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 ABSTRACT 

DESIGNING AND DEVELOPMENT OF A PHOTOBIOREACTOR FOR 

OPTIMIZING THE GROWTH OF MICRO ALGAE AND STUDYING ITS GROWTH 

PARAMETERS 

SARMILA KATUWAL 

2017 

This thesis presents the estimated value of materials required to grow 1g of biomass and 

the analysis of the light intensity with respect to flow path and flow rate. This thesis aims 

to design the sparger for a flat plate Photobioreactor, study the flow patterns at different 

flow rate of air flow and check the performance of flat plate PBR by growing the 

cyanobacteria. 

The estimated value to produce 1g of biomass (C44.6H7O25N7.68P0.9S0.3) was 0.099g of N, 

0.493g of C, 0.160 g of Na, 0.026 g of P, 0.009 g of S, and 0.007 g of Mg. The energy 

required to fix carbon atoms in 1 mole of biomass was found to be 78,584,302 J. The net 

energy loss of the system was calculated by subtracting net enthalpy of reactants from net 

enthalpy of product which was found to be -3800.724 KJ. 

Light plays a great role in the performance of PBR. The equation was also developed to 

find the relationship of light intensity with path length and gas flow rate. The sparger 

plays a major role in deciding the performance of the PBR. It is one of the means for 

mixing so that the gas can pass though the growth medium by bubble which is created by 

the passing the gas through the holes of the sparger. Mixing helps in proper distribution 

of nutrients to the medium in Photobioreactor (PBR), maintaining the uniform 
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temperature. The sparger was designed using a SPARGER software built on a Java 

platform to simulate the flow and pressure distribution along its length. Sparger diameter 

of 0.5 inch was designed with a hole diameter of 1/32 inch and spacing of 4.04 cm. The 

simulation result showed non-uniformity of less than 5% and the percentage of air-

remaining after the last hole less than 1%.  

With the designed sparger the flow patterns of bubbles were observed in 160L water in 

three different conditions. The first one was using the different number of sparger pipes 

ranging from 1 to 4. The second one is using the different gas flow rate and the third one 

is observing the flow patterns at different height. Larger number of sparger pipes shows 

the better mixing, 10LPM flow rate was observed to have a uniform bubble distribution 

and at the higher depth the flow was observed to be air lift.  

The designed sparger for the PBR system was used in a PBR to grow cyanobacteria. 

Cyanobacteria was grown on BG-11 media and the highest concentration of biomass was 

found on 13th day with a value of 928 mg/L. The physical parameters like Oxidation 

Reduction Potential (ORP), Dissolved Oxygen (DO), pH and temperature were studied. 

The range of ORP, DO, pH and temperature were found to be 169.76 to 327.67 mV, 8.68 

to 8.20 mg/L, 6.15 to 8.09 and, 26.81°C to 30.91°C respectively. The observed results 

were compared to the small reactor results.  

Keywords: Photobioreactor, Sparger, Cyanobacteria, flowrate, ORP, pH, DO, and 

Temperature 
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1. INTRODUCTION 

1.1. Energy consumption pattern around the globe 

The world energy consumption in 2012 was found to be 549 quadrillion BTUs and is 

expected to reach 815 quadrillion BTU in 2040 which means that the world is demanding 

an extra 265 quadrillion BTU energy within next 28 years (Martin, 2013). The sources of 

energy on which world is dependent on include coal, oil, gas, hydro, nuclear, biomass, 

and solar energy. About 79% of the energy consumed is from fossil fuels which accounts 

for 30% of oil, 27 % of coal, and 22% of natural gas around the globe as illustrated in 

Figure 1. This energy consumption pattern indicates that the primary energy sources used 

worldwide is highly dependent on non-renewable energy sources.  

 

Figure 1. World energy consumption 2012 (Finley, 2013) 

The energy generated from these non-renewable sources are used everywhere including 

transportation, residential, industrial, electric power, and commercial areas. With the 

27%

30.0%

22.0%

6.1%

4.1%

8.5%
2.2%

World energy consumption of primary energy, 2012

Coal Oil Gas Hydro Nuclear Biomass Other
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current energy consumption pattern and energy demand, it is undeniable that non-

renewable energy sources will be depleted one day. This massive dependency on non-

renewable energy sources and the risk of future depletion of such sources might invite an 

energy crisis around the globe. Thus, there is a pressing need to find alternative 

renewable energy sources that can be substituted for non-renewable energy sources. 

1.2. Energy Demands and Importance of Renewable Energy 

 

Figure 2. U.S. annual proved reserves crude oil and natural gas (EIA, 2015) 

Figure 2 shows the U.S. reserve of crude oil and gas annually from 1964 to 2014. It is 

found that the reserve of crude oil and natural gas was in a decreasing trend from 1972 

through 2012 and has started increasing from 2013 onwards. The increase in the reserve 

is due to the new drilling technology known as hydraulic fracturing or fracking 

(Fitzgerald, 2012).  

Figure 3 shows the US primary energy consumption by source and sector for 2016 (EIA, 

2017). The left side represents the share of the sources, and the right side represents the 
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demand sector indicating about 81% of energy usage is fossil fuel, natural gas, and coal.  

There is an increase in energy consumption from petroleum and natural gas of by 1% and 

3% respectively and the coal consumption is decreased by 5% compared to the data of 

2012 (Energy Information, 2012). This may be because of the fracking of oil in the U.S. 

Petroleum alone accounts for about 37% of the total energy. This portion of energy 

contributes about 71% to the transportation, 23% to industries, 5% to the residential and 

commercial sectors, and 1% in generating electric power. Considering energy demand 

fulfillment for the transportation industry, petroleum alone fulfills about 93% of the 

demand, and the rest is from natural gas and renewable energy. Similarly, contribution 

from the other sources to this sector are shown in the Figure 3. 

 

Figure 3. US primary energy consumption, 2016 by sources (EIA, 2017) 
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 Consumption of non-renewable energy and its supply-demand is population driven. Over 

the past decades, the increasing population demand for these energy sources has 

increased substantially. This increased energy demand has imposed a greater risk to the 

environment resulting from the very high carbon footprint possessed by the use of fossil 

fuels. Research studies have shown that the current usage rate of fossil fuels is directly 

associated with climate change and greenhouse gas emission (Höök and Tang, 2013).  At 

the current utilization rate, these sources will be at a risk of depletion as well as imposing 

a substantial threat to both energy and environment sustainability.  Therefore, there is a 

dire need of developing cleaner technology. 

1.3. Biomass energy and feedstock for biofuels 

Biomass energy is a form of the renewable energy produced from trees, plants, forest 

residues, agricultural residues, energy crops, microalgae, animal wastes and waste 

materials. Among all the biomass energy, biofuel is the most dominate and is primarily 

consumed by transportation.  

Cover crops are considered the most common biomass source for producing bioenergy. 

Studies suggest that it consumes CO2 and produces fewer emissions compared to other 

biomass. On average, cover crops can yield around 2-3 tons/acre of biomass annually and 

can go up to 5 tons/acre if conditions are favorable (Kemp and Lyutse, 2011). Some of 

the energy crops that are commonly used worldwide for producing biofuels are corn, 

soybean, rapeseed, and sugarcane. In the United States, corn is used for producing 

ethanol whereas soybean is used for producing biodiesel. Likewise, rapeseed is 

commonly used for producing biodiesel in Europe whereas sugarcane is used for 

producing biodiesel and ethanol and its molasses for heating purpose in Brazil. Biofuels 
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extracted from these food crops in the form of oil, sugar, and starches are called first-

generation biofuels and are also known as conventional biofuels (Luque et al., 2008). 

Although these crops are good source for producing biofuels, there are some 

disadvantages associated with them. One primary concern is food insecurity resulting 

from high consumption of food crops for producing biofuels (Brennan and Owende, 

2010).  

The next source used for producing bioenergy is non-edible feedstock like vegetable oils, 

fats and nonfood products (Luque et al., 2008). Biofuel generated from lignocellulose is 

called second-generation biofuel. Cellulosic biofuels produced from agricultural residue, 

grass, shrubs, flowers, and trees is considered to have no impact on food production and 

usually derived from primary producers with high energy content. According to the U.S. 

Environmental Protection Agency (EPA) and the California Air Resources Board, 

cellulosic biofuels have played a considerable role in the reduction of global warming 

emissions (Martin, 2010). The estimated total biomass available from crop residues is 

more than 3,000 PJ/year and is considered as the biggest source of biomass followed by 

switchgrass on CRP land.  

According to research, biomass production globally is estimated to be 220 billion dry 

tons /year (Hislop and Hall, 1996). However, the United States alone has the biomass 

production potential of 368 million dry tons per year from forest land and 998 million dry 

tons per year from agricultural land which can contribute more than one-third of the 

current demand of transportation fuels (Perlack et al., 2005).  

To meet biodiesel demand from renewable energy sources alternative feedstock should 

be explored. Research studies have shown that microalgae possess the potential to replace 
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the current demand for biodiesel. Biofuels generated from microalgae and cyanobacteria 

are known as third generation biofuels (Ahmad et al., 2011). The biofuel produced from 

the metabolic engineering of microalgae is called the fourth generation of biofuel (Lü et 

al., 2011). Both third and fourth generation of biofuels are generated from the microalgae 

biomass but the difference is the processing of microalgae verse product separation 

(Kagan, 2010). The disadvantages associated with this process are energy consumption 

for cultivation is high, problem of biomass contamination in open pond systems, 

problems of fouling and the high cost of cleaning, and photoinhibition (Dutta et al., 2014; 

Ruffing, 2011; Singh et al., 2011). Fourth generation of biofuel has the ability to capture 

more CO2, provide a high yield of microalgae with high lipid content, and has a high 

production rate (Dutta et al., 2014). 

Algae are classified into two groups: microalgae and macroalgae. Table 1 shows the 

differences between micro-algae and macro-algae. 

Table 1. Difference between micro and macro algae 

Microalgae Macroalgae 

High oil yield content Low lipid and carbohydrate  

Challenging inefficient cultivation and 

harvesting 

Low-cost cultivation and harvesting 

Potential for biofuel Potential for biofuel 

1.4. Microalgae and its requirement for growing 

Microalgae is a photosynthetic microorganism that can be converted into biomass in the 

presence of light and carbon dioxide. It follows the basic rule of photosynthesis as 

expressed by Davis et al (Davis et al., 2011): 
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CO2+Nutrients+Light = O2+Biomass 

 Microalgae are a unicellular species which exists individually or in chains or groups. Its 

size ranges from 1-30 m and its negative charge ranges from -7 to -45 mV with a 

concentration of 0.5- 4 g/L. Nitrates, Phosphates, Iron, and trace elements are the major 

nutrients required for growing microalgae (Hundt and Reddy, 2011). It is suggested to 

blend CO2 with air at a ratio of 0.2 to 5% to get the maximum growth  (Kunjapur and 

Eldridge, 2010). The optimum temperature required is 20- 30°C (Chisti, 2013) and the 

pH should be in the range of 7-9 depending upon the species. The light absorption spectra 

is from 400-700 nm (PAR) (Berberoglu et al., 2007a). 

1.5. Applications of Microalgae 

Microalgae have been used for different purposes from ancient times. Because of its 

chemical composition, it has been used widely for various purposes like enhancing the 

nutritional value of food and animal feed, aquaculture, incorporated into cosmetics, etc. 

They are used in wastewater treatment for removing BOD, nutrients, heavy metals, 

pathogens, and heterotrophs, in biogas production, and toxicity monitoring (Munoz and 

Guieysse, 2006). Also, they are cultivated for a source of highly valuable molecules 

(Priyadarshani and Rath, 2012; Ting et al., 2017).  Apart from these microalgae have the 

potential to be converted into biofuel. In recent years, many universities, companies, 

entrepreneurs, and organizations showed research interest on growing algae as it can be 

an alternate renewable feedstock for biodiesel production.  

1.6. Why microalgae for biofuel? 

High energy content 
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Micro-algae are composed of carbohydrates, proteins, fats and nucleic acids (Asmare et 

al., 2013). They contain higher concentration of biomass desired for large oil production 

for biofuel. The energy content of microalgae is 30 times higher than other crops used for 

biofuel production (Chisti, 2007). 

Grows faster 

Microalgae grows very quickly and can double every 24 hours (Chisti, 2007; Schneider, 

2006).  Studies suggest that it can be harvested in a short period of time and requires no 

seasonal waiting allowing continuous production of feedstock.  

Table 2 shows the oil yield of different energy crops and microalgae. The oil yield data 

indicates that microalgae have the potential to produce about 341 to 795 times more 

biodiesel than corn and 9 to 23 times more than oil palm. 

Table 2. Different sources of biodiesel and its oil yield  (Chisti, 2007) 

Crops Oil yield (L/Ha) 

Corn 172 

Soybean 446 

Canola 1190 

Jatropha 1892 

Coconut 2689 

Oil palm 5950 

Microalgae (70 % oil by weight in biomass) 136,900 

Microalgae (30 % oil by weight in biomass) 58,700 
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Land Requirements 

Algae can be grown in any unused land, ponds or inside a closed room. Research studies 

have suggested that microalgae have the potential to produce substantially higher energy 

per unit of land area than other high-energy crops, depending on its species and growth 

conditions  (Singh and Gu, 2010).  

Cleaner technology 

The source of carbon for growing algae is carbon dioxide. Thus, flue gas coming from a 

power plant can be utilized as a CO2 source (Demirbas and Demirbas, 2010). Beside this, 

algae can be produced using nutrients such as phosphorus and nitrogen coming from 

wastewater treatment plant (Singh and Gu, 2010). Moreover, no herbicides or pesticides 

are required for algal cultivation and growth. Atmospheric carbon fixation capacity of 

microalgae is 10 to 50 times better than terrestrial crops (Verawaty et al., 2017). 

1.7. Microalgae Productions Systems 

Microalgae production can be done in two ways; pond systems (Figure 4) and 

photobioreactor (PBR) systems. The open pond system is the conventional method where 

microalgae can be grown in an open pond (Jiménez et al., 2003). There are four major 

types of open pond systems currently in use; shallow big ponds, tanks, circular ponds, 

and raceway ponds (Borowitzka, 1999). The carbon source from the atmosphere is used 

and the light source is sunlight. The advantages of this system are that it’s less expensive, 

ease of cleaning, low maintenance, low energy inputs, and non-agricultural lands can be 

used (Chisti, 2008). Mixing is mostly done with a paddle wheel. The main limitations of 

this type of system are poor biomass productivity, contamination, limited algae strains, 
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and a large land requirement (Brennan and Owende, 2010). Since it is environment 

dependent, the biomass gets thick and light cannot penetrate deep into the system causing 

limited algae growth. Also, because it is an open system, evaporation losses are usually 

high.  

The second one is the closed system also known as the photobioreactor (PBR) system. It 

was introduced to overcome the disadvantages of open pond system. This system mainly 

includes components of a photobioreactor, reactor volume, light, gas flow, and a sparger 

for mixing. A PBR is a vessel can be open, closed, or semi-closed and is made of 

transparent and waterproof materials in which microalgae cultivation is carried out (Ting 

et al., 2017).  

 

Figure 4. Open pond system 

Light plays a major role in making a PBR system effective and efficient. The amount of 

light that enters the PBR system impacts the growth rate of the micro-algae. Microalgae 

require plenty of photons to survive, and as the microalgae concentration increases, the 
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light penetration starts declining. The cells closer to the light source receive more light 

whereas the cells at the farthest point from the light source receive less light and this 

shade formation process is known as mutual shading (Pruvost et al., 2002). 

Mixing is one of the  factors that significantly affect the scaling of a PBR system. Mixing 

is principally done to keep the microalgae cells in suspension. The purpose of mixing is 

to maintain the uniform temperature, avoid settling of cells, and supply carbon dioxide to 

the medium while removing oxygen from the medium by increasing the mass transfer 

rate (Carvalho et al., 2006). Mixing depends on the types of devices used and the PBR 

selected. Gas flowrate and sparger design are two essential parameters for mixing and are 

interrelated.  

A PBR system is said to be well designed if cells move periodically across the light 

gradient through a small pressure difference and a low shear rate. The other important 

aspect of a well-designed PBR system is reduced micro eddy formation resulting from 

mixing. Micro eddies form with a diameter less than 50 μm if the liquid velocity is 

greater than 1m/s. These micro eddies will damage cells, and therefore, it is suggested to 

have a mixing velocity of 20-50 cm/s to avoid micro eddy formation in the PBR system 

(Posten, 2009). 

1.8. Project Significance 

Considering the tremendous benefits of a PBR system, development and modification of 

PBRs by different researchers is underway. Besides the many advantages of a PBR 

system over traditional microalgae cultivation systems, it has some disadvantages too 

which are mostly associated with the initial investment. The cost of design and 
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development of a PBR system is considerably higher, and therefore, it still requires a 

substantial amount of research and testing to reduce the cost associated with it. As of 

now, no optimum photobioreactor has been developed since it is governed by many 

factors and design considerations (Socher et al., 2016). Also, several studies have been 

conducted on small-scale PBR systems, but very limited research has been done towards 

upgrading small-scale PBRs to large scale.  

Design considerations of a PBR include selection of microalgae and mass & energy 

balances for light design and an understanding of mixing. Photo-inhibition (when the 

light intensity is very high) and photo- saturation (when the intensity is too low) are two 

other limiting factors for light penetration. Cells at the center of the PBR will not be 

exposed to light when the concentration gets thick and therefore limits the growth. To 

overcome this either the light path should be decreased or proper mixing should be done. 

Therefore, this research aims to study the relationships between light path length, and air 

flow rate. Also, uniform distribution of gas throughout a sparger is one of the problems 

encountered when designing a PBR. This work explores the design and scale up gas flow 

rate by designing the sparger to provide uniform distribution of air throughout a sparger. 

Furthermore, the flow patterns are not consistent between smaller and bigger PBRs. 

Therefore, this research aims to study flow patterns for a bigger reactor and see if flow 

patterns are similar to a smaller one. The design of a PBR at large scale has been studied 

for growing microalgae used in biofuel production.  
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1.9. Objectives 

The overall objective of this research was to scale up a PBR and optimize the growth of 

microalgae. The specific objectives are listed as below: 

• To study the relations of light and path length and flow rate. 

• To find the theoretical estimation of the materials balance and energy balance. 

• To design an efficient sparger for growing microalgae using SPARGER software. 

• Study the flow patterns and behavior of the flow in a 160L reactor. 

• To run the photobioreactor to find the concentration of biomass produced and 

relate the concentration to the physical growth parameters. 

  



14 

 

 

 

2. LITERATURE REVIEW 

2.1. Algae species and nutrient source 

2.1.1. Microalgae species and its compositions 

Thousands of microalgae and cyanobacteria species have been discovered on this planet. 

Microalgae species selection depends upon its application.  For example six species 

(Chlorella vulgaris, Spirulina platensis, Nannochloropsis gaditana, Nannochloropsis 

oculata, Phaeodactylum tricornutum, and Porphyridium cruentum) of microalgae were 

tested (100 g) to analyze the biochemical composition for food application. The 

composition was found as 40 g protein, 18 g of carbohydrates, 12 g of fiber and 10 g of 

lipid on average (Matos et al., 2016). The composition of individual species is provided 

in Table 3. 

Table 3. Chemical composition of species of microalgal biomass  (Matos et al., 2016) 

Species Protein 

(%) 

Carbohydrate 

(%) 

Fiber 

(%) 

Lipid 

(%) 

Chlorella vulgaris 41.4 26.7 5.6 12.8 

Spirulina platensis 42.8 21.5 8.5 5.5 

Nannochloropsis 

gaditana 

41.6 18.6 14.1 8.1 

Nannochloropsis oculata 42.1 16.7 13.0 15.6 

Phaeodactylum 

tricornutum 

39 15.4 13.2 14.9 

Porphyridium cruentum 35.4 12.5 18.3 5.3 

Also, many research studies are focused on the selection of a microalgal species for 

biofuel production. For commercial biofuel production, research suggests to select a 

microalgae strain with high oil yield and fast-growth (Del Río et al., 2015).  
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Table 4. Different microalgae and cyanobacteria species and its lipid content  

(Sharathchandra and Rajashekhar, 2011; Zhan et al., 2016) 

Microalgae species Lipid content (%) 

Chlorella sp. HQ 31.8±43.19 

Chlorella ellipsoidea 16.85±7.85 

Chlorella pyrenoidesa 18.02±5.36 

Chlorella vulgaris 28.65±14.08 

Scenedesmus dimorphus 30.59±1.25 

Scenedesmus quadricauda 66.05±8.55 

Scenedesmus obliquus 17.03±0.88 

Scenedesmus sp. LX1 12.75±4.36 

Oscillatoria calcuttensis 25.70±0.14 

Oscillatoria acuminata 24.65±0.21 

Nostoc linckia 18.45±0.07 

Calothrix fusca 22.60±0.28 

Lyngbya limnetica 18.10±0.14 

Phormidium purpurescens 26.45±0.21 

Microcystis aeruginosa 28.15±0.21 

Lyngbya dendrobia 10.55±0.07 

Oscillatoria perornata 14.10±0.14 

Phormidium ambiguum 10.48±0.10 

Oscillatoria amoena 18.63±0.18 

Scytonema bohnerii 22.22±0.32 

Oscillatoria chlorina 16.62±0.16 

 

The composition of glycerol molecules bound to three fatty acids, Triacylglycerol (TAG) 

is the most common lipid available in microalgae (Abdo et al., 2014). The average lipid 
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content varies from 1% to 70% and can reach up to 90%  for some species under certain 

conditions (Mata et al., 2010). The lipid content of commonly produced microalgae and 

cyanobacteria species are presented in Table 4. 

2.1.2. Nutrients composition and source 

There is no single formula for the nutrient calculation that can be applied to all the 

species. However, all the species have a minimum, optimum, and maximum nutrient 

requirements (Grobbelaar, 2010). Elemental mass balance is one approach used to 

estimate the minimum demand of the medium composition (Morweiser et al., 2010). In 

this method, the microalgae strain is selected first based on the need and depend upon its 

biomass composition. After selection of the microalgae strain, major ionic components 

are determined for calculating the nutrient requirement. 

Also, the nutrient requirement depends upon sources that are used to cultivate the 

microalgae. Nitrate, Ammonia, and Urea are the sources of nitrogen whereas CO2, HCO3
- 

and organic carbon like acetate or glucose are the sources of Carbon (Cañedo and 

Lizárraga, 2016). If microalgae is cultivated in a PBR system with fresh water as a 

medium then artificial nutrients are prepared in the lab. Nutrient preparation in the lab is 

costly and therefore, to reduce feed cost, it is necessary to identify free and reliable 

sources of nutrients for microalgae production.  

The one source that has potential to support the growth of microalgae is wastewater 

coming out from wastewater treatment plants. Such wastewater contains essential 

nutrients like N and P that have a vital role in microalgae growth (Verawaty et al., 2017). 

Since both N and P are pollutants. Growing microalgae using these nutrients will be 
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beneficial to both the environment and cost of  microalgae production. It is reported that 

microalgae species like Scenedesmus sp, Chlorella sp, Scenedesmus sp, Phormidium sp, 

Botryococcus sp, Chlamydomonas sp and Spirulina sp have been used widely in 

wastewater treatment plants (Olguı́, 2003). The other potential free nutrient source that 

can be used for microalgae production is flue gas coming from industry. Flue gas from 

industry is very toxic and harmful to the atmosphere and ozone layer (Brar et al., 2017). 

However, these gases contain nutrients required by microalgae for their growth. Thus, 

utilizing flue gases in microalgal production will help to reduce production cost and 

reduce environmental pollution resulting from harmful combustion gases.   

2.2. Types of Photobioreactor (PBR) system 

2.2.1. Tubular PBR  

A tubular PBR is tubular in shape and is usually constructed of glass, PVC, or plastic and 

is the most common system used these days (Cañedo and Lizárraga, 2016). The attraction 

of this type of PBR is its simplicity and large illuminated surface area which is most 

appropriate for outdoor use (Figure 5). The diameter of the tube ranges from 10 mm to 60 

mm (Posten, 2009) whereas the length varies from 10-100m (Xu, 2007). The diameter of 

the tube is kept small to increase light penetration in a reactor. For mass cultivation, the 

preferred liquid velocities are 0.2 m/s to 0.5 m/s (Morweiser et al., 2010). Mixing is 

normally done by a sparger forming bubbles (Singh and Sharma, 2012). A degasser unit 

is connected to the  tubes to prevent  high oxygen concentration from building up in the 

PBR system (Vree et al., 2015). Depending upon the tube orientation, it is referred to as 

horizontal, vertical, or inclined tubular PBR.  The disadvantages are the accumulation of 

dissolved oxygen, excessive power consumption, high temperature, high pH, CO2 and O2 
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gradients, high capital and operating cost and photo limitations (Huang et al., 2017). 

Airlift and bubble columns are also tubular photobioreactors. This type of PBR works 

well under natural sunlight. 

 

Figure 5. Horizontal tubular photobioreactor (Ting et al., 2017) 

2.2.2. Bubble column PBR 

 In this PBR type, aeration occurs is the mixing process. The gas mixture is injected 

through the sparger forming bubbles which flow in an upward direction with no 

substantial upward or downward movement of medium flow (Figure 6). There is 

significant lateral movement of the medium so that the uniform distribution of nutrients 

and biomass concentration can be achieved (Anderson et al., 2014). The bubbles push the 

micro algae cells in a lateral direction. The primary need is that the height of the reactor 

is greater than twice the diameter (Singh and Sharma, 2012). It is used successfully in the 

medical industry. While designing, or scale up apart from light, the hydrodynamics of 

bubbles and flow regime should also be considered. The advantage of this type of PBR 

are surface area to volume ratio (SVR), heat and mass transfer in a satisfactory range, the 
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release of O2 gas, good radial mixing is efficient, and fewer moving parts (Kumar et al., 

2011). 

 

Figure 6. Bubble column and air lift photobioreactor (Ting et al., 2017) 

2.2.3. Air lift PBR  

An airlift PBR is different from a bubble column PBR because it has a riser and down 

comer (Figure 6). Riser function is similar to the bubble column method. Air and CO2 are 

transferred to the riser through the sparger whereas as it is not sparged in the down comer 

(Kumar et al., 2011). The diameter of this reactor should not exceed 0.2 m, and the height 

should not be greater than 4m to prevent structural damage to the PBR and mutual 

shading (Wang et al., 2012). With the increase in the diameter of the tube, light 

penetration towards the center of the tube will be less. The materials used for this type of 

reactor are optically transparent material made up of glass and thermoplastics. These 

types of material do not have the strength to offer greater height and can be easily 
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damage by wind (Miron et al., 1999) .This type of reactor has the advantage of providing 

a flashing light effect in the PBR due to mixing. The bubbles transfer upward in the riser 

on the dark side and when they transfer to the down comer, then it is in the lit side of the 

PBR (Barbosa et al., 2003). Since mixing is the result of cyclical recirculation of bubbles, 

the PBR has a high mass transfer rate, low power consumption, and homogenous shear 

stress.  It is one of the preferred methods for photobioreactors in industry (Huang et al., 

2016). The important criteria while designing an air lift PBR is to increase the difference 

of gas holdup between the riser and down comer (Singh and Sharma, 2012). The 

disadvantages of this type of PBR are high capital cost and cleaning and maintenance 

(Soman and Shastri, 2015). 

2.2.4. Flat plate PBR  

 

Figure 7. Front and side view of flat plate photobioreactor (Ting et al., 2017) 
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Flat plate PBRs are constructed using plastic or acrylic sheet. Mixing is either done by 

sparging or using a motor as shown in Figure 7 (Kumar et al., 2011). It is considered to 

have one of the high SVR compared to other PBR types. Surface to volume ratio in a 

PBR is the amount of the surface area illuminated by the light per unit the volume of the 

medium in the PBR system. Because of the large illuminated surface area, it has a low 

accumulation of dissolved oxygen, and high photosynthetic efficiency (Cañedo and 

Lizárraga, 2016). Mixing is commonly done by aeration or through a pump. There are 

ranges of dimensions for height and width, but the preferred one is lower than 1.5 m and 

0.10 m wide respectively. A flat PBR can be inclined if illuminated by sunlight to reduce 

the light loss. The direction of the flat panels, angle and the number of panels per land 

unit are the factors affecting the biomass productivity in this type of PBR (Zijffers et al., 

2008).The problems with this kind of PBR are fouling; cells attach to the plastic walls 

thus reducing light availability, and contamination.  

2.2.5. Bag PBR 

Micro algae are cultivated in the plastic bags in Bag PBRs (Figure 8).  This system 

generally consists of plastics bags for growing microalgae, frame for supporting the 

structure and an aeration system to prevent the algal biomass from sedimentation (Ting et 

al., 2017). The design considerations for bag PBRs include size of the bag, selection and 

construction of materials, aeration method, and the structure for the frame. The advantage 

of this type of PBR is the low capital cost (Huang et al., 2017). Experiment with bag 

PBRs have been done from 5 L volume to 250 L volume for different species (Chen et 

al., 2013; Sierra et al., 2008). 



22 

 

 

 

 

Figure 8. Plastic bag photobioreactor (Huang et al., 2017) 

 Replacing the bag periodically is one of the major disadvantage of this type of PBR 

because disposing of the bag on large quantities has a negative impact on the 

environment (Wang et al., 2012). While photo limitation, bad mixing and leakage are the 

other disadvantages (Huang et al., 2017). 

2.3. Design Consideration of Photobioreactor 

Design of photobioreactors includes a number of factors that can influence the growth of 

cyanobacteria and algae in a PBR. The basic concept of PBR design is that it should have 

a proper source for carbon and energy (for example CO2 and light) so that the 

photosynthesis process can take place efficiently. Apart from the carbon and light source, 

nutrients like carbohydrates, proteins, lipids, and nucleic acids are required, and  proper 

mixing of these nutrients is an important aspect of PBR design.  

2.3.1. Selection of materials 

Almost every type of photobioreactor is constructed using transparent materials. The 

basic concept of proper transparent material selection is to provide the proper light 
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intensity inside the reactor (Wang et al., 2012). The materials usually employed for 

constructing the PBR are glass, polyethylene (PE), polycarbonate (PC), polyvinyl 

chloride (PVC), acrylic (Plexiglas, PMMA), silicate and fiberglass (Posten, 2012). Also, 

selected materials should be toxic free, high strength, chemically stable, and easy to 

clean.  

2.3.2. Physical and light properties of PBR 

Table 5 and Table 6 show the physical and light characteristics of materials that are being 

used in PBR construction. Polythene has the highest light transmission, shear strength 

and lowest density indicating that it is lighter in weight for the same structural strength. 

Properties listed by polythene show that it should be one of the preferred PBR materials 

but its life span is less. 

Table 5. Physical properties of PBR construction materials. 
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0.410 

@73°F 
1400 60 - - 7450 
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Table 6. Optical properties of materials used for PBR 

Materials 
Light 

transmission (%) 

Critical 

Angle 

Refractive 

Index 
Industry 

Glass  43° 1.52 (1.473) 
SCHOTT-

tubular PBR 

Polyvinyl chloride 

(PVC) 
75  1.5 

+GF + 

Polyethylene (PE), 92 (1/8 inch) 46° 1.51  

Polycarbonate 

(PC) 
  1.60 

 

Plexiglas, PMMA 95 

42.16°- 

45° 

 

1.49 

 

 

Fiber glass 

90 - - 

Solar 

Components 

Corporation 

Glass has the lowest energy content which is preferred for a PBR. Glass PBRs are 

primarily used for hydrogen production  from alga. Glass has the highest mass density 

which reflects that it is heavier and difficult to transport and handle (Burgess et al., 2007). 

Glass and polythene sleeves are mostly used for tubular photobioreactors. If chemical 

resistance is a concern then PVC is preferred. Acrylic sheet is an acceptable material for 

photobioreactors because transmission of light is high and reduced water evaporation loss 

when covered as it has low heat loss compared to glass. It has a long life span and a high 

melting point but the initial cost of the material is high. Good light transmission and least 

energy content are the reason for selecting this material. Fiber glass is a recent material 

that is being used for PBRs.  

2.3.3. Methods of mixing 

Mechanical mixers like paddles, mixers, and agitators are used for mixing. Magnetic 

stirring is used for small-scale PBRs whereas impeller methods are used for larger scale 
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PBRs, mostly in open pond PBRs. The paddle wheel is used must in PBRs. The diameter, 

impeller, and number of paddles on the wheel are the major parameters of the paddle 

wheel that should be accounted while designing the system to maintain uniform 

turbulence throughout the system. In general, achieving uniform turbulence throughout 

the system is a challenging part of PBR design. If the turbulence is low, settling may start 

and formation of the dead zones occurs. Three major flow regimes are considered; bubbly 

flow (homogenous), churn-turbulent flow (heterogeneous) and slug flow shown in Figure 

9 (Vial et al., 2001).  

 

Figure 9. Flow regime of bubbles  (Kantarci et al., 2005)   

Superficial gas velocity (Ug) and hydraulic diameter play significant roles in categorizing 

the flow regimes. The homogeneous regime should have low superficial gas velocity and 

uniform bubble size and distribution. Heterogeneous flow is characterized by large 

bubbles and higher superficial gas velocities (Joshi et al., 2002; Veera and Joshi, 1999).  

Slug flow has been observed in small diameter laboratory columns at high gas flow rates  

(Hyndman et al., 1997). It is found that slug flow is observed in columns with diameters 

up to 15 cm (Miller, 1980). Many cyanobacterial strains are shear sensitive. However, the 
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exact shear rates associated with decreases in cell growth rates is unknown. While 

scaling-up, care should be taken that the flow is homogenous and the mixing is uniform 

so that cells get an equal amount of light thereby increasing the photosynthetic efficiency.  

In the bubbling method, gas is injected through the sparger and when it comes in contact 

with liquid, bubble formation starts. It is one of the preferred methods for larger reactors. 

Type of sparger, geometry, gas velocities, and hydrodynamics of the bubbles play 

significant roles. These factors are very complex and interrelated to each other. The 

model developed for a small reactor may not predict the mixing in a larger PBR because 

a small change in PBR dimension will change the flow behavior (Prokop et al., 2015). 

Therefore, there is a problem in PBR scale up.  

2.3.4. Sparger and its design considerations 

A sparger consists of small orifices which help transfer the gas mixture into the 

microalgae growth medium through bubbles that reduce the oxygen content of the 

medium that is produced during the photosynthetic process (Singh and Sharma, 2012). 

The geometry of the spargers, diameter, spacing, size of the orifice, and number of the 

orifices are the important design aspects (Kulkarni and Joshi, 2011b). Inappropriate 

design of a sparger will lead to an inefficient photobioreactor system. Design 

considerations of the sparger include no weeping and to a lesser extent non-uniformity 

(ENU) (Kulkarni and Joshi, 2011a). A weeping condition occurs when the pressure of the 

gas injected into the sparger is less than the overall pressure of the growth medium. At 

this condition, instead of bubbling, the growth medium will enter inside the sparger 

through the holes. The factors that affect weeping are pressure drop along the sparger 

length, liquid height, the surface tension of the liquid. ENU is the indication of all the air 
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leaving the sparger along its length. It also tries to keep air flow rate through all the holes 

in the sparger the same. ENU occurs when the gas transfer along the length of sparger is 

not uniform and high non uniformity  will lead to high pressure drop in the sparger and 

increase the chances of clogging the holes of sparger (Kulkarni et al., 2007). Therefore, if 

the sparger design is not appropriate, it may lead to weeping and the pressure drop might 

be increased so that the value of ENU will increase, leading to incomplete mixing in the 

PBR liquid. The amount of gas transferred to the photobioreactor plays a great role in 

developing the flow pattern. Bubble diameter and flow pattern play a substantial roles in 

designing the sparger and photobioreactor performance. Three types of bubbles are 

considered in sparger design. One is small bubbles which have a volume equivalent 

diameter less than 0.1 mm and are spherical in form. Another is intermediate bubbles 

which are ellipsoidal in shape. The last one are larger bubbles with diameters greater than 

18 mm and are usually cap shaped with a volume greater than 3cm3 (Xue et al., 2008). 

Small diameter bubbles (micro meter) decrease the growth and productivity of algae 

because the size of the organism and the bubble size are similar and also has low light 

penetration. Also, microalgae and cyanobacteria which are trapped in the bubbles may 

get damaged when bubbles burst because of the energy released during the process 

(Camacho et al., 2001). If the bubble diameter is large, it can reduce the contact area 

between the air in the bubble and the medium thus reducing the mass transfer coefficient. 

The sparger should be selected in such a way that the bubble diameter ranges from 3mm - 

7mm and the flow rate should be selected in such a way that microalgae are suspended 

while the superficial gas velocity that provides homogenous flow should be preferred for 

scale up. There are different types of spargers used commercially such as sieve plate, 
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radial, porous, spider, and ring type as shown Figure 10 and Figure 11 (Kulkarni et al., 

2007). 

 

Figure 10. Commercially used sieve sparger 

 
 

a. Porous  b. Radial  

 

 

c. Spider d. Ring sparger (De Wilde et al., 

2014) 

Figure 11. Different types of sparger used commercially 
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2.3.5. Gas transfer  

During gas transfer, CO2 needs to be added and oxygen needs to be removed from the 

medium in the PBR system, and therefore is considered an important aspect of PBR 

design (Huang et al., 2017). A high aeration rate might damage microalgae cells due to 

mechanical stress as well as increase running cost (Cañedo and Lizárraga, 2016). CO2 

and pH have an inverse relationship, and therefore, CO2 and its flow rate should be 

adjusted accordingly to maintain proper pH in the medium (Wang et al., 2012).  CO2 

introduced into the PBR through a sparger is distributed within the medium by bubbles.  

2.3.6. Light 

When the temperature control, nutrients, and mixing are not the limiting factors then light 

intensity, availability and its duration play a significant role in photosynthesis and the 

growth of the microalgae (Al-Qasmi et al., 2012; Lee and Low, 1992).  The absorption 

spectra of microalgae and cyanobacteria range from 400-700nm (Berberoglu et al., 

2007b)  and the photosynthetic apparatus that can accommodate the maximum light 

intensity (Saturation light Intensity) varies from 50-200µmol photons (PAR) m-2s-1 

depending upon the species (Goldman, 1979). It is considered that the light spectrum 

above 750 nm wavelength does not have sufficient energy to be converted into chemical 

energy. The absorbed energy by chlorophyll from low energy photons can only be 

converted into heat. To high energy is when the light wavelength is below 350 nm, and 

this will lead to photo oxidation. Thus, the spectral range of  350-750 nm is good for 

photosynthesis (Kommareddy and Anderson, 2003b). The light energy spectrum range of  

600-800 nm is required to obtain a high hydrogen production rate and is considered as the 

actual photon range needed for the photosynthetic process (Uyar et al., 2007). Therefore, 
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when determining the light requirement in a PBR, care should be taken as to what light 

sources are used with respect to intensity and light spectrum. The relationship between 

light spectrum wavelength and energy is provided in equation (1). 

𝐸 =
ℎ𝑐

λ
 

(1) 

Where E= energy of quanta (J/quanta), h=Planks constant (6.626 *10-34 J.s), c=speed of 

light (2.998*108 m/s) and λ =wavelength of the photon (m) (Sheppard et al., 2006). To 

overcome the effect of light inhibition and light saturation either the light path should be 

decreased or proper mixing should be done. The concept of the surface to volume ratio 

(SVR) has been introduced. The favorable SVR will be obtained by selecting the 

appropriate geometries of PBR that reduce the light path length and reduce the mixing 

energy. If SVR is high, then the cell production is high, and the volumetric productivity is 

high as well. 

2.3.7. Light intensity 

Light intensity and growth rate show a linear relationship but reports indicate that the 

correlation doesn’t predict performance when scaling up a PBR though (Ogbonna et al., 

1995).  Authors have also claimed that the attenuation coefficient is a good PBR scale up 

factor. Various mathematical models have been developed by researchers based on the 

Lamberts law for light distribution and irradiance profile estimation so that proper light 

distribution and intensity could be supplied to the culture by minimizing mutual shading 

(Katsuda et al., 2004; Molina Grima et al., 1994).  While some researchers claim that 

Beer-Lambert law cannot be used to predict the irradiance inside the photobioreactor 
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because it ignores light scattering (Berberoglu et al., 2007a). They developed a new 

model. The linear relationship between the extinction coefficient and biomass 

concentration/dilution (𝛽𝑋 ) factor has been developed as 𝛽𝑋 =

360.30𝑋 𝑎𝑡 683 𝑛𝑚 where, 𝛽𝑋 = extinction coefficient, m−1    and X= microorganism 

concentration ranging from 0.04 to 0.35, kg dry cell mass/m3 (Berberoglu et al., 2007a). 

This equation helps us to predict the extinction coefficient at certain biomass 

concentration. Table 7 and Table 8 shows the models developed for estimating light 

intensity and light irradiance along with attenuation coefficients to be used in the model.  

Table 7. Light attenuation coefficient 

Species Attenuations coefficient Remarks 

Anabaena 5.2 × 10–6 cm2 filament–1 
(Litchman, 2003) 

Phormidium 1.7 × 10–6 cm2 filament–1 

P. tricornutum 0.0369 m2/g (Molina et al., 2001) 

Chlorella pyrenoidosa 0.200m2/g (Ogbonna et al., 1995) 

 

  



32 

 

 

 

Table 8. Different formula used by researchers to find the light intensity and irradiance 

Developed model for estimating light intensity and radiation Remarks 

I (λ)=Io (λ). Exp(-Ka(λ).p.C) 

 

I(λ)= Light Intensity 

Ka(λ)=extinction coefficient for biomass at wavelength λ 

C=Biomass Concentration 

Io (λ)=Intensity of the light source at wavelength λ 

(Molina Grima et al., 

1994) 

𝐼𝑎𝑣 =
𝐼𝑜

Ф𝑒𝑞𝐾𝑎𝐶𝑏
[1 − exp(−Ф𝑒𝑞𝐾𝑎𝐶𝑏)] 

 

Iav= Average Light Intensity 

I0= Intensity at the culture surface 

Qeq=path length from the surface to point in the growth 

Ka=extinction coefficient for biomass 

C=Biomass Concentration 

(Alfano et al., 1986), 

(Molina et al., 2001) 

I =
𝐿𝑜2

(𝐿 + 𝐿𝑜)2
∑ 𝐼0,λ

λ

. 10−∈𝑐𝑒𝑙𝑙,,λ  𝐶𝐿 

 

I= Light Intensity 

L=Light path length 

L0=Distance from the light source to the illuminated surface 

I o, λ =Intensity of the light source at wavelength λ 

∈ 𝑐𝑒𝑙𝑙,,λ  = Extinction coefficient of the cell at wavelength λ 

C=Biomass Concentration 

 

(Katsuda et al., 2004) 

𝑠
∂Iλ(z, 𝑠)

∂z
 =  −𝐾𝑒𝑓𝑓,λ  𝐼𝜆(𝑧, 𝑠)⃗⃗⃗⃗

− σ𝑒𝑓𝑓,λ 

+
σ𝑥,λ 

4𝜋
∫ 4𝜋𝐼𝜆(𝑧, 𝑠)⃗⃗⃗⃗ Ф𝑥,λ, (𝑠𝑖,⃗⃗⃗⃗  𝑠)⃗⃗⃗⃗

σ𝑥,λ 

4𝜋
dΩi

+
σ𝐵,λ 

4𝜋
∫ 4𝜋𝐼𝜆(𝑧, 𝑠)⃗⃗⃗⃗ Ф𝐵,λ, (𝑠𝑖,⃗⃗⃗⃗  𝑠 ⃗⃗⃗) 

 

Iλ(z, 𝑠) = Radiation intensity in direction s at z location 

Keff =   Effective spectral absorption coefficients 

σ𝑒𝑓𝑓,λ = Effective scattering coefficients 

Ф𝑥,λ,= Scattering phase functions of bacteria 

Ф𝐵,λ,= Scattering phase functions of bubbles 

(Berberoglu et al., 

2007a) 
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2.4. Different Sources of artificial light 

Sun Light 

Open pond PBRs and closed PBRs operated in the outdoor environment use sunlight for 

photosynthesis. The incident solar radiation in the central daylight time zone can exceed 

2000µmol photons m-2s-1  which is significantly greater than the 200µmol photons m-2s-1 

required for photosynthesis (Tredici and Zittelli, 1998). Sunlight as a light source is 

employed in industrial applications because of its cost-effectiveness (low cost). However, 

sunlight intensity varies throughout the day making a sunlight dependent PBR 

ineffective. To overcome this problem, artificial lighting systems were introduced to 

achieve consistent and continuous illumination. An artificial lighting system should be 

designed to provide optimum energy. Table 9 provides data for several artificial light 

sources used in PBR systems 

Fluorescent Lights 

Researchers started using fluorescent lamps for growing microalgae in PBRs. Light 

emitted by fluorescent lights is in the visible region. The efficiency of fluorescent lamps 

is up to 45%, Table 9. It is the most commonly used light source because it is 

inexpensive, readily available, easy to install, and easy to control. The emitted light is 

diffuse and reflectors are required to direct the light into the PBR. Light intensity tends to 

decrease after a year. Therefore, other light sources are explored.  

LED Lights  

LEDs are a unique type of semiconductor diode consisting of p-n junctions in which 

current flows from p to n side of the diode and not in the reverse direction (Carvalho et 
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al., 2011). It emits light in a narrow wavelength band. Chlorophyll light absorption is 

strongest in the red and blue portions of the PAR region. The light outside of the red and 

blue band tend to be absorbed and converted to thermal energy or be reflected rather than 

being used in the photosynthesis process. Therefore, LED light in a narrow red 

wavelength band produces less heat than other light sources tested (Kommareddy and 

Anderson, 2003b; Matthijs et al., 1996).  Several lights such as cool white lights, 

fluorescent lights, Gro-Lux lights, incandescent lights, halogen lights, and LED lights are 

used in PBRs for microalgae production. AllnGaP II (aluminum indium gallium 

phosphide) LEDs emit light in the wavelength range of 600-700 nm and can be up to 

98% efficient in converting electrical energy to photon energy, Table 9. Research studies 

have shown that cell size of cultures grown in red LED light (25-35 μm3/cell)  is smaller 

than that grown in fluorescent light  (50-120 μm3/cell) (Lee and Palsson, 1996). 

However, the concentration of biomass (g/l) was found to be similar from the two light 

sources.  

Different led lights are available and can be used to grow microalgae (Koc et al., 2013). 

However, the light sources significantly affect microalgae growth rate and biomass 

concentration for example, red light intensity produces smaller cells than blue light 

whereas blue lights yield bigger diameter cells but with less total weight than red light 

(Shu et al., 2012).  

Acrylic (Plexiglas) and LED light 

Internal illumination is often required when a PBR is scaled up or when the biomass 

produced creates sufficient mutual shading to reduced light intensity to the point where 

photon flux is insufficient to maintain photosynthesis. Shading in the PBR increases with 
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increase in biomass concentration, Figure 12. However, it also increases due to bubble 

flow, and bubble size in the PBR and the length of the light path. Internal illumination 

overcomes shading issues but it increases the cost of production (Ogbonna et al., 1996).  

 

Figure 12. Light intensity versus growth rate of photosynthetic cell (Ogbonna and 

Tanaka, 2000) 

Researchers are interested in increasing the light transmission efficiency into the interior 

less well-lit regions of the PBR by using light guides. These light guides are made of 

plexiglass, and are generally of rod-shape (Pozza et al., 2012). Plexiglas PBR walls help 

to diffuse the light when the light is supplied by a LED source (Pozza et al., 2012).  

Kommeraddy et al. studied light guides which were made by cutting acrylic rod with a 

band saw and lathe (Kommareddy and Anderson, 2003a). The cut surfaces were finished 

with a belt sander and buffed using the red coloring compound.  A LED panel was used 

as the light source with a light guide positioned directly in front of one LED light.  
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 Table 9. Different light sources and it's properties (Kommareddy and Anderson, 2003b) 

Light 

sources 

Total light 

between 

400-500 

nm and 

600-700 

nm (%) 

Intensity 

W/m2/nm 

Advantages Disadvantages 

Fluorescent 45.65 5.720 • Low initial 

cost 

 

• lights are emitted in 

all directions. 

Therefore, reflector 

are required to direct 

the light 

• light intensity 

decreases after 1 year 

Gro-Lux 56.87 3.603 • % of total 

light intensity 

on 600-700 

nm is higher 

than the 

Fluorescent 

• Similar to Fluorescent 

Lamp 

Incandescent 4.28 5.085 - • Only 2.8% of the 

photons emitted by 

this by this light 

source are usable 

Halogen 3.60 0.785 - • Produce less photons 

• Hot and inefficient 

LED 87.59-

98.38 

 (14.229-

41.641) 

• Provide peak 

wavelength, 

• Cost effective 

• High 

Luminous 

efficiency 

• Long life span  

• Light intensity 

can be varied 

easily by 

varying the 

power 

• Initial expenses is 

high 

Plexiglas - 310-625 

lux 

• Increases the 

light 

transmission 

efficiency 

• High capital cost, 

harvesting cost is high 
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The study found that light guides with finished and polished surfaces transmitted (625 

lux) more light then light guides with the least finished/buffed surface (Kommareddy and 

Anderson, 2003a). Table 9 shows a summary of light sources, their intensity, advantages, 

and disadvantages as light sources in a PBR application. 

2.5. Harvesting 

Harvesting of microalgae means concentrating microalgae from the diluted algae growth 

medium. It is an important part associated with the cost of biofuel production from 

microalgae. Studies have found that harvesting process of microalgae accounts 20-30% 

of the total cost of converting it into biofuel (Grima et al., 2003). Harvesting of 

microalgae cells depends upon its size, density and the value of the target products 

(Brennan and Owende, 2010).  

2.6. Types of Harvesting Technologies 

2.6.1. Filtration 

 Filtration is a method suitable for large size microalgae. Filtration process has been 

found successful in the recovery of large algae cells. Filtration involves running the 

medium with algae through filters on which the algae will accumulate and allow the 

medium to pass through the filter (Figure 13). The medium is continuously run through 

the micro-filters until the filter collects a thick algae paste. Low-cost filtration is often 

used to harvest filamentous algae (Christenson and Sims, 2011).  
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Figure 13. Microalgae harvesting using filtration technique. 

Vacuum filtration is usually employed for large particle size. To obtain the higher 

recovery for small size microalgae ultra-filtration is  preferred (Pragya et al., 2013).  

Membrane filtration is simple and reliable, but its not very effective for dilute 

concentration. This method is suitable for small systems and works efficiently if the 

culture is preconditioned to 3-4% biomass on mass basis (Becker, 1994). 

2.6.2. Flocculation 

Since algae are in suspension, the algae should be flocculated or screened first. 

Flocculation is the process of solute aggregation resulting from joining of solutes present 

in algae growth medium. Even though this method is quite expensive, it has been 

considered as one of the low-cost methods for harvesting microalgae (Benemann and 

Oswald, 1996). Different types of flocculation are explained as below- 

2.6.2.1. Auto flocculation 

It is the natural process of flocculation and generally, carried out in the lab.  Auto 

flocculation is slow and unreliable, and cannot be applied to all microalgae species 
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(Milledge and Heaven, 2013). To auto flocculate the CO2 supply should cut off to stop 

mixing and minimize algae suspension. Restricting CO2 supply causes depletion of CO2 

in the PBR which increases pH making medium more basic. As a result, calcium 

hydroxide and magnesium hydroxide precipitates are used to cause setteling of the 

microalgae. Settled algae separate from the medium and the liquid is slowly removed 

from the reactors . Harvesting of cells along with flocculation is one of the successful 

harvest methods, but this method alone is not sufficient to achieve high recovery. Thus, it 

needs to combine with other  separation methods to achieve higher cell recovery.  

2.6.2.2. Chemical flocculation  

This flocculation method is often used for harvesting microalgae. It is considered as one 

of the cheapest methods but is used as pretreatment because the size of microalgae is very 

small. To flocculate and coagulate the cells, electrolytes and synthetic polymers are used. 

Aluminum and ferric cations, aluminum sulfate, and ferric chloride are often used for 

charge neutralization because of  the +3 charge (Shelef et al., 1984). When these 

chemicals react with the calcium bicarbonate present in the medium or waste water, the 

product obtained is normally hydroxides like Aluminium hydroxide and ferric hydroxide. 

These hydroxides settle through the medium separating the biomass from the liquid as 

shown in Figure 14 (Ebeling et al., 2003). Some cationic polymers have been proven 

effective like chitosan, cellulose, surfactants, cationic polyacrylamides and some artificial 

fibers (Bilanovic et al., 1988). The major disadvantage of this separation method is the 

removal of chemicals from the separated algae which makes it inefficient and expensive 

for commercial use, though it may be practical for lab use (Chen et al., 2012).  
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Figure 14. Chemical Flocculation process starting at a and compete at d. (Low and 

Toledo, 2015)  

2.6.3. Centrifugation 

Centrifugation is one of the best methods used by many researchers, manufacturers, and 

institutions. It uses centrifugal force to separate microalgae from the medium. Almost all 

types of microalgae can be separated by this method. Recovery achieved from this 

method is greater than 90% through centrifugation process, but it is dependent on the 

flow through put (Park et al., 2011). This method is one of the efficient methods but it is  

very energy intensive which makes it costly and economically infeasible at large scale 

(Rawat et al., 2011).   

A large volume of culture consumes a lot of time, and its exposure to high gravitational 

and shear force can damage the algae cell (Chen et al., 2011). The centrifugal force 

causes relatively dense materials to settle down more quickly than they would under 

normal gravitational force. Figure 15 shows the example of separation of micro algae 

through centrifugation process. 
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Figure 15. Harvesting micro algae through centrifugation process. (Dayan et al., 2010) 

2.7. Challenges in Production and Harvesting 

Despite of lot of advantages of microalgae in biofuel there are still lot of challenges 

encountered with the production and harvesting (Griffiths et al., 2011). The overall 

challenges in microalgal biomass is the economic recovery. Some of the problems 

associated with the large-scale microalgae production and harvesting are-  

• Cost of the PBR is very high, 50% of the total capital cost is from the PBR. 

• Scale-up problems due to complex design consideration. 

• Harvesting of microalgae is challenging because microalgae are very dilute. 

Normally microalgae have a solid concentration ranging from 0.5- 4 g/L and its 

size is very small ranging from 1 to 30 m. 
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3. MATERIAL AND METHODS 

3.1. Material and Energy Balance 

3.1.1. Material Balance 

A material balance was performed to estimate the amount of nutrient required to produce 

1000 g of algal biomass. Anabena with elemental composition of C44.6H7O25N7.68P0.9S0.3 

was used for estimating the nutrients required for its cultivation and biomass production 

(Krivtsov et al., 1999).  Anabena was grown in BG11 media and therefore, elemental 

compounds of BG11 media (the major nutrients in the compounds are NaNO3, K2HPO4, 

and MgSO4) was used to develop the stoichiometric equation to balance the elements of 

Anabena biomass and is represented by the photosynthetic reaction presented in equation 

(2).  

44.6CO2 + 7.68NaNO3 + 0.9K2HPO4 + 0.3MgSO4 + 8.09H2O  

C44.6H7O25N7.68P0.9S0.3 + 7.68NaOH + 0.3 Mg (OH)2 + 1.8KOH + 44.025O2 (2) 

The total atomic weight of biomass composition was calculated by summing up the 

atomic weight of individual elements of the biomass. Atomic weight of each individual 

element was calculated by multiplying the atomic mass of the individual element with the 

number of moles present in the biomass composition.  A similar procedure was adopted 

to compute the total atomic weight of BG11 compounds. With the help of the atomic 

weight of biomass and BG11 compounds, the amount of N, P, S, and CO2 required to 

produce 1 g of biomass were calculated using simple unitary methods.  
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3.1.2. Energy Balance 

To compute the energy of a photon equation (1) was used. Considering 10 photons are 

required to fix 1 carbon atom, total carbon atoms per mole of biomass was calculated. 

Therefore, the amount of energy to fix a carbon atom in 1 mole (C44.6H7O25N7.68P0.9S0.3) 

of biomass was found by multiplying the total number of carbon atoms in a mole of 

biomass by the energy of a photon. 

Standard molar enthalpies for BG11 compounds and biomass composition were obtained 

from different literatures and are presented in Table 10 (Luff and Reed, 1978; Silberberg, 

2007). 

Table 10. Standard Molar enthalpies of formation of different compounds. 

Compounds/elements Standard Enthalpies (KJ/mol) Remarks 

O2 0 (Luff and Reed, 1978; 

Silberberg, 2007) CO2 -393.5 KJ/mol 

H2O -241.8 KJ/mol 

NaNO3 -446.2 KJ/mol 

K2HPO4 -376.1 KJ/mol 

MgSO4 -1278.2 KJ/mol 

NaOH -469.6 KJ/mol 

Mg(OH)2 -924.7 KJ/mol 

KOH -424.76 KJ/mol 

Biomass -22.5KJ/g for Nannochloropsis 

sp 

(Vree et al., 2015) 

 Standard enthalpies for each BG11 compounds and elements of Anabena were 

multiplied with their corresponding mole number to obtain the enthalpies of reactants and 

products as presented in Table 10. Finally, the change in enthalpy of reaction was 

computed by subtracting the sum of all enthalpies of reactants from the sum of all 

enthalpies of products as given by equation (3).  
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∆𝐻 = ∑ 𝐻𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠   − ∑ 𝐻𝑟𝑒𝑐𝑡𝑎𝑛𝑡𝑠   
(3) 

Where, ∆H is change in enthalpy of reaction at constant pressure, Hproducts is enthalpy of 

formation of products and, Hrectants is the enthalpy of formation of the reactants. 

3.2. Light Analysis 

Light data from previous lab work was used to see the effect of flowrate and path length 

(depth of photobioreactor) on light intensities. The experiment was performed at lab scale 

using a flat plate PBR made up of acrylic sheets. The sparger was placed at the bottom of 

the PBR and illumination was red LED light at 656 nm. Illumination was done on one 

side of the PBR while light intensity was measured on the other side of the PBR. Light 

intensities were measured under three diferent conditions. The first one was at different 

path lengths which were 101mm (4”), 152mm (6”), 203mm (8”), 254mm (10”), and 

305mm (12”), the second one was at different air flow rates ranging from 1 to 10 LPM, 

and the third one was at different biomass concentration ranging from 0 kg/m3 to 1 kg/m3 

with an interval of 0.1 kg/m3 (Rajendran, 2016). A randomized block design test was 

performed to compare means of five different treatments (path lengths). The null 

hypothesis for the t-test assumed that all means are equal and is given by equation (4) and 

the alternative hypothesis assumed that at least one mean is different and is given by the 

equation (5). 

𝜇0  = µ𝑝𝑎𝑡ℎ𝑙𝑒𝑛𝑔ℎ 102𝑚𝑚 = µ𝑝𝑎𝑡ℎ𝑙𝑒𝑛𝑔ℎ 152𝑚𝑚 = µ𝑝𝑎𝑡ℎ𝑙𝑒𝑛𝑔ℎ 203𝑚𝑚 

= µ𝑝𝑎𝑡ℎ𝑙𝑒𝑛𝑔ℎ 254𝑚𝑚 = µ𝑝𝑎𝑡ℎ𝑙𝑒𝑛𝑔ℎ 305𝑚𝑚  

(4) 
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𝜇𝑏  = 𝑎𝑡𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 (5) 

Tukey Honest Significance Difference (HSD) test was performed to check which specific 

groups of path lengths and which specific groups of flow rates were significantly 

different from each other.  This test is generally performed when the randomized block 

design test and ANOVA test shows the significant result. To compute the test, HSD is 

calculated using the equation (6) 

𝐻𝑆𝐷 =
𝑀𝑖−𝑀𝑗

√
𝑀𝑆𝑤

𝑛ℎ

 

(6) 

Where, 

Mi-Mj=means difference between two groups 

MSw=Mean square within the groups 

n= number of group in a treatment 

Similarly, regression analysis was used to verify the relationship between the dependent 

variable (light intensity) and independent variables (flow rate and path length). The 

analysis was performed at 95% confidence level (α = 0.05). The light data used in this 

research is presented in Table 11. 
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Table 11. Light Intensities at different path length and flow rate (Rajendran, 2016) 

Light Intensity (μmol m-2 s-1) 

Flow rate 

(liters/min) 

  

Depth of Photobioreactor (path length) 

102mm 152mm 203mm 254mm 305mm 

(4") (6") (8") (10") (12") 

0 89.53 78.56 66.97 62.66 58.66 

1 83.23 77.18 63.3 53.13 52.38 

2 75.52 72.67 59.63 52.4 48.74 

3 72 70.07 58.01 51.21 47.6 

4 68.44 67.49 57.65 50.14 46.68 

5 67.03 64.46 53.52 49.19 45.81 

6 61.24 62.37 55.13 49.16 40.95 

7 64.13 60.33 53.88 48.73 42 

8 60.1 57.64 50.83 48.87 40.95 

9 60.23 56.02 51.69 48.11 39.28 

10 56.62 54.24 50.34 48.99 39.58 

 

3.3. Sparger Design 

Sparger design was carried out using an analysis software named as “SPARGER”, which 

was developed on a Java platform. The software simulates three different models, named 

as Static regain, Acrivos, and Pressure drop method. The input parameters for the 

simulation are input air flow rate, input air pressure, height of liquid, sparger diameter, 

hole diameter, hole discharge coefficient, length of sparger, and number of rows of holes. 

This software can simulate the data in SI and English Units. The value of input 

parameters used for designing the sparger are listed in Table 12.  
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Table 12. Inputs for the sparger simulation 

Input variables Inputs 

Diameter of Sparger (cm)  1.27 

Discharge (m3/sec) 0.000197 

Pressure (Pa) 7985 

Length of pipe (cm) 121.92 

Discharge coefficient 0.625 

Diameter of hole (mm) 0.08 

Type of liquid water 

Simulation model Acrivos 

 

The output obtained from the analysis includes number of holes, pitch distance, 

percentage of gas remaining at the last hole, ENU, and a check for weeping. Apart from 

this, it also provides graphs of hole gas flow rate, and sparger gas flow rate. Also, the 

tabulated results are the number of holes and the respective hole velocities, gas hole flow 

rate, sparger velocity, sparger flow, sparger velocity pressures, static pressures, and total 

pressures.  

The major parameters calculated employed by the software for simulation include critical 

velocity, ENU number estimation, and % of air remaining. ENU is the indication of all 

the air leaving the sparger along its length and tries to keep the same air flow rate through 

all the holes in the sparger  

 Critical velocity can be calculated using equation (7). If the orifice velocity is greater 

than the critical velocity then the sparger is not weeping. 

𝑉𝑐 = √1.1 ∗ 0.44(
𝑙

− 
𝐺 

) ∗ 𝑑𝑜𝑔 ∗ ( 
𝐿

𝑑𝑜
)−0.12 ∗ ( 

𝑥

𝑑𝑜
)−0.145 ∗ ( 

𝐻𝑙

𝑑𝑜
)−0.67 

(7) 
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Where, VC is the critical velocity (m/s), L is density of the liquid (kg/m3), g is density of 

the gas (kg/m3), do is the diameter of sparger , L is the length of sparger (m), ∆x is the 

pitch length (mm), g is the acceleration due to gravity (m/s2)and, Hl is the height of the 

liquid (m). 

Similarly, ENU was calculated using equation (8)  

𝐸𝑁𝑈 = ( 
𝐿𝑎𝑠𝑡 ℎ𝑜𝑙𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 − 𝐹𝑖𝑟𝑠𝑡 ℎ𝑜𝑙𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝐹𝑖𝑟𝑠𝑡 ℎ𝑜𝑙𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
)∗    100 

(8) 

Finally, the percentage of air remaining in the last hole is calculated using equation (9) 

% 𝐴𝑖𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 =
gas flow in the tube after the last holes 

input gas flow in the tube
∗ 100 

(9) 

3.4. Bubble study 

The designed sparger was used to test the flow patterns of the bubbles sparged into the 160 

L PBR. PVC pipe of 0.5-inch (1.27 cm) diameter and 48- inch (121.92 cm) length had 

drilled with 30 holes drilled into it using hole driller with a hole diameter of 1/32 (0.079 

cm) inch at a spacing of 1.59- inch (4.039 cm). A rectangular flat plate PBR of 0.325-inch 

(0.826) thick acrylic sheet was used to construct the PBR tank with dimensions of 50- inch 

(127 cm) in length, 6-inch (15.24 cm) in width, and 40- inch (101.60 cm) in height. A 

sparger was fixed at the bottom of the PBR to allow upward flow of gas through the PBR. 

An air flow meter was placed just before the sparger to check the flowrate of air. To create 

the bubbling effect, air was introduced through the sparger with flowrates of 10, 20, 30 and 

40 LPM. The performance of sparger was tested under two different conditions. The first 

tests were varying water levels in the PBR and adjusting the height over the range of 5, 
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10,15, 20, 25 and 30-inch. The second one was the number of sparger tubes 1, 2, 3, and 4 

in the PBR.  

3.5. Cyanobacteria Cultivation 

Cyanobacteria culture was prepared from 5 ml of Anabena 7120 species sample obtained 

from the Microbiology Department at SDSU. Before transferring it to any media, the 

strain was checked under the microscope to check for any contamination in the culture. 

This was performed by grabbing 1μl of sample from the collected culture and placing it 

on a microscope glass slide. The sample on the glass slide was cautiously covered with 

cover slip avoiding any trapping air and/or dust particles before placing it under the 

microscope. A compound microscope with an objective lens of 40X was used to capture 

the image. Infinity Analyzer software was used to capture the image of the cultivated 

strain in the computer directly from microscope, Figure 16.  

                            

Figure 16. Anabaena 7120 strain capture through 40X optical lens before transferring it to 

1L media (left) and after 1 week (right) 

After testing for any contamination, the culture was transferred to 1L of BG11 media 

prepared in a 2L glass bottles. BG 11 media was prepared in the lab using the 

compositions presented in Table 13. 
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Table 13. Composition of BG 11 media (Stanier et al., 1971) 

Chemicals Amount per liter Trace metal mix 

Chemicals Amount per liter 

NaNO3 1.5g H3BO3 2.86g 

K2HPO4 0.04g MnCl2·4H2O 1.81g 

MgSO4·7H2O 0.075g ZnSO4·7H2O 0.222g 

CaCl2·2H2O 0.036g NaMoO4·2H2O 0.39g 

Citric acid 0.006 CuSO4·5H2O 0.079g 

Ferric ammonium citrate 0.006 Co(NO3)2·6H2O 49.4mg 

EDTA 0.001 Distilled water 1L 

Na2CO3 0.02   

Trace Metal mix 1 ml   

Distilled water 1L   

 

To prepare BG11 media, purified water was used to avoid any contamination in the 

media. Water purification was done using Thermo scientific Barnstead EASYpure RoDi 

ultrapure water purification system. Further, the prepared media was sterilized by placing 

it into autoclave for 20 minutes at 121°C. The sterilized media was then cooled to room 

temperature before the culture was added. Gas was supplied to the culture container to 

keep micro-alage in suspension using an electrical air pump connected to a small glass 

rod. Fluorescent light was used for illumination at 43 watts to meet the light demand of 

cyanobacteria. The lab cultivation of anabenea in 2L glass bottle is presented in Figure 

17. 
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Figure 17. Anabeana 7120 grown in 2L glass bottle. 

3.5.1. PBR setup for the growth of Anabaena 

The materials and dimensions of the PBR and sparger were the same that were used to 

study the bubble flow patterns. Figure 18 shows the set up of a flat plate PBR system in 

the laboratory filled with 132L BG11 media. The cyanobacteria grown in 1L BG11 

media was then transferred to the PBR. Four spargers were used to supply the gas 

mixture at the bottom of the PBR parallel to the length of PBR. Flowmeters for air and 

CO2 gas was placed before the plenum. The flowmeters were used to regulate the flow of 

air and CO2 into the PBR. The gas mixture coming out of the flowmeters was delivered 

to the plenum and is supplied to the sparger that was connected to it by a 0.25-inch (0.635 

cm) tube. The purpose of the  plenum was to distribute the gas mixture supply evenly to 

all four spargers. The air flow rate and CO2 flow rate was adjusted based on the pH of the 

media.  
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Figure 18. Anabena 7120 growing in 132 L Flat plate PBR. 

3.5.1.1. Instrumentation 

Physical parameters such as pH, ORP, DO and temperature were monitored during the 

experiment. The instrument probes which were connected to a transmitter were placed 

inside the PBR media. Eutech Instruments αlpha pH 500 two-wire transmitter was used 

to measure pH and ORP (mV) whereas αlpha DO 500 two-wire transmitter was used to 

measure DO (mg/L) and temperature (0C).  Eutech Instruments 971944 Galvanic DO 

probe, 0 to 20 ppm, with a 10ft (3.048 m) cable was used for monitoring the DO and a 

Cole Parmer flat surface ORP and pH electrodes were used to monitor ORP and pH 

respectively (Figure 19). A program written in National Instrument Lab view 8.5 

software was used to acquire the data from the transmitters and record the data.  

pH, ORP, DO and 

temperature cables 

Sparger 

Led Light 

Plenum 

Flat plate PBR 
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Figure 19. Transmitter used for DO 

This software acquired readings every second from the transmitters. However, the daily 

average was determined for the analysis. Daily average value was used in the analysis 

because biomass concentration was not recorded every second and the sample number of 

biomass versus the physical parameters will be different while performing the statistical 

analysis. 

3.5.1.2. Biomass measurement 

The experiment was run for 22 days and the biomass measurement was recorded every 12 

hours. A volumetric pipette was used to withdraw 100 ml sample from the growing 

media. Then the average biomass on a daily basis was calculated to compare the values 

with the 13L reactor.  Cyanobacteria biomass was then separated from the sample using 

vacuum filtration equipment. The concentrated biomass was collected using Whatman 

filter paper (number 4) with a diameter of 40mm and the pore size of 20-25µm. In every 

sample, the biomass collected on the filter paper was weighed using a Thermo scientific 4 

digit weighing balance to record initial weight and then placed in hot air oven at 70 to 

80°C for 10 hours to dry the biomass.  The oven dried biomass was again weigh after 10 

hours and the final weight was recorded. Figure 20 shows the oven dried biomass 
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samples ready for taking final weight. The weight of the biomass was calculated using 

equation (10). 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (
𝑔

𝐿
)

=
Final weight (g) − Initial weight (g)  

100 (ml) ∗ 1 (𝐿)
∗ 1000 (𝐿) 

(10) 

            

Figure 20. Biomass concentration ready to take the final reading. 

3.5.1.3. Light setting 

Red LED light having a wavelength of 650 nm was was used for illuminating the PBR. 

One light panel consists of a 24 x 36 LED matrix. Four sets of light panels were provided 

to meet the light requirement of the system. On each side of the PBR, two sets of light 

panels were providede in which each set were connected in parallel (Figure 21). A total 

of four control units were installed to supply power to the light panels from a power 

supply with a constant voltage of 13V and constant current of 30A. 
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Figure 21. Red LED light set up 

3.6. Result Analysis 

3.6.1. Regression analysis 

Regression analysis was performed using R programming to model the relationship 

between the dependent variable (biomass) and independent variables (pH, DO, ORP, and 

temperature). Also, regression analysis was performed for the dependent variable 

(biomass) and independent variables (CO2 flow rate and air flow rate). In order to check 

at the larger margin of error and therefore, statistical significance was tested at 95% 

confidence interval.  This means that there is a 95% probability that the confidence 

interval will cover the true population mean. The multiple linear regression equation is 

represented as in equation (11) (Tranmer and Elliot, 2008). 

𝑌 = 𝛽0 + 𝛽1 𝑋1𝑖 + 𝛽2 𝑋2𝑖 … … … . . +𝛽𝑝 𝑋𝑝𝑖  (11) 

Where, Y= Dependent variable; β0= Slope; β1 to βp are the coefficients with respect to the 

dependent variables X1 to Xp. 
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3.6.2. Student’s t-test 

Student t-test was performed using Microsoft excel to check the difference between mean 

biomass production in 13L and 132L bioreactor. Since, the number of samples of 

observation in two experiments were different, two-sample t-test for unequal variance 

was used (Ruxton, 2006). For two sets of observation with mean μ1 and μ2, variances s1
2 

and s2
2 and sample sizes N1 and N2, the t-statistic of unpaired student’s t-test is computed 

using equation (12): 

𝑡 =
𝜇1 − 𝜇2

𝑠𝑝
2√(

1
𝑛1

+
1

𝑛2
)

 (12) 

Where, sp
2 is the pool variance and is calculated using equation (13). 

𝑠𝑝
2 =

(𝑛1 − 1)𝑠1
2 + (𝑛2 − 1)𝑠2

2

𝑛1 + 𝑛2 − 2
 

(13) 

For student’s t-test the degree of freedom is calculated using equation (14) (Moser and 

Stevens, 1992). 

𝑣 =
(

1
𝑛1

−
𝑢
𝑛2

)
2

1
𝑛2

2(𝑛1 − 1)
+

𝑢
𝑛2

2(𝑛2 − 1)

 

(14) 

𝑢 =
𝑠1

2

𝑠2
2 

(15) 
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4. RESULTS AND DISCUSSIONS 

4.1. Mass Balance and Energy Balance 

4.1.1. Mass Balance 

Mass balance is an important step in algal biomass production in a controlled 

environment. It was performed to estimate amount of nutrient consumption by the 

cyanobacteria for its growth and biomass production. The mass balance follows the 

simple approach of balancing chemical equations and calculating atomic weight of each 

reactant and product.  The atomic weight of one mole of microalgae with molecular 

formula C44.6H7O25N7.68P0.9S0.3 was calculated as 1087.617 g and the atomic weight of 

BG11 media prepared using compounds NaNO3, K2HPO4, and MgSO4 were calculated as 

652.759 g, 156.758 g, and 36.110 respectively (Krivtsov et al., 1999). The detail 

calculation of atomic weight of each compound and nutrient required to produce 1 gm of 

algal biomass is presented in Appendix 1 and Appendix 2. From the atomic weight of 

each compound, the quantity of nutrients required to produce 1 gram of biomass were 

calculated.  

Table 14. Amount of nutrient required to produce 1g of biomass 

Nutrients Amount required to produce 1g of biomass 

(g) 

Nitrogen 0.099 

Phosphorous 0.026 

Sulphur 0.009 

Carbon 0.493 

Magnesium 0.007 

Sodium 0.160 

The major nutrients required for algal biomass production are: Nitrogen (N), 

Phosphorous (P), Sulphur (S), Carbon (C), Magnesium (M), and Sodium (Na). The 
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amount of each nutrient required to produce 1g of algal biomass is presented in Table 14. 

From the calculations, it was found that the highest quantity of nutrients required to grow 

cyanobacteria (algal biomass) was Carbon followed by Sodium, Nitrogen, Phosphorous, 

and Sulphur. 

4.1.2. Energy Balance 

An energy balance was performed to determine the net energy required for the production 

of biomass under controlled environment conditions. The detail calculations of the energy 

balance are presented in Appendix 3. The energy required to fix the carbon atoms in 1 

mole of biomass was found to be 78,584,302 J. Energy consumed or released by the 

reactants and products as presented by the chemical equation 1 in the Materials and 

Method section was calculated to determine the net energy difference of the system. To 

compute energy of the reactants or product, standard molar enthalpies of each compound 

was determined and is presented in Appendix 3. The standard molar enthalpies of each 

compound were then multiplied with their respective mole numbers to determine the 

enthalpy of reactants and products. The net enthalpy of the reactants was found to be -

23246.96 KJ and for the product it was found to be -27047.684 KJ. The net energy loss of 

the system was calculated by subtracting net enthalpy of reactants from net enthalpy of 

product which was found to be -3800.724 KJ. Since, the sum of the enthalpies of 

reactants is greater than sum of the enthalpies of the products, the net energy loss of the 

reaction is less than zero. This negative energy loss indicates that the reaction is 

exothermic and total of 3961.25 KJ of energy released to the surroundings.  
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4.2. Light Analysis 

Light plays an important role in microalgae growth and biomass production and 

therefore, light analysis was performed using data from a previous study. A randomized 

block design test was performed to determine the significance of path length and flow 

rate on light intensity. The path length was considered as treatment and flow rate was 

considered as block. A total five treatments and 10 blocks were analyzed. The null 

hypothesis for the t-test assumed that all means are equal and the alternative hypothesis 

assumed that at least one mean is different. The F-statistics of the analysis was found 

104.8 which was greater than tabulated F value of 2.59356 which indicates that the null 

hypothesis should be rejected. Thus, this result suggests that path length has a significant 

effect on light intensity.  The summary of randomized block design test result is 

presented in Table 15 and detail analysis is present in Appendix 4. 

Table 15. Output of randomized block design test 

Source of variation 
Degree of 

Freedom 

Sum of 

Squares 

Mean 

squares 
F-Value 

Treatments 4 3567.40 891.85 104.8 

Blocks 9 1190.32 132.26  

Error 36 291.35 8.09  

Total 49    

 

Since, we reject the null hypothesis, Tukey-HSD multiple comparison analysis was 

performed to determine statistical difference between the treatments. The overall output 

of the Tukey’s test is presented in Appendix 5. Table 16 presents the groups of the 

treatment. Letter a,b,c and d represents the different groups. It was found that the mean of 

light intensities at path length 102 mm and 152 mm had same group and therefore, the 

mean light intensity of both pathlengths are equal. While mean of light intensities for 
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path length of 203 mm, 254 mm and 305 mm had different groups and therefore, the 

mean light intensities are significantly different from each other. Thus, this indicates that 

the pathlengths 102 mm and 152 mm had similar effect on light intensity whereas effect 

of pathlengths 203 mm, 254 mm, and 305 mm on light intensity differ from each other. 

Table 16. Groups of different path length 

Pathlength (mm) Light Intensity Groups 

102 66.854 a 

152 64.247 a 

203 55.398 b 

254 49.993 c 

305 44.397 d 

 

Table 17. Groups of different flow rate 

Flow rate (LPM) Light Intensity Groups 

1 65.844 a 

2 61.792 ab 

3 59.778 abc 

4 58.080 bc 

5 56.002 bcd 

6 53.814 cd 

7 53.770 cd 

8 51.678 d 

9 51.066 d 

10 49.954 d 

 

Similarly, the Tukey HSD for flow rate was also performed and the summary of output is 

presented in Table 17. The calculation details and outputs are presented in  Appendix 6. 

Result showed that there is no significant difference in the mean of the light intensity for 

flow rate 1, 2, and 3 and therefore, they are categorized as group “a”. Likewise, the mean 
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light intensity for flow rate 2, 3, 4, and 5 are same and are categorized as group “b”; flow 

rate 3,4,5, 6, and 7 are same and categorized as group “c”; and flow rate 5,6,7,8,9, and 10 

are same and categorized as group ‘d”. This indicated that the flow rates in each group 

had similar effect on light intensity. 

Also, linear regression analysis was performed to fit a model for light intensity, flow rate, 

and path length. For this analysis, light intensity was considered as the dependent 

variable whereas flow rate and path length were considered as the independent variables. 

Summary of model is presented in Appendix 7. The fitting model obtained is given in 

equation (16): 

𝐿𝑖𝑔ℎ𝑡 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

= 98.401 − 0.613 ∗ 𝑃𝑎𝑡ℎ𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑚) − 3.374 ∗ 𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒

+ 0.008 ∗ (𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 ∗ 𝑃𝑎𝑡ℎ𝑙𝑒𝑛𝑔𝑡ℎ) 

(16) 

The multiple R2 of the above model was found to be 0.949 indicating a good fit of the 

residuals around the regression line.  Also, p-value at 95% confidence level for path 

length, flow rate, and the interaction was found to be <2E-16,1.39E-12, and 4.69E-06 

respectively, suggesting that path length, flow rate, and its interaction have a significant 

effect on light intensity. The residual plot for path length and flow rate is shown in Figure 

22. 
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Figure 22. Path length residual plot and flowrate residual plot 

In normal Q-Q plot, the residuals are closer to the fitted regression line indicating fitted 

values closer to the observed values and in the residuals versus fitted plot, the majority of 

the residuals are around the mean line. This result suggests that the relationship between 

the independent variables (flow rate and path length) and the dependent variable (light 

intensity) is linear. 

4.3. Sparger Design 

The diameter of the sparger used for the reactor with cross-sectional area 300 inch2 (0.19 

m2) was found to be ½ inch (1.27 cm) using SPARGER software. The total gas discharge 

into the PBR by a sparger with a diameter of 1.27 cm was found to be 11.81 LPM 

(0.000197 m3/sec), consisting of 5% CO2 and 95% air mixture. Thus, the superficial gas 

velocity was found to be 0.0010 m/sec by dividing total gas discharge with cross 

sectional area of the reactor (Falinski, 2009). The velocity of the gas mixture before the 

first hole was determined as 1.56 m/sec and the Reynolds number was found to be 

1960.342 indicating gas flow is laminar flow in the sparger. The type of gaseous flow in 

the reactor system is an important part of designing sparger. It is desired to have laminar 
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flow. In laminar flow, gas mixture moves with the same speed in same direction with 

minimum or no cross-over of gas streams. This allows minimum or no damage of algae 

cells resulting better growth of algae and high biomass production compared to high 

turbulence flow. Sparger causing high turbulence flow in the reactor may damage algae 

cells and reduces biomass production  (Xiao et al., 2016). The hydraulic diameter of the 

rectangular PBR was found to be 0.85 ft (0.26 m) using equation developed by 

Kommareddy et al. (2013). 

The values of superficial gas velocity (0.0010 m/sec) and hydraulic diameter (0.26 m) 

indicate that the flow falls into the homogenous bubble flow regime as suggest in the 

column diameter versus gas velocity plot (Figure 9). This result suggests that the 

designed sparger provides homogenous and uniform mixing of gases in the reactor.  

The total number of holes in the sparger was calculated to be 30 at a hole spacing of 40.4 

mm. Also, the software simulation result showed no weep condition for the designed 

sparger which means that the gas flow velocity in the sparger will be above the critical 

weep velocity. Weep condition in the sparger is not desired as it may cause flow of media 

into the sparger resulting poor bubble formation and irregular gas mixing in the system.  

The gas velocity profile that was obtained from the software is plotted in Figure 23. Hole 

velocity profile of a sparger. It was found that the hole velocities (exit velocities) were 

slightly declining from 21.44 m/sec to 20.5 m/sec along the length of sparger. 
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Figure 23. Hole velocity profile of a sparger 

 

Figure 24. Pressure profile distribution along the length of sparger 

The ENU was found to be 4.29% which means that 95.71% of the pressure was 

distributed uniformly along the length of the sparger. The pressure distribution profile 

plot is shown in Figure 24 and indicate that there is a slow decline along the length of the 

sparger from 7984.79 Pa to 7982.40 Pa. Increase in ENU impacts the pressure drop and 

10

12

14

16

18

20

22

24

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

H
o
le

 v
el

o
ci

ty
 (

m
/s

ec
)

Hole number 

Hole velocity profile for 1.27 cm diameter sparger

7900

7925

7950

7975

8000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

T
o
ta

l 
P

re
ss

u
re

 (
P

a)

Hole number 

Total Pressure profile distribution for 1.27 cm sparger



65 

 

 

 

reduces the interfacial area (Kulkarni et al., 2007). The pressure distribution variation 

along the length of the sparger may lead to non-uniform mixing of gases in the PBR. This 

causes formation of dead zones (zones of low mixing) in the PBR due to inadequate gas 

mixing in the PBR.  The formation of dead zones in the reactor indicates poor bubble 

distribution and mixing by the sparger. Therefore, it is important to check the uniformity 

of the pressure distribution of the designed sparger to avoid dead zone formation. 

The Sparger software also simulated the percentage of air/gas remaining after the last 

hole in the sparger. It is very important that the designed sparger should equally distribute 

all the air/gas supplied to the sparger through each sparger hole and the percentage of 

air/gas remaining after the last hole should be equal to zero. The percentage of air/gas 

remaining after the last hole in the designed sparger was found to be nearly zero (0.68%). 

This result indicates that the mass balance for the sparger was achieved. The plot of hole 

air profile along the length of the sparger is shown in Figure 25. The sum of all the orifice 

air flow rates in the sparger resulted in total sparger discharge of 0.000196 m3/s which 

was found almost equal to the total air flow rate of 0.000197 m3/sec supplied to the 

sparger. The duct air flow along the length of the sparger was also calculated by the 

software and the plot is shown in Figure 26. The simulation result shows air flow rate in 

duct decreases linearly. This is due to decrease in air pressure in the duct along the length 

of the sparger. Since, the frictional loss increases along the length of the sparger, it causes 

decrease in air pressure which ultimately decreases flowrate in the ducts of the sparger. 
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Figure 25. Hole air flow profile along the sparger 

 

Figure 26. Duct air flow along the sparger 

The bubble size distribution along the length of the sparger was also calculated. The 

average bubble diameter was found to be 3.94 mm to 3.92 mm along the length of the 

sparger. The mean of the bubbles diameter was found to be 3.93 mm with a very 

small deviation of 0.0027. Also, coefficient of variance was found to be 0.07% which 
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indicates that there is less variance in the mean of the bubbles diameter. The 

calculated value of bubble diameter showed homogenous flow in the reactor. The size 

of the bubbles plays an important role in the gas mixing and algae growth in the 

reactor. Small bubbles tend to block the light. Small bubbles have a greater surface 

area to volume ratio. Therefore, mass transfer coefficient (Kla) is higher. The large 

bubbles rise up very quickly and break faster when compared to small bubbles which 

leads to improper mixing of nutrients in the PBR and algae cell damage. The bubble 

size distribution from the holes of the sparger is plotted in Figure 27.  

 

Figure 27. Estimated bubbles diameter along the hole of the sparger 

4.4. Study of flow patterns 

The analysis of air/gas flow patterns was performed to determine the uniformity of the 

bubble distribution and proper mixing of the supplied air/gas mixer in the media. This 

analysis was based on three different factors; number of sparger pipes, air/gas flow rate, 
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and depth of water in the reactor. Effect of each factor on the flow patterns are explained 

next:  

4.4.1. Based on the different number of pipes 

  

1 Sparger 2 Spargers 

  

3 Spargers  4 Spargers 

Figure 28. Flow patterns for 10 LPM (0.000167 m3/sec) at 30-inch (76.2 cm) water 

height for 1 to 4 spargers. 

Figure 28 shows the flow pattern of the bubbles with 1, 2, 3, and 4 sparger pipes under a 

constant flow rate and water height. The reactor was first tested with single sparger pipe 

in the reactor. The mixing in the reactor was observed to be non-uniform with large 

bubbles. This suggested that the single sparger is not sufficient to provide uniform mixing 

and bubble distribution for the given reactor size. The sparger number was then increased 

to two and observation were made. The mixing and bubble formation was observed 

improved with 2 spargers compared to single sparger. However, this was also observed 
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insufficient for adequate mixing and bubble distribution. Also, the mixing was more on 

the middle of the PBR than on the end. Likewise, the number of spargers increased to 3 

and 4. With 3 spargers, the mixing and bubble distribution was observed much better 

compared to single and double sparger systems. It was observed that the mixing was 

found from the end to the middle. The mixing was observed to be much improved when 

the reactor was run with 4 spargers. The size of bubbles observed was smaller and better 

distribution in the reactor. This analysis suggests that more spargers results in better 

bubble formation and mixing in the PBR. The gas coming out from the less number of 

sparger may not be sufficient to mix all the nutrients within the medium. Less number of 

sparger means the less number of bubbles and with the less number of bubbles all the 

medium in the PBR cannot be in suspension. 

4.4.2. Based on different flow rate 

Figure 29 shows the flow pattern of the bubbles for air flow rate of 10 LPM, 20 LPM, 30 

LPM, and 40 LPM in the reactor with 4 number of spargers and 30-inch of water height. 

At the lowest flow rate of 10 LPM, bubble distribution was found to be uniform from all 

the orifices of the sparger. Also, the mixing of air was observed uniform and the flow 

pattern was found similar to that of a bubble column PBR. At 20 LPM the mixing was 

found to be more at the center which leads to poor mixing on the end side of the PBR. At 

higher flow rate, the mixing was observed uneven and flow pattern resembled to 

turbulent flow. Also, increasing the flow rate showed cluster formation of air bubbles in 

the middle of PBR causing circular movement of air bubbles. The increase in flow rate 

will increase in superficial gas velocity and this will result the bubbles diameter to be 

larger (Kaidi et al., 2012). This characteristic of air flow pattern under high flow rate was 
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observed similar to that of an airlift photobioreactor without any riser wall. However, the 

volume of the down comers seems to be not sufficient to mix the gas into the water at the 

bottom end and this may lead to poor mixing on that area. Thus, the results suggested 

optimum flow rate of 10 LPM for better bubble distribution and homogenous mixture of 

air for the reactor with water height 30-inch and 4 spargers.    

  

10 LPM (0.000167 m3/sec) 20 LPM (0.000333 m3/sec) 

  

30 LPM (0.0005m3/sec) 40 LPM (0.00067 m3/sec) 

Figure 29. Flow patterns for 4 number of spargers at 30-inch (76.2 cm) water height for 

10, 20, 30, 40 LPM 

4.4.3. Based on different height 

Figure 30 shows the flow pattern of the bubbles in the PBR with water levels of 15-inch, 

20-inch, 25-inch, and 30-inch under constant flow rate of 10 LPM, and 4 spargers. When 

the water height in the PBR was 15-inches, the bubbles were observed to be bigger in 

diameter but the distribution of bubbles were uniform in the reactor. The bubbles were 
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observed moving upward exhibiting similar pattern like in bubble column PBR with only 

one riser. Increasing water height above 20-inches resulted in smaller bubble formation 

with uniform distribution of the bubbles and air mixing in the reactor. 

  

15-inch (38.1 cm) water height 20-inch (50.8 cm) water height 

  

25-inch (63.5 cm) water height 30-inch (76.2 cm) water height 

Figure 30. Flow patterns at 10 LMP (0.000167 m3/sec), 4 spargers, and water height of 

15, 20,25, and 30-inch 

This analysis suggests that with the change in the depth of the water there is change in the 

flow patterns. With the increase in the height (30-inch) the flow pattern at the end of the 

sparger was different than the middle of the PBR. The bubbles flow vertically upward in 

the middle of the PBR whereas at the end of the spargers the bubbles flow exhibits the 

similar behavior to that of the air lift reactor with riser and down comer. It may have 

occurred because with the reduced in depth of water there may be little air flow along the 

length of the sparger. 
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It was found that sparger pipes should be straight at the bottom of PBR. It was observed 

that small change or deformation in sparger pipe greatly affects the air flow regime and 

distribution uniformity. A well leveled sparger pipe allows uniform formation of bubbles 

and upward mixing in the reactor. This is mainly caused by uniform pressure distribution 

at each sparger holes (orifice) along the length of the sparger. However, if there is any 

distortion along the length of the sparger pipe, bubble formation mostly occurs though the 

holes which are at relatively flatter position and the mixing of air bubbles follows either 

spherical shape or elliptical shape. This mostly happens when the lower depth of water 

was over sparger. 

4.5. Biomass growth and physical parameters 

4.5.1. Biomass Growth 

Figure 31 shows a graph of the average biomass concentration from Day 0 to Day 16. 

The initial concentration of the algal biomass was 10 mg/L on day 0. An increasing trend 

was observed in the biomass as the number of algal cells were multiplied expeditiously. 

The algal biomass weight was measured in every 12 hours and a daily average weight 

was calculated. The lag phase was observed in the first 24 hour. It may have occurred 

because microalgae take some times to adapt the new environment condition (Rolfe et al., 

2012). From day 2 to day 3, rapid growth was observed and the biomass increased up to 

24 times the initial. 

Overall slow growth was observed from day 3 to day 11. At the end of the day 7 biomass 

again dropped to 426 mg/L and the stagnant growth was observed until day 11. Declining 

in carbon to nitrogen ration may be the reason of the stagnant growth rate (Mahapatra et 
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al., 2013). The highest biomass weight was recorded to be 928 mg/L on day 13. The 

biomass weight starts to drop rapidly after day 13 as the media in the reactor become 

insufficient to provide adequate nutrient for further algal growth. Among all the nutrients 

provided in BG11, phosphorous is the one that will be depleted soon compared to other 

nutrients by the cyanobacteria (Vijayakumar, 2015). Removing some medium from PBR 

and adding the fresh medium may help in regrowth of cyanobacteria and take the peak 

after some days (Anderson et al., 2016). 

 

Figure 31. Biomass growth rate curve for 132L PBR 

4.5.2. Physical parameters ORP, DO, pH and temperature 

Figure 32 shows the variation in the physical parameters of the growth medium during 

the experimentation period. The decrease in ORP nominally follows the cyanobacteria 

growth. This decline in the ORP suggest that consumption of the nutrients by the algal 

biomass in the reactor. When the concentration of algal biomass was less in the medium 

in the beginning, the nutrient (ions) consumption rate was also less and therefore, the 
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value of ORP was higher (327.67 mV on day 1) which means that it has higher oxidizing 

agent. When there was rapid growth of biomass in day 2 and day 3, the ORP value 

decreased. A slower decrease in ORP was found from day 3 to 11 when there was slow 

growth in biomass concentration. Similarly, the ORP was found to be decreased when the 

biomass was at peak on day 13. Now, as the algal biomass concentration started to 

decrease in the reactor on day 16, the ORP value also decreased. It was observed that the 

overall trend of ORP is decreasing in phase from the start to the end. It indicates that the 

more nutrients were consumed which causes decrease in ORP (69.76 mV) until the last 

day.  Nutrients are being consumed faster than being produced. The positive value of 

ORP indicates that the medium has oxidizing agent.  

 

Figure 32. Variation in physical parameters of the growth medium 

A small variation was observed in the DO throughout the experimentation period as there 

was continuous supply of the air to the reactor. This indicates that the there is no buildup 

of O2 from the photosynthesis O2 removal process. The temperature that was maintained 
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in the PBR during the experiment was in the range of 26.81°C and 30.91°C. The 

temperature was low for the first day then it increased from second day. This may be 

because it took 24 hours to absorb the heat from the light by the medium. After then the 

temperature of the medium was maintained almost constant throughout the 

experimentation period. The constant room temperature and continuous light supply from 

the LED panels provided the heat to the medium, thereby helping to maintain uniform 

temperature. This temperature is suitable for this species growth. 

The initial pH of the medium was recorded 7.51. For the first 24 hours when only air was 

sparged into the reactor so that the transferred culture would not get a shock from a new 

environment. After 24 hours, CO2 was supplied which lowers the pH of the medium. 

When there was a rapid growth in the biomass there was a drop in pH from day 0 to day 

3. Similarly, from day 3 to 11 there was a small variation in pH with a slower growth in 

biomass. Again, when there was rapid increase in biomass on day 11 to day 13, decrease 

in pH was observed. Finally, when the biomass was rapidly decreasing the pH was 

observed to be increased rapidly. The inverse relationship was observed between the pH 

and the ORP throughout the experiment. It is because the pH measures the hydronium ion 

present in the medium where as ORP measures the total ions present in the medium. 

Increase in ORP is due to the H+ ion from the increase in CO2 

Also, it was found that the CO2 has direct impact on pH. An increase in CO2 flow rate 

resulted in a decrease in the pH and vice versa. The plot of CO2 flow rate versus pH is as 

shown in Figure 33. 

The pH was found maximum on Day 0 with value of 7.5 and when CO2 supply to the 

medium was increased to 124.5 ml/min on day 2, the pH was dropped to 6.15. Since, the 
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pH was dropped drastically, the CO2 supply was reduced to 93.76 ml/min on day 3. When 

the CO2 was gradually decreased to 62.03 ml/min, pH gradually increased to 6.51 on day 

4 and 5. Similarly, throughout the experiment the CO2 was varied to balance the pH. If 

the CO2 intake was higher than the pH value will decreased which will make the medium 

more acidic. When the CO2 was lower, pH will rise but care should be taken that the 

proportion of CO2 should not be less than 0.2% compared to air because the medium will 

not have the sufficient source of carbon for photosynthesis. The data of biomass and its 

physical parameters are presented in Appendix 8. 

 

Figure 33. Graph of pH and CO2 flow ate 

Statistical Analysis 

Multiple linear regressions were performed to determine the relationship between algal 

biomass and physical parameters. The algal biomass was considered as the dependent 

variable and physical parameters (DO, ORP, pH, and temperature) were considered to be 

the independent variables. The p-value at 95% confidence level showed that all the 
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physical parameters have a significant effect on algal biomass. Among all the physical 

parameters, pH and DO was found to have most significant effect on algal biomass with 

p-value of 1.88e-06 and 3.75e-05. The regression equation obtained is shown in equation 

(17) – 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (
𝑚𝑔

𝐿
)

= 18844.90 − 3.63 ∗ 𝑂𝑅𝑃(𝑚𝑉) − 1377.04 ∗ 𝐷𝑂(
𝑚𝑔

𝐿
)

− 403.26 ∗ 𝑝𝐻 − 104.32 ∗ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(°𝐶) 

(17) 

The multiple R-squared of the above model was found to be 0.927 and adjusted r-squared 

was found to be 0.903. This regression model accounts about 93% of the variance which 

indicates that the data points are very close to the fitted regression line. Also, higher R-

squared value indicate a better model fit suggesting that each physical parameter greatly 

affects the algal biomass production. The overall regression model output is provided in 

Appendix 9 and the normal Q-Q plot and residuals versus fitted plots are shown in Figure 

34.  

In normal Q-Q plot, the residuals are closer to the fitted regression line indicating fitted 

values closer to the observed values and in the residuals versus fitted plot the majority of 

the residuals are around the mean line. Thus, multiple linear regression analysis result 

suggests that DO, ORP, pH, and temperature play significant roles in algal biomass 

production under a controlled environment.  
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Figure 34. Normal Q-Q plot and residual vs fitted plot 

4.5.3. Biomass and gas flow rate 

Figure 35 shows the plot of algal biomass versus gas flow rate throughout the 

experimentation period. For a bigger PBR, constant flow rate is considered insufficient 

for adequate mixing and preventing the algal biomass from settling. Since the algal 

biomass increases with time, the flow rate also needs to be increased to keep the algal 

biomass suspended in the medium and provides proper air/gas mixing. If a constant flow 

rate is maintained, it will become inadequate to keep the increasing biomass 

concentration suspended which will result in biomass settling to the bottom of the reactor. 

Thus, the flow rate adjusted regulated throughout the experimentation period with 

increasing biomass concentration to maintain uniform mixing and avoid biomass settling. 

The CO2 flow rate was changed based on pH of the medium. Data of flow rate and 

biomass of each day is present in Appendix 10. 
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Figure 35. Biomass and gas flow rate plot. 

Statistical Analysis 

Multiple linear regressions were performed to determine the impact of flow rate (air and 

CO2) on biomass. The algal biomass was considered as dependent variable and CO2, and 

air flow was considered as the independent variables. The p-value at 95% confidence 

level showed that CO2 flow rate has a significant effect on algal biomass concentration 

(growth) with a p-value of 0.000492 (<0.05). The p value of air flow rate (0.0639) at 95% 

confidence level showed that air flow rate has no significant effect on biomass growth. 

This analysis does not show the impact of air flow rate on biomass growth. However, the 

air flow rate showed a direct impact on the biomass settling during experiment. It may 

have been occurring because of less number of data. The regression model obtained is 

given as equation (18) – 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (
𝑚𝑔

𝐿
) = 1.694 ∗ 𝐶𝑂2 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 (

𝐿

𝑚𝑖𝑛
) − 45.194 

(18) 
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The multiple R2 for the above model was found to be 0.74 and the adjusted R2 was found 

to be 0.703. This regression model accounts about 74% of the variance which indicates 

that the data points are close to the fitted regression line. Also, R-square indicates a good 

model fit suggesting that each CO2 flow rate positively affects the algal biomass 

production. However, multiple R2 value of gas flow rate (0.74) is not good compare to 

multiple R2 of the physical parameters (0.93). This shows that the physical parameters 

data points are closer to the fitted regression line than the flow rate. The overall 

regression model output is provided in Appendix 11 and the normal Q-Q plot and 

residuals versus fitted plots are shown in Figure 36. 

  

Figure 36. Normal Q-Q plot and residual vs fitted plot 

In normal Q-Q plot, the residuals are closer to the fitted regression line indicating the 

fitted values are closer to the observed values and in residuals versus fitted plot, majority 

of the residuals are around the mean line. Thus, multiple linear regression analysis results 

suggest that the CO2 flow rate has significant effect on algal biomass production under 

controlled environment. 
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4.5.4. Comparison of 132L PBR with 13L flat plate PBR  

The comparison of biomass concentration of 13L and 132L reactor was made using 

previous data and current research data. The biomass concentration versus days was 

plotted for 13L reactor and 132L PBR as shown in Figure 37. The maximum 

concentration of biomass was found to be 960 mg/L and 928 mg/L for 13 L and 132 L 

PBR, respectively. This observation indicates that the both the reactors have similar algal 

biomass production. However, the maximum algal biomass in 13L PBR was achieved on 

19th day of experiment whereas in 132L PBR, the maximum algal biomass was achieved 

in only 16 days. This suggests the PBR size does have some degree of effect on algal 

biomass production time. 

 

Figure 37. Comparison of biomass of 13L and 132L reactor 

Similarly, air and the CO2 flow rate (1LPM air and 50ml/min CO2) was kept constant and 

biomass was in suspension throughout the experiment in 13L PBR. But in the 132L PBR 
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the flow rate was varied to keep the biomass in suspension. This may be the reason that 

the biomass concentration was achieved higher in 132L reactor. 

Likewise, comparison of physical parameters (pH, DO, ORP, and temperature) for both 

the reactors were analyzed. The plot of pH, DO, ORP, and temperature for both the 

reactors is presented in Figure 38. There is a drop in pH in 132 L reactor in the beginning 

because the CO2 was not supplied until day 1 and this also leads to increase in ORP. 

Also, there is drop in pH on day 11 to 13 because of the variation of the CO2 supply. The 

plots for all the physical parameters showed a similar trend.  

  

  

Figure 38. Plot of physical parameters for 13 L and 132L PBR. 
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Statistical Analysis 

Statistical comparison of algal biomass production of both the reactor was performed 

using student’s t-test assuming two samples with unequal variance. The null hypothesis 

set was the 13L reactor biomass and 132L reactor biomass means are equal and the 

alternate hypothesis was 13L reactor biomass means is not equal to the 132L reactor 

biomass. The value of t-statistics was found 1.764 which was smaller than t-critical (i.e. 

2.028) at 95% confidence level and therefore, the null hypothesis was found true. The 

analysis result is present in Table 18. 

Table 18. Student’s t-test: two sample assuming unequal variances 

  Biomass (13L) Biomass (132L) 

Mean 526.25 383.7411765 

Variance 70137.5 61228.66382 

Observations 24 17 

Hypothesized Mean Difference 0  
df 36  
t Stat 1.76433907  
P(T<=t) one-tail 0.043079662  
t Critical one-tail 1.688297714  
P(T<=t) two-tail 0.086159324  
t Critical two-tail 2.028094001   

This statistical comparison of two biomass means was found statistically insignificant 

indicating that the there is no difference in the biomass production between the 13L 

reactor and 132L reactor.   
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5. CONCLUSION 

The major nutrients required for 1 g algal biomass production are Nitrogen (N), 

Phosphorous (P), Sulphur (S), Carbon (C), Magnesium (M), and Sodium (Na) and were 

found to be 0.09891g, 0.0256g, 0.0089g, 0.4925g, 0.0067g, and 0.16g respectively. Also, 

the overall energy loss from the reactions was found to be 3800.274 KJ and the system 

offers the exothermic reaction. However, the energy loss from the sparger air and the 

evaporation loss needs to be determined to find the total energy losses. 

The linear equation was developed between the light intensity and the path length and 

flow rate. The developed equation will allow to find the value of light intensities at air 

flow rates from 1 to 10 LPM and the path length from 102 to 305 mm when used with red 

LED lights. 

The ½ inch diameter sparger was designed using the SPARGER software. The simulated 

results met important parameters of the design consideration. The designed sparger met 

the low extent non-uniformity with the value of 4.29% and there was no weeping. The 

estimated bubble diameters ranged from 3.84 mm to 4.95 mm. The designed sparger was 

used for studying the flow patterns. Performance of the sparger at different flow rate, 

height and number of spargers pipe were evaluated. 

Bubble diameter seems to be increased with the increase in flow rate and the reduced 

height of the liquid when operated at the same pressure. The number of sparger pipes in a 

PBR plays a big role in its performance. The increase in number of sparger pipes gives 

the better mixing then with fewer number of sparger pipe. Few sparger pipes may not 

have sufficient gas flow to mix all the nutrients within the medium. Fewer number of 
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spargers means the few number of bubbles and with the less number of bubbles all the 

medium in the PBR cannot be mixed. With the increase in flow rate and height, the 

mixing flow patterns look like the air lift reactor.  

To reduce the sedimentation of biomass flow rate has to be increased with the increase in 

biomass. The sparger location plays a vital role in establishing different flow patterns. 

The sparger was located parallel to the reactor length and the riser was going upward in 

the reactor which when reached at the top then it radially bends to the width of the PBR. 

This indicates that the amount of air flowing in the PBR and the height of the medium 

will impact on the fluid flow patterns and the distance of the riser and the down comer. 

Cyanobacteria did survive for 16 days in 132L medium flat plate photobioreactor using 

the design sparger for mixing. This reactor could produce 928 mg/L on the 13th day of the 

experiment with the limiting nutrients.  After the 16 days of experiment, the 

cyanobacteria was in declining phase because of consumption of nutrients supplied and 

CO2 supply cut off.  

 The linear equation was developed between the biomass concentration and the CO2 

concentration. Also, the linear equation was developed between the cyanobacterial 

biomass concentration and the physical parameters (OPR, DO, Temperature and DO) 

Biomass comparison and the physical parameters of 132 L flat plat PBR shows the 

similar trend to the 13 L flat plate PBR. This shows that the scaling up of the PBR has 

been successful but still there are lot of space for the research and experiment to make it 

better in the coming days. 
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6. FUTUREWORK 

➢ PBR will be operated using the sparger in different orientation. The sparger pipe 

will be placed parallel to the breadth of the PBR and see if its impact on the flow 

patterns and growth of cyanobacteria is similar to the sparger placed parallel to 

the length of the PBR. 

➢ Larger number of sparger holes will be simulated and check the performance of 

the PBR.  

➢ The evaporation loss and the sparger loss for the 132L PBR will be performed to 

check the overall losses of the reactor. 

  



87 

 

 

 

REFERENCES 

Abdo, S. M., E. Ahmed, S. A. El-Enin, R. S. El Din, and G. E. D. a. G. Ali. 2014. 

Qualitative and quantitative determination of lipid content in microalgae for biofuel 

production. Journal of Algal Biomass Utilization 5(3):23-28. 

Ahmad, A. L., N. H. M. Yasin, C. J. C. Derek, and J. K. Lim. 2011. Microalgae as a 

sustainable energy source for biodiesel production: A review. Renewable and Sustainable 

Energy Reviews 15(1):584-593. 

Al-Qasmi, M., N. Raut, S. Talebi, S. Al-Rajhi, and T. Al-Barwani. 2012. A review of 

effect of light on microalgae growth. In Proceedings of the world congress on 

engineering. London, U.K. 

Alfano, O. M., R. L. Romero, and A. E. Cassano. 1986. Radiation field modelling in 

photoreactors—I. Homogeneous media. Chemical Engineering Science 41(3):421-444. 

Anderson, G. A., S. Katuwal, A. Kommareddy, and S. Gent. 2016. Operation of a porous 

membrane photobioreactor. In ASME 2016 10th International Conference on Energy 

Sustainability collocated with ASME 2016 Power Conference and the ASME 2016 14th 

International Conference on Fuel Cell Science, Engineering and Technology. American 

Society of Mechanical Engineers. 

Anderson, G. A., A. Kommareddy, T. Suess, and S. P. Gent. 2014. Review of Flow 

Patterns in a Column Reactor for Photobioreactor Application. In ASME 2014 8th 

International Conference on Energy Sustainability collocated with the ASME 2014 12th 

International Conference on Fuel Cell Science, Engineering and Technology. American 

Society of Mechanical Engineers. 



88 

 

 

 

Asmare, A. M., B. A. Demessie, and G. S. Murthy. 2013. Theoretical estimation the 

potential of algal biomass for biofuel production and carbon sequestration in Ethiopia. 

International Journal of Renewable Energy Research 3(3):560-570. 

Barbosa, M. J., M. Janssen, N. Ham, J. Tramper, and R. H. Wijffels. 2003. Microalgae 

cultivation in air‐lift reactors: modeling biomass yield and growth rate as a function of 

mixing frequency. Biotechnology and bioengineering 82(2):170-179. 

Becker, E. W. 1994. Microalgae: biotechnology and microbiology. Cambridge 

University Press. 

Benemann, J. R., and W. J. Oswald. 1996. Systems and economic analysis of microalgae 

ponds for conversion of CO{sub 2} to biomass. Final report. 

Berberoglu, H., J. Yin, and L. Pilon. 2007a. Light transfer in bubble sparged 

photobioreactors for H2 production and CO2 mitigation. International Journal of 

Hydrogen Energy 32(13):2273-2285. 

Berberoglu, H., J. Yin, and L. Pilon. 2007b. Light transfer in bubble sparged 

photobioreactors for H 2 production and CO 2 mitigation. International Journal of 

Hydrogen Energy 32(13):2273-2285. 

Bilanovic, D., G. Shelef, and A. Sukenik. 1988. Flocculation of microalgae with cationic 

polymers—effects of medium salinity. Biomass 17(1):65-76. 

Borowitzka, M. A. 1999. Commercial production of microalgae: ponds, tanks, tubes and 

fermenters. Journal of biotechnology 70(1):313-321. 



89 

 

 

 

Brar, A., M. Kumar, V. Vivekanand, and N. Pareek. 2017. Photoautotrophic 

microorganisms and bioremediation of industrial effluents: current status and future 

prospects. 3 Biotech 7(1):18. 

Brennan, L., and P. Owende. 2010. Biofuels from microalgae—A review of technologies 

for production, processing, and extractions of biofuels and co-products. Renewable and 

Sustainable Energy Reviews 14(2):557-577. 

Burgess, G., J. G. Fernandez-Velasio, and K. Lovegrove. 2007. Materials, Geometry, Net 

Energy Ratio of Tubular Photobioreactor for Microalgal Hydrogen Production. Int. J. 

Hydrogen Energy 32(9):1225-1234. 

Camacho, F. G., E. M. Grima, A. S. Mirón, V. G. Pascual, and Y. Chisti. 2001. 

Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzyme and 

microbial technology 29(10):602-610. 

Cañedo, J. C. G., and G. L. L. Lizárraga. 2016. Considerations for Photobioreactor 

Design and Operation for Mass Cultivation of Microalgae. In Algae-Organisms for 

Imminent Biotechnology. InTech. 

Carvalho, A. P., L. A. Meireles, and F. X. Malcata. 2006. Microalgal reactors: a review 

of enclosed system designs and performances. Biotechnology progress 22(6):1490-1506. 

Carvalho, A. P., S. O. Silva, J. M. Baptista, and F. X. Malcata. 2011. Light requirements 

in microalgal photobioreactors: an overview of biophotonic aspects. Applied 

Microbiology and Biotechnology 89(5):1275-1288. 



90 

 

 

 

Chen, C.-Y., J.-S. Chang, H.-Y. Chang, T.-Y. Chen, J.-H. Wu, and W.-L. Lee. 2013. 

Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-

sea water supplemented cultivation medium. Biochemical Engineering Journal 77:74-81. 

Chen, C.-Y., K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang. 2011. Cultivation, 

photobioreactor design and harvesting of microalgae for biodiesel production: A critical 

review. Bioresource technology 102(1):71-81. 

Chen, F., Z. Liu, D. Li, C. Liu, P. Zheng, and S. Chen. 2012. Using ammonia for algae 

harvesting and as nutrient in subsequent cultures. Bioresource technology 121:298-303. 

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25(3):294-306. 

Chisti, Y. 2008. Biodiesel from microalgae beats bioethanol. Trends in biotechnology 

26(3):126-131. 

Chisti, Y. 2013. Constraints to commercialization of algal fuels. J Biotechnol 167(3):201-

214. 

Christenson, L., and R. Sims. 2011. Production and harvesting of microalgae for 

wastewater treatment, biofuels, and bioproducts. Biotechnology Advances 29(6):686-702. 

Davis, R., A. Aden, and P. T. Pienkos. 2011. Techno-economic analysis of autotrophic 

microalgae for fuel production. Applied Energy 88(10):3524-3531. 

Dayan, C., A. Kumudha, R. Sarada, and G. A. Ravishankar. 2010. Isolation, 

characterization and outdoor cultivation of green microalgae Botryococcus sp. Scientific 

Research and Essays 5(17):2497-2505. 



91 

 

 

 

De Wilde, D., T. Dreher, C. Zahnow, U. Husemann, G. Greller, T. Adams, and C. Fenge. 

2014. Superior Scalability of Single-Use Bioreactors. Innovations in Cell Culture:14. 

Del Río, E., A. Armendáriz, E. García-Gómez, M. García-González, and M. G. Guerrero. 

2015. Continuous culture methodology for the screening of microalgae for oil. Journal of 

biotechnology 195:103-107. 

Demirbas, A., and M. F. Demirbas. 2010. Algae energy: algae as a new source of 

biodiesel. Springer Science & Business Media. 

Dutta, K., A. Daverey, and J.-G. Lin. 2014. Evolution retrospective for alternative fuels: 

First to fourth generation. Renewable Energy 69(Supplement C):114-122. 

Ebeling, J. M., P. L. Sibrell, S. R. Ogden, and S. T. Summerfelt. 2003. Evaluation of 

chemical coagulation–flocculation aids for the removal of suspended solids and 

phosphorus from intensive recirculating aquaculture effluent discharge. Aquacultural 

Engineering 29(1):23-42. 

EIA. 2015. U.S. Crude Oil and Natural Gas Proved Reserves, Year-end 2015. U.S. 

Energy Information Administration. 

EIA. 2017. Monthly Energy Review (MER). United States Energy Information 

Administration. 

Energy Information, A. 2012. Annual Energy Review 2011. Government Printing Office. 

Falinski, K. A. 2009. Effects Of Different Aeration Conditions On Isochrysis Galbana (T-

Iso) Ccmp 1324 In A Bench-Scale Photobioreactor. 

Finley, M. 2013. BP statistical review of world energy. 



92 

 

 

 

Fitzgerald, T. 2012. Frackonomics: some economics of hydraulic fracturing. Case W. 

Res. L. Rev. 63:1337. 

Goldman, J. 1979. Outdoor algal mass cultures—II. Photosynthetic yield limitations. 

Water Research 13(2):119-136. 

Griffiths, M. J., R. G. Dicks, C. Richardson, and S. T. L. Harrison. 2011. Advantages and 

challenges of microalgae as a source of oil for biodiesel. In Biodiesel-Feedstocks and 

Processing Technologies. InTech. 

Grima, E. M., E. H. Belarbi, F. G. A. Fernández, A. R. Medina, and Y. Chisti. 2003. 

Recovery of microalgal biomass and metabolites: process options and economics. 

Biotechnology Advances 20(7):491-515. 

Grobbelaar, J. U. 2010. Microalgal biomass production: challenges and realities. 

Photosynthesis research 106(1-2):135-144. 

Hislop, D., and D. O. Hall. 1996. Biomass resources for gasification power plant. Energy 

For Sustainable Development Ltd., University of London. 

Höök, M., and X. Tang. 2013. Depletion of fossil fuels and anthropogenic climate 

change—A review. Energy Policy 52:797-809. 

Huang, J., J. Ying, F. Fan, Q. Yang, J. Wang, and Y. Li. 2016. Development of a novel 

multi-column airlift photobioreactor with easy scalability by means of computational 

fluid dynamics simulations and experiments. Bioresource technology 222:399-407. 

Huang, Q., F. Jiang, L. Wang, and C. Yang. 2017. Design of Photobioreactors for Mass 

Cultivation of Photosynthetic Organisms. Engineering 3(3):318-329. 



93 

 

 

 

Hundt, K., and B. V. Reddy. 2011. Algal biodiesel production from power plant exhaust 

and its potential to replace petrodiesel and reduce greenhouse gas emissions. 

International Journal of Low-Carbon Technologies 6(4):294-298. 

Hyndman, C. L., F. Larachi, and C. Guy. 1997. Understanding gas-phase hydrodynamics 

in bubble columns: a convective model based on kinetic theory. Chemical Engineering 

Science 52(1):63-77. 
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APPENDIX 

Appendix 1. Atomic weight of elements in biomass 

Nitrogen Calculation 

1 mol of biomass   =1087.617 g of algae 

7.689 mol of NaNO3   = 652.759 g  

1087.617 g of biomass requires 652.759 g of NaNO3 

1 g of biomass requires 0.600 g of NaNO3 

Weight of nitrogen in 7.689 mole NaNO3 

= (107.571g/652.173 g) * 100 

= 16.48% of NaNO3 

Therefore, Nitrogen required for 1 g of biomass = 0.0989 g  

Phosphorous Calculation 

1 mol of biomass   =1087.617 g of algae 

0.9 mol of K2HPO4  = 156.758 g 

1087.617 g of biomass requires 156.758 g of K2HPO4 

1 g of biomass requires 0.144 g of K2HPO4 

Weight of Phosphorous in 0.9 mole K2HPO4 

= (27.844g/156.758 g) * 100 

= 17.76 % of K2HPO4 

Therefore, phosphorous required for 1 g of biomass = 0.026 g 

 

Elements 
Atomic mass 

(g/mol) 

No. of mole in 

composition 

Total atomic 

weight (g) 

C 12.0107 44.60 535.677 

H 1.0079 7.00 7.055 

O 15.9940 25.00 399.850 

N 14.0067 7.69 107.571 

P 30.9378 0.90 27.844 

S 32.0650 0.30 9.620 

 1087.617 
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Sulphur Calculation 

1 mol of biomass   =1087.617 g of algae 

0.3 mol of MgSO4  = 36.110 g 

1087.617 g of biomass requires 36.110 g of MgSO4 

1 g of biomass requires 0.033 g of MgSO4 

Weigh of Sulphur in 0.3 mole MgSO4 

= (9.620g/36.110 g) * 100 

= 26.64 % of MgSO4 

Therefore, Sulphur required for 1 g of biomass = 0.009g 

  

Carbon Calculation 

Concentration of gas in the available tank 

CO2 =95%, N2 =5% 

Now, properties of CO2 in the available tank at room temperature: 

P=600 psi=40.83atm (after the tank before reaching the flow rate) 

M=44g/mol of CO2 

T=298.5K 

R=0.0821 L.atm/mol.K 

Volume = 0.043m3 

Therefore, Concentration of Carbon dioxide     

m/V =PM/RT 

= (40.83atm *44g/mol*0.95) / (0.0821 L. atm/mol. K *298.5K*0.043m3) 

=1619.57g CO2/m
3 

1 mol of algae  =44.6 mol of CO2 

   = 44.6 mol*(12.0107+15.994*2) g/ mol 

   = 1962.34 g 

Now, 

1087.62 g algae =1962.34 g of CO2 

1g of algae   =1.80 g of CO2 

1000 g of algae =1800 g of CO2 

Therefore, 

1 mol of biomass         =1087.617g 
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44.6 mole of CO2        =1962.34 g  

1087.617g of biomass requires 1962.34 g of CO2 

1g of biomass requires 1.804 g of CO2   

Carbon weightage       =0.272  

                                    =27.29% of CO2  

Therefore, Carbon required for 1 g of biomass =0.492g 

 

Appendix 2. Atomic weight of compounds. 

S. N Compounds 
Atomic mass 

(g/mol) 
No. of mole  

Total atomic weight 

(g) 

1 NaNO3 84.9946 7.68 652.759 

2 K2HPO4 174.1759 0.9 156.758 

3 MgSO4 120.3676 0.3 36.110 

 

Appendix 3. Energy balance calculation details 

From Material balance: 

44.6 mole of CO2 is required to produce 1 mole of C44.6H7O25N7.68P0.9S0.3 

1 mole of C44.6H7O25N7.68P0.9S0.3 = 1087.617 g algae biomass 

44.6 mole of CO2 = 1087.617 g algae biomass 

Now, roughly 10 photons are required to fix one carbon atom. 

𝐸 =
ℎ𝑐

λ
 

h =6.636*10-34 J.s 

λ  = 680 nm 

C =2.998*108m/s 

𝐸 =
6.636 ∗ 10−34 J. s ∗ 2.998 ∗ 108 𝑚/𝑠

 680 nm ∗  10−9𝑚
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𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑎 𝑝ℎ𝑜𝑡𝑜𝑛 = 2.9257 ∗ 10−19        𝐽/𝑃ℎ𝑜𝑡𝑜𝑛 

Carbon atoms in 1 mole of biomass =44.6*6.022*1023 

     =2.686*1025 

10 photons / carbon x 2.686*1025 carbon / mole  

                                                            =2.686*1026 photons per mole of biomass 

Energy required to fix carbon atoms in 1 mole of biomass 

                                                           = 2.9257*10-19J/Photons*2.686*1026 photons 

                                                           =78,584,302 J 

Energy Breakdown 

44.6CO2 + 7.6NaNO3 + 0.9K2HPO4 + 0.3MgSO4 + 6.55H2O-- C44.6H7O25N7.68P0.9S0.3 + 

7.68NaOH + 0.3 Mg (OH)2 + 1.8KOH + 45.025O2 

Compounds/elements Standard Enthalpies (KJ/mol)(Luff and Reed, 

1978; Silberberg, 2007; Vree et al., 2015) 

O2 0 

CO2 -393.5 

H2O -241.8 

NaNO3 -446.2 

K2HPO4 -376.1  

MgSO4 -1278.2 

NaOH -469.6 

Mg(OH)2 -924.7  

KOH -424.76 

Biomass -22.5KJ/g  (Vree et al., 2015) 

= - 22.5/0.000919 KJ/mol  

 (1 mol of biomass=1087.617g) 

= -24483.134 KJ/mol 
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Energy calculation for reactants 

=44.6*(-393.5) + 7.6*(-446.2) + 0.9*(-376.1) + 0.3*(-1278.2) + 6.55*(-241.8) 

= -23246.96 KJ 

Energy calculation for products 

= 1*(-24483.134) + 7.68 *(-469.6) + 0.3*(-924.7) + 1.8*(-424.76) + 44.25*0 

= -27047.684 KJ 

Energy Difference 

= (-28780.25) – (-27047.684) KJ 

= -3800.724 KJ  
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Appendix 4. Randomized block design test for light intensity analysis (Rajendran, 2016) 

 

 

 

Treatment 

 

 

 

 

 

 

 

 

 

 

Flow rate Depth of Photobioreactor (pathlength) 

(LPM) 102mm 152mm 203mm 254mm 305mm 

  (4") (6") (8") (10") (12") 

1 83.23 77.18 63.3 53.13 52.38 

2 75.52 72.67 59.63 52.4 48.74 

3 72 70.07 58.01 51.21 47.6 

4 68.44 67.49 57.65 50.14 46.68 

5 67.03 64.46 53.52 49.19 45.81 

6 61.24 62.37 55.13 49.16 40.95 

7 64.13 60.33 53.88 48.73 42 

8 60.1 57.64 50.83 48.87 40.95 

9 60.23 56.02 51.69 48.11 39.28 

10 56.62 54.24 50.34 48.99 39.58 

Treatment = Path length 

Block =Flowrate 

Number of samples (n)=50   

Number of treatment =5 

Number of block =10 

 

 

.    
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Appendix 5. Output of Tukey HSD test between the pathlengths 

$statistics 

 MS error  Df    Mean        CV       MSD 

  8.749007  47  56.1778   5.265197  3.752108 

 

$parameters 

   test     name.t  ntr  Studentized Range  alpha 

  Tukey Pathlength   5           4.0114   0.05 

 

        $means 

        Intensity      std      r  Min   Max     Q25          Q50            Q75 

102    66.854  8.202076 10  56.62  83.23  60.4825     65.580  71.1100 

152    64.247  7.549991 10  54.24  77.18  58.3125     63.415  69.4250 

203    55.398  4.194544 10  50.34  63.30  52.1475     54.505  57.9200 

254    49.993  1.695871 10  48.11  53.13  48.9000     49.175  50.9425 

305    44.397  4.459126 10  39.28  52.38  40.9500     43.905  47.3700 

 

$comparison 

NULL 

 

$groups 

    Intensity groups 

102    66.854      a 

152    64.247      a 

203    55.398      b 

254    49.993      c 

305    44.397      d 
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Appendix 6. Output of Tukey HSD test for flowrate 

$parameters 

   test   name.t         ntr         Studentized Range   alpha 

  Tukey Flowrate   10         4.694934                   0.05 

 

$means 

   Intensity       std   r    Min    Max    Q25    Q50    Q75 

1     65.844  13.965806  5  52.38  83.23  53.13  63.30  77.18 

2     61.792  11.937624  5 48.74  75.52  52.40  59.63  72.67 

3     59.778  10.956079  5  47.60  72.00  51.21  58.01  70.07 

4     58.080  9.862381  5  46.68  68.44  50.14  57.65  67.49 

5     56.002  9.348731  5  45.81  67.03  49.19  53.52  64.46 

6     53.770  8.905265  5  40.95  62.37  49.16  55.13  61.24 

7     53.814  8.864256  5  42.00  64.13  48.73  53.88  60.33 

8     51.678  7.585669  5  40.95  60.10  48.87  50.83  57.64 

9     51.066  8.008716  5  39.28  60.23  48.11  51.69  56.02 

10    49.954  6.547968  5  39.58  56.62  48.99  50.34  54.24 

 

$comparison 

NULL 

 

$groups 

   Intensity groups 

1     65.844      a 

2     61.792     ab 

3     59.778    abc 

4     58.080     bc 

5     56.002    bcd 

7     53.814     cd 

6     53.770     cd 

8     51.678      d 

9     51.066      d 

10    49.954      d 

 

attr(,"class") 

[1] "group" 
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Appendix 7. Linear regression results for light intensity analysis 

Call: 

lm(formula = Intensity ~ Pathlength+Flowrate+Pathlength*Flowrate) 

Residuals: 

   Min       1Q     Median        3Q        Max  

-5.4728  -1.8931     0.0562    1.3166  5.6291  

Coefficients: 

                        Estimate     Std. Error           t value        Pr(>|t|)     

(Intercept)              98.409426     2.176694        45.210              < 2e-16 *** 

Pathlength                -0.162947    0.010099         -16.134             < 2e-16 *** 

Flowrate                   -3.373760     0.350806        -9.617                1.39e-12 *** 

Pathlength:Flowrate  0.008442   0.001628   5.187 4.69e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 2.375 on 46 degrees of freedom 

Multiple R-squared:  0.9486, Adjusted R-squared:  0.9453  

F-statistic:   283 on 3 and 46 DF, p-value: < 2.2e-16 

 

Appendix 8. Biomass concentration data and its physical parameters 

Days Biomass (mg/L) 
 ORP 

(mV) 

  DO 

(mg/l) 
  pH 

  Temp 

(°C) 

0 10.00 294.34 8.68 7.51 26.81 

1 14.00 327.67 8.60 6.82 28.95 

2 91.00 302.52 8.68 6.15 29.83 

3 248.00 283.87 8.64 6.31 30.45 

4 271.00 274.17 8.64 6.50 30.41 

5 299.00 257.38 8.53 6.51 30.32 

6 386.00 248.33 8.56 6.49 30.66 

7 426.00 255.10 8.47 6.47 30.91 

8 404.00 260.44 8.40 6.50 30.13 

9 434.00 260.91 8.51 6.72 29.42 

10 433.00 256.17 8.50 6.91 29.28 

11 451.60 266.25 8.50 6.69 29.25 

12 695.00 271.69 8.40 6.38 29.06 

13 928.00 257.97 8.24 6.37 29.85 

14 686.00 244.14 8.20 7.12 30.03 

15 577.00 202.06 8.32 7.43 29.68 

16 170.00 169.76 8.47 8.09 29.50 
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Appendix 9. Regression analysis of biomass on ORP, pH, DO, and temperature 

Call: 

lm(formula = Biomass ~ ORP + pH + DO + Temperature) 

Residuals: 

   Min       1Q     Median        3Q        Max  

-161.428  -25.389     9.741    38.449  104.728  

Coefficients: 

              Estimate  Std. Error  t value   Pr(>|t|)     

(Intercept)  18844.900    1989.858    9.470   6.43e-07 *** 

ORP             -3.626       1.170   -3.098  0.009233 **  

pH           -1377.045     160.978  -8.554   1.88e-06 *** 

DO           -403.263      82.544   -4.885  0.000375 *** 

Temperature   -104.323      36.424  -2.864   0.014245 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 

Residual standard error: 76.73 on 12 degrees of freedom 

Multiple R-squared:  0.9279, Adjusted R-squared:  0.9039  

F-statistic:  38.6 on 4 and 12 DF, p-value: 9.234e-07 

 

Appendix 10. Biomass Concentration and flow rate data 

Days Biomass (mg/L) 
 Air flow rate 

(l/min) 

CO2 flow rate 

(ml/min) 

0 10.00 14.00 0 

1 14.00 14.00 67.63 

2 91.00 14.00 124.05 

3 248.00 14.00 93.76 

4 271.00 14.00 62.03 

5 299.00 14.00 62.03 

6 386.00 17.00 108.55 

7 426.00 20.00 155.07 

8 404.00 20.59 155.07 

9 434.00 30.00 146.43 

10 433.00 30.00 218.5 

11 451.60 30.00 310.22 

12 695.00 30.00 310.13 

13 928.00 30.01 310.19 

14 686.00 40.00 217.86 

15 577.00 40.00 144.81 

16 170.00 40.00 0 
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Appendix 11. Regression analysis of biomass on CO2flow and Airflow 

Call: 

lm(formula = Biomass ~ CO2flow + Airflow) 

 

Residuals: 

    Min       1Q   Median       3Q       Max  

-253.24  -84.09    29.60    77.58   223.14  

 

Coefficients: 

             Estimate  Std. Error  t value   Pr(>|t|)     

(Intercept)  -45.1954     88.6100   -0.510  0.617963     

CO2flow        1.6942      0.3759    4.507   0.000492 *** 

Airflow        7.4821      3.7185   2.012   0.063856.   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 

 

Residual standard error: 134.7 on 14 degrees of freedom 

Multiple R-squared:  0.7409, Adjusted R-squared:  0.7038  

F-statistic: 20.01 on 2 and 14 DF, p-value: 7.847e-05 
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