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ABSTRACT 
 

OPTIMIZING HEAT TRANSFER OF HEAT SINKS IN A RANGE 

OF CONFIGURATIONS. 

ARCHIBALD AMOAKO 

2018 

In this study, different heatsink geometries used for electronic cooling 

are studied and compared to each other to determine the most efficient. The goal 

is to optimize heat transfer of the heat sinks studied in a range of configuration 

based on fin geometry.  

Heat sinks are thermal conductive material devices designed to absorb 

and disperse heat from high-temperature objects (e.g. Computer CPU). Common 

materials used in the manufacturing of heat sinks are aluminum and copper due 

to their relatively high thermal conductivity and lightweight [1]. Aluminum is 

used as the material for the heatsinks studied in this research project. 

To start, experimental results from a wind tunnel test conducted were 

compared to numerical results generated to establish a validation case. Best 

practices in running numerical simulations on heat sinks along with suitable 

models for simulating real-world conditions were determined and analyzed. The 

two main thermal performance-evaluating parameters used in this project are 

pressure drop (ΔP) and thermal resistance (R).  

Thirteen numerical CFD simulations were run on different heatsink fin 

extrusion geometries including the traditional rectangular plate, arc plate, radial 

plate, cross pin, draft pin, hexagonal pin, mixed shape pin fin, pin and plate, 
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separated plate, airfoil plate, airfoil pin, rectangular pin, and square zig-zag plate 

heat sinks. It was observed that different fin geometries and dimensions affect the 

performance of heat sinks to varying extents.  

The square zig-zag plate heat sink from results obtained had the lowest 

thermal resistance of 0.25 K/W with the separated plate having the lowest 

pressure drop of 11.94 Pa. This information is relevant in the selection of fan type, 

size, and model of heat sink for electronics cooling. Also, another important 

conclusion drawn from this project is the existence of no definite correlation 

between the thermal resistance (R) and pressure drop (ΔP) parameters when 

evaluating heatsink performance.  
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CHAPTER 1: INTRODUCTION 
 

Technological improvements over the years have led to the tremendous 

decrease in the size of electronic devices, hence leading to a higher heat flux 

generation. Due to this change, heat transfer or thermal management in these 

devices has become critical in the engineering and manufacturing of electronic 

devices, especially computers. Lee et al. [1] in one of his numerous studies on 

electronic failure due to thermal energy discovered that failure rates of electronic 

components almost doubles when the junction temperature increases by 100C 

beyond operating temperature.  

Over the years, heat sinks have proven to be a viable thermal 

management device with a few open source information available on its optimum 

design. Plate-fin heatsinks are widely used to remove heat from electronic devices 

because of their advantages such as simple machining, structure and lower cost 

[2]. Main factors to consider in the design of heat sinks include a large heat 

transfer rate, low-pressure drop, and a simpler structure [3]. The goal of 

optimizing heat sinks is to decrease thermal resistance and minimize 

manufacturing and operational cost so as to meet operational requirements. 

Minimizing pressure drop and weight also affects the cost of operation since fan 

size and type is dependent on this parameter.  

Factors that affect the performance of heat sinks mainly are:  

• Air velocity  

• Material  
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• Heat sink surface treatment  

• Extrusion fin design (Geometry)  

Commercial CFD software packages like ANSYS-FLUENT [4] and 

STARCCM+ [5] have become widely used in the thermal analysis and study of 

electronic devices due to their internally built heat transfer handling capability. 

Heat sink fin extrusion geometry comes in two main types, the plate fin which 

runs across the whole base of the heat sink and pin fin, arranged or sectioned in a 

specific pattern across the heatsink base. One of the most common heat sink fin 

design is the rectangular plate fin. This is due to its easy CAD modeling and 

manufacturability. 

Subramanyam and Crowe [6] concluded that CFD based approach 

provides good and well-detailed information on the performance of heat sinks. 

This encouraged and motivated the use of CFD STAR CCM+ for this research. 

Gupta et al. [7] worked on CFD and thermal analysis of rectangular plate fin and 

cylindrical pin fin heat sinks with a primary focus on temperature and heat flux 

distribution. The results of this work revealed that with the same dimensions and 

boundary conditions, the thermal resistance is lower for rectangular plate fins as 

compared to a cylindrical pin fin heat sink. This is as expected due to the larger 

heat transfer surface area (A) of the rectangular plate heat sink. Yu et al. [8] 

performed similar work and concluded that thermal resistance of plate-fin heat 

sinks is lower by approximately 30% than that of pin fin heat sinks with the same 

blowing velocity.  
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Most computers CPU rely on heat sinks of various forms and shapes to 

keep them thermally operational. An efficient and reliable CPU plays a huge role 

in a computer’s performance, thereby impacting the capabilities of any system in 

which it is used. Ismail et al. [2] compared four different types of heat sink: the 

Pentium III and IV, AMD Athlon, and AMD Duron. Using Fluent 6.2 CFD 

software simulations results were obtained and compared to experimental results. 

It was concluded that total surface area and fin spacing significantly affects heat 

sink performance. Fin density (Number of fins) influences thermal performance 

of heat sinks since the flow path of the working fluid is affected by the layout of 

fins. Densely stacked fins can inhibit the flow of coolant to the center part of the 

heat sink, which tends to be the hottest area. On the other hand, fewer fins increase 

the space between fins, which eases the airflow path resulting in lower pressure 

drop but also provide less surface area for heat transfer. One significant 

conclusion from Mohan and Govindarajan study on thermal performance of heat 

sinks is the effect on heat transfer as fin number is varied in relation to fin height 

[3]. That study showed that the sensitivity to the number of fins decreases as fin 

height increases due to the larger flow space provided across the heat sink. Mohan 

and Govindarajan [3] demonstrated the existence of an optimal fin number and 

geometrical parameters for a specific purpose heat sink. 

The literature review illuminated the need for open source information 

that could potentially serve as a numerical validation case for fellow researchers 

in this area of study. For this reason, a main goal of the current paper is to provide 

credible and valid simulation results for various heat sink geometries and the 
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effects of changing certain parameters to optimize it using CFD software STAR 

CCM+ [5]. Results obtained from the simulations ran are compared with 

published experimental data. Also, this paper provides researchers information 

on best practices to follow when running valid simulations on various heat sinks. 

1.1. Modes of Heat Transfer 
 

Heat is a form of energy, hence can be transferred from one medium to 

another to conserve it. As a result of the law of energy conservation, heat transfer 

or thermal energy is transferred from a higher thermal energy surface or object to 

a lower medium or object. Heat transfer occurs in different modes under different 

conditions. The three modes of heat transfer that exist include conduction, 

convection, and radiation. 

1.2. Electronic Cooling 
 

Electronic cooling over the years has become more important due to the 

increase in heat flux generated in electronic devices. All electronic devices 

generate heat during operation. For an efficient, fast, and reliable operation of 

these gadgets, cooling needs to take place in order to keep the temperature within 

devices acceptable for functionality. 

Several methods of electronic cooling exist, the most widely used include heat 

pipes, heat sinks, and impinging jets. 

1.3. Conduction Heat Transfer Method 
 

Conduction mode of heat transfer takes place within a solid or at the 

interface where objects are in contact. In a solid material, heat is transferred 
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through conduction as a result of the vibration of atoms against one another within 

it without the material not necessarily moving as a whole. In heat sinks, 

conduction takes place in two different phases. First is the heat transfer through 

conduction between the object being cooled and the base or bottom surface of the 

heat sink. The second phase is conduction within the heat sink from its base to 

the extruded fins. Heat from the hot bottom base of the heat sink is conducted to 

the extruded fin for dispersion to its surroundings.     

1.4. Convection Heat Transfer Method 
 

Convection heat transfer is the transfer of heat as a result of the 

movement of a fluid (e.g. water, air etc.). Two main types of convection exist 

based on conditions and desired results. Natural convection is a form of heat 

transfer in which no external source (fan, blower, or pump) is needed to move the 

fluid being used. On the hand, forced convection makes use of an external source 

to move the fluid. Most heatsinks operate by means of forced convection. In most 

cases, a fan placed so as to direct air through the fins of the heat sink.  

Different flow directions are used in forced convection. The two directions are; 

Side inlet, Side exit (SISE) and Top inlet, Side exit. The placement of the external 

fluid source usually depends on size restriction and heat sink geometry. 

1.5. Radiation Heat Transfer Method 
 

Radiation is a form heat transfer that exists as a result of electromagnetic 

waves or light emission. This mode of heat transfer does not require a medium 

like the other forms discussed. Heat sinks do not rely on the radiation mode of 

heat transfer to function as a thermal management device. The dominant modes 
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of heat transfer in a heat sinks function are conduction and convection. These 

forms are present no matter what scenario or purpose a heat sink is used for.  

1.6. Plate Fin Heat Sink 
 

Plate-fin heat sinks as implied by their name are heat sink geometries that 

have their extruded fins running across the entire length of the base in the form 

of a plate. These types of heat sinks are the most commonly used in electronic 

devices. Heat sinks with plate fins can be modeled in different shapes and can 

also be arranged in different forms to force the direction of flow. Plate-fin heat 

sinks usually cover a larger surface area across the base of the heat sink. Hence, 

generally has a larger area for heat transfer since there’s an increase contact area 

between the working fluid(air) and the material surface. 

1.7. Pin Fin Heat Sink  
 

Heat sinks with pin fin extrusions are widely used based on the ability to 

increase their surface area through the increase in the number of pins. Pin fin 

extrusions are usually layered across the base of a heat sink in a specified order 

or pattern so as to enhance airflow. One advantage of using pin fins over plate 

fins is that the direction of flow does not necessarily need to be precisely defined 

since all sides could work as an inlet though or outlet. In most cases depending 

on geometry, there is a direction of flow inlet and outlet that increase the 

performance of the pin fin heat sink and should be taken into account when 

mounted on the object to be cooled [9].  
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1.8. Exotic Geometry Heat Sink 
 

With improved methods of manufacturing, manufacturers and 

researchers are able to manufacture objects of different shapes and dimensions. 

With geometry being a factor that affects the performance of heat sinks, the ability 

to manufacture heat sinks of different exotic geometries enables both thermal 

engineering and researchers to optimize heat sinks based on geometry 

modification. In this study, different heatsink geometries are analyzed under the 

same conditions and compared to each other based on their thermal performance 

and cost of operation. The exotic geometries in this study were modeled based on 

knowledge from fluid dynamics and heat transfer to better improve heat sink 

performance.  
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CHAPTER 2: LITERATURE REVIEW 
 

In this chapter, studies conducted by other researchers over the years in 

this area of study is analyzed, and their contributions to the improvement and 

understanding of the heat transfer process in heat sinks is studied. With the 

knowledge gained from previous researchers work, the study done in this thesis 

project is aimed at adding more knowledge on heat sinks and solving potential 

problems or questions not answered by the literature available on heat sinks. 

The continual development of electronic devices such as computers and 

its growing use in our day-to-day lives has made it eminent to focus on keeping 

them efficient and reliable. In an effort to improve functionality, reliability, and 

aesthetics, electronic devices have decreased in size tremendously and have 

become faster [7]. 

Many thermal management devices exist, one of the commonly used is 

the heat pipe. Heat pipes just like heat sinks are heat transfer devices used as a 

means of regulating the temperature in a system or machine for safe and efficient 

operation. Heat pipes are basically heat transfer devices that use the phase change 

within its working fluid to transport heat from a hot object. Key components of a 

heat pipe include a vacuum-tight sealed chamber, capillary wick structure, and a 

working fluid. The phase changes that occur during the heat transfer process in a 

heat pipe are evaporation and condensation. The evaporation process involves the 

conversion of the liquid working fluid into a vapor. The energy (sensible heat) 

used in this conversion process is obtained from the ambient air around the heat 

pipe.  The reverse case (condensation) then occurs as the hotter fluid vapor(gas) 
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is transferred to the cooler part of the pipe where heat is dispersed. Therefore, the 

heat transfer process within a heat pipe can be separated into two different 

sections, the heat source (evaporator section) and heat sink (condenser section) 

[10].  

The most common thermal management device for electronic cooling is 

the heat sink. Heat sinks work just like radiators in cars, they regulate the 

temperature in the machine or device in which they are installed to keep them 

operationally safe.  

Ismail and Abdullah [2] compared four different types of heat sinks: the 

Pentium III and IV, AMD Athlon, and AMD Duron heat sinks. Fluent 6.2 

computational fluid dynamics software was used in running simulations and 

results obtained were compared to experimental results. The flow and temperature 

fields of the heat sink at different Reynolds numbers were analyzed and results 

showed that the thermal impedance (⊝ ) reduces as Reynolds number increases 

(ReL).  The thermal impedance is based on the temperature difference between 

the surrounding temperature and the base surface temperature of the heat sink. 

                    ReL =!"#
$

 ………………….........Equation (1) 

                     ⊝ = %&'()	+	%"
,

 ………………..... Equation (2) 

In Ismail and Abdullah’s work, it was also deduced that larger fin spacing 

results in better heatsink performance [2]. Also, experiments run by Ismail and 

Abdullah proved that higher surface area and suitable fin density provide better 

heat sink performance. In conclusion, the Pentium IV heat sink was determined 

to give the best thermal management in comparison to the AMD Athlon and 
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Duron. 

Korpys [11] investigated the performance of a commercial heat sink 

fixed to the CPU of a PC using water and copper oxide (II) nanofluids as working 

fluids. The heat sink was used in cooling the processor of the computer that 

dissipated 115W of power. The performance of water and copper oxide (II) 

nanofluids was analyzed using experimental and simulation methods. Results 

obtained showed that the simulation and experimental approach produced similar 

results in relation to the cooling of the PC ‘s processor. Water was determined to 

be a good enough coolant for a CPU.  

Majumber et al. [12] studied the cooling performance of a heat sink with 

air-water flow through a mini-channel. In their study water flows internally 

through the mini-channel fins of the heat sink while air flows externally. It was 

observed that as the aspect ratio (height/width) of the channel decreases the 

Nusselt number decreases while pressure drop increases. Nusselt number is 

observed as directly related to the Reynolds number hence the Reynolds number 

increase results in an increase in Nusselt number as well. 

Matthew B. de Stadler [13] studied a similar research on optimizing the 

geometry of heat sink by determining an optimal layout for a given heat sink. In 

his work, his goal was to determine a valid performance metric for ranking 

different designs of a heat sink. Boundary conditions used in this research were 

set at a constant surface temperature, which resulted in inconsistencies of results. 

This research paper showed that there are difficulties in using fixed temperature 

boundary condition for the hot base plate since no significant results were 
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obtained from simulations run. Future works recommended by Stadler include 

running simulations using a constant heat flux boundary condition. 

Gupta et al. [7] worked on CFD and thermal analysis of rectangular plate 

fin and cylindrical pin fin heat sinks with a primary focus on temperature and heat 

flux distribution. The results of this work showed that with the same dimensions 

and boundary conditions total heat transfer rate of rectangular plate fins are 

greater than cylindrical pin fins as expected.  

Subramanyam et al [6] to investigate ways of rapidly designing heat sinks 

using computational and experimental tools. He discovered that CFD based 

approach though costlier provides better and more detailed information and 

predicts the performance well. This encouraged and motivated the use of CFD 

STAR CCM+ for this research.  

In a study by Seri Lee [14], the relative cost associated with varying 

parameters that affect heat sink performance was analyzed for optimization 

purposes. Conclusions drawn from this research showed that there are an 

optimum fin length and number for specific heat sink designs to obtain optimum 

performance. Experimental results from Dogan and Sivrioglu’s [15] study on 

mixed convection heat transfer from plate-fin heat sinks inside a horizontal 

channel in a natural convection region also supported this conclusion.  

Above a certain point (number of fins), the net effect of thermal 

performance reverses due to total convective surface increase resulting in greater 

pressure drop hence fin flow velocity decreases as well. The same can be said for 

fin lengths exceeding optimum point due to temperature rise in the air stream 
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between fin surfaces in conjunction with a reduction in flow velocity increasing 

the pressure drop.  

The determined optimum fin spacing range for heatsinks is between 8-12mm 

[15]. 

Zheng and Wirtz [16] studied heat transfer and pressure drop correlation 

in a pin-fin fan heat sink and came to the same conclusion as Seri Lee [14] from 

his study. Their work showed that different optimal pin-fin configurations 

provide different results depending on the design criteria imposed on the flow.  

Lindstedt et al [17] investigated the optimal shape of single fin and fin 

array heat sinks. He considered three different heat sink geometries: rectangular, 

triangular, and trapezoidal. It was found that due to the coupling of convection 

and conduction, the most concave geometry i.e. triangular explicitly serves as the 

optimal single fin heat sink geometry. On the other hand, with fin array heat sinks, 

trapezoidal fins were determined to give the best practical compromise for 

thermal resistance, fan power, and mass proving that optimal shapes of single fin 

heat sinks cannot be used to optimized fin arrays in heat sinks. 

Mini channel heat sinks have been proven to be viable methods of 

thermal management. Majumder et al. [12] worked 3-Dimensional numerical 

study of cooling performance of a heat sink with air-water flow through mini-

channel. 

Impinging jets perform a similar function as heat sinks but mostly on 

larger scaled objects or devices. The jet impingement cooling technique produces 

relatively higher heat and mass transfer in comparison to other methods used [18]. 
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Rocket launchers and turbine blades implement different forms of impinging jet 

layouts for cooling during operations. Like the heat sink extruded fins, the 

arrangement of jets in the impinging jet affects thermal performance of these 

cooling devices or techniques.  

Different fluids such as coolants used in refrigerators ensure good 

thermal energy transfer from heat sinks to air. Fans used in conjunction with heat 

sinks also helps improve heat transfer between heat sinks and surrounding air. 

Using air as a means of cooling electronic devices is an important technique in 

designing these devices for various reasons including it being readily available, 

safe, the process does not cause any form of contamination to the air, does not 

incorporate vibration, noise or moisture to the system being used [19].  

For example, Lampio and Karvinen [20] generated a method to calculate 

the temperature field and heat transfer of a heat sink cooled by forced or natural 

convection(air).  

Surrounding conditions or the system within which a heat sink operates affects 

its thermal performance. Depending on the location of the heat sink and the 

surface area the heat source device covers on the bottom surface of the heat sink 

base, thermal energy distribution may vary within the heat sink. For this reason, 

an advanced simulation work was conducted by Mohan and Govindarajan [21] 

on thermal analysis of composite pin fin heat sinks in a complete computer 

chassis. This study ensured the simulation of environmental condition effects on 

heat sink thermal performance during operation. Figure 1 below shows a 

schematic of the complete computer chassis studied.  
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Figure 1: Full computer chassis model [21]. 

 
The computer chassis and component locations were kept constant while 

heat sink designs were changed for the simulations conducted. Velocity field and 

flow path around heat sink were affected by the presence of other components 

involved in their study.  Hot air flow recirculation can be reduced by using plate-

fin heat sinks instead of pin fin heat sinks in some situations.  

The weight parameter also is very important when designing heat sinks 

for various purposes. Usually, devices in which heat sinks are installed have 

weight limits or are desirable when lightweight. For this reason, optimizing the 

weight of a heatsink is an area of focus when design engineers work on improving 

electronic devices as a whole. Optimizing this parameter also reduces the cost of 
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manufacturing of these heatsink models. One approach in reducing weight is 

creating channel holes through fins of heat sinks, this not only reduces weight but 

also allows designers to model air flow paths for better heat transfer since these 

holes function as a channel for air flow through and around heat sink fins [22].   

Sukumar et al. [22] studied a continuous and interrupted rectangular fin heat sink 

geometry performance with and without through holes. From results obtained, the 

through holes heat sink for the interrupted fins performs better than the 

interrupted fin without holes. This conclusion is interesting since an increase in 

surface area is expected in most cases to increase heat transfer performance of the 

heat sink. 

Another growing but more complex research area on the optimization of 

heat sink designs is the use of topology [23]. This form of design optimization 

utilizes objective functions to optimize a specific desired parameter that affects 

heat sink performance (thermal resistance, pressure drop, weight).  Topology 

optimization provides a faster mode of generating design concepts but 

manufacturability is not always guaranteed as some of the geometries the 

functions produce are very complex. To achieve feasible manufacturability of 

topology optimized heatsink designs, fabrication constraints can be set up in the 

optimization process. 

For this reason, Wits et al [24] in his study utilized 3D printing/additive 

manufacturing method in manufacturing complex objects from different 

materials. The 3D printing or additive manufacturing process is a more modern 

way of creating three-dimensional objects by the additions of layers using 
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computational control.  

2.1. Microchannel Heat Sinks 
A microchannel heatsink is a heatsink with microchannel extrusions 

incorporated with the intended purpose of improving heat transfer by allowing 

the working fluid flow within it. The concept of microchannel heat sinks was 

introduced in 1981 by Tuckerman and Pease [25] as a means of heat transfer in 

electronic devices. Just like normal heat sinks without microchannels, the 

performance of microchannel heat sinks is affected by size and shape.   

Zhang et al. [26] researched the effects of the channel shape on the 

cooling performance of the hybrid microchannel and slot-jet heatsink module. A 

study on new hybrid jet impingement/microchannel cooling scheme by Barrau et 

al. [27] proved the success of improving cooling performance through the use of 

hybrid jets and microchannels. 

Chen et al [28] looked into three-dimensional simulations of heat and 

fluid flow in noncircular microchannel heat sinks. This was done by creating 

triangular, rectangular, and trapezoidal shaped microchannels through the heat 

sink geometries simulated. From their work, the conclusion was drawn that a 

triangular microchannel provides a higher cooling efficiency than a rectangular 

and trapezoidal channel. 

Lee and Garimella [29] studied heat transfer in rectangular 

microchannels of different aspect ratios and found that for a rectangular 

microchannel heatsink, a higher aspect ratio does not necessarily increase but can 

also decrease its thermal resistance. Figure 2 below shows a schematic of a 

microchannel heat sink. 
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Figure 2: Schematic diagram of a microchannel heat sink [30]. 

 

In addition to the introduction of microchannels to improve the heat transfer of 

heatsinks, researchers over the years have studied the effect of various geometry 

modifications on the performance of heat sinks. 

The two most traditional cooling techniques and modifications incorporated 

mostly in electronics cooling are micro-channel flow and impinging jets [31]. 

Huang et al. [32] studied heat transfer enhancement of a micro-channel 

heatsink with impinging jets and dimples. This was done by comparing different 

dimple structures including concave, convex, and mixed dimples to no dimples 

on a microchannel heatsink. It was determined that micro-channel heatsinks with 

convex dimples exhibited the best cooling performance followed closely by 

micro-channel heatsinks without dimples, then mixed dimples and concave 

dimples.   

Similarly, Barik et al. [33] researched heat transfer enhancement using 
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different surface protrusions in a rectangular channel.   

As part of the desire to improve upon the traditional plate-fin heat sink 

design so as to enhance its performance, the cross-fin heat sink design shown in 

Figure 3(b) below has been noted to improve the overall (natural convection and 

radiation) and convective (excluding radiation) heat transfer coefficients by 11% 

and 15% respectively [34].  

 

 

 

             Figure 3: Schematic of (a) Traditional plate-fin heatsink and (b) cross-fin heatsink [34]. 

 

Ledezma and Bejan [35] proposed in their work that slope plate-fins 

enhance heat transfer for natural convection in heatsinks. Kim [36] similarly 

studied the thermal optimization of plate-fin heat sinks under natural convection 

by varying its fin thickness.  

Elshafei [37] concluded that hollow circular pin fins possess a better 

natural convective heat transfer performance than fully solid extruded pin fins 

without any modifications. 
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Considerations in Heatsink design 

Different factors are known to affect heat sink performance, hence the 

existence of various ways to evaluate their performance. In Karimpourian et al. 

[38] work, the following observations were made about heatsink performance and 

the performance evaluation parameters for heat sinks were listed as follows: 

• Thermal resistance; which is a characteristic of the heat sink. 

• The measure of maximum temperature rise of the heat sink or base 

against pressure drop. 

• For a single active heat sink, pressure drop versus fan rotational speed 

can be used to determine heat sink performance.  

Designing fin arrays in a heat sink can be complex because of 

performance variables producing opposite effects [19]. Variables such as the 

location of heat generating components, number of fins, fin geometry, the volume 

of the array, and pump or fan power used may affect heat sink performance 

directly or indirectly depending on the variable being optimized.  

Though solving for performance results can be complex and time-

consuming analytically, some methods are available to solve these problems for 

reasonable results [17].  

With the various limitations and difficulties involved in the use of the analytical 

method in the optimization process, researchers in heat sink optimization usually 

employ numerical analysis as a means of testing heat sinks. This method allows 

the handling of complex equations, multi-variable functions, and problems the 

human brain would have difficulty in solving.  
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2.2. Key findings from Literature Review Conducted  
 

From the literature review conducted some of the key findings relevant 

to this research project include:  

• Different fin geometries and dimensions affect the thermal performance 

of heat sinks. e.g. microchannel. 

• A Goldilocks region exists in the design of heat sinks; at this point, the 

possible maximum or optimum performance of a heat sink is obtained. 

• Thermal resistance and Pressure drop are effective ways to evaluate the 

performance of a heat sink. 

• External conditions such as working fluid used in heat sink operation 

affect the performance of a heat sink. 

• The use of CFD tools is a viable and credible method of testing heat sink 

performance. 

2.3. Research Objective 
 

The literature review conducted illuminated the need for open source 

information that could potentially serve as a numerical validation case for fellow 

researchers in this area of study. For this reason, the main goal of this research 

project is to provide credible and valid performance simulation results for various 

heat sink geometries and the effects of changing certain design parameters to 

optimize heat sinks using numerical CFD simulation. Results obtained from the 

simulations ran are compared with published experimental data for validation. An 
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optimization case is established by improving upon the widely used traditional 

plate-fin heat sink geometry by comparing its performance to that of other 

generated geometries.   

Also, this research provides researchers information on best practices to follow 

when running numerical simulations on heat sinks.  
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CHAPTER 3: METHOD AND APPROACH 
 

 
Methods and techniques used in the generation and simulation of heat 

sink CAD models and CFD analysis are discussed in this chapter. Best practices 

and relevant parameters adopted in simulating various geometry heat sinks using 

CFD tool STARCCM+ [5] is also discussed in this chapter. The physics behind 

modeling real-world conditions for the accuracy of results is explained based on 

the models selected for the type of heat sink analyzed. 

 

3.1. Methodology 

 
3.1.1.  Conjugate Heat Transfer Method (CHT) 

 
The existence of a solid and fluid region in this study made it relevant to 

implement the conjugate heat transfer method in simulating the models. This 

method allows for the modeling of both heat sink (solid) and the air (fluid) physics 

and their interaction between each other at their interface. Within the heat sink 

device, conduction heat transfer method dominates since the thermal energy is 

transferred from the hot base to the other areas of the heat sink as a result of the 

interaction or collision between the internal molecules within the material 

(aluminum).  

Convection heat transfer dominates in the fluid region. This heat transfer 

is important in this simulation work since it depicts the effect of heat transfer 

between the heat sink and its surroundings (ambient air).  
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       3.2. Fluid Modeling 
         

In order to ensure the validity of the results compared to the different 

heat sink geometry simulations run, assumptions were made so at replicate real-

life behavior of fluid(air) flow around heat sinks. As stated above, the conjugate 

heat transfer method was used in this study, hence the existence of the solid and 

fluid regime. The fluid properties and its volume occupied were kept constant for 

all the heat sink simulations run.  

The fluid flow was modeled to stay in the laminar region. Laminar flow 

corresponds to smooth fluid flow with little to no form of disturbance. This type 

of flow moves in a regular path and is assumed to possess a much steadier velocity 

and pressure drop. Flow properties in laminar flow are also assumed to be 

constant across its path of flow. Due to the conditions under which the heatsink 

tested in this project are to be used, the laminar flow model was deemed 

appropriate since fluid movement is relatively slow, and the flow channel is 

relatively small.    

The segregated fluid temperature model is used in scenarios where fluid 

temperature is considered independent of the solid under a conjugate heat transfer 

method. This model solves the energy equation with variant independent 

temperature [39]. 

3.3. Reynolds Number 

Reynolds number is a dimensionless quantity used in describing flow in 

or around a system. Whether a fluid flow is laminar or turbulent can be 

determined by the value of its Reynolds number using the formula: 
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Re =   
-•!•./

0
 …………………...Equation (3) 

Dh = 
1•2
3

  ………………………....Equation (4) 

This formula basically reflects the ratio of the inertial to viscous forces and 

predicts flow behavior based on the two different flow regimes stated (laminar 

and turbulent). The laminar flow which is a slower steadier flow occurs at a low 

Reynolds number of less the 2,300. Between a Reynolds number range of 2,300 

to 4,000 the transition between laminar and turbulence begins to occur. At this 

state, both laminar and turbulence flow regime coexist, hence a fluid in this state 

possesses properties of both laminar and turbulent flow. After a Reynolds number 

of 4,000 the turbulent regime is reached. In this regime, the flow is unstable due 

to a more dominant inertia force creating more disturbance within the flow. 

From Equation 3, it can be deduced that in a study like this were fluid 

type is kept constant, the parameters r,  n, and µ remains relatively the same for 

different model heatsink testing. With the geometry diameter (D) kept constant 

as in the case of the geometries studied, the driving parameter of the Reynolds 

number is the velocity change. Hence, leading to the selection of a constant 

velocity of (1m/s) being used as the approaching airflow velocity across the heat 

sinks. As stated earlier, the flow in the simulations run were all kept within the 

laminar flow region at a value of 1,150.  

This allowed for the acquisition of more realistic results since most of 

the fans used in driving air flow velocity across heat sinks mostly are not capable 

of generating turbulent flow at the required higher fan speed.  
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3.4. Governing Equations 

The governing equations for fluid flow mechanics used in this study 

represent the numerical expressions for predicting the behavior of the fluid around 

the heat sinks simulated. Fluid motion equations are typically very complex in 

nature and mostly require computational power and skills for better and accurate 

prediction results. In cases like this were fluid behavior around and within a 3-

dimensional object is desired, solving the continuity equations for fluids becomes 

very tasking due to the different dimension needed to be considered. 

The equations built into the computational software (STARCCM+) used 

in this study is the Navier-stokes equation. This equation is derived from 

Newton’s second law when applied to fluids in motion under stresses. The 

stresses from which the Navier-stokes equation is derived from is as a result of 

the combination of the diffusion viscous term and pressure. A vector form of the 

Navier-stokes equation is shown below: 

4-
45
+ ∇ ⋅ 𝜌𝒖 = 	0	……………………………….....Equation (5) 

4𝒖
45
+ 𝒖 ∙ ∇ 𝒖 = 	− ?

-
∇𝜌 + 𝐹 + 0

-
∇A𝒖	……………...Equation (6) 

𝜌 4B
45
+ 𝒖 ∙ ∇𝜀 − ∇ ∙ 𝐾E∇𝑇 + 𝜌∇ ∙ 𝒖 = 0	……….....................Equation (7) 

where ∇(	) 	= 	𝐢 4
4J
+ 𝐣 4

4L
+ 𝐤 4

4N
	 .………………………………...Equation (8) 
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3.5. Flow-through heat sink fins 

 
The flow path through extruded fin heat sinks plays a major role in the 

removal of heat across its surface area. Different fin arrangements can be 

generated for both pin and plate heat sinks to enhance heat transfer. The 

distance between fins, height, and width of fins are important specifications 

when considering flow through fins. In this study and for simulation purposes, 

steps were taken to maximize the flow through the heat sink fins so as to 

generate optimal heat transfer from the heat sink surface to the working fluid.  

3.6. CAD Model Generation 
 

For the CAD modeling of the heat sinks studied for this thesis, 

Solidworks [40] was used. The generation of the model can be separated into 

two different parts: the base and extruded fins which are the main parts of the 

heat sink. 

First, a sketch of the heat sink base was generated and extruded to form its 

thickness. Dimensions and shape of the base can be seen in Figure 4. 

 

Figure 4: Heatsink base dimensions in inches. 
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Next, a sketch of the pin or plate fins was generated across the base of 

the heat sink and extruded. For faster and simple modeling of the extruded fin 

ones, one sketch was created and extruded the linear pattern function was used 

to create the number of pin or plate fins desired. This parameter was also kept 

constant in all the heat sink models generated for better comparison results. For 

the pin fin heat sinks, the fins were arranged in a 13 X 25 matrix order while the 

plate fin heat sinks had 25 fins. Figures 5 (a) and (b) shows an image of the 

plate and pin fin heat sinks and their fin arrangements respectively.  

In order to ensure the accuracy of heat sink performance results 

obtained and compared, the dimensions for the base and extruded fin height and 

width (diameter) were kept constant for the differently shaped heat sink 

designed generated.  

 

 

Figure 5: Schematic of (a) Plate fin heatsink (b) Cylindrical Pin fin heatsink. 
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Figure 6: Schematic of Plate fin heatsink with labeled part [41]. 

 

3.7. Validation Case  
 

To start this study, a validation case was established based on the 

literature review conducted to ensure results obtained from the simulation run 

were accurate and the assumptions and models used were valid. Using 

experimental results from Loh and Chou’s [42] work on the comparative analysis 

of heat sink pressure drop using different methodologies, a validation case was 

established. In their work, a theoretical, experimental, and numerical study was 

done and compared to each other for validation. For the theoretical method, three 

equations for solving pressure drop were derived from the force balance on the 

heat sink and the Flemings and Darcy equations. Below are the equations 

generated: 

∆𝑃 = Q'RR∙S AE#TU#
EV

+ 𝐾W + 𝐾X
?
A
r𝑉WZA ..................................Equation (9) 

∆𝑃 = (4𝑓]^^𝑥T + 𝐾W + 𝐾X)(
?
A
r𝑉WZA ) ……………………………..Equation (10) 
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∆𝑃 = 4(𝑓]^^𝑥T + 𝐾W + 𝐾X)(
?
A
r𝑉WZA ) …………………………….. Equation (11) 

 Two different equations for the channel velocity (Vch) were input into the DP 

equations above and compared to each other as well.  

                           			Vab = 	𝑉]^(1 +
5d
U  ) ……………………..Equation (12) 

                 Vch = Vap (
2d
2ed

)…………………………...Equation (13) 

After comparing results, a combination of Equations (5) and (1) were determined 

to be the most accurate in calculating the theoretical pressure drop. 

The experimental setup in this study as stated was used as the basis for 

establishing a validation case for this thesis work. The heat sink geometry tested 

was a rectangular plate with geometry specifications shown in Table 1 and Figure 

8. A controlled wind tunnel test section presented in Figure 10 was used in 

analyzing the pressure drop across the heat sink geometry testing. In order to 

prevent any flow bypass, the heat sink was fully ducted on the top and both sides. 

This made it possible to measure the actual maximum pressure drop through the 

extruded fins of the heatsink. The experimental test was conducted at an air 

velocity range of 1m/s to 4m/s with 0.5 increments. Figure 7 below shows a plot 

of the experimental, numerical (Flotherm), and analytical test results at varying 

approaching air velocity.  
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              Figure 7: Validation case heatsink results [42]. 

The numerical analysis was performed using FLOTHERM v4.1 [43] and 

both heat sink and wind tunnel test section was modeled after the experimental 

setup discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Validation case heatsink CAD model. 
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        Table 1: Validation Case Heatsink geometry specifications [42]. 

 

 

 

 

 

 

 

 

          

As stated in earlier sections, active heatsinks rely on a fan or some sort 

of fluid driving device to function. Since a well-defined airflow path (inlet) is 

modeled in this study, the heatsink tested are active heatsink with a specific inlet 

flow direction like the example in Figure 9. 

 

 

 

 

 

 

Test Sample  Validation Case Heat Sink 

Width (W) 126 mm 

Length (L) 75 mm 

Height (H) 63 mm 

Fin Thickness (t) 1 mm 

Channel Width (g) 1.55 mm 

Base Thickness (b) 7 mm 

Figure 9: Schematic of an Active heatsink with flow direction [44]. 
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                          Figure 10: Experimental case wind tunnel test section [42]. 

                

3.7.1. STARCCM+ Simulation of Validation Case Heatsink.  
 

The simulation approach used in this study as explained in earlier 

chapters is the conjugate heat transfer method. Hence the modeling and 

simulation of the validation case and the various geometry heat sink designs 

analyzed can be separated into a solid and fluid domain. 

For the validation case, the heatsink CAD model in Figure 8 above was 

generated in Solidworks using the model dimension specifications from Table 1. 

This model was then imported into STARCCM+ for simulating. With the heat 

sink which represents the solid domain imported, the fluid domain was then 

created around the heat sink (solid domain). In order to correctly replicate the 

experimental setup, the fluid domain was modeled to make direct contact with the 

sides and top of the heat sink so as to prevent any flow bypass as seen in Figure 

11. 
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Next, the meshing and physics models were selected to replicate 

experimental conditions. Different physics models were selected for the fluid and 

solid regions since both require different assumptions to be correctly modeled. 

Tables 2, 3, and 4 below lists the selected meshing, and physics (fluid and solid) 

models for the validation case heat sink.  

With the mesh generated to capture full heat sink geometry in 

STARCCM+, the simulation was then run to produce scalar scene plots of 

temperature distribution and pressure drop for results comparison between the 

various heat sinks analyzed.  

For the validation case, the pressure drop results from the simulation run was 

compared to the experimental results from the literature review. The results and 

comparison details are presented in the results and discussion section. 

 

Figure 11: Representation of solid and fluid region of the simulation model. 
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          Table 2: Meshing Models. 

 

 

 

 

 

 

                                                                     Table 3: Fluid (Air) Physics Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enabled Models 

Advancing Layer Mesher 

Extruder 

Surface Remesher 

Fluid Enabled Models  

Gravity 

Segregated Fluid Temperature 

Ideal Gas 

Laminar 

Gradients 

Segregated Flow 

Gas 

Steady 

Three Dimensional 
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             Table 4: Solid (Heat sink) Physics Models. 

 

 

 

 

 

 

 

 

3.8. Heat Sink Simulations Generation and Assumptions  

 
As discussed, the validation case established served as the blueprint for 

the simulations run on the various geometries tested. Hence the physics models 

(Fluid and solid models) used in generating similar experimental and validation 

case results were used in all the simulations run. However, it is important to 

note that the meshing models were changed due to geometry changes so as to 

capture the full geometry of the various heat sink geometries studied. For the 

heat sinks tested in this research project, the meshing, fluid, and solid models 

selected are presented in Tables 5, 6, and 7 below respectively. 

Also, the ambient air or working fluid conditions were also kept 

constant to ensure the results obtained were fairly comparable. The velocity of 

the approaching fluid (air) at the inlet was kept at a constant 1m/s, the 

temperature at 300 K, and an atmospheric pressure of 101,325 Pa. With the 

simulation run to 1,000 iterations, scalar scene results were generated for the 

temperature and pressure profile. This was then used in calculating the thermal 

Solid Enabled Models  

Constant Density  

Gradients  

Segregated Solid Energy  

Solid 

Steady 

Three Dimensional  
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resistance and pressure drop respectively to compare the performance of the 

heat sinks simulated. 

 Table 5: Simulated Heatsink Meshing Models. 

Enabled Models 

Embedded Thin Mesher  

Extruder 

Generalized Cylinder  

Polyhedral Mesher  

Surface Remesher 

 

                                          Table 6: Simulated Heatsink Fluid (Air) Physics Models. 

 

 

 

 

 

 

 

 

 

 

 

 

Fluid Enabled Models  

Gravity 

Segregated Fluid Temperature 

Ideal Gas 

Laminar 

Gradients 

Segregated Flow 

Gas 

Steady 

Three Dimensional 
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                                              Table 7: Simulated Solid (Heatsink) Physics Models. 

 

 

 

 

 

 

 

 

3.9. Geometry Comparison  
 

As mentioned earlier, in order to ensure results gained were actually 

comparable, constraints were set for the simulated heatsink geometry dimensions. 

Table 8 below gives a well-defined representation of the dimensions of all the 

heatsinks modeled and tested for in this study.   

            

 Table 8: Simulated Heatsink Geometry Specifications. 

 

 

 

 

 

 

 

 

 

Solid Enabled Models  

Constant Density  

Gradients  

Segregated Solid Energy  

Solid 

Steady 

Three Dimensional  

Test Sample  Simulated Heat Sink 

Width (W) 63.5 mm 

Length (L) 63.5 mm 

Height (H) 18.3 mm 

Fin Thickness (t) 1.27 mm 

Channel Width (g) 2.54 mm 

Base Thickness (b) 2.54 mm 
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It is important to note and understand that, though fin type and shape 

were changed, their thickness and channel width (distance between fins) were 

kept constant. This permitted results to be compared and analyzed based on 

enhancement of heat sink fin geometry. 

 

 3.10. Method of Data Comparison and Analysis  

  
To compare the various heatsink models generated in this study, bar 

graphs were created from tabulated simulation results representing the value of 

their corresponding performance evaluating parameters (thermal resistance and 

pressure drop). Two plots were created to compare thermal resistance and 

pressure drop of the modeled heatsinks. Analysis of results was then performed 

based on the height of bars associated with heatsink fin geometry model. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

In this chapter, numerical results obtained from the simulations run in 

this study is presented and discussed. 

4.1. Validation Results 

The validation case simulation result for the heatsink model at a velocity 

of 1m/s discussed above is presented in Figure 12 below.  

 

Figure 12: Validation case heatsink simulation. 

 

A graph comparing the simulation and experimental results for the 

validation case heatsink was generated and presented in Figure 13. From this 

graph, it is observed that the experimental and simulation results are close with a 

mean absolute percent error (MAPE) of 8% and serves as a good validation case 

for simulating heatsink models in STARCCM+.  
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         Figure 13: Graph comparing experimental and numerical data results. 

 
 
 

From published literature and research conducted, several ideas for 

heatsink models with the potential to produce better results than the traditionally 

used rectangular heatsink was modeled and simulated. Also, models were 

generated using knowledge from fluid dynamics and heat transfer courses. 

Results from the simulations run are presented in the following sections.  
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        4.1.1. Temperature Profile Results  

Temperature profile results from simulations run are used in conjunction 

with the constant power supply (100W) in calculating the thermal resistance (R) 

of the heat sinks, Equation (14). The hottest temperature (Tbase) is usually located 

at the base of the heat sink since it makes direct contact with the heat source. It is 

important to note that the spread of thermal energy is not uniform across the heat 

sink. Hot spots are generated in areas as a result of different factors including 

design and flow path.  

𝑅 = %&'()	+	%"
,

………………… Equation (14) 

In this section of this chapter, different heatsink geometries are studied 

for their temperature profile to determine performance. Figures below show the 

temperature profile of the heat sink during its operation (1000 iterations).  

As expected and shown in scalar scene result figures below the fins 

located in the frontal section of the heat sink tend to have the lowest temperature. 

This is due to the fact that they are the first part to come in the contact with the 

cool air supplied by the fan or fluid supply source during its operation. On the 

other hand, the surface closest to the exit or farthest from the inlet possesses a 

higher temperature since flow moving at this point is at a higher temperature as a 

result of the heat transfer already taken place with the preceding surface.  
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4.1.2. Pressure Profile Results   

The pressure values at the inlet and outlet of the heat sink are used to 

calculate the pressure drop across the heat. The pressure drop value is significant 

in determining the suitable fan size when designing or purchasing an active heat 

sink. Since production and retail cost is an influential factor in most engineering 

designs and inventions, a lower pressure drop is desired, the reasoning behind this 

is explained in the discussion section below.  

ΔP = Pin - Pout …………………Equation (15) 

4.2. Simulated Plate Heat Sinks Results  
 
 

 4.2.1. Rectangular Plate Heatsink Results and CAD Model. 
 

 
Figure 14: Traditional rectangular heatsink CAD model. 
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Figure 15: Traditional rectangular plate heatsink temperature result. 

 
 

 
 
 

 
Figure 16: Traditional rectangular plate heatsink pressure result. 
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 4.2.2. Arc Plate Heatsink CAD Model and Result. 

 
 

 
Figure 17: Arc plate heatsink CAD model. 

 
 
 
 
 
 

 
Figure 18: Arc plate heatsink temperature result. 
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Figure 19: Arc plate heatsink pressure result. 

 
 

 
 4.2.3.  Radial Plate Heatsink CAD Model and Result. 

 
 
 

 
Figure 20: Radial plate heatsink CAD model. 
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Figure 21: Radial plate heatsink temperature result. 

 
 
 
 

 
Figure 22: Radial plate heatsink pressure result. 
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4.2.4.  Separated Short Plates Heatsink CAD Model and Result. 

 
 

 

 
Figure 23: Separated short plates heatsink CAD model. 

 
 

 

 
Figure 24: Separated short plates heatsink temperature result. 
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Figure 25: Separated short plates heatsink pressure result. 

 
 

4.2.5. Airfoil Plate Heatsink CAD Model and Result. 
 

 

 
Figure 26: Airfoil plate heatsink CAD model. 
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Figure 27: Airfoil plate heatsink temperature result. 

 
 

 
 

      
Figure 28: Airfoil plate heatsink pressure result. 
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4.2.6.  Square Zig-Zag Plate Heatsink CAD Model and Result. 
 
 
 

 
Figure 29: Square Zig-Zag plate heatsink CAD model. 

 
 
 

 

 
Figure 30: Square Zig-Zag plate heatsink temperature result. 
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Figure 31: Square Zig-Zag plate heatsink pressure result. 

 
 

 
 

4.2.7.  Pin-Plate Heatsink CAD Model and Result. 
 

 
 

 
Figure 32: Pin-Plate heatsink CAD model. 
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Figure 33: Pin-Plate heatsink temperature result. 

 
 
 
 
 

 
Figure 34: Pin-Plate heatsink pressure result. 
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4.3. Simulated Pin Heat Sinks Results. 
 4.3.1. Rectangular Pin heatsink CAD Model and Result. 

 

Figure 35: Rectangular pin heatsink CAD model. 

 

 

Figure 36: Rectangular pin heatsink temperature result. 
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Figure 37: Rectangular pin heatsink pressure result. 

 

 4.3.2. Cross Pin heatsink CAD Model and Result. 
 

 
Figure 38: Cross pin heatsink CAD model. 
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Figure 39: Cross pin heatsink temperature result. 

 
 
 
 

 
Figure 40: Cross pin heatsink pressure result. 
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4.3.3. Draft Pin heatsink CAD Model and Result. 

 
 

 
Figure 41: Draft pin heatsink CAD model. 

 
 
 

 
Figure 42: Draft pin heatsink temperature result. 
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Figure 43: Draft pin heatsink pressure result. 

 
 
 
 

4.3.4. Hexagonal Pin heatsink CAD Model and Result. 
 

 
 

 
Figure 44: Hexagonal pin heatsink CAD model. 
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Figure 45: Hexagonal pin heatsink temperature result. 

 
 
 

 
Figure 46: Hexagonal pin heatsink pressure result. 
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4.3.5. Airfoil Pin heatsink CAD Model and Result. 

 
 

 

 
Figure 47: Airfoil pin heatsink CAD model. 

 
 

 

 
Figure 48: Airfoil pin heatsink temperature result. 
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Figure 49: Airfoil pin heatsink pressure result. 

 

 
4.3.6. Mixed Shapes Pin heatsink CAD Model and Result. 

 

 
Figure 50: Mixed shapes pin heatsink CAD model. 
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Figure 51: Mixed shapes heatsink temperature result. 

 

 

 
Figure 52: Mixed shapes heatsink pressure result. 
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Figure 53: Bar graph showing heatsink and their corresponding thermal resistances.  

 

 
Figure 54: Bar graph showing heatsink and their corresponding pressure drops. 
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4.4. Result Discussion 

 Data results from Figure 61 collected from the numerical simulation 

run was analyzed using bar graphs. For better heatsink performance, a low 

thermal resistance and pressure drop value is desired. The heatsinks simulated 

were compared to the traditional rectangular plate heat sink widely used in 

electronic cooling. Based on the thermal resistance performance parameter of 

heatsinks, the square zig-zag plate heat sink shown in Figure 29 performed the 

best. Meaning this heatsink model in comparison to the other heatsinks simulated 

in this study possessed the least resistance to the transfer of thermal energy 

between the heatsink (conduction from heat source) to the working fluid(air). The 

separated short plate heat sink according to the simulation run on the other hand 

possessed the lowest pressure drop. Meaning, for the heatsink models generated, 

the separated short plate heatsink requires the smallest (usually cheaper) fan size 

for operation at the simulation parameters set. This factor is mostly important 

when the cost of operation in using a heatsink is considered since a bigger fan 

would usually cost more. 
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CHAPTER 5: CONCLUSION 

The overall goal of this research project was to generate a numerical 

method of testing different heatsink geometries using CFD software and also 

generate simple and exotic heatsink fin designs that improve the thermal 

performance of the heatsink studied in this project. Some proposed models by 

other researchers in this field were tested for verification. The traditional 

rectangular plate fin heat sink widely used by thermal engineers for electronic 

cooling was set as the base of performance comparison since most researchers 

believe this model heatsink to be efficient both in performance and ease of 

manufacturability.  

The two performance evaluating parameters were thermal resistance and 

pressure drop. The thermal resistance and pressure drop values for the base case 

rectangular plate heatsink were 0.45 K/W and 33.27 Pa respectively.  Thirteen 

models were simulated and compared to the rectangular plate fin heatsink. 

Considering the thermal resistance performance parameter four out of the thirteen 

models generated performed better. These models and their thermal resistance 

values are the separated short plates (0.40 K/W), Airfoil plate (0.40 K/W), Airfoil 

pin (0.37 K/W), and square zig-zag plate (0.25 K/W). For the pressure drop 

evaluating parameter, eight of the heatsinks tested were found to require a lower 

pressure drop. These models are the radial plate heatsink (27.44 Pa), cross pin 

heatsink (24.83 Pa), hexagonal pin heatsink (29.76 Pa), mixed shapes plate 

heatsink (25.89 Pa), pin-plate heatsink (32.41 Pa), separated short plates heatsink 

(11.94 Pa), airfoil plate heatsink (22.28 Pa), and airfoil pin heatsink (22.47 Pa).  
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From the results obtained, it can be concluded that numerical simulation 

methods/tools including CFD software (STARCCM+) proves to be a cheaper, 

safer and viable way of testing heatsink performance. Also, with improved 

manufacturing methods like 3D/ additive printing techniques, complex and exotic 

heatsink fin models that improve cooling of electronic devices can be 

manufactured. 
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CHAPTER 6: FUTURE WORK 

 
Future works include optimizing heat sink performance by running 

simulations on exotic or more complex heat sink designs using knowledge from 

heat transfer, fluid mechanics, and additive manufacturing/ 3D manufacturing 

capabilities. Other suggestions for future work include: 

• Conduct study by running simulation using different working fluid. 

• Determine the optimal number of fins for both plate and pin fin heat sinks 

geometries for maximum performance. 

• Run CFD simulation with the flow in the Turbulent regime and analyzed 

the difference in result between laminar regime.  

• 3D print and conduct experimental test on heat sink models generated. 

• Conduct flow analysis to better understand flow mechanism through the 

fins of heat sinks. 
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CHAPTER 7: APPENDIX 

 

 7.1. Reynolds-Average Navier-Stokes Equation  
            

  The Reynolds-Average Navier Stokes equation represents a method of 

depicting fluid flow within a system. This equation is derived from the Navier-

stokes equation and is capable of predicting the flow velocity without averaging 

it across a time-step. A combination of the RANS, conservation of mass, and 

energy equations formulate the basic equations used in modeling practical fluid 

flows in CFD software tools. With right turbulence models selected this solver or 

method can be adopted for future work on simulating heatsink models with 

turbulent flow in STARCCM+.  

7.2. Procedure for running heatsink CFD simulation in STARCCM+:  

• Generate CAD model in Solidworks or Preferred CAD software.   

o Save file as .x_t or .x_b file. (Parasolid format) 

• Import or Load Heatsink file into STARCCM+.   

o Right-click on 3D-CAD Model 

§ Import 

§ CAD model  

• Create Fluid domain around heatsink(solid).   

o Create rectangular sketch around the heatsink. 

§ Right-click yz plane  

§ Create a sketch to the preferred dimension. 

o Extrude sketch. 

§ Right-click on sketch 1 

§  Create Extrude 
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§ Make sure body intersection is “None” for conjugate heat 
sink method. 

• Extract External Volume.  

o Right-Click on Body 2 

§ Extract external volume 

§ Click OK 

• Rename Body parts. 

o Body 1: Solid 

o Delete Body 2  

o Body 3: Fluid  

•  Name Boundaries.  

o Flow Inlet       

o Flow Outlet 

o Right 

o Left   

o Top 

o Bottom (Fluid region bottom surface) 

o Solid_bottom (Representing heatsink bottom where heat source is 
applied) 

• Load Simulation  

o Close 3D CAD  

o Right click on 3D CAD model  

§ New Geometry Part  

§ OK 

• Assign Parts to Region  

o Right click on Parts under Bodies 

o Fluid  

§ Assign Parts to Region 
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§ Make sure to select both fluid and solid 

§ Click on Create a region for each part and Create boundary 
for each part surface 

• Select Meshing Models  

o Click on Continua  

§ Mesh 1 

§ Models 

§ Select the following meshing Models 

• Surface remesher  

• Polyhedral mesher  

• Generalized cylinder  

• Extruder 

• Embedded thin mesher 

§ Click on continua 

• Reference value 

o Base size  

§ Select appropriate base size 
(0.001m) 

• Select Physics Models  

o Click on Continua > Select Physics twice for Physics 1(Fluid) and 
Physics 2 (Solid)  

o Select the following models for Physics 1 (Fluid): 

§ Three Dimensional 

§ Steady  

§ Gas 

§ Segregated Flow 

§ Gradients  

§ Laminar 

§ Ideal Gas  



  
70 

§ Segregated Fluid Temperature 

§ Gravity 

o Select the following models for Physics 2 (Solid): 

§ Constant Density 

§ Gradients  

§ Segregated Solid Energy  

§ Solid  

§ Steady 

§ Three Dimensional  

• Set Physics Continuum for Solid and Fluid region 

o Click on Solid under Regions Tab 

§ Change Physics continuum to (Physics 2) 

§ Keep Physics continuum of Fluid as (Physics 1) 

 

• Set Boundary Conditions  

o Set Fluid boundary conditions as: 

§ Bottom (Wall) 

§ Default (Wall) 

§ Flow Inlet (Velocity inlet) 

§ Left (Symmetry plane) 

§ Outlet (Flow-Split Outlet) 

§ Right (Symmetry Plane) 

§ Top (Symmetry Plane) 

o Set Solid boundary conditions as: 

§ Solid_bottom (Thermal Specification > Heat source) 

§ Heat Source (100W) 

• Run Mesh 

o Click on Cube next to green flag to generate mesh  



  
71 

• Setup Results Display (Scalar Scene)  

o Click on Derived parts>New Part>Section>Plane  

• Initialize Solution 

o Click on initialized solution 

o Click run 

 
7.3. Additional validation case heat sink results. 

 
                Figure 55: Validation case heatsink numerical and experimental data results. 
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7.4. Preliminary Results for simple geometry heatsinks simulations run. 

 
             Figure 56: Semi-Circle pin heatsink temperature result. 

 

 
              Figure 57: Trapezoidal plate heatsink temperature result. 
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               Figure 58: Mesh sensitivity test rectangular plate heatsink temperature result. 

 

 

 

 
              Figure 59: Sample Shark-fin heatsink test simulation results. 
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              Figure 60: Sample Shark-fin heatsink Test2 simulation temperature result. 

 

 

 

 

 
                    Figure 61: Data results from STARCCM+ heatsink simulations. 
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GLOSSARY 
 

This section of the thesis provides definitions and descriptions of the 

primary engineering related terms used. 

 

• Additive Manufacturing/3-D Printing: process used to create a three-

dimensional object by using layers of materials under computational 

control.  

• Aspect Ratio: the ratio of width to height. 

• Computational Fluid Dynamics (CFD): is a branch of fluid mechanics 

that uses numerical analysis and data structures to solve and analyze 

problems that involve fluid flows. 

• Computer Processing Unit: an electronic component within a computer 

that carries out instructions that is input into it. 

• Conjugate Heat transfer: Method of heat transfer modeling that allows 

simulating of both solid and fluid interaction simultaneously to provide 

accurate results. 

• Heat Flux: Amount of heat transfer per unit area to or from a surface. 

• Heat Source: Object that can heat up another object or space. 

• Kinetic Energy: energy possessed by an object or body due to its motion. 

• Laminar Flow: occurs when fluid flows in parallel layers with no 

disruption between the layers.  

• Mean Absolute Percent error: Measure of comparing accuracy of 

results in a study. 
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• Nanofluid: a fluid containing nanometer-sized particles typically made of 

metals, carbides, oxides, or carbon nanotubes. 

• Nusselt Number: the ratio of convective to conductive heat transfer 

across a boundary. 

• Pressure Drop: difference in pressure between two points within a fluid 

carrying medium or object. (inlet and outlet). 

• Reynolds Number: dimensionless quantity used to predict flow patterns 

in different fluid flow situations. 

• Simulation: imitation of a situation or process. 

• Thermal Resistance: the ability of a material or device to resist the flow 

of thermal energy (heat).  

• Topology: Study of geometric and space properties that are preserved 

under continuous deformation.  
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NOMENCLATURE 
 

 A       = heat transfer surface area 

 b        = Width of the heat sink gap (m) 

CAD   = Computer Aided Design 

CFD   = Computational fluid dynamics 

CHT   = Conjugate Heat Transfer  

CPU   = Central Processing Unit 

  D      = Diameter 

 Dh      = Hydraulic diameter (m) 

 H       = Height of fin (m) 

  ƒ       = Fully developed laminar flow friction factor  

 ƒapp      = Apparent friction 

 Kc      = Coefficient of contraction 

 Ke      = Coefficient of expansion 

 KH     = Kinetic energy 

  L      = Total length of fin (m) 

MAPE = Mean Absolute Percent Error (%) 

  N      = Number of fins 

  ⊝     = Thermal impedance  

Pin      = Inlet Pressure (Pa) 

Pout     = Outlet Pressure (Pa) 

ΔP      = Pressure Drop (Pa)   

ρ        = Density (kg/m3) 

Q        = Power supply (W) 

Re      = Reynolds Number 

T base   = base temperature (K) 
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T amb   = ambient temperature (K) 

 µ        = dynamic velocity 

 V       = Velocity (m/s) 

Vch      = Heat sink channel velocity (m/s) 

 ∇       = Gradient operator 
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