = wccount = 0 

 

    # Run the tests 

    global urlcache 

    for line in inCSV: 

        count += 1 

 

        if (count % give_status) == 0: 

             print "Completed %d urls, ia %d, wc %d" % (count, iacount, 

wccount) 

             print >>debugFile,time.ctime(),\ 

                    "Completed %d urls, ia %d, wc %d" % (count, 

iacount, wccount) 

 

        url = line['url'] 

 

        # Calculate the web metric using the same algorithm as done in 

R 

        # Repeated so that we aren't tossing data back and forth 

between R and 



96 

        # python 

        webT = [line[w] for w in webFields].count('True') * 1.0 

        pTrue = webT / lenWebFields # Percent of true entries 

        web = True if pTrue >= .9 else False 

        print >>debugFile, time.ctime(),\ 

                "URL: {0:25} pTrue:{1:4} web:{2:5}".format(url,pTrue,\ 

                str(web)) 

        debugFile.flush() 

 

        for method,(methodI,methodO) in methodFields.iteritems(): 

            if url in urlcache[method]: 

                # Try to use a cached value if one exists 

                line[methodO] = urlcache[method][url] 

            else: 

                # If not cached, run it as long as it's still alive and 

wasn't 

                # already archived using this method 

                if web and line[methodI] != 'True': 

                    ret = process(method,url) 

                    if method == 'ia': 

                        iacount += 1 

                    elif method == 'wc': 

                        wccount += 1 

                else: 

                    ret = 'Skipped' 

 

                urlcache[method][url] = line[methodO] = ret 

             

        outCSV.writerow(line) 

 

    print "iacount = %d, wccount = %d" % (iacount, wccount) 

    print >>debugFile,"iacount = %d, wccount = %d" % (iacount, wccount) 

     

    print "Took", round(time.time() - begin), "seconds total", 

time.ctime() 

    print >>debugFile,"Took", round(time.time() - begin), "seconds 

total",\ 

                      time.ctime() 

 

def catchup(inCSV,outCSV,inF2,methodFields): 

    '''Copy the already-completed lines from inCSV2 to outCSV, 

    fast-forwarding through inCSV appropriately in the process''' 

 

    begin = time.time() 

 

    inCSV2 = csv.DictReader(inF2, dialect="excel") 

 

    i = 0 

    for line in inCSV2: 

        line2 = inCSV.next() 

        if line['url'] != line2['url']: 

            print "Input and output file do not 

agree.",line['url'],line2['url'] 

            sys.exit("Error in file synchronization") 

 

        # Insert into cache if appropriate 

        url = line['url'] 



97 

        for method,(methodI,methodO) in methodFields.iteritems(): 

            if url not in urlcache[method]: 

                urlcache[method][url] = line[methodO] 

 

        outCSV.writerow(line) 

        i+= 1 

 

    inF2.close() 

 

    print "Reused", i, "lines." 

    print >>debugFile,"Reused", i, "lines in", time.time() - begin, 

"seconds" 

 

def main(args = sys.argv): 

    '''Called as: <program> <-i|-w|-iw> <input file> <output file> [-c 

output_column to continue] 

    If -c passed, uses output_column in the <output file>[-n] to 

continue 

    from where the previous run left off. Creates a new filename of 

<output 

    file>-n where n is incremented and starts at 1. Use only the 

basename for 

    <output file> and the program will figure out the latest one to 

use''' 

 

    if len(args) != 4 and len(args) != 6: 

        print "Too {0} arguments".format('few' if len(args) < 4 else 

'many') 

        sys.exit(main.__doc__) 

 

    # Is this a continuation? 

    cont = False 

    if len(args) == 6 and args[4] == '-c': 

        cont = args[5] 

 

    # Which methods were selected? 

    if 'i' in args[1]: 

        methods.add('ia') 

 

    if 'w' in args[1]: 

        methods.add('wc') 

 

    for method in methods: 

        urlcache[method] = dict() 

 

    if len(urlcache) == 0: 

        # We found no methods. Abort! 

        print "No method selected. Please use -i, -w, or -iw" 

        sys.exit(main.__doc__) 

 

    inStr = args[2] 

    outStr = args[3] 

 

    if not (inStr == '-' or os.path.exists(inStr)): 

        print "Input file does not exist" 

        sys.exit(main.__doc__) 

 



98 

    # In case we are continuing, adjust outStr and inStr2 appropriately 

    if cont: 

        if outStr == '-': 

            print "Error: -c specified while output is set to stdout." 

            sys.exit(main.__doc__) 

 

        if not os.path.exists(outStr): 

            print 'Output file does not exist and -c specified' 

            sys.exit(main.__doc__) 

 

        import itertools 

        for i in itertools.count(1): # find the next unused filename 

            base = outStr + '-' + str(i) 

            validSuffices = ['','.gz','.bz2','.xz'] 

             

            for test in validSuffices: 

                if os.path.exists(base + test): 

                    break 

            else: 

                break # We break here when we *don't* find a file 

 

        inStr2 = outStr if i == 1 else outStr + '-' + str(i - 1) 

        outStr = outStr + '-' + str(i) 

 

    # Debug output 

    global debugFile 

    debugFile = open(debugFileName, "a") 

    print "Logging to", debugFileName 

    print "Continue set to", cont 

    print "Input:", inStr, "Output:", outStr, "inStr2:", inStr2 

    print >>debugFile,"Logging to", debugFileName 

    print >>debugFile,"Continue set to", cont 

    print >>debugFile,"Input:", inStr, "Output:", outStr, "inStr2:", 

inStr2 

 

    import time 

    begin = time.time() 

 

    # Open appropriate files. If there's an error, we'll bail here 

    inF  = sys.stdin if inStr == "-" else open(inStr, "rU") 

    outF = sys.stdout if outStr == "-" else open(outStr, "wb") 

    if cont: 

        inF2 = open(inStr2, "rU") 

 

    try: 

        inCSV = csv.DictReader(inF, dialect="excel") 

 

        # Keep all incoming fields, and ensure that the ones we want 

are included 

        # for output 

        inFields = inCSV.fieldnames 

        outFields = sorted(list(methods)) # Convert back to list for 

ordering 

 

        # Format for this dictionary: 

        #   method : (input column name, output column name) 



99 

        fieldOut = {} # dict mapping the methods to their output 

columns 

 

        for m in methods:# input col          output col 

            fieldOut[m] = (m + inArchiveDate, m + 'Submit' + timeFmt) 

if not cont else \ 

                          (m + inArchiveDate, m + cont) 

 

        outFields = [f[1] for f in fieldOut.values()] 

        outFields.extend(inFields) 

 

        outCSV = csv.DictWriter(outF, outFields, dialect="excel") 

 

        # Create and write a header row 

        header = dict() 

        for field in outFields: 

            header[field] = field 

        outCSV.writerow(header) 

 

        # If continuing, read completed lines from the second input 

file inF2. 

        # This forwards the input pointer for inCSV to where we left 

off. 

        if cont: 

            catchup(inCSV,outCSV,inF2, fieldOut) 

 

        testUrls(inCSV, outCSV, fieldOut) 

    except KeyboardInterrupt: 

        print "Main caught Keyboard. Exiting..." 

    finally: 

        if inStr != "-": 

            inF.close() 

        if outStr != "-": 

            outF.close() 

 

    print "Total runtime: %d seconds. Finishing at" % (time.time() - 

begin), time.ctime() 

    print >>debugFile, "Total runtime: %d seconds. Finishing at" % 

(time.time() - begin), time.ctime() 

 

if __name__ == "__main__": 

    main() 

  



100 

analysis/common_raw.R 

#### Common commands for all analyses. Data is taken directly from CSV 

output 

#### by python program 

#### Copyright 2013, Jason Hennessey. See README.txt for license. 

 

# Check if the parent script set the directory 

if (!"DIR_SET" %in% ls()) { 

  setwd("/path/to/analysis/") 

} 

 

### Tunables 

CACHE_FILENAME = "urls.Rdata" 

 

WRITE_CACHE = FALSE  # Set to TRUE to (re)generate the cache file 

 

READ_CACHE = TRUE 

READ_CACHE = READ_CACHE & !WRITE_CACHE & file.exists(CACHE_FILENAME) # 

Verify the cache is there 

 

 

TOP_SIGCOUNT = 100 # Same tunable used for both domains and sources 

SRC_SIGCOUNT = TOP_SIGCOUNT # Number of URLs a source (like a Journal 

or Conference) must have to be significant 

DOM_SIGCOUNT = TOP_SIGCOUNT # Number of URLs a domain must have to be 

significant 

 

YEAR_MIN = 1996 # Earliest year we want to analyze 

 

# URLs columns to keep (can always add more later) 

keep_columns = c("url","web", "web_pct", 

"depth","PY96","LogTimesCited", 

                 "Source_t", "TimesCited","dom","Dom_top30", 

                 "ia", "wc", "archived", 

                 "FundTextPresent","num_f", "Source_top20", 

                 "Source_top30_t","Source_over100","DocType", 

                 "PM96", "SC") 

 

# If SHOW_THINKING not set by the parent script, initialize it here 

if (! "SHOW_THINKING" %in% ls()) { 

  SHOW_THINKING=FALSE 

} 

 

### Filter data as necessary 

### 'urls_raw' contains the raw, unfiltered output of the python 

programs 

### 'urls' contains the screened variables that we want, one row per 

instance of a URL being published 

### 'uniq' contains one row per URL, with the appropriate variables 

included. 

 

if (READ_CACHE) { 

  load(CACHE_FILENAME) 

} else { 

  ### Process urls_raw into urls. 



101 

  ## These next 3 lines are uncommented initially. After that, we use 

"load" 

  options(stringsAsFactors=FALSE) 

  urls_raw = read.csv("urls.csv", header=T, stringsAsFactors=FALSE) 

  #save(urls_raw, file="urls_raw.RData", compression_level=9) 

  #load("urls_raw.RData") # Saves time if run instead of the above 

   

  ## Elimination round: this section is where we remove URLs for QC 

purposes. 

   

  # Remove positive/negative controls 

  urls = urls_raw[!(urls_raw$TI %in% c("Negative Control","Positive 

Control")),] # Should be 7 

   

  rm(urls_raw) # Not needed anymore 

   

  # Only modelling years 1996-2010 

  urls = urls[urls$PY %in% YEAR_MIN:2010,] 

   

  # Webcitation detected some invalidly-parsed URLs. 

  # Remove them from further analysis. n=18 

  urls = urls[urls$wc2011.05.23 != "UnexpectedXML",] 

   

  if (SHOW_THINKING) { 

    # Examine journals where a large number of URLs in a journal are 

from the same host 

    # within a given year. 

    # These types of URLs could represent things we're not after, such 

as pointing to the 

    # PDF version of a paper or promoting the website of the journal. 

    # We set a minimum number of 20 URLs per journal to avoid small 

sample size artifacts  

    temp.journs = table(urls$SO) 

    temp.journs = temp.journs[temp.journs >= 20] # filter journals with 

low sample size 

    temp.tophost = sapply(rownames(temp.journs), 

                          function(x) { 

                            temp.hosts = urls$host[urls$SO == x] 

                            temp.all = length(temp.hosts) 

                            temp.hosts = sort(table(temp.hosts), 

decreasing=T) 

                            return (temp.hosts[1] / temp.all) # 

Percentage of total hosts accounted for by 

                            # the most popular. 

                          }) 

    names(temp.tophost) = rownames(temp.journs) 

    # Journals with > 90% URLs from the same host. 90% is rather high, 

but this shows 

    # us that some journals with many URLs referring to the same host 

are what the type 

    # we are looking for (such as in the journal AMERICAN JOURNAL OF 

NURSING, where the 

    # links point to supplementary videos) while others are not what we 

are looking for 

    # (like MULTIPLE SCLEROSIS, where all point to the website for the 

journal) 

    for(i in names(temp.tophost[temp.tophost > .9])) { 



102 

      cat("Journal: ", i, "\n") 

      print(urls$url[urls$SO == i]) 

    } 

    # Look at distribution 

    hist(temp.tophost) 

     

    temp.journyears = data.frame(year=integer(), journ=character(), 

                                 percent = numeric(), nTotal=integer(), 

nTopUrl=integer(), 

                                 topUrl=character()) 

     

    MIN_PER_YEAR = 10 # Minimum number of URLs a journal must publish 

within a year to be considered 

     

    temp.years = table(urls$SO, urls$PY) 

    for(j in rownames(temp.journs)) { 

      for (y in unique(urls$PY[urls$SO == j])) { 

        temp.urls = urls$url[urls$SO == j & urls$PY == y] 

        temp.all = length(temp.urls) 

        if (temp.all < MIN_PER_YEAR) { # Skip ones that don't meet a 

threshhold 

          next 

        } 

        temp.urls = sort(table(temp.urls), decreasing=T) 

        p = temp.urls[1] / temp.all 

        entry = data.frame(year=y, journ=j, percent=p, 

                           nTotal=temp.all, 

                           nTopUrl=temp.urls[1], 

                           names(temp.urls[1])) 

        temp.journyears = rbind(temp.journyears, entry) 

      } 

    } 

    rm(j,y,temp.urls,temp.all,p,entry, MIN_PER_YEAR) 

     

    # For almost all journals, those which with high dups in one year 

were high 

    # for most years 

    library(lattice) 

    xyplot(percent ~ year, data=temp.journyears, type="l", group=journ) 

     

    # .3 looks like a good cutoff 

     

    temp.dups =  temp.journyears[temp.journyears$percent > .3,] 

    xyplot(percent ~ year, data=temp.dups, type="l", group=journ) 

  } 

   

  # From the temp.dups list generated above, we identified journal/year 

combos where 

  # there are URLs that aren't the Internet-based academic tools we are 

examining in this 

  # study. 

  # Many of them are journals pointing to their website. 

  # Since supplementary information is of academic value, those URLs 

were kept. 

  # This step eliminates 943 URLs 

   

  urls = urls[!(urls$url == "http://www.bjcancer.com" & 



103 

    urls$SO == "BRITISH JOURNAL OF CANCER" & 

    urls$PY %in% 2000:2001),] # Journal website 

   

  urls = urls[!(urls$url == 

"http://www3.interscience.wiley.com/journal/121548564/issueyear?year=20

09" & 

    urls$SO == "BRITISH JOURNAL OF PHARMACOLOGY" & 

    urls$PY == 2009),] # Advertising collection of papers 

   

  urls = urls[!(urls$url == "http://dx.doi.org/10.1111/j.1476-

5381.2010.00831.x" & 

    urls$SO == "BRITISH JOURNAL OF PHARMACOLOGY" & 

    urls$PY == 2010),] # Advertising collection of papers 

   

  urls = urls[!(urls$url == "http://www.circresaha.org" & 

    urls$SO == "CIRCULATION RESEARCH" & 

    urls$PY %in% 2000:2003),] # Journal website 

   

  urls = urls[!(urls$url == "http://circres.ahajournals.org" & 

    urls$SO == "CIRCULATION RESEARCH" & 

    urls$PY == 2004),] # Journal website 

   

  urls = urls[!(urls$url == "http://ctj.sagepub.com" & 

    urls$SO == "CLINICAL TRIALS" & 

    urls$PY %in% 2008:2010),] # Journal website 

   

  urls = urls[!(urls$url == 

"http://cpc.cs.qub.ac.uk/licence/licence.htmlNo" & 

    urls$SO == "COMPUTER PHYSICS COMMUNICATIONS" & 

    urls$PY == 2008),] # Parsing mistake. 

   

  urls = urls[!(urls$url == "http://www.jstage.jst.go.jp/browse/jpa2" & 

    urls$SO == "JOURNAL OF PHYSIOLOGICAL ANTHROPOLOGY" & 

    urls$PY == 2010),] # Journal website 

   

  urls = urls[!(urls$url == "http://www.molmed.org" & 

    urls$SO == "MOLECULAR MEDICINE" & 

    urls$PY %in% 2009:2010),] # Journal website 

   

  urls = urls[!(urls$url == "http://msj.sagepub.com" & 

    urls$SO == "MULTIPLE SCLEROSIS" & 

    urls$PY %in% 2007:2009),] # Journal website 

   

  urls = urls[!(urls$url == "http://neuro-oncology.dukejournals.org" & 

    urls$SO == "NEURO-ONCOLOGY" & 

    urls$PY %in% 2008:2009),] # Journal website 

   

  urls = urls[!(urls$url == "http://www.insp.mx/salud/index.html" & 

    urls$SO == "SALUD PUBLICA DE MEXICO" & 

    urls$PY %in% 2001:2004),] # Journal website; points to English-

version of papers. 

   

  ## End of elimination 

   

  ### Computed variables 

  urls.len = length(urls$url) 

   



104 

  ## Create a best estimate of the date in PM96. We reflect this in 

months 

  ## since Jan 1, 1996 

  monthList = 

c("JAN","FEB","MAR","APR","MAY","JUN","JUL","AUG","SEP","OCT", 

                "NOV","DEC") 

   

  # By truncating at 3 chars, we round down for both ranges (like JUL-

AUG) and 

  # for dates that values that have days (like JAN 1). No month 

specified is 

  # assumed to be January, since it could be an annual issue. 

  #  

  # These substitutions rely on journals publishing at the beginning of 

a 

  # given period. 

  urls$PD2 = ifelse(urls$PD == "", "JAN", substr(urls$PD, 1, 3)) 

  seasonsList = c("WIN","SPR","SUM","FAL") 

  seasonsListReplace = c("JAN","APR","JUL","OCT") 

   

  # Convert PD2 into a numeric representing the number of the month 

  urls$PD2 = sapply(urls$PD2, 

                    function(x) { 

                      # Convert seasons to a month 

                      if (x %in% seasonsList) { 

                        x = seasonsListReplace[which(x == seasonsList)] 

                      } 

                      # An assert to make sure all months are set to 

something 

                      stopifnot(x %in% monthList) 

                      return (which(x == monthList) - 1) 

                    })     

  urls$PM96 = (urls$PY - YEAR_MIN)*12 + urls$PD2 

   

  ## Calculate web column. Response >= 90% are considered present. < 

90% is down. 

   

  # These runs were outside of the study window. Eliminate them. 

  urls$web2011.04.15.18.47 = NULL 

  urls$web_reason2011.04.15.18.47 = NULL 

   

  temp.web_cols = grep("web2011", colnames(urls)) # Column numbers 

containing web avail 

  temp.web_cnt  = rowSums(urls[,temp.web_cols] == 'True') # Tally the 

'True' values 

  temp.web_pct  = temp.web_cnt / max(temp.web_cnt) # Percentage 

available 

   

  urls$web = urls$web_pct = temp.web_pct 

  urls$web = TRUE 

  urls$web[urls$web_pct < .9] = FALSE 

  rm(temp.web_cols, temp.web_cnt, temp.web_pct) 

 

  ## Archive Engine Cleanup 

  # Clean up the archive engine response columns by setting 

  # their non-trues to falses 

  temp.ia_cols = grep("ia20", colnames(urls), value=T) 



105 

  temp.wc_cols = grep("wc20", colnames(urls), value=T) 

  urls.archive_cols = c(temp.ia_cols, temp.wc_cols) 

   

  for(col in urls.archive_cols) { 

    origColName = paste(col, "Orig", sep="") 

    urls[,origColName] = urls[,col] # Make a backup of the original 

statuses 

    urls.archive_cols = c(urls.archive_cols, origColName) # Preserve 

them for analysis 

 

    # Recode everything to boolean 

    urls[urls[,col] != "True", col] = "False" 

    urls[,col] = as.logical(urls[,col]) 

  } 

     

  temp.archDates = sub("ia","",temp.ia_cols) 

  for(date in temp.archDates) { 

    temp.archCol = paste("archived", date, sep="") 

    temp.iaCol = paste("ia", date, sep="") 

    temp.wcCol = paste("wc", date, sep="") 

     

    urls[,temp.archCol] = (urls[,temp.wcCol] | urls[,temp.iaCol]) 

  } 

   

  # Calculate a "SubmitFinal" column that is based on whether the 

  # URL was submitted AND whether it tested positive in the next run. 

  # The idea is that the return status alone from the submission isn't 

enough 

  # to gauge whether we freshly archived the site; if it showed up in 

the subsequent 

  # query then we know that it did. 

  urls$iaSubmitFinal2012.11.15 = ifelse(urls$iaSubmit2012.11.15 != 

"Skipped" & 

                                        urls$ia2013.02.05, TRUE, FALSE) 

  urls$wcSubmitFinal2012.11.30 = 

ifelse(grepl('^6',urls$wcSubmit2012.11.30) & 

                                        urls$wc2013.02.05, TRUE, FALSE) 

   

  # To capture the columns for pages submitted to the archive engines 

  temp.submitCols = grep("Submit", colnames(urls), value=T) 

 

  urls.archive_cols = c(urls.archive_cols, paste("archived", 

temp.archDates, sep=""), 

                        temp.submitCols) 

  keep_columns = c(keep_columns, urls.archive_cols) 

  rm(temp.ia_cols, temp.wc_cols, temp.archDates, temp.archCol, 

temp.iaCol, temp.wcCol, temp.submitCols) 

 

  ## Internet Archive 

  ## For our purposes, use the archive snapshots that were taken right 

after the web survey 

  urls$ia = urls$ia2011.05.23 

   

  ## WebCitation 

  urls$wc = urls$wc2011.05.23 

     

  ## Computed archived - whether a URL is archived in either system 



106 

  urls$archived = (urls$ia | urls$wc) 

   

  ## Assess directory depth 

  library(stringr) 

  urls$depth = str_count(urls$url, "/") - 2 # Remove two due to the 

initial "http://" 

   

  # Subtract one if the URL ends with a "/" 

  temp.lens = str_length(urls$url) 

  temp.end_slash = (substr(urls$url, temp.lens, temp.lens) == "/") 

  urls$depth[temp.end_slash] = urls$depth[temp.end_slash] - 1 

  rm(temp.lens, temp.end_slash) 

   

  ## Introduce PY96 

  urls$PY96 = urls$PY - 1996 

   

  ## Add TimesCited & Cited References 

  urls$TimesCited = urls$TC 

  urls$LogTimesCited = log2(urls$TC + 1) 

  urls$CitesToOthers = urls$NR 

  urls$LogCitesToOthers = log2(urls$NR + 1) 

   

  ## Handle journal/source-related columns 

   

  # It would have been nice to use the abbreviated variety (J9), 

however 

  # not every entry has it (347 are missing it) and some of the 

journals that 

  # are missing a J9 entry have it in other places, leading to 

potential 

  # misclassification (for example, SO="NUCLEIC ACIDS RESEARCH" URLs 

published 

  # in 1998 lack the J9 entry but other years have it) 

  urls$Source = urls$SO 

   

  if (SHOW_THINKING) { 

    # Determine optimal truncation limit -- the lowest number of 

characters while preserving  

    # unique names 

    length(unique(urls$SO)) # 3176 

    for (i in 100:30) { print(cbind(i,length(unique(substr(urls$SO, 0, 

i))))) } # It's 78, so use 80 

  } 

   

  # Create truncated Source column 

  urls$Source_t = substr(urls$SO, 0, 80) 

   

  # Calculate Source_top30_t 

  temp.srcCounts = sort(table(urls$Source_t), decreasing=T) 

  temp.srcSig = rownames(temp.srcCounts[1:30]) 

  temp.srcSig100 = rownames(temp.srcCounts[temp.srcCounts > 100]) 

  temp.srcSig20 = rownames(temp.srcCounts[temp.srcCounts >= 20]) # For 

WC 

   

  urls$Source_top30_t = ifelse(urls$Source_t %in% temp.srcSig, 

urls$Source_t, "aaOTHER") 



107 

  urls$Source_over100 = ifelse(urls$Source_t %in% temp.srcSig100, 

urls$Source_t, "aaOTHER") 

  urls$Source_top20 = ifelse(urls$Source_t %in% temp.srcSig20, 

urls$Source_t, "aaOTHER") 

  urls$Source_top20 = factor(urls$Source_top20) 

   

  rm(temp.srcSig100, temp.srcSig20) 

   

  # For these sources, web is at or close to 100% either true or false 

and/or 

  # there are few unique urls. 

  if (SHOW_THINKING) { 

    # Show number of unique URLs by Source 

    for (i in levels(urls$Source_top30_t)) { 

      out = cat(i,length(which(urls$Source_top30_t == i)), 

                length(unique(urls$url[urls$Source_top30_t == i]))) 

      print(out) 

    } 

    table(urls$web, urls$Source_top30_t) 

  } 

   

  # It's no longer necessary to remove these sources since we use the 

uniq URLs for modelling. 

  # Uncomment the next few commented lines in order to restore this 

functionality. 

  # temp.exclSources contains journals whereby almost all URLs are 

duplicates. 

  #  temp.exclSources = c("EPILEPSIA", "GENES CHROMOSOMES & CANCER") 

   

  #  urls$Source_top30_t = ifelse(urls$Source_top30_t %in% 

temp.exclSources, "aaOTHER", urls$Source_top30_t) 

  urls$Source_top30_t = substr(urls$Source_top30_t, 0, 50) # top30 

doesn't need as many chars to differentiate 

   

  #  urls$Source_over100 = ifelse(urls$Source_over100 %in% 

temp.exclSources, "aaOTHER", urls$Source_over100) 

   

  urls$Source_over100 = factor(urls$Source_over100) 

  urls$Source_top30_t = factor(urls$Source_top30_t) 

   

  rm(temp.srcCounts, temp.srcSig) 

  #     rm(temp.exclSources) 

  # Obtain Dom_top30 

  temp.domCounts = sort(table(urls$dom), decreasing=T) 

  temp.sigDoms = rownames(temp.domCounts[1:30]) 

  temp.sigDoms = temp.sigDoms[temp.sigDoms != "mx"] # Remove .mx due to 

being predominantly a single URL 

  urls$Dom_top30 = factor(ifelse(urls$dom %in% temp.sigDoms, urls$dom, 

"aaOTHER")) 

  urls$dom = as.factor(urls$dom)  # recast as a factor 

  rm(temp.domCounts, temp.sigDoms) 

   

  # Generate FundTextPresent 

  urls$FundTextPresent = str_length(urls$FX) > 0 

   

  # Convert url_num to num_f  (number as factor) 

  urls$num_f = factor(ifelse(urls$url_num < 3, urls$url_num, "3+")) 



108 

   

  urls$DocType = factor(urls$DT) # DocType 

   

  # doSubjectAnalysis takes a urlList and returns a new one with a new 

row 

  # per subject. "chop" determines whether to truncate subjects with 

commas 

  # (such as "Psychology, Multidisciplinary") so that subspecialties 

get 

  # grouped into more general categories. 

  doSubjectAnalysis = function(urlList, chop=FALSE) { 

    # Subjects appear to be tied to the journal, not the article 

     

    library(stringr) 

    # For these purposes, URLs without subjects don't contribute, so we 

remove them. 

    urlList = subset(urlList, SC != "") 

     

    # Duplicate each row; one for each subject contained in the SC 

column 

    subjs = str_split(urlList$SC, ";") 

    subjs = lapply(subjs, str_trim) 

     

    if (chop == TRUE) { 

      subjs = lapply(subjs, sub, pattern="[[:space:]]*,.*$", 

replacement="") 

    } 

     

    # Ensure only one entry per subject, per URL This is most pertinent 

in cases 

    # where we just truncated and there's multiple subjects for a given 

URL 

    subjs = lapply(subjs, unique) 

     

    if (SHOW_THINKING) { 

      subjs2 = unlist(subjs) 

      subjCnt = sort(table(subjs2), decreasing=T) # Show unique number 

of subjects 

      subjCnt[1:20] 

       

      # Look at more broad subjects by removing the text after a comma 

      subjsGen = sub("[[:space:]]*,.*$", "", subjs2)  

      subjsGenCnt = sort(table(subjsGen), decreasing=T) 

      subjsGenCnt[1:20] 

    } 

     

    # Create empty list of proper length that will be populated shortly 

    urlsExpanded = urlList[0,] 

    urlsExpanded = urlsExpanded[1:length(unlist(subjs)),] 

     

    begin = Sys.time() 

     

    urlListLen = nrow(urlList) 

    dest = 1 

    for(src in 1:urlListLen) { 

      subj = subjs[[src]] 

       



109 

      subjCnt = length(subj) 

      for(j in 1:subjCnt) { 

        urlsExpanded[dest,] = urlList[src,] 

        urlsExpanded$SC[dest] = subj[j] 

        dest = dest + 1 

      } 

    } 

    cat("Parsing subjects took ", Sys.time() - begin, "\n") 

     

    return(urlsExpanded)     

  } 

   

  # Generate urls list, expanded by having one entry per subject code. 

  # We select keep_columns to reduce copy time (it adds up!). 

  urlsSubjExp = doSubjectAnalysis(urls[,keep_columns], chop=TRUE) 

  urlsSubjExp.len = length(urlsSubjExp$url) 

   

  ### Unique URLs 

  ### Build data frame with unique URLs and include variables 

appropriate to a single URL 

  uniq = data.frame(url = unique(urls$url)) 

  temp.join1 = match(uniq$url, urls$url) 

   

  # Columns to transfer verbatum from urls to uniq. These should be the 

same for every 

  # uniq URL across all of the urls data frame entries pertaining to 

it. 

  uniq_cols = c("web", "web_pct", "depth", "dom", "archived", "ia", 

"wc", urls.archive_cols) 

   

  uniq[,uniq_cols] = urls[temp.join1,uniq_cols] 

   

#   uniq$web = urls$web[temp.join1] # Was the URL available? 

#   uniq$depth = urls$depth[temp.join1] # Domain depth 

#   uniq$dom = urls$dom[temp.join1] # URL's domain 

#   uniq$ia  = as.logical(urls$ia[temp.join1]) # Internet Archive 

#   uniq$ia_new = urls$ia_new[temp.join1] 

#   uniq$ia2011.05.23 = urls$ia2011.05.23[temp.join1] 

#   uniq$wc  = as.logical(urls$wc[temp.join1]) # WebCitation 

#   uniq$wc_new = as.logical(urls$wc_new[temp.join1]) 

#   uniq$wc2011.05.23 = urls$wc2011.05.23[temp.join1] 

#   uniq$archived = uniq$ia | uniq$wc #  Computed column = archived by 

either method 

   

  ## Calculate number of times a URL has been published(similar to 

Wren, 2008) 

  ## Since a single journal article should only be able to publish a 

URL once, 

  ## we eliminate multiple URL entries for a single journal article by 

matching 

  ## the AB, AU, PY and SO fields. 

  uniq$nPub = sapply(uniq$url, 

                     function (x) { 

                       unq = unique(urls[urls$url == 

x,c("AB","AU","PY","SO")]) 

                       return(nrow(unq)) 

                     }) 



110 

   

  uniq$nJourns = sapply(uniq$url, 

                        function (x) { 

                          unq = unique(urls[urls$url == x,"SO"]) 

                          return(length(unq)) 

                        }) 

   

  uniq$LogPub = log2(uniq$nPub) 

   

  if (SHOW_THINKING) { 

    # How many URLs are published multiple times in a single article? 

    temp.appears = table(urls$url) 

    temp.join2 = match(uniq$url, rownames(temp.appears)) 

    uniq$nPubDups = temp.appears[temp.join2] 

    rm(temp.appears, temp.join2) 

    uniq[uniq$nPub != uniq$nPubDups, c("url","nPub","nPubDups")] # 7 

urls 

  } 

   

  ## Average the Times Cited across all papers 

  uniq$TimesCited = urls$TimesCited[temp.join1] 

  # Create a list of URLs that appear multiple times. We will reuse 

this. 

  temp.multUrls = uniq$url[uniq$nPub > 1] 

  temp.multUrlsCount = sapply(temp.multUrls, 

                              function (x) { 

                                mean(urls$TimesCited[urls$url == x], 

na.rm=T) 

                              }) 

  uniq$TimesCited[uniq$nPub > 1] = temp.multUrlsCount 

  uniq$LogTimesCited = log2(uniq$TimesCited + 1) 

   

  ## Calculate first/last seen 

  ## It doesn't make sense to have a "published year" variable when 

  ## there could be multiple... 

  uniq$firstPY96 = uniq$lastPY96 = urls$PY96[temp.join1] # Published 

Year, zero'd to 1996 

  temp.first = sapply(temp.multUrls, 

                      function (x) { 

                        min(urls$PY96[urls$url == x]) 

                      }) 

  temp.last = sapply(temp.multUrls, 

                     function (x) { 

                       max(urls$PY96[urls$url == x]) 

                     }) 

  uniq$firstPY96[uniq$nPub > 1] = temp.first 

  uniq$lastPY96[uniq$nPub > 1] = temp.last 

   

  # Do it again for PM96 

  uniq$firstPM96 = uniq$lastPM96 = urls$PM96[temp.join1] # Published 

Year, zero'd to 1996 

  temp.first = sapply(temp.multUrls, 

                      function (x) { 

                        min(urls$PM96[urls$url == x]) 

                      }) 

  temp.last = sapply(temp.multUrls, 

                     function (x) { 



111 

                       max(urls$PM96[urls$url == x]) 

                     }) 

  uniq$firstPM96[uniq$nPub > 1] = temp.first 

  uniq$lastPM96[uniq$nPub > 1] = temp.last 

   

  rm(temp.first, temp.last) 

   

  ## Import sources (journals) 

  uniq$Source = urls$Source_t[temp.join1] 

   

  temp.multUrlsSrc = sapply(temp.multUrls, 

                            function (x) { 

                              temp = unique(urls$Source_t[urls$url == 

x], na.rm=T) 

                              if (length(temp) > 1) { 

                                # Cap concatenated strings at 100 chars 

for readability 

                                concat = paste(sort(temp), 

collapse="+") 

                                return(strtrim(concat, 100)) 

                              } else 

                                return(temp) 

                            }) 

  uniq$Source[uniq$nPub > 1] = temp.multUrlsSrc 

   

  if (SHOW_THINKING) { 

    # Examine which URLs were published in multiple journals 

    temp.multUrlsSrcCnt = sapply(temp.multUrls, 

                                 function (x) { 

                                   length(unique(urls$Source_t[urls$url 

== x], na.rm=T)) 

                                 }) 

    # Interesting tidbit- of the minority (1145) of URLs published > 

once, 

    # most were published in just one or two journals 

    densityplot(temp.multUrlsSrcCnt) 

    table(temp.multUrlsSrcCnt) 

    #  1   2   3   4   5   6   7   8   9  11  12  13  15  17  38  

    #500 500  84  26  11   3   2   1   4   1   1   1   2   1   1  

     

    # Which URLs were published in > 10 journals? 

    uniq$url[uniq$nPub > 1][temp.multUrlsSrcCnt > 10] 

    # [1] http://www.ncbi.nlm.nih.gov/     http://www.ncbi.nlm.nih.gov      

http://imgt.cines.fr             

    # [4] http://www.HaworthPress.com      

http://www.clinicaltrials.gov    http://clinicaltrials.gov        

    # [7] http://www.controlled-trials.com 

    # FYI - http://www.clinicaltrials.gov was the one in 38 journals 

    rm(temp.multUrlsSrcCnt) 

  } 

   

  # Calculate Source_top. We set the threshhold for being included 

  # as publishing > 100 unique URLs 

  temp.srcCounts = sort(table(uniq$Source), decreasing=T) 

  temp.srcSig = rownames(temp.srcCounts[temp.srcCounts > SRC_SIGCOUNT])  

  uniq$Source_top = ifelse(uniq$Source %in% temp.srcSig, uniq$Source, 

"aaOTHER") 



112 

  uniq$Source_top = factor(uniq$Source_top) 

   

  # Those with >= 20 for the purposes of figuring which journals use WC 

  temp.srcSig = rownames(temp.srcCounts[temp.srcCounts >= 20])  

  uniq$Source_top20 = ifelse(uniq$Source %in% temp.srcSig, uniq$Source, 

"aaOTHER") 

  uniq$Source_top20 = factor(uniq$Source_top20) 

   

  rm(temp.srcCounts, temp.srcSig) 

   

  ## Calculate the combined FundTextPresent value as a number between 0 

and 1 

  ## 0 = FALSE, 1 = TRUE 

  ## For those where the answer is not 0 or 1 (most URLs only 

  ## appear once and most of the repeats do not have differing 

  ## values), we use the percentage appearing TRUE 

  uniq$FundTextPresent = ifelse(urls$FundTextPresent[temp.join1], 1, 0) 

   

  temp.multFundText = sapply(temp.multUrls, 

                             function (x) { 

                               texts = urls$FundTextPresent[urls$url == 

x] 

                               total = length(texts) 

                               return (length(texts[texts == 

TRUE])/total) 

                             }) 

   

  uniq$FundTextPresent[uniq$nPub > 1] = temp.multFundText 

   

  rm(temp.multFundText) 

   

  if (SHOW_THINKING) { 

    # Look at FundTextPresent status 

    temp.FundTextDiffers = sapply(temp.multUrls, 

                                  function (x) { 

                                    temp.fundtexts = 

urls$FundTextPresent[urls$url == x] 

                                    return 

(ifelse(length(unique(temp.fundtexts)) > 1, TRUE, FALSE)) 

                                  }) 

    table(temp.FundTextDiffers) 

    # FALSE  TRUE  

    # 855   283  

  } 

  rm(temp.join1, temp.multUrls, temp.multUrlsCount, temp.multUrlsSrc) 

   

  # Determine significant domains 

  if (SHOW_THINKING) { 

    # Look at the top domains 

    sort(table(uniq$dom), decreasing = T)[1:30] 

  } 

   

  temp.domCounts = sort(table(uniq$dom), decreasing=T) 

  temp.sigDoms = rownames(temp.domCounts[temp.domCounts > 

DOM_SIGCOUNT]) 

  uniq$domSig = as.character(uniq$dom) 

  uniq$domSig[!(uniq$dom %in% temp.sigDoms)] = "aaOTHER" 



113 

  uniq$domSig = factor(uniq$domSig) 

   

  uniq.len = length(uniq$url) 

   

  rm(temp.domCounts, temp.sigDoms) 

   

  # Only keep the columns we need 

  urls = urls[,keep_columns] 

   

  if (WRITE_CACHE) { 

    # cols = 

c("web","depth","PY96","LogTimesCited","J9","TimesCited","dom","ia","wc

") 

    # write.csv(urls[,cols], file=CACHE_FILENAME) 

    save(urls, urls.len, urlsSubjExp, urlsSubjExp.len, 

urls.archive_cols, uniq, uniq.len, compression_level=9, 

file=CACHE_FILENAME) 

  } # WRITE_CACHE 

   

} # READ_CACHE 

  



114 

analysis/output.txt 

> source('/path/to/analysis/stats.r') 

Number of URLs (unique):  17110 ( 14489 ) 

Web overall explained deviance: 2019  

IA overall explained deviance: 2545  

WC overall explained deviance: 2651  

[1] "Deviance explained by each predictor" 

                       web         ia          wc 

Model Dev       2018.53454 2545.20629 2650.817959 

Unique Dev      1357.82396 1505.95474 2348.088062 

lastPM96         570.76149  149.67841   93.416797 

LogPub            32.21306   48.30516  185.740691 

depth            196.50737  677.45375  338.336658 

LogTimesCited     17.68087   35.35097  404.633766 

FundTextPresent   48.11457  203.52509    2.654017 

domSig           355.29157  225.58620  173.710916 

Source_top       137.25503  166.05516 1149.595217 

[1] "Median survival times for URLs" 

Call: survfit(formula = urls.survFormM ~ 1, data = urls) 

 

records   n.max n.start  events  median 0.95LCL 0.95UCL  

  17110   17110   17110    4356     112     112     120  

[1] "Median survival times for unique URLs" 

Call: survfit(formula = uniq.survFormM ~ 1, data = uniq) 

 

records   n.max n.start  events  median 0.95LCL 0.95UCL  

  14489   14489   14489    3266     112     112     112  

Percent URLs (unique) dead:  31 ( 33 ) 

Percent URLs (unique) alive:  69 ( 67 ) 

Percent URLs (unique) in IA:  62 ( 59 ) 

Percent URLs (unique) in WC:  21 ( 16 ) 

Percent URLs (unique) archived:  65 ( 62 ) 

Percent URLs (unique) available in some manner:  84 ( 82 ) 

Percent of missing URLs (unique) archived: 49 ( 47 ) 

Percent of missing URLs (unique) archived by IA: 47 ( 46 ) 

Percent of missing URLs (unique) archived by WC: 7 ( 6 ) 

Number of uniq URLs submitted to archiving engines: IA 1163 , WC 7285  

Number of DOI sites (unique): 189 ( 167 ) 

Number of PURL sites (unique): 9 ( 8 ) 

Living URLs published > 1 times living and missing: 0.7874225 0.2125775  

Living URLs published 1 time living and missing: 0.6560629 0.3439371  

Internet Archive sites that were blocked from archiving due to 

robots.txt (uniq): 507, 2.963179% (352, 2.429429%) 

Unavailable Internet Archive sites that were blocked from archiving due 

to robots.txt (uniq): 81, 15.97633% (76, 21.59091%) 

Survival Times for subject  Biochemistry & Molecular Biology  

Survival Times for subject  Biotechnology & Applied Microbiology  

Survival Times for subject  Computer Science  

Survival Times for subject  Biochemical Research Methods  

Survival Times for subject  Mathematical & Computational Biology  

Survival Times for subject  Genetics & Heredity  

Survival Times for subject  Physics  

Survival Times for subject  Engineering  

Survival Times for subject  Statistics & Probability  

Survival Times for subject  Chemistry  



115 

Survival Times for subject  Biophysics  

Survival Times for subject  Astronomy & Astrophysics  

Survival Times for subject  Mathematics  

Survival Times for subject  Zoology  

Survival Times for subject  Cell Biology  

Survival Times for subject  Biology  

Survival Times for subject  Oncology  

Survival Times for subject  Plant Sciences  

Survival Times for subject  Environmental Sciences  

Survival Times for subject  Medicine  

Time difference of 2.76343 mins 

Linear coefficients (R^2) for URLs percentage by year overall: 

0.03664289 ( 95.50238 %) 

Uniq Percent increase for IA ( 11356 - 9276 = 2080 ): 22.42346  

Uniq Percent increase for WC ( 8842 - 2494 = 6348 ): 254.5309  

URLs submitted to IA (unique): 3039 ( 2662 ) 

URLs submitted to WC (unique): 8486 ( 7477 ) 

URLs submitted to IA which returned error but were successfully 

archived: 872  

URLs submitted to WC which returned error but were successfully 

archived: 12  

URLs submitted to WC which returned success but were unsuccessfully 

archived: 955  

URL count (percent) whose availability was > 0 or < .9: 466 ( 

0.03216233 ) 

Variation (max-min) between 1996 and 1999, inclusive (uniq): 0.02356403 

( 0.01461575 ) 

R squared for 1996-1999 linear fit (unique): 0.5132796 ( 0.1808213 ) 

Variation (max-min) between 2000 and 2010, inclusive (uniq): 0.4264276 

( 0.4107151 ) 

R squared for 2000-2010 linear fit (unique): 0.9479806 ( 0.9457182 ) 

URLs appearing more than once: 1129 or 0.07792118 % 

Multiply published URLs only published in 1 journal: 0.4348981 % 

Funding text in multiply published URLs is different 0.2444641 % of the 

time 

Overall elapsed time: 18.01948 

  



116 

analysis/stats.R 

#### Survival Analysis 

#### We construct two models - 

#### urls.surv: every published URL is an entry 

#### uniq.surv: every unique URL is an entry 

#### Data is from the raw output of the python scripts 

#### and has not been otherwise modified. 

#### Copyright 2013, Jason Hennessey. See README.txt for license. 

 

 

# Enable to follow logic used while determining the final model 

SHOW_THINKING = FALSE 

DIR_SET = TRUE 

 

setwd("/path/to/analysis/") 

temp.begin = Sys.time() 

source("common_raw.R", echo=F) # Load data and transforms 

Sys.time() - temp.begin 

library(survival) 

 

methods = c("web","ia","wc") 

 

### Overall statistics 

cat("Number of URLs (unique): ", length(urls$url), "(", 

length(uniq$url), ")\n") 

 

### Custom functions 

 

# A rough AIC. The coefficient penalty could be better, but none 

# of the best model candidates are close enough to make it matter. 

survAIC = function (x) { 

 -2*x$loglik[2]+2*(length(x$coef)-1) 

} 

 

installLibs = function() { 

  # List of packages to install 

  packages = c("HH", "stringr", "Hmisc", "lattice") 

  install.packages(pkgs=packages) 

} 

 

loadLibs = function() { 

  # Load the libraries necessary for other things. Used as a 

convenience 

  # function during development for when we load our variables from a 

workspace 

  # (which doesn't load the libraries too) 

  packages = c("HH", "stringr", "Hmisc", "lattice") 

  for (p in packages) { 

    library(p, character.only=TRUE) 

  }  

} 

## Loop through survreg() distributions to identify (and return) the 

best 

 

compareSurvregAIC = function(inFormula, inData) { 



117 

 ## Compute Full Model and compare AIC values. 

 print("Comparing AIC for formula") 

 print(inFormula) 

 dists = c("weibull", "exponential", "gaussian", "logistic", 

"lognormal", "loglogistic") 

 aic = NULL 

 bestAIC = Inf 

 bestSurv = NULL 

 for(d in dists) { 

  surv = survreg(inFormula, data=inData,dist=d) 

  thisAIC = survAIC(surv) 

  aic = append(aic, thisAIC) 

  if (thisAIC < bestAIC) { 

   bestSurv = surv 

   bestAIC = thisAIC 

  } 

 } 

 vals = data.frame(dists,aic) 

 vals = vals[order(vals$aic),] 

 rownames(vals) = NULL 

 return(vals) 

} 

 

### Survival Transforms 

 

# Number of years from the beginning (1996) until when the sample was 

taken  

# (2011) 

# Used for lifetime survival calculations. Specified when the 

measurements were 

# taken. 

LIFE_DIFF = 15 

LIFE_DIFFM = 15*12 + 4  

 

# Create web inverse indicator where TRUE means DEAD and FALSE means 

ALIVE 

# ALIVE is a synonym for "right-censored" in survival parlance 

urls$dead = !urls$web 

urlsSubjExp$dead = !urlsSubjExp$web 

 

# For event, 0=right censored, 1=event at ?time?, 2=left censored, 

3=interval censored 

# Therefore, if URL alive then event=0, otherwise 2 

urls$event = rep.int(0,urls.len) 

urls$event[urls$dead] = 2 

 

urlsSubjExp$event = rep.int(0,urlsSubjExp.len) 

urlsSubjExp$event[urlsSubjExp$dead] = 2 

 

# Use -Inf as the second arg, since it should be ignored due to 

# event always being 0 or 2. This gives us a verification of this 

behavior, 

# since if it weren't ignored, we would hopefully see some errors due 

to mismatched 

# vector size or out of bounds. 

urls.survForm = Surv(LIFE_DIFF - urls$PY96, -Inf, urls$event, 

type="interval") 



118 

 

urls.survFormM = Surv(LIFE_DIFF*12 - urls$PM96, -Inf, urls$event, 

type="interval") 

 

 

### Model building - urls 

 

# We use the uniq entries for the survival model due to model 

assumptions of 

# independence between observations. Were we using the non-deduplicated 

urls for 

# the model, certain variables (like the outcome variables, domain, 

etc) would 

# be the same across instances of a particular URL. 

URLS_SURV_MODEL = FALSE 

if (URLS_SURV_MODEL) { 

    urls.form1 = formula("urls.survForm ~ DocType + Dom_top30 + 

FundTextPresent + 

        num_f + Source_top30_t + LogTimesCited + 

depth") 

    urls.form2 = formula("urls.survForm ~ DocType + Dom_top30 + 

FundTextPresent + 

        num_f + Source_over100 + LogTimesCited + 

depth") 

    if (SHOW_THINKING) { 

     ## Compare using the top 30 sources vs. using those that have > 

100 URLs  

     compareSurvregAIC(urls.form1, urls) # top30 

     compareSurvregAIC(urls.form2, urls) # over100 

    } 

     

    urls.fullForm = urls.form2 

    urls.survFull = survreg(urls.fullForm, data=urls, dist="gaussian") 

     

    if (SHOW_THINKING) { 

     ## Correlation exists between CitesToOthers and TimesCited 

     cor.test(urls$CitesToOthers,urls$TimesCited, use="complete.obs") 

     cor.test(urls$CitesToOthers,urls$TimesCited, use="complete.obs", 

method="spearman") 

     # pearson = .0053, spearman ~ 0. High correlation 

     

     # Check p value for single model with just those variables to see 

which is better 

     summary(survreg(urls.survForm ~ CitesToOthers, data=urls)) # .456 

     summary(survreg(urls.survForm ~ LogCitesToOthers, data=urls)) # 

.0369 

     summary(survreg(urls.survForm ~ TimesCited, data=urls)) # .000125 

     summary(survreg(urls.survForm ~ LogTimesCited, data=urls)) # 

3.31e-27 

     

     # We will model without CitesToOthers due to collinearity 

     # and use LogTimesCited 

     

     # Look for the best distribution 

     compareSurvregAIC(urls.fullForm, urls) 

     summary(urls.survFull) 

     



119 

    } 

     

    ## Compute Reduced Model 

    # Use AICs to screen for other variables to remove 

     

    if (SHOW_THINKING) { 

     urls.surv1 = step(urls.survFull) # Shows that removing DocType 

increases 

              # AIC only 

marginally (~ 1). 

              # Since it 

is marginal and not central to study, remove. 

              # This 

step() call doesn't actually remove anything. 

    } 

     

    urls.form2 = formula("urls.survForm ~ Dom_top30 + FundTextPresent + 

num_f + 

         Source_top30_t + LogTimesCited") 

    urls.surv2 = survreg(urls.form2, data=urls, dist="logistic") 

     

    if (SHOW_THINKING) { 

     compareSurvregAIC(urls.form2,urls) 

     rm(temp.notused) 

    } 

     

    # Final models 

    urls.surv = urls.surv2 

     

    if (SHOW_THINKING) { 

     anova(urls.surv) # Everything has p < .001 

     urls.survTable = summary(urls.surv)$table 

     urls.survInsignificant = urls.survTable[urls.survTable[,"p"] > 

.001,] 

     urls.survInsignificant  

     urls.survSignificant = urls.survTable[urls.survTable[,"p"] <= 

.001,] 

     urls.survSignificant 

    } 

} # if URLS_SURV_MODEL 

 

### Survival model building - uniq 

 

uniq$dead = !uniq$web 

uniq$event = rep.int(0,uniq.len) 

uniq$event[uniq$dead] = 2 

 

# For the uniq URLs, we have a different scenario: some URLs have had 

# multiple publishings. In those cases, we assume the URL was 

functional 

# from the first published date through the last. 

# Thus, for living URLs use the first published date and dead ones use 

# the last (all are relative to 2011). 

uniq$survAge = LIFE_DIFF - ifelse(uniq$dead, uniq$lastPY96, 

uniq$firstPY96) 

 

# Models based on months are appended with an M 



120 

uniq$survAgeM = LIFE_DIFF*12 - ifelse(uniq$dead, uniq$lastPM96, 

uniq$firstPM96) 

 

uniq.survForm = Surv(uniq$survAge, sample(uniq.len), uniq$event, 

type="interval") 

uniq.survFormM = Surv(uniq$survAgeM, sample(uniq.len), uniq$event, 

type="interval") 

 

UNIQ_SURV_MODEL = TRUE 

if (UNIQ_SURV_MODEL) { 

    uniq.Surv = Surv(uniq$survAge, uniq$dead) 

    uniq.SurvM = Surv(uniq$survAgeM, uniq$dead) 

    uniq.coxph = coxph(uniq.Surv ~ LogPub + depth + LogTimesCited + 

FundTextPresent + domSig +  

        Source_top, data=uniq) 

     

    if (SHOW_THINKING) { 

     # Compare using nPub to using log2(nPub) 

     uniq.surv1Form = formula("uniq.survFormM ~ domSig + nPub + depth 

+ LogTimesCited + Source_top") 

     compareSurvregAIC(uniq.surv1Form, uniq) 

     uniq.surv1 = survreg(uniq.surv1Form, data=uniq, dist="logistic") 

     uniq.surv2Form = formula("uniq.survFormM ~ domSig + LogPub + 

depth + LogTimesCited + Source_top") 

     compareSurvregAIC(uniq.surv2Form, uniq)  # logistic the best for 

both 

     uniq.surv2 = survreg(uniq.surv2Form, data=uniq, dist="logistic") 

      anova(uniq.surv1, uniq.surv2)  # Compare models - LogPub is much 

better! 

    } 

     

    if (SHOW_THINKING) { 

     # Look for collinearity between predictors using Variance 

Inflation Factor 

     library(HH) 

     temp.vif = vif(web ~ domSig + LogPub + depth + LogTimesCited + 

Source_top, data=uniq) 

     length(temp.vif[temp.vif > 5]) # None 

     rm(temp.vif) 

    } 

     

    uniq.fullForm = formula("uniq.survForm ~ LogPub + depth + 

LogTimesCited + FundTextPresent + domSig +  

        Source_top") 

    uniq.fullFormM = formula("uniq.survFormM ~ LogPub + depth + 

LogTimesCited + FundTextPresent + domSig +  

           Source_top") 

     

    #uniq.survFull = survreg(uniq.fullForm, data=uniq, dist="logistic") 

    uniq.survFullM = survreg(uniq.fullFormM, data=uniq, 

dist="logistic") 

     

    ### Survival Regression 

     

    if (SHOW_THINKING) { 

     ## Compare AIC values between using the year-based method and the 

more precise month-based one. 



121 

     compareSurvregAIC(uniq.fullForm, uniq) 

     summary(uniq.survFullM) 

     compareSurvregAIC(uniq.fullFormM, uniq) 

     summary(uniq.survFullM) 

    } 

     

    if (SHOW_THINKING) { 

     # Look for non-significant variables 

     uniq.surv1 = step(uniq.survFullM) # This step() call doesn't 

actually remove anything. 

    } 

    #uniq.surv = uniq.survFull 

    uniq.survM = uniq.survFullM 

     

    # Examine significant variables 

    ALPHA = .001 

    anova(uniq.survM) # Everything has p < ALPHA 

    uniq.survTableM = summary(uniq.survM)$table 

    uniq.survInsignificantM = uniq.survTableM[uniq.survTableM[,"p"] > 

ALPHA,] 

    uniq.survInsignificantM  

    uniq.survSignificantM = uniq.survTableM[uniq.survTableM[,"p"] <= 

ALPHA,] 

    uniq.survSignificantM 

     

    # 95% confidence intervals 

    uniq.confints = confint(uniq.survM, level=.9) 

     

    # New table containing coefs, std error, z, p and 95% conf ints 

    # Need to leave off last row (log(scale)) due to no conf int 

     

    uniq.survTableConfM = 

cbind(uniq.survTableM[1:(nrow(uniq.survTableM)-1),], 

        uniq.confints) 

     

    uniq.survTableConf = uniq.survTableConfM 

     

    # Convert to years instead of months 

    uniq.survTableConf[,c("Value","5 %", "95 %")] = 

uniq.survTableConf[,c("Value","5 %", "95 %")]/12 

     

    if (SHOW_THINKING) { 

     # Combine confidence intervals 

     # Write results to file 

     write.csv(uniq.survTableConfM, file="uniq_sigvarsM.csv") 

      write.csv(uniq.survTableConf, file="uniq_sigvars.csv") 

    } 

    ### Analysis of the model 

     

    if (SHOW_THINKING) { 

     # Show statistics for different domains and journals 

     uniq.survFitDom = survfit(uniq.survFormM ~ domSig, data=uniq) 

     uniq.survFitSrc = survfit(uniq.survFormM ~ Source_top, data=uniq) 

     

     # Overall survival graph 

     plot(uniq.survFitM) 

     plot(urls.survFitM) 



122 

     

     # A logistic regression similar to the survival for comparison 

purposes 

     urls.webLogSurvit = glm(web ~ firstPY96 + LogPub + depth + 

LogTimesCited + domSig + Source_top, 

         family=binomial("logit"), data=uniq) 

    } 

     

    ### Test assumptions of logistic survival regression by using the 

model to predict 

    testSurvival = function() { 

        # First row is the default -- should be equal to intercept 

        # Second row is same as default except domain=au 

        # Third row is a less likely paper (LogTimesCited=1, depth=3, 

LogPub=1,domSig=au) 

        # Fourth row is a popular paper. 

        # Fifth row is the example used in the paper 

        predictData = 

uniq[1:5,c("domSig","LogPub","depth","LogTimesCited","Source_top", 

"FundTextPresent")] 

        predictData[,"domSig"] = c("aaOTHER","au","au", "org", "au") 

        predictData[,"LogPub"] = c(0,0,1,3,0) 

        predictData[,"depth"] = c(0,0,3,0,0) 

        predictData[,"LogTimesCited"] = c(0,0,1,7,1) 

        predictData[,"Source_top"] = 

c("aaOTHER","aaOTHER","aaOTHER","BMC BIOINFORMATICS","aaOTHER") 

        predictData[,"FundTextPresent"] = c(0,0,0,1,1) 

         

        # Let's test it 

        uniq.survM.pred = predict(uniq.survM, newdata=predictData, 

type="response") 

         

         

        if (SHOW_THINKING) { 

            ## Show the logistic curves for the hazard ratios 

            temp.range1=-10:50 

             

            plot(temp.range1, dsurvreg(temp.range1, uniq.survM.pred[1], 

uniq.survM$scale, dist=uniq.survM$dist), type="l")  # 1 

            lines(temp.range1, dsurvreg(temp.range1, 

uniq.survM.pred[2], uniq.survM$scale, dist=uniq.survM$dist), 

col="green") # 2 

            lines(temp.range1, dsurvreg(temp.range1, 

uniq.survM.pred[3], uniq.survM$scale, dist=uniq.survM$dist), 

col="blue") # 3 

            lines(temp.range1, dsurvreg(temp.range1, 

uniq.survM.pred[4], uniq.survM$scale, dist=uniq.survM$dist), 

col="orange") # 4 

             

            ## Show logistic curves for the cumulative distribution 

            plot(temp.range1, psurvreg(temp.range1, uniq.survM.pred[1], 

uniq.survM$scale, dist=uniq.survM$dist), type="l") # 1 

            lines(temp.range1, psurvreg(temp.range1, 

uniq.survM.pred[2], uniq.survM$scale, dist=uniq.survM$dist), 

col="green") # 2 



123 

            lines(temp.range1, psurvreg(temp.range1, 

uniq.survM.pred[3], uniq.survM$scale, dist=uniq.survM$dist), 

col="blue") # 3 

            lines(temp.range1, psurvreg(temp.range1, 

uniq.survM.pred[4], uniq.survM$scale, dist=uniq.survM$dist), 

col="orange") # 4 

             

             

            temp.range2=0:100/100 

            ## Show logistic curves for the cumulative distribution 

            plot(temp.range2, qsurvreg(temp.range2, uniq.survM.pred[1], 

uniq.survM$scale, dist=uniq.survM$dist), ylim=c(-30,50), type="l") # 1 

            lines(temp.range2, qsurvreg(temp.range2, 

uniq.survM.pred[2], uniq.survM$scale, dist=uniq.survM$dist), 

col="green") # 2 

            lines(temp.range2, qsurvreg(temp.range2, 

uniq.survM.pred[3], uniq.survM$scale, dist=uniq.survM$dist), 

col="blue") # 3 

            lines(temp.range2, qsurvreg(temp.range2, 

uniq.survM.pred[4], uniq.survM$scale, dist=uniq.survM$dist), 

col="orange") # 4 

             

            ## This should be the same as above 

            plot(temp.range2, predict(uniq.survM, 

newdata=predictData[1,], type="quantile", p=temp.range2), ylim=c(-

30,50), type="l") 

            lines(temp.range2, predict(uniq.survM, 

newdata=predictData[2,], type="quantile", p=temp.range2), col="green", 

type="l") 

            lines(temp.range2, predict(uniq.survM, 

newdata=predictData[3,], type="quantile", p=temp.range2), col="blue", 

type="l") 

            lines(temp.range2, predict(uniq.survM, 

newdata=predictData[4,], type="quantile", p=temp.range2), col="orange", 

type="l") 

             

            rm(temp.range1,temp.range2) 

        } 

 

    } 

    testSurvivalM = function() { 

      # First row is the default -- should be equal to intercept 

      # Second row is same as default except domain=au 

      # Third row is a less likely paper (LogTimesCited=1, depth=3, 

LogPub=1,domSig=au) 

      # Fourth row is a popular paper. 

      # Fifth row is the example used in the paper 

      predictData = 

uniq[1:5,c("domSig","LogPub","depth","LogTimesCited","Source_top", 

"FundTextPresent")] 

      predictData[,"domSig"] = c("aaOTHER","au","au", "org", "au") 

      predictData[,"LogPub"] = c(0,0,1,3,0) 

      predictData[,"depth"] = c(0,0,3,0,0) 

      predictData[,"LogTimesCited"] = c(0,0,1,7,1) 

      predictData[,"Source_top"] = c("aaOTHER","aaOTHER","aaOTHER","BMC 

BIOINFORMATICS","aaOTHER") 

      predictData[,"FundTextPresent"] = c(0,0,0,1,1) 



124 

       

      # Let's test it 

      uniq.survM.pred = predict(uniq.survM, newdata=predictData, 

type="response") 

       

      if (SHOW_THINKING) { 

        ## Show the logistic curves for the hazard ratios 

        temp.range1=-10:50 

         

        plot(temp.range1, dsurvreg(temp.range1, uniq.survM.pred[1], 

uniq.survM$scale, dist=uniq.survM$dist), type="l")  # 1 

        lines(temp.range1, dsurvreg(temp.range1, uniq.survM.pred[2], 

uniq.survM$scale, dist=uniq.survM$dist), col="green") # 2 

        lines(temp.range1, dsurvreg(temp.range1, uniq.survM.pred[3], 

uniq.survM$scale, dist=uniq.survM$dist), col="blue") # 3 

        lines(temp.range1, dsurvreg(temp.range1, uniq.survM.pred[4], 

uniq.survM$scale, dist=uniq.survM$dist), col="orange") # 4 

         

        ## Show logistic curves for the cumulative distribution 

        plot(temp.range1, psurvreg(temp.range1, uniq.survM.pred[1], 

uniq.survM$scale, dist=uniq.survM$dist), type="l") # 1 

        lines(temp.range1, psurvreg(temp.range1, uniq.survM.pred[2], 

uniq.survM$scale, dist=uniq.survM$dist), col="green") # 2 

        lines(temp.range1, psurvreg(temp.range1, uniq.survM.pred[3], 

uniq.survM$scale, dist=uniq.survM$dist), col="blue") # 3 

        lines(temp.range1, psurvreg(temp.range1, uniq.survM.pred[4], 

uniq.survM$scale, dist=uniq.survM$dist), col="orange") # 4 

         

         

        temp.range2=0:100/100 

        ## Show logistic curves for the cumulative distribution 

        plot(temp.range2, qsurvreg(temp.range2, uniq.survM.pred[1], 

uniq.survM$scale, dist=uniq.survM$dist), ylim=c(-30,50), type="l") # 1 

        lines(temp.range2, qsurvreg(temp.range2, uniq.survM.pred[2], 

uniq.survM$scale, dist=uniq.survM$dist), col="green") # 2 

        lines(temp.range2, qsurvreg(temp.range2, uniq.survM.pred[3], 

uniq.survM$scale, dist=uniq.survM$dist), col="blue") # 3 

        lines(temp.range2, qsurvreg(temp.range2, uniq.survM.pred[4], 

uniq.survM$scale, dist=uniq.survM$dist), col="orange") # 4 

         

        ## This should be the same as above 

        plot(temp.range2, predict(uniq.survM, newdata=predictData[1,], 

type="quantile", p=temp.range2), ylim=c(-30,250), type="l") 

        lines(temp.range2, predict(uniq.survM, newdata=predictData[2,], 

type="quantile", p=temp.range2), col="green", type="l") 

        lines(temp.range2, predict(uniq.survM, newdata=predictData[3,], 

type="quantile", p=temp.range2), col="blue", type="l") 

        lines(temp.range2, predict(uniq.survM, newdata=predictData[4,], 

type="quantile", p=temp.range2), col="orange", type="l") 

         

        rm(temp.range1,temp.range2) 

         

        predict(uniq.survM, newdata=predictData[1,], type="quantile", 

p=.5) # Predicts median for default 

        predict(uniq.survM, newdata=predictData[2,], type="quantile", 

p=.5) # domain AU 

         



125 

      } 

    }  

} # if UNIQ_SURV_MODEL 

 

### IA 

 

if (SHOW_THINKING) { 

 # IA works better using the first published date 

 temp.ia = glm(ia ~ firstPY96 + LogPub + depth + LogTimesCited + 

FundTextPresent + domSig + Source_top, 

    family=binomial("logit"), data=uniq) 

 AIC(temp.ia) 

 temp.ia = glm(ia ~ lastPY96 + LogPub + depth + LogTimesCited + 

FundTextPresent + domSig + Source_top, 

    family=binomial("logit"), data=uniq) 

 AIC(temp.ia) 

 rm(temp.ia) 

} 

 

uniq.ia = glm(ia ~ firstPY96 + LogPub + depth + LogTimesCited + 

FundTextPresent + domSig + Source_top, 

     family=binomial("logit"), data=uniq) 

if (SHOW_THINKING) { 

 uniq.ia2 = glm(ia ~ firstPY96*(LogPub + depth + LogTimesCited + 

FundTextPresent + domSig + Source_top), 

    family=binomial("logit"), data=uniq) 

 anova(uniq.ia2, test="Chisq") # LogPub and depth insignificant, 

so  drop. 

 uniq.ia3 = glm(ia ~ firstPY96*(LogTimesCited + FundTextPresent + 

domSig + Source_top) + LogPub + depth, 

    family=binomial("logit"), data=uniq) 

 anova(uniq.ia3, test="Chisq") 

 # Check for confounders 

 uniq.ia3vif = vif(uniq.ia3) 

 uniq.ia3vif[uniq.ia3vif > 10] 

 

 uniq.ia4 = glm(ia ~ firstPY96*(LogTimesCited + domSig + 

Source_top) + LogPub + depth + FundTextPresent, 

    family=binomial("logit"), data=uniq) 

 uniq.ia4vif = vif(uniq.ia4) 

 uniq.ia4vif[uniq.ia4vif > 10] 

 

} 

if (SHOW_THINKING) { 

 anova(uniq.ia) 

 uniq.ia.vif = vif(uniq.ia) 

} 

 

 

### Webcite 

 

if (SHOW_THINKING) { 

 # WC works better using the last published date 

 temp.wc = glm(wc ~ firstPY96 + LogPub + depth + LogTimesCited + 

FundTextPresent + domSig + Source_top, 

    family=binomial("logit"), data=uniq) 

 AIC(temp.wc) 



126 

 temp.wc = glm(wc ~ lastPY96 + LogPub + depth + LogTimesCited + 

FundTextPresent + domSig + Source_top, 

    family=binomial("logit"), data=uniq) 

 AIC(temp.wc) 

 rm(temp.wc) 

} 

 

uniq.wc = glm(wc ~ lastPY96 + LogPub + depth + LogTimesCited + 

FundTextPresent + domSig + Source_top, 

     family=binomial("logit"), data=uniq) 

 

### Both 

 

if (SHOW_THINKING) { 

 # archived works better using the first published date 

 temp.archived = glm(archived ~ firstPY96 + LogPub + depth + 

LogTimesCited + FundTextPresent + domSig + Source_top, 

    family=binomial("logit"), data=uniq) 

 AIC(temp.archived) 

 temp.archived = glm(archived ~ lastPY96 + LogPub + depth + 

LogTimesCited + FundTextPresent + domSig + Source_top, 

    family=binomial("logit"), data=uniq) 

 AIC(temp.archived) 

 rm(temp.archived) 

} 

 

uniq.archForm = as.formula("archived ~ firstPY96 + LogPub + depth + 

LogTimesCited + FundTextPresent + domSig + Source_top") 

uniq.archived = glm(uniq.archForm, family=binomial("logit"), data=uniq) 

 

if (SHOW_THINKING) { 

  eval_model = function(inModel, inData) { 

    require(HH) 

    print(AIC(inModel)) 

    temp.vif = vif(inModel) 

    print("Finished vif") 

    print(temp.vif[temp.vif > 5]) 

    print(anova(inModel, test="Chisq")) 

  } 

  

 eval_model(uniq.archived, uniq) # The basic model. AIC 16447 

 

 # Look for interactions 

 temp.archived = glm(archived ~ firstPY96*(LogTimesCited + LogPub 

+ depth  + FundTextPresent + Source_top + domSig), 

    family=binomial("logit"), data=uniq) 

 eval_model(temp.archived) # Too much collinearity -- overfit 

 

 # Remove interactions between firstPY96 and (LogPub and depth) 

due to low Chisq tests 

 temp.archived2 = glm(archived ~ firstPY96*(LogTimesCited + 

FundTextPresent + Source_top + domSig) + LogPub + depth, 

    family=binomial("logit"), data=uniq) 

 eval_model(temp.archived2) # Still too much collinearity 

 

 # Remove Source interactions, since some vif values are highest 

there 



127 

 temp.archived3 = glm(archived ~ firstPY96*(LogTimesCited + 

FundTextPresent + domSig) + LogPub + depth + Source_top, 

    family=binomial("logit"), data=uniq) 

 eval_model(temp.archived3) #  

 

 

 temp.archived2 = glm(archived ~ firstPY96 + 

firstPY96:LogTimesCited + LogPub + depth  + FundTextPresent + 

Source_top + domSig, 

    family=binomial("logit"), data=uniq) 

 AIC(temp.archived2) 

 anova(temp.archived2, test="Chisq") 

 

 require(HH) 

 temp.archived2Vif = vif(temp.archived2) 

 temp.archived2Vif[temp.archived2Vif > 3] # empty 

} 

 

### Models used to show relative importance of descriptors 

 

#Compared using the year vs. month published vars; month yields less 

deviance 

#except for WebCitation, though to be consistent we'll use the month 

for each one. 

 

uniq.webBasic = glm(web ~ lastPM96 + LogPub + depth + LogTimesCited + 

                    FundTextPresent + domSig + Source_top, data=uniq, 

                    family=binomial("logit")) 

 

uniq.iaBasic = glm(ia ~ firstPM96 + LogPub + depth + LogTimesCited + 

                    FundTextPresent + domSig + Source_top, data=uniq, 

                    family=binomial("logit")) 

 

uniq.wcBasic = glm(wc ~ lastPM96 + LogPub + depth + LogTimesCited +  

                    FundTextPresent + domSig + Source_top, 

                    data=uniq, family=binomial("logit")) 

 

cat("Web overall explained deviance:", 

round(uniq.webBasic$null.deviance - uniq.webBasic$deviance), "\n") 

cat("IA overall explained deviance:", round(uniq.iaBasic$null.deviance 

- uniq.iaBasic$deviance), "\n") 

cat("WC overall explained deviance:", round(uniq.wcBasic$null.deviance 

- uniq.wcBasic$deviance), "\n") 

 

temp = drop1(uniq.webBasic) 

temp.webBasic = c(uniq.webBasic$null.deviance - uniq.webBasic$deviance, 

                      sum(temp$Deviance - temp$Deviance[1]), 

                      temp$Deviance[-1] - temp$Deviance[1]) 

 

temp = drop1(uniq.iaBasic) 

temp.iaBasic = c(uniq.iaBasic$null.deviance - uniq.iaBasic$deviance, 

                  sum(temp$Deviance - temp$Deviance[1]), 

                  temp$Deviance[-1] - temp$Deviance[1]) 

 

temp = drop1(uniq.wcBasic) 

temp.wcBasic = c(uniq.wcBasic$null.deviance - uniq.wcBasic$deviance, 

                  sum(temp$Deviance - temp$Deviance[1]), 



128 

                  temp$Deviance[-1] - temp$Deviance[1]) 

 

uniq.predCombined = data.frame(web = temp.webBasic, ia = temp.iaBasic, 

wc = temp.wcBasic) 

rownames(uniq.predCombined) = c("Model Dev", "Unique Dev", 

rownames(temp)[-1]) 

 

print("Deviance explained by each predictor") 

print(uniq.predCombined) 

 

for (method in methods) { 

  newCol = paste(method, "Pct", sep="") 

  uniq.predCombined[,newCol] = uniq.predCombined[,method] 

  uniq.predCombined[2:nrow(uniq.predCombined),newCol] = 

    

uniq.predCombined[2:nrow(uniq.predCombined),method]/uniq.predCombined["

Unique Dev",method] 

} 

 

rm(temp, temp.webBasic, temp.iaBasic, temp.wcBasic, newCol) 

 

if (SHOW_THINKING) { 

  # Collinearity estimation -- divide the model deviance by the unique 

deviance 

  # accounted for by each of the predictors. 

  # The reasoning is that a model built without a particular predictor 

  # could have some of its prediction capability explained by another 

var 

  uniq.predCombined[2,methods]/uniq.predCombined[1,methods] 

   

  # Output the predictor importance 

  write.csv(uniq.predCombined, file="uniq_reduced_contributions.csv") 

   

} 

 

### Descriptive statistics about URL retention and availability 

urls.webTrueLen = length(which(urls$web)) 

uniq.webTrueLen = length(which(uniq$web)) 

 

# Examining survFit gives median survival times 

#urls.survFit = survfit(urls.survForm ~ 1, data=urls) 

urls.survFitM = survfit(urls.survFormM ~ 1, data=urls) 

 

print("Median survival times for URLs") 

print(urls.survFitM) 

#plot(urls.survFit) 

#plot(urls.survFitM) 

 

#uniq.survFit = survfit(uniq.survForm ~ 1, data=uniq) 

uniq.survFitM = survfit(uniq.survFormM ~ 1, data=uniq) 

 

print("Median survival times for unique URLs") 

#print(uniq.survFit) 

print(uniq.survFitM) 

 

cat("Percent URLs (unique) dead: ", round(1 - urls.webTrueLen/urls.len, 

2)*100, 



129 

    "(", round(1 - uniq.webTrueLen/uniq.len, 2)*100, ")\n") 

 

cat("Percent URLs (unique) alive: ", round(urls.webTrueLen/urls.len, 

2)*100, 

    "(", round(uniq.webTrueLen/uniq.len, 2)*100, ")\n") 

 

urls.iaLen = length(which(urls$ia)) 

uniq.iaLen = length(which(uniq$ia)) 

 

cat("Percent URLs (unique) in IA: ", round(urls.iaLen/urls.len, 2)*100, 

"(", 

    round(uniq.iaLen/uniq.len, 2)*100, ")\n") 

 

urls.wcLen = length(which(urls$wc)) 

uniq.wcLen = length(which(uniq$wc)) 

 

cat("Percent URLs (unique) in WC: ", round(urls.wcLen/urls.len, 2)*100, 

"(", 

    round(uniq.wcLen/uniq.len, 2)*100, ")\n") 

 

urls.archivedLen = length(which(urls$wc | urls$ia)) 

uniq.archivedLen = length(which(uniq$wc | uniq$ia)) 

cat("Percent URLs (unique) archived: ", 

round(urls.archivedLen/urls.len, 2)*100, 

    "(", round(uniq.archivedLen/uniq.len, 2)*100, ")\n") 

 

# URLs available by any mechanism (live, archived) 

urls.availableAnyLen = length(which(urls$archived | urls$web)) 

uniq.availableAnyLen = length(which(uniq$archived | uniq$web)) 

 

cat("Percent URLs (unique) available in some manner: ", 

    round(urls.availableAnyLen/urls.len, 2)*100, 

    "(", round(uniq.availableAnyLen/uniq.len, 2)*100, ")\n") 

 

# Archive Site Performance for Missing URLs 

urls.savedLen = length(urls[urls$web == F & (urls$ia == T | urls$wc == 

T), "web"]) 

urls.deadLen = length(which(!urls$web)) 

 

uniq.savedLen = length(uniq[uniq$web == F & (uniq$ia == T | uniq$wc == 

T), "web"]) 

uniq.deadLen = length(which(!uniq$web)) # For u 

 

cat("Percent of missing URLs (unique) archived:", 

round(urls.savedLen/urls.deadLen, 2)*100, "(", 

    round(uniq.savedLen/uniq.deadLen, 2)*100, ")\n") 

 

urls.iaSavedLen = length(urls[urls$web == F & urls$ia == T, "web"]) 

uniq.iaSavedLen = length(uniq[uniq$web == F & uniq$ia == T, "web"]) 

 

cat("Percent of missing URLs (unique) archived by IA:", 

round(urls.iaSavedLen/urls.deadLen, 2)*100, "(", 

    round(uniq.iaSavedLen/uniq.deadLen, 2)*100, ")\n") 

 

urls.wcSavedLen = length(urls[urls$web == F & urls$wc == T, "web"]) 

uniq.wcSavedLen = length(uniq[uniq$web == F & uniq$wc == T, "web"]) 

 



130 

cat("Percent of missing URLs (unique) archived by WC:", 

round(urls.wcSavedLen/urls.deadLen, 2)*100, "(", 

    round(uniq.wcSavedLen/uniq.deadLen, 2)*100, ")\n") 

 

cat("Number of uniq URLs submitted to archiving engines: IA", 

    length(which(uniq$iaSubmit2012.11.15 == "True")), 

    ", WC", length(which(substr(uniq$wcSubmit2012.11.30, 0, 1) == 

"6")), "\n") 

 

if (SHOW_THINKING) { 

    # For excel/graph use 

    write.csv(uniq,"uniq_data.csv") 

} 

### Other random descriptives 

 

# Redirectors (DOI, PURL) 

cat("Number of DOI sites (unique):", 

length(grep("http://dx\\.doi\\.org", urls$url, ignore.case=T)), 

    "(", length(grep("http://dx\\.doi\\.org", uniq$url, 

ignore.case=T)), ")\n") 

 

cat("Number of PURL sites (unique):", length(grep("http://purl\\.", 

urls$url, ignore.case=T)), 

    "(", length(grep("http://purl\\.", uniq$url, ignore.case=T)), 

")\n") 

 

## Remedies 

 

# Compare our results with Wren, 2008's of 5% disappeared from papers 

with > 2 publishings 

temp.alive = prop.table(table(uniq[uniq$nPub > 1, "web"])) 

 

cat("Living URLs published > 1 times living and missing:", 

    temp.alive[2], temp.alive[1], "\n") 

 

temp.alive = prop.table(table(uniq[uniq$nPub == 1, "web"])) 

 

cat("Living URLs published 1 time living and missing:", 

    temp.alive[2], temp.alive[1], "\n") 

 

rm(temp.alive) 

 

# how many IA sites were blocked? 

table(urls$ia2011.05.23Orig) 

table(uniq$ia2011.05.23Orig) 

 

# What percentage of the blocking sites are missing? 

temp.urlsBlocked = subset(urls,ia2011.05.23Orig == "CrawlingBlocked") 

temp.uniqBlocked = subset(uniq,ia2011.05.23Orig == "CrawlingBlocked") 

 

cat("Internet Archive sites that were blocked from archiving due to 

robots.txt (uniq): ", 

    nrow(temp.urlsBlocked), ", ", 

    prop.table(table(urls$ia2011.05.23Orig == "CrawlingBlocked"))[2] * 

100, 

    "% (", 

    nrow(temp.uniqBlocked), ", ", 



131 

    prop.table(table(uniq$ia2011.05.23Orig == "CrawlingBlocked"))[2] * 

100, 

    "%)\n", sep="") 

 

cat("Unavailable Internet Archive sites that were blocked from 

archiving due to robots.txt (uniq): ", 

    table(temp.urlsBlocked$web)[1], ", ", 

    prop.table(table(temp.urlsBlocked$web))[1] * 100, 

    "% (", 

    table(temp.uniqBlocked$web)[1], ", ", 

    prop.table(table(temp.uniqBlocked$web))[1] * 100, 

    "%)\n", sep="") 

 

rm(temp.uniqBlocked, temp.urlsBlocked) 

 

### Calculate median lifetimes and other statistics for particular 

subject areas 

 

temp.subjTop20 = names(sort(table(urlsSubjExp$SC), decreasing=T)[1:20]) 

 

begin = Sys.time() 

subjSurvModels = lapply(temp.subjTop20, function(x) { 

    cat("Survival Times for subject ", x, "\n") 

    temp.us = subset(urlsSubjExp, SC == x) 

    temp.survFormM = Surv(LIFE_DIFF*12 - temp.us$PM96, -Inf, 

temp.us$event, type="interval") 

    return(survfit(temp.survFormM ~ 1, data=temp.us)) 

}) 

print(Sys.time() - begin) 

 

names(subjSurvModels) = temp.subjTop20 

 

survMedians = data.frame(t(sapply(subjSurvModels, function(x) { 

    return(summary(x)$table) 

}))) 

 

## Count number of living and dead URLs for each subject 

## for displaying in table form. 

 

survMedians$nAlive = sapply(temp.subjTop20, function(x) { 

  length(which(subset(urlsSubjExp, SC == x)$web == TRUE)) 

}) 

 

survMedians$nDead = sapply(temp.subjTop20, function(x) { 

  length(which(subset(urlsSubjExp, SC == x)$web == FALSE)) 

}) 

 

# TODO: perhaps convert to months? 

survMedians$medianPY = sapply(temp.subjTop20, function(x) { 

  temp.us = urlsSubjExp[urlsSubjExp$SC == x,] 

  return(median(temp.us$PY96)) 

}) + 1996 

 

if (SHOW_THINKING) { 

  # Output survMedians table 

  write.csv(survMedians, file="survMedians.csv") 

} 



132 

 

rm(temp.subjTop20) 

 

# Produce box plots of the top 20 subject areas 

library(lattice) 

 

# Draw a horizontal bar chart with each row being a subject 

# and the corresponding row containing the median survival time as well 

# as the median age of URLs 

library(Hmisc) 

# Sort by median first 

#survMedians = survMedians[order(survMedians$median, decreasing=T),] 

errbar(row.names(survMedians), survMedians$median/12, 

survMedians$X0.95UCL/12, survMedians$X0.95LCL/12) 

 

 

 

urls.pctByYear = data.frame(year   = c(sort(unique(urls$PY96)) + 1996, 

"Total"), 

                            year96 = c(sort(unique(urls$PY96)), 

"Total")) 

uniq.pctByYear = data.frame(year   = c(sort(unique(uniq$firstPY96)) + 

1996, "Total"), 

                            year96 = c(sort(unique(uniq$firstPY96)), 

"Total")) 

 

# List of columns to include 

 

temp.pctByYearCols = c("web", "archived", urls.archive_cols) 

 

for(colName in temp.pctByYearCols) { 

  urls.pctByYear[,colName] = c(prop.table(table(urls$PY96, 

urls[,colName]), 1)[,2], 

                               prop.table(table(urls[,colName]))[2]) 

  uniq.pctByYear[,colName] = c(prop.table(table(uniq$firstPY96, 

uniq[,colName]), 1)[,2], 

                               prop.table(table(uniq[,colName]))[2]) 

   

} 

 

rm(temp.pctByYearCols) 

 

# Draw a bar chart to show what difference submitting missing URLs made 

# temp.totals = subset(urls.pctByYear, year == "Total", 

select=urls.archive_cols) 

# temp.totals = temp.totals[,order(colnames(temp.totals))] # Reorder 

columns by name 

# rownames(temp.totals) = "Pct" 

# temp.totals = data.frame(Pct = t(temp.totals)) 

# temp.trunc = substr(rownames(temp.totals), 0, 2) 

# temp.totals$Type = ifelse(temp.trunc == "ar", "archived", temp.trunc) 

 

if (SHOW_THINKING) { 

  write.csv(urls.pctByYear, file="urls_pctByYear.csv") 

  write.csv(temp.totals, file="urls_totalsByYear.csv") 

} 

 



133 

# Test some models - since we've written the file out, we can drop the 

"total" line 

urls.pctByYear = subset(urls.pctByYear, year!="Total") 

urls.pctByYear$year = as.integer(as.character(urls.pctByYear$year)) 

urls.pctByYear$year96 = as.integer(as.character(urls.pctByYear$year96)) 

 

urls.webByYear.lm = lm(web ~ year96, data=urls.pctByYear) 

urls.webByYear.glm = glm(web ~ PY96, family=binomial(link="logit"), 

data=urls) 

urls.archivedByYear.lm = lm(archived ~ year96, data=urls.pctByYear) 

 

cat("Linear coefficients (R^2) for URLs percentage by year overall:", 

    urls.webByYear.lm$coefficients[2], "(", 

    summary(urls.webByYear.lm)$r.squared * 100, "%)\n") 

 

if (SHOW_THINKING) { 

  # Display components of linear models 

  summary(urls.webByYear.lm) 

  summary(urls.archivedByYear.lm) 

} 

 

######## Do it for the unique ones too 

 

#print(round(uniq.pctByYear, 2)) 

 

# Calculate what percentage increase was seen by IA and WC due to 

submissions 

before = table(uniq$ia2012.10.18)[2] 

after  = table(uniq$ia2013.02.05)[2] 

cat("Uniq Percent increase for IA (", after, "-", before, "=", after-

before, 

    "):", 100*(after - before)/before, "\n") 

 

before = table(uniq$wc2012.10.18)[2] 

after  = table(uniq$wc2013.02.05)[2] 

cat("Uniq Percent increase for WC (", after, "-", before, "=", after-

before, 

    "):", 100*(after - before)/before, "\n") 

 

# Calculate URLs (+uniq) submitted to IA and WC 

temp.iaSubmitted = nrow(subset(urls, iaSubmit2012.11.15 != 'Skipped')) 

temp.iaSubmittedUniq = nrow(subset(uniq, iaSubmit2012.11.15 != 

'Skipped')) 

cat("URLs submitted to IA (unique):", temp.iaSubmitted, "(", 

    temp.iaSubmittedUniq, ")\n") 

 

temp.wcSubmitted = nrow(subset(urls, wcSubmit2012.11.30 != 'Skipped')) 

temp.wcSubmittedUniq = nrow(subset(uniq, wcSubmit2012.11.30 != 

'Skipped')) 

cat("URLs submitted to WC (unique):", temp.wcSubmitted, "(", 

    temp.wcSubmittedUniq, ")\n") 

 

 

 

rm(before, after, temp.iaSubmitted, temp.iaSubmittedUniq, 

temp.wcSubmitted, 

   temp.wcSubmittedUniq) 



134 

 

### How many URLs in the IA returned an error status, but were 

successfully archived? 

cat("URLs submitted to IA which returned error but were successfully 

archived:", 

    length(which(uniq$iaSubmit2012.11.15 %in% 

c("wgetStatus8","wgetStatus6") & uniq$ia2013.02.05)), 

    "\n") 

 

cat("URLs submitted to WC which returned error but were successfully 

archived:", 

    length(which(uniq$wcSubmit2012.11.30 %in% 

c("UnexpectedXML","NoResultNoError","fatalError","emailError","httplib 

error") & uniq$wc2013.02.05)), 

    "\n") 

 

cat("URLs submitted to WC which returned success but were 

unsuccessfully archived:", 

    length(which(grepl('^6', uniq$wcSubmit2012.11.30) & 

!uniq$wc2013.02.05)), 

    "\n") 

 

uniq.webByYear.lm = lm(web ~ year96, data=uniq.pctByYear) 

 

uniq.webByYear.glm = glm(web ~ firstPY96, 

family=binomial(link="logit"), data=uniq) 

 

uniq.archivedByYear.lm = lm(archived ~ year96, data=uniq.pctByYear) 

 

if (SHOW_THINKING) { 

  # Display components of linear models 

  summary(uniq.webByYear.lm) 

  summary(uniq.archivedByYear.lm) 

  write.csv(uniq.pctByYear, file="uniq_pctByYear.csv") 

  write.csv(temp.totals, file="uniq_totalsByYear.csv") 

} 

 

temp.midcount = length(which((uniq$web_pct < .9 & uniq$web_pct > 0))) 

 

cat("URL count (percent) whose availability was > 0 or < .9:", 

    temp.midcount, "(", 

    temp.midcount/length(uniq$web_pct), 

    ")\n") 

 

rm(temp.midcount) 

 

### Decay rate stability: comparing 1996-1999 to 2000-2010. In 

Conclusions. 

 

# 1996-1999 

urls.survTable = prop.table(table(urls$web, urls$PY96+1996), 

margin=2)[2,] 

uniq.survTable = prop.table(table(uniq$web, uniq$firstPY96+1996), 

margin=2)[2,] 

 

temp.urlsAvail = urls.survTable[names(urls.survTable) < 2000] 

temp.uniqAvail = uniq.survTable[names(uniq.survTable) < 2000] 



135 

 

cat("Variation (max-min) between 1996 and 1999, inclusive (uniq):", 

max(temp.urlsAvail) - min(temp.urlsAvail), 

    "(", max(temp.uniqAvail) - min(temp.uniqAvail), ")\n") 

 

# Convert back to PY96 format for lm 

names(temp.urlsAvail) = as.integer(names(temp.urlsAvail)) - 1996  

names(temp.uniqAvail) = as.integer(names(temp.uniqAvail)) - 1996  

 

temp.urlsLm = summary(lm(temp.urlsAvail ~ 

as.integer(names(temp.urlsAvail)))) 

temp.uniqLm = summary(lm(temp.uniqAvail ~ 

as.integer(names(temp.uniqAvail)))) 

 

cat("R squared for 1996-1999 linear fit (unique):", 

temp.urlsLm$r.squared, 

    "(", temp.uniqLm$r.squared, ")\n") 

 

# 2000-2010 

urls.survTable = prop.table(table(urls$web, urls$PY96+1996), 

margin=2)[2,] 

uniq.survTable = prop.table(table(uniq$web, uniq$firstPY96+1996), 

margin=2)[2,] 

 

temp.urlsAvail = urls.survTable[names(urls.survTable) >= 2000] 

temp.uniqAvail = uniq.survTable[names(uniq.survTable) >= 2000] 

 

cat("Variation (max-min) between 2000 and 2010, inclusive (uniq):", 

max(temp.urlsAvail) - min(temp.urlsAvail), 

    "(", max(temp.uniqAvail) - min(temp.uniqAvail), ")\n") 

 

# Convert back to PY96 format for lm 

names(temp.urlsAvail) = as.integer(names(temp.urlsAvail)) - 1996  

names(temp.uniqAvail) = as.integer(names(temp.uniqAvail)) - 1996  

 

temp.urlsLm = summary(lm(temp.urlsAvail ~ 

as.integer(names(temp.urlsAvail)))) 

temp.uniqLm = summary(lm(temp.uniqAvail ~ 

as.integer(names(temp.uniqAvail)))) 

 

cat("R squared for 2000-2010 linear fit (unique):", 

temp.urlsLm$r.squared, 

    "(", temp.uniqLm$r.squared, ")\n") 

 

rm(temp.urlsLm, temp.uniqLm, temp.uniqAvail, temp.urlsAvail) 

 

### URLs appearing more than once 

temp.multPub = subset(uniq, nPub > 1) # URLs published more than once 

 

cat("URLs appearing more than once:", 

    nrow(temp.multPub), "or", nrow(temp.multPub)/nrow(uniq), "%\n") 

 

cat("Multiply published URLs only published in 1 journal:", 

    nrow(subset(temp.multPub, nJourns == 1))/nrow(temp.multPub), "%\n") 

 

cat("Funding text in multiply published URLs is different", 



136 

    nrow(subset(temp.multPub, FundTextPresent != 1.0 & FundTextPresent 

!= 0.0))/nrow(temp.multPub), 

    "% of the time\n") 

 

rm(temp.multPub) 

 

cat("Overall elapsed time:", Sys.time() - temp.begin, "\n") 

 

  



137 

analysis/WOSstats.R 

# Runs a linear model for WOS data 

 

setwd("/path/to/analysis/") 

wos = read.csv("WOSstats.csv", header=T) 

# Format is: Year, withHttp, total 

 

wos$pct = wos$withHttp/wos$total 

wos$year96 = wos$Year - 1996 

 

wos.pctlm = lm(pct ~ year96, data=wos) 

summary(wos.pctlm) 

print(wos.pctlm$coefficients * 100) # Show in percentage points 

 

wos.numlm = lm(withHttp ~ year96, data=wos) 

summary(wos.numlm) 

  



138 

BIBLIOGRAPHY (COMPREHENSIVE) 

1. Menezes AJ, Van Oorschot PC, Vanstone SA: Handbook of applied 

cryptography. Boca Raton: CRC Press; 1997. 

2. Ducut E, Liu F, Fontelo P: An update on Uniform Resource Locator (URL) 

decay in MEDLINE abstracts and measures for its mitigation. BMC Med 

Inform Decis Mak 2008, 8:-. 

3. Dimitrova DV, Bugeja M: Consider the source: Predictors of online citation 

permanence in communication journals. Portal-Libraries and the Academy 

2006, 6:269-283. 

4. Wren JD: URL decay in MEDLINE - a 4-year follow-up study. Bioinformatics 

2008, 24:1381-1385. 

5. Wren JD: 404 not found: the stability and persistence of URLs published in 

MEDLINE. Bioinformatics 2004, 20:668-U208. 

6. Yang SL, Qiu JP, Xiong ZY: An empirical study on the utilization of web 

academic resources in humanities and social sciences based on web citations. 

Scientometrics 2010, 84:1-19. 

7. Koehler W: An analysis of Web page and Web site constancy and 

permanence. J Am Soc Inf Sci 1999, 50:162-180. 

8. Aronsky D, Madani S, Carnevale RJ, Duda S, Feyder MT: The prevalence and 

inaccessibility of Internet references in the biomedical literature at the time 

of publication. J Am Med Inform Assn 2007, 14:232-234. 

9. Wren JD, Johnson KR, Crockett DM, Heilig LF, Schilling LM, Dellavalle RP: 

Uniform resource locator decay in dermatology journals - Author attitudes 

and preservation practices. Arch Dermatol 2006, 142:1147-1152. 

10. Ioannidis JPA, Allison DB, Ball CA, Coulibaly I, Cui XQ, Culhane AC, Falchi 

M, Furlanello C, Game L, Jurman G, et al: Repeatability of published 

microarray gene expression analyses. Nature Genetics 2009, 41:149-155. 

11. Jasny BR, Chin G, Chong L, Vignieri S: Again, and Again, and Again …. 

Science 2011, 334:1225. 

12. Wicherts JM: Psychology must learn a lesson from fraud case. Nature 2011, 

480:7-7. 

13. Wicherts JM, Bakker M, Molenaar D: Willingness to Share Research Data Is 

Related to the Strength of the Evidence and the Quality of Reporting of 

Statistical Results. Plos One 2011, 6:e26828. 

14. The DOI System [http://www.doi.org/] 

15. PURL Home Page [http://purl.org] 

16. Casserly MF, Bird JE: Web citation availability: Analysis and implications for 

scholarship. College & Research Libraries 2003, 64:300-317. 

17. The Internet Archive [http://www.archive.org/web/web.php] 

18. Eysenbach G, Trudell M: Going, going, still there: Using the WebCite service 

to permanently archive cited web pages. Journal of Medical Internet Research 

2005, 7:2-6. 

19. Barnes N: Publish your computer code: it is good enough. Nature 2010, 

467:753-753. 

http://www.doi.org/
http://purl.org/
http://www.archive.org/web/web.php


139 

20. Peng RD: Reproducible Research in Computational Science. Science 2011, 

334:1226-1227. 

21. Key Facts on Digital Object identifier System 

[http://www.doi.org/factsheets/DOIKeyFacts.html] 

22. EZID: Pricing [http://n2t.net/ezid/home/pricing] 

23. Markwell J, Brooks DW: "Link rot" limits the usefulness of web-based 

educational materials in biochemistry and molecular biology. Biochemistry 

and Molecular Biology Education 2003, 31:69-72. 

24. Thorp AW, Brown L: Accessibility of internet references in Annals of 

Emergency Medicine: Is it time to require archiving? Ann Emerg Med 2007, 

50:188-192. 

25. Carnevale RJ, Aronsky D: The life and death of URLs in five biomedical 

informatics journals. International Journal of Medical Informatics 2007, 

76:269-273. 

26. Wagner C, Gebremichael MD, Taylor MK, Soltys MJ: Disappearing act: decay 

of uniform resource locators in health care management journals. J Med Libr 

Assoc 2009, 97:122-130. 

27. Duda JJ, Camp RJ: Ecology in the information age: patterns of use and 

attrition rates of internet-based citations in ESA journals, 1997-2005. 
Frontiers in Ecology and the Environment 2008, 6:145-151. 

28. Rhodes S: Breaking Down Link Rot: The Chesapeake Project Legal 

Information Archive's Examination of URL Stability. Law Library Journal 

2010, 102:581-597. 

29. Goh DHL, Ng PK: Link decay in leading information science journals. 

Journal of the American Society for Information Science and Technology 2007, 

58:15-24. 

30. Casserly MF, Bird JE: Web citation availability - A follow-up study. Libr 

Resour Tech Ser 2008, 52:42-53. 

31. Russell E, Kane J: The missing link - Assessing the reliability of Internet 

citations in history journals. Technology and Culture 2008, 49:420-429. 

32. Koehler W: A longitudinal study of Web pages continued: a consideration of 

document persistence. Information Research-an International Electronic 

Journal 2004, 9:-. 

33. Dellavalle RP, Hester EJ, Heilig LF, Drake AL, Kuntzman JW, Graber M, 

Schilling LM: Information science - Going, going, gone: Lost Internet 

references. Science 2003, 302:787-788. 

34. Evangelou E, Trikalinos TA, Ioannidis JPA: Unavailability of online 

supplementary scientific information from articles published in major 

journals. Faseb Journal 2005, 19:1943-1944. 

35. Sellitto C: The impact of impermanent web-located citations: A study of 123 

scholarly conference publications. Journal of the American Society for 

Information Science and Technology 2005, 56:695-703. 

36. Bar-Ilan J, Peritz B: The lifespan of "informetrics" on the Web: An eight year 

study (1998-2006). Scientometrics 2009, 79:7-25. 

37. Gomes D, Silva MJ: Modelling Information Persistence on the Web. In Book 

Modelling Information Persistence on the Web (Editor ed.^eds.). City; 2006. 

http://www.doi.org/factsheets/DOIKeyFacts.html
http://n2t.net/ezid/home/pricing


140 

38. Markwell J, Brooks DW: Evaluating web-based information: Access and 

accuracy. Journal of Chemical Education 2008, 85:458-459. 

39. Wu ZQ: An empirical study of the accessibility of web references in two 

Chinese academic journals. Scientometrics 2009, 78:481-503. 

40. Klein JP, Moeschberger ML: Survival analysis : techniques for censored and 

truncated data. 2nd edn. New York: Springer; 2003. 

41. Bar-Ilan J, Peritz BC: Evolution, continuity, and disappearance of documents 

on a specific topic on the web: A longitudinal study of "informetrics". 

Journal of the American Society for Information Science and Technology 2004, 

55:980-990. 

42. Peng RD: Reproducible research and Biostatistics. Biostatistics 2009, 10:405-

408. 

43. Ince DC, Hatton L, Graham-Cumming J: The case for open computer 

programs. Nature 2012, 482:485-488. 

44. R Development Core Team: R: A Language and Environment for Statistical 

Computing. In Book R: A Language and Environment for Statistical Computing 

(Editor ed.^eds.). City: R Foundation for Statistical Computing; 2011. 

45. Therneau T: A Package for Survival Analysis in S. In Book A Package for 

Survival Analysis in S (Editor ed.^eds.), 2.36-12 edition. City; 2012. 

46. WebCite Technical Background and Best Practices Guide 

[http://www.webcitation.org/doc/WebCiteBestPracticesGuide.pdf] 

47. Hennessey J, Ge S: A cross disciplinary study of link decay and the 

effectiveness of mitigation techniques. Bmc Bioinformatics 2013, 14:S5. 

48. Rothenberg J: Ensuring the Longevity of Digital Documents. Scientific 

American 1995, 272:42-47. 

49. Rosenthal DSH: Format obsolescence: assessing the threat and the defenses. 

Libr Hi Tech 2010, 28:195-210. 

50. Traynor C, Williams MG: Why are geographic information systems hard to 

use? 1995:288-289. 

51. Howe B: Virtual Appliances, Cloud Computing, and Reproducible Research. 

Computing in Science & Engineering 2012, 14:36-41. 

52. Sitemaps.org [http://www.sitemaps.org/] 

53. RDF Primer [http://www.w3.org/TR/2004/REC-rdf-primer-20040210/] 

54. Ensembl Annotated Human Genome Data (MySQL Release 68) 

[https://aws.amazon.com/datasets/2315] 

55. Katayama T, Nakao M, Takagi T: TogoWS: integrated SOAP and REST APIs 

for interoperable bioinformatics Web services. Nucleic Acids Res 2010, 

38:W706-W711. 

56. Brase J: DataCite - A Global Registration Agency for Research Data. 2009 

Fourth International Conference on Cooperation and Promotion of Information 

Resources in Science and Technology 2009:257-261. 

57. Wang X, Yu H: How to Break MD5 and Other Hash Functions. In Advances in 

Cryptology – EUROCRYPT 2005. Volume 3494. Edited by Cramer R: Springer 

Berlin Heidelberg; 2005: 19-35: Lecture Notes in Computer Science]. 

http://www.webcitation.org/doc/WebCiteBestPracticesGuide.pdf
http://www.sitemaps.org/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/


141 

58. Jin K, Miller EL: The effectiveness of deduplication on virtual machine disk 

images. In Book The effectiveness of deduplication on virtual machine disk 

images (Editor ed.^eds.). pp. 1-12. City: ACM; 2009:1-12. 

59. Ng C-H, Ma M, Wong T-Y, Lee PPC, Lui JCS: Live deduplication storage of 

virtual machine images in an open-source cloud. In Book Live deduplication 

storage of virtual machine images in an open-source cloud (Editor ed.^eds.). pp. 

80-99. City: International Federation for Information Processing; 2011:80-99. 

60. Linked Virtual Machines [http://pubs.vmware.com/vsphere-

50/topic/com.vmware.wssdk.pg.doc_50/PG_Ch11_VM_Manage.13.4.html] 

61. Ubuntu Cloud Images [http://cloud-images.ubuntu.com/] 

62. Tridgell A: Efficient Algorithms for Sorting and Synchronization. Australian 

National University, 1999. 

63. lrzip: Long Range ZIP or Lzma RZIP [http://ck.kolivas.org/apps/lrzip/] 

64. Data compression programs [http://www.mattmahoney.net/dc/] 

65. Smith MA, Pieper J, Gruhl D, Real LV: IZO: Applications of Large-Window 

Compression to Virtual Machine Management. In LISA. 2008: 121-132. 

66. Lam MSL, Sapuntzakis CP, Chandra RUV, Zeldovich NB, Rosenblum M, Chow 

JE, Brumley DJ: Cache-based system management architecture with virtual 

appliances, network repositories, and virtual appliance transceivers. In Book 

Cache-based system management architecture with virtual appliances, network 

repositories, and virtual appliance transceivers (Editor ed.^eds.). City: Google 

Patents; 2008. 

67. Reich J, Laadan O, Brosh E, Sherman A, Misra V, Nieh J, Rubenstein D: 

VMTorrent: scalable P2P virtual machine streaming. In Book VMTorrent: 

scalable P2P virtual machine streaming (Editor ed.^eds.). pp. 289-300. City: 

ACM; 2012:289-300. 

68. Lagar-Cavilla HA, Whitney JA, Scannell AM, Patchin P, Rumble SM, De Lara E, 

Brudno M, Satyanarayanan M: SnowFlock: rapid virtual machine cloning for 

cloud computing. In Proceedings of the 4th ACM European conference on 

Computer systems. ACM; 2009: 1-12. 

69. Van Gorp P, Mazanek S: SHARE: a web portal for creating and sharing 

executable research papers. Procedia Computer Science 2011, 4:589-597. 

70. QEMU Official OS Support List - MS-DOS: 

[http://www.claunia.com/qemu/objectManager.php?sClass=application&iId=53] 

71. Creating a MS-DOS Virtual PC under Virtualbox 

[https://mylinuxramblings.wordpress.com/2010/12/05/linux-mint-debian-edition-

lmde-first-impressions/] 

72. Angiuoli S, Matalka M, Gussman A, Galens K, Vangala M, Riley D, Arze C, 

White J, White O, Fricke WF: CloVR: A virtual machine for automated and 

portable sequence analysis from the desktop using cloud computing. Bmc 

Bioinformatics 2011, 12:356. 

73. Bio-Linux 6.0 [http://nebc.nox.ac.uk/tools/bio-linux] 

74. Wang Y, Mehta G, Mayani R, Lu JX, Souaiaia T, Chen YH, Clark A, Yoon HJ, 

Wan L, Evgrafov OV, et al: RseqFlow: workflows for RNA-Seq data analysis. 

Bioinformatics 2011, 27:2598-2600. 

http://pubs.vmware.com/vsphere-50/topic/com.vmware.wssdk.pg.doc_50/PG_Ch11_VM_Manage.13.4.html
http://pubs.vmware.com/vsphere-50/topic/com.vmware.wssdk.pg.doc_50/PG_Ch11_VM_Manage.13.4.html
http://cloud-images.ubuntu.com/
http://ck.kolivas.org/apps/lrzip/
http://www.mattmahoney.net/dc/
http://www.claunia.com/qemu/objectManager.php?sClass=application&iId=53
http://nebc.nox.ac.uk/tools/bio-linux


142 

75. Klinginsmith J, Mahoui M, Wu YM: Towards Reproducible eScience in the 

Cloud. 2011:582-586. 

76. Goecks J, Nekrutenko A, Taylor J, Galaxy T: Galaxy: a comprehensive 

approach for supporting accessible, reproducible, and transparent 

computational research in the life sciences. Genome Biol 2010, 11. 

77. Leisch F: Sweave: Dynamic generation of statistical reports using literate 

data analysis. In Compstat. Springer; 2002: 575-580. 

 

  



143 

GLOSSARY 

Word  Definition 

Digital Resource Useful functionality available through a computer, whether via the 

Internet or locally. 

Internet Archive A system set up in the 1990s to provide "universal access to all 

knowledge". One of its services is one which attempts to archive as 

much of the visible Internet as possible using the "Wayback 

Machine". Available at http://archive.org 

Uniform Resource 

Locator 

Format for a string referring to a resource. Most commonly seen 

with “http” or “https”, such as: https://en.wikipedia.org/wiki/Url 

Virtual Machine A packaging that encompasses all data and logic necessary to 

replicate a computing environment 

WebCite System meant for the on-demand archival of scholarly resources. 

Available at http://webcitation.org 

 

 

http://archive.org/
https://en.wikipedia.org/wiki/Url
http://webcitation.org/

	Availability and Preservation of Scholarly Digital Resources
	Recommended Citation

	Table of Contents
	List of figures
	List of tables
	Abbreviations
	Abstract
	Chapter 1  - Introduction and Overview
	Chapter 2 – Link Decay
	Abstract
	Background
	Results


	Chapter 3 - Logic Capsule
	Abstract
	Background


	Appendix
	From Chapter 2 – Link decay
	Readme


	Bibliography (Comprehensive)
	Glossary

