
South Dakota State University South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional

Repository and Information Exchange Repository and Information Exchange

Electronic Theses and Dissertations

2017

A Dynamic Scaling Methodology for Improving Performance of A Dynamic Scaling Methodology for Improving Performance of

Big Data Systems Big Data Systems

Nashmiah Alhamdawi
South Dakota State University

Follow this and additional works at: https://openprairie.sdstate.edu/etd

 Part of the Data Storage Systems Commons, Digital Communications and Networking Commons, and

the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Alhamdawi, Nashmiah, "A Dynamic Scaling Methodology for Improving Performance of Big Data Systems"
(2017). Electronic Theses and Dissertations. 2261.
https://openprairie.sdstate.edu/etd/2261

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research
Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses
and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional
Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F2261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=openprairie.sdstate.edu%2Fetd%2F2261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=openprairie.sdstate.edu%2Fetd%2F2261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=openprairie.sdstate.edu%2Fetd%2F2261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd/2261?utm_source=openprairie.sdstate.edu%2Fetd%2F2261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu

A DYNAMIC SCALING METHODOLOGY FOR IMPROVING PERFORMANCE OF

BIG DATA SYSTEMS

BY

NASHMIAH ALHAMDAWI

A thesis submitted in partial fulfillment of the requirements for the

Master of Science

Major in Computer Science

South Dakota State University

2018

iii

ACKNOWLEDGMENTS

“I've learned in my life that it's important to be able to step outside your comfort zone and

be challenged with something you're not familiar or accustomed to. That challenge will

allow you to see what you can do.”

J. R. Martinez

Without a doubt, I was challenged and put out of my comfort zone, but thanks to

magnificent people that helped me in this interesting journey I have encountered, I am able

to say that I am a richer person. Not only did I learn that I can overcome and succeed what

I put my mind into, but I also learned that there is a lot of people that are willing to go out

of their way to help me, and see me succeed. Not only did I overcome challenges

throughout this whole process, but I did so successfully.

I would like to give a special thanks to Dr. Yi Liu for helping me and guiding me

throughout the entire process. Without your knowledge and guidance, I would not stand

where I do today. Thanks to your support I can now see what I am truly capable of; I know

that if I push hard enough I am able to do whatever I set my mind too.

They say good friends are hard to find, but extraordinary friends are like hidden

treasure that only few are able to obtain. Extraordinary friends want to see you succeed and

will help you with what it ever it is in order to obtain that success. I can honestly say that I

have that these last months have seen the love that my friends had towards me not only did

they encourage me to keep going, but helped me throughout the process. Thank you all for

cheering me on and helping me achieve my goals.

iv

But far beyond anything thank you to my family to whom without I would not be

here at all. There are no words to describe my gratitude that I have towards those who have

shown unconditional love and support for every decision I have made. Not only did they

tell me to keep going whenever I had lost hope, but have also left their comfort zone to

support my decision to be here. Again, no words can describe my gratitude towards the

abundance of love they had shown.

And now I know what I am capable of that even in my lowest I can get up, and I

have people that will help me rise up and keep on going to the goal, thank you so much to

everybody that have helped me reach this amazing goal.

v

CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

ABSTRACT ... ix

Chapter 1 INTRODUCTION .. 1

 1.1 Introduction .. 1

 1.2 Motivation .. 2

 1.3 Objective .. 2

 1.4 Thesis Organization ... 3

Chapter 2 BACKGROUND .. 4

 2.1 EASTWeb V2.3 ... 4

 2.2 Cloud Computing .. 7

 2.2.1 Elastic Computer Cloud Service (Amazon EC2) 7

 2.2.2 Cloud Storage Service (Amazon S3) .. 8

 2.2.3 Amazon Relational Database Service (Amazon RDS) 8

 2.2.4 AWS CodeDeploy Service .. 9

 2.3 Related Work ... 10

 2.3.1 Dynamic Scalability of Web Applications on a Virtualized Cloud

 Computing Environment .. 10

 2.3.2 ECG Monitoring and Analysis System ... 11

 2.3.3 High Performance Analytics of Big Data with Dynamic and Optimized

vi

 Hadoop Cluster ... 13

Chapter 3 METHODOLOGY ... 17

 3.1 Scaling the System .. 17

 3.1.1 Helper Project Algorithm ... 17

 3.1.1.1 Consider Categories of Data in Splitting 18

 3.1.1.2 Consider Analyzing Data in Splitting .. 19

 3.1.1.3 Consider Volume of Data in Splitting ... 19

 3.2 Modify the Current System ... 20

 3.3 Deployment Environment ... 21

 3.4 Database Transformation ... 23

 3.5 Guidelines .. 25

Chapter 4 CASE STUDY ... 28

 4.1 EASTWeb V2.3 Overview ... 28

 4.2 Amazon Web Service (AWS) .. 29

 4.3 How to Apply Methodology ... 29

 4.3.1 Helper Project Algorithm ... 30

 4.3.1.1 Rule 1: Number of Plugins Considered as

 Number of Categories ... 30

 4.3.1.2 Rule 2: Number of Indices Considered as

 Number of Operations.. 31

vii

 4.3.1.3 Rule 3: Number of Years Considered as Size of Data 32

 4.3.2 Modify the Current System .. 34

 4.3.2.1 Base Version .. 34

 4.3.2.2 Virtual Machine Version.. 36

 4.3.3 Database Transformation ... 38

Chapter 5 EVALUATION .. 41

 5.1 How Does the Dynamic Scaling Methodology Work? 41

 5.1.1 Applying Dynamic Scaling Methodology in the Case Study 41

 5.1.2 Performance Comparsion of Case Study .. 43

 5.2 How Does Deployment Approach Work? .. 45

 5.2.1 Simplicity .. 45

 5.2.2 Flexibility .. 46

 5.3 Guideline ... 47

 5.4 Compare our Work with other Works ... 47

 5.4.1 Dynamic Scalability of Web Applications on a Virtualized Cloud

 Computing Environment .. 47

 5.4.2 ECG Monitoring and Analysis System ... 48

 5.4.3 High Performance Analytics of Big Data with Dynamic and Optimized

 Hadoop Cluster ... 48

Chapter 6 CONCLUSION .. 49

viii

 6.1 Conclusion .. 49

 6.2 Future Work ... 50

 6.2.1 Consider other Deployment Environment .. 50

 6.2.2 Consider the Vertical Scaling .. 51

LITERATURE CITED ... 52

ix

LIST OF FIGURES

Figure 1.The Major Processing Steps in EASTWeb System .. 5

Figure 2. The High-level Architecture of the EASTWeb ... 6

Figure 3. The Workflow of AWS CodeDeploy Service ... 9

Figure 4. Architecture to Scale Web Applications in a Cloud .. 11

Figure 5. The System Design of ECG Components of Personal Health Monitoring

System .. 13

Figure 6. The System Components ... 15

Figure 7. Dynamic Scaling Methodology Steps and Requirements 24

Figure 8. Overview of Dynamic Scaling Methodology .. 30

Figure 9. The Workflow of Two Versions of EASTWeb ... 39

x

LIST OF TABLES

Table 1. Functions of Helper Algorithm ... 34

Table 2. The Performance Results of Two EASTWeb Scenarios 44

xi

ABSTRACT

A DYNAMIC SCALING METHODOLOGY FOR IMPROVING PERFORMANCE OF

BIG DATA SYSTEMS

NASHMIAH ALHAMDAWI

2018

The continuous growth of data volume in various fields such as, healthcare,

sciences, economics, and business has caused an overwhelming flow of data in the last

decade. The overwhelming flow of data has raised challenges in processing, analyzing,

and storing data, which lead many systems to face an issue in performance. Poor

performance of systems creates negative impact such as delays, unprocessed data, and

increasing response time.

Processing huge amounts of data demands a powerful computational

infrastructure to ensure that data processing and analysis success [7]. However, the

architectures of these systems are not suitable to process that quantity of data. This calls

for necessity to develop a methodology to improve the performance of systems handle

massive amount of data.

 This thesis presents a novel dynamic scaling methodology to improve the

performance of big data systems. The dynamic scaling methodology is developed to scale

up the system based on the several aspects from the big data perspective. Moreover, these

aspects are used by the helper project algorithm which is designed to divide a task into

small chunks to be processed by the system. These small chunks run on several virtual

machines to work in parallel to enhance the system’s runtime performance. In addition,

xii

the dynamic scaling methodology does not require many modifications on the applied,

which makes it easy to use.

 The dynamic scaling methodology improves the performance of the big data

system significantly. As a result, it provides a solution for performance failures in

systems that process huge amount of data. This is study would be beneficial to IT

researches that focus on performance of big data systems.

1

Chapter 1 Introduction

1.1 Introduction

Currently we live in an age where big data has emerged and is drawing attention

in several fields such as science, healthcare, business, finance, and society. The

continuous growth in data size in various fields has caused an overwhelming flow of data

in the last decade. Thus, many systems have faced problems analyzing, storing, and

processing large quantities of data, which in turn has caused performance failures or

slower performance and processing. When experiencing poor performance in systems

processing huge amounts of data, a negative impact is created in increased costs,

decreased revenue, or both. Additionally, poor performance causes delays, creates

unprocessed data, and increases response time. The question is: Does handling big

amounts of data play a significant role or have a great impact in performance? Also, how

do we improve the performance of systems when dealing with huge amounts of data?

Under the exponential growth of data, the term big data refers to the increase in

the volume of data and difficulty to store, process, and analyze through traditional

databases [7]. Furthermore, it is characterized in the 4Vs: variety, value, velocity, and

volume.

Big data raises many challenges in performance, scalability, and capacity. With

big data systems becoming more prevalent, a need exists to overcome the challenges and

implications of massive data. Therefore, this thesis aims to illustrate how to improve

performance in big data systems, and it focuses on the performance challenge from the

perspective of big data systems. The problem tackled in this thesis is performance failures

2

in systems that process and analyze enormous amount of data. Also, many systems deal

with huge datasets and request rates beyond the capabilities of relational databases and

performance systems. Thus, a novel methodology is illustrated to dynamically scale up

these systems.

1.2 Motivation

Data growth is rapidly outpacing the capability of systems to store, process, and

analyze the data that they are collecting, which then affect the performance of these

systems [15]. The contributions of this thesis discuss processing big data in a timely

manner, dynamic scaling up of systems based on several rules, and flexibility of using a

deployment environment. In addition, this thesis would be beneficial to information

technology researchers who focus on improving performance and scalability of big data

systems.

There are many big data systems face a problem with unprocessed data because of

the size of these data. For example, EASTWeb system is not able to process a NLDAS

Forcing project in a timely manner. This project processes huge amount of data, such as

processing 39 years of data requires 11.735 TB. Thus, that causes poor performance of

these systems and then creates unprocessed data.

1.3 Objective

This thesis aims to identify how to enhance the performance of big data systems.

The objectives of this study are to develop a dynamic scaling methodology using

virtualization to improve performance and to establish an approach to adapt a system to

3

the deployment environment. Moreover, this thesis seeks to determine guidelines for

systems facing the same issues in processing huge amount of data.

1.4. Thesis organization

This thesis presents a novel dynamic scaling methodology to improve

performance by applying an algorithm to scatter the system and scale up/down the system

in the deployment environment. It provides solutions for problems related to scalability

and distributed systems. Moreover, it describes how to utilize the deployment

environment along with scalability of the system. The outline of the remainder of the

thesis is organized as follow. Chapter 2 provides an overview of the methods used to

apply the approach, such as EASTWeb and Cloud computing, and discusses related

works similar to our approach. Chapter 3 describes the structure of methodology to

scatter and scale up/down big data systems; it also shows the helper project algorithm

based on three rules and brief guidelines of the dynamic scaling approach. Chapter 4

depicts how to implement a helper project algorithm at EASTWeb as a case study and an

overview of EASTWeb after performing the dynamic scaling methodology. Chapter 5

shows experimental results after applying the dynamic scaling methodology and

comparison between EASTWeb with and without the helper project algorithm. Finally,

Chapter 6 summarizes the thesis and presents suggestions for future work ideas.

4

Chapter 2 Background

This chapter illustrates the concepts of the cloud computing, the overview of the

EASTWeb system that is used as case study to apply dynamic scalable methodology, and

the related works.

2.1 EASTWeb Version 2.3 [1,2]

The Epidemiological Applications of Spatial Technologies (EASTWEB)

application is developed as an open-source, client-based application that automatically

connects to earth science data archives. It helps acquire, process, and summarize remote

sensing data according to the time period and geographic information provided by the

user. All the information summarized is saved in a database that can easily inquire and

connect to the data server, ecological and epidemiological, for further analyzation and

prediction in a software environment.

EASTWeb is developed to facilitate the access of earth observation data for

public health research and its applications. The earth science data is already maintained

from various organizations, so the data structure, access methods, and file formats are

different from each other. Therefore, EASTWeb is able to process different types of data

products, and merge the remotely-sensed environmental data in public health research.

The Geospatial Data Abstraction Library (GDAL) is used for spatial analysis.

EASTWeb is implemented in JAVA, and utilized PostgreSQL to save and manipulate the

resulting of data summaries. The system inputs are a collection of earth observation data

files which are already downloaded from online archives. The system outputs tables

including data on the summary statistics of environment indices for each special zone.

5

As illustrated in Figure 1, EASTWeb includes four major processing steps which

are (1) downloading data from online earth observation data archives, (2) processing

remote sensing data, (3) computing environment indices, and (4) summarizing data using

the zonal statistics technique.

Figure 1.The major processing steps in EASTWeb system

The downloading step accesses data stream files from earth observation archives

and stores them locally for further use. The processing remote sensing data step includes

seven sub-steps such as mosaicking, converting, compositing, data filtering, water

masking, clipping and reprojecting. At the end of the processing step, the resulting data

layers are stored in the Geo Tiff format. The computing environmental indices step

calculates different indices for each data product, for example, NDVI, EVI, SAVI, and

NDWI for MODIS NBAR. Step Four: The summarizing data step generates spatial

summaries of the environmental indices based on the zonal shapefiles that the user

provides and stores the results in the database.

As shown in Figure 2 the architecture of EASTWeb system contains four

components designed to map the four major processing steps. The Downloading

component is responsible of downloading and storing data locally. The RS Data

Processing component wraps these subcomponents designing for the sub-steps in the

6

Processing step. The Environmental Indices component generates GeoTiff files and

calculates environmental metrics. The Summarization component computes all the

summaries and stores the results into database via Database Wrapper.

Figure 2. The high-level architecture of the EASTWeb

EASTWeb uses the Graphical User Interface (GUI) to support the user interaction

with the system. The scheduler component is designed to collaborate all EASTWeb

components to work together. EASTWeb implements 8 plugins for 8 different earth

observation data sets including GPM’s IMERG, IMERG_RT, MODIS MOD11A2 C6,

MODIS MCD43A4 C6, TRMM_3B42, TRMM_3B42RT, NLDAS forcing, NLDAS

NOAH. Each plugin has various indices ranging from one to fifteen indices. The indices

do various environmental calculations for each data product. Moreover, the user can use

EASTWeb to create a project that may include several plugins and choose indices

associated with the selected plugins.

7

2.2 Cloud Computing

Cloud computing is an emerging area, supporting various fields of computing,

and has become a strong architecture to apply massive-scale and complex computing.

Cloud computing facilitates in providing the virtualized resource, parallel processing,

data storage, and security [7]. It is invented to enable a capable access to share resources,

such as computer networks, servers, storage, and application services. Moreover, it

assures to be less expensive compared to supercomputers and specialized clusters, is a

more reliable platform alternative to grid, and is more scalable than clusters [11].

The cloud computing environment is provided by vendors such as IBM [23],

Microsoft Azure [25], Google Cloud platform [24], and Amazon Web Service [8].

Amazon Web Services (AWS) is utilized as the deployment environment of this study.

AWS is a secure cloud service platform offering several functionalities helping

businesses scale and grow. Several services have been used to provide the necessary

resources to achieve our dynamic scaling methodology, including Elastic compute cloud

service, cloud storage service, CodeDeploy service, and Relational database service.

2.2.1 Elastic Compute Cloud Service (Amazon EC2)

Amazon Elastic Compute Cloud Service (Amazon EC2) is a web-based service

allowing businesses to execute applications in the public cloud. Amazon EC2 allows a

developer to create virtual machines (VM) known as instances, which can easily

configure the capacity scaling of computing. Moreover, utilizing Amazon EC2 eliminates

the needs of expensive hardware, so it provides the ability to develop and deploy

applications faster [8]. Several features attract developers to Amazon EC2 for cloud

computing. The most significant among them are [12]:

8

- Integration: EC2 is able to interact with other AWS services such as RDS and

S3.

- Accurate control: users can access and control the instances such as start, stop,

and boot.

- Security: users can manage the privacy of instances.

- Cost: EC2 provides reasonable hourly rates.

2.2.2 Cloud Storage Service (Amazon S3)

Amazon Simple Storage Service (Amazon S3) [12] is a scalable, low-latency,

affordable, web-based cloud storage service. Amazon S3 facilitates online backup,

archiving data, and storing applications. Also, it is designed to make web-scale

computing easier for developers. With Amazon S3, data are stored in sealable containers

known as buckets. A bucket is able to store several kinds of data and can be controlled

and managed by the user.

2.2.3 Amazon Relational Database Service (Amazon RDS)

The Amazon Relational Database Service (Amazon RDS) is a web-based service

that facilitates setting up, operating, and scaling a relational database in the cloud [8].

Amazon RDS offers an affordable, scaling capacity for an industry standard relational

database. It is designed to manage database tasks such as backup, migration, and

patching. Moreover, Amazon RDS supports six familiar database engines, including

PostgreSQL, MySQL, Oracle, Amazon Aurora, MariaDB, and Microsoft SQL Server [8].

9

2.2.4 AWS CodeDeploy Service

AWS CodeDeploy is a deployment service that automates an application to an

Amazon EC2 instance and on-premise server. For successful deployment, a developer

should define three criteria’s: Revision, deployment group, and deployment configuration

[14]. The revision is the content deployed onto instances such as code, web, and

configuration file. Also, it is stored in S3, GitHub repositories, or Bitbucket repositories

to be able to be deployed by AWS CodeDeploy. In the deployment group, a set of

instances related to certain applications is specified by the developers. Deployment

configuration determines the steps of the deployment process to assure the revision is set

at appropriate instances. Figure 3 describes the workflow of the AWS CodeDeploy

service [8].

Figure 3. The Workflow of AWS CodeDeploy Service

10

2.3 Related works

2.3.1 Dynamic Scalability of web applications on a virtualized Cloud

Computing environment [10]

This research shows a scaling approach to address dynamic scaling of web

applications in the cloud. The system is structured with a front-end load balancer, many

web applications on virtual machines, a provisioning subsystem, and a service monitor

subsystem with a dynamic scaling algorithm as shown in Figure 4. The front-end load

balancer is an Apache HTTP load balancer. It is responsible for routing and balancing the

user requests to the web applications published on virtual machines in the cloud, which

allows the system to dynamically increase the number of servers. The service monitor

subsystem gathers the number of active sessions, which is used as a scaling indicator

from the web application and calculates the moving average. The scaling algorithm

controls and applies the scale-up or scale-down in the provisioning subsystem on several

virtual machines based on the moving average. The provisioning subsystem is

responsible for deploying and cloning the virtual image to a new virtual machine. These

components work together to address the dynamic scalability of the web application on

the cloud environment.

11

Figure 4. Architecture to scale web applications in a cloud

2.3.2 ECG monitoring and analysis system [9]

This research work develops a scalable health monitoring and analyzing system

for people who need periodic monitoring of their health. Also, it suggests a general

structure based on cloud computing to be suitable for various cases when patients need to

frequently check their health; registered data must be processed to be available for

specialists or patients. They use a case study to apply the approach and focus on patients

who have cardiac arrhythmias. The electrocardiogram (ECG) monitoring and analysis

system is developed as a case study in this paper. The ECG has several functionalities

with the following steps:

1. ECG data is obtained from an ECG sensor attached on the patient and on a

mobile device.

2. Data are sent to ECG analysis which is hosted via the cloud.

12

3. ECG analysis implements many computations and includes comparison,

classification, and systematic diagnosis of heartbeats, which causes delays

when performed for a large number of users.

4. Software adds the latest results of the patient’s record in the cloud storage, and

specialists can then later explain the features extracted from the ECG data.

5. Monitoring and analyzing processes are iterative based on user preference.

Figure 5 illustrates the system design of the ECG monitoring and analysis system

and has three layers; each layer has its function and its components. The first layer is

responsible of hosting the software as a web-service which is available for all users to

customize the analysis of historic and current ECG data and then upload the data. Cloud

computing enables the hosting of this software as SaaS. The second layer is PaaS which

manages the execution based on three components: container scaling manager, workflow

engine, and Aneka. The container scaling manager determines how to increase the

number of containers to divide the user requests into workflow engines. This component

is known as load balancing that is performed at a run time based on the average requests

that the container processes in a specific time and the number of requests waiting to be

scheduled in the workflow engine. The workflow engine is hosted on containers. It

controls the execution of tasks of ECG data analysis when the number of user requests

are increased. It packages the tasks of ECG analysis demanded by the user and transfers

them to Aneka. Aneka is a platform for deploying and managing applications in

Microsoft.NET framework environments. It controls communication between two

different layers such as IaaS and PaaS. As part of Aneka, the dynamic scalable runtime

13

(DSR) is implemented to preserve the quality of service (QoS) of application running in

the first layer of SaaS. It considers response time as a parameter of QoS, so DSR

monitors the response time of applications and decides whether to increase the number of

virtual machines.

Figure 5. The system design of ECG components of personal health monitoring system

2.3.3 High performance analytics of big data with dynamic and optimized

Hadoop cluster [16].

This research work represents an overall idea about the barriers users previously

experienced when analyzing a large amount of data with essential features such as ease of

accessibility, fast performance, durability, and security. It maintains users need to use a

cloud-based web application that stores data in Amazon S3. Through this system, users

do not need to calculate the number of nodes because the system supports a dynamic and

14

optimized cluster node size. Moreover, the system includes Amazon EMR and

MapReduce paradigm analysis of big data analysis in the desired time.

To begin, traditional analytical tools previously presented data by processing

information that was overwhelmed by the amount of collected data. When the amount of

data increases and added to the workload of the platforms, several challenges show up

such as storing, effective analyzing, managing, and procuring quick and correct results

from data that was performed in a distributed environment. Currently available tools are

the security efficient SPSS, SAS, Minitab, and R. However, two problems occur: they

rely on the main memory, and they require functioning in moderate sized data sets.

Amazon EMR is a service of Amazon web services to create clusters. Amazon EMR is a

Hadoop cluster which runs a MapReduce program.

The system components shown in figure 6. are described as below:

1. The Hadoop Distributed File System HDFS is a file system that allows users to use

scalable and reliable data storage. It is Java based and initiated to span large clusters

of commodity servers. HDFS is highly fault-tolerant, giving access to large amounts

of data, and uses stream access to file system data.

2. MapReduce is a distributed processing architecture, popular programming model, and

indispensable contrivance to process and generate large data sets.

3. Amazon Elastic MapReduce (Amazon EMR) is used to establish Hadoop cluster,

perform and conclude designed analytic tasks, and transfer data between EC2(VM)

and S3(Object Storage).

4. R programming language and Rhadoop is an open source statistical programming

language containing four packages: Plyrmr, Rmr, Rhdfs, and Rhbase.

15

5. Amazon Simple Storage Service (Amazon S3) is storage for the Internet and has

interfaces to save and retrieve data of desired quantity at anytime and anywhere.

6. Linear regression analysis is the most widely used statistical techniques.

7. Cluster optimization: Hadoop is a tool handling thousands of nodes and prototypes of

data. To maintain the importance of optimized performances, cluster optimization is a

technique to initiate the optimal number of nodes in the Hadoop cluster to apply on

data.

Figure 6. The system components

The system model consists of four layers:

1. The service layer keeps detailed user records allowing uploading data with no limit

on time and storage and meeting the requirements of scalability, reliability, speed,

and low cost.

2. The data processing layer is an open source as R integrates with Hadoop. It is used to

utilize the features of the Hadoop distributed file system and MapReduce paradigm.

16

3. The virtualization layer is a cloud platform, an application server, and database server

hosted in virtual instances and connected to virtual cloud storage Amazon S3.

4. Infrastructure layer includes virtual instances, virtual storage, data, network

resources, and connection between them.

17

Chapter 3 Methodology

 This chapter illustrates a novel dynamic scaling methodology for improving

performance of big data systems. The methodology contains three steps: splitting and

modifying the system whose performance needs improvement, choosing the deployment

environment, and transforming the database. The three steps are described in detail, and a

guideline of how to apply these steps to enhance system performance is given at the end

of the chapter.

3.1 Scaling the System

A system dealing with a large amount of data in a single computer can cause

troublesome performance due to processing massive transactions at the same time in a

single running space. In order to respond to this problem, our approach divides the

massive amount of data into smaller pieces handled in parallel computers. The challenge

of scaling up the system determines how to divide the large data. Thus, the helper project

algorithm is developed to scale up the system based on the amount of data to process.

3.1.1 Helper Project Algorithm

The helper project algorithm determines whether the system needs to scale up or

not by applying several rules. These rules examine the data processed by the system in

various aspects. Since each system has unique aspects of the data, such as the type of data

used and how the data is collected, processed, and stored, the helper project algorithm is

general enough to be applied to any of the systems that deal with data processing. In

addition, it runs on top of the system, so it is not necessary to make many modifications

in the system.

18

The helper project algorithm is developed to split the amount of data needed by

the system to collect, process, and store, and it works based on several rules that prioritize

dividing from high to low. The algorithm goes through these rules and starts splitting the

data into small chunks to be processed in a timely manner. These rules consider every

aspect when dividing the data into size of the data, type of data being collecting, and kind

of operation and processing applied on the data. Then, each aspect is checked to see if it

requires splitting. The rules considered in the helper project algorithm are listed below

from high priority to low priority:

3.1.1.1 Consider categories of data in splitting

This rule is a high priority which is checked first by the algorithm and makes

several separations based on the rule that will be elaborated in the following paragraph.

Thus, the category of the data processed by the system needs to be known. Does the

system process more than one category of data? The category of data is significant

because it implies how to capture, process, and store these data, and each category has its

own individual way to do so. The helper project algorithm checks if the system processes

several categories of data by finding the number of categories necessary to begin the

process. Then, it starts splitting the data category based on the number of categories for

each chunk based on a category to be processed at a timely manner. For example, if the

system has five different categories of data needed to be processed, the helper project

algorithm splits the data into five small chunks. Then the system processes each small

chunk in parallel instead of processing all the categories at once. Typically, the system

applies several operations to process and analyze the data to gain the desired result from

19

these data. Consequently, the helper project algorithm checks the second rule for

separation.

3.1.1.2 Consider analyzing data in splitting

After the helper project algorithm examines and applies the first rule and does the

necessary separation, it checks how to analyze the data. This rule regards any process of

inspecting, cleansing, transforming, and modeling data with the goal of discovering

useful information [3] or any operation applied on collecting data to gain desired results.

Therefore, the helper project algorithm demands to find how many operations or events

are applied on the collected data; based on this number, a decision is made on how to

split the analysis of the data. The maximum number of operations that apply on data for

separation vary from system to system. To determine the maximum number of operations

the system is able to tolerate, it claims a sequence of tests on the system with a different

number of operations applied. Based on the maximum number of operations performed

on the data, the system executes these tasks in parallel rather than executing all

operations at once.

3.1.1.3 Consider volume of data in splitting

This rule is the last priority, so the helper project algorithm examines the data at

the end. This rule takes into account the amount of data captured and processed when

doing the splitting. As in the second rule, the maximum number of operations varies and

is different form system to system, with the appropriate size of data for separation also

varying. Therefore, each system requires finding the appropriate size of data that can be

tolerated and then providing it to the helper project algorithm which splits the huge

20

amount of data into smaller amounts of data that are able to be processed. In the end, the

helper project algorithm produces several tasks which have one category, maximum

number of operations, and the proper amount of data that the system runs in parallel.

3.2 Modify the Current System

The structure of the current system is not designed to be automated, scalable, and

compatible with distributed computing. Thus, in order to apply this methodology to

improve performance, a need exists to modify the current system to be compatible with

distributed computing. Moreover, this methodology does not require many changes in the

current system because the helper project algorithm runs on top of the current system. A

modification to the current system is required to be working in the deployment

environment.

Distributed computing is a model in which portions of a software system are

shared among multiple computers to improve both efficiency and performance [4]. This

methodology suggests two versions of the system. The first one is the base version which

the system starts from and is responsible for dividing the huge amount of data by

executing the helper project algorithm running on top of it. Moreover, it determines when

to scale up the system based on the number of jobs the helper project algorithm produces

by controlling virtual servers or machines. This version deploys the separated tasks and

scales up the system into a deployment environment to work in parallel. As this version is

the base and the system starts from it, it needs to be the user interface.

The second version runs in several virtual machines in the deployment

environment, so it needs to be compatible with the deployment environment. Moreover, it

21

has major changes that modify the current system to command a line interface rather than

a user interface. This version processes the small chunks produced by the helper project

algorithm in parallel, and it works in the background for the base version. Also, there are

some changes in storing and retrieving the data, but that varies from system to system; it

is based on the structure of the system and the dependency of tasks. This methodology

suggests the data, or information, is used by all distributed jobs to be in shared storage

such as cloud storage, cluster, or a shared database. In this way, the distributed system

avoids any redundancy or conflict while processing. By applying this approach, few

modifications in the current system are needed except the two versions; one works as the

interface and the second works as the background.

3.3 Deployment Environment

After splitting the huge amount of data into small jobs by the helper project

algorithm, the deployment environment hosts the system in several virtual machines and

processes these chunks in parallel. The International Business Machines (IBM)

knowledge center defines the deployment environment as a collection of configured

clusters, servers, and middleware that collaborate to provide an environment to host

software modules [5]. Various ways exist to use deployment environments; so it may be a

network of many machines in data centers in clusters or virtual machines in cloud

computing. In this approach, it is not required to apply the system in a certain

environment of deployment. Many cloud computing providers exist, such as Amazon

Web Services, Microsoft Azure, and Google Cloud platform. Not solely using cloud

computing as the deployment environment, it could use clusters or server virtualization as

the deployment environment. Moreover, the significance of the deployment environment

22

is to host and process the small tasks in parallel. This approach illustrates the important

aspects of the deployment environment utilized to take advantage of it and to

dynamically scale up the system. First, to be able to dynamically scale up the system

based on the number of tasks produced by the helper project algorithm, it is necessary to

control virtual servers or machines from the base version of system. The base version of

the system needs the ability to start the virtual machines before the deployment in order

to prepare the virtual machines for deploying and running a small task. Also, each virtual

machine is responsible for shutting itself down after finishing executing assigned tasks

and producing the desired result. Second, in order to begin publishing the virtual

machines’ version onto virtual machines in the deployment environment, it places the

version of the virtual machine in an accessible place for the deployment environment.

Deployment environments provide service to deploying the code, scripts, or execution

file, so the base version system needs to use it to control the deployment and be eligible

to initiate and verify publishing in the deployment environment. Third, if the system

holds some data used as input, or produces data which is input for distributed tasks, then

it demands to employ shared storage or a database in the deployment environment. Also,

the helper project algorithm produces a reasonable size of tasks that depend on each

other, so a need occurs to store all desired data as input in a shared place for accessibility

to all virtual machines. Many deployment environments supply shared places to store

various types of data such that databases, blocks, or cloud storage. Hence, the virtual

machine version should be able to access shared storage to read from and write to it.

Thus, it grants a solution of the redundancy and conflict in processing between dependent

tasks.

23

Deployment environments have a significant role in this approach. This is due to

several variable resources such as machines, storage, and databases based on the system

needs. Therefore, it becomes able to dynamically scale up the systems based on the

number of tasks produced by a helper project algorithm. Besides, it can avoid the

repetition and conflict in processing between dependent tasks.

3.4 Database Transformation

Big data includes a broad range of massive data produced from various sources,

and the data could be structured as well as unstructured. It ranges from terabytes—10^12

bytes—to exabytes—10^18 bytes [6]. The nature of data has changed sharply in the last

decade, which raises a challenge in relational databases. Moreover, systems can deal with

enormous data sizes, which request rates beyond the capabilities of traditional databases.

Because of the lack of a relational database in handling big data, demands for NoSQL,

MongoDB, and Hadoop is increased as a solution to handle big data.

This approach focuses on improving the performance of systems dealing with

huge amounts of data, but does not require these systems to use databases able to handle

a high velocity of data. Moving from a traditional database into a database handling big

data, it requires heavy modifications on the current system. Thus, this study suggests

using the current databases but with solutions to overcome the challenges in requesting

rates that are beyond the capabilities of a traditional database.

After deploying the system into several virtual machines that work in parallel,

each virtual machine contains its own database, localDB, to store the results of a small

task processed. In addition, when the virtual machine has accomplished processing a

24

small job, and stores its results to the localDB, it starts transforming records in the

localDB to the centralDB, which is a shared database. The centralDB needs to be

accessible for all virtual machines to query and update as needed. Besides, the virtual

machines delete all records related to a processed job after moving them to the centralDB

in order to prepare the localDB for the next unprocessed job. This solves the bottleneck

issues caused when processing huge amounts of data. As a result, there are many

distributed databases instead of the one database that cannot handle massive amounts of

data.

This approach describes how to utilize the current database and become

compatible working with huge amounts of data. It proposes to distribute the databases

among virtual machines and then performs the transformation to a shared database

between processing different jobs. After each transformation process, it deletes all data

records in a distributed database in order to prepare for the next job. As a result, this

overcomes the relational database challenge in handling a high velocity of data. The

dynamic scaling methodology steps and requirements are shown in Figure 7.

Figure 7. dynamic scaling methodology steps and requirements

25

3.5 Guidelines

The end of this chapter summarizes all the approach requirements in easy to

follow and apply guidelines. These guidelines target the system facing issues in

performance because of processing massive amounts of data. Also, it does not demand

many modifications to the current system, and it suggests some solutions to solve this

problem.

1. Testing the current system.

Before applying the methodology, more about the current system needs to be

known. When does performance drop down? How much data and operations can the

system process in a suitable time? Does the system run different categories of data? To

answer these questions requires performing a series of tests on the current system with

various amounts of data, operations, and categories.

2. Applying helper project algorithm.

The goal of the helper project algorithm is to separate the whole task into small

tasks that the system is able to process in a suitable amount time. Thus, when performing

several tests on the current system, the rules of the helper project algorithm will be

known. This completely aids in applying the helper project algorithm rules in the current

system. The rules of the helper project algorithm prioritize from high to low as follows:

Rule 1: divide based on the categories of data.

Rule 2: divide based on the maximum number of operations applying to the data.

26

Rule 3: divide based on the maximum amounts of data that the system is processing in a

timely manner.

3. Finding deployment environment.

In order to scale up the system dynamically and to process the small tasks in

parallel, there is a demand to utilize a deployment environment. The various ways to

deploy the system on several servers and then finding the proper environment is

significant. This methodology takes into account some important requirements in the

deployment environment. Below is a list of considerations needed to be present in the

deployment environment:

- Able to run and configure virtual machines remotely.

- Deploy the system onto virtual machines to run in parallel.

- Able to store shared input/output in accessible storage if necessary.

- Able for each virtual machine to connect to the local database.

- Able to set up a central database that can be accessible for all virtual machines.

Many environments provide these services and can easily implement the system

in parallel. Therefore, we are able to decide what is suitable with the system’s needs from

the available environments such as in cloud computing: AWS, Microsoft Azure, and

Google Cloud platform in the virtualization as VMware, VirtualBox, and clusters.

4. Transforming local database into a central database.

Each virtual machine processes a small task independently and has its own

database called the localDB. To avoid the bottleneck issue in querying, it requires

27

moving the processed data from the local database into a central database and then resets

the local database for further processing task. Consequently, there is a need for

distributed databases in each virtual machine and a central database. The distributed

databases work as temporary databases for processing each small job, and it is the same

structure as the current database. Thus, it does not require changing the structure of the

current database. Moreover, the central database must be accessible to all virtual

machines to read and write. Because of that, it must be created in the deployment

environment. The structure of the central database is the same as distributed databases.

Thus, the list below shows what approach is required for transforming databases:

- LocalDB: distributed database located in each virtual machine.

- CentralDB: central database located in the deployment environment.

28

Chapter 4 Case Study

This chapter illustrates how to apply the methodology described in Chapter 3 to

the EASTWeb system. Moreover, EASTWeb faces the issue of performance due to

processing massive amounts of data. The first section of this chapter describes an

overview of EASTWeb as a case study to solve the problem of performance. Also, it

shows the deployment environment used to scale up EASTWeb. The following section

demonstrates how to perform the helper project algorithm on top of EASTWeb and how

to modify EASTWeb to be compatible with applying the approach.

4.1 EASTWeb V2.3 overview

The EASTWeb system is set up as a stand-alone application on a single computer.

When initiating the system, no complications are encountered with the performance of

the system; but while in progress, the data rapidly grows which raises the failure

performance issue. For example, IMERG_Project is used as input for EASTWeb in this

case study. IMERG_Project processes 3 years of data and requires 733.468 GB which

causes poor in performance when process this amount of data in the single computer.

Therefore, using EASTWeb as a case study illustrates the effectiveness of the

methodology and how to overcome performance failure in big data systems.

To perform the approach in EASTWeb, we need to study and test EASTWeb to

define the three rules of the helper project algorithm. As a result of testing and studying,

the system takes an xml file called project as an input which includes the amount of earth

observation data files downloaded from online archives, different data products and its

indices that apply on downloaded data. The system processes different types and sizes of

29

data and applies various operations on these data. These aspects are taken into account to

perform the helper project algorithm.

4.2 Amazon Web Service (AWS)

In this case study, AWS is utilized to scale up and run EASTWeb in several

servers in the cloud. AWS offers a set of services such as storage, database, application,

and deployment. The services used to scale up EASTWeb.

AWS offers SDKs for several languages such as java, C++, Python, Ruby, and

PHP. SDKs facilitate building applications to work with Amazon services. To make

EASTWeb cooperate with Amazon S3, Amazon EC2, CodeDeploy, and RDB, AWS

SDK for java is used to achieve scalability. A class is created for each AWS service,

which includes its variables and functions. Four classes are created to utilize AWS. First,

a CreateInstance class connects to ec2 instances and controls them remotely. Second, a

S3 class controls the write, retrieve, and delete files from a bucket. Third, a CodeDeploy

class manages and prepares the deployment of EASTWeb onto EC2 instances. Fourth, a

RDS class controls connection, starting\stopping the database in the cloud (centralDB),

and exporting\importing data to the centralDB. All these classes work together with

EASTWeb to address the performance issues.

4.3 How to apply methodology

After testing and examining the current system, there is a clear view about the

rules that the helper project algorithm considers and prioritizes. It is easy to develop the

helper project algorithm by applying these rules. Also, there is a need to modify the

current system to be compatible with the cloud environment. Figure 8. Shows the

architecture of EASTWeb system after applying the dynamic scaling methodology.

30

Figure 8. Overview of dynamic scaling methodology

4.3.1 Helper Project Algorithm

Developing the helper project algorithm to work on top of the EASTWeb system,

requires defining the rules and their priorities in the case of EASTWeb. Thus, the helper

project algorithm is invoked after EASTWeb runs and takes the project file as input.

Based on the user-selected project entries, the helper project algorithm uses rules that

prioritize from high to low as follows:

4.3.1.1 Rule 1: Number of plugins considered as number of categories

Number of plugins is the highest priority for splitting the user-selected project

into several subprojects. The helper project algorithm checks if a project has more than

one plugin by calling the CheckNumberOfPlugIns () function. This function is

responsible for checking the number of plugins and making the separation based on it.

Thus, if the number of plugins is more than one, then it divides the project file into

31

several subproject files, each with one plugin. Thereafter, it performs further splitting for

each subproject based on Rules 2 and 3. This rule separates a project based on three rules.

If the selected project contains a plugin, then there is no splitting and it jumps to the next

rule. A plugin contains a different number of indices, so it examines the maximum

number of indices that EASTWeb can process by checking the Rule 2.

public void CheckNumOfPlugins(){

 boolean flag;
 int index;

 int partNO = 0;

 try {

 if (NumOfPlugins > 1) {

 for (int i = 0; i < NumOfPlugins; i++) { //divide based on the number of plugins

 for(int s=0; s < startDates.size(); s++){ //divide based on the number of years

 noOfIndices = pluginsInfo.get(i).GetIndices().size();

 DivideIndices = true;
 flag = false;

 index = 0;

 while(DivideIndices){ //divide based on the number of indices

 // split the xml file project into several xml subproject files

 }

 }
 }

 }

 else if (NumOfPlugins == 1) {

 CheckNumOfIndices(); //jump to rule 2

 }
 } catch (ParserConfigurationException e) {

 ErrorLog.add(Config.getInstance(), "problem with creating new project.", e);

 }

 }

4.3.1.2 Rule 2: Number of indices considered as number of operations

After the helper project algorithm checks Rule 1 and finds no separation

performed, it examines the number of indices as the second priority of rules. This rule

invokes the CheckNumberOfIndices () function to determine the number of indices and

applies the splitting. In this function, it defines the five indices as the maximum number

of operations. Therefore, it produces several subproject files that have a maximum of five

indices and a minimum of one index and applies additional splitting for each subproject

32

based on Rule 3. This rule performs two rules in dividing a project. If a project has five

indices or less, there is no need for splitting and it moves to the next rule. As the least

priority is the amount of data that the system processes, the helper project algorithm

examines the following rule.

 public void CheckNumOfIndices() {

 boolean flag1;

 int index;

 int partNO = 0;

 try {
 if (NumOfIndices > 5) {

 noOfIndices = pluginsInfo.get(0).GetIndices().size();

 for(int s=0; s < startDates.size(); s++){ //divide based on the number of years

 noOfIndices = pluginsInfo.get(0).GetIndices().size();

 DivideIndices = true;

 flag1 = false;

 index = 0;

 while(DivideIndices){ //divide based on the number of indices

 // split the xml file project into several xml subproject files

 }

 }
 }

 else if (NumOfIndices <= 5) {

 CheckNumOfYears(); //jump to rule 3

 }
 }

 catch (ParserConfigurationException e) {

 ErrorLog.add(Config.getInstance(), "problem with creating new project.", e);

 }

 }

4.3.1.3 Rule 3: Number of years considered as size of data

The helper project algorithm checks this rule at the end, and it determines the

maximum volume of data in a year of data for each subproject. EASTWeb runs a

dynamic number of years since it processes the datasets from a user-selected date up to

the current date. Thus, the helper project algorithm calculates the number of years from

this entry by calling it the DivideYears () function. This function defines the start date

and end date for each year and produces how many years in a project. It employs these

dates in dividing the project. To apply the splitting of the project yearly, the

33

CheckNumberOfYear () function is invoked. It produces various subproject files with a

year of data. If a project has less than a year of data, it is not necessary to scale up the

system or divide the project.

 public void CheckNumOfYears() {

 if (startDates.size() > 1) {

 int partNO = 0;

 for(int s=0; s < startDates.size(); s++){ //divide based on the number of years

 try {

 // split the xml file project into several xml subproject files

 }

 catch (ParserConfigurationException e) {

 ErrorLog.add(Config.getInstance(), "problem with creating new project.", e);
 }

 }

 }

 else {

 System.out.println("No need to divide project");
 return;

 }

 }

}

In order to scale up the EASTWeb system based on the number of plugins,

indices, and years, the helper project algorithm is developed to apply the three rules.

Thus, four functions work to scatter the selected project and produce several subprojects.

A description of the helper project algorithm functions is provided in Table 1.

34

Priority Functions Description

1 CheckNumberOfPlugIns () Check number of plugin > 1and scatter

the input file based on the number of

plugins, indices, years. Otherwise,

jump to next rule.

2 CheckNumberOfIndices () Check number of indices > 5 and

scatter the input file based on the

number of indices and years.

Otherwise, jump to next rule.

3 CheckNumberOfYear () Check number of years > 1 and scatter

the input file based on the number of

years. Otherwise, return without

splitting.

Non DivideYears () Define the start date and end date for

each year and number of years in

selected project.

Table 1. Functions of helper algorithm

4.3.2 Modify the current system

To run EASTWeb in the cloud environment and execute the helper project

algorithm on top of it, some modifications are applied to the current system as depicted in

Figure 6. This approach requires two versions of EASTWeb because each version runs in

a separate environment. Also, different changes are performed on each version based on

the requirements of its environment. In this section, it shows the two versions of

EASTWeb and what modifications are applied on each one. There are two versions, one

is the base version and the other is the virtual machine (VM) version.

4.3.2.1 Base version

The current system runs on a single computer as a graphical user interface (GUI),

so some changes are applied to scale up the system. It is considered the base version. This

35

version is able to connect to AWS cloud and utilize services such as EC2, S3, and

CodeDeploy. Since the base version connects to AWS cloud, it can run VM instances in

the cloud in preparation for deployment by calling StartInstance() function. A

StartInstance() function is accomplished connecting to AWS and starting specified ec2

instances. Moreover, this version is responsible for splitting the user-selected project by

running the helper project algorithm, which produces several subproject files. These files

are uploaded to cloud storage, so S3 is accessible for all VM instances by calling

WriteToS3() function. This function creates a folder called subproject on the S3 bucket to

store subproject files. In the end, it deploys the VM version to VM instances by executing

the CreateDeployment() function. This function deploys the revision to VM instances

assigned to the deployment group. Thus, before initiating the deployment, it should set up

several steps which are the deployment group, creating an application, the revision

location. First, it creates an application name for deployment by calling the

CreateApplication() function. Second, it uploads the VM version to a revision location

such as S3 or GitHub; in this case, the VM version is uploaded to GitHub as the revision

location. Thus, to set up the revision location, a SetRevisionLocation() function is called.

Third, the deployment group is created for successfully deploying by invoking

CreateDeploymentGroup() function.

The EASTWeb base version runs on a single computer as the user interface and is

responsible for executing the helper project algorithm. The algorithm decides if a need

exists to scale up the system or not. In the case of scaling up the EASTWeb, the resources

in the cloud should be prepared for deployment and run the VM version of EASTWeb on

several VM instances in the background.

36

4.3.2.2 Virtual machine version

The virtual machine version is extracted from the current system and runs on

several VM instances on the cloud. To be compatible with the cloud environment, several

changes are performed on this version. Since the current system is a graphical user

interface GUI, there is a need to modify it to the command line interface CLI. The

reasons for using CLI is this version executes on a variety of servers as a background to

the base version. These servers do not require interaction with users. Moreover, it must

be lightweight for greater efficiency and speed.

This version starts executing on a virtual machine instance after the base version

creates the deployment. It takes a subproject file as input from the cloud storage S3.

These subproject files are already produced by the helper project algorithm and written to

S3 in the base version. As a subproject file is downloaded into a virtual machine instance,

it is deleting from the cloud storage to avoid conflict between virtual machine instances.

Therefore, each virtual machine instance in the cloud is able to download a subproject

file and process it through EASTWeb steps. When the VM version is terminated

processing the subproject files and storing its related results in the database, it rechecks

the cloud storage for any unprocessed subproject files. If an unprocessed file is located, it

does the same steps again. Otherwise, the system shuts down automatically as well as the

VM instance.

The major processing steps in EASTWeb generate several intermediate files

stored in the local drive. In order to avoid the redundancy in processing steps, each

virtual machine uploads the intermediate files that processing steps are produced to cloud

storage. However, there are certain steps that upload its files to cloud storage such as the

37

downloading and indices steps. This is due to the height of dependency on these two

steps. The download step produces stream files from online earth observation archives

and stores them locally for further processing [1]. If several virtual machines are

processing the same year of data, each one re-downloads the same files and stores them

locally, which causes repetitions in the download step. Thus, in the downloading step

uploads, produced files into cloud storage is by invoking the WriteFilesToS3() function.

Moreover, the indices step calculates various indices for each data product and generates

files in GeoTIFF format [1]. A data product has a cumulative index. This index needs to

check the previous year to calculate it. Therefore, it requires checking the indices in each

data product whether it has a cumulative index or not. In the case of a cumulative index,

the related index files are uploaded to cloud storage by calling the WriteFilesToS3()

function. Otherwise, it does not upload any index files to the cloud storage. As a result,

the index files are accessible for varied virtual machines that process the next year of a

cumulative index.

Two versions of EASTWeb work together to scale up the system based on helper

project algorithm rules. The base version runs as an interface of the system, and the VM

version works in the background of the base version. Workflow of the EASTWeb two

versions is illustrated in Figure 9.

38

Figure 9. The workflow of two versions of EASTWeb

4.3.3 Database Transformation

EASTWeb utilizes the PostgreSQL database to store and manipulate the outcomes

of processing data [1]. PostgreSQL is a traditional relational database (RDBMS), which

has limitations storing and retrieving huge amounts of data. Using RDBMS in handling

big data causes delays in storing and retrieving data. For example, EASTWeb starts

39

facing delays in database operations after processing three years of data because it

produces a massive amount of records in processing a year of data for some data

products. However, RDBMS can be used to handle and store big data by applying the

mechanism of transforming the database yearly to a central database.

To perform this approach in the EASTWeb VM version, Amazon Relational

Database Service (RDS) is used to provide a database over the cloud with several

database engines such that PostgreSQL, Oracle, MySQL, and others. By using this

service, the PostgreSQL database is created to be a central database (centralDB). This

database is accessible for all virtual machine instances to store and retrieve data. It works

as a place to accumulate the results of processing data in each virtual machine instance.

Therefore, each virtual instance has its own database as a local database (localDB). A

localDB works independently along with EASTWeb VM version to store and manipulate

the outcomes of processing subproject data. When the EASTWeb VM version terminates

all processing steps and stores the data to the localDB, it starts moving the localDB into

the centralDB by several steps. These steps work with an assumption of conflict of the

primary keys between tables while in transformation. Thus, there is a need to know the

tables that may occur in conflict. In the EASTWeb case, a global schema has six tables

and their primary keys may overlap. The steps are listed below:

- Step 1: Export the six tables having conflict in primary keys from the master

database related to the EASTWeb base version to make a backup of the last

update of these tables by calling the

CreatePG_DumpForGlobalSchema(scemaName, tableName) function. Then,

import these tables to the centralDB to be up to date by invoking the

40

ImportPGdumpFile(fileName) function. This step is done before creating the

deployment by the EASTWeb base version. Also, it is significant to make the

primary key of these tables concurrent.

- Step 2: In the VM version, the global schema in the centralDB is shared among

all virtual machines. While each VM processes a subproject, the global schema is

updated with new records. This is important to avoid the conflict of primary keys

and foreign keys.

- Step 3: After a subproject is processed and stores its result in a subproject

schema in the localDB, the subproject schema is exported to the centralDB. After

exporting each subproject schema, it evacuates the localDB. This is important to

prepare the localDB for unprocessed sub-projects and avoid delays in database

operations.

- Step 4: Copy the six tables of the global schema from the centralDB after

complete processing of all subproject files. Then export all subproject schemas to

the master database. This step is done by the EASTWeb base version. This step

updates the master database for further processing.

This approach tackles the issue of handling huge amounts of data in traditional

databases. Also, it provides a solution for overlapping the primary keys of relational

tables by performing these steps.

41

Chapter 5 Evaluation

This chapter illustrates evaluation of the dynamic scaling methodology. Dynamic

scaling methodology is utilized as a helper project algorithm and deployment

environment to enhance the performance of big data systems. Consequently, the first

section shows how dynamic scaling methodology is evaluated by applying it in the case

study, along with the performance results. The following section presents an evaluation in

utilizing and analyzing the deployment environment in two aspects: simplicity and

flexibility. At the end of this chapter, we show the guidelines are appropriate to follow by

evaluating several criteria.

5.1 How does the dynamic scaling methodology work?

In order to show the efficiency of dynamic scaling methodology in improving the

performance of big data systems, it is applied to the EASTWeb system as a case study.

The case study provides an overview of how our methodology works with systems

dealing with big data. Moreover, the results of applying the dynamic scaling

methodology are collected by comparing the performance of EASTWeb with and without

the dynamic scaling approach. These results are considered a measurement of the

effectiveness of the dynamic scaling methodology in improving the performance of

systems handling enormous amounts of data.

5.1.1 Applying dynamic scaling methodology in the case study

To prove the dynamic scaling approach overcomes the performance failure in

systems processing huge volumes of data, a need exists to implement our approach in the

case study. Thus, the issue for the EASTWeb system, which is used as a case study, is the

performance of processing massive amounts of data. For example, the EASTWeb system

42

spends a minimum of one day to process one year of data. It is time consuming when

processing more than one year of data, and it applies many calculations on the data. In

additions, some projects are not able to be processed by EASTWeb because of its

demands in processing massive amounts of data. Therefore, the EASTWeb system is an

appropriate case study to apply our methodology. Moreover, the success of the dynamic

scaling methodology is measured by checking the amount of modifications performed on

the current system and the effectiveness of the helper project algorithm in dividing and

scaling after applying it to EASTWeb.

The goal of the dynamic scaling methodology is improving performance without

applying many modifications to the current system. This is achieved after applying our

methodology on EASTWeb. Since the helper project algorithm runs on top of the

EASTWeb system, it divides the amounts of tasks based on its rules without affecting the

functionality of the current system. Also, to scale up the system and make it compatible

with the deployment environment, the command line interface (CLI) is extracted from the

current system. CLI runs on several virtual machines; therefore, it is modified to

read/write from cloud storage and store the results in the cloud database. As a result, the

dynamic scaling methodology does not demand a redesign of the current system.

In addition, applying dynamic scaling methodology in EASTWeb examines the

efficiency of the helper project algorithm in dividing the amounts of data based on its

rules. Also, it checks if the helper project is properly scaling up/down the system. To

achieve that, EASTWeb runs various sizes of projects; some are needed for scaling up the

system to be processed and others are not. The helper project algorithm divides the

project meeting the rules and then properly scales up the system. If a project does not

43

need to be divided, the helper project runs the project on the local computer. Results of

performance of EASTWeb after applying our approach is described in the following

section.

5.1.2 Performance comparison of case study

To prove the dynamic scaling methodology is effective in improving the

performance of big data systems, we compare the performance of EASTWeb with and

without our methodology. Two scenarios are performed on EASTWeb; then we compare

the results of each scenario. Each scenario runs a project called the IMERG_Project. This

project has several entries such as a plugin, an index, and three years of data. The first

scenario is the dynamic scaling methodology is run on the top of EASTWeb. Thus, the

helper project algorithm divides this project into three subprojects based on its rules.

Each subproject runs on a virtual machine to work in parallel. The second scenario is

EASTWeb runs without our methodology, so the IMERG_Project is not separated into

several subprojects. Therefore, the entire project runs in a sequence. The results of

performance for each scenario is shown in Table.2.

44

Scenarios

Scenario1: EASTWeb

with the dynamic scaling

methodology

Scenario2: EASTWeb

without the dynamic

scaling methodology

Project IMERG_Project IMERG_Project

Description Three subprojects run on

several virtual machines

in parallel.

A project run on the

single commuter.

Performance Takes 13 hours to process

3 years of data

Takes 23 hours and 30

minutes to process 3

years of data

Table 2. the performance results of two EASTWeb Scenarios

The dynamic scaling methodology is able to decreases the running time to 10

hours as shown in scenario1. Since our methodology divides and runs the

IMERG_Project on several virtual machines working in parallel, the performance of

EASTWeb is improved significantly. As a result, the dynamic scaling methodology

illustrates its effectiveness in enhancing the performance of systems processing huge

amounts of data.

45

5.2 How does deployment approach work?

One of the dynamic scaling methodology components is the deployment

environment. Many deployment environments exist: cloud, cluster, virtualization, or grid.

Cloud computing is utilized as a deployment environment to scale up the system and

employ its services in scaling. Moreover, several providers of cloud computing exist,

such as Google Cloud platform, Microsoft Azure, Amazon Web Service, and IBM.

Therefore, the deployment approach takes into account the simplicity and flexibility in

the evaluation and choice of the deployment environment. Simplicity and flexibility are

two aspects needed in the deployment environment to fulfill the success of our

methodology.

5.2.1 Simplicity

To satisfy the simplicity of the deployment environment, the amazon web service

(AWS) is utilized as a deployment environment to scale up/down the systems. AWS

provides a wide range of services that can be employed to scale up the system without

much effort. Offering a variety of services helps to meet all the system’s needs, which

allows choosing the operating system, web application platform, database engines,

programing languages, and other services [17]. For example, AWS has six instance

families and 38 instance types with several regions [19]. This offers more options for

clients in the computing service. All services are able to integrate and communicate

together to address the scaling issue. Moreover, AWS provides software developer kits

(SDKs) in various languages, which simplify using AWS services in applications.

Consequently, using AWS achieves simplicity in the deployment approach. However, the

46

dynamic scaling approach is not restricted to AWS, and it could work along with any

cloud platform.

5.2.2 Flexibility

One concern in the dynamic scaling methodology and the deployment approach is

flexibility. Flexibility is evaluated on both the dynamic scaling methodology and

deployment approach. To accomplish the flexibility in the dynamic scaling methodology

does not require using a specific deployment environment; it is flexible to work with any

environment. Thus, our methodology provides the requirements that a system needs to

scale it up such as virtual machines, databases, and storage in the deployment

environment. These requirements are mandatory for success of the deployment, not the

deployment environment. Therefore, our methodology does not restrict using a certain

environment, so it fulfills the flexibility in the dynamic scaling methodology.

This deployment approach should to be flexible to gain successful deployment of

the application. Moreover, flexibility in the deployment environment speeds up

communication between services necessary for scaling up the system. Therefore, AWS is

selected as a deployment environment. Flexibility is one of the significant features in

AWS. The services work and communicate together with the application to automatically

decide appropriately in dealing with requests. [18]. AWS enables configuration of the

virtual machines using either a pre-configuration or custom machine image (AMIs). In

storage, it provides a temporary block and object storages. AWS fully supports relational

NoSQL and big data databases. All characteristics of AWS are achieved through

flexibility of the deployment approach.

47

5.3 Guideline

In Chapter 3 we provide guidelines for systems facing a dilemma of failures in

performance in processing huge amounts of data. To ensure the guidelines are

appropriate to follow, they are evaluated on several criteria such as simplicity,

description, and information. Therefore, to achieve simplicity in the guideline, it is

written as an easy to follow list. Also, it is shown as a diagram to facilitate understanding.

To make each step more descriptive and more understandable, the guideline contains a

brief description. This fulfills the descriptive criteria of the guidelines. For achieving the

informative criteria, each guideline shows several examples and background information,

which gives the reader a general overview.

5.4 Compare our work to others works

5.4.1 Dynamic Scalability of web applications on a virtualized Cloud computing

environment [10]

This research provided a novel scenario for dynamic scaling of a web application

by employing scaling indicators. The scaling indicators, related to the web application,

were number of concurrent users, number of active connections, average response times

per request, and other indicators. On the other hand, this thesis illustrated a methodology

for dynamic scaling of big data systems by using three rules. The rules used as indicators

and specified by each system applied dynamic scaling to improve performance.

48

5.4.2 ECG monitoring and analysis system [9]

This research provided an overview of how to design a dynamic scalable system.

Thus, the helper project algorithm developed takes advantage in its results and system

design. Unlike the helper project algorithm, this approach focuses on scaling up the

system based on two parameters, user requests and response time, to enhance the quality

of services of the web application. The helper project algorithm dynamically scales up the

system based on three rules with various priorities. Also, it is flexible to scale the system

at any deployment environment.

5.4.3 High performance analytics of big data with dynamic and optimized Hadoop

cluster [16].

This research presented a model to handle analyzing a large amount of data on a

cloud environment and matched the requirements of safety, easily scalable, and high

efficiency. Unlike our methodology, they used a Hadoop tool to schedule jobs and

MapReduce to distribute tasks through clusters. Moreover, they used virtual machines to

host the application services and database.

49

Chapter 6 Conclusion

Dynamic scaling methodology is designed to tackle performance failures in big

data systems. This chapter contains two sections. The first section demonstrates a

summary of the thesis with an overview of our work, and the second section discusses

future work in areas of dynamic massive-scaling researches.

6.1 Conclusion

A novel dynamic scaling methodology is developed in this research to deal with

the performance failure of systems that process huge amounts of data. This methodology

involves a novel algorithm called the helper project to divide a task into several smaller

tasks based on various aspects in a big data perspective. These aspects known as

algorithm rules are prioritized from high to low for dividing the project. Also, the helper

project decides whether it is necessary to scale up, or not, the system based on the

number of tasks produced after separation. Moreover, our methodology provides an

overview of how to choose the deployment environment and what services are needed for

scaling systems. The most significant features of the dynamic scaling methodology are

that they do not restrict in certain environments.

The primary interest in this methodology is to apply it without doing many

modifications to the current system. Moreover, it addresses the bottlenecks of relational

databases during processing huge amounts of data by suggesting a database

transformation approach.

50

The dynamic scaling methodology significantly improves the performance of

systems handling massive amounts of data. It divides the task into several smaller tasks

by applying the helper project algorithm. Also, it applies the necessary scaling up of the

system to run in several virtual machines in the deployment environment. The

methodology is applied to the EASTWeb system, which suffers a severe performance

issue in processing huge amount of data. We compared the speed of running the same

project in EASTWeb with and without dynamic scaling methodology, and results showed

that applying the dynamic scaling methodology significantly improved the

performance.

6.2 Future Work

The dynamic scaling methodology improves the performance of big data system

using cloud computing. As a direction of future work, the dynamic scaling methodology

will work along with other deployment environment to be more flexible and general.

Moreover, in order to enhance the efficiency of the dynamic scaling methodology, a new

algorithm will be developed to scale the systems in two directions horizontally and

vertically.

6.2.1 Consider other deployment environment

There are several deployment environments such as cluster and virtualization

[21]. Therefore, utilizing the dynamic scaling methodology in other deployment

environments will create a more general and flexible methodology. Using virtualization

51

in VMware [22] along with the dynamic scaling methodology will be the next step to

enhance our work.

6.2.2 Consider the vertical scaling

Our methodology focuses on horizontal scaling to improve the performance of big

data systems. Horizontal scaling capability increases the resources, such as hardware or

software, to improve performance [20]. The helper project is able to increase and

decrease the virtual machine instances based on the number of tasks to be processed by

the system. Thus, to improve the dynamic scaling methodology, an algorithm will be

developed to manage the scaling vertically. The vertical scaling ability increases

resources such as increasing memory space and CPU to a machine [20]. To apply the

vertical scaling to our methodology, a need exists to identify the proper resources for

each task. Applying scaling in both directions, horizontally and vertically, will provide

better enhancement in the performance of big data systems.

52

LITERATURE CITED
[1] Liu, Y., M. D. Devos, M. Abdul-Rahim, J. Hu, and M. C. Wimberly. 2016. EASTWeb

framework - a plug-in framework for constructing geospatial health applications. In:
2016 IEEE International Conference on Electro-Information Technology (EIT). Grand
Forks, ND: 0627-0632.

[2] Liu, Y., J. Hu, I. Snell-Feikema, M. S. VanBemmel, A. Lamsal, M. C. Wimberly. 2015.

Software to Facilitate Remote Sensing Data Access for Disease Early Warning Systems.
Environmental Modeling and Software. Vol. 74, p. 247-257.

[3] Bihani, Prateek, and S. T. Patil. "A comparative study of data analysis
techniques." International Journal of Emerging Trends & Technology in Computer
Science 3, no. 2 (2014): 95-101.

[4] distributed computing:
http://whatis.techtarget.com/definition/distributed-computing (accessed December 15,
2017).

[5] Deployment environments:
https://www.ibm.com/support/knowledgecenter/en/SSTLXK_7.5.1/com.ibm.wbpm.ref.
doc/help_nd/index.html (accessed December 15, 2017).

[6] Why traditional database systems fail to support “big data”:

http://marketrealist.com/2014/07/traditional-database-systems-fail-support-big-data/
(accessed December 15, 2017).

[7] Hashem, Ibrahim Abaker Targio, Ibrar Yaqoob, Nor Badrul Anuar, Salimah Mokhtar,
Abdullah Gani, and Samee Ullah Khan. "The rise of “big data” on cloud computing:
Review and open research issues." Information Systems 47 (2015): 98-115.

[8] Amazon Web Service: https://aws.amazon.com

[9] Pandey, Suraj, William Voorsluys, Sheng Niu, Ahsan Khandoker, and Rajkumar Buyya.
"An autonomic cloud environment for hosting ECG data analysis services." Future
Generation Computer Systems 28, no. 1 (2012): 147-154.

[10] Chieu, Trieu C., Ajay Mohindra, Alexei A. Karve, and Alla Segal. "Dynamic scaling of web
applications in a virtualized cloud computing environment." In E-Business Engineering,
2009. ICEBE'09. IEEE International Conference on, pp. 281-286. IEEE, 2009.

[11] Ostermann, Simon, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan, Thomas Fahringer,
and Dick Epema. "A performance analysis of EC2 cloud computing services for scientific
computing." In International Conference on Cloud Computing, pp. 115-131. Springer,
Berlin, Heidelberg, 2009.

[12] what is AWS EC2? : https://www.sumologic.com/aws/what-is-aws-ec2/ (accessed
December 15, 2017).

http://whatis.techtarget.com/definition/distributed-computing
https://www.ibm.com/support/knowledgecenter/en/SSTLXK_7.5.1/com.ibm.wbpm.ref.doc/help_nd/index.html
https://www.ibm.com/support/knowledgecenter/en/SSTLXK_7.5.1/com.ibm.wbpm.ref.doc/help_nd/index.html
http://marketrealist.com/2014/07/traditional-database-systems-fail-support-big-data/
https://aws.amazon.com/
https://www.sumologic.com/aws/what-is-aws-ec2/

53

[13] Amazon Simple Storage Service (Amazon S3):
http://searchaws.techtarget.com/definition/Amazon-Simple-Storage-Service-Amazon-
S3 (accessed December 15, 2017).

[14] AWS CodeDeploy (Amazon Web Services CodeDeploy):

http://searchitoperations.techtarget.com/definition/AWS-CodeDeploy-Amazon-Web-
Services CodeDeploy (accessed November 10, 2017).

[15] Li, Yang, Li Guo, and Yike Guo. "An efficient and performance-aware big data storage
system." In International Conference on Cloud Computing and Services Science, pp. 102-
116. Springer, Cham, 2012.

[16] Pradhananga, Yanish, Shridevi Karande, and Chandraprakash Karande. "High
performance analytics of bigdata with dynamic and optimized hadoop cluster."
In Advanced Communication Control and Computing Technologies (ICACCCT), 2016
International Conference on, pp. 715-720. IEEE, 2016.

[17] AWS vs Azure vs GCP:
http://www.globaldots.com/aws-vs-azure-vs-gcp-ups-downs-public-cloud-trifecta/
(accessed December 15, 2017).

[18] 6 reasons why we chose AWS: http://aptuz.com/blog/6-reasons-why-we-chose-aws/
(accessed December 15, 2017).

[19] AWS vs Azure vs Google:
https://cloudacademy.com/blog/public-cloud-war-aws-vs-azure-vs-google/ (accessed
December 15, 2017).

[20] horizontal scalability:
http://searchcio.techtarget.com/definition/horizontal-scalability (accessed December
15, 2017).

[21] Deployment environments:
https://www.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.ref.doc/
help_nd/index.html (accessed December 15, 2017).

[22] VMware: https://www.vmware.com

[23] IBM: https://www.ibm.com/us-en/

[24] Google Cloud Platform: https://cloud.google.com

[25] Microsoft Azure: https://azure.microsoft.com/en-us/

http://searchaws.techtarget.com/definition/Amazon-Simple-Storage-Service-Amazon-S3
http://searchaws.techtarget.com/definition/Amazon-Simple-Storage-Service-Amazon-S3
http://searchitoperations.techtarget.com/definition/AWS-CodeDeploy-Amazon-Web-Services%20CodeDeploy
http://searchitoperations.techtarget.com/definition/AWS-CodeDeploy-Amazon-Web-Services%20CodeDeploy
http://www.globaldots.com/aws-vs-azure-vs-gcp-ups-downs-public-cloud-trifecta/
http://aptuz.com/blog/6-reasons-why-we-chose-aws/
https://cloudacademy.com/blog/public-cloud-war-aws-vs-azure-vs-google/
http://searchcio.techtarget.com/definition/horizontal-scalability
https://www.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.ref.doc/help_nd/index.html
https://www.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.ref.doc/help_nd/index.html
https://www.vmware.com/
https://www.ibm.com/us-en/
https://cloud.google.com/
https://azure.microsoft.com/en-us/

	A Dynamic Scaling Methodology for Improving Performance of Big Data Systems
	Recommended Citation

	Chapter 3 Methodology
	3.1 Scaling the System
	3.1.1.1 Consider categories of data in splitting
	3.1.1.3 Consider volume of data in splitting
	3.3 Deployment Environment
	3.5 Guidelines
	Chapter 4 Case Study
	4.1 EASTWeb V2.3 overview
	The EASTWeb system is set up as a stand-alone application on a single computer. When initiating the system, no complications are encountered with the performance of the system; but while in progress, the data rapidly grows which raises the failure per...
	To perform the approach in EASTWeb, we need to study and test EASTWeb to define the three rules of the helper project algorithm. As a result of testing and studying, the system takes an xml file called project as an input which includes the amount of ...
	4.2 Amazon Web Service (AWS)
	In this case study, AWS is utilized to scale up and run EASTWeb in several servers in the cloud. AWS offers a set of services such as storage, database, application, and deployment. The services used to scale up EASTWeb.
	LITERATURE CITED
	[25] Microsoft Azure: https://azure.microsoft.com/en-us/

