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ABSTRACT 
 

ANALYSIS OF NOVEL CYANIDE ANTIDOTE DIMETHYL TRISULFIDE FOR 

PHARMACOKINETIC STUDIES, AND ANALYSIS OF SULFUR MUSTARD 

METABOLITES FOR IDENTIFICATION OF BIOMARKERS OF INHALED DOSE 

 

ERICA MANANDHAR 

2017 

 

Cyanide poisoning by accidental or intentional exposure poses a severe health 

risk. The current FDA approved antidotes for cyanide poisoning can be effective, but 

each suffers from specific major limitations. Dimethyl trisulfide (DMTS), a sulfur donor 

that detoxifies cyanide by converting it into thiocyanate, is a promising next generation 

cyanide antidote. Although a validated analytical method to analyze DMTS is not 

currently available from any matrix, one will be vital for the approval of DMTS as a 

therapeutic agent against cyanide poisoning. Hence, a stir bar sorptive extraction (SBSE) 

gas chromatography – mass spectrometry (GC-MS) method was developed and validated 

for the analysis of DMTS from rabbit whole blood. The limit of detection (LOD) using 

this method was 0.06 µM with dynamic range from 0.5 – 100 µM. The method described 

here allows further investigations of DMTS as a promising antidote for cyanide 

poisoning.  
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 Sulfur mustard (SM) is the most utilized chemical weapon in modern history. 

Although its exposure can result in wide range of toxic outcomes, airway injury leading 

to respiratory failure is the principal cause of mortality in victims. Therefore, current 

investigations are underway which focus on understanding the inhalation toxicity of SM 

in order to develop effective therapeutic interventions. A major challenge in inhalation 

studies is the quantification of actual respiratory dose. In this report, we identified 

biomarkers that have the potential for correlation to inhalation dose. Preliminary data for 

correlation of two biomarkers to dose are also presented. To our knowledge, there are no 

studies done in identifying SM biomarkers in inhalation exposure. Additionally, a rapid, 

simple, and direct GC-MS analysis technique for an important SM biomarker, sulfur 

mustard oxide (SMO), was developed and validated in swine plasma. The LOD of the 

method was 0.1 µM, with a linear range from 0.5 -100 µM. The availability of this 

method will allow easy and rapid diagnosis (within 15 min of exposure) of SM poisoning 

especially during the asymptomatic latency period (6-24 h post-exposure).  
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Chapter 1. Introduction 

1.1 Overall Significance 

Chemical warfare agents (CWAs), such as cyanide and sulfur mustard, have been 

weaponized and used for many years, resulting in millions of casualties and deaths [1-3]. 

Despite the efforts of the Chemical Weapons Convention to prohibit development, 

production, stockpiling, and use of CWAs, their use on civilians, as recent as 2017 [4], 

indicate the continuous threat that they pose to mankind [5]. Therefore, research on 

improved toxicological understanding and the development of effective therapeutics are 

critical to combat the threats of CWAs [2, 3, 6].  

Approved antidotes for cyanide poisoning suffer from serious limitations [7-10], 

whereas treatments for SM poisoning are currently unavailable. This necessitates the 

development of novel therapeutics, which require pharmacokinetic and toxicokinetic 

studies based on validated analytical methods. These studies help allow for FDA (Food 

and Drug Administration) approval of novel drugs, which can potentially save lives of 

CWA exposed victims. Moreover, the elucidation of the metabolic behavior of 

biomarkers is necessary for correlation to “internal dose” and revealing the advantages 

and disadvantages of each marker for detecting CWA exposure. To date, no biomarker 

studies have been completed on inhaled SM, one of the most important routes of 

exposure [11, 12]. Biomarker studies and quantification of actual respiratory dose will 

improve validity of inhalation studies, which are vital in developing effective therapeutic 

interventions against SM poisoning. Additionally, methods for rapid detection of early 
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markers will allow for immediate diagnosis of exposure, especially during the latent 

period of SM (i.e., 6-12 h post exposure when clinical symptoms are not present).  

1.2 Project Objectives 

The work is comprised of three main objectives: 1) Develop novel analytical 

method to determine DMTS, a next generation antidote, in plasma, 2) Identify 

biomarkers of inhalation exposure of SM for potential use in dose-correlation studies, and 

3) Develop a simple and rapid technique for analysis of SMO, a diagnostic SM 

metabolite, from plasma. Chapter 2 describes the analysis of novel cyanide antidote, 

DMTS using stir bar sorptive extraction (SBSE)- gas chromatography-mass spectrometry 

(GC-MS). Chapter 3 addresses the identification of biomarkers for inhalation exposure of 

SM and preliminary correlation of concentration to dose. Chapter 4 details determination 

of SMO from plasma using a direct and rapid GC-MS method. Chapter 5 contains 

conclusions and future work.  

1.3 Classifications of CWAs 

Chemical warfare (CW) agents are Weapons of Mass Destruction (WMD) [13]. 

These compounds are extremely toxic synthetic chemicals that have a rapid onset of 

action after dissemination and cause lethal or incapacitating effects on humans. They are 

usually dispersed as a gas, liquid, or aerosol, or as agents adsorbed to particles that can be 

made powder [13, 14]. 

 Based on the physicochemical, physiological, and chemical properties, CW agents 

can be classified in several different ways.  However, the most commonly used 

classification is based on the physiological effects produced by the CW agents. 
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According to this classification, CW agents are mainly categorized into four distinct 

subgroups: nerve agents, vesicants (blistering agents), blood agents, and choking agents 

[13]. 

 Nerve agents, including sarin, soman, tabun, and VX, are a class of highly toxic 

organophosphates that affect the functioning of the nervous system [15]. Nerve agents are 

more toxic than other known CWAs, and are capable of causing death within minutes to 

hours of exposure, depending on concentration [16]. The highly volatile nature of nerve 

agents is a key physical property contributing to their effectiveness [15, 16]. Routes of 

exposure for nerve agents include inhalation, ingestion, and dermal absorption.  

 Choking agents, which includes a wide array of gases such as chlorine, phosgene, 

ammonia, organohalides, and nitrous oxides, were among the first CW agents produced 

in large quantities and were used extensively in World War II [13]. Choking agents, also 

known as pulmonary agents, attack the nose, throat, and the lung tissues, primarily 

causing pulmonary edema. In severe cases of exposure, the lungs can fill up with fluid, 

and result in death from lack of oxygen [13]. 

 Blistering agents, also known as vesicants, are toxic chemicals that produce 

blisters or vesicles, resembling those caused by burns [13]. The chemicals in this CWA 

class are toxic to skin, lungs, eyes, and mucous membranes. There are three different 

subclasses within the vesicants: the mustards, the arsenicals, and the halogenated oximes. 

Overall, vesicants have low lethality compared to other CW agents, but are generally 

very effective in inflicting pain and producing casualties. Vesicants, mainly sulfur 

mustard, is one of the most widely used CWA, because of its ability to degrade the 
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performance and efficiency of soldiers by incapacitating them [13, 17].  The burns caused 

by vesicants are comparable to thermal burns, however takes longer time to heal.  

 Blood agents, which mainly include the cyanides, get transported within the body 

via distribution of blood, and function by inhibiting the ability of cells to utilize and 

transfer oxygen [18]. These agents are also known as systemic agents [13, 19].    

1.4 History and uses of CWAs 

The use of chemical warfare agents dates back to the 19th century [13]. Although, 

historical evidence shows that the use of poisonous extracts from plants were prevalent 

throughout the Middle Ages and Renaissance, the practice of deploying chemicals on the 

battlefield only started in 1915 [1]. CWAs, such as phosgene, sulfur mustard, and 

lewisites, used in World War I caused 100,000 deaths and 1.2 million casualties.  During 

World War II more than a million deaths were reported due to the use of hydrogen 

cyanide (Zyklon B) in extermination camps by the Nazis [2].  

 In recent times, CWAs were used in Iran-Iraq war, and during attacks by a 

Japanese cult in Motsumoto (1994) and the Tokyo subway system (1995) [20]. More 

recently, strong evidences suggest the use of CWAs such as mustard and chlorine gas in 

Syria (2015) by Islamic State (IS) militants [21]. 

 Although a wide variety of CWAs exist and are of public health and safety 

concern, this work is focused on cyanide, a blood agent, and sulfur mustard, a vesicant. 

The following sections will elaborate in the exposure, toxicity, treatments, and methods 

used for analysis of cyanide and sulfur mustard.  
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1.5 Cyanide: Exposure, Toxicity, Antidotes 

1.5.1 Exposure to Cyanide 

Exposure to cyanide can be caused from natural and anthropogenic sources, or 

from illicit use of cyanide as a poison [10, 22-25]. Natural sources include release of 

cyanide into the environment from volcanoes, fungi, bacteria, and plants [26]. Volcanic 

eruptions can release hydrogen cyanide gas into the atmosphere, which contaminates air 

and water for miles [26]. Several species of bacteria, fungus, and algae, can also release 

cyanide into the environment at low concentrations [27]. However, the major natural 

source of cyanide is cyanogenic plants, which synthesize compounds called cyanogens 

that produce cyanide upon hydrolysis [28]. Over 800 species of edible plants and fruits, 

including cassava, almonds, sweet potatoes, yams, peaches, apples, apricots, pears, lima 

beans, flax seeds, bamboo shoots, etc., have been identified as cyanogenic [29, 30]. For 

instance, cassava, a staple food in several parts of Africa, contains enough cyanogens that 

daily consumption of a cassava-rich diet can be equivalent to about half the lethal dose of 

cyanide [31].  

Exposure to cyanide from anthropogenic sources involve occupational exposures 

during industrial processes (electroplating, plastic processing, mining) and inhalation of 

hydrogen cyanide gas from fires/smoke (i.e. burning of acrylonitrile, polyurethane, wool, 

silk, rubber, and cigarettes produces HCN) [32, 33]. Hydrogen cyanide, which is used to 

prepare different salts of cyanide, is produced worldwide at an estimated amount of 1.4 

million tons annually [22]. Extraction of a desired metal from soil or rocks is one of the 

major uses of cyanide due to its strong binding capacity to gold, silver, zinc, etc. [34]. 
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Other common uses of cyanide include synthesis of pigments, pesticides, plastics, dyes, 

and insulation. Although occupational exposure of cyanide is of major concern, the 

leading cause of exposure from anthropogenic sources can be attributed to inhalation of 

smoke from cigarettes [35] and household or industrial fires [36]. Incomplete combustion 

of nitrogen containing compounds (e.g., plastic, wool, silk) produces cyanide-containing 

smoke during building fires [36]. Cyanide develops when the temperature reaches 315 °C 

(600 °F), and is released as hydrogen cyanide gas. It is reported that the majority of 

deaths due to smoke inhalation during fires are caused by cyanide poisoning instead of 

poisoning from carbon monoxide [37].  In 2015, a deadly explosion in a warehouse 

containing 700 tons of sodium cyanide, severely contaminated air and water in Tianjin, 

China. After the explosion, cyanide levels in affected zones soared up to 365 times higher 

than the safety limit [38]. It is not certain if the death of 115 people during this tragic 

event was a direct result of cyanide exposure. However, thousands of dead fish found on 

the shore of a contaminated river stoked fears in citizens regarding the short- and long-

term health effects of this exposure [38].  

Apart from exposure to cyanide due to natural and anthropogenic sources, humans 

can also be exposed to it due to its illicit use as suicide, homicide, and chemical warfare 

agent [39]. Although the use of cyanide as poison dates back to earlier times, cyanide was 

first used as a large-scale chemical weapon during World War I. In more recent times, 

cyanide was used during the Iran-Iraq war in the late 1980s and in the Tokyo subway 

attack in 1995 [40, 41]. Cyanide was also used to poison a lottery winner in 2012 [42, 43] 

and a Pittsburgh physician in 2013 [44]. 
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1.5.2 Mechanism of toxicity and symptoms 

Cyanide (LD50 = 1.5 mg/kg via oral exposure, LC50 = 524 ppm for a 10 min 

inhalation exposure to HCN) is a rapidly acting, highly toxic compound [10, 22, 23]. The 

high toxicity of cyanide can be attributed to its strong affinity for ferric ion (Fe3+), which 

is a common metallic cofactor in metalloenzymes [10, 22]. The main target during 

cyanide exposure is cytochrome c oxidase, which is the last mitochondrial enzyme found 

in complex IV of the electron transport chain (Figure 1.1). Cytochrome c oxidase is 

responsible for carrying electrons to molecular oxygen, thereby reducing it to water 

(Equation 1.1) [25]. Additionally, it also maintains an electrochemical gradient of H+ 

ions, which is essential in the production of adenosine triphosphate (ATP). However, 

when cyanide binds to the cytochrome c oxidase, it cannot transfer its electrons, 

inhibiting the cellular respiration [37, 45]. Furthermore, the gradient of H+ ions disrupts, 

halting the ATP synthesis. Therefore, in order to compensate for the loss of ATP, glucose 

is broken down via the glycolysis pathway, which uses nictotinamide adenine 

dinucleotide (NAD+). In order to replenish the lost NAD+, fermentation of lactic acid 

occurs under hypoxic conditions, leading to the formation of large amounts of lactic acid. 

The increase in lactic acid concentration in blood decreases the pH of the body, which 

impairs several other physiological processes, ultimately leading to cell death [46].  

4	Cyt	c	 reduced + 	8H. +	O0	 ↔ 4	Cyt	c	 oxidized + 4H. + 2H0O  (1.1) 
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Figure 1.1. Diagram showing the electron transport chain. Cyanide binds to the Fe3+ of 
the cytochrome c and results in inhibition of cellular respiration [47]. 

1.5.3 Confirmation of exposure 

Determination of cyanide exposure can be accomplished by direct analysis of 

cyanide or by analysis of its metabolites [22]. Direct analysis of cyanide may be the only 

way to confirm exposure within the initial minutes following exposure [48, 49]. 

However, it has several limitations due to high volatility, reactivity, and also short half-

life of cyanide in biological fluids, making it difficult to detect once a certain amount of 

time has elapsed following exposure [50, 51]. Therefore, indirect determination of 

exposure is performed by analyzing cyanide metabolites that are generally longer-lived in 

vivo and are more stable under normal storage conditions than cyanide [48, 52]. The 

major metabolites of cyanide that have been detected from urine, saliva, tissue, and blood 

are thiocyanate (SCN-) and tautomers 2-amino-2-thiazoline-4-carboxylic acid (ATCA) 
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and 2-iminothiazolidine-4-carboxylic acid (ITCA) [53-56].  Additionally, 

cyanocobalamin and cyanide-protein adducts have been evaluated [18]. 

1.5.4 Current cyanide antidotes 

There are currently three U.S. Food and Drug Administration (FDA) approved 

antidotes for cyanide [10, 57]. The different classes of antidotes differ in their 

detoxification mechanism. Typically, an ideal antidote is expected to have properties 

such as rapid onset of action, capability of neutralizing cyanide without interfering with 

cellular oxygen transport, safe to administer to victims of smoke inhalation, not harmful 

if given to a non-poisoned patient, and ease of administration without the need of special 

training or equipment.  The detoxification mechanism and properties of the three FDA 

approved antidotes will be discussed below.  

1.5.4.1 Hydroxocobalamin 

Hydroxocobalamin (Cbl), also known as vitamin B12, was approved by FDA for 

treatment of cyanide poisoning in 2006 [10, 57, 58]. Cbl is cobalt-containing compound 

that detoxifies cyanide by direct sequestration [59, 60]. Due to the high affinity of cobalt 

towards cyanide, Cbl directly binds with cyanide by replacing its hydroxyl ligand, 

thereby allowing the cytochrome c oxidase to return to its normal function during cellular 

respiration [59, 61].  This process leads to the formation of cyanocobalamin, which is 

excreted from the body in the urine [61]. The properties of Cbl that makes it ideal as an 

cyanide antidote are: i) it has a rapid onset of action, ii) its detoxification process does not 

compromise the oxygen carrying capacity of blood, iii) it can be administered to smoke 

inhalation victims, and iv) it has mild side effects [61]. Despite the advantages of Cbl, its 
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major limitation is the need for high effective doses [57]. One molecule of Cbl is required 

to sequester one molecule of cyanide; therefore, due to the 50:1 Cbl:cyanide molecular 

weight ratio, the recommended dose of Cbl is 5g (administered over 15 min) [8].  Due to 

the large dosage, Cbl must be administered by IV, which severely limits its applicability 

in cases of mass casualty situations. 

1.5.4.2 Sodium nitrite 

 Sodium nitrite detoxifies cyanide via two routes i) indirect sequestration and ii) 

cyanide displacement [62]. Nitrite (classified as a methemoglobin generator) converts 

hemoglobin, which has low affinity to cyanide, to methemoglobin, which has a relatively 

high affinity towards cyanide [62]. Methemoglobin serves as a temporary binding site for 

cyanide, decreasing the presence of free cyanide in the bloodstream. The recently 

suggested cyanide displacement mechanism of action is postulated to occur as nitrite is 

converted to nitric oxide, which then displaces cyanide bound to the cytochrome c 

oxidase [62, 63]. With either of the detoxification mechanism, the major limitation of 

sodium nitrite is the production of methemoglobin [63]. Excessive methemoglobin is 

toxic to the body and can lead to headache, cyanosis, fatigue, coma, and even death [10]. 

Furthermore, administration of sodium nitrite can be fatal for victims of smoke inhalation 

as it further reduces the oxygen carrying capacity of the blood [62].  

1.5.4.3 Sodium thiosulfate 

Sodium thiosulfate is the only FDA approved sulfur donor cyanide antidote [10]. 

It detoxifies cyanide by donating sulfur and converting cyanide into minimally toxic and 

renally excreted thiocyanate [64]. This detoxification mechanism is dependent on a sulfur 
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transferase enzyme, rhodanese. Rhodanese has limited availability in the body [9], with 

very low/no availability in some vital organs such as heart and brain. Therefore, these 

organs are susceptible to cyanide poisoning even upon administration of thiosulfate [9, 

65]. Due to this major drawback, sodium thiosulfate is only useful as combination 

therapy [23, 66]. Apart from high rhodanese dependency, sodium thiosulfate is also 

limited due to its short biological half-life and relative low sulfur donor activity [10]. 

Furthermore, the inorganic thiosulfate has limited lipophilicity as a result of its anionic 

charge, which results in limited transport across cell membranes in order to reach the 

endogenous rhodanese within mitochondria.  

1.5.5 Novel cyanide antidotes 

Considering the serious limitations in each of the available antidotes, several 

investigations have been in progress for the next generation of cyanide therapeutics. The 

three major ones that show a good promise in overcoming the current drawbacks are 3-

mercaptopyruvate (3-MP), cobinamide (Cbi), and dimethyl trisulfide (DMTS). 

1.5.5.1 Cobinamide (Cbi) 

Cobinamide is the penultimate precursor during the biological synthesis of 

hydroxycobalamin, and is seen to have several advantages over hydroxycobalamin as a 

cyanide antidote [8]. Cbi has a much higher affinity to cyanide, with Ka overall of ~ 1022 

M-1 compared to a Ka of 1012 M-1 for hydroxocobalamin [67]. The higher affinity can be 

explained by the difference in structures of the two molecules. Unlike Cbl, Cbi lacks the 

dimethyl-benzimidazole ribonucleotide tail coordinated to the cobalt atom in the lower 

axial position (Figure 1.2, blue portion of the structure), which allows it to have two 
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binding site for ligands: above and below the plane of the corrin ring [68]. Therefore, it is 

capable of binding two moles of cyanide per mole Cbi. Comparatively, one mole of 

cyanide is bound per mole of Cbl [8]. Furthermore, in aqueous solution, Cbi exists as 

aquohydroxocobinamide, which is at least five times more soluble in water than Cbl [8]. 

The high binding affinity of Cbi means that it can be administered in a smaller dose (1-

1.5 g), which makes it more practically feasible than Cbl [8]. Additionally, the relatively 

high water solubility allows the possibility of intramuscular administration, which makes 

it a good candidate for mass casualty events [8, 69].  

 

     

a. 
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Figure 1.2. Structures of cobalamin (a) and cobinamide (b). The cobalt atom in 
cobalamin only has one available binding site due to the presence of 
dimethylbenzimidazole ribonucleotide tail (shown in blue). Cobinamide lacks the 
dimethylbenzimidazole ribonucleotide tail, which allows its cobalt atom to have two 
binding sites (upper and lower) for ligands. 

1.5.5.2 3-mercaptopyruvate (3-MP) 

3-MP is similar to sodium thiosulfate in that it also acts as a sulfur donor and 

detoxifies cyanide by conversion into thiocyanate [70]. However, instead of being 

dependent on rhodanese, 3-MP is catalyzed by 3-MP sulfurtransferase (3-MST), which is 

readily available in liver, kidneys, heart, brain, and lungs. The abundance of 3-MST 

reduces the vulnerability of these organs to cyanide toxicity upon administration of 3-MP 

[71]. Additionally, unlike rhodanese, 3-MST is distributed in both cytosol and 

mitochondria, allowing cyanide detoxification to occur in both. Despite the advantageous 

properties of 3-MP, its major limitation is that it readily degrades in blood [66, 72]. In 

order to overcome this drawback, several prodrugs of 3-MP are currently being 

b. 

b. 
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investigated, one of which is sulfanegen [71, 72]. Developed in the early 1990s, 

sulfanegen is a water-soluble prodrug of 3-MP. It is a dimer, which dissociates non-

enzymatically into two 3-MP molecules in physiological condition [71]. It also 

overcomes the drawback of low stability of 3-MP, which makes it an ideal choice as an 

antidote.  

1.5.5.3 Dimethyl trisulfide (DMTS) 

DMTS, which detoxifies cyanide by converting it into thiocyanate, is suggested as 

the most promising next-generation sulfur donor for treatment of cyanide poisoning [10]. 

Unlike the current sulfur-donor thiosulfate, DMTS can effectively function with or 

without rhodanese [73]. Additionally, DMTS is highly lipophilic, which permits effective 

penetration through the cell membrane and the blood brain barrier, allowing better 

antidotal efficacy than thiosulfate [74].  Recent in-vitro studies have shown that DMTS is 

43 times more effective than thiosulfate at detoxifying cyanide in presence of rhodanese 

[73]. Whereas, in absence of rhodanese, it is 79 times more effective, confirming that 

DMTS is less dependent on the enzyme [73]. Results from in-vivo studies are consistent 

with these findings, suggesting that DMTS is superior as a cyanide therapeutic than 

thiosulfate [74]. 
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Although the mechanism of detoxification in the absence of rhodanese is not fully 

understood, it is evident that DMTS is effective. The reaction by which DMTS converts 

cyanide into thiocyanate is shown in Figure 1.3.

 

S
S

S S S
with or without 
RhodaneseCN- SCN-

 

Figure 1.3. Reaction showing the detoxification of cyanide (CN-) to thiocyanate (SCN-) 
by DMTS. In vitro and in vivo studies suggest that DMTS is capable of metabolizing 
cyanide even without the presence of a sulfur transferase enzyme like rhodanese. 

1.6 Sulfur Mustard: Exposure, Toxicity, Metabolism, and Confirmation of Exposure  

1.6.1 Exposure to Sulfur Mustard 

Bis(2-chloroethyl)sulfide, commonly known as sulfur mustard (SM), was first 

synthesized in 1822 by Depretz, by reacting ethane and sulfur dichloride (Equation 1.2) 

[5]. However, the vesicating properties of SM were not mentioned during or after the 

synthesis.  In 1860, Niemann followed the same procedure and reported that even at trace 

amounts the synthesized chemical when brought in contact with skin caused pain and 

blisters after several hours [5]. Later, Clark and Fischer synthesized SM by reacting 

thiodigycol with hydrochloric acid (Equation 1.3) [5]. Clark suffered burns when a flask 

broke during the synthesis process, which caused him to be hospitalized for 8 weeks. The 

mention of this incident allegedly inspired the German Chemical Society to deploy SM 

for the first time as a chemical weapon in 1917 during the course of the First World War. 

Upon deployment, 4,000 deaths of British armed forces and over 16,000 nonfatal injuries 

were reported as a result of SM poisoning during the course of World War I [5, 75].  
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SCl0 + 2C0H9 → (Cl − CH0 − CH0)0S      (1.2) 

(HO − CH0CH0)0S + 2HCl → 	 (Cl − CH0CH0)0S + 2H0O    (1.3) 

 Since the First World War, SM has been deployed in several combat situations, 

such as United Kingdom against the Red Army (1919), Spain in Morocco (1921-1927), 

Italy in Libya (1930), Soviet Union against Japan (1930), Italy against Abyssinia (1935-

1940), Poland against Germany, Germany against Soviet Union and Poland, Japan 

against China during Second World War, and Egypt against Yemen (1963-1967) [5]. 

More recently, evidence suggests the use of SM in Iraq vs. Kurdistan, Iraq vs. Iran, and in 

Syria (2015) by Islamic State (IS) militants [76]. 

1.6.2 Mechanism of sulfur mustard toxicity 

SM can enter the body through various routes including inhalation, ingestion, and 

absorption through the skin or eyes. The high lipophilicity of SM allows it to rapidly 

penetrate through the hair follicles and sweat glands of skin and mucous membranes [77]. 

SM greatly affects moist body parts such as eyes, mouth, respiratory tract, scrotum, and 

anus [77, 78]. Inhalation of its aerosol or vapor produces a serious upper respiratory tract 

irritation [78] and  the odor of SM does not provide adequate warning for detection. The 

LCt50, which is the product of concentration and time that is lethal to 50% of the 

exposed population via inhalation, is approximately 1500 mg-min/m3 [5].  

The acute effects of SM are usually delayed, with no signs or symptoms in the 

first hour. Within 2-6 hours post-exposure, typical signs of nausea, headache, fatigue, 

reddening of the face and neck, soreness of throat, inflammation of eyes, etc. become 
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severe [5]. Skin inflammation and blistering, accompanied by coughing with pus, 

becomes marked within the 24 hours after exposure. In severe cases, death may be caused 

within days or weeks [5]. Whereas in less severe cases, the burns heal slowly with 

increased vulnerability to infections.  

The toxicity of SM can be attributed to its ability to readily alkylate nucleophilic 

sites (i.e., it is capable of replacing a proton in another molecule by an alkyl cation) [79, 

80]. After passing through the cellular membrane, one chloroethyl side chain undergoes a 

first–order (SN1) intramolecular cyclization, releasing the chloride and forming a 

positively charged ethylsulfonium ring (Figure 1.4) [80]. This intermediate rapidly reacts 

with nucleophilic groups (sulfhydryls, phosphates, ring nitrogens, and carboxyls) present 

in DNA, RNA, and proteins, resulting in irreversible alkylation and cell death [79, 81]. 

The most important target is the DNA. All bases of DNA are susceptible to alkylation, 

especially the N7 position of guanine because it is the most negative site within DNA 

bases [82]. DNA damage can lead directly to cell death or activate poly(ADP-ribose) 

polymerase (PARP) and other repair enzymes. Over-activation or higher levels of PARP 

can lead to apoptotic or necrotic cell death, whereas mild levels may be beneficial to cell 

survival as it triggers DNA repair mechanisms.  

The vesicating activity of sulfur mustard can also be attributed to the alkylation of 

cytoskeletal, extracellular matrix (ECM), and cell anchoring–related matrix proteins. This 

process can weaken and interfere with the ability of basal keratinocytes to maintain vital 

connections with the basement membrane, which ultimately leads to epidermal-dermal 

separation, cell death, and formation of blisters.  
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Finally, sulfur mustard also targets sulfhydryl-containing proteins, such as 

glutathione (GSH), which plays a major role in maintaining a redox homeostasis in the 

tissues. The depletion of GSH initiates oxidative stress, which leads to lipid peroxidation 

and other oxidative cellular damage.  

Cl
S ClCl

S
Cl

sulfur mustard episulfonium ion  

Figure 1.4. Formation of episulfonium ion as a result of first order SN1 intramolecular 
cyclization. 

1.6.3 Metabolism of sulfur mustard 

There are four SM metabolic routes identified in animal models [5, 79]. The first 

route can be considered direct chemical transformations resulting in β-chloroethyl 

sulfoxide (SMO) from direct oxidation of SM, thiodigycol (TDG) from direct hydrolysis 

of SM, and thiodiglycol sulfoxide (TDGO) from oxidation of TDG [5, 79]. The second 

route involves an initial reaction of SM with two molecules of glutathione. The bis-

glutathione is metabolized into bis-cysteinyl conjugate followed by β-lyase cleavage of 

cysteinyl C-S bond and a subsequent methylation and oxidation of the thiol, resulting in 

1,1’ -sulfonylbis[2-S- (N-acetylcysteinyl) ethane] (SBSNAE), 1,1’ -sulfonylbis[2- 

(methylthio) ethane] (SBMTE), 1-methylsulfinyl-2-[2- (methylthio)ethylsulfonyl]ethane 

(MSMTESE) and 1,1’ - sulfonylbis [2-(methylsulfinyl) ethane] (SBMSE) [5, 83]. The 

third route involves reaction of SM with DNA at nucleophilic sites resulting in formation 

of SM-DNA adducts [82]. Finally, the last route involves reaction with amino acid 
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residues present in proteins, resulting in formation of some major adducts, such as an 

HETE-valine adduct of hemoglobin and an HETE-cysteine adduct of albumin [5].  

1.6.4 Confirmation of exposure 

Detection of free sulfur mustard in biological fluids such as urine, plasma, blood, etc. 

is highly unlikely due to its extensive metabolism via rapid hydrolysis, oxidation, and 

reactions with glutathione and nucleophilic sites in the body [84]. Therefore, the 

metabolites as well as alkylated macromolecules are generally exploited to determine 

exposure to SM. The hydrolysis, oxidation, and β-lyase metabolites appear in biological 

specimens within 15 min of exposure and are ideal for diagnostic purposes. However, 

these metabolites undergo relatively rapid elimination (within 5-10 days) [82] and cannot 

be used as long-term markers. In contrast, adducts to macromolecules (DNA and 

proteins) are present for relatively long times (30-90 days) post-exposure and can be used 

for verification of exposure long after the event [82].  

The analysis of urinary metabolites in SM-exposed rats were initially reported by 

Black et al., where they identified oxidative and hydrolysis metabolites SMO, TDG, 

TDGO, and glutathione-derived metabolites SBSNAE, SBMSE, MSMTESE, and 

SBMTE [79]. Several analytical methods have been developed over the years for analysis 

of these metabolites in urine. Quantification of TDG and TDGO has been typically 

accomplished by derivatization followed by analysis using gas chromatography-tandem 

mass spectrometry (GC-MS/MS) [85-88]. However, several studies suggested that TDG 

and TDGO are not unequivocal markers of poisoning, as low concentrations (usually 

<10ng/mL, but sometimes higher) of TDG and TDGO are observed in urine samples of 
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animals [89] and humans [90, 91]. In fact, in some studies performed, TDG 

concentrations in exposed and unexposed individuals had a considerable overlap [92]. 

Although TDG and TDGO are not definitive markers of SM exposure, their presence in 

combination of other metabolites can help confirm a potential exposure. 

β-lyase metabolites (SBMSE, MSMTSESE, SBMTE), which are unequivocal 

markers for SM poisoning, were initially analyzed via GC-MS by reducing SBMSE and 

MSMTESE into a single analyte, SBMTE, using titanium (II) chloride [88, 93]. More 

recently, methods have been developed to analyze these markers as separate individual 

entities using LC-MS/MS [83]. The β-lyase and oxidation/hydrolysis products have 

mainly been studied in urine samples until Li et al. in 2013 developed a simultaneous 

method for analysis of the seven metabolites (SMO, TDG, TDGO, SBMSE, MSMTESE, 

SBMTE, and SBSNAE) from plasma [89]. Li et al. showed that all of the seven 

metabolites were present in the plasma of rats that were exposed to SM. The analysis of 

metabolites is simpler and involves less time-consuming steps compared to the analysis 

of SM adducts.  

Retrospective and forensic detection for SM poisoning is achieved by analyzing 

DNA and proteins for SM adducts. Analysis of these macromolecules is typically 

performed by three different approaches [80]. The first approach involves analysis of the 

entire alkylated protein or DNA with intact SM adduct(s). In the second approach, 

macromolecules can be enzymatically or chemically digested to produce a smaller 

fragment which retain the adduct. Finally, the third approach involves cleaving the adduct 

from the macromolecule and analyzing the unbound adduct as a free metabolite. 
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Typically, analysis of protein adducts are chosen over analysis of DNA adducts, as 

protein adducts are expected to have a much longer half-life, with life spans varying from 

several weeks to months [94, 95]. Furthermore, the detection of protein adducts is more 

sensitive and is typically advantageous in determining single, protracted, and intermittent 

exposure at low concentrations [95]. There are two main protein adduct based methods, 

which have been significantly improved over the years. Detection of adducts of SM to 

albumin involves a pronase digestion of SM alkylated albumin, which results in 

formation of  (S-2-hydroxyethylthioethyl)-Cys-Pro-Phe, known as the [(S-HETE)-Cys-

Pro-Phe] [96]. This tripeptide product can be analyzed via liquid chromatography-tandem 

mass spectrometry (LC-MS-MS). SM-adducted hemoglobin is detected as a HETE-Val 

adduct after Edman degradation, which involves selective cleaving of the N-terminal 

valine adduct to hemoglobin [97]. It is important to note than albumin adducts undergo 

faster elimination than hemoglobin adducts (half-life of albumin is 20-25 days, compared 

to 120 days for hemoglobin), which limits its utility to only a few weeks after exposure 

[98].  
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Chapter 2. Determination of Dimethyl trisulfide in rabbit blood using stir bar sorptive 

extraction – gas chromatography mass spectrometry 

2.1 Introduction 

Cyanide (LD50 = 1.5 mg/kg, oral route, LC50 = 524 ppm for a 10 min inhalation 

exposure to HCN) is a rapidly acting, highly toxic compound that inhibits cytochrome c 

oxidase and subsequently causes cellular hypoxia, which may eventually result in death 

[10, 22-25, 33]. It can be introduced into the body by a number of different ways, such as 

consumption of cyanogenic plants and fruits [28-30] (e.g., cassava roots, yam, sorghum, 

bitter almonds), inhalation of hydrogen cyanide gas from fire [99] (i.e., burning of 

acrylonitrile, polyurethane, wool, silk, rubber produces HCN) and cigarette smoke, 

occupational exposures (e.g., the 2015 warehouse explosion in Tianjin, China [100, 101]) 

and from use of cyanide as a suicide, homicide, or chemical warfare agent [32, 102, 103] 

(e.g., in World War I, II, Tokyo subway attack, etc. [22]). The availability of cyanide, due 

to its versatile use in industrial processes (e.g., electroplating and plastic processing) and 

its rapidly acting nature, makes it an important and ever-growing threat to mankind [22, 

104]. Currently, there are three major classes of cyanide therapeutics that are approved by 

the U.S. Food and Drug Administration (FDA): methemoglobin generators, direct 

sequestering agents, and sulfur donors [10, 57, 105, 106].  

 Sodium nitrite, primarily classified as a methemoglobin generator, is generally 

agreed to function by indirect sequestration of cyanide [62]. Nitrite oxidizes ferrous (2+) 

iron to ferric (3+) iron in hemoglobin to form methemoglobin, which strongly binds 

cyanide to form cyanomethemoglobin. Methemoglobin serves as a temporary binding site 
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for cyanide ion, and thus transiently decreases free cyanide in the bloodstream. Another 

recently proposed alternative mechanism of action is the conversion of nitrite to nitric 

oxide, which can then displace cyanide bound to cytochrome c oxidase [63, 107]. After 

displacement, cyanide is subsequently converted to less harmful compounds through 

normal metabolism or neutralized via a combination therapy (e.g., thiosulfate) [107]. 

With either detoxification mechanism, the major limitation of sodium nitrite is the 

production of methemoglobin. Excessive methemoglobin production (>30%) is a health 

risk, especially in children, leading to headaches, cyanosis, fatigue, coma, and even death 

[57]. Additionally, conversion of hemoglobin to methemoglobin lowers the oxygen 

carrying capacity of the blood, which can exacerbate carbon monoxide-induced reduction 

in oxygen carrying capacity in smoke-inhalation victims [10, 62]. 

 While sodium nitrite indirectly binds cyanide, hydroxocobalamin acts by directly 

sequestering cyanide [10, 59, 108]. The high affinity of cyanide towards the cobalt atom 

in hydroxocobalamin allows the formation of cyanocobalamin, which is easily excreted 

from the body in the urine. Although administration of hydroxocobalamin produces only 

mild side effects, it requires a high dose for optimum therapeutic effect (5 g administered 

over 15 min) [108]. Therefore, hydroxocobalamin typically needs to be administered 

intravenously by trained personnel over a long period of time, which severely limits its 

applicability during mass casualty events [10, 57]. 

  Sodium thiosulfate, the third class of cyanide antidote, is the only currently 

approved sulfur donor for treatment of cyanide poisoning. It donates a sulfur to cyanide, 

converting it to minimally toxic and renally excreted thiocyanate [64, 65]. Although 
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sodium thiosulfate has few adverse effects, its antidotal activity is mainly limited by its 

short biological half-life, small volume of distribution, and its dependence on rhodanese 

to aid sulfur transfer [10]. Rhodanese is a sulfur transferase enzyme primarily located in 

mitochondria of the liver and kidneys, with limited availability in the brain, an organ 

most susceptible to cyanide-induced histotoxic anoxia. The limited lipophilicity of 

thiosulfate as a result of its anionic charge, also adversely impacts its ability to penetrate 

the cell and reach the mitochondrial rhodanese [10].  

 Considering the serious limitations of the current antidotes, several investigations 

have been in progress to develop the next generation of cyanide therapeutics [64, 65, 106, 

109-111]. One promising approach is the development of a sulfur-donating compound 

that works effectively with or without rhodanese [64, 65]. Based on this approach, 

numerous synthetic and naturally occurring sulfur donors have been evaluated for in-vitro 

and in-vivo efficacy [10], with dimethyl trisulfide (DMTS) suggested as the most 

promising next generation sulfur donor for treatment of cyanide poisoning. The reaction 

by which DMTS detoxifies cyanide into thiocyanate is shown in Figure 2.1. The 

rhodanese sulfur transfer mechanism is well-discussed in the literature [112]. However, 

the mechanism of direct DMTS sulfur transfer is not well understood, but is known to 

occur [73]. Moreover, the high lipophilicity of DMTS permits its effective penetration of 

the cell membrane and the blood brain barrier, allowing better in-vivo antidotal efficacy 

than thiosulfate [73]. Recent in vitro studies demonstrate that, compared to sodium 

thiosulfate, DMTS is 43 times more effective at detoxifying cyanide in the presence of 

rhodanese [73]. Whereas, in absence of rhodanese, the difference in efficacy is even 
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higher, with DMTS producing 79 times greater efficacy than thiosulfate [73].  These 

results are consistent with in vivo studies, where the therapeutic antidotal ratio of DMTS 

was more than triple of what was observed for thiosulfate at the same dose. The in vivo 

and in vitro efficacy data confirm that DMTS is a superior cyanide countermeasure 

compared to the present sulfur donor therapy of thiosulfate.  

Despite the potential advantages of DMTS, the lack of a validated analytical 

method for its analysis may limit vital studies for therapeutic translation of DMTS. The 

only relevant report in regards to analysis from a biological matrix was published by 

Shirasu and coworkers, where DMTS was identified as a source of sulfurous malodor in 

fungating cancer wounds [113]. However, the concentrations of DMTS were not well 

quantified, and the method was not validated. Besides this single study, DMTS has 

mainly been identified as a naturally occurring compound contributing to pungent odors 

in vegetables such as garlic, soy, cabbage, broccoli, and cauliflower [113-117]. In 

addition, it has also been detected or quantified from fermented and aged food (cheese) 

and drinks (milk, beer [118], sake, and wine), where it most likely comes from oxidation 

of methanethiol, a bacterial degradation product of methionine [113, 119-123]. The 

analysis of DMTS is typically accomplished using headspace analysis or solid-phase 

microextraction with GC-MS. While these analytical techniques provide direction for the 

analysis of DMTS from blood, a validated analytical method is not currently available 

(from any matrix), but is critical for further development of this promising antidote. 

Therefore, the objective of the current study was to develop a validated method for the 

analysis of DMTS from whole blood. To accomplish this objective, a stir bar sorptive 
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extraction (SBSE) GC-MS analysis technique for analysis of DMTS from rabbit whole 

blood samples was developed.  

S
S

S S S
with or without 
RhodaneseCN- SCN-

 
 

Figure 2.1. Schematic representation of the reaction of DMTS and cyanide to form 
dimethyl disulfide (DMDS) and thiocyanate. 

2.2 Experimental 

2.2.1 Reagents and Standards 

All reagents were at least reagent grade unless otherwise noted. Methanol (LC-

MS grade) and nitric acid were purchased from Fisher Scientific (Fair Lawn, NJ, USA). 

Reverse-osmosis water was purified to 18.2 MΩ-cm using a polishing unit from Lab Pro, 

Labconco (Kansas City, KS, USA). Dimethyl trisulfide (DMTS) was obtained from 

Sigma-Aldrich (St. Louis, MO, USA). Gerstel Twister® stirbars (film thickness 0.5 mm, 

length 10 mm) were purchased from Gerstel, Inc. (Linthicum, MD, USA). Isotopically 

labeled internal standard, dimethyl-d6-trisulfide (DMTS-d6), was acquired from US 

Biological Life Sciences (Salem, MA, USA). DMTS stock solution was prepared fresh 

for each experiment due to the unstable nature of DMTS. The internal standard solution 

was prepared from a 10 mM stock solution in methanol stored at -30 °C.   

2.2.2 Biological fluids 

For method development and validation, rabbit whole blood (EDTA anti-

coagulated) was purchased from Pelfreeze Biological (Rogers, AR, USA) and stored at -

80 °C until used. Rabbit whole blood was chosen as the method development matrix 



 
 

  

27 

because we planned to utilize a rabbit model performed by our collaborators to prove the 

applicability of the analytical method for the analysis of blood DMTS concentrations.  

However, at the time we were finalizing the method validation, efficacy studies of DMTS 

were transitioned to a mouse model. Mouse blood from DMTS efficacy studies was 

gathered at Sam Houston State University. DMTS was intramuscularly administered at 

200 mg/kg. The mice were anesthetized (after 10 and 15 min) and placed on isoflurane. 

Blood was collected intravenously using a heparinized Pasteur pipette and transferred to 

heparinized 1.5 mL centrifuge tubes. An aliquot of blood (~150 µL) was then frozen and 

shipped on dry ice to South Dakota State University. Upon receipt, samples were stored 

at -80 °C until ready for analysis. Due to the limited volume of mouse blood, the sample 

(100 µL) was transferred to a clean vial and diluted in DI water to 500 µL before 

extraction and analysis.  

 All animals were handled in accordance with the Guide for the Care and Use of 

Laboratory Animals [124] by an Association for the Assessment and Accreditation of 

Laboratory Animal Care (AAALAC) International accredited institution. The 

Institutional Animal Care and Use Committee (IACUC) at Sam Houston State University 

approved the experiment.  

2.2.3 Sample preparation 

Blood (450 µL) was added to a 20 mL glass scintillation vial. An aliquot of 

aqueous nitric acid (1 mL, 90 mM) was added to the blood to lyse the red blood cells and 

denature the blood proteins. Where appropriate, aqueous DMTS standard (25 µL) was 

spiked into the denatured blood to achieve the desired final DMTS concentration. 
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Whenever needed, internal standard (25 µL) was spiked into the prepared blood to 

produce a final concentration of 5 µM DMTS-d6. A PDMS (poly dimethyl siloxane) 

coated stir bar was then added to the mixture, the sample was capped, and stir bar 

sorptive extraction was performed for 1 h at 700 rpm. Following extraction, the stir bar 

was removed from the solution using a 2-inch Teflon-coated magnet. The stir bar was 

gently dried by dabbing against a delicate task wipe and then transferred into a Thermal 

Desorption Unit (TDU) tube. The TDU tube was then placed into an auto-sampler for 

follow-on thermal desorption and GC-MS analysis. (Note: Because of the rapid 

enzymatic degradation of DMTS in blood, for all validation experiments, blood was acid 

denatured before adding DMTS or IS in order to maintain the reported concentration 

and minimize error occurring from the rapid decomposition. The reported concentration 

of all DMTS standards, including QCs and calibrators, excludes the acid dilution 

volume.) 

2.2.4 GC-MS analysis of DMTS 

After SBSE, stir bars were analyzed for DMTS and DMTS-d6 using an Agilent 

Technologies 7890A gas chromatograph with a 5975C inert XL electron 

ionization/chemical ionization mass selective detector with a Gerstel MPS 2XL series 

autosampler. To initiate analysis of the stir bar, the TDU tube with stir bar was 

transferred to the TDU injector and heated to transfer DMTS to the cooled injection 

system (CIS). The initial TDU injector temperature was maintained at 60 °C, and 

increased linearly to 250 °C at a rate of 720 °C/min. The final TDU injector temperature 

of 250 °C was maintained for 1 min. Desorbed analytes were transferred to the CIS 
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programmable temperature vaporization (PTV) type inlet in splitless desorption mode 

with a TDU transfer temperature of 200 °C. To transfer the analyte from the CIS to the 

GC column, the initial CIS temperature (30 °C) was linearly increased to 200 °C at a rate 

of 12 °C/s before returning to its initial temperature. Lower CIS temperatures, 10 and 0 

°C, were evaluated. However, improvement of the chromatography was not observed, 

likely due to the relatively high boiling point of DMTS (170 °C). 

 A DB5-MS bonded-phase column (30 m x 0.25 mm I.D., 0.25 µm film thickness; 

J&W Scientific, Folsom, CA, USA) was used to separate components of the sample with 

nitrogen as the carrier gas at a flow rate of 1 mL/min and a column head pressure of 

5.565 psi.  The GC oven temperature was initially held at 30 °C for 1 min, then elevated 

at a rate of 120 °C/min to 250 °C, where it was held constant for 1 min, before returning 

to its initial temperature. The elapsed time from adding the TDU tube to TDU to the end 

of the analysis was ~ 9 min, which included transfer of the analyte from the PDMS 

coated stir bar, through the TDU and CIS, and into the column.  The actual 

chromatographic acquisition time was 3.83 min with DMTS and DMTS-d6 eluting at 2.9 

min. The GC was interfaced with a mass selective detector using electron ionization with 

an electron energy of 70 eV. The MS source and quadrupole temperatures were 250 °C 

and 150 °C, respectively. Selective ion monitoring (SIM) was used to monitor the 

quantification and identification ions of DMTS (m/z of 126 and 111, respectively) and 

DMTS-d6 (m/z of 132 and 114, respectively).  

2.2.5 Calibration, quantification, and limit of detection 

Validation of this method was performed by generally following the Food and 
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Drug Administration guidelines [125-127]. For calibration and quality-control (QC) 

standards, a combined DMTS and IS aqueous solution was initially prepared to limit loss 

of DMTS (i.e., loss from evaporation and degradation). Aqueous DMTS standard (100 

µL) was transferred via pipette to a 2 mL glass vial, and a cap with a septum was used to 

immediately seal the vial. To the closed vial, IS (100 µL of 200 µM) was injected using a 

1 mL (0.33 x 12.7 mm) syringe, and subsequently mixed to produce a combined standard 

of DMTS and IS. This standard solution was refrigerated at 4 °C until it was used for the 

preparation of calibration or QC standards. (Note: Mixing of DMTS and IS in a closed 

vial using a syringe was a crucial step to prevent the rapid and uneven evaporative loss 

of DMTS and IS when opening and closing vials. Additionally, it was important to 

introduce IS and DMTS to the blood simultaneously to account for the rapid enzymatic 

degradation of DMTS.)  Calibration and QC standards were prepared by spiking the 

combined standard (25 µL) into 1475 µL of denatured blood and extracting as previously 

described in the sample preparation section. Each calibration standard (0.5, 1, 2, 5, 10, 

20, 50, and 100 µM) was prepared in triplicate. To obtain a calibration curve, the average 

peak-area signal ratios of DMTS to IS were plotted as a function of concentration. Peak 

areas were calculated by manual integration from baseline to baseline in ChemStation 

software (Agilent Technologies, Santa Clara, CA). Five preliminary calibration curves 

were constructed to evaluate the calibration behavior of DMTS. Ultimately, a total of ten 

calibration curves constructed over the course of preliminary studies and validation 

experiments confirmed that a non-linear power curve fit (y=axb) best described the 

calibration behavior of DMTS.  
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 The limit of detection (LOD) was determined by analyzing multiple 

concentrations of DMTS in blood below the LLOQ. The LOD was defined as the lowest 

DMTS concentration that reproducibly produced a signal-to-noise ratio of 3. Noise was 

measured by averaging the peak-to-peak noise in blank over the retention time of the 

analyte. The lower limit of quantification (LLOQ) and upper limit of quantification 

(ULOQ) were defined as the lowest and highest concentrations that satisfied the inclusion 

criteria of <15% relative standard deviation (as a measure of precision), and a percent 

deviation within ±15% back-calculated from the nominal concentration (as a measure of 

accuracy) for all calibration standards within the dynamic range. QC standards were 

prepared and analyzed in quintuplicate at three concentrations not included in the 

calibration curve: 1.5 µM (low QC), 7.5 µM (medium QC), and 35 µM (high QC). QCs 

were prepared fresh daily in order to calculate the intra-assay (within same day) and 

inter-assay (over three separate days, within six calendar days) accuracy and precision. 

2.2.6 Selectivity and sensitivity 

The ability to differentiate and quantify DMTS in the presence of other blood 

components (assay selectivity) was determined by comparing blank blood with DMTS 

spiked blood. The absence of signals above the baseline in the blank over the elution time 

of DMTS was indicative of high selectivity.  

  Short- and long-term stability of DMTS was assessed by analyzing triplicates of 

low and high QCs in rabbit blood at different storage conditions over multiple time 

periods. For short-term stability, prepared QCs were evaluated in the autosampler, on the 

bench-top, and under multiple freeze-thaw (FT) cycles. The autosampler stability was 
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evaluated by storing PDMS stir bars after SBSE extraction on the autosampler (at 

ambient temperature), and analyzing them at approximately 0, 1, 5, 10, and 24 h. Internal 

standard was not used for the autosampler stability experiment, as it would correct for the 

loss of DMTS during the storage time tested. The bench-top stability was evaluated for 

two different conditions: non-denatured blood and denatured blood. The low and high 

QCs for both conditions were allowed to stand at room temperature for 0, 1, 2, 4, 8, 12, 

and 24 h prior to analysis.  

 For freeze-thaw stability of DMTS, four sets of QCs (low and high) were 

prepared. One set of QCs was extracted and analyzed on the same day while the other 

three sets were stored in a freezer at -80 °C. After 24 h, all three sets of QCs were thawed 

by running ambient tap water over the base of the sample vial. A single set of thawed 

QCs was then extracted and analyzed, while the remaining two sets were again stored at -

80 °C for 24 h. The procedure was repeated two more times to evaluate three freeze-thaw 

cycles.  

 Evaluation of long-term stability in blood was conducted at three storage 

conditions (-80, -20, and 4 °C). The low and high QCs were analyzed in triplicate on the 

day they were prepared, and after 1, 2, 5, 10, and 30 days. A simple experiment was also 

performed to test if loss of DMTS would be minimized by snap freezing of blood 

samples before storage. Triplicates of high QCs in blood were prepared and snap-frozen 

using a dry ice–acetone bath before storing them at -80 °C. The recovery of these samples 

was compared to non-snap frozen samples also stored at -80 °C. For bench-top, freeze-

thaw, and long-term stability experiments, internal standard was spiked into the blood 
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samples after completion of the storage period and prior to SBSE extraction to correct for 

sample preparation and instrument variability. We also evaluated the long-term stability 

of DMTS in PDMS-coated stir bars at -80 °C. For this experiment, all stir bars were 

extracted at the same time from a single denatured solution (50 mL blood, 100 mL 90 

mM HNO3) of appropriate QC concentration (low and high). For each QC solution, 

fifteen PDMS stir bars (triplicates for 5 storage days) were anchored on a 3-inch 

cylindrical magnetic stir bar, which was used to stir the denatured blood solution for 1.5 h 

to perform SBSE. After extraction, the PDMS stir bars were transferred into 2 mL glass 

vials and capped. The stir bars were analyzed on the day they were prepared, and after 1, 

5, 10, and 40 days.  Since IS could not be used for this experiment, triplicate of a 5 µM 

aqueous DMTS solution was prepared, extracted using SBSE, and analyzed on each day 

the QCs were evaluated for stability in order to correct for instrument variability over 

different days. For all stability experiments, stability was calculated as a percentage of 

the initial “time-zero” signal. DMTS was considered stable if the stored sample 

percentage was within 10% of time zero.  

 Finally, to verify if the IS corrects for the loss of DMTS during storage and 

sample preparation, a 5-day stability test was performed. The QCs (low and high) were 

prepared by spiking the combined standard of DMTS and IS, and were stored at -80 °C 

for 1, 2, and 5 days. When ready to analyze, the QCs were thawed, denatured with acid, 

and extracted using SBSE. The DMTS/IS ratio for each day was calculated and compared 

to Day 0.  
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2.2.7 Recovery and matrix effects 

Recovery of DMTS was evaluated by analyzing triplicates of low, medium, and 

high aqueous QCs, and comparing them with the equivalent QCs in blood. Recovery was 

calculated as a percentage by dividing the analyte signal in blood by the aqueous signal. 

Recovery calculated in this manner will be influenced by blood matrix effects, and 

therefore, may not reflect a true estimate of recovery. A true recovery from blood cannot 

be measured discretely, but may be estimated once matrix effects are assessed. Matrix 

effects were assessed by comparing the aqueous calibration curve with the calibration 

curve of DMTS in blood. The deviation of b in the power-fit equation (y=axb) gave a 

measure of the magnitude of the matrix effects. 

2.3 Results and Discussion 

2.3.1 GC-MS analysis of DMTS from rabbit blood 

The method presented here includes an easy one-pot sample preparation scheme 

for extraction of DMTS from whole blood. The whole blood is simply treated with acid 

to lyse RBCs and denature proteins, and then a PDMS stir bar is directly added to the 

resulting solution. After an hour of SBSE, the stir bar is then analyzed via GC-MS by 

thermally desorbing the DMTS in the TDU.  

 SBSE was chosen for sample preparation of DMTS because it has a relatively 

high phase ratio, SBSE is a single-step solventless process, and it is typically highly 

reproducible [128]. Specifically, the analysis of DMTS using SBSE takes advantage of 

the relatively high octanol-water distribution co-efficient of DMTS (log Kow = 1.87). 

Assuming equilibrium is reached and the Kow of DMTS is a good estimate of the KPDMS, 
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approximately 54% of the DMTS should reside in the PDMS layer of the stir bar (film 

thickness 0.5 mm, length 10 mm), when the sample volume is 1.5 mL (i.e., the final 

sample volume used in the current method). The overall sample preparation time is 1 h 10 

min, with thermal desorption and chromatographic analysis lasting approximately 15 min 

(including equilibration time for the following sample). Using this method, roughly 90 

individual samples could be processed and analyzed in a 24 h time period. 

 The total ion chromatogram (TIC) of blank rabbit blood and selected ion 

chromatograms (m/z = 111, 114, 126 and 132) of spiked (1 µM DMTS and 1 µM IS) 

blood are plotted in Figure 2.2. The peaks for DMTS and IS eluted at approximately 2.9 

min. The method showed excellent selectivity with no interfering or co-eluting peaks in 

the blank. Quantification ions of DMTS (m/z of 126) and IS (m/z of 132), and 

identification ions of DMTS (m/z of 111) and IS (m/z of 114) are plotted in Figure 2.2.  
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Figure 2.2. Total ion GC-MS chromatograms of non-spiked blood (lower trace, listed as 
“Blank”) and selected ion chromatograms of 1 µM DMTS (middle traces) and 1 µM 
DMTS-d6 (upper traces). DMTS quantification and identification ions (m/z 126 and 111, 
respectively) and DMTS-d6 quantification and identification ions (m/z 132 and 114, 
respectively) are separately plotted. 

2.3.2 Dynamic range, limit of detection, and sensitivity 

Calibration curves for DMTS were constructed in the range of 0.2 – 200 µM in 

rabbit blood. Upon analysis of multiple calibration curves using linear (non-weighted and 

weighted), power, and quadratic fits, we determined that the calibration behavior of 

DMTS followed a power curve (y=axb). Using a power fit, 0.2 and 200 µM calibrators 

did not meet the accuracy and/or precision inclusion criteria, and were excluded. 

Therefore, the dynamic range for the method was from 0.5 µM (LLOQ) to 100 µM 

(ULOQ), with a correlation co-efficient (R2) > 0.998. The b term of the calibration 

equation (y=axb) remained consistent over the three calibration curves, producing a 
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relative standard deviation of within ≤2%, and confirming the uniform calibration 

behavior of DMTS (Table 2.1). 

 The dynamic range of the method spanned over two orders of magnitude, which is 

typically good for analysis from biological samples [129, 130], and should be useful for 

therapeutic studies where a large range of concentrations is administered. The method 

achieved an excellent LOD, 60 nM in blood, as compared to other similar methods for 

therapeutics [70, 106, 130]. The low limit of detection is most likely attributed to the 

efficient pre-concentration of DMTS in the PDMS layer of the stir bar.  

 The non-linear behavior of DMTS was verified by over than 10 calibration curves 

produced with the method presented here from both blood and aqueous samples, and 

from direction injection of DMTS calibration standards. Non-linear calibration behavior 

when directly injecting DMTS calibration standards, suggests that the non-linearity did 

not stem from the extraction process or from the matrix components. This behavior is 

most likely caused by either higher concentrations of DMTS enhancing the MS ionization 

process (i.e., more DMTS molecular ions are produced as the concentration of DMTS in 

the ionization chamber increases) or adsorptive losses at low DMTS concentrations (i.e., 

a small amount of high affinity sites binding DMTS, with greater amounts of DMTS 

overwhelming these high affinity sites). Evaluation of the peak shape and calibration 

behavior of the low and high concentration calibrators indicated no evidence of 

adsorptive losses. Therefore, it is most likely that the ionization of the DMTS molecular 

ion, the ion used for quantification, is enhanced at higher concentrations. This may occur 
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if DMTS molecular ions assist in ionization of more DMTS molecules through energy 

transfer, similar to chemical ionization. 

Table 2.1. Curve equations and R2 values for separate calibration curves prepared over a 
three-day period. 

Days Equation R2 

Day 1 y = 0.1184x1.18 0.9984 
Day 2 y= 0.1321x1.21 0.9992 
Day 3 y= 0.1232x1.19 0.9984 

 

2.3.3 Accuracy and precision 

 The accuracy and precision of the method, as determined by quintuplicate 

analysis of low (1.5 µM), medium (7.5 µM), and high (35 µM) QCs, on three different 

days (within a 6-day period), are reported in Table 2.2. Considering that DMTS is 

vulnerable to rapid enzymatic degradation and evaporative loss, the accuracy and 

precision of the method were remarkable. The intra-assay accuracy (±7-14%) and 

precision (<2-10% RSD), and inter-assay accuracy (±11%) and precision (<6% RSD) of 

this method were excellent and well within the FDA method validation guidelines [125-

127, 129].  
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Table 2.2. The accuracy and precision for the analysis of DMTS in spiked rabbit blood 
by SBSE-GCMS. 

Concentration 
(µM) 

Intra-assay Inter-assay 

Accuracy (%)a Precision 
(%RSD)a Accuracy 

(%)b 
Precision 
(%RSD)b Day 

1 
Day 

2 
Day 

3 
Day

1 
Day

2 
Day

3 
1.5 100±12.5 100±6.7 100±13.5 9.4 6.3 2.1 100±10.8 5.9 
7.5 100±0.1 100±0.2 100±8.3 0.9 0.6 1.1 100±2.8 4.9 
35 100±6.5 100±7.6 100±6.5 0.7 1.2 1.3 100±6.9 0.6 

a QC method validation (N=5)  
b Mean of three different days of QC method validation (N=15) 

 

2.3.4 Matrix effects and recovery 

The assessment of matrix effects provides a measure of ion suppression or 

enhancement leading to loss or gain of analyte signal. It is typically calculated by 

comparing the slope of the calibration curve in blood with that of the aqueous calibration 

curve. For a non-linear power trend, the power (b) in y = axb translates to the slope in a 

linear fit. Hence, matrix effects were evaluated by calculating the ratio of power 

coefficient of the calibration curve in blood to that in aqueous. This ratio, determined as 

0.96, indicated that matrix effects were essentially negligible for the analysis of DMTS in 

blood. The minimal matrix effect can be attributed to the fact that only hydrophobic 

analytes (log Kow > 2) are efficiently extracted into the PDMS-coated stir bar. This 

minimizes the interference from other blood components during DMTS analysis. Note 

that the power coefficients of IS-corrected aqueous and blood calibration curves, were 

even closer to each other (Powerblood/Poweraq = 0.998), which gives another indication of 
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effectiveness of the IS in correcting for any loss of DMTS signal during the analysis 

process.  

 Assay recovery of DMTS for low, medium, and high QCs was 66, 63, and 59% 

respectively. Incomplete recovery can be partly attributed to the rapid enzymatic 

degradation of DMTS in blood. Although the acid concentration and volume were 

optimized for the best recovery, the acid-denaturation process may not suffice in 

completely halting all enzymatic activity. Additionally, lower recovery can also be 

explained by the hydrophobic nature of DMTS. Since some components of blood provide 

a more hydrophobic environment than water, these components may interfere with 

effective partitioning of DMTS into the PDMS layer of the stir bar. Nevertheless, the 

recovery for all low, medium, and high QCs was very consistent, and sufficient to 

achieve detection at concentrations as low as 60 nM. It is unlikely that lower recovery is 

caused from evaporative loss, since both the aqueous and blood samples undergo same 

sample preparation steps. Therefore, loss of DMTS from evaporation should be 

comparable.  

2.3.5 DMTS storage stability 

The bench-top stability of DMTS was evaluated for low and high QCs in both 

non-denatured and denatured blood for 0, 1, 2, 4, 8, 12 and 24 h. At 1 h, DMTS was 

undetectable in the non-denatured blood, whereas 65% of the signal was recovered from 

the denatured blood. This observation confirms that enzyme metabolism and protein 

binding comprise a key loss mechanism for DMTS. Although DMTS was detectable in 
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the denatured blood, it is still considered unstable (<90% of the original signal was 

recovered) at 1h.  

 Auto-sampler stability, following stir bar extraction of DMTS, was tested for 0, 1, 

5, 10, and 24 h, during which, DMTS was stable for the 24 h time period tested (i.e., the 

DMTS signals at different time periods randomly deviated above and below the time zero 

signal; the variability was likely caused by differences between stir bars and slight 

changes in instrument sensitivity over time).  

 Long-term stability was evaluated for low and high QCs by storing them at -80, -

20, and 4°C over a 30-day period. DMTS was rapidly removed from blood when stored 

at -20 and 4 °C, with less than 10% signal recovered after one day relative to the initial 

time. However, at -80 °C, although some of the DMTS signal was lost (20-50%), the 

concentration stayed consistent over the 30 day period with no trend of further loss. The 

rapid loss at higher temperatures (-20 and 4 °C) likely results from the enzymatic activity 

of blood proteins. At -80 °C, the rapid initial loss may have resulted from DMTS 

degradation during the delay times between spiking DMTS and complete freezing, and/or 

during thawing prior to acid addition. In order to reduce the initial delay time of complete 

freezing, blood samples were snap frozen using dry ice and acetone bath before 

transferring to a -80 °C freezer. Results from this experiment showed similar recovery for 

the snap frozen (79 ± 9.6%) and non-snap frozen (72 ± 12.8%) samples. This suggested 

that the significant loss mainly takes place during the thawing process, and that snap 

freezing prior to storage does not provide a definite advantage.  



 
 

  

42 

 Long-term stability of DMTS in the stir bar was evaluated at -80 °C for 0, 1, 5, 

10, and 40 days to determine if the samples could be prepared and the stir bars analyzed 

at a later date. The signal ratio of DMTS to positive control was determined to compare 

the stability of DMTS over different days. The high QCs were stable in the stir bar for 5 

days (i.e. signal within ±10%), whereas, the low QCs were considered unstable on Day 5. 

On Day 40, both QCs (high and low) were considered unstable with signal loss of 30-

40%.  

 The freeze-thaw stability test showed that DMTS is lost with each freeze-thaw 

cycle, which was in agreement with our findings from long-term stability of DMTS in 

blood at -80 °C. During the freeze-thaw cycle, DMTS is rapidly lost from the blood likely 

due to the enzymatic activity. Hence, freezing and thawing should be avoided, but if 

freezing the blood is necessary, then acid should be added immediately after thawing in 

order to help preserve DMTS.   

 The 5-day stability study using QCs (low and high) showed that when IS was 

spiked before the storage, the DMTS to IS ratio remained consistent throughout the 

storage time, verifying that the IS effectively corrected for any loss of DMTS during 

storage.  Figure 2.3 shows the ability of the IS to correct for signal loss during storage. 

Figure 2.3A illustrates DMTS stability without IS correction, where DMTS signal is seen 

to significantly deviate compared to the Day 0 signal. Figure 2.3B shows the DMTS to IS 

signal ratio for all days.  When comparing these two graphs, it is obvious that the IS 

corrects for the large signal loss due to instability of the DMTS.  
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 Overall, our results from the stability studies suggest that blood samples should be 

denatured with acid, spiked with IS, extracted and analyzed immediately whenever 

possible. In any circumstance where immediate analysis is not possible, the blood 

samples should be spiked with IS, frozen as soon as possible, and stored at -80 °C for 

future analysis. Once the frozen samples are thawed, they should be prepared and 

extracted immediately. Once extracted into the PDMS layer, DMTS is stable for at least 

24 h on the auto-sampler at ambient temperature. While the DMTS is stable in the stir bar 

at -80 °C for 24h, it is not recommended to store the stir bar under these conditions unless 

it is absolutely necessary. 

 

Figure 2.3. Evaluation of the ability of the IS to correct for signal loss during storage at -
80 °C. (A) DMTS signal stability plotted without IS correction. (B) IS corrected DMTS 
signal stability. The uncorrected DMTS signal clearly decreases from Day 0 (due to l loss 
during storage and freeze-thaw process) and has high variability (due to variation in 
instrument sensitivity and stir bars). The IS corrected stability remains consistent 
throughout the time tested, with the IS correcting the DMTS signal for significant loss 
mechanisms.  

2.3.6 Analysis of DMTS exposed animals 

The validated SBSE GC-MS method was applied to the analysis of DMTS from blood 

samples of treated mice. The GC-MS chromatograms of treated and untreated mouse 
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blood are shown in Figure 2.4. DMTS was detected as a prominent peak at 2.9 min from 

DMTS- treated mouse blood, whereas no peak was present in the untreated blood. This 

further verified the selectivity of the method and confirmed its applicability to real-world 

samples.  

 

Figure 2.4. GC-MS chromatograms (SIM, m/z 126) for DMTS treated (200 mg/kg) and 
untreated mice blood, and DMTS spiked and non-spiked rabbit blood. 

2.4 Conclusion 

A simple and sensitive analytical method for the determination of the DMTS in blood 

was developed using SBSE-GCMS. The method presented is the first validated method 

for DMTS analysis from any matrix. The described method is simple, with easy one-pot 

sample preparation and extraction. The method yielded excellent accuracy and precision, 

consistent recovery, minimal matrix effects, an excellent detection limit, and a large 

dynamic range that spanned over 2 orders of magnitude. The ability to store internal 
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standard spiked samples was also demonstrated. The creation of this method is 

significant, since there are no analytical methods currently available for analysis of 

DMTS from blood. The availability of this method will allow further drug development 

investigations of DMTS as a promising cyanide antidote.  
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Chapter 3. Identification of sulfur mustard biomarkers for correlation to inhalation 
studies 

3.1 Introduction 

Sulfur mustard, bis (2-chloroethyl) sulfide, is a potent vesicant that has been a 

continued threat as a warfare agent since its first use in World War I [131, 132]. SM has 

caused more casualties than all other chemical weapons combined [3] and remains the 

most utilized chemical weapon [131, 133, 134]. For example, during the Iraq-Iran war 

(1980-1988), over 1,000 tons of SM was used in the battlefields by Iraq resulting in over 

100,000 injuries [135, 136]. To this date, more than two decades later, there are still 

30,000 of these war victims needing treatment for SM poisoning [137, 138].  

SM can enter the body via inhalation, ingestion (of contaminated food), 

cutaneous, and ocular routes [132]. Exposure can result in short- and long-term health 

effects, which can include ocular and dermal injury, respiratory tract damage, 

neurotoxicity, reproductive and developmental toxicity, gastrointestinal effects, 

hematological effects, cancer, and death [3]. Although SM has a wide range of toxic 

effects, airway injury is the principal cause of mortality in victims [11].  

Injuries from SM inhalation are concentration-dependent. In humans, exposure to 

low or moderate inhalation dose of SM affects mainly the upper respiratory tract, and can 

cause nasal mucosal injury, lacrimation, rhinorrhea, loss of smell and taste, and acute 

edema formation [3, 6, 139]. At high concentrations, injury of greater severity can extend 

to larynx, sinuses, trachea, bronchi, and other distal regions [3, 6]. Tracheobronchial 

mucosal sloughing, severe airway edema, ulceration, and formation of fibrin-rich 

obstructive bronchial casts is seen to occur, which can ultimately lead to fatal outcomes, 
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including sudden death [3, 6]. Despite its severity, the pathology of airway obstruction is 

not well understood, and unfortunately, no therapies exist to prevent or alleviate the fatal 

effects of inhalation exposure. In order to improve the understanding of inhalation 

toxicity and to properly evaluate and develop effective clinical interventions, animal 

model studies that accurately replicate the physiological injuries induced by inhalation of 

SM is desired. Currently, there are only limited number of SM inhalation studies, and a 

few therapeutic approaches that are under investigation [12].  

 One of the major challenges of inhalation studies is to accurately deliver a 

targeted dose [140]. Unlike oral or parenteral routes (i.e. intravenous, cutaneous, sub-

cutaneous), the delivered dose in inhalation studies depends on several parameters, such 

as exposure concentration, breathing frequencies, tidal volume, minute volume, 

deposition pattern within various regions of respiratory tract [140]. Therefore, in order to 

confirm/accurately monitor the inhalation dose, a biomarker of exposure (toxin or its 

byproduct) can be analyzed from a biological specimen of an individual and related to the 

inhaled dose [141, 142]. The advantage of using a biomarker of exposure to calculate 

dose is that it estimates the actual “internal” dose of exposure, and also improves 

reliability of the study by adding internal validity when examining outcome of the 

exposure [141].  

The reaction pathways and breakdown products for SM are presented in Figure 

3.1. SM initially undergoes intramolecular cyclization to form a positively charged 

ethylene episulphonium ion intermediate [3, 132]. This cyclic intermediate can then 

undergo oxidation or hydrolysis or can react with nucleophiles in the body (e.g. 
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glutathione, proteins, and DNA). A direct oxidation results in β-chloroethyl sulfoxide 

(SMO), direct hydrolysis results in thiodigycol (TDG), and oxidation of TDG results in 

thiodigycol oxide (TDGO). SM can also be detoxified via glutathione pathway, where a 

molecule of SM reacts with two molecules of glutathione. The bis-glutathione is then 

metabolized into a bis-cysteinyl conjugate followed by β-lyase cleavage of cysteinyl C-S 

bond and a subsequent methylation and oxidation of the thiol, resulting in 1,1’-

sulfonylbis[2-S-(N-acetylcysteinyl) ethane] (SBSNAE), 1,1’-sulfonylbis[2-(methylthio) 

ethane] (SBMTE), 1-methylsulfinyl-2-[2-(methylthio)ethylsulfonyl]ethane (MSMTESE) 

and 1,1’ - sulfonylbis [2-(methylsulfinyl) ethane] (SBMSE). Finally, the reactive SM 

intermediate can also react with nucleophilic sites of DNA and amino acid residues in 

proteins to form hydroxyethylthioethyl (HETE) adducts.   
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Figure 3.1. Metabolic products of sulfur mustard: hydrolysis, oxidation, β –lyase 
products, DNA (N7-HETEG, O6-HETEG, N3-HETEA, Bis-G) and protein adducts 
(HETE-Val and HETE-Cys). 

Given the highly reactive nature of SM, its detection as an intact agent is not very 

likely. Therefore, exposure can be monitored by analyzing its metabolites and/or adducts. 

The metabolism of SM has been widely studied in animal models, and a number of free 

metabolites and covalent adducts with macromolecules have been identified. However, 

all studies on the metabolites and their profiles have only been performed for intravenous, 

cutaneous, and sub-cutaneous routes [79, 84, 89]. Although the byproducts of SM can be 

expected to be the same in parenteral and inhalation routes, the relative abundance and 

toxicokinetic behavior of metabolites will be dependent on factors such as penetration, 

absorption, and diffusion of SM and metabolites through the different biological barriers. 

Therefore, it is important that the behavior of biomarkers is known for inhalation 

exposure.  
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 In this research, we evaluated the potential plasma metabolites of SM, and 

screened them in the plasma of SM exposed (via inhalation) animals. Biomarkers that 

were definitive (i.e., not present in plasma of unexposed animals) and had significant 

concentrations in plasma of exposed specimen were correlated with dose.  

3.2 Materials and Methods 

3.2.1 Chemicals and reagents 

 TDG, TDGO, N-acetyl cysteine, ammonium formate, sodium thiomethoxide, 

sodium thioethoxide, and 18-crown-6 were purchased from Sigma Aldrich (St. Louis, 

MO, USA). Methanol, methylene chloride, ethanol, chloroform, acetonitrile, potassium 

permanganate, sodium periodate, hydrogen peroxide, sulfuric acid, nitric acid, sodium 

bicarbonate, ethanol, hydrochloric acid, and sodium chloride were purchased from Fisher 

Scientific (Hampton, NH, USA).  

 For method validation, swine plasma (with EDTA) was purchased from Pelfreeze 

Biologicals (Rogers, AZ) and rat plasma (Sprague Dawley with sodium citrate was 

purchased from BioreclamantionIVT (New York, NY, USA) 

3.2.2 Synthesis of metabolites 

 Apart from TDG and TDGO (purchased from Sigma Aldrich), all of the other SM 

metabolites, and the internal standard (SBESE) were synthesized in house according to 

previously published methods [143, 144]. The synthesis procedures for all metabolites 

are briefly explained in the following sections. An overall reaction scheme is presented in 

Figure 3.2. Note that SM, needed for the synthesis of SMO was only produced in situ and 

immediately oxidized.  
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Figure 3.2. Reaction schemes for synthesis of SM metabolites and internal standard 
(SBESE). 
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3.2.2.1 Synthesis of 1,1’-sulphinylbis(2-chloroethane) (SMO) 

Thiodiglycol (1 g) was dissolved in 15 mL of methylene chloride, to which 2 g 

(2.1 eq.) of thionyl chloride in 15 mL of methylene chloride was added drop-wise. The 

reaction was stirred for 30 min at room temperature (rt) to generate sulfur mustard in situ. 

Concentrated nitric acid (0.52 g, 1 eq.) was added drop-wise and the reaction was stirred 

for 30 min at rt. The final reaction mixture was transferred to a separatory funnel and 

washed with water. The organic layer was dried under vacuum using a rotary evaporator, 

which yielded a white solid of SMO (1.3 g, 92%).  NMR 1H 400MHz, CDCl3 δ 2.1 (s, 

6H) 3.0 (t, 4h) 3.3 (t, 4H).  

3.2.2.2 Synthesis of 1,1’-sulfonylbis [2-(methylthio) ethane] (SBMTE) 

 SMO (1.3 g) was dissolved in 20 mL of water. Concentrated sulfuric acid (1.7 

mL, 1.3 eq.) and 1.3 g of potassium permanganate was added to the SMO solution. The 

reaction mixture was refluxed for 3 h and cooled to rt. The mixture was then diluted with 

20 mL of water and extracted with methylene chloride (3x20 mL). The organic layer was 

washed with aqueous sodium bicarbonate and aqueous sodium chloride. The final organic 

layer was dried under vacuum using a rotary evaporator. A white solid of sulfur mustard 

sulfone (SMO2, 0.94 g, 66%) was obtained as the residue.  

 Sulfur mustard sulfone (1.1 g) was dissolved in 30 mL of ethanol. Sodium 

thiomethoxide (1.32 g, 3.3 eq.) and 9 mg (5 mol%) of 18-crown-6 was added to the 

mixture. The reaction was stirred at rt overnight. Once the starting material disappeared 

(TLC 1:9 MeOH:CHCl3), 10 mL of 1 M hydrochloric acid was added to quench the base, 
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and 10 mL of water was added to dilute the mixture. The reaction mixture was allowed to 

stand for 30 min to allow methanethiol to evaporate. The product was extracted with 

methylene chloride (4x50 mL). The organic layer was washed with aqueous sodium 

bicarbonate and aqueous sodium chloride, and was dried under vacuum. SBMTE yielded 

as a yellow solid (1g, 81%). NMR 1H 400MHz, CDCl3 δ 2.1 (s, 6H) 2.9 (t, 4h) 3.2 (t, 

4H).   

3.2.2.3 Synthesis of 1-methylsulfinyl-2-[2-(methylthio) ethylsulphonyl] ethane 

(MSMTESE) 

 In a 25 mL round bottom flask, 150 mg (1 eq.) of SBMTE was dissolved in 1:1 

H2O: MeOH. Sodium periodate (160 mg, 1.1 eq.) was added and the reaction was stirred 

at rt for 4 h. The reaction mixture was filtered and the filtrate was evaporated under 

vacuum, which yielded a white solid of MSMTESE (137 mg, 85%). NMR 1H 400MHz, 

CDCl3 δ 2.2 (s, 3H) 2.7 (t, 3H), 3.0 (t, 2H), 3.1 (t, 2H), 3.4 (t, 2H), 3.6 (t, 2H).     

3.2.2.4 Synthesis of 1,1’-sulfonylbis [2-(methylsulfinyl) ethane] (SBMSE) 

 In a 100 mL round bottom flask, 200 mg (1 eq.) of SBMTE was suspended in 

water, and 0.6 mL of 30% peroxide (6 eq.) was added. The reaction was allowed to 

proceed at room temperature until little starting material remained (TLC chloroform-

methanol 9:1). Sodium sulfite (1 g) was dissolved in the mixture to quench the remaining 

peroxide. The reaction product was extracted in methylene chloride (3x30 mL), and was 

dried over sodium sulfate and evaporated under vacuum. The product collected, 

(SBMSE, 162 mg) was a white solid (71%). NMR 1H 400MHz, CDCl3 δ 2.7 (s, 6H), 3.2 

(t, 4H), 3.6 (t, 4H).   
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3.2.2.5 Synthesis of 1,1’-sulfonylbis [2-S-(N-acetylcysteinyl) ethane] (SBSNAE) 

 In a 100 mL round bottom flask, 400 mg of SMO2 (1 eq.) and 720 mg of N-

acetylcysteine (2.1 eq.) were suspended in 8 mL of water. To the mixture, 0.8 mL of 

triethylamine (TEA) was added and the reaction was stirred at rt for 2h. The reaction 

mixture was acidified to pH of 3 using 1 M HCl and placed in the refrigerator overnight. 

A white colored precipitate formed was vacuum filtered; reaction yield was 70%. NMR 

1H 400MHz, D2O δ 1.1 (t, 4H). 1.2 (t, 4H), 2 (s, 6H), 3.1 (d, 4H), 3.5 (t, 2H).  

3.2.2.6 Synthesis of 1,1’-sulfonylbis [2-(ethylsulfinyl) ethane] (SBESE) 

 In a 100 mL round bottom flask, 200 mg (1 eq.) of SMO2 was dissolved in 10 mL 

of ethanol, and sodium thioethoxide (1.85 g, 2.1 eq.) and 10 mg (5 mol%) of 18-crown-6 

was added to the mixture. The reaction was stirred at rt overnight. Water (10 mL) and 

470 mg of sodium periodate (2.1 eq.) were added to the mixture. The organic layer was 

evaporated, leaving a white solid of SBESE. NMR 1H 400MHz, CDCl3 δ 1.4 (t, 6H) 2.9 

(q, 4H), 3.2 (t, 4H), 3.6 (t, 4H).   

3.2.3 Characterization of prepared standards 

 A Bruker Avance 400 MHz NMR was used to characterize the compounds and 

confirm their purity. The NMR data are presented in the synthesis section for each 

metabolite. The standards were also analyzed via direct infusion in the mass 

spectrometer. Based on the information provided by Li et al. [89], the precursor and 

product ions were identified and verified for each analyte to further confirm the identity 

of the synthesized standards.   
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3.2.4 Sample preparation 

Sample preparation for the analysis of metabolites was based on Li et al. [89], 

with a few modifications. Plasma (100 µL, spiked or non-spiked) was added to a 2 mL 

centrifuge tube. To the plasma, internal standard (400 µL, 0.25 µM) in a mixed solution 

of acetonitrile-methanol (4:1) was added. The mixture was vortexed and then cold-

centrifuged at 8 °C for 15 min at 14,000 rpm. The supernatant was then transferred into a 

vial and evaporated to dryness under N2. The residue was reconstituted with 50 µL of 

water, filtered using 0.22 µm tetrafluoropolyethylene membrane syringe filter into 

autosampler vials with 200 µL glass inserts for HPLC-MS-MS analysis.  

3.2.5 UHPLC-MSMS analysis 

Prepared samples were analyzed using a Shimadzu UHPLC (LC-20 AD, 

Shimadzu Corp., Kyoto, Japan) coupled to a 5500 Qtrap Mass Spectrometer (AB Sciex, 

Farmingham, MA, USA) with electrospray ion source. The LC parameters were based on 

Li et al. paper with few modifications in gradient and total chromatographic runtime [89]. 

Separation of 10 µL of prepared sample was performed using Agilent Zorbax Eclipse 

C18 column (100 mm x 3 mm x 1.8 µm) protected by a Agilent Zorbax Eclipse Plus C18 

guard column (2 mm x 5 mm x 1.8 µm)  (both Agilent, Santa Clara, CA, USA). Mobile 

phase solutions consisted of an aqueous 5 mM ammonium formate with 1% methanol 

(Mobile Phase A) and 5 mM ammonium formate in 95% methanol (Mobile Phase B). 

The flow rate was maintained at 0.3 mL/min.  The percentage of B was 0, 5, 17, 50, 80, 

and 0 at 0, 1.5, 2.5, 5, 8, and 10 min, respectively. The total chromatographic run-time 

was 10 min, with a 3 min equilibration time between runs.  
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The mass spectrometric detection was performed in positive polarity in multiple 

reaction monitoring (MRM) mode. The MRM transitions for each analyte was selected 

based on their scan spectra obtained from infusion analysis of each standard. Collision 

energy (CE), declustering potential (DP), and collision cell exit potential (CXP) were 

optimized for each MRM transition. The dwell time for all MRM transitions were 100 

ms. Nitrogen gas (30 psi) was used as the curtain and nebulization gas. The ion source 

was operated at 5000 V and 500 °C. The collision cell was operated at entrance potential 

of 10 V, with a high collision gas pressure.  

3.2.6 Detection of biologically relevant levels from spiked plasma 

Prior to analysis of animal samples from an inhalation exposure study, the lowest 

biologically relevant levels for all plasma metabolites were estimated based on 

toxicokinetic data from SM sub-cutaneous exposure of rats by Li et al. [89]. Once 

estimates of the relevant levels were established, plasma samples were spiked with the 

relevant concentrations of all metabolites and analyzed. During this process, analysis of 

SBMTE was eliminated because of literature evidence of its low significance in previous 

studies, and difficulty in analysis.  

3.2.7 Screening of metabolites from exposed swine plasma 

Inhalation exposure studies were conducted on four (1 control, 3 SM exposed; 

weights between 46-50 kg) Yorkshire SPF Oak Hill female swine at MRIGlobal, Kansas 

City, MO. The experiments were conducted in accordance with the Guide for the Care 

and Use of Laboratory Animals [124] by an Association for the Assessment and 
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Accreditation of Laboratory Animal Care (AAALAC) International accredited institution. 

The Institutional Animal Care and Use Committee (IACUC) approved the experiment.  

 Swine were intubated with an endotracheal tube attached at 90° to a plenum 

where mustard gas was passed through at positive pressure. Animals were sedated and 

allowed to breathe spontaneously on the system. The targeted exposure dose was 200 

mcg/kg, exposure time was variable depending on respiratory rate and tidal volume. 

Blood draws were taken through an arterial line placed on femoral artery. Plasma samples 

were prepared via standard procedures and shipped in dry ice. Upon receipt, samples 

were stored at -80 °C until analyzed.  

 After analysis, the concentrations of most promising biomarkers were calculated 

using external standardization (Note: Internal standard was not available when this study 

was performed). Toxicokinetic profile was studied by plotting time versus ln 

(concentration). The kinetic model of the marker was identified and rate constant of 

elimination (kel) and half-life (t1/2) were calculated.   

3.2.8 Validation of the method for SMO and SBSNAE in swine plasma 

After screening plasma samples from the exposed swine, only those metabolites 

that showed potential to be used as definitive markers were selected for further analysis. 

Therefore, validation parameters were only evaluated for SMO and SBSNAE.  

 Stock solutions (10 mM) of SMO, SBSNAE, and SBESE (IS) were prepared 

separately in acetonitrile and stored at -30 °C. During the time of analysis, fresh working 

solutions were prepared from the stock.  

 The limit-of-detection (LOD) was determined by evaluating triplicates of multiple 
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low concentrations (0.1 nM – 50 nM) for SMO and SBSNAE in plasma. The lowest 

concentration that reproducibly produced a signal-to-noise ratio (with noise estimated as 

peak-to-peak noise) of at least 3 compared to blank plasma samples was confirmed as the 

LOD.  

 Matrix-matched calibration curves were produced in swine and rat plasma. The 

lower and upper limits of quantification were defined with the inclusion criteria of <20% 

for relative standard deviation (RSD) and accuracy of 100±20% of the nominal calibrator 

concentration back calculated from the calibration curve. Calibration standards were 

prepared by serial dilution of a composite stock solution (100 µM; SMO and SBSNAE) 

in plasma. Calibration standards were prepared from 0.02-10 µM (0.02, 0.05, 0.1, 0.2, 

0.5, 1, 2, 5, 10 µM). Refer to Section 2.4 for detailed sample preparation. Calibration 

curves were generated by plotting concentration versus peak area ratio of analyte (SMO 

or SBSNAE) to internal standard (SBESE). To determine accuracy and precision of the 

calibration curve, quintuplicates of low (0.15 µM), medium (0.75 µM), and high (3 µM) 

QCs were analyzed. Calibration standards and QCs were prepared fresh each day during 

intra-assay (daily) and inter-assay (over three separate days, within seven calendar days) 

analyses to calculate intra-assay and inter-assay accuracy and precision.  

 LODs, linear range, and intra-assay accuracy and precision were also evaluated 

for rat plasma. Because no differences were observed between the rat and swine plasma, 

determination of inter-assay accuracy and precision was not pursued for rat plasma. Other 

validation parameters such as recovery, stability, and matrix effect were already 

evaluated by Li et al. and hence were not repeated here [89].  
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3.2.9 Analysis of rat plasma samples for biomarker correlation to inhalation dose 

The animal exposure studies were conducted on Sprague Dawley rats at 

University of Colorado, Denver. Experiments were conducted in accordance with the 

Guide for the Care and Use of Laboratory Animals [124] by an Association for the 

Assessment and Accreditation of Laboratory Animal Care (AAALAC) International 

accredited institution. The Institutional Animal Care and Use Committee (IACUC) 

approved the experiment.  

 Rats were anesthetized with a combination of ketamine (100 mg/kg) and xylazine 

(10 mg/kg), i.m. After induction of anesthesia, a laryngoscope was used to visualize the 

larynx to facilitate tracheal intubation. A piece of PE 90 tubing was used as a guide for 

the endotracheal tube. Rats were intubated with a modified glass Pasteur pipette (ca. 5 cm 

long) to a point in the trachea between the larynx and the bifurcation of the trachea. A 

glass endotracheal tube was necessary to minimize absorption of SM. The tube was then 

secured in place by gently wrapping a piece of porous tape around the tube and rostrum 

of the rat. Sulfur mustard in absolute ethanol (100 µl) or ethanol alone (control) was 

placed in a water-jacketed (37 °C) glass vapor generator (custom fabricated by Atmar 

Glass, Kennett Square, PA, USA) and the rats were connected to this device and exposed 

for 50 min. By the end of the exposure period, the SM in ethanol was completely 

vaporized and inhaled. This passive exposure system included an inlet one-way 

respiratory check valve (Hans Rudolph, Inc., Kansas City, MO, USA) to ensure that the 

only source of air for the animal during the exposure was through the vapor generator. 

Exhaled air passed out of a 2200 series two-way non-rebreathing Rudolph valve and 



 
 

  

60 

through a charcoal-filtered bleach trap to decontaminate any exhaled SM. At the 

conclusion of the 50-min exposure, the rats were disconnected from the vapor generator, 

the endotracheal tube was removed and the rats were returned to their cages. The mustard 

concentration in ethanol was calculated based on average weights of animals in the study 

and exposure dose groups (1.2, 2.5, and 4.0 mg/kg). Rats were euthanized via anesthesia 

and blood was drawn from the descending aorta upon death. Plasma was separated from 

blood and shipped on dry ice. Upon arrival samples were stored at -80 °C until analyzed. 

3.3 Results and Discussion 

3.3.1 LCMSMS analysis of plasma metabolites 

The MRM transitions along with optimized CE, DP, and CXP values for all 

metabolites of interest and internal standard are listed in Table 3.1. The total 

chromatographic time for the LCMSMS method was 10 minutes. A representative 

chromatogram with all metabolites of interest is shown in Figure 3.3. The quantitation 

ion XICs of the blank and spiked plasma for each analyte are plotted for the duration of 

their elution time.  
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Table 3.1. Optimized parameters for MRM transitions for SM metabolites of interest. 

Analyte MRM Transitions CE (V) DP (V) CXP (V) 
TDGO 139 à 77a 

139 à 63 
22 
18 

50 
50 

8 
10 

SBMSE 
 

247 à 183a 

247 à 119 
15 
29 

50 
50 

16 
16 

SBSNAE 445 à 130 
445 à 357a 

35 
30 

55 
50 

21 
29 

TDG 123 à 105a 

105 à 87 
9 
9 

50 
50 

10 
10 

MSMTESE 231 à 75 
231 à 167a 

20 
15 

50 
50 

10 
16 

SMO 175 à 63 
175 à 59a 

29 
38 

103 
118 

11 
11 

SBESE (IS)  297 à 141a 

297 à 297 
25 
10 

13 
4 

9 
6 

a: Transition for quantitative ion.  
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Figure 3.3. Extracted ion chromatograms (XICs) of six plasma metabolites of SM plotted 
over the time of their elution. Non-spiked swine plasma is shown in the lower trace, 
whereas the upper trace shows plasma spiked with metabolites. 

3.3.2 Detection of metabolites at biologically relevant levels 

Metabolites spiked at biologically relevant levels were analyzed to ensure capability of 

the method for their detection. According to the toxicokinetic plasma profiles from a sub-

cutaenous study in rats, the lowest relevant levels for direct metabolites, SMO, TDG, and 

TDGO were 0.3 µM, 0.4 µM, and 40 nM respectively, and for β-lyase metabolites, 

SBMTE, SBMSE, MSMTESE, and SBSNAE were 0.09 nM, 0.4 nM, 0.4 nM, and 0.2 

nM respectively. TDG, TDGO, SMO, SBMSE, and MSMTESE were detected at the 

lowest relevant levels from spiked plasma. However, SBMTE and SBSNAE could not be 
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detected at the lowest biological levels. According to Li et al. SBMTE was a very minor 

biomarker (lowest cmax), with concentrations at or below LLOQ for the most time-points 

tested. Because of its low importance, SBMTE was eliminated for further analysis. The 

lowest concentration of SBSNAE was calculated at the time-points before 1h, where the 

marker has a very low presence in plasma. The profile for SBSNAE increases 

significantly after 2 h, and has the highest concentration between 2-6 h post-exposure. 

Therefore, even though SBSNAE couldn’t be detected at lowest levels at early time-

points, it should be detected quantitatively at greater time-points (2-6 h). Therefore, 

because SBSNAE is an important β-lyase metabolite and it produces concentrations 

above the method LOD for most time-points, it was not eliminated. 

3.3.3 Identification of metabolites from exposed swine plasma  

Plasma samples of swine exposed to SM via inhalation were analyzed for TDGO, 

SBMSE, SBSNAE, MSMTESE, TDG, and SMO. Among the metabolites of interest, 

only three (TDGO, SBSNAE, and SMO) were consistently detected from the exposed 

animals, whereas other metabolites such as TDG, SBMSE, and MSMTESE were not 

detected.  

TDG, which is a direct metabolite, was not detected in any of the samples, even 

though TDGO was. This is partially attributed to the low sensitivity of TDG in the 

LCMSMS. Yet, TDG was detected at large concentrations in rat plasma after sub-

cutaneous exposure by Li et al. [89] Therefore, the more likely explanation is that the 

inhalation route provides a different oxidation environment than cutaneous/sub-cutaneous 

routes. A greater oxidizing environment likely results in facile conversion of TDG into 
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TDGO, and SM to SMO, lowering the concentration of TDG in plasma to undetectable 

levels.   

 SBMSE and MSMTESE may not have been detected because the blood draws for 

the animal samples spanned only up to 3 hours post-exposure. Unlike, TDGO and SMO, 

which are direct products of oxidation and hydrolysis of SM, β-lyase metabolites are 

formed by several steps of biological mechanisms, and hence take longer time to appear 

in the plasma. Additionally, results from published toxicokinetic studies suggest that β-

lyase metabolites like SBMSE and MSMTESE also have very low plasma concentrations 

(low cmax). Therefore, the low concentrations and longer onset of these markers could 

attribute to the inability in their detection.  

 SBSNAE, which is also a β-lyase marker, was detected in all swine plasma 

samples from the inhalation study. This is in agreement with the previously published 

toxicokinetic studies, because among all the β-lyase metabolites, SBSNAE has the 

highest cmax and faster onset. Unlike SBMSE and MSMTESE that require further 

cleavage of the cysteinyl residues and subsequent oxidation of terminal sulfides to 

sulfoxides, SBSNAE is formed in fewer metabolic steps after the glutathione 

conjugation, and hence, can be detected at earlier time-points than SBMSE and 

MSMTESE.   

 Among the three detected metabolites (SMO, TDGO, and SBSNAE), only SMO 

and SBSNAE can be used as definitive marker. Previous studies have suggested the 

presence of TDGO at low levels (2-8 ng/mL) in biological specimen of unexposed 

animals and humans [87, 145]. Because of the endogenous levels that can be dependent 
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on diet, environment, and other variables, the use of TDGO as a marker for correlation to 

dose would not be ideal.  

 The toxicokinetic profiles for SMO and SBSNAE are presented in Figures 3.4 and 

3.6 respectively. SMO appeared in the plasma samples immediately and reached the 

highest level (cmax) before 1 h post-exposure. This behavior observed from inhalation 

exposure in swine mimics the behavior from sub-cutaneous exposure in rats. The plot of 

time vs. ln (concentration) for SMO for individual swine is shown in Figure 3.5. The 

slopes for the three animals were similar to each other. SMO followed a one-

compartment distribution model which indicates its rapid equilibration throughout the 

body. The rate constant for the elimination (kel) of SMO was calculated as 0.97±0.15 h-1, 

and the t1/2 was 0.73 ±0.12 h. The SBSNAE was observed only after 30 min time-point, 

and its level gradually and continually increased to 4 h, at the final draw. According to 

toxicokinetics in sub-cutaneous study, SBSNAE should have a cmax at 4 h. Unfortunately, 

the animal samples from inhalation study did not extend over 4 h, and hence the complete 

profile could not be studied for SBSNAE. However, the results observed for both SMO 

and SBSNAE are in good agreement with the findings of Li et al. [89].   

 SMO and SBSNAE can be used as ideal markers for determination of SM 

exposure. Both metabolites are absent in unexposed samples and can be used as 

unequivocal confirmation for SM. Moreover, both metabolites have dominant presence in 

exposed samples, especially during the first 6 h (latency period of SM poisoning). SMO 

also has a potential to be used as a diagnostic marker immediately (within 15 min) after 

exposure. Both of these markers should be further evaluated to determine if they can be 
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used to correlate to inhalation dose.   

 

Figure 3.4. Toxicokinetic profile of SMO in swine plasma for inhalation exposure of 
SM. 19109, 19595, and 19596 designate the three individual animals used for the study. 
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Figure 3.5. Plot of time vs. ln (concentration) for the individual swine (19109, 19595, 
and 19596). The slopes for each animal were similar to each other. The elimination of 
SMO followed a one-compartment distribution model. 
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Figure 3.6. Toxicokinetic profile of SBSNAE in swine plasma for inhalation exposure of 
SM. 19109, 19595, and 19596 designate the three individual animals used for the study. 

3.3.4 Validation of the method for SMO and SBSNAE in swine plasma 

Validation parameters (LOD, linear range, accuracy and precisions) were only 

evaluated for SMO and SBSNAE. LOD for SMO was determined as 10 nM in both swine 

and rat plasma, whereas LOD for SBSNAE was 5 nM and 10 nM for rat and swine 

plasma respectively. Representative chromatograms for LODs in rat plasma are presented 

in Figures 3.7 and 3.8.  

  The linear ranges for SMO (0.05 µM - 5 µM) and SBSNAE (0.05 µM - 10 µM) 

covered at least two orders of magnitude in both types of plasma (swine and rat). 
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Calibration curve used 1/x2 weighted fitting. Intra-assay accuracies for all QCs were 

within 100±18% % for SMO and SBSNAE, whereas intra-assay precisions for all QCs 

were <20 %RSD for both SBSNAE and SMO. Inter-assay accuracies for SMO were 

within 100 ±17% and within 100±7% for SBSNAE. The inter-assay precision was <13 

%RSD for both metabolites. Because the type of plasma did not affect the validation 

parameters, intra-assay accuracy and precision were evaluated only for one day in rat 

plasma. Accuracies and precisions for all QCs are listed in Table 3.2 and 3.3 for 

SBSNAE and SMO respectively.  

 

 

Figure 3.7. LOD for SBSNAE analysis in swine plasma. The lower trace shows non-
spiked swine plasma, whereas the upper trace shows 10 nM spiked swine plasma. The 
LOD concentration (10 nM) reproducibly produced S/N of at least 3. 
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Figure 3.8. LOD for SMO analysis in swine plasma. The lower trace shows non-spiked 
swine plasma, whereas the upper trace shows 10 nM spiked swine plasma. The LOD 
concentration (10 nM) reproducibly produced S/N of at least 3. 

Table 3.2. Intra- and inter- assay accuracies and precisions for analysis of SBSNAE in 
spiked swine plasma. 

Concentration 
(µM) 

Intra-assay Inter-assay 

Accuracy (%)a Precision (%RSD)a Accuracy 
(%)b 

Precision 
(%RSD)b Day1 Day2 Day3 Day1 Day2 Day3 

0.15 100±4.8 100±8.1 100±13.5 14.2 5.0 2.1 100±1.2 11.5 
0.75 100±16.8 100±1.5 100±8.3 3.1 5.0 1.1 100±6.2 9.6 

3 100±4.3 100±2.1 100±6.5 2.2 4.2 1.3 100±3.4 4.0 
a QC method validation (N=5)  
b Mean of three different days of QC method validation (N=15) 
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Table 3.3. Intra- and inter- assay accuracies and precisions for analysis of SMO in spiked 
swine plasma. 

Concentration 
(µM) 

Intra-assay Inter-assay 

Accuracy (%)a Precision (%RSD)a Accuracy 
(%)b 

Precision 
(%RSD)b Day1 Day2 Day3 Day1 Day2 Day3 

0.15 100±17.1 100±16.7 100±9.3 19.1 6.8 3.5 100±16.4 12.6 
0.75 100±13.6 100±6.7 100±0.4 12.2 6.5 6.8 100±13.2 9.3 

3 100±9.3 100±10.5 100±0.9 6.2 6.1 1.6 100±5.8 12.8 
a QC method validation (N=5)  
b Mean of three different days of QC method validation (N=15) 

 3.3.5 Correlation of biomarker concentration to inhalation dose in rats 

Rat plasma samples collected at 1, 2, 3, and 7 h from inhalation exposure in three 

different dose groups (1.2, 2.5, and 4.0 mg/kg) were analyzed. Dose versus peak area 

ratio (SMO/IS) for SMO at 1 h time-point is plotted in Figure 3.9; error bars represent 

standard error of the mean (n=3). The SMO concentration showed a linear increase with 

the dose (R2 = 0.98). Similarly, the dose versus peak area ratio (SBSNAE/IS) for 

SBSNAE at 7 h time-point is plotted in Figure 3.10. SBSNAE concentration also showed 

a linear increase with dose, with R2 value of 0.99. Although these preliminary data 

indicate linear correlation of exposure dose with metabolite concentration, more detailed 

study with larger sample size (n > 5) at each dose would be required to verify the 

correlation. Additionally, more time-points (before, at, and after Cmax) should be 

investigated for both markers in order to determine the optimal time-point that can be 

used for dose correlation. Here, the plotted data are for time-points where Cmax of the 

analyte should already be achieved. Note that the Cmax time-point for SMO and SBSNAE 

is estimated as 0.6 and 4 h respectively; the plotted data (Figures 3.9 and 3.10) are at 1 h 

for SMO and 7 h for SBSNAE.  
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Figure 3.9. Linearity of peak area ratio (SMO/IS) to exposed SM concentrations at 1 h 
time-point. 
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Figure 3.10. Linearity of peak area ratio (SBSNAE/IS) to exposed SM concentrations at 
7 h time-point. 

3.4 Conclusion 

Six plasma metabolites (TDG, TDGO, SBMSE, MSMTESE, SBSNAE, and SMO) of 

SM were investigated for their potential as biomarkers in inhalation studies. Exposed 

swine plasma samples from an inhalation study were screened for determination of ideal 

metabolites for correlation to inhalation dose. Only three metabolites, TDGO, SBSNAE, 

and SMO, were consistently detected, and only two (SMO and SBSNAE) could be used 

as unequivocal markers of exposure. Toxicokinetic behavior for SMO and SBSNAE were 

found to be in good agreement in inhalation and sub-cutaneous exposure. Preliminary 

data from inhalation studies showed a linear correlation of SMO and SBSNAE with SM 
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concentration. However, detailed studies with greater number of animals will be 

important to confirm the correlation. A good correlation will allow use of these 

biomarkers to calculate the “actual internal dose” in inhalation studies. This is the first 

reported investigation of SM biomarkers from an inhalation study. 
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Chapter 4. Analysis of sulfur mustard oxide in plasma using chemical ionization – gas 

chromatography mass spectrometry 

4.1 Introduction 

Conflicts around the world have made chemical warfare agents (CWAs), such as 

2,2’-dichloro diethyl sulfide (sulfur mustard), a significant threat to mankind. 

Technological advancement, globalization, easy access to raw materials and technical 

information, and increased government-sponsored terrorism have proliferated the 

prospects of chemical terrorism in the modern world [13]. Although joint international 

efforts have led to destruction of many declared chemical stockpiles, these efforts have 

not been fully effective in preventing the use of CWAs such as mustards, sarin, cyanide, 

etc. by terrorist organizations or countries such as Iraq and Syria [1, 5, 146, 147].  

 After World War II, some of the most catastrophic uses of CWAs occurred during 

Iran-Iraq conflict. Within the time frame of late 1980s to early 1990s, Iraq allegedly used 

a combination of CWAs, including sulfur mustard, against Iranian soldiers and its own 

Kurdish people, resulting in an estimated 50,000 fatalities [5]. More recently, between 

2013-2017, over 1400 deaths occurred from use of CWAs by Assad regime on Syrian 

people [4]. These tragic developments in recent times have established an increasing need 

to develop and improve analytical methodologies to confirm exposure in concerned 

individuals.  

 Sulfur Mustard (SM) is a potent vesicant that produces blisters upon exposure 

and also causes injury to the respiratory system, eyes, and bone marrow [5, 148, 149]. 

Additionally, it is a strong alkylating agent that can have long-term mutagenic and 
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carcinogenic effects. At high doses, SM can cause fatality within days or weeks primarily 

due to severe airway obstruction caused by formation of pseudomembranes in respiratory 

tract [6, 132, 148-152]. However, death can also occur from second-degree burns and 

multi-organ failure [6, 152, 153]. At medium and low doses, the toxicity depends on 

concentration and duration of exposure, and can result in short- and long-term injury 

[147]. The clinical effects of both high and low dose SM exposure are characterized by 

an initial asymptomatic latent period of 6-24 h before the development of pain and 

lesions [147, 154, 155]. This delayed onset results in delay for clinical diagnosis and 

treatments. Therefore, a method to rapidly and reliably diagnose SM poisoning from 

potential victims during this latent period is critical [156].  

 Although analysis of the intact agent is the most direct diagnostic marker, the 

rapid conversion of sulfur mustard in biological system limits the window-of-opportunity 

to detect the intact agent [5]. Therefore, verification of exposure is more reliably 

achieved by screening plasma or urine for free metabolites that are derived from direct 

oxidation and hydrolysis of SM, or conjugation with glutathione followed by metabolic 

conversion (β-lyase metabolites). The oxidation and hydrolysis products, namely, sulfur 

mustard oxide (SMO), thiodiglycol (TDG), and thiodiglycol oxide (TDGO), appear in 

plasma and urine within 15 min post-exposure [89]. While several methods have been 

produced to determine TDG and TDGO using gas chromatography-mass spectrometry 

(GC-MS) or gas chromatography-tandem mass spectrometry (GC-MS/MS) [84, 88], 

TDG and TDGO cannot be used as unequivocal markers for SM exposure because of 
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their presence at low concentrations (0-1 ng/mL for TDG and 2-8 ng/mL for TDGO) in 

samples from unexposed animals [87, 145].  

 Furthermore, although β-lyase metabolites can be used for definite confirmation 

of exposure, and several analytical methods using GC-MS or liquid chromatography-

tandem mass spectrometry (LC-MS-MS) are available [83, 89, 157], these metabolites 

appear in plasma and urine only after 1-2 h post-exposure. Moreover, the β-lyase 

metabolites are also present at very low concentrations. In a toxicokinetic study 

performed by Li et al. for subcutaneous injection in rats, the Tmax for β-lyase metabolites 

in plasma occurred between 4-8 hours post-exposure. The Cmax for most β-lyase 

metabolites ranged between (1-9 µg/L), whereas one of the β-lyase metabolites was 

below the quantification range of the method (5 µg/L) [89]. In a separate study with 

cutaneous application of SM in rats, similar results were obtained, with peak levels of 

hydrolysis and β-lyase products found at 15 min and >1 h respectively [84]. Notably, the 

concentrations of the β-lyase metabolites (2.5-5.3%) accounted for lower percentage of 

the applied dose compared to hydrolysis products (3.7-13.6%). The slow rise in β-lyase 

metabolite concentration and their low Cmax makes them not ideal for early diagnostic 

purposes. [84]. The drawbacks of the hydrolysis and β-lyase metabolites for diagnostic 

analysis indicate the need for a marker that is definitive, has early onset, and has a 

significant presence in biological specimen of exposed victim.  

 The oxidative metabolite of SM, sulfur mustard oxide (SMO) has received less 

attention as a potential SM diagnostic marker. This is likely because most toxicokinetic 

studies were performed using urine, and SMO is only present as a minor urinary 
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metabolite [79, 82]. However, recent toxicokinetics data reported by Li et al. shows that 

SMO is an important metabolite in plasma. It is an early marker with Tmax of 0.8 h post-

exposure [89]. SMO is also present at higher concentrations (Cmax of > 430 µg/L) 

compared to β-lyase metabolites (1-9 µg/L) [89]. Additionally, unlike TDG and TDGO, 

SMO is not an endogenous substance, and hence, its existence is a definite evidence of 

SM poisoning [82]. Since SMO has been minimally studied, there are limited analytical 

methods for its determination, especially from plasma. There are only two reported 

methods for analysis of SMO from plasma, both using LC-MS-MS for detection [89, 

158]. Both methods require over 1-1.5 hours for overall analysis (sample preparation and 

detection). Additionally, one of the reported methods also requires chemical conversion 

of SMO with 2-(3,5-bis(mercaptomethyl)phenoxy) acetic acid into a stable derivatized 

product [158].  There are currently no GCMS methods for SMO analysis in the literature. 

Therefore, in this paper, we present a rapid and simple sample preparation and direct 

analysis scheme for SMO using chemical ionization (CI)-GCMS for diagnosis of SM 

poisoning during the latent period between SM exposure and the appearance of clinical 

symptoms. The availability of this method will allow rapid diagnosis of SM exposure in 

victims. 	

4.2 Materials and Methods 

 Caution: SMO and SMO-d4 are reactive agents. These agents should be handled 

in well-ventilated hoods. The use of gloves and stringent protective measures should be 

adopted.  
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4.2.1 Chemicals and solutions 

 For method development and validation, swine plasma (EDTA anti-coagulated) 

was purchased from Pelfreeze Biological (Rogers, AR, USA) and stored at -80 °C until 

used. 

 Thiodiglycol, 1,2-dichloroethane-d4, and 2-mercaptoethanol were obtained 

from Sigma Aldrich (St. Louis, MO, USA). Hydrochloric acid, nitric acid, acetonitrile, 

methylene chloride were obtained from Fisher Scientific (Fair Lawn, NJ, USA). SMO 

and SMO-d4 were synthesized in the lab. Reverse-osmosis water was purified to 18.2 

MΩ-cm using a Lab Pro polishing unit from Labconco Kansas City, KS, USA.  

The structures for SMO and SMO-d4 are provided in Figure 1. For synthesis of 

SMO, a one-pot reaction scheme was developed. Thiodiglycol (1 eq.) was reacted with 

concentrated hydrochloric acid (9 eq.) at 90 °C for 90 mins. The upper aqueous layer was 

removed, and concentrated nitric acid (15 eq.) was added to the reaction flask and stirred 

at room temperature for 30 mins. The reaction mixture was diluted with 15 mL water and 

SMO was extracted with 20 mL methylene chloride. The purity was tested with NMR, 1H 

400MHz, CDCl3 δ 2.1 (s, 6H) 3.0 (t, 4h) 3.3 (t, 4H).  

 For synthesis of SMO-d4, sodium metal (0.15 g) was added to dry methanol (5 

mL), to which 2-mercaptoethanol (0.45 mL) was added and allowed to react for 30 mins 

at room temperature with occasional swirling. 1,2-dichloroethane-d4 (3.85 mL) was 

added to the mixture, and the resulting solution was left in the refrigerator overnight. The 

solution was filtered, and the filtrate was dried under vacuum using a rotary evaporator. 

Concentrated hydrochloric acid (4 mL) was added to the residue in the flask and the 
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remainder of the reaction was carried out as mentioned above. Purity of the product was 

tested with GCMS (>99% purity). 

4.2.2 Sample preparation 

An aliquot of 500 µL plasma (spiked or non-spiked) was pipetted into a 2 mL 

glass vial, to which 50 µL of aqueous 100 µM internal standard (SMO-d4) was added and 

vortexed for 30 seconds. To the plasma solution, 500 µL of methylene chloride was 

added for liquid-liquid extraction. The mixture was shaken for 10 s and centrifuged at 

6000 rpm for 2 minutes for separation of plasma and organic layers. For centrifugation, 

the glass sample vial was opened and placed into a 5 mL centrifuge tube. Note that 

plastic vials and centrifuge tubes must be avoided because components in the plastics 

leached into the solvent (methylene chloride) and interfered with the analysis of SMO. 

After centrifugation, vials were removed from the tubes using forceps and the upper 

plasma layer was carefully removed. A small layer of precipitated proteins formed 

between the plasma and organic layer, which was also carefully removed without 

disturbing the lower organic layer. The organic layer was then pipetted into a new 2 mL 

GC autosampler vial. The organic layer was dried by blowing air, and reconstituted with 

25 µL of acetonitrile. The final acetonitrile solution was transferred to a tapered-bottom 

glass insert (300 µL) in a GC vial and analyzed via CI-GCMS. 

4.2.3 GC-MS analysis of SMO 

Prepared samples were analyzed for SMO and SMO-d4 using Agilent 

Technologies 6890N gas chromatograph and a 5975B inert XL electron ionization 

(EI)/chemical ionization (CI) mass selective detector (MSD) in CI with a 7683 series 
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autosampler. A DB5-MS bonded-phase column (30 m x 0.25 mm I.D., 0.25 µm film 

thickness; J&W Scientific, Folsom, CA, USA) was used with hydrogen as the carrier gas 

at a flow rate of 1.5 mL/min and a column head pressure of 5.12 psi.  The injection was 

performed in splitless mode (split delay 1min, purge flow 30.1 mL/min), the injection 

volume was 1 µL, and the injection port was held at 150 °C. Note that it is vital to 

maintain a relatively low injection temperature in order to prevent degradation of SMO. 

At higher injection temperatures, significant degradation with loss of most or all of SMO 

was observed. To prevent in-column degradation, oven temperature greater than 250 °C 

was not used.  The initial GC oven temperature was 80 °C, which was ramped at a rate of 

50 °C/min to 250 °C, where it was held constant for 1 min. The chromatographic 

acquisition time was 4.40 min with SMO and SMO-D4 eluting at 2.68 min.  

 The GC-MSD transfer line was heated at 170 °C. The MS source and MS quad 

temperatures were 250 °C and 150 °C, respectively. Methane was used as a reagent gas 

for positive ion CI with electron energy of 235 eV. Selective ion monitoring (SIM) was 

used to monitor the quantification and identification ions of SMO (m/z of 175 and 123, 

respectively) and SMO-d4 (m/z of 181 and 127, respectively). For SMO, the major 

molecular ion, m/z of 175, was selected for quantification. Because SMO has two 

chlorine atoms, and Chlorine has two major stable isotopes (35Cl 75%, 37Cl 25%), its 

molecular ions can exist as 175, 177, and 179. Therefore, to prevent overlap of SMO and 

SMO-d4, an m/z of 181 for SMO-d4 was selected instead of 179. The structures of SMO 

and SMO-d4 are presented in Figure 4.1.  
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Figure 4.1. Structures of SMO (A) and SMO-d4 (B). 

4.2.4 Calibration, quantification, and limit of detection 

 Bioanalytical method validation was accomplished by generally following the 

Food and Drug Adminisitration (FDA) guidelines [127, 129]. SMO and SMO-D4 stock 

solutions (10 mM) were prepared in acetonitrile and stored at -30 °C. Aqueous solutions 

of SMO were prepared via serial dilution of the stock; a working solution of 200 µM of 

SMO-D4 was also prepared in water. An aqueous mix solution of SMO and SMO-D4 for 

each calibrator was prepared by mixing 50:50 of SMO solution and 200 µM SMO-d4.  

The mix solution was then spiked (50 µL) into plasma (450 µL) for calibration and 

quality-control (QC) standards. All calibration standards (0.5, 1, 2, 5, 10, 20, 50, 100 µM) 

were prepared in triplicates. To obtain a calibration curve, the average peak-area signal 
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ratios of SMO to SMO-D4 were plotted as a function of concentration. Peak areas were 

calculated by manual integration from baseline to baseline in ChemStation software 

(Agilent Technologies, Santa Clara, CA). 

 For determining the upper limit of quantification (ULOQ) and lower limit of 

quantification (LLOQ), a percent relative standard deviation (%RSD) of <20% (as a 

measure of precision) and a percent deviation within ±20% back-calculated from the 

nominal concentration of each calibration standard (as a measure of accuracy) were used 

as inclusion criteria for the calibration standards. Quality control (QC) standards were 

prepared in swine plasma at three different concentrations: 1.5 µM (low), 7.5 µM 

(medium) and 35 µM (high). The QC standards were analyzed in quintuplicate each day 

for 3 days and were run in parallel with the calibration standards. Intra-assay precision 

and accuracy were calculated from each day’s analysis and inter-assay precision and 

accuracy were calculated from the comparison of the data gathered from three separate 

days. It should be noted that the inter-assay and intra-assay studies were conducted within 

1 week. The limit of detection (LOD) was evaluated by analyzing multiple concentrations 

of SMO below LLOQ, and determining the lowest concentration which reproducibly 

produced a signal-to-noise ratio (S/N) (peak-to-peak) of at least 3 compared to the blank 

at the same retention time. 

4.2.5 Selectivity and sensitivity 

Selectivity of the method was checked by analyzing blank and and spiked swine 

plasma samples. A comparison of chromatograms was made among three samples of 

blank plasma with three samples spiked swine (0.5 µM SMO) to determine if chemical 



 
 

  

84 

components of plasma interfered with ability to quantify SMO.  

 For recovery experiments, detector response obtained from SMO spiked plasma 

was compared to the detector response obtained for the same moles of SMO prepared in 

acetonitrile.  It is to be noted that in our sample preparation, the analyte is reconstituted in 

a final volume of 25 µL, which allows for a 20-fold concentration increase before 

analysis in GCMS. Hence, signals for triplicates of low (1.5 µM), medium (7.5 µM), and 

high (35 µM) QCs in plasma were compared to the signal produced by 30, 150, and 700 

µM of SMO solution in acetonitrile respectively.  

4.2.6 Matrix effects 

An attempt to assess the effect of matrix components to enhance or suppress the 

signal of the analyte was accomplished by creating calibration curve from plasma and 

aqueous solution. A ratio of less than 1 indicates suppression effect, whereas greater than 

1 indicates an enhancement effect. The ratio of slopes of non-corrected curves were then 

compared with the internal standard corrected curves to evaluate the effectiveness of 

internal standard to minimize the matrix effect. 

4.3 Results and Discussion 

4.3.1 GC-MS analysis of SMO 

The method presented here includes a short, simple, and direct (i.e. no chemical 

modification) analysis of SMO. Using this method, a plasma sample can be prepared and 

analyzed within a total analysis time of 15 min. SMO is simply extracted from plasma via 

liquid-liquid extraction into methylene chloride. Different solvents were investigated to 

improve extraction of SMO, such as toluene, hexane, and cyclohexane. The test solvents 



 
 

  

85 

were selected with the criteria of high Kow (low miscibility with water) and low boiling 

point. Among the tested solvents, methylene chloride provided the highest extraction 

efficiency. The high vapor pressure of methylene chloride also allowed for extremely 

rapid drying (~3 mins for 500 µL of the DCM extract) under just ambient airflow (flow 

rate of ~40 mL/min). Hence, methylene chloride was chosen as the solvent of choice for 

extraction from plasma samples.  

 Following sample preparation, the GCMS analysis was very short with a total 

chromatographic runtime of less than 5 min, and SMO eluting at 2.68 min. Even with 

extremely rapid and simple sample preparation and analysis, the SMO was completely 

resolved from other components in the matrix, with adequate peak shape, although some 

tailing is present. Representative selected ion chromatograms (SIM), m/z = 175 for SMO 

and m/z = 181 for SMO-d4, of both non-spiked and spiked swine plasma is shown in 

Figure 4.2. However, it is to be noted that the internal standard synthesized in-house, 

SMO-d4, could attribute to some SMO ions because of its 99% purity. Therefore, for 

sample analysis, blank samples spiked with only SMO-d4 should be assessed first to 

calculate the level of SMO produced from the internal standard. A blank-subtraction 

could potentially be performed for quantification of SMO from real samples. This could 

be eliminated if a higher purity dichloroethane was used to synthesize the internal 

standard. Note that in Figure 4.2, no blank subtraction was performed.  
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Figure 4.2. Overlay of extracted ion chromatograms (XICs) of m/z 175 (SMO) and m/z 
181 (SMO-d4) for non-spiked and spiked swine plasma samples. The two lower traces 
(black and green) show that there are no components in the plasma matrix that interfere 
with analysis of either SMO or SMO-d4. The two upper traces (red and blue) show that 
SMO and SMO-d4 elute at 2.68 min. 

4.3.2 Limit-of-detection and linear range 

The linearity of the method was evaluated within the concentration range of 0.2 to 

500 µM. A calibration curve was constructed by plotting concentration versus corrected 

signal (peak area of SMO divided by the peak area of corresponding SMO-d4). Upon 

analysis of calibration standards using non-weighted and weighted (1/x and 1/x2) 

calibration curves, 0.2, 200, and 500 µM standards were excluded based upon the 

accuracy and/or precision criteria. The linear range of the method spanned over two 

orders of magnitude, from 0.5-100 µM when using 1/x2 weighted linear regression, with 
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correlation coefficient (R2) >0.998.  The LOD for SMO was 0.1 µM (Figure 4.3).   

 

Figure 4.3.  LOD of SMO analysis using CI-GCMS; lower trace (blue) shows non-
spiked swine plasma, whereas upper trace (red) shows 0.1 µM spiked swine plasma. The 
LOD concentration (0.1 µM) reproducibly produced a S/N of 3. 

4.3.3 Accuracy and precision 

	 Accuracy	and	precision	were	determined	by	quintuplicate	analysis	of	low	

(1.5	µM),	medium	(7.5	µM),	and	high	(35	µM)	QCs	on	three	different	days	within	7-

day	period.	The	intra-assay	accuracy	(100±	20%)	and	precision	(<15%	RSD)	for	all	

QCs	were	within	the	acceptable	range	outlined	by	FDA	for	method	validation	from	

biological	matrix	[127,	129].	The	inter-assay	accuracy	(100	±	13%)	and	precision	(<	
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16%	RSD)	were	also	within	the	acceptable	criteria.	The	intra-	and	inter-	assay	

accuracy	for	low,	medium,	and	high	QCs	are	presented	in	Table	4.1.		

Table 4.1. Intra- and inter- assay accuracies and precisions for analysis of SMO in spiked 
swine plasma. 

Concentration	
(μM)	

Intra-assay	 Inter-assay	
Accuracy	(%)a	 Precision	(%RSD)a	 Accuracy	

(%)b	
Precision	
(%RSD)b	Day	

1	
Day	
2	

Day	
3	

Day	
1	

Day	
2	

Day
3	

1.5	 100±16.9	 100±15.4	 100±2.7	 7.5	 14.3	 1.3	 100±1.4	 15.7	
7.5	 100±16.7	 100±1.8	 100±3.9	 3.1	 0.9	 1.3	 100±6.3	 7.8	
35	 100±19.7	 100±3.9	 100±13.5	 12.3	 2.5	 3.6	 100±12.1	 9.5	

a QC method validation (N=5)  
b Mean of three different days of QC method validation (N=15) 

4.3.4 Matrix effects 

An attempt was made to assess matrix effects by evaluating the slope of 

calibration curve (non-corrected) in swine plasma compared to in aqueous samples. Both 

the aqueous and plasma calibrators showed a highly non-linear behavior. Therefore, the 

matrix effect could not be determined. However, the matrix effect and non-linear 

behavior was corrected with internal standard; the slopes of internal standard corrected 

curves in plasma and aqueous were very close (ratio of 0.97). The non-corrected and 

corrected calibration curves in plasma and aqueous are presented in Figure 4.4.   

4.3.5 Recovery 

Recovery for low, medium, and high QCs were 19%, 22%, and 23% respectively.  

The low recovery can be explained by loss during liquid-liquid extraction from plasma 

and also some possible loss during the drying process. The loss during extraction can be 

attributed to incomplete extraction and incomplete transfer of organic layer based on 
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solvent loss when removing plasma layer and loss to the vessel. However, any loss of 

SMO during this process is corrected by the internal standard, with raw signals resulting 

in high standard deviations (>28% RSD), whereas internal standard corrected signals 

resulting in low standard deviation (<6% RSD).   

 

 

 

 

0.0E+00	

1.0E+06	

2.0E+06	

3.0E+06	

4.0E+06	

5.0E+06	

6.0E+06	

7.0E+06	

0	 20	 40	 60	 80	 100	 120	

Pe
ak
	A
re
a	
(S
M
O
)		

Concentra2on	(μM)	

Aq	 Plasma	A	



 
 

  

90 

 

Figure 4.4. Figure showing non-corrected (A) and internal standard corrected (B) 
calibration curves. Both aqueous and plasma non-corrected curves showed non-linear 
behavior, and could not be compared to determine matrix effect. The ratio for slopes of 
corrected plasma and aqueous curve was close to 1(slope plasma/aqueous = 0.97), 
indicating that the internal standard is effective in correcting any matrix effects. 

4.4 Conclusion 

A GC-MS method for analysis of SMO from plasma was developed which features 

very simple sample preparation, rapid analysis, wide linear range of over two orders of 

magnitude, and requires no chemical modification. To our knowledge, this is the first 

GC-MS method for analysis of SMO, which is an important early biomarker for sulfur 
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mustard poisoning. The availability of this method should allow easy and rapid diagnosis 

of sulfur mustard poisoning for potential victims. 
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Chapter 5. Broader Impacts, Conclusions, and Future Work 

5.1 Broader Impacts 

Cyanide and SM are CWAs that pose significant global threat to mankind. 

Research on improved toxicological understanding and development of effective 

therapeutic interventions are crucial to defend against these CWA threats. The novel 

method presented here for DMTS will allow pharmacokinetic and drug development 

studies on this promising therapeutic, potentially leading to a live-saving antidote. 

Additionally, metabolite studies for inhalation route of SM exposure will help identify 

potential markers for calculation of “actual respiratory dose”. This would allow for 

standardization of dose over different inhalation studies, improving the accuracy and 

reliability of the studies. Furthermore, an easy and rapid method was developed for SMO, 

an early marker of SM exposure. The availability of this method can allow for immediate 

diagnosis of SM exposure in victims. The work presented here will contribute towards 

development and approval of life-saving treatments for CN and SM poisoning.   

5.2 Conclusions 

A novel SBSE-GCMS method was developed for analysis of DMTS from blood. 

The method was effective in analyzing DMTS from blood of treated animals. A simple, 

direct, and rapid method was developed for analysis of SMO from plasma. The method 

will allow rapid diagnosis of SM poisoning within 15 post-exposure. Plasma metabolites 

for SM exposure via inhalation were identified, and correlation of metabolite 

concentration with dose was investigated.  
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5.3 Future Work 

Future work should include pharmacokinetic studies of DMTS in various animal 

models before leading to human studies. Comprehensive inhalation studies should be 

done in animals for SM exposure in order to establish a correlation of biomarker 

concentration to dose. Eventually, the ideal biomarker should be used to calculate “actual 

dose” for inhalation studies of SM. Animal studies should be performed to confirm the 

effectiveness of SMO as a diagnostic marker.    
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