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ABSTRACT 

SATELLITE REMOTE SENSING OF WOODY AND HERBACEOUS LEAF AREA 

FOR IMPROVED UNDERSTANDING OF FORAGE RESOURCES AND FIRE IN 

AFRICA 

MILKAH NJOKI KAHIU 

2018 

In sub-Saharan Africa (SSA) tree-grass systems commonly referred to as 

savannas dominating drylands, play a critical role in social, cultural, economic and 

environmental systems. These coupled natural-human systems support millions of people 

through pastoralism, are important global biodiversity hotspots and play a critical role in 

global biogeochemical cycles. Despite the importance of SSA savannas, they have been 

marginalized for years as most governments neglect dryland resources in favor of 

agricultural research and development assistance. Hence, lack of spatially and temporally 

accurate information on the status and trends in savanna resources has led to poor 

planning and management. This scenario calls for research to derive information that can 

be used to guide development, management and conservation of savannas for enhanced 

human wellbeing, livestock productivity and wildlife management.  

The above considerations motivated a more detailed study of the composition, 

temporal and spatial variability of savannas, comprising of three components. Remote 

sensing data was combined with field and literature data to: partition Moderate 

Resolution Imaging Spectroradiometer (MODIS) total leaf area index (LAIA) time series 

into its woody (LAIW) and herbaceous (LAIH) constituents for SSA; and application of 

the partitioned LAI to determine how changes in herbaceous and woody LAI, affect fire 

regimes and livestock herbivory in SSA.  
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The results of this analysis include presentation of algorithm for partitioning of 

MODIS LAIA from 2003-2015. Biome phenologies, seasonality and distribution of 

woody and herbaceous LAI are presented and the long-term average 8-day phenologies 

availed for evaluation and research application. In determining how changes in 

herbaceous and woody LAI affect fire regimes in SSA, we found that herbaceous fuel-

load (indexed as LAIH) correlated more closely with fire, than with LAIW, providing 

more explanatory power than overall biomass in fire activity. We observed an asymptotic 

relationship between herbaceous fuel-load and fire with trees promoting fires in dry 

ecosystems but suppressing fires in wetter regions. In the livestock herbivory analysis we 

found that the more refined forage indices (LAIH and LAIW) explained more of the 

variability in livestock distribution than the aggregate biomass, with livestock favoring 

moderate to nutrient rich forage resources dependent on animal body size.  
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CHAPTER 1  

Introduction, background and goals of the dissertation  

1.0 Introduction and Background 

Tree grass systems commonly referred to as savannas are widespread biomes 

present in all continents except Antarctica, covering ~20% of global terrestrial 

landscapes, particularly in tropical and subtropical regions between the Tropic of Cancer 

and Capricorn (White et al., 2000). Various definitions of savanna occur but the common 

theme is the characterization by a continuous grass layer and a discontinuous trees 

(Scholes & Archer, 1997). These unique biomes cover >50% of Africa and Australia; 

~45% of South America and about 10% in Asia (Solbrig, 1996; Werner, 1991), marked 

by strong and distinct alternations between wet and dry seasons. Although savannas are 

characterized by similar traits (two contrasting life forms, comprising of trees and 

grasses), variations in vegetation structure, including tree canopy cover and density, 

floristic and faunal composition, occur across the continents and within regions 

(Shorrocks & Bates, 2015). These variations form the basis of savanna classification, 

ranging from open savanna grasslands consisting of widely scattered trees, to the closed 

woodland savanna dominated by trees or forests with a grass layer (San José et al., 1991; 

Solbrig, 1996).  

In Africa, savanna woody vegetation (trees and shrubs) tends to be deciduous, in 

contrast to the evergreen nature in South America and Australia (Shorrocks & Bates, 

2015). The deciduous woody layer generally produces leaves before rains begin, since 

trees can consume stored food reserves reducing competition with the herbaceous layer 

(Simioni et al., 2004). In contrast, the continuous herbaceous layer, which consists 
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mainly of perennial C4 grasses (adapted for photosynthetic efficiency in warm 

environments) and forbs (Shorrocks & Bates, 2015) tends to green up with the onset of 

rains and senesces soon after the end of the rain season (Borchert & Rivera, 2001; de Bie 

et al., 1998; Higgins et al., 2011; Simioni et al., 2004).  

Savannas occur across a broad range of climate, from cold and dry to warm and 

wet enough to support forested canopies. In African savannas, temperatures range 

between 18°-21° with month averages variations caused by low to high sun season 

Shorrocks & Bates, 2015 (Shorrocks & Bates, 2015). In contrast to the temperatures, 

moisture patterns are generally very distinct alternating between the wet and the dry 

season, governed by the annual migration of the intertropical convergence zone across 

the equator (Maddox, 2006; Shorrocks & Bates, 2015; Solbrig, 1996) 

The dynamics of savanna vegetation are not well understood (Lehmann et al., 

2011; Murphy & Bowman, 2012; Sankaran et al., 2004; Scholes & Archer, 1997). 

However, the presence of the two distinct life forms is determined by complex and 

dynamic interactions including climate, herbivory, fire, topography, soils and 

geomorphology (Backéus, 1992; Higgins et al., 2000; Shorrocks & Bates, 2015). These 

interactions have attracted explanations on the co-dominance of the two distinct life 

forms, which Sankaran et al. (2004) summarizes into two broad categories: competition 

or demographic based mechanisms. Competition based mechanisms include (i) the spatial 

niche separation hypothesis (Walter, 1939 as cited in Ward et al., 2013) with vertical 

niche partitioning (rooting depth), which suggests that herbaceous roots in the subsurface 

are more water-use efficient than trees, that must access deeper water sources to survive 

(Verweij et al., 2011; Ward et al., 2013); and (ii) the temporal (phenological) niche 
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separation hypothesis Sankaran et al. (2004) which posits that woody plants (trees and 

shrubs) use stored carbon reserves to deploy leaves earlier in the growing season before 

the herbaceous layer sprouts, allowing trees sole access to early rains, hence minimizing 

competition with grasses (Borchert & Rivera, 2001; de Bie et al., 1998; Higgins et al., 

2011; Simioni et al., 2004). On the other hand, demographic based mechanisms involve 

facilitation or suppression of one life form, by activities including fire, herbivory, 

precipitation variability (Lehmann et al., 2011) 

2.0 Importance of savannas  

Globally, savannas account for ~30% of net primary production (NPP) in 

terrestrial ecosystems (Archibald & Scholes, 2007; Field et al., 1998), making them 

important for the rapidly growing human population, livestock and biodiversity 

conservation for both flora and fauna (Scholes & Archer, 1997). In sub-Saharan Africa 

savannas, though characterized by low and erratic rainfall (Shorrocks & Bates, 2015), 

low human populations, and scanty water resources, these unique biomes form a 

significant part of grazing systems important for survival of humans, livestock and 

wildlife. Due to the scarce population and perceived low resource base they have been 

marginalized for decades, if not centuries (Reynolds et al., 2007). However, their 

economic and environmental significance, particularly their role as foraging lands for 

livestock and wildlife cannot be underrated (Darkoh, 2003; Hassan & Dregne, 1997; 

Palmer et al., 2015). Globally livestock is an important source of livelihood for close to a 

billion human population (Robinson et al., 2014), while in SSA grazing systems 

comprise a significant source of livelihood, where millions of people depend on 

pastoralism as a source of food and income. Further, the African savannas support 
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diverse flora and charismatic large herbivore and carnivore guilds, making them among 

the most important global biodiversity conservation hotspots (Darkoh, 2003; Shorrocks & 

Bates, 2015; White et al., 2000). In fact African savannas are known to support higher 

densities of ungulates than any other biome or continent (Du Toit & Cumming, 1999), 

while in South America only three ungulates are savanna specific, and Australia is 

characterized by limited numbers of grazing mammals due to poor nutrient forages 

(Shorrocks & Bates, 2015). Moreover, the vast grasslands and savannas of Africa are 

important sources and sinks of carbon (Williams et al., 2007) and management of fire and 

herbivory can significantly alter carbon density in woody biomass (Danell et al., 2006). 

Additionally, savannas support a rich diversity of termites. As an integral part of savanna 

ecology, termites create mounds which aerate the surrounding soils coupled with termite 

droppings that create patches rich in nitrogen and phosphorous hence facilitating growth 

of grass, shrubs and trees acting as foraging hotspots for herbivores (Sileshi et al., 2010) 

African wild fires are almost exclusively from anthropogenic sources (Archibald 

et al., 2012; Kull & Laris, 2009), with the bulk of fires happening in savannas fueled by 

the senescent herbaceous layer which is typically flammable throughout the dry season 

consuming ~10% of savanna net primary production (Lehsten et al., 2009). The recurrent 

African wild fires are estimated to constitute over 40% of global fire emissions (van der 

Werf et al., 2017; Williams et al., 2007). Impacts of African savanna fires are not only 

felt locally, but have far reaching implications, with emissions travelling across the 

Atlantic to South America, south Pacific and the Indian Ocean (Edwards et al., 2006). 

Hence utilization and management of African savannas can have important implications 

for the global carbon cycle.  



5 
 

 

3.0  Challenges and opportunities of savanna ecosystems in Africa 

Despite the benefits accrued from savanna ecosystems they are continually 

threatened by natural and anthropogenic activities. The current increase in human 

population, especially caused by migration from overpopulated regions and change in 

lifestyles, have tremendous impacts on savanna ecosystems. The extractive use of 

savanna resources, intensification in agriculture (causing ~1% annual conversion of 

savanna into agricultural production) and livestock grazing, increasing demand for more 

fuel and land for settlement, have continued to exert pressure on savannas (Grace et al., 

2006). Agricultural encroachment is also exacerbated by sedentarisation of nomadic 

lifestyle, leaving no room for these fragile ecosystems to recover (Weber & Horst, 2011). 

Furthermore, establishment of road networks and settlements has resulted in 

fragmentation of savanna landscapes, which impacts vegetation patterns, fire regimes, 

and biodiversity conservation (Archibald et al., 2009) All these land use /cover changes, 

and shifts in management, continue to cause degradation through loss of vegetation cover 

and palatable forage resources (Lambin et al., 2003). Additionally, indigenous hunters 

and poachers are threatening wildlife and their habitats, leading to abrupt decline in 

wildlife populations in these unique biomes (Kerr & Currie, 1995). Although savannas 

have been converted to other land uses, changes in forest ecosystems through intense 

burning, forest degradation and indiscriminate harvesting of trees has enabled open 

spaces facilitating herbaceous undergrowth hence introducing savanna like ecosystems in 

some areas in the forest-savanna transition zone.   

Fires are consistent and prominent disturbance factors and agents of change in 

savanna ecosystems (Roy et al., 2013). Though widely used as management tools to: 

stimulate pasture growth, clear land for agriculture and reduce fuel hazard (Harrison et 
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al., 2010; Pausas & Keeley, 2009), intense and uncontrolled burning can have deleterious 

effects on savannas and their biodiversity. For instance, intense crown fires in eucalyptus 

and coniferous trees destroy above ground plant growth causing complete replacement of 

canopy vegetation (Bond & Keane, 2017). As a "herbivore" consuming net primary 

productivity (Bond & Keeley, 2005), savanna fires have adverse effects at local scale, 

impacting land use, productivity, carrying capacity and biodiversity, and global effects 

that alter hydrological, biogeochemical and atmospheric processes (Bond & Keane, 2017; 

Crutzen & Andreae, 1990; Harrison et al., 2010).  

Naturally, savannas are characterized by low erratic precipitation and recurrent 

dry spells, but the current increase in intense, severe and prolonged droughts caused by 

climate change, exacerbated in some areas by overgrazing, are changing the quality and 

status of vegetation which is slowly leading to degradation (Grainger, 2013; Weber & 

Horst, 2011). Climate change will have both beneficial and deleterious effects on 

savannas (Settele et al., 2014). Increased precipitation in arid and temperature rise in 

cooler ecosystems might create conditions favorable for establishment of savannas. 

Additionally, projected drying coupled with increased fires could lead to conversion of 

forest into savannas (Settele et al., 2014). On the other hand, reduced precipitation in 

some areas across the globe might shift savannas into deserts, a situation exacerbated by 

poor agricultural practices, overgrazing, soil erosion and deforestation, hence affecting 

the proper functioning of savannas and global biogeochemical cycles.  

Woody encroachment, referring to invasion and increase in trees and shrubs at the 

expense of perennial grasses, is recognized as a threat to the survival of savannas across 

the world (Eldridge et al., 2011; Settele et al., 2014 and citations therein). Acting at local 
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to regional scales, various activities are suggested as the drivers of woody encroachment 

including: suppression of fire, changes in herbivory such as crashes in herbivore 

numbers; anthropogenic activities that promote woody species with attached economic 

benefits or even planned and unplanned introduction of alien species. On the other hand, 

at global scale, proposed drivers include increasing atmospheric CO2 and changing 

precipitation regimes associated with global climate change (Settele et al., 2014).  

4.0 Remote sensing of savannas  

In the recent past the remote sensing (RS) community and earth systems modelers 

have made substantial progress in developing products to characterize global vegetation 

traits (Adam et al., 2010; Houborg et al., 2015; Thenkabail & Lyon, 2016; Xie et al., 

2008; Xue & Su, 2017). However, despite the importance of savannas, they are not well 

represented in RS and modeling capabilities (Hill & Hanan, 2010) due to the presence of 

mixed woody and herbaceous components at scales much finer than most medium and 

coarse resolution remote sensing data.  

Few attempts have been made to partition savanna signals into woody and 

herbaceous components using RS data. However, these methods are lacking due to the 

areas covered, data used or approaches applied. Previous attempts to partition LAI into 

overstory and understory components have been done for boreal, and temperate forests 

(Huang et al., 2011; Kobayashi et al., 2010; Liu et al., 2017) excluding tropical forests 

and savanna ecosystems in Africa. In other studies, several authors have tested time 

series decomposition and spectral unmixing to separate woody, herbaceous and bare soil 

fractional cover estimates, or photosynthetic, non-photosynthetic and bare components, 

including works in southern Africa Gessner et al. (2013) and Australia (Gill et al., 2017; 
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Lu et al., 2003; Zhou et al., 2016). Other efforts geared towards refining savanna 

vegetation into woody and herbaceous components depending on the different 

phenological traits of the two savanna contrasting life-forms include studies in the Sahel 

(Brandt et al., 2016), Namibia (Wagenseil & Samimi, 2007) and South Africa (Archibald 

& Scholes, 2007). Using NDVI and vegetation optical depth retrievals from passive 

microwave satellite observations, Tian et al. (2017) separated leaves from the woody 

cover in global tropical drylands.  

Most of these studies have focused at local scales, or excluded tropical savannas 

where tree-grass systems dominate (Shorrocks & Bates, 2015). The use of NDVI, 

fractional cover or photosynthetic versus non photosynthetic components to characterize 

the contrasting savanna life forms is also challenged by methods requiring an evergreen 

woody cover, which is not typical for the deciduous African savanna trees (de Bie et al., 

1998; Do et al., 2005; Horion et al., 2014; Shorrocks & Bates, 2015). These methods 

therefore restrict their applicability in African savannas, or provide information that is 

only indirectly related to ecosystem function, hence limiting their applicability in tropical 

savanna studies. For instance, NDVI as an indicator of vegetation greenness fails to 

provide important information about vegetation structure (e.g. leaf area index, LAI) 

necessary to understand the functioning of terrestrial ecosystems.  

LAI, defined as the one-sided area of green leaves (m2) per unit ground area (m2) 

in broadleaf canopies and half total needle surface area per unit ground area in conifers, is 

considered the most important vegetation structural parameter since leaf surface is the 

interface where major plant physical and biological process occur (Chen, 2013), 

including photosynthesis, regulating the rate at which heat, moisture and CO2 are 
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exchanged between the atmosphere and terrestrial ecosystems. It is therefore a critical 

parameter in biogeochemical, ecological and meteorological models and remote sensing 

applications. However, we recognize a major failure of aggregate remote sensing 

products in the savannas, that fail to separate the primary woody and herbaceous 

components of the system (Chen, 2013; Garrigues et al., 2008). Separate woody and 

herbaceous LAI, and other metrics of the density and structure of the main savanna 

components, would be more meaningful in understanding the separate and distinct role of 

woody and herbaceous vegetation in mixed tree-grass ecosystems. I argue that 

appropriate representation of separate woody and herbaceous components of savanna 

vegetation should be fundamental in global models of vegetation dynamics, competition, 

land surface-atmosphere interactions and for understanding the spatial and temporal 

dynamics of consumers of global net primary production (particularly fire and large 

herbivores).  

RS has seen significant application in understanding fire and consequent 

emissions across the globe, thus beneficial in the management and monitoring of fires 

and affected resources. RS data have been used in fire research and management at three 

levels as summarized in Roy et al. (2013): i) before the fire occurs to measure the danger 

of fuel hazard and mapping past burns; ii) real time detection during active fire events to 

record time, location and intensity; and iii) fire affected area mapping to assess the extent 

of the burned areas and associated emissions. However, the current remote sensing 

satellites lack the temporal and spatial characteristics necessary for comprehensive and 

reliable mapping of fires in savannas, since fires and post fire surface effects can change 

rapidly (Roy et al., 2013). Roy et al. (2013) further state that the available geostationary 
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satellites provide high temporal resolutions images at 15-30 minutes, but limited by 

spatial resolutions, increasing omission errors for small fires characteristic of tropical 

savannas. Furthermore, the use of aggregate biomass to assess fire has been confounding, 

since most fires are either surface fires fueled by herbaceous biomass or crown fires 

driven by the woody canopy. Thus, there is need to include separate estimates of woody 

and herbaceous biomass in fire studies.   

5.0 Research objectives, hypotheses and expected results  

Although savanna systems are recognized as important cultural, environmental 

and economic resources, their assessment and monitoring has received minimal attention. 

Hence lack of proper information on the status and trends in forage resources has led to 

poor planning and management. The situation will be more challenging in the face of 

climate change, which will increase vulnerability of humans and some ecosystems to 

impacts associated with climate change and climate related extremes across Africa (Boko 

et al., 2007; Field et al., 2014). Additionally, the available amount of vegetation in 

African savannas play a critical role in determining the amount of biomass available for 

herbivory and combustion. However, there is limited understanding of the role played by 

each of the savanna components (herbaceous and woody cover) in regulating herbivory 

and fire in SSA.  

The above considerations motivate a more detailed study of the composition, 

temporal and spatial variability of woody and herbaceous resources in SSA. The overall 

goal of the research was to use coarse and high spatio-temporal geospatial data to aid in 

understanding the temporal and spatial variability of herbaceous and woody biomass in 

savanna (‘tree-grass’) systems to facilitate research and planning for improved utilization 
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and management of these resources. The research comprises three components: (i) 

partitioning of MODIS total leaf area index (LAIA) time series into woody (LAIW) and 

herbaceous (LAIH) constituents; (ii) assessing the relationships between herbaceous 

production and fire regimes in Africa using LAIW and LAIH derived in (i); and iii) 

assessing the relationship between forage quantity and herbivory in sub-Saharan Africa. 

This involves use of the partitioned time series developed in (i) as an index of forage 

quantity to determine how forage browse (LAIW) and grazing (LAIH) resources determine 

distribution of livestock in SSA.  

The research combines various remote sensing datasets and ancillary data in 

continental scale analyses. Collated literature data coupled with field data from SSA was 

used to parameterize and validate key allometric relationships and predictions. 

Additionally, satellite data were used to generate continent-wide estimates of herbaceous 

and woody leaf area index which were applied to examine how livestock herbivory and 

fire vary with temporal and spatial variability in the partitioned LAI estimates. Expected 

outputs from this research included: gridded time-series of woody and herbaceous LAI 

estimates covering 2003-2015 epoch for SSA; better understanding of the effects of 

changes in herbaceous and woody cover components on fire; and improved 

understanding of the role of forage quantity in distribution of livestock in SSA. The 

results are compiled in this PhD dissertation document and journal publications. The 

potential embodied in the overarching goal of this research, that I can develop remote 

sensing-based approaches to inform and manage savanna resources in Africa, is the 

common thread motivating the different components of the research outlined below, 

separated into three substantive analyses.   
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Estimation of woody and herbaceous leaf area index in sub-Saharan 
Africa using MODIS data 
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Abstract 

Savannas are widespread global biomes covering ~20% of terrestrial ecosystems 

on all continents except Antarctica. These ecosystems play a critical role in regulating 

terrestrial carbon cycle, ecosystem productivity, and the hydrological cycle and 

contribute to human livelihoods and biodiversity conservation. Despite the importance of 

savannas in ecosystem processes and human well-being, the presence of mixed woody 

and herbaceous components at scales much finer than most medium and coarse resolution 

satellite imagery poses significant challenges to their effective representation in remote 

sensing and modeling of vegetation dynamics. Although previous studies have attempted 

to separate woody and herbaceous components, the focus on greenness indices and 

fractional cover provides little insight into spatio-temporal variability in woody and 

herbaceous vegetation structure, in particular, leaf area index (LAI). This paper presents a 

method to partition 1km spatial resolution Moderate Resolution Imaging 

Spectroradiometer (MODIS) aggregate green leaf area index (LAIA) from 2003-2015, 

into separate woody (LAIW) and herbaceous (LAIH) constituents in both drought seasonal 

savannas and moist tropical forests of Sub-Saharan Africa (SSA). In our analysis, we use 

an allometric relationship describing the variation in peak within-canopy woody LAI of 
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dominant tree species (LAIWpinc) across gradients in mean annual precipitation (MAP), 

coupled with independent estimates of woody canopy cover (τw), to constrain seasonally 

changing LAIW. We present the LAI partitioning approach and highlight the broad spatial 

and temporal patterns of woody and herbaceous LAI across SSA. The long-term average 

8-day phenologies of woody and herbaceous LAI (averaged across 2003-2015) are 

available for evaluation, research and application purposes. 

Keywords:  

Africa, Herbaceous, Leaf Area Index (LAI), Phenology, Savanna, Woody 
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1.0 Introduction 

Biomes with vegetation communities consisting of both herbaceous and woody 

species are widespread on all continents except Antarctica (Solbrig, 1996), including 

tropical, subtropical and temperate savannas and many regions classified as seasonal 

woodlands and dry-deciduous woodlands where herbaceous species are also present 

(Ratnam et al., 2011). These expansive tree-grass or shrub-grass systems, which we will 

refer to collectively as “savannas”, cover at least 20% of terrestrial ecosystems (Hill & 

Hanan, 2010). In terrestrial ecosystems, vegetation structure, particularly the relative 

importance of woody versus herbaceous plants, plays a critical role in regulating the 

terrestrial carbon cycle, ecosystem productivity, and the hydrological cycle (Franklin et 

al., 2016). Vegetation structure is also important for human livelihoods and biodiversity 

conservation as it influences provision of plant products, including fuelwood, wild foods 

and forage for livestock and wildlife. Ecosystem services provided by the herbaceous and 

woody layer are distinct in magnitude and seasonality, for example in the provision of 

fodder for grazers and browsers, respectively, and implications for wild-fire occurrence, 

fuel wood supply and carbon sequestration (Gessner et al., 2013). Hence, it is important 

to understand the distinct phenology of the herbaceous and woody layers in terrestrial 

ecosystems to better understand and model their impacts on productivity, hydrology and 

biogeochemical cycles, and the spatial and temporal dynamics of fire and herbivory.  

During recent decades, the remote sensing community and earth system modelers 

have made substantial progress in developing products to characterize global vegetation 

dynamics (Houborg et al., 2015; Thenkabail & Lyon, 2016; Xie et al., 2008; Xue & Su, 

2017). However, savanna ecosystems remain a challenge due to the presence of mixed 

woody and herbaceous components at scales much finer than most medium and coarse 
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resolution remote sensing data. Hence the key characteristics of savannas, including some 

areas in the moist tropical forests where herbaceous growth is made possible by reduced 

canopy cover (e.g. due to tree mortality or harvest), are not well represented in earth 

observation and modeling capabilities (Hill & Hanan, 2010).  

Attempts have been made to partition remote sensing products into separate 

woody and herbaceous components. Liu et al. (2017) partitioned understory and 

overstory LAI in temperate and boreal forests, using MODIS and Multi-angle Imaging 

SpectroRadiometer (MISR) datasets. However, their method is dependent on the ability 

to capture realistic forest background reflectivities, and neither tropical savannas nor 

moist tropical forests were included in their analysis. Similarly, regional studies in 

temperate and boreal forests of China and Siberia (Huang et al., 2011; Kobayashi et al., 

2010) used high spatial resolution and multi-angular data to estimate overstory and 

understory LAI, but these analyses did not extend to the seasonal savannas or moist 

tropical forests of Africa.  

Several authors have tested methods to separate woody, herbaceous and bare 

soil fractional cover using time series decomposition and spectral unmixing. For 

example, Lu et al. (2003) developed a time-series decomposition approach (originally 

proposed by Roderick et al., 1999) to separate cover of slowly-varying evergreen tree 

canopies from ephemeral herbaceous dynamics in coarse-resolution (8 km) AVHRR 

NDVI data for Australia. However, the method requires that the woody canopy be 

evergreen, which is not true in many drought-seasonal woody-herbaceous systems. 

Gessner et al. (2013) presented an approach for fractional cover decomposition in 

Southern Africa using 16-day 250 m resolution MODIS vegetation indices and, in a 
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recent study, Zhou et al. (2016) attempted to retrieve herbaceous fractional cover in 

Australian tropical savannas by linear unmixing of vegetation indices. Other local to 

regional studies in Africa attempt to tease out woody cover from herbaceous components 

using the different phenological traits of savanna vegetation (de Bie et al., 1998; Do et 

al., 2005; Horion et al., 2014), including work in the Sahel (Brandt et al., 2016) and 

Namibia (Wagenseil & Samimi, 2007). Applying a rather different approach at a larger 

coverage, Tian et al. (2017) used NDVI and vegetation optical depth (VOD) retrievals 

from passive microwave satellite observations to separate leaves from the woody cover in 

global tropical drylands covering 35oN and 35oS. However, while these studies advanced 

our understanding of the separate role of woody and herbaceous plants in mixed systems, 

the focus on fractional cover (Gessner et al., 2013; Lu et al., 2003), and photosynthetic 

and non-photosynthetic vegetation (Zhou et al., 2016), provides data that is generally 

only indirectly related to ecosystem function. Leaf area index separated into overstory 

(woody), and understory (herbaceous) components is, by contrast, directly relevant to 

models of vegetation dynamics (photosynthesis and growth), tree-grass interactions 

(competition) and land surface-atmosphere interactions (carbon, water and energy 

exchange mediated by distinct woody and herbaceous vegetation layers). 

Archibald and Scholes (2007) proposed an approach to partition satellite 

greenness (NDVI) data between woody and herbaceous components for a drought-

deciduous African savanna in South Africa. Their approach was based on three 

characteristic physiological and phenological differences between woody perennials and 

herbaceous vegetation: (i) many deciduous trees in drought-seasonal systems use water 

(and nutrients) stored in stems and other storage organs to grow leaves before herbaceous 
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plants; (ii) most of the inter-annual variation in leaf production in mixed woody-

herbaceous systems occurs in the herbaceous layer, because the leaf area that trees 

support is determined primarily by canopy architecture (canopy extent and density of bud 

initials), whereas tillering in grasses is closely related to inter-annual variability in 

rainfall; and (iii) that tree green-up rates are relatively constant among years.  

In this paper we build on the logic of Archibald and Scholes (2007), who 

partitioned satellite NDVI measurements, to describe a method for partitioning satellite 

green LAI estimates into woody and herbaceous components for Sub-Saharan Africa. We 

present the processing of 8-day interval 1 km spatial resolution MODIS green LAI 

(“aggregate LAI”, denoted LAIA, because it includes both woody and herbaceous 

components) time series data (2003-2015) into its woody (LAIW) and herbaceous (LAIH) 

constituents. Per Archibald and Scholes, our method assumes that leaf growth in most 

African drought-deciduous woody species occurs before herbaceous plant growth in the 

early rainy season, and that trees generally retain their leaves after senescence of 

herbaceous plants at the end the growing season. We also assume that seasonal maximum 

LAI in tree communities is constrained by canopy architecture (canopy cover and bud-

density) with relatively little inter-annual variability due to changes in precipitation. To 

apply the technique at continental scales we introduce two key innovations that constrain 

the partitioning problem: (1) the use of independent data on woody canopy cover across 

Africa, and (2) an allometric model describing the relationship between mean annual 

rainfall (MAP) and peak-season LAI within canopies of dominant trees across Africa.  

The objectives of this research were to (i) present the partitioning approach, from 

algorithm development to generation of the partitioned LAI products for Sub-Saharan 
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Africa (SSA); (ii) showcase the results of the partitioned woody and herbaceous LAI; and 

iii) make available the partitioned LAI product for evaluation and applications relating to 

natural resource management and ecosystem processes across Sub-Saharan Africa.  

2.0 Conceptual Approach: Theoretical basis of the LAI partitioning 
algorithm 

Leaf area index (LAI) is a dimensionless variable for characterizing 

vegetation canopies, defined as the one-sided area of green leaves (m2) per unit ground 

area (m2) in broadleaf canopies and half total needle surface area per unit ground area in 

conifers. In the context of this paper we distinguish five key LAI terms, as follows: i) 

Aggregate LAI (LAIA, m2 green leaf area per m2 land area), which is a landscape scale 

variable comprising the sum of herbaceous and woody leaf area per unit land area; ii) 

herbaceous LAI (LAIH, m2 leaf area per m2 land area), which is the landscape-scale green 

leaf area index of grasses and forbs; iii) Woody LAI (LAIW, m2 leaf area per m2 land 

area), which is the landscape-scale green leaf area index of woody vegetation including 

trees, shrubs and bushes; iv) In-canopy LAI (LAIWinc, m2 leaf area per m2 canopy area), 

which is a canopy-scale variable describing the amount of green leaf area held within the 

crown of a woody plant; and v) peak season maximum in-canopy LAI (LAIWpinc); which 

is the value of LAIWinc at peak season (i.e. following leaf expansion). 

In tree-grass systems, landscape-scale aggregate LAI (LAIA) is the linear sum of 

woody (LAIW) and herbaceous (LAIH) components (Figure 1), thus we define the identity:  

 ���� = ���� +	����  Equation 1 

Savannas are generally characterized by a more-or-less continuous herbaceous 

layer and a discontinuous stratum of trees or shrubs (Ratnam et al., 2011). Therefore, for 



29 
 

 

the purposes of this analysis, we assume that the herbaceous vegetation is fully 

distributed (i.e. herbaceous cover τh=1) and this is considered true even if herbaceous 

biomass is very low or absent. By contrast, woody canopy cover depends on the size and 

density of individual trees and is often discontinuous (τw ≤ 1). Additionally, we assume 

that τw varies slowly (at decadal scales assuming no major disturbance), relative to 

rapidly (i.e. seasonally) varying woody and herbaceous LAI. In mid-growing season (i.e. 

following full leaf expansion in deciduous trees) LAIW is therefore composed of τw and 

peak-season within canopy LAI (LAIWpinc), thus: 

���� = ��	���	����� Equation 2 

where LAIWpinc is estimated using an allometric relationship between field 

measured peak season in-canopy LAI and rainfall (LAIWpinc = f(MAP); Figure 1a); and 

using in situ in-canopy LAI measurements (Figure 4b). For mid-growing season 

estimates Equation 1 can then be expanded as:  

���� = ���������� +	����  Equation 3 

and herbaceous LAIH determined by difference, Equation 4: 

���� = 	���� 	����������  Equation 4 
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Figure 1: Conceptual basis for the LAI partitioning, with (a) hypothetical increase of peak-
season in-canopy LAI (LAIWpinc) as a function of mean annual precipitation (mm/annum), and 
(b) example for a drought-deciduous woody cover where herbaceous LAIH (light grey) is 
computed as the difference between aggregate LAIA (solid black line) and landscape scale 
woody LAI (LAIW; dashed red line). In evergreen systems, LAIW can be maintained year-
round. The data-based version of Figure 1a is presented in Figure 4b. 

 

For mid-season LAI partitioning, our approach depends on availability of 

estimates of aggregate LAIA (e.g. from MODIS, §3.2), tree cover (w, §2.1.3) and peak 

season in-canopy LAI (LAIWpinc;§3.2.3). In shoulder seasons, we follow Archibald and 

Scholes (2007) in assuming that trees produce leaves earlier, and retain them later than 

the herbaceous layer. Thus, in general if LAIA < τw LAIWpinc then LAIW=LAIA and 

LAIH=0. We also follow Archibald and Scholes (2007) in applying a maximum rate for 

tree-leaf emergence, estimated to be eight weeks for trees in their study site and our field 

sites in Kenya. 
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3.0 Materials and Methods 
 

3.1 Methods Overview 

Figure 2 provides an overview of the steps used to partition the 8-day 1 km 

MODIS LAI estimates into woody and herbaceous LAI. In brief, MODIS aggregate LAI 

is pre-processed to ensure realistic seasonal profiles as inputs to the partitioning 

algorithm. This is an important step since the partitioning algorithm depends on the 

previous time-step to allocate woody LAI. Field-measured (in situ) LAI measurements 

include: i) peak season in-canopy LAI (LAIWpinc) used for the allometric relationship; and 

ii) a validation set containing landscape scale herbaceous and woody LAI (LAIH and 

LAIW, respectively) for validation of the partitioned products estimated using Equations 

2-4. The partitioning procedures are described in more detail below. 

 

Figure 2: Overview of methods to derive woody and herbaceous LAI estimates from MODIS green 
aggregate LAI  
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Aggregate LAI
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8-Day Woody LAI (LAIW)8-Day Herbaceous LAI (LAIH)
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3.2 Data 

3.2.1 MODIS leaf area index (LAI) 

Moderate-Resolution Imaging Spectroradiometer (MODIS) has been generating 

green LAI data for over a decade through Terra and Aqua satellites, timed to cover the 

globe every 1 to 2 days. MODIS Collection 5 LAI products have an overall good 

performance with an RMSE of 0.8, and are able to capture realistic seasonality in most 

biomes, although in evergreen broad leaf forests cloud contamination reduces frequency 

and quality of retrievals (Yan, Kai,Park, Taejin,Yan, Guangjian,Liu, Zhao, et al., 2016). 

We used combined MODIS LAI collection 5 (C5) time series from Terra and Aqua 

satellites (MCD15A2) for years 2003-2015, at 8-day interval and 1 km resolution for 

SSA. We chose MODIS LAI collection 5 (C5) over the latest collection 6 (C6) due to its 

resolution that matches our woody cover dataset (§2.1.3), which is a critical input in our 

partitioning approach. Aside from the increase in spatial resolution from 1 km to 500 m, 

comparisons indicate relatively small differences in LAI between C5 and C6 (Yan, 

Kai,Park, Taejin,Yan, Guangjian,Chen, Chi, et al., 2016).  

3.2.2 Woody canopy cover and precipitation data for Sub-
Saharan Africa 

We used the woody canopy cover product developed by Bucini et al. (2010) using 

empirical relationships between MODIS optical data and Ku-band microwave 

measurements and woody cover estimates at >1000 calibration sites distributed across 

Africa; Figure 3a. The field and satellite data are centered on year 2005, thus appropriate 

for the 2003-2015 MODIS LAI era, assuming that woody canopy cover changes slowly, 

except in locations where a major disturbance event occurs (e.g. savanna tree harvest for 

charcoal or agricultural clearance). The data was available at 1 km spatial resolution. 
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When compiling the in situ LAI measurements we also recorded reported long-

term mean annual precipitation (MAP) for the study sites. In instances where MAP was 

not reported, it was computed from the gridded global monthly precipitation data from 

Climate Research Unit, University of East Anglia (CRU-TS v3.24), available at 0.50 

spatial resolution, covering the period of 1985-2015 (Figure 3b). We chose CRU 

precipitation to represent long-term bioclimatic conditions across Africa because of its 

long-term archive (1901-2015), well-defined uncertainties (Harris et al., 2014) and for 

consistency with earlier analyses e.g. Sankaran et al. (2005). To ensure that CRU does 

not vary significantly from other higher resolution and recently available precipitation 

datasets, we compared CRU estimates with i) Climate Hazards Group InfraRed 

Precipitation with Station (CHIRPS) data at 0.05° spatial resolution (Funk et al., 2015); 

and ii) Tropical Rainfall Measuring Mission (TRMM) Version 7 at 0.25o spatial 

resolution (Huffman et al., 2007). MAP computed from the two higher resolution 

datasets has an agreement of >=95% with CRU (see Support Information, Figures S1.1 

and S1.2). 

 

Figure 3: (a) Woody cover estimates for Sub-Saharan Africa, and (b) 30-year (1985-2015) Mean 
Annual Precipitation (MAP) derived from Climate Research Unit, University of East Anglia (CRU-
TS v3.24) data 
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3.2.3 LAI data for allometry and validation 

In African savannas, vegetation production is limited by water availability, where 

studies show MAP has a close relationship with the seasonal maximum cover and LAI in 

evergreen and deciduous trees (Archibald & Scholes, 2007; Sankaran et al., 2005). We 

build on these relationships to develop an allometric relationship between mean annual 

precipitation (MAP) and peak seasonal within tree canopy (“in-canopy”) LAI (LAIWpinc). 

To develop the allometric relationship and validate the partitioned LAI estimates we use 

a combination of our field measurements and literature-derived measurements of woody 

and herbaceous LAI in a variety of African ecosystems. 

We collected LAI data in Kenya during the 2015 October-December “short 

rains”. During the field program, study sites were distributed across a 450-1300 mm yr-1 

rainfall gradient in central and southern Kenya, including: Tsavo East-West and 

Amboseli National Parks, Ilngwesi Community Group Ranch and the privately owned 

Olpejeta Conservancy, both in Laikipia District. Sampling across this rainfall gradient is 

important for the LAI partitioning allometry, and sampling from dry season to peak LAI 

allowed us to better characterize the phenological timing of in-canopy LAI up to the peak 

season LAI (LAIWpinc). 

Fieldwork for collection of validation data for partitioned LAI involved 

identification of sites with homogeneous vegetation conditions at the 1 km grid-scale of 

MODIS LAI data. In each 1 km grid, three parallel north-south transects were laid to 

guide landscape scale LAI measurements. Each transect was 400 m long, set ~250 m 

apart and well within the nominal boundaries of the MODIS pixel. Overall, seven 1 km 

grids were established across the rainfall gradient.  
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Woody and herbaceous LAI were estimated using the LI-COR LAI-2200 Plant 

Canopy Analyzer (PCA). On each transect PCA measurements were recorded at three 

levels: (1) reference measurements made at irregular intervals (20-40 meters) in open 

areas to record incoming radiation with no influence of vegetation, (2) measurements at 1 

meter intervals below woody canopies, but above herbaceous vegetation, to  quantify 

light interception by the woody canopy (and act as reference measurements for the 

herbaceous measurements) and (3) measurements at 1 meter intervals at ground level 

(immediately underneath 2) to quantify light interception by herbaceous vegetation. 

Consistent with manufacturer recommendations (LI-COR Inc, 2012) the time of 

measurements was generally restricted to twilight hours (dawn and dusk) or during fully 

overcast skies, with the operator standing with their back to the sun to avoid direct 

sunlight on the instrument. This ensures uniform sky-illumination conditions and avoids 

problems of scattering under direct sunlight. However, for logistical reasons 

measurements were sometimes taken in less ideal conditions (i.e. higher solar angle or 

under patchy cloud). In these situations, we increased the frequency of reference 

measurements (1) to reduce impact of variability in incoming radiation on the below-

canopy measurements. At each site, dry season measurements of stem area index (made 

prior to emergence of leaves) were used to correct woody LAI estimates for the stem 

contribution (Jonckheere et al., 2004).  

To develop the in-canopy LAI allometric model we used data from field sites in 

Kenya supplemented by data from the literature at field sites distributed across Africa. 

Our approach was to couple landscape scale measurements of seasonal maximum woody 
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leaf area index (LAIW) with coincident measurements of fractional canopy cover (τW) and 

thus estimate seasonal maximum in-canopy LAI (LAIWpinc) as:  

�������� = ����/��  Equation 5 

For this purpose, at our field sites in Kenya we took independent PCA readings 

from plots of ~50m x 50m where we also recorded tree density (> 1-meter height) and 

measured crown sizes using a tape measure for two crown diameters (the longest and the 

perpendicular) to estimate canopy areas and total canopy cover (W) within the plot. For 

in-canopy LAI estimation, incoming radiation measurements were taken in open areas at 

5-meter intervals, while below woody canopy measurements, were recorded at 1-meter 

intervals above the herbaceous vegetation, taken along ten transects laid 5 m apart within 

each plot. These measurements were used to compute in-canopy LAI (Equation 5).  

Our field measurements of landscape-scale and in-canopy LAI were 

supplemented by literature-based in situ LAI estimates from sites across Africa (Figure 

4a). Overall, our initial database consisted of ~800 in situ LAI estimates, out of these 

~370 were for landscape scale LAI (herbaceous LAIH and woody LAIW) and 430 for in-

canopy LAI (LAIWinc). The in-canopy data included time series measurements where we 

selected the seasonal maximum, multiple estimates from adjacent locations, which we 

averaged, and several outliers which we removed, leaving ~150 data points (Figure 4b). 

The landscape scale LAI data were reserved for validation of the partitioned LAI 

products (see Supplementary data S3 for field-based LAI datasets). 

3.3 Preprocessing of the data 

Preprocessing of the aggregate green MODIS LAI was implemented to fill gaps 

and reduce noise in the time series relating to variable atmospheric effects (aerosols and 
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cloud contamination), sensor defects, variable solar geometry and satellite view angle, 

changing illumination and differing performance of the main and backup MODIS LAI 

algorithms (Chen et al., 2004; Kandasamy et al., 2013; Yuan et al., 2011). We used the 

MODIS LAI quality flags to select non-cloudy pixels from main and backup algorithm. 

Although the main algorithm is considered the best quality data (Myneni et al., 2003; 

Yang et al., 2006), here we use both main and back up algorithms since ecosystems in the 

Congo basin and coastal areas of the Gulf of Guinea had severe reductions in data using 

the main algorithm alone, as is expected in most tropical Africa ecosystems characterized 

by persistent clouds (Tchuente et al., 2010).  

The quality filtered MODIS LAI data were further corrected using the Best Index 

Slope Extraction (BISE) method (Viovy et al., 1992), which eliminates contaminated 

values in the time series for each pixel using an upper enveloping approach, then 

smoothing and gap filling with spline interpolation. We adopted this approach to reduce 

the influence of bias introduced into the LAI estimates where atmospheric effects, 

residual cloud and other sources of error consistently reduce LAI retrievals (Gao et al., 

2008). However, the BISE method overlooks overestimation (positive noise) that may be 

caused by defects such as angular effects (Eklundh & Jönsson, 2015). Additionally, the 

success of the BISE method is dependent on a sliding window (Viovy et al., 1992) 

defined by the user, hence can be subjective or limiting where researcher has limited 

knowledge of an area (Lu et al., 2007). BISE extraction and smoothing of the LAIA data 

was implemented in R’s biseVec Package (Lange, 2012). It is noteworthy that we also 

tested some of the other commonly used smoothing methods such as Savitzky-Golay 

(Savitzky & Golay, 1964), but chose the BISE interpolations because of its ability to 
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avoid negative anomalies, while maintaining the integrity of the original MODIS LAI 

data profile. Gap filling and smoothing was also necessary prior to partitioning since the 

woody LAI estimate is dependent on phenological increment from the previous date.  

Preprocessing of precipitation data involved sub-setting of the global dataset 

to SSA region, and calculation of annual rainfall totals for the thirty-year period, 1985-

2015. We resampled the rainfall data using a spline interpolation to disaggregate the 0.50-

pixel size to 1 km MODIS LAI resolution and MODIS sinusoidal projection. We did not 

consider topography in this down-scaling approach due to the relatively low topographic 

variation across much Africa and because long-term mean annual rainfall varies 

relatively smoothly in space (relative to much greater spatial variability in individual 

storm events). Note that, in developing our allometric relationship we used local MAP 

estimates from the source literature when available and only used CRU precipitation 

where literature MAP was not reported. The woody cover layer covering the whole of 

Africa at 1km resolution was also subset to match the MODIS LAI tiles.  

3.4 The partitioning allometry 

To create the allometry, we developed a piecewise regression model with a knot 

(change point) at 1650 mm MAP, Equation 6. The general model takes the form: 

� = �� +	��� + ��	(� �)� + 	Ɛ  Equation 6 

Where, β0 is the intercept, β1 the slope before the change point C and β2 the 

difference in slope after the knot; β1 + β2 gives the slope after the knot; (X – C)+ is an 

interaction term which takes 0 when C>X and X-C when C<X; and ε is an error term. We 

used the in situ estimates of the peak season woody in-canopy LAI (LAIWpinc) and local 

MAP estimates reported in literature (or CRU MAP where not reported) to fit the model 
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using ordinary least squares in R, resulting in Equation 7 for the partitioning allometry 

shown in Figure 4b.  

�������� = 	2.5219	 + 	0.0021 ���	 0.0020 (��� 1650)� 

 Equation 7  

To constrain the model represented by equations 4 and 7, we introduced a low 

rainfall threshold of 101 mm MAP below which woody cover is assumed to be zero 

(Sankaran et al., 2005) and thus LAIW = 0 and LAIH = LAIA when τW = 0. We also 

assumed that herbaceous vegetation tends to zero under very dense canopies (LAIH = 0 

and LAIW = LAIA when τW >80%), since herbage growth on the forest floor is limited by 

light (Moore, 2008), which is often <5% of light penetrating dense canopies in tropical 

forests (Bazzaz & Pickett, 1980).  

 

Figure 4: (a) Point locations for in situ leaf area index estimates in Sub-Saharan Africa, based on 
literature and field measurements in Kenya. Displayed in blue and red are in-canopy LAI (LAIWpinc) 
and landscape LAI locations respectively; (b) the relationship defining the allometry between mean 
annual precipitation (MAP) and peak season maximum in-canopy woody LAI (LAIWpinc), where 
the red line is fitted using piecewise regression (R-squared=0.3 and RMSE=1.2) while the blue 
dotted line uses loess fitting.  
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3.5  Biome map for visualization and assessment of LAI 
partitioning 

To visualize and assess the performance of the partitioned data-set we randomly 

sampled points in the major biomes of SSA (Figure 5). We use the biome-level samples 

to visualize mean woody and herbaceous LAI phenologies (at 8-day intervals averaged 

over the thirteen years of the analysis, 2003-2015) to show the characteristic phenology 

(climatology) and variability across each biome type. The biome map was generated 

using White’s vegetation map for Africa (White, 1983), aggregated based on rainfall and 

geography to provide functionally similar regions at scales suitable for visualization in 

this paper.  

 

Figure 5: Biome map for Sub-Saharan Africa, based on Whites vegetation map of Africa (White, 
1983), aggregated by region and rainfall, used in this analysis to sample partitioned LAI for 
visualization.  

 

There is need for a comprehensive validation of LAI and its derived products 

(Garrigues et al., 2008; Jonckheere et al., 2004; Weiss et al., 2004). We attempted to 

validate the partitioned products with in situ LAI measurements, although the total 
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number of data points available for validation is less than recommended (Garrigues et al., 

2008; Morisette et al., 2006) and we anticipate additional collection of validation data in 

future. We used literature data and estimates from our field work in Kenya (§3.2.3). 

Using the geographic locations of the in situ LAI measurements, we extracted the 

partitioned LAI within the 1x1 pixel and interpolated the 8-day LAI estimates to match in 

situ LAI measurement dates.   
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4.0 Results 
 

4.1. Validation of partitioned leaf area index products 

A comparison of MODIS partitioned LAI with in situ LAI measurements shows 

an overall agreement of ~50% (Figure 6 and Table 1) but with a tendency to 

underestimate LAIW in regions with higher in situ LAIW. These sites are in savannas and 

cropland natural vegetation mosaic (Friedl et al., 2010), which we suppose could be 

either due to: the mismatch in scale of measure between the in situ measurements and 

MODIS LAI pixel size at 1km resolution; and inadequacy of the generalized allometric 

equation shown in Figure 4b, suggesting the need for allometries that distinguish 

different tree functional groups or different bioclimatic regions. We anticipate gradual 

improvements in validation results in future reanalysis of these LAI re-trievals as more 

data defining differentiated allometric equations become available.  

Table 1: Validation statistics- table showing standard major axis (SMA) regression statistics 
for the overall and partitioned leaf area index estimates. 

LAI group Slope Intercept R2 RMSE N 

LAIW 0.56 0.36 0.43 0.8 358 

LAIH 0.92 -0.11 0.29 0.37 115 

LAI(W+H) 0.6 0.23 0.49 0.72 473 
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Figure 6: Comparison of MODIS partitioned leaf area index with in situ measurements for 
herbaceous (red points) and woody leaf area index (black points) fitted with a single regression 
line using standard major axis regression (SMA). 

4.2. Maps of partitioned leaf area index 

4.2.1. Averaged Annual Maximum LAI 

The partitioning approach results in 8-day estimates of herbaceous and woody leaf area 

index at 1 km resolution for SSA for the period 2003-2015. The 8-day averaged 

phenologies (i.e. across all years, referred to as LAI climatology in the text) are available 

as a Supplement (Data S1), and the full resolution time series can be visualized as an 

animation (Data S2). Full temporal resolution analyses may be obtained by contacting the 

corresponding author. The 8-day estimates were used to generate annual average 

maximum LAI (Figure 7) to demonstrate the concentration of woody LAI in the mesic 
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savannas and moist tropical forests, and herbaceous LAI maxima in the mesic savannas. 

 

Figure 7: Maximum green leaf area index in sub-Saharan Africa showing (a) aggregate LAIA from 
MODIS, (b) partitioned woody LAIW, and (c) partitioned herbaceous LAIH. All data were computed 
as the average of annual LAI maxima for years 2003 to 2015. 

4.2.2. Seasonal variability in leaf area index 

As a complement to the annual average LAI maxima shown in Figure 7, we computed the 

ratio of average minimum LAI (LAIMin) to LAIMax to represent the degree of LAI 

seasonality across the continent (Figure 8). In these data, values close to 0% occur in 

strongly deciduous regions, while values approaching 100% occur in evergreen and low-

seasonality regions. In the aggregate LAIA, areas with seasonally stable evergreen 

vegetation occur in the Congo basin, Gulf of Guinea, eastern coast of Madagascar and 

East African highlands (Figure 8a). The woody LAI seasonality (Figure 8b) emphasizes 

further the distinctions between evergreen and deciduous woody ecosystems in the moist 

tropical forest and savannas. Moreover, the woody seasonality also highlights regions of 

evergreen or weakly deciduous shrublands in drought-seasonal regions of East, Southern 

and West Africa. These areas are less easily discernable in the aggregate LAI. 

Herbaceous LAI across most of SSA is highly seasonal (Figure 8c), whether or not the 

dominant species are annuals (as is the case in most West African savannas) or perennial 

(as in most East and Southern African savannas). Minor exceptions to the overall high 

seasonality in LAIH occur in a few areas on the desert margins (i.e. blue areas in Somalia, 
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Sudan, Chad and Namibia). These may reflect areas of low seasonality herbaceous 

vegetation as found in parts of the Sahara desert (Yan, Dong et al., 2016), or areas of 

small semi-deciduous shrubs not detected in the woody cover data set (Figure 3a) and 

thus wrongly classified as herbaceous vegetation. Note that regions with low woody LAI 

(LAIWmax < 0.5) or low herbaceous LAI (LAIHmax < 0.5) are excluded from the 

seasonality estimates in Figure 8. Thus, for example, these figures do not provide data on 

LAIW seasonality in areas with few trees in the drier regions, or LAIH under the dense 

tree canopies in the tropical forest regions. 

 

Figure 8: Maps of average LAIMin/LAIMax in sub-Saharan Africa showing (a) aggregate LAIA from 
MODIS, (b) partitioned woody LAIW, and (c) partitioned herbaceous LAIH. All data were computed 
as a percentage of the average of 8-day LAI (LAIMin/LAIMax) for years 2003 to 2015. White areas 
show regions with low LAI maxima (< 0.5) where the seasonality index was not calculated to avoid 
numerical instability. Blue tones in these maps are evergreen or seasonally stable ecosystems, while 
shades of red show areas with high seasonality.  

4.2.3. Partitioned leaf area index by biome types  

We assessed the partitioning performance among wet and dry ecosystems, using 

the major biomes of SSA as a reference (Figure 5). The 8-day average (climatology for 

years 2003-2015) partitioned woody and herbaceous LAI, averaged for each biome is 

shown in Figure 9. The variability in LAIW within biomes is driven primarily by 

variability in woody canopy cover (w). Thus, LAIW is highly variable in the wet biomes, 

because w can vary between 0 and 1, depending on local land use and disturbance 
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dynamics, while variability in LAIW is constrained in drier biomes by limitations in 

maximum w (Axelsson & Hanan, 2017), as shown in Figure 9a. By contrast, LAIH tends 

to be highest in the mesic systems, where rainfall is sufficient for significant herbaceous 

growth, and where relatively open tree canopies allow sufficient light to pass through for 

herbaceous (especially C4 grass) growth (Figure 9b). A further assessment of LAI 

performance by biome type in SSA is available in the supporting materials (Figure S2).  

 

Figure 9: Distribution by biome of partitioned 8-day average leaf area index (LAI climatology) 
in (a) woody LAIW, and (b) herbaceous LAIH, with diamond symbols showing the mean within 
each biome; the lower and upper bounds of the box showing 25th and 75th percentiles 
respectively; the median denoted by the inner horizontal line, and vertical whiskers showing 
the full range of data (excluding outliers exceeding 1.5 interquartile range). The order of biomes 
in both figures is ranked according to median LAIW . 
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We show the seasonal phenological profiles of partitioned LAI for selected 

ecosystems in wet, mesic and dry regions of SSA in Figure 10. Here, we not only 

illustrate the differences among biomes in how total LAI is partitioned between woody 

and herbaceous components (contrast moist tropical forests with savannas and the Namib 

desert), but also the distinct differences in timing of growth in the seasonal savannas 

(northern rainy seasons in northern summer; southern rainy seasons in southern summer), 

and the bimodal rainy seasons in the Horn of Africa. Peak season herbaceous LAI is 

higher than woody LAI in the Sahel in contrast to the higher tree LAI in the savannas of 

southern Africa. Further detailed partitioned LAI profiles are presented in the support 

information (Figure S2) 

 

Figure 10: Averaged phenological profiles for aggregate and partitioned LAI for select biomes 
in sub-Saharan Africa. The profiles are based on biome median LAI values using 8-day average 
LAI 2003-2015. Note that the y-axes vary to emphasize different patterns of seasonality among 
the biomes  
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4.2.4. Relationship between mean annual precipitation and 

partitioned leaf area index 

LAI maxima for various ecosystems is mainly dependent on precipitation and the 

relative contribution of woody and herbaceous components (Figure 11). Herbaceous LAI 

has a unimodal distribution with respect to mean annual rainfall (Figure 11c), peaking in 

the mesic savannas at approximately 900 mm/year, declining in the water-limited arid 

zones, and declining with light-limitation in the moist tropical forests. Woody LAI, by 

contrast, initially increases with precipitation, with maximum values (LAI > 6) occurring 

in regions with MAP > 1200 mm/year, and a striking bifurcation between high LAI 

forests (LAIw > 6) and moderate LAI savannas (LAIw < 5; Figure 11b). This is consistent 

with theories of bistability in the forest-savanna transition zones driven by fire and 

positive feedbacks (D’Odorico et al., 2006; Hanan et al., 2008; Hoffmann et al., 2012), 

and earlier empirical analyses using the MODIS tree-cover dataset (Hirota et al., 2011; 

Staver et al., 2011). 

 

Figure 11: Relationship between mean annual precipitation and leaf area index in sub-Saharan 
Africa. (a) Aggregate LAIA, (b) Woody LAIW, and (c) Herbaceous LAIH. LAI data in these figures 
show average annual LAI maxima for the years 2003-2015 for a random sample of 500,000 points 
across sub-Saharan Africa. 

 

Hanan et al. (2014) questioned whether the bistability apparent in the MODIS 

tree-cover data between open grassland and savanna in drier regions, and between 
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savanna and forest in wetter regions, might be an artifact of the statistical approach used 

to predict tree cover from MODIS (classification and regression trees). In this analysis, 

however, bifurcation between high LAI ‘forests’ (>6 LAI) and lower LAI ‘savannas’ (<5 

LAI) appears in the MODIS aggregate (Figure 11a), and is reinforced in the partitioned 

woody LAI following removal of the herbaceous LAI component (Figure 11b). We 

questioned if the apparent LAI bifurcation might reflect parameter-differences between 

MODIS land cover classes. However, we find that both forest and savanna classes occur 

above and below the bifurcation, suggesting that the pattern is not algorithm-dependent 

(Figure 12). The potential causes of this forest-savanna LAI bifurcation (the extent to 

which it may be caused by the MODIS and partitioning algorithms, or reflect real 

differences relating to forest-savanna woody traits and ecology) will be explored in more 

detail in a subsequent paper.  

 

Figure 12: Relationship between mean annual precipitation and MODIS aggregate LAI color-
coded by land cover classes (Friedl et al., 2010)   
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5.0 Discussion 

In this paper, we have presented an approach for separating MODIS LAI into 

woody and herbaceous constituents across sub-Saharan Africa (SSA) where ~65% of 

terrestrial biomes are savanna ecosystems with woody-herbaceous mixtures (Archibold, 

1995). While several authors have developed methods for LAI partitioning in temperate 

and boreal regions (Huang et al., 2011; Kobayashi et al., 2010; Liu et al., 2017), and 

woody cover separation from herbaceous cover at local to regional scales in Africa 

(Brandt et al., 2016; Gessner et al., 2013; Wagenseil & Samimi, 2007), our analysis is 

unique in providing long-term woody and herbaceous LAI phenologies for tropical 

Africa. Separated woody and herbaceous LAI allow users to understand the separate and 

distinct phenology and function of woody and herbaceous vegetation in ecosystem 

processes across SSA.  

Our analysis relies on the quality and consistency of the MODIS aggregate LAI 

product. Early assessments identified relatively larger errors in seasonal LAI retrievals 

(de Bie et al., 1998; Palmer et al., 2015). However, there has been a recorded 

improvement of LAI retrievals through various collections and validation efforts. 

Intercomparison of MODIS collection 5 and 6 (C5 and C6) shows good agreement, 

consistency and continuity for all biomes (Yan, Kai,Park, Taejin,Yan, Guangjian,Liu, 

Zhao, et al., 2016). For this analysis we used C5 LAI estimates because the 1km spatial 

resolution corresponds with our tree cover product. Validation of partitioned woody and 

herbaceous LAI products based on field measurements across Africa indicate root mean 

square errors of 0.72, 0.37 and 0.80 LAI units for overall partitioned, herbaceous and 

woody LAI, respectively, as shown in Table 1. 



51 
 

 

We recognize the limitation of our partitioning approach, which is dependent on 

input MODIS LAI, the woody LAI allometry and the woody cover products, each with 

associated errors and uncertainty. Overall, however, the potential benefits to our 

understanding of ecosystem processes made possible through availability of partitioned 

woody and herbaceous phenologies, make the partitioning exercise worthwhile. In some 

areas we observed unrealistic LAI seasonality, particularly in evergreen forest regions 

with persistent cloud cover (Chen et al., 2004; Kandasamy et al., 2013; Tchuente et al., 

2010; Yan, Kai,Park, Taejin,Yan, Guangjian,Liu, Zhao, et al., 2016), although on a 

regional basis the evergreen characteristics of the moist tropical forests are clear (see 

Supplementary Information Figure S2). Additionally, the use of a static woody cover 

product (Bucini et al., 2010) centered on 2005 to constrain the woody LAI, while 

appropriate for most slowly-changing systems, will not capture change in woody-

herbaceous LAI partitioning in landscapes undergoing rapid change (e.g. deforestation 

for agricultural expansion, fuelwood or timber). For this initial analysis, we ignore this 

potential source of error, assuming that deforestation is relatively localized. In future re-

analysis we anticipate progressive improvements to our methodology with collection of 

additional data to refine allometric relationships and woody cover datasets updated at 1-5 

year intervals. Future improvements in the partitioned LAI products will also be achieved 

via feedback from user community; updates and improvements in the MODIS and later 

VIIRS aggregate LAI retrievals. 

The averaged phenology product, which we make available at 1 km spatial 

resolution and 8-day temporal resolution for all of sub-Saharan Africa (see Supporting 

information Data S1), provides users with LAI “climatologies” (in the sense of long-term 
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averages) defining the seasonal variations in the woody and herbaceous functional groups 

common to most terrestrial biomes. The averaged phenology data also reduces errors 

relating to cloud contamination and other sources of LAI retrieval variability, although 

inter-annual variations in LAI (particularly in herbaceous LAI relating to rainfall 

variability) are suppressed in the long-term averages. Partitioned woody and herbaceous 

LAI datasets can contribute to improved understanding of terrestrial ecosystem processes, 

including the land-surface atmosphere, biogeochemical and ecological interactions that 

define the role of vegetation communities in the biosphere and the provision of natural 

and anthropogenic services. In particular, these partitioned products at landscape to 

continental scales provide opportunities for parameterization and validation of models 

that represent the crucial functional separation between woody plants (trees and shrubs) 

and herbaceous vegetation, and the potential for terrestrial remote sensing and associated 

ecosystem models to move beyond aggregated (so-called big-leaf) representation of the 

terrestrial biosphere.  

Data Accessibility Statement  

Datasets associated with this paper are available in the Dryad data portal 

(https://datadryad.org). The datasets include: i) gridded LAI averages presented in a 

zipped netcdf file format, containing MODIS aggregate, woody and herbaceous LAI with 

averages computed for every 8-day time-step from 2003-2015 (46 time-steps x 3 LAI 

type, described in support information Data S1); ii) Aggregate and partitioned LAI 

animations for years 2003 to 2015, uploaded in a zipped Graphics Interchange Format 

(GIF) format. The file shows LAI time-series per 8-day interval for years 2003 to 2015 

(Support information Data S2). Part of the animation can also be viewed here: 
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https://globalmonitoring.sdstate.edu/content/modis-lai-partitioning; and iii) the in situ 

LAI measurements used for developing the partitioning allometry and validation of the 

partitioned herbaceous LAIH and woody LAIW (Supporting information Data S3)  
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1.0 Introduction  

The supporting information includes data used in developing the partitioning 

allometry models and additional results for the MODIS LAI partitioning process 

presented in the main manuscript.  

2.0 List of supporting datasets 

Data S1: Gridded 8-day averages (climatology) leaf area index (LAI) at 1 km for 

years 2003 to 2015, presented in netcdf format. There are three zipped netcdf file 

containing 8-day averages for aggregate 

(MCD15A2.2003_15.Africa.V02.LAIA.Climatologies.nc.zip), woody 

(MCD15A2.2003_15.Africa.V02.LAIW.Climatologies.nc.zip) and herbaceous 

(MCD15A2.2003_15.Africa.V02.LAIH.Climatologies.nc.zip) LAI (i.e. total of 46 time 

periods x 3 LAI estimates) representing an average year for each 1 km location in sub-

Saharan Africa. We have also provided the metadata and example R-Script on how to 

process the data (KahiuMN.HananNP_JGR_10.1002-2017JG004105.txt) in R-

Programming (https://www.r-project.org/). The data, metadata and R-script are available 

from the Dryad Digital Repository: https://doi.org/10.5061/dryad.v5s0j. 

Data S2: LAI animation for years 2003 to 2015 contains aggregate, woody and 

partitioned LAI mosaicked for sub-Saharan Africa, presented in gif format. The 

animation shows the estimates of aggregate LAI and partitioned woody and herbaceous 

LAI estimates for each 8-day interval during the entire 13-year time-period, Filename: 

MCD15A2.2003_2015.Africa.V02.Animation.gif. An online version of the animation 

can be accessed here: https://globalmonitoring.sdstate.edu/content/modis-lai-partitioning 
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and https://www.savanna-lab.com/research_kahiu.html. Data available from the Dryad 

Digital Repository: https://doi.org/10.5061/dryad.v5s0j   

Data S3: The in situ LAI measurements are provided in Microsoft Excel format 

containing measurements for sub-Saharan Africa collated from literature and field 

measurements in East Africa. The file contains three worksheets: i) description of the 

files and data variables; ii) in situ in-canopy LAI used to develop the partitioning 

allometry; and iii) LAI estimates used for the validation of the partitioned herbaceous and 

woody LAI. Filename: Insitu.incanopy.LandscapeScale.LAI.FINALtoJGR.20170707.xlsx. 

3.0 List of Supporting Figures 

Figure S1.1: Shows maps comparing mean annual precipitation from three global 

products for sub-Saharan Africa from 1998 to 2015 

Figure S1.2: Scatterplot displaying statistical relationship between CRU, 

CHIRPS and TRMM mean annual precipitation for sub-Saharan Africa from 1998 to 

2015. 

Figure S2: Biome level phenology in panels A through O showing 8-day LAI 

averages for aggregate, woody and herbaceous components for different biome types in 

Africa. The biomes are based on Africa vegetation types (White, 1983), with locations 

sampled randomly across sub-Saharan Africa (total of 500,000 points), thus the data 

density varies between regions in proportion to their area.  

4.0 List of supporting tables 

Table S1: Zonal and seasonal biome averages for mean annual precipitation 

(MAP), aggregate, woody and herbaceous LAI, providing additional information on the 

biome level LAI by mean annual precipitation 
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Table s2: Metadata describing the contents of the MS Excel file containing in-

canopy and landscape scale in situ LAI measurements  

5.0 Text for supporting information 

Text S1: Inter-comparison of mean annual precipitation from three global 

products for sub-Saharan Africa 

Here we compare three gridded global monthly rainfall products for mean 

annual precipitation estimates for sub-Saharan Africa (SSA), namely: i) Climate Hazards 

Group InfraRed Precipitation with Station data (CHIRPS) with global coverage spanning 

the latitudes 50°S to 50°N, available from 1981 to present at 0.05° spatial resolution 

(Funk et al., 2015); ii) Tropical Rainfall Measuring Mission (TRMM) Version 7 covering 

the region within the latitudes 50°S to 50°N at 0.25o spatial resolution from 1998 to 

present (Huffman et al., 2007); and iii) Climate Research Unit precipitation time series 

by University of East Anglia (CRU-TS v3.24) available at 0.5o spatial resolution from 

1901 to 2015 temporal coverage (the rainfall data used in this analysis) (Harris et al., 

2014). To compare the three products, mean annual precipitation (MAP) was computed 

for the period 1998-2015 (the TRMM data period) for SSA and spatially aggregated to 

0.5o to match CRU-TS precipitation. MAP computed from the two higher resolution 

datasets has a good agreement with CRU MAP (R2 >= 0.95; Figures S1.1 and S1.2). In 

this analysis we used CRU data because it provides long-term averages (30-year climate) 

that are at the appropriate temporal scale for the in-canopy LAI allometry which depends 

on tree community adaptation to local climate averages, rather than inter-annual 

variability.  



67 
 

 

 
Figure S1.1: Comparison of mean annual precipitation for sub-Saharan Africa from (a) CRU-
TS, (b) TRMM and (c) CHIRPS for years 1998 to 2015, aggregated to half degree spatial 
resolution.  

 

 
 

Figure S1.2: Scatterplots to compare CRU-TS mean annual precipitation with (a) CHIRPS (b) 
TRMM for all the data after spatial aggregation to half degree.  

 
Text S2: Biome level phenology 

In this section, we show biome-level 8-day phenologies of aggregate, woody and 

herbaceous LAI randomly sampled at a total of 500,000 points across Africa from the 13-

year average time-series (2003-2015). The randomly-selected points allow us to visualize 

the median and variability in woody and herbaceous LAI phenology in each biome 

(Figure S2) with the density of points varying as a function of the spatial extent of each 

biome. In most biomes, we see a clear central tendency relating to the magnitude of 

growth and seasonality, but considerable spatial variability reflecting the large spatial 
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extent of the biome map, with inherent variability in climate, soils and vegetation, but in 

many cases also reflecting human impact within biomes, including agricultural activities, 

forest clearance for timber, urban expansion, etc.  

Table S1 shows partitioning performance grouped into three rainfall categories: 

wet, mesic and dry. In the low rainfall areas (MAP <500mm) comprising of Sahara, 

Namib, Cape, the Horn arid and the Sahel (Eastern and Western Sahel), the low tree 

cover leads to low woody LAI, with mean and median <0.5 (Table S1 and Figure S2). In 

the Sahara biome, which in our analysis only includes a small area mainly in the southern 

region at the border with the Sahel, the spatial aggregate LAI is low (range 0.1 and 1.26 

for minimum and maximum respectively) which peaks during the wet season from early 

July to late September. With a generally low vegetation cover, both herbaceous and 

woody LAI get small fractions of the aggregate LAI (Table S1 and Figure S2). In the 

Sahel region (eastern and western), the seasonal maximum LAI is reached in June to 

October. The wetter Eastern Sahel gets a higher woody and herbaceous LAI at a mean of 

0.38 and 0.40 compared to the Western Sahel with means at 0.23 and 0.25 for LAIW and 

LAIH respectively. In the Namib biome, LAI peaks in the wet season beginning from 

November to April, where the LAIA seasonal average 0.51 and the partitioned LAIW and 

LAIH at 0.4 and 0.12 respectively. The Cape, characterized by low MAP and a short 

growing season from January to March, has average maximum LAIA of 0.34, while the 

partitioned LAIW and LAIH are 0.28 and 0.10   
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Figure S2: Biome level phenology  
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Figure S2: 8-day time series leaf area index averages (i.e. 46 LAI estimates averaged across years 
2003-2015) for different biome types in Africa, showing the median response (black line) and the 
range of individual pixel values, for the MODIS aggregate LAI (LAIA), partitioned woody LAI 
(LAIW) and herbaceous LAI (LAIH). Locations were sampled randomly across Africa with a total 
of 500,000 points, thus the data density varies between regions in proportion to their area.  
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The mesic ecosystems (500mm - 1000 mm MAP) are found in the Horn 

Equatorial, Southern Dry and East African Highlands biomes, with mean woody LAI in 

the range 0.5 to 1.0, while LAIH is between 0.2 and 0.3 (Table S1 and Figure S2). The 

horn equatorial is characterized by bimodal precipitation, with long rains in March to 

June and short rains in November to December, which are apparent in the aggregate and 

partitioned LAI profiles, with seasonal averages are 1.31, 1.05 and 0.30 for LAIA, LAIW 

and LAIH respectively. In Southern Dry biome, LAI peaks in the months of November to 

April, where seasonal average maximums are 1.48, 0.78 and 0.70 for LAIA, LAIW and 

LAIH. In the East African Highlands, the seasonal average maximums are 1.21, 0.98 and 

0.23 for LAIA, LAIW and LAIH, observed during the wet months between June and 

November. Here, our partitioning allocates higher LAI to LAIW due to the presence of 

woodlands and shrublands around Ethiopian highlands. Generally, in these mesic 

ecosystems, the tree cover and woody LAI is higher than in drier regions. 

The regions we define as wet ecosystems (1000 mm < MAP) include the Southern 

Mesic, Madagascar (dry and Humid), Rift Valley, Sudan-Guinea and Moist Tropical 

Forest biomes. The mean zonal LAI is high (1.0 - 5.0). In this category, the partitioning 

allocates LAI mainly to the LAIW, while LAIH is relatively small (~0.1-0.5). In the 

Southern Mesic biome, LAI peaks from December to March. The seasonal average 

maxima are 2.97, 1.98 and 1.0 for LAIA, LAIW and LAIH (Table S1). 

The Rift Valley observes a May to September surge in LAI, where LAIA seasonal 

average maxima is at 2.92, while partitioned LAIW is 2.32 and LAIH at 0.63. In Sudan-

Guinea the growth season falls between the months of June to October, where seasonal 

average maxima are at ~ 2.68, 2.13 and 0.55 for LAIA, LAW and LAIH respectively. In 
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the Moist Tropical Forest biome where MAP is the highest, LAI remains consistently 

high throughout the year, although a small deep is observed from June to September, 

Figure S2F. The partitioning has seasonal average LAIW remaining above 4.0 throughout 

the year while LAIH remains low at an average of ~0.2. In Madagascar, the growth 

season runs from December through March. The eastern wetter area classified as 

Madagascar humid has high LAIA which remains significantly high throughout the year. 

Partitioning allocates LAI mainly to LAIW, which has a mean of 2.75 while LAIH remains 

low with a mean of ~0.30. In the western drier Madagascar, classified here as 

Madagascar dry, LAI increase follows the precipitation regime, with seasonal average 

maxima observed at ~ 1.80, 1.10 and 0.70 for LAIA, LAW and LAH respectively (Table 

S1). 

 



74 
 

 

 

Table S1: Zonal and seasonal biome averages for mean annual precipitation (MAP), aggregate, woody and herbaceous leaf area indices. 
For the aggregate, Woody and herbaceous columns, the statistics are spatial averages for every biome. The seasonal average maxima 
represent the spatial temporal maximum, averaged for each biome, derived from the median fit in Figure S2 

Biome Name Precipitation Aggregate LAI (LAIA) Woody LAI (LAIW) Herbaceous LAI (LAIH)   Seasonal Average Max 

MAP Category Min Median Mean Max Min Median Mean Max Min Median Mean Max LAIA LAIW LAIH 

Sahara  86 Dry 0.10 0.28 0.29 1.26 0.00 0.19 0.16 0.91 0 0.09 0.13 0.88 0.42 0.20 0.22 

Namib  217 Dry 0.10 0.35 0.51 3.81 0.00 0.31 0.40 1.89 0 0.02 0.12 2.13 0.79 0.51 0.28 

Cape 259 Dry 0.10 0.24 0.34 6.47 0.00 0.22 0.28 2.44 0 0.00 0.06 5.09 0.37 0.31 0.09 

The Horn Arid 330 Dry 0.10 0.36 0.48 5.09 0.00 0.35 0.43 2.15 0 0.00 0.05 4.27 0.60 0.50 0.10 

Western Sahel 348 Dry 0.04 0.33 0.48 6.69 0.00 0.19 0.23 1.89 0 0.17 0.25 6.19 0.91 0.27 0.64 

Eastern Sahel 499 Dry 0.02 0.44 0.78 6.78 0.00 0.26 0.38 6.63 0 0.16 0.40 6.34 1.48 0.46 1.03 

Southern Dry 543 Mesic 0.07 0.72 0.95 6.74 0.05 0.53 0.65 6.65 0 0.09 0.30 5.69 1.48 0.78 0.70 

The Horn Equatorial 773 Mesic 0.09 0.93 1.31 6.68 0.09 0.81 1.05 6.63 0 0.03 0.26 4.82 1.61 1.20 0.41 

East African Highlands 954 Mesic 0.07 0.79 1.21 6.76 0.07 0.68 0.98 6.76 0 0.00 0.23 5.27 2.27 1.48 0.79 

Southern Mesic 1093 Wet 0.12 1.77 2.12 6.63 0.10 1.40 1.67 6.61 0 0.10 0.45 5.64 2.97 1.98 0.99 

Madagascar Dry 1142 Wet 0.13 0.92 1.14 6.72 0.13 0.76 0.88 4.44 0 0.01 0.26 6.05 1.78 1.10 0.68 

Rift Valley  1171 Wet 0.10 1.77 2.25 6.76 0.10 1.42 1.89 6.67 0 0.01 0.36 6.04 2.92 2.32 0.63 

Sudan-Guinea 1177 Wet 0.02 1.49 1.88 6.76 0.02 1.20 1.68 6.65 0 0.00 0.20 5.81 2.68 2.13 0.55 

Moist Tropical Forest 1684 Wet 0.15 5.63 4.80 6.60 0.15 5.56 4.69 6.61 0 0.00 0.11 5.30 5.15 5.02 0.13 

Madagascar Humid 1841 Wet 0.11 1.92 3.05 6.76 0.11 1.77 2.75 6.76 0 0.00 0.30 6.04 3.48 2.98 0.50 
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Table S2: Metadata for the in-canopy and landscape scale in situ LAI measurements for the data 
provided in MS Excel format for Data S3.  

 

Supplementary References 

Funk, C., et al. (2015), The climate hazards infrared precipitation with stations—a new 

environmental record for monitoring extremes, 2, 150066, 
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Item Description  

Files included  

Metadata Description of the data included in the dataset 

IncanopyLAI In situ LAI measurements used in the development of the MODIS leaf area index partitioning model  

validation LAI Insitu LAI measurements used for the validation of the partitioned MODIS leaf area index 
  

Data Column Names 

CrownArea Woody cover crown area  

insituLAI In situ leaf area index measurements from literature and Kahiu MN et al 2015 fieldwork in Kenya 

incanopyLAI Within woody canopy leaf Area Index 

MODISLAI MODIS estimates of leaf area index 

DateMeasure Date of measurement (format DD/MM/YYYY) 

Day Calendar date of measurement 

Month Calendar month of measurement 

YYYY Year of measurement 

Julian Julian day of measurement 

Biome Broad categorization of the vegetation type 

VgtClass Vegetation functional type i.e. herbaceous and woody component classes 

MeaScale Vegetation scale of measure (within canopy woody estimates or at landscape scale)  

Species Species type at site of measurements 

MAP Mean annual precipitation (mm/annum) for the site of measurements  

Temperature Temperature for the site where measurements were taken  

Altitude Altitude (meters above sea level) for the site where measurements were taken  

Latitude Geographical location from equator in decimal degrees 

Longitude Geographical location along the longitudes in decimal degrees 

Site Local name where measurements were taken  

Country Country where measurements were taken 

Method Reported type of measurement for estimating in situ leaf area index  

Citation Source of the data  

Comment Additional notes provided in literature 
  

Data 
 

Missing Data  -999 
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CHAPTER 3  

Fire in sub-Saharan Africa: the Fuel, Cure and Connectivity hypothesis  

Kahiu, M. N., & Hanan, N. P. (in press). Fire in sub-Saharan Africa: the Fuel, Cure and 

Connectivity hypothesis. Global Ecology and Biogeography  

Abstract  

Aim Past analysis of satellite-based fire activity in tropical savannas support the 

intermediate fire-productivity hypothesis (IFP) which posits a close correlation with 

estimates of total net primary productivity in drier savannas and declines towards the 

extremes. However, these analyses ignore the distinct roles played by herbaceous and 

woody vegetation on fire ignition and spread. We hypothesize that, since herbaceous 

vegetation provides the primary fuel, fire activity in African savannas is asymptotically 

correlated with herbaceous production. Conversely, woody production affects fires 

indirectly through effects on herbaceous production and its connectivity. In contrast to 

IFP, we propose the Fuel, Cure and Connectivity (FCC) conceptual model for tropical 

fire activity. FCC makes explicit the distinct role of herbaceous and woody fuels, 

avoiding the confounding interpretation of the role of total production, while providing 

opportunities to quantify fuel curability, tree effects on herbaceous fuel growth and 

connectivity, and human management.  

Location Sub-Saharan Africa (SSA).  

Time 2003-2015 

Taxa Woody and herbaceous vegetation 
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Methods We used boosted regression tree analysis to test competing models 

explaining fire activity: (i) Aggregate fuel-loads; and (ii) partitioned woody and 

herbaceous fuel-loads; both derived from MODIS leaf area index. 

Results Herbaceous fuel-load was consistently most influential, providing more 

explanatory power than overall biomass in fire activity. Fuel curability rated second, then 

human population density (HPD), and woody biomass least important. We observed an 

asymptotic relationship between herbaceous fuel-load and fire activity consistent with 

FCC; trees promote fires at low densities but suppress fires at higher densities; fires were 

rare in wetter regions, emphasizing the need for fuel to cure; fires were concentrated in 

low human population areas underscoring the critical role of land management.  

Conclusions The proposed FCC framework provides a more nuanced 

understanding of fire activity in tropical ecosystems, where herbaceous biomass is the 

key determinant of fire activity.  

Keywords: Africa, Fire, Fuel Cure and Connectivity hypothesis, Herbaceous, 

Intermediate Fire Productivity hypothesis, MODIS Leaf Area Index (LAI), Woody  

  



79 
 

 

1.0 Introduction 

Fire is a widespread and recurrent phenomenon that plays a critical role in global 

biogeochemical cycles, altering atmospheric chemistry, determining the distribution and 

structure of global biomes, and altering the ecological function of terrestrial ecosystems 

(Bond, 2001; Bowman et al., 2009). Fire can be both a source of carbon and a facilitator 

of carbon sinks (Yue et al., 2016). As a source of carbon, fires burn standing vegetation 

biomass causing rapid release of carbon which may have taken many years to accumulate 

(Mouillot & Field, 2005). Tropical savannas are responsible for about 30% of net primary 

production (NPP) in terrestrial biomes, equivalent to that of tropical forests (Grace et al., 

2006). However due to frequent and extensive burning, contributing ~62% global carbon 

emissions (van der Werf et al., 2017), tropical savanna fires reduce the capacity of 

terrestrial ecosystems to sequester carbon (Yue et al., 2015)  . Conversely, fires promote 

vegetation growth, hence facilitate uptake of atmospheric carbon dioxide through 

photosynthesis (Bond, 2001). Wild fires also influence atmospheric chemistry and 

radiative forcing through emission of trace gases and aerosols (Crutzen & Andreae, 1990; 

Harrison et al., 2010). 

Fire is also important in changing soil properties and in turn influences cycling of 

elements such as potassium and phosphorous through wind erosion as ash, volatilization 

and leaching (Bond, 2001; Harrison et al., 2010). For millenia, fire has shaped global 

biomes such as savannas, and many savanna plants have evolved fire resistant or fire-

dependent traits (Bond, 2001; Bond & Midgley, 2012; Bowman et al., 2009; Murphy & 

Bowman, 2012). At regional and global scales, fire-tree cover feedbacks define 

vegetation patterns, where frequent fires limit tree canopy growth and promote open 

savannas dominated by the herbaceous layer and fires in an amplifying feedback that may 
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contribute to alternate savanna and forest stable states (Hanan et al., 2008; Hirota et al., 

2011; Hoffmann et al., 2012; Staver et al., 2011).  

For millenia, fire has been a universal natural phenomenon, found in almost every 

vegetation type across the globe (Archibald et al., 2013; Giglio et al., 2013). However, 

natural fire regimes have been altered by humans through ignition and suppression 

(Archibald, 2016; Harrison et al., 2010). Today, fire is used for ecological and economic 

benefits (Bowman et al., 2009; van der Werf et al., 2010). As a management tool fire is 

used to clear old and new land for cultivation, reduce hazardous fuel loads, facilitate 

forest regeneration, improve pasture quality and control pests (Harrison et al., 2010) and 

as a hunting tool for poachers and traditional hunters (Pausas & Keeley, 2009). On the 

other hand fire has been widely suppressed to minimize deleterious effects associated 

with uncontrolled fires e.g. property damage, loss of human lives, human health and 

biodiversity loss (Archibald, 2016)  

Fire is most predominant and frequent in tropical savannas, particularly in African 

savannas (Archibald et al., 2013; Giglio et al., 2013). Tropical savanna fires are almost 

exclusively surface fires, fueled by senescent herbaceous material (Bond & Midgley, 

2012; Frost & Robertson, 1985; Murphy & Bowman, 2012), with crown fires being rare 

since trees are scattered with their crowns high above the ground (Bright et al., 2012). In 

African savannas fires consume ~10% of NPP (Lehsten et al., 2009), constituting >60% 

of total global burnt area (Bistinas et al., 2013; Giglio et al., 2013; van der Werf et al., 

2010). According to the pyrome classifications of Archibald et al. (2013), African fires 

fall mainly into two main pyromes: frequent-intense-large and frequent-cool-small.  
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Figure 1: The Intermediate Fire-Productivity (IFP) model showing a hump shaped (‘unimodal’) 
relationship between fire frequency and productivity/aridity, peaking at intermediate levels and 
declining in highly productive but wet environments and arid but low productivity ecosystems. 
Adapted from Pausas and Bradstock (2007). 

 

Four conditions must be met for a fire to ignite, persist and propagate in a 

landscape (Bradstock, 2010): sufficient biomass, adequately dry to burn (“cured”), 

favorable atmospheric conditions for combustion and the presence of natural or 

anthropogenic ignition sources (Krawchuk & Moritz, 2011). A widely cited 

phenomenological model for the frequency and extent of fire in terrestrial systems is the 

“intermediate fire-productivity” hypothesis (IFP; Pausas & Ribeiro, 2013). In the IFP 

model, fire activity peaks at intermediate productivity (and aridity) and declines towards 

the extremes (Figure 1). Highly productive areas tend to be limited by fuel moisture (“too 

wet to burn”), while xeric ecosystems are limited by lack of sufficient and well-

distributed fuel (“too little to burn”). The resulting unimodal distribution of fires with 

respect to productivity and aridity has empirical support from both regional and global 

scale analyses (Archibald et al., 2013; Bowman et al., 2014; Pausas & Ribeiro, 2013). 

However, the IFP model, particularly when tested using satellite measurements of total 

net primary production, fails to disentangle the important distinctions between 
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herbaceous and woody vegetation in promoting and/or suppressing fire ignition and 

spread in tropical ecosystems.  

 

Figure 2: Conceptual diagrams outlining the “Fuel, Cure and Connectivity” (FCC) model for 
tropical wildfires controlled by joint probabilities of sufficient herbaceous fuel availability 
(P(Fuel), solid and dotted lines) and sufficient length of dry season for fuel to cure (P(Cures), 
symbols). (a) shows hypothesized probability that fuel-load will be sufficient to carry a fire 
with increasing mean rainfall, and the effect of increasing tree cover from no trees (solid line), 
to low tree cover in dry savannas (dashed), to potentially high tree cover in mesic savannas 
(dotted), assuming that trees facilitate herbaceous growth in drylands, but reduce herbaceous 
growth and connectivity in mesic savannas (Dohn et al., 2013). Thus trees may increase fire 
prevalence in drier savannas but decrease in mesic savannas; (b) shows hypothesized joint 
probability that landscapes with varying herbaceous-woody vegetation structure will have 
sufficient fuel, that is suitably cured and spatially contiguous, to carry a fire; (c) summarizes 
the FCC model as a functional equation relating fire variables (frequency or average burn area) 
to fuel load, cure probability, tree effects on herbaceous fuel and connectivity, and 
management. 

 

Our proposed savanna Fuel, Cure and Connectivity (FCC) conceptual model 

(Figure 2) is based on the premise that, in tropical savannas, wild-fires are generally 

fueled by herbaceous materials, with crown fires being rare. Therefore, at continental 

scales, the frequency, burn intensity and average burned area of tropical fires will tend to 

increase with herbaceous biomass, perhaps reaching an asymptote above a certain 
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biomass where fuel is no longer limiting. We anticipate that average herbaceous fuel 

availability increases near-linearly with mean annual rainfall (Deshmukh, 1984; 

Shorrocks & Bates, 2015). However, the availability of sufficient time for fuels to cure 

(i.e. to dry enough to burn following an ignition event) will be correlated with dry season 

length (DSL) and thus inversely proportional to mean annual rainfall. Woody biomass, by 

contrast, may facilitate herbaceous growth in drier environments, but tends to suppress 

herbaceous growth and reduce connectivity in wetter environments (Archibald et al., 

2012; Dohn et al., 2013). Thus, in contrast to the IFP model that posits a unimodal 

response of fire to total productivity, the FCC model posits a family of positive sigmoidal 

relationships (depending on the variable influence of trees) between mean annual 

precipitation (MAP) and the probability of herbaceous fuel being sufficient for a 

successful fire (Figure 2a). Simultaneously, however, we anticipate a negative sigmoidal 

response in the probability that available fuel will have time to cure, and it is the product 

of P(Fuel) and P(Cures) that defines the overall probability that an ignition event will 

successfully light a fire that is persistent and large enough to be observed in satellite 

imagery (Figure 2b). The probability of an ignition event is not represented in the 

conceptual diagrams (Figure 2a and b). However, since most wild-fires in Africa are 

intentionally set as part of management practices (Kull & Laris, 2009), we introduce 

human population density into the empirical model (Figure 2c). Bistinas et al. (2013) 

found the direction of human population density (HPD) influence in SSA depends on 

land use systems, with rangelands experiencing a positive relationship, while higher 

human populations in agricultural areas suppress fire through agricultural expansion and 

intensification (Andela et al., 2017). We therefore anticipate an overall negative 
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relationship between HPD and fires. We note that, in contrast to Bradstock (2010) and 

others, we do not include atmospheric conditions in our conceptual or empirical model 

(Figure 2): while an important variable in temperate and boreal systems we assume that 

dry season air temperatures and humidity in tropical Africa are almost always favorable 

for fire, to the extent that it is assumed not to be a limiting factor in this analysis. 

While the FCC conceptual model might be viewed as a simple refinement of the 

IFP, we highlight two important distinctions that provide potentially important new 

insight into tropical wild fire processes: (a) the decline in fire frequency in wetter high-

productivity tropical biomes is conceptually linked only to fuel wetness in the IFP, but to 

either or both fuel-wetness and lack of herbaceous fuel-load under dense tree canopies in 

the FCC; and (b) where the IFP posits a general increase in fire with productivity, the 

FCC distinguishes the direct role of herbaceous fuel-load and the indirect role of woody 

canopies in facilitating or competing with herbaceous growth and thus reducing fuel load 

and spatial connectivity.  

Our objectives in this study were to: i) understand how two characteristics of fire 

regime (fire frequency and average percent burned area) vary with changes in herbaceous 

and woody fuel components; ii) explore the role of dry season length in promoting curing 

of fuels prior to burning, and humans in providing ignition sources, and (iii) quantify and 

evaluate the applicability of the FCC hypothesis relative to the IFP across sub-Saharan 

Africa. We use the conceptual model illustrated in Figures 2a-b as the basis for our a 

priori hypotheses, and a Boosted Regression Tree (BRT) approach to quantify the form 

and magnitude of fire responses to the contributing factors shown in Figure 2c. The 

satellite fire products include the MODerate Resolution Imaging Spectroradiometer 
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(MODIS) active fire detection product (MCD64A1) Collection 6, commonly referred to 

as burnt area and the Global Fire Emissions Database Version 4 (GFED4, without small 

fires) burnt fraction as complementary estimates of fire return frequency and annual 

average percent burned area, respectively. The partitioned LAI time series developed in 

Kahiu and Hanan (2017) are used to derive estimates of average annual maximum leaf 

area index (LAI) as proxies for fuel load. The probability that fuel has time to dry 

sufficiently to burn (Krawchuk & Moritz, 2011) is indexed using estimates of dry season 

length (DSL). A spatially disaggregated human population density (HPD) dataset is also 

used as an indicator of anthropogenic influences, including sources of ignition and land 

management practices. A summary of the data used is presented in the support 

information (SI) in Appendix 1, Table S1.1. We tested two basic BRT model 

formulations: (i) aggregate LAI models, where the aggregate (MODIS) LAI is used to 

represent available fuel, as in earlier studies; and (ii) partitioned LAI models, using 

separate constituents of woody and herbaceous LAI, based on the refined FCC model. 
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2.0 Materials and Methods 

Environmental variables were selected to represent the primary drivers of fire 

hypothesized in Figure 2, including direct estimates or proxy indices for fuel load, fuel 

curing, the impacts of tree canopy, and anthropogenic ignition/management shown in SI, 

Table S1.1.  

2.1 Data and preprocessing steps 

2.1.1 Satellite fire products  

The study covers the whole of sub-Saharan Africa (SSA) 

Percentage burned area 

We used Global Fire Emissions Database version 4 (GFED4 without small fires) 

burned area product (Giglio et al., 2013) to compute the percentage burnt area (PBA) per 

0.250 spatial resolution pixel in SSA. The data, provided as a monthly global product 

from mid-1995 to 2016, was downloaded (fuoco.geog.umd.edu) for years 2003-2015, 

spatially subset for the SSA region and used to compute annual cumulative burnt area in 

each pixel, from which long-term (13-year) average percentage burned areas were 

calculated (Figure 3a).  

Burn frequency  

To determine burn frequency (BF) the MODIS Terra and Aqua combined 

MCD64A1 collection 6 monthly burn product was used (Giglio et al., 2016). MCD64A1 

dataset derived using MODIS collection 6 (C6) surface reflectance coupled with MODIS 

active fire data, includes a monthly level 3 product at 500m spatial resolution, 

summarizing the date of burn (presented as Julian day of burn in the range 1-366) 

covering the period November 2000 to November 2016 (Giglio et al., 2015) at the time 
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of this analysis. The MCD64A1 tiled dataset for years 2003 to 2015 was downloaded for 

SSA region. We extracted the burn date and quality assurance flags which we used to 

mask out water cells then computed the annual average burn frequency for the study 

period (Figure 4b). According to the product user guide (Giglio et al., 2013) MCD64A1 

C6 product includes an improved mapping algorithm, reduced error of omission, better 

mapping of small fires, enhanced classification accuracy, increased spatial coverage and 

improved quality assurance.  

 
Figure 3: Percentage annual average burnt area derived from Global Fire Emissions Database 
version 4 (GFED4) in (a) and (b) annual average fire frequency computed from MODIS burnt 
area product (MCD64A1) scaled between 0 and 1; both covering the study period 2003-2015 

 

2.1.2 MODIS aggregate and partitioned woody and herbaceous 
leaf area index 

 

Average annual maximum green LAI is used in this analysis as a proxy for fuel 

load, based on the logic that, in tropical savannas burning senescent leaves rather than 

wood, there is very little carry-over of leaf biomass between years (i.e. it is generally 

eaten, burned or decomposes at annual time-scales), thus peak leaf area during the rainy 

season will be closely correlated with the amount of leaf biomass that senesces and cures 

to constitute fuel during the subsequent dry season. MODIS aggregate (total) leaf area 
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index (Myneni et al., 2015), and a recently-derived woody-herbaceous partitioned LAI 

product (Kahiu & Hanan, 2017) were used as proxies for fuel load, analogous to the IFP 

approach (total biomass) and the FCC approach (herbaceous only), respectively.  

Aggregate MODIS leaf area index 

MODIS aggregate leaf area index (LAIA) for SSA was downloaded from 

combined MODIS LAI (Terra and Aqua satellites) collection 5 (C5) time series 

(MCD15A2) for years 2003-2015, at 8-day interval and 1km resolution. LAIA was 

preprocessed to fill missing data and reduce noise in the time series caused by 

atmospheric contamination, sensor and solar geometry issues (Chen et al., 2004). The 

preprocessing steps are further detailed in Kahiu and Hanan (2017). The preprocessed 

LAIA was used to derive annual average maximum LAI (LAIAmax, Figure 4a).  

 
 
Figure 4: Maps of annual average maximum leaf area index in sub-Saharan Africa, (a) 
aggregate LAIAmax from MODIS, (b) partitioned woody LAIWmax, and (c) partitioned 
herbaceous LAIHmax. The data were derived as the per pixel average of annual LAI maxima for 
years 2003 to 2015 

 

Partitioned leaf area index  

The partitioned LAI products are generated using the 8-day LAIA at a spatial 

resolution of 1 km for the time period 2003-2015. As detailed in Kahiu and Hanan 

(2017), LAIA is separated into woody (LAIW) and herbaceous (LAIH) constituents in 
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SSA, using independent tree cover estimates and an allometric relationship between mean 

annual precipitation and seasonal LAI maxima for dominant woody species in SSA. 

From the partitioned product, we computed the per pixel annual maximum LAI which 

was then averaged for the 13 years of our study (Figure 4 b-c). A small number of pixels 

with herbaceous LAI > 3 LAI units were found to be concentrated in wetlands and 

seasonally flooded grasslands and were eliminated from this analysis.  

2.1.3 Indicators of vegetation moisture content  

Vegetation moisture condition is an important variable that dictates the potential 

for fuels to burn (Cochrane & Ryan, 2009). Here we estimate the average number of dry 

season months as a proxy for vegetation moisture status and the time available for 

biomass to cure. The dry season length (DSL) for SSA was computed using Climate 

Hazards Group InfraRed Precipitation with Station data (CHIRPS; Funk et al., 2015). 

The dataset has a global coverage spanning the latitudes 50°S to 50°N, available from 

1981 to present at 0.05° spatial resolution. CHIRPS incorporates satellite and ground 

station precipitation estimates to derive gridded precipitation products. We used the 

monthly precipitation product for years 2003-2015, computed the monthly average 

precipitation, then set a 30 mm threshold below which a month was considered to be dry. 

We then computed the average annual maximum number of cumulative dry months, 

taking into account that the dry season in much of Northern and East Africa traverses one 

calendar year to another. The computed DSL was then aggregated to 0.25o to match the 

spatial resolution of the PBA (Figure 5a). 
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Figure 5: Seasonality and anthropogenic drivers of fire activity in Africa. (a) The dry season length 
(DSL) computed using CHIRPS precipitation estimates with a threshold of 30 mm precipitation 
defining dry months, averaged for years 2003-2015. (b) Human population density (HPD, 
people/km2; Bhaduri et al., 2002). Note that urban areas with HPD > 500 people/km2 were 
eliminated in the analysis. 

 

2.1.4 Human population density  

We used year 2015 human population density (HPD) estimates for SSA from the 

Gridded Landscan population dataset developed by US Oak Ridge National Laboratory, 

available at ~1km spatial resolution (Bhaduri et al., 2002). The HPD data was aggregated 

(using the mean) to match the spatial resolution of other analysis datasets at 0.250. To 

avoid high density urban locations, we restricted our analysis to human population 

density <500 persons/km2. 

2.2 Boosted regression tree analysis  

To test the hypotheses illustrated in Figure 2, we used Boosted Regression Tree 

(BRT) analysis. BRTs are statistical machine learning methods which combine i) a 

boosted technique that improves model accuracy through bagging predictions and 

iterative fitting, and ii) a regression model which relates a response variable to predictors 

through recursive binary splits. We chose BRT due to their advantages over traditional 

statistical modeling methods, as outlined by Elith et al. (2008), including their ability to 

fit linear and complex nonlinear relationships, accommodate missing data and outliers, 
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with no need to transform data or remove outliers; handle predictor variable interaction; 

and work with a variety of response variable types including Gaussian, Poisson and 

Binomial.  

We tested two basic models, analogous to the IFP and FCC conceptual models, 

describing spatial variation in percent burned area and fire frequency across Africa with 

respect to (i) aggregate LAI (LAIA), and (ii) partitioned herbaceous LAI (LAIH; Table 1). 

 

Table 1: Models used to explore burnt area and fire frequency in sub-Saharan Africa using 
boosted regression tree analysis  

Response variable 

(Fire activity) 

Explanatory Variables  

Model 1: Aggregate model Model 2: Partitioned model 

Percentage Burnt 

Area (GFED4 Data) 

Aggregate LAI + Dry 

Season Length + Human 

Population Density  

Herbaceous LAI + Woody LAI 

+ Dry Season Length + Human 

Population Density 

Mean Annual Burn 

Frequency 

(MCD64A1) 

Aggregate LAI + Dry 

Season Length + Human 

Population Density 

Herbaceous LAI + Woody LAI 

+ Dry Season Length + Human 

Population Density 
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3.0 Results 
 

3.1 Fire patterns and boosted regression analysis  

Initial bivariate analysis of the relationships between fire activity (percent burnt 

area, PBA, and burn frequency, BF) and the potential driver variables are shown in the SI 

Appendix S2 and Figures S2.1 and S2.2. 

3.1.1. Fire relationship with vegetation productivity  

BRT analysis results are shown in Figure 6-7 and Table 2. Results from the 

aggregate LAI model indicate several patterns of fire with environmental covariates. 

LAIA has a unimodal relationship with PBA (Figure 6a) and BF (Figure 6d) consistent 

with bivariate analysis (Figures S2.1a and d) and the IFP conceptual model for fire 

activity (Figure 1). Fire is low in the low LAI areas (fuel limitations in arid ecosystems), 

peaking at intermediate LAIA values (intermediate productivity) then declines towards 

high LAIA ecosystems (too wet to burn).  

 



93 
 

 

 

Figure 6: Partial dependency plots from boosted regression tree analysis for aggregate model 
(Model 1; Intermediate Fire productivity hypothesis) for (a to c) percentage burnt area and (d-e) 
burn frequency showing fire responses to aggregate leaf area index , human population density 
(HPD) and dry season length (DSL). The red lines are fitted using a loess smoothing and the 
variables are ranked in order of their relative importance (%) which is shown beside the x-axis 
labels 

 

In the partitioned LAI model where total leaf area index (LAIA) is separated into 

LAIW and LAIH estimates, we observe an asymptotic response of fire with LAIH, 

reaching an asymptote at LAI ~2.5 for both PBA and BF, consistent with the FCC 

hypothesis that herbaceous biomass is the primary fuel for tropical fires (Figures 7a and 

e), but that above a certain threshold of biomass (LAIH>2.5; indexed here using peak 

herbaceous LAI) fires are no longer limited by fuel availability. In this model, the 

influence of woody LAI is relatively low (ranked 4th among the driver variables fitted, 

Figures 7d and h), with a unimodal form. Fire activity initially increases with increasing 

woody leaf area index peaking at LAIW~2.5 before declining at higher LAIW. The 
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patterns in fire activity with LAIW are consistent with the FCC model where trees 

facilitate herbaceous productivity (and thus fuel availability) in drier environments, but 

tends to suppress fires through reduced herbaceous fuel connectivity in wetter (high tree 

cover) environments. Further results to assess fire sensitivity to increasing herbaceous 

and woody biomass based on mean annual precipitation categorization are shown in SI, 

Appendix S4, Table S4.2 and Figures S4.5.  

 

Figure 7: Partial dependency plots from BRT analysis for partitioned model (Model 2; Fuel, Cure 
and Connectivity hypothesis) for (a to d) percentage burnt area and (e to h) burn frequency, showing 
fire responses to partitioned herbaceous leaf area, dry season length (DSL) and human population 
density (HPD) and woody leaf area index (LAIW). The red lines are fitted using a loess smoothing. 
The variables are ranked in order of their relative importance (%) which is shown beside the x-axis 
labels   

 

3.1.2. Fire relationship with indicators of moisture availability  

The influence of dry season length (DSL) on fire activity is consistent with the 

FCC hypothesis that a minimum dry season length is required for fuel to cure (Figures 6 

and 7). In these analyses, it appears that at least 2 dry months are necessary for fires to be 
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common, with a major increase in fire frequency and burn area in systems with >5 dry 

months. Contrary to our expectation of an asymptotic relationship, however, we see an 

apparent decline in fire frequency at DSL>7, perhaps reflecting interactions with fuel 

availability that the BRT approach is not able to fully separate (i.e. fire declines at high 

DSL may reflect fuel limitations in these very dry systems that was not fully 

characterized using the LAIH estimates).  

3.1.3. Fire relationship with human population 

The results indicate that humans tend to suppress fires, with a negative 

exponential relationship, with fires most common at low HPD (< 50 persons/km2) and 

declining fire frequency and average burn area in more densely populated regions 

(Figures 6b and e and 7c and g). Fires were concentrated in pastoral zones (HPD < 50) 

and low intensity agricultural zones (HPD<100), and rare in locations with HPD > 200 

people. 

3.2 Explanatory power and rank of driver variables  

We observed varying importance ranking and explanatory power for the different 

environmental covariates used in both the aggregate and partitioned models. In the 

aggregate models, LAIA has the best explanatory power, followed by HPD and DSL 

(Table 2 and Figure 6). Overall, the aggregate model explains ~52% of the spatial 

variability in average burnt area and 58% fire frequency across SSA. The ranking of 

independent drivers of fire activity changes for both PBA and BF in the partitioned 

models (Table 2). As hypothesized, herbaceous LAI has the most substantial influence on 

fire in SSA, followed by DSL, HPD and finally LAIW. Overall the partitioned model 
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explains slightly more (R2 ~62%) of fire activity in SSA, than the aggregate model (R2 

~55%).  

Table 2: Boosted regression tree analysis results for the variability in average burnt area and 
fire frequency for aggregate and partitioned leaf area index models in sub-Saharan Africa 

         

Relative Influence (%)   

 Aggregate Model      
Variable % Burnt Area Fire Frequency Averages  
Aggregate LAI 47.54 49.65 48.59  
HPD 31.13 28.40 29.76  
DSL 21.34 21.95 21.64  
R-Squared 0.52 0.58 0.55  

 Partitioned Model   

Herbaceous LAI 38.16 38.84 38.50  
DSL 24.69 23.53 24.11  
HPD 22.32 21.00 21.66  
Woody LAI 14.82 16.63 15.73  
R-Squared 0.59 0.65 0.62  

DSL= dry season length; HPD = human population density; LAI = average 
annual peak leaf area index 

 

 

      

3.3 Comparison of model predictions and observed burnt area 
and fire frequency  

We used the partitioned LAI BRT models to predict fire patterns across SSA to 

facilitate spatial comparison with the original data and identify region where the models 

perform particularly well or poorly (Figure 8). In general, the spatial patterns agree, 

showing the hotspots of burning in savannas within southern Chad and Sudan, in south 

eastern Sahel and Southern African miombo; regions of relatively low fire occur in the 

drier zones in the horn of Africa, the Namib/ Kalahari areas and northern Sahel; and low 

fire frequency in wet areas including the Congo Basin, West African coast and highlands. 

We notice some areas of disagreement where over-prediction is evident e.g. a strip along 

the east African coast which coincides with the DSL peak burning range (compare 
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Figures 8 and Figure 5a). Under-prediction is also apparent in fire hotspots areas in 

southern and northern Africa. It is noteworthy that the BRT results are similar for PBA 

and BF where we observe similar spatial patterns in the difference images. 

 
Figure 8: Comparison of predicted and satellite observed fire activity in sub-Saharan Africa using 
the partitioned leaf area index model. (a) Predicted burnt area and (b) Predicted fire frequency 
scaled between 0 and 1 both derived from Boosted regression tree analysis. The differences 
between observed and predicted are shown in (c) burnt area and (d) fire frequency.  

 

We compare the observed and predicted PBA and BF statistics in Table 3. Overall 

the fitted partitioned model performs better for PBA (R2=0.53) and BF (R2=0.63) than the 

aggregate model for PBA (R2=0.49) and BF (R2=0.59). Both aggregate and partitioned 

models tend to under-predict fires at high observed fire activity, but partitioned models 
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(Figure 8) outperformed the aggregate models shown in SI, Appendix S3 and Figures 

S3.3 and S3.4.  

Table 3: Summary statistics for observed versus predicted fire activity (percentage burnt area and 
fire frequency) for the aggregate model (intermediate fire productivity hypothesis) and the 
partitioned model (the fuel, cure and connectivity hypothesis) in sub-Saharan Africa  

 

  

Model Fire Activity Intercept Slope R-Squared 

Aggregate Burnt Area (PBA) 5.18 0.66 0.49 

Fire Frequency (BF) 0.06 0.70 0.59 

Partitioned  Burnt Area (PBA) 4.11 0.72 0.53 

Fire Frequency (BF) 0.05 0.74 0.63 
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4.0 Discussion  
 

4.1. Summary of main results 

In our analysis we: i) explored how fire frequency and average percent burned 

area vary with changes in herbaceous and woody fuel components; ii) assessed the role of 

dry season length in promoting curing of fuels prior to burning, and humans in providing 

ignition sources, and (iii) quantified and evaluated the applicability of the Fuel Cure 

Connectivity hypothesis (FCC) relative to the intermediate fire productivity hypothesis 

(IFP) across SSA. Fire frequency and burned area are influenced by multiple 

environmental and social factors in Africa but fuel load, indexed as maximum herbaceous 

LAI (LAIH), was consistently most influential and provided more explanatory power than 

overall biomass, indexed as maximum aggregate LAI (LAIA; i.e. herbaceous + woody). 

DSL was the second most important fire explanatory variable followed by HPD, and 

LAIW least important in the partitioned model. While the BRT modeling approach 

remains sensitive to variable interactions, some clear patterns emerged: (i) the 

relationship between herbaceous fuel-load and fire frequency/extent was asymptotic 

rather than unimodal, contrasting the IFP, but consistent with the FCC; (ii) trees, may 

promote fires at low densites through facilitation of grass growth, but they suppress fires 

at higher densities, presumably by reducing fuel bed connectivity; (iii) fires were rare in 

regions with DSL < 2 months, peaking at 5-7 months, emphasing the need for fuel to 

cure; (iv) fires were also concentrated in areas with low human population, underscoring 

the critical role of land management, with fires concentrated in pastoral zones (< 50 

people) and low intensity agricultural zones (<100 people), and rare in locations with 
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HPD > 200. These findings point to the need for disentangling fuel load types in fire 

analysis and the need to consider management practices and fuel cure time (DSL).  

4.2. How fire activity changes with herbaceous and woody 
fuel components 

We observed varying importance ranking and explanatory power for the different 

environmental covariates used in both the aggregate and partitioned models to explain 

fire frequency and spatial extent in SSA. From the analysis of the partitioned model, 

herbaceous biomass is the most important determinant of fire in SSA (Table 3), since it 

fuels fires in tropical savannas where most of the burning occur on the surface with 

crown fires being rare. These results are in agreement with our hypothesis that 

herbaceous biomass (LAIH) has the most significant influence on fire in SSA, compared 

to woody fuel components (LAIW). Overall the partitioned model has the best 

explanatory power of fire activity (R2 =0.62) in SSA compared to the aggregate model 

(R2=0.55), as summarized in Table 2. The burnt area and fire frequency product show 

high fire activity in southern Chad, the Central African Republic, and South Sudan. 

Previous authors (Giglio et al., 2013) suggested that the conspicuous hotspot in fire 

activity in this region can be tied to hot Harmattan trade winds. Our results however, 

show that the principal cause of fire activity in this region is related to relatively low tree 

cover and associated high herbaceous fuel load that supports frequent and extensive fires.   

4.3. Role of seasonality and human management  

Dry season length (DSL) and human population density (HPD) also exert 

important controls on fire activities within SSA. DSL is an important proxy of fuel load 

moisture status and the time required for curing fuel. Fuel moisture is considered a strong 



101 
 

 

determinant of fire spread rates and intensity of surface fires (Cochrane & Ryan, 2009). 

In the partitioned model, our results suggest DSL is the second most important variable in 

explaining fire frequency and burn extent in SSA. The influence of DSL on fire activity is 

consistent with the FCC hypothesis that a minimum dry season length is required for fuel 

to cure. Further, our results suggest that at least 2 dry months are necessary for fires to be 

common, with a major increase in fire frequency and burn area in systems with 5-7 dry 

months. Contrary to our expectation of an asymptotic relationship, however, we see an 

apparent decline in fire frequency at DSL>7, perhaps reflecting interactions with fuel 

availability that the BRT approach is not able to fully separate.  

HPD is ranked as the third most important variable to explain fire activities in the 

partitioned model. Our results suggest that human populations tend to suppress fires, with 

a negative exponential relationship, with fires most common at low HPD (< 50 persons) 

and declining fire frequency and average burn area in more densely populated regions. In 

SSA, fires are anthropogenic in nature (Kull & Laris, 2009), but the influence is 

dependent on land use management. Bistinas et al. (2013) found that increasing human 

population in rangelands leads to increasing fire, while agricultural areas experience a 

decline with increase in human population. This is in concert with our findings where we 

see a high fire occurrence in areas with HPD <50, then declines exponentially towards 

denser populations with fires being rare in HPD >200. A recent analysis (Andela et al., 

2017) concluded that there has been a decline in fires in Africa and elsewhere in the 

globe, associated with higher human populations suppressing fire through agricultural 

expansion and intensification. These findings agree with an analysis in southern Africa, 

where Archibald et al. (2009) found burnt area declined with increasing HPD. HPD has a 
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further influence on fire by affecting biomass connectivity since human settlements and 

agricultural fields are often largely cleared of burnable surface vegetation while artificial 

barriers and land fragmentation breaks fire spread (Archibald et al., 2009; Bowman et al., 

2011).  

4.4. Applicability of the fuel, cure and connectivity hypothesis 
relative to the intermediate fire productivity across sub-
Saharan Africa. 

IFP hypothesis has been used to explain the relationship between fire and 

overall productivity across the globe. Here we tested its applicability in SSA tropical fires 

characterized by surface fires fueled by herbaceous biomass. In our aggregate biomass 

(LAIA) model, we observe a unimodal relationship with percentage burnt area and fire 

frequency in SSA in accordance with IFP hypothesis (Bowman et al., 2014; Pausas & 

Ribeiro, 2013). However, the pattern changes in the partitioned biomass model, where 

herbaceous biomass (LAIH) increases linearly with both PBA and BF, reaching an 

asymptote at LAIH >2, consistent with the FCC hypothesis. On the other hand, the pattern 

of woody LAIW controls on average burn area and fire frequency are distinct from the 

asymptotic relationship observed for LAIH, following the unimodal pattern previously 

reported for the IFP framework (Figure 7). We interpret the form of the woody LAI 

partial dependence plots as follows: that modest LAIW (< 2) indirectly supports fires (SI, 

Figure S4.5a), possibly through facilitation of herbaceous growth that is commonly 

observed in drier environments (Dohn et al., 2013). However, as woody LAI increases 

above 2 LAI units, trees begin to suppress fires (SI, FigureS4.5c-d), perhaps through the 

combination of fuel suppression (competition for light and water) common in wetter 

zones (Dohn et al., 2013) and through their effect on spatial distribution of herbaceous 
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biomass and connectivity (Archibald et al., 2012). These relationships between 

herbaceous and woody biomass in our models lead us to accept the applicability of our 

proposed savanna FCC hypothesis that in tropical savanna wild-fires (generally fueled by 

herbaceous materials) tend to increase linearly with herbaceous biomass reaching an 

asymptote above a certain biomass where fuel is no longer limiting. Further the BRT 

analysis and relative ranking of explanatory drivers tends to confirm our hypothesis that 

herbaceous biomass estimated indirectly using LAIH is the most important determinant of 

fire in SSA, with LAIW being less important overall, and exerting their effect indirectly 

via herbaceous fuel-load and connectivity.  

It is noteworthy, we also tested the fire models with other environmental 

variables known to influence fire activity and spread in a landscape. Slope was included 

in initial model testing, but eliminated as ‘non-informative’ during the model 

simplification process as recommended for BRT (Elith et al., 2008). The lack of 

statistical significance of the terrain variable slope in the fire models can perhaps be 

explained by the nature of SSA fires, which happen in savannas, characterized mainly by 

flat plains. We also tested applicability of Normalized Difference Water Index (NDWI) 

as an indicator of fuel moisture but was omitted due to its high collinearity with the 

remote sensing based estimates of leaf area index. We also note the limitation of the 

existing satellite based fire activity products which are surrounded by uncertainties and 

tend to underestimate fires (Chuvieco et al., 2016). However, over time there has been 

improvement in the data, for instance MCD64A1 C6 product used in this analysis is now 

better compared to previous versions (Giglio et al., 2013). Therefore, we believe the fire 
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activity products used in this analysis, were able to capture the general fire activity 

patterns in SSA.  

4.5. Implications of the research 

The current paradigm contends that climate change will result in increased fire 

risk in various global ecosystems (Jolly et al., 2015), necessitating a better understanding 

of fire activity and regimes across the globe. From this analysis, it is evident there is need 

for disentangling fuel load types in fire analysis and modeling. We also found that the 

role of seasonality, providing sufficient time for fuels to cure, was very influential in the 

fitted BRT models and will be important to consider in future projections. Consistent 

with our findings, Barros and Pereira (2014) found that some land cover types are more 

prone to fire than others. In particular, the overall negative exponential relationship 

between fire frequency and HPD provides strong evidence that in SSA, HPD is less about 

the availability of ignition sources, and much more about the specific land management 

approaches adopted in pastoral and agricultural regions, where local customs relating to 

the use of fire (it’s acceptability or otherwise) may lead to significant regional differences 

in fire activity both now and into the future. 

Data Accessibility Statement  

The datasets used for this analysis can be accessed online most of which are 

freely available, as described below:  

i. Percentage burnt area product from Global Fire Emissions Database version 4 

(GFED4 without small fires) - at the time of this analysis, the data was accessed 

through - fuoco.geog.umd.edu. We used summaries derived from GFED4 burnt 

area product for years 2003-2015, see §2.1.1.1 in the main text 
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ii. Burned frequency derived from MODIS collection 6 burned area monthly product 

described in §2.1.1.2 in the main text can be availed here: 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd64a1_

v006 -  

iii. Aggregate and partitioned leaf area index data (§2.1.2 in main text) are described 

in Kahiu and Hanan (2017). Data are available from the Dryad Digital 

Repository: https://doi.org/10.5061/dryad.v5s0j  

iv. Rainfall data used for computing dry season length (DSL) are described and can 

be accessed here http://chg.geog.ucsb.edu/data/chirps/  

v. Human population density data, Landscan developed by US Oak Ridge National 

Laboratory, which we are not at liberty to share due to the data use privacy policy, 

see their website for further details: 

http://web.ornl.gov/sci/landscan/landscan_data_avail.shtml.  

  



106 
 

 

References  

Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., 

Defries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., 

Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. 

(2017). A human-driven decline in global burned area. Science, 356(6345), 1356-

1362. doi: 10.1126/science.aal4108 

Archibald, S. (2016). Managing the human component of fire regimes: lessons from 

Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 

371(1696). doi: 10.1098/rstb.2015.0346 

Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L., & Bradstock, R. A. (2013). 

Defining pyromes and global syndromes of fire regimes. Proceedings of the 

National Academy of Sciences, 110(16), 6442-6447. doi: 

10.1073/pnas.1211466110 

Archibald, S., Roy, D. P., Van Wilgen, B. W., & Scholes, R. J. (2009). What limits fire? 

An examination of drivers of burnt area in Southern Africa. Global Change 

Biology, 15(3), 613-630. doi: 10.1111/j.1365-2486.2008.01754.x 

Archibald, S., Staver, A. C., & Levin, S. A. (2012). Evolution of human-driven fire 

regimes in Africa. Proceedings of the National Academy of Sciences, 109(3), 847-

852. doi: 10.1073/pnas.1118648109 

Barros, A. M., & Pereira, J. M. (2014). Wildfire selectivity for land cover type: does size 

matter? PloS one, 9(1), e84760.  

Bhaduri, B., Bright, E., Coleman, P., & Dobson, J. (2002). LandScan. Geoinformatics, 

5(2), 34-37.  



107 
 

 

Bistinas, I., Oom, D., Sá, A. C., Harrison, S. P., Prentice, I. C., & Pereira, J. M. (2013). 

Relationships between human population density and burned area at continental 

and global scales. PLoS One, 8(12), e81188.  

Bond, W. J. (2001). Fires, ecological effects of. Encyclopedia of biodiversity, 2, 745-753.  

Bond, W. J., & Midgley, G. F. (2012). Carbon dioxide and the uneasy interactions of 

trees and savannah grasses. Phil. Trans. R. Soc. B, 367(1588), 601-612.  

Bowman, D. M., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’antonio, C. M., 

Defries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Mack, 

M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A. C., Sodhi, N. S., & Swetnam, 

T. W. (2011). The human dimension of fire regimes on Earth. Journal of 

Biogeography, 38(12), 2223-2236. doi: 10.1111/j.1365-2699.2011.02595.x 

Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., 

D’antonio, C. M., Defries, R. S., Doyle, J. C., & Harrison, S. P. (2009). Fire in the 

Earth system. science, 324(5926), 481-484.  

Bowman, D. M., Murphy, B. P., Williamson, G. J., & Cochrane, M. A. (2014). 

Pyrogeographic models, feedbacks and the future of global fire regimes. Global 

Ecology and Biogeography, 23(7), 821-824.  

Bradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: current and 

future implications. Global Ecology and Biogeography, 19(2), 145-158.  

Bright, E. A., Coleman, P. R., Rose, A. N., & Urban, M. L. (2012). LandScan 2011 (2011 

ed.). Oak Ridge, TN: Oak Ridge National Laboratory. 



108 
 

 

Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004). A 

simple method for reconstructing a high-quality NDVI time-series data set based 

on the Savitzky–Golay filter. Remote Sensing of Environment, 91(3), 332-344.  

Chuvieco, E., Yue, C., Heil, A., Mouillot, F., Alonso-Canas, I., Padilla, M., Pereira, J. 

M., Oom, D., & Tansey, K. (2016). A new global burned area product for climate 

assessment of fire impacts. Global Ecology and Biogeography, 25(5), 619-629. 

doi: 10.1111/geb.12440 

Cochrane, M. A., & Ryan, K. C. (2009). Fire and fire ecology: Concepts and principles 

Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics (pp. 

25-62). Berlin, Heidelberg: Springer Berlin Heidelberg. 

Crutzen, P. J., & Andreae, M. O. (1990). Biomass Burning in the Tropics: Impact on 

Atmospheric Chemistry and Biogeochemical Cycles. Science, 250(4988), 1669-

1678. doi: 10.1126/science.250.4988.1669 

Deshmukh, I. K. (1984). A common relationship between precipitation and grassland 

peak biomass for East and southern Africa. African Journal of Ecology, 22(3), 

181-186. doi: 10.1111/j.1365-2028.1984.tb00693.x 

Dohn, J., Dembélé, F., Karembé, M., Moustakas, A., Amévor, K. A., & Hanan, N. P. 

(2013). Tree effects on grass growth in savannas: competition, facilitation and the 

stress‐gradient hypothesis. Journal of Ecology, 101(1), 202-209.  

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression 

trees. Journal of Animal Ecology, 77(4), 802-813. doi: 10.1111/j.1365-

2656.2008.01390.x 



109 
 

 

Frost, P., & Robertson, F. (1985). The ecological effects of fire in savannas. Determinants of 

Tropical Savannas; Walker, TS, Walker, BH, Eds, 93-140.  

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., 

Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate 

hazards infrared precipitation with stations—a new environmental record for 

monitoring extremes. [Data Descriptor]. 2, 150066. doi: 10.1038/sdata.2015.66 

Giglio, L., Boschetti, L., Roy, D., Hoffmann, A. A., & Humber, M. (2016). Collection 6 

MODIS Burned Area Product User’s Guide Version 1.0. 

Giglio, L., Justice, C., Boschetti, L., & Roy, D. (2015). MCD64A1 MODIS/Terra+Aqua 

Burned Area Monthly L3 Global 500m SIN Grid V006. NASA EOSDIS Land 

Processes DAAC. doi: doi:10.5067/MODIS/MCD64A1.006 

Giglio, L., Randerson, J. T., & Werf, G. R. (2013). Analysis of daily, monthly, and 

annual burned area using the fourth‐generation global fire emissions database 

(GFED4). Journal of Geophysical Research: Biogeosciences, 118(1), 317-328.  

Grace, J., Jose, J. S., Meir, P., Miranda, H. S., & Montes, R. A. (2006). Productivity and 

carbon fluxes of tropical savannas. Journal of Biogeography, 33(3), 387-400.  

Hanan, N. P., Sea, W. B., Dangelmayr, G., & Govender, N. (2008). Do fires in savannas 

consume woody biomass? A comment on approaches to modeling savanna 

dynamics. The American Naturalist, 171(6), 851-856.  

Harrison, S. P., Marlon, J. R., & Bartlein, P. J. (2010). Fire in the Earth System. In 

Dodson, J. (Ed.), Changing Climates, Earth Systems and Society (pp. 21-48). 

Dordrecht: Springer Netherlands. 



110 
 

 

Hirota, M., Holmgren, M., Van Nes, E. H., & Scheffer, M. (2011). Global Resilience of 

Tropical Forest and Savanna to Critical Transitions. [10.1126/science.1210657]. 

Science, 334(6053), 232.  

Hoffmann, W. A., Geiger, E. L., Gotsch, S. G., Rossatto, D. R., Silva, L. C. R., Lau, O. 

L., Haridasan, M., & Franco, A. C. (2012). Ecological thresholds at the savanna-

forest boundary: how plant traits, resources and fire govern the distribution of 

tropical biomes. Ecology Letters, 15(7), 759-768. doi: 10.1111/j.1461-

0248.2012.01789.x 

Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, 

G. J., & Bowman, D. M. (2015). Climate-induced variations in global wildfire 

danger from 1979 to 2013. Nature Communications, 6.  

Kahiu, M. N., & Hanan, N. P. (2017). Estimation of woody and herbaceous leaf area 

index in Sub-Saharan Africa using MODIS data. Journal of Geophysical 

Research: Biogeosciences, n/a-n/a. doi: 10.1002/2017JG004105 

Krawchuk, M. A., & Moritz, M. A. (2011). Constraints on global fire activity vary across 

a resource gradient. Ecology, 92(1), 121-132.  

Kull, C. A., & Laris, P. (2009). Fire ecology and fire politics in Mali and Madagascar 

Tropical Fire Ecology (pp. 171-226): Springer. 

Lehsten, V., Tansey, K., Balzter, H., Thonicke, K., Spessa, A., Weber, U., Smith, B., & 

Arneth, A. (2009). Estimating carbon emissions from African wildfires. 

Biogeosciences, 6(3), 349-360.  



111 
 

 

Mouillot, F., & Field, C. B. (2005). Fire history and the global carbon budget: a 1°× 1° 

fire history reconstruction for the 20th century. Global Change Biology, 11(3), 

398-420. doi: 10.1111/j.1365-2486.2005.00920.x 

Murphy, B. P., & Bowman, D. M. (2012). What controls the distribution of tropical forest 

and savanna? Ecology letters, 15(7), 748-758.  

Myneni, R., Knyazikhin, Y., & Park, T. (2015). MOD15A2 MODIS/Combined 

Terra+Aqua Leaf Area Index/FPAR Daily L4 Global 1km SIN Grid. Version 5. 

NASA LP DAAC. doi: http://doi.org/10.5067/MODIS/MOD15A2.006 

Pausas, J. G., & Bradstock, R. A. (2007). Fire persistence traits of plants along a 

productivity and disturbance gradient in mediterranean shrublands of south‐east 

Australia. Global Ecology and Biogeography, 16(3), 330-340.  

Pausas, J. G., & Keeley, J. E. (2009). A burning story: the role of fire in the history of 

life. BioScience, 59(7), 593-601.  

Pausas, J. G., & Ribeiro, E. (2013). The global fire–productivity relationship. Global 

Ecology and Biogeography, 22(6), 728-736. doi: 10.1111/geb.12043 

Shorrocks, B., & Bates, W. (2015). The Biology of African Savannahs: Oxford University 

Press. 

Staver, A. C., Archibald, S., & Levin, S. A. (2011). The global extent and determinants of 

savanna and forest as alternative biome states. Science, 334(6053), 230-232.  

Van Der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G., Mu, M., Kasibhatla, P. S., 

Morton, D. C., Defries, R., Jin, Y. V., & Van Leeuwen, T. T. (2010). Global fire 

emissions and the contribution of deforestation, savanna, forest, agricultural, and 



112 
 

 

peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707-

11735.  

Van Der Werf, G. R., Randerson, J. T., Giglio, L., Van Leeuwen, T. T., Chen, Y., 

Rogers, B. M., Mu, M., Van Marle, M. J. E., Morton, D. C., Collatz, G. J., 

Yokelson, R. J., & Kasibhatla, P. S. (2017). Global fire emissions estimates 

during 1997–2016. Earth Syst. Sci. Data, 9(2), 697-720. doi: 10.5194/essd-9-697-

2017 

Yue, C., Ciais, P., Cadule, P., Thonicke, K., & Van Leeuwen, T. T. (2015). Modelling the 

role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the 

global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of 

fires in the global carbon balance. Geosci. Model Dev., 8(5), 1321-1338. doi: 

10.5194/gmd-8-1321-2015 

Yue, C., Ciais, P., Zhu, D., Wang, T., Peng, S. S., & Piao, S. L. (2016). How have past 

fire disturbances contributed to the current carbon balance of boreal ecosystems? 

Biogeosciences, 13(3), 675-690.  

 



113 
 

 

SUPPLEMENTARY MATERIAL  

 

Supporting Information for 

Fire in sub-Saharan Africa: the Fuel, Cure and Connectivity hypothesis 

  



114 
 

 

Appendix S1: A summary of the data used is in the analysis 

The data used in the analysis presented in the main text are presented in Table 

S1.1.  

Table S1.1: Environmental variables used in the fire analysis model that directly or indirectly 
affect fire patterns. All data types were aggregated at 0.25O x 0.25O to match the fire burnt area 
product.  

    

Fire drivers Environmental 
variables 

Derived statistics 

Fuel load Aggregate LAI (IFP 
model) 

Mean annual maximum (2003-
2015) 

Herbaceous LAI (FCC 
model) 

Mean annual maximum (2003-
2015) 

Tree canopy effects on 
herbaceous connectivity 

Woody LAI Mean annual maximum (2003-
2015) 

Fuel wetness (cure time)  Dry season length 
(DSL) 

Average number of months 
with no rain (2003-2015) 

Anthropogenic ignition 
and/or management 

Human population 
density 

Population density (people/km2 
for year 2015) 

 

Appendix S2: Exploratory results 

We note that, while simple bivariate plots provide some insight into underlying 

relationships, they can be misleading in multivariate systems with interacting processes. 

Thus, multivariate BRT analyses (Section 3.2 in the main text) are necessary to fully 

explore these datasets. 

Plots of annual average percent burnt area (PBA) and burn frequency (BF) against 

fuel-loads, indexed using the aggregate (i.e. total) LAI, reveal the unimodal relationship, 

with fire activity highest at intermediate LAI, observed previously and identified as the 

intermediate fire-productivity (IFP) pyrogeographic framework (Figure 1, main text). 

While the range of PBA and BF includes some locations with very high annual burn 

fraction and annual fire occurrence, the majority of locations, shown by the loess curves, 
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have lower annual-scale PBA and BF. Interestingly, the response of PBA and BF to 

variations in partitioned woody (LAIW) and herbaceous (LAIH) seasonal maximum leaf 

area index (Figure S2.1) are more consistent with the FCC framework, shown in Figure 2 

(main text). In particular, the loess curves indicate near-linear increase in fire with 

herbaceous fuel (Figure S2.1c and f), and a unimodal relationship between fire activity 

and LAIW (Figures S2.1b and e), consistent with tree facilitation of herbaceous growth in 

drier (low tree cover) regions, followed by suppression of fires through reduced 

connectivity in wetter (high tree cover) environments.  

 

 
Figure S2.1: The relationship between fire activity and leaf area in sub-Saharan Africa. (a to c) 
percentage burnt area (PBA) and (d to f) burn frequency (BF), plotted against mean annual leaf 
area index (LAI) maxima for aggregate (a and d), woody (b and e) and herbaceous leaf area 
index (c and f). Fire activity and leaf area averages were computed for the 2003-2015 period. 
The solid black line is a smooth spline fit for the data. 

 

Bivariate plots of fire responses to dry season length (DSL; Figure S2.2a and c) 

suggest a unimodal relationship, where the FCC model would predict an initial increase 
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(low DSL locations being too wet to burn) followed by an asymptote (all locations with 

more than a threshold number of dry months, sufficient for fuel to cure, and are able to 

burn). Given that these are unimodal plots of bivariate relationships we conclude that the 

apparent decline in fire in drier locations (high DSL) may reflect interactions among 

drivers (e.g. fuel-load) that mask the expected effect of dry season length. These 

interactive effects are separated in the multivariate analysis (Section 3.2 of the main 

paper). 

The apparent response of fires to human population density (HPD, Figs S2.2b and 

d) suggests an initial increase then a negative exponential prevalence of fires with 

increase in human populations. This pattern in the data is consistent with management 

differences among the pastoral zones, where human population is low and fires are often 

set for range improvement and hunting, compared to more densely populated areas where 

fire is used at more local scales for agricultural purposes and in landscapes where 

connectivity and fire spread is restricted.  
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Figure S2.2: Relationships between fire activity, fuel moisture and human management. Top 
panel percentage burnt area versus (a) dry season length (DSL) and (b) human population 
density (HPD); and bottom panel fire frequency with (c) DSL and (d) HPD. The regression 
lines represented as black solid lines were fitted using loess smoothing function. The HPD data 
in the plot were restricted to <= 200 for viewing purposes but analysis restricted to <=500 to 
remove dense urban areas.  

Appendix S3: Comparison of aggregate model predictions and observed 
burnt area and fire frequency  

We further compare the observed and predicted PBA and BF in Figures S3.3 and 

S3.4. Both aggregate and partitioned models tend to under-predict fires at high observed 

fire activity, but partitioned models (Figure 8, main text) outperformed the aggregate 

models (Figure S3.3 and S3.4). Overall the fitted partitioned model performs better for 

PBA (R2=0.59) and BF (R2=0.63) than the aggregate model for PBA (R2=0.49) and BF 

(R2=0.53).  
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Figure S3.3: Comparison of predicted and satellite observed fire activity in sub-Saharan Africa 
using the aggregate leaf area index model. (a) Predicted burnt area and (b) Predicted fire 
frequency scaled between 0 and 1 both derived from Boosted regression tree (BRT) analysis. 
The differences between observed and predicted are shown in (c) burnt area and (d) fire 
frequency.  
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Figure S3.4: Scatter plots for predicted and observed fire activity in sub-Saharan Africa. (a, b) 
Percentage burnt area for aggregate LAI and partitioned LAI; (c, d) fire frequency for aggregate 
and partitioned LAI, respectively. Regression lines were fitted using standard major axis 
(SMA). 

Appendix S4: Analysis of fire sensitivity to increasing herbaceous and 
woody biomass within various precipitation ranges  

We grouped fire and partitioned leaf area index estimates according to mean 

annual precipitation (MAP) by separating data into four bins: arid (0-300 mm/y), semi-

arid (300-600 mm/y), mesic (600-900 mm/y) and wet (> 900mm/y). To determine the 

changes in fire response to LAIH and LAIW in different rainfall zones, we fitted linear 

regression models within each bin with fire activity (burnt area and fire frequency) as the 

response variable and herbaceous and woody leaf area index as explanatory variables, as 
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summarized in Table S4.2. We compared the fitted slopes to test the sensitivity of fire to 

increasing herbaceous (LAIH) and woody biomass (LAIW).  

Table S4.2: Summary statistics for multiple linear regression models to assess sensitivity of 
fire (burnt area and fire frequency) to increasing seasonal maximum herbaceous (LAIH) and 
woody (LAIW) leaf area index within discrete precipitation ranges across sub-Saharan Africa.  

     

Regression 
Model 

MAP Category Variable Burnt Area 
Coefficients 

Fire Frequency 
Coefficients 

Formula = Fire ~ 
Herbaceous LAI + 
Woody LAI) 

0 < MAP < 300 mm  Intercept -0.619* -0.010* 

LAIH  3.428* 0.046* 

LAIW 1.784* 0.032* 

R-squared 0.107* 0.048* 

300 < MAP < 600 
mm 

Intercept -0.126 0.001 

LAIH 8.713* 0.093* 

LAIW -0.568 -0.010 

R-squared 0.137* 0.092* 

600 < MAP < 900 
mm 

Intercept 0.578 0.001 

LAIH 16.668* 0.200* 

LAIW -6.397* -0.075* 

R-squared 0.241* 0.174* 

900 < MAP Intercept 13.863* 0.179* 

LAIH 9.924* 0.111* 

LAIW -1.983* -0.025* 

R-squared 0.217* 0.159* 

LAI- Leaf Area Index; MAP- Mean Annual Precipitation (millimeters per annum); the 
asterisks indicate the results were statistically significant at p-value <0.05  

 

We observe relationships that support the FCC model (Figure 2) as shown in 

Figure S4.5 and Table S4.2. Fire sensitivity to woody LAI (LAIw) changes from positive 

for low rainfall to negative for high rainfall (Table S4.2 and Figure S4.5a-d). This 

supports our inference that the presence of shrubs and trees may facilitate herbaceous 

undergrowth (and thus increase fires) in arid environments (positive slope), changes to 

near neutral in semi-arid systems (Figure S4.5b), before competing with herbaceous 

growth and reducing connectivity (and thus decrease fires) in mesic and wet 

systems(Figures S4.5c-d; (Dohn et al., 2013). On the other hand, we observe an 
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increasing slope with LAIH as mean annual precipitation changes from low to high (Table 

S4.2 and Figure S4.5e-h). These results reinforce the boosted regression tree (BRT) 

analysis and conclusions in the main text (Figure 7). 

 
 

Figure S4.5: Scatter plots for relationship between average burnt area and partitioned fuel biomass 
(indexed using seasonal maximum LAI) in sub-Saharan Africa categorized according to mean 
annual precipitation (MAP in millimeters per annum) domains defined as arid (0-300 mm), semi-
arid (300-600mm), mesic (600-900mm), and wet (> 900 mm). The scatterplots show multiple 
regression predictions (Table S4.2) for fire responses to herbaceous and woody biomass. Panels (a-
d) show fire responses to woody LAI, with high scatter reflecting that woody LAI is not the primary 
fuel for fires (relatively low sensitivity to woody LAI as shown in Table S4.2), but instead 
highlighting a trend for trees to increase fires (slightly) in drier systems, and decrease fires in wetter 
systems, consistent with tree-grass facilitation-competition patterns (Dohn et al., 2013) and the 
importance of fuel connectivity (see explanation in the main text). Panels (e-h) show all positive 
relationships between average burnt area and LAIH, reflecting the importance of herbaceous fuel, 
with low scatter reflecting the much greater sensitivity of fire to LAIH than to LAIW (compare slopes 
in Table S4.2). The black lines are linear fits through plotted data.  

 

Data used in the analysis are freely available online. Further details are 

provided in the data availability statement.  
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CHAPTER 4  

Assessing the relationship between forage resources and livestock 
distributions in sub-Saharan Africa 

Abstract 

Aim The aim of this paper was to explore major correlates of livestock 

distribution in Africa with key emphasis on the relative influence of woody and 

herbaceous biomass as proxies of forage quantity for browsers and grazers respectively. 

Specifically, we tested the value of newly available partitioned woody (LAIW) and 

herbaceous (LAIH) biomass in understanding livestock distributions across sub-Saharan 

Africa (SSA); quantified the emergent sensitivity of livestock distribution patterns to 

patterns of forage and other environmental covariates; and evaluated the scale-

dependence of locally established ecological relationships and patterns of herbivores and 

environmental variables at continental scale. 

Location Sub-Saharan Africa (SSA).  

Time period Livestock data centered on year 2007, with forage estimates 

derived as averages of years 2003 to 2015 

Methods New estimates of available herbaceous forage and browse were 

analyzed using a combination of boosted regression tree (BRT) and analysis of 

variance (ANOVA) to explore major correlates of livestock distributions across SSA. 

Herbaceous (LAIH) and woody (LAIW) leaf area index used as proxies of grazing and 

browsing forage resources were coupled with other environmental covariates to infer 

herbivore distribution at continental scales.  

Results Different environmental covariates had varying influences on 

livestock distribution in SSA, with water availability generally being the most critical 
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variable (>60% influence), except for goat distributions which were less sensitive to 

water availability. Forage biomass was the second most important variable in 

livestock distribution, with herbaceous and woody LAI rating either second or third in 

all models for cattle, sheep and goats. Herbaceous LAI had a positive correlation with 

grazers (sheep and cattle) reaching an asymptote for LAI>2. Human population 

density (HPD) was the most important variable in the distribution of smaller body 

mass animals (sheep and goats) with a relative influence of 26% for goats and 27% in 

sheep. Herbaceous production influenced livestock grazers more than woody 

production in the partitioned biomass model. LAIH had a relative influence of ~17% 

and 16% compared to ~6% and 5% in LAIW for grazers. Confounding results were 

observed in sheep (primarily grazers) and goats (primarily browsers) models, with 

both herbaceous and woody biomass negatively influencing their distribution. In 

sheep the relative influence of LAIW was 25% compared to LAIH at 12%. This 

influence is reversed in the predominantly browser goats with herbaceous biomass 

influence at 26% and woody biomass at 23%. Livestock generally favored regions 

with moderate to high soil nutrient availability. However, this relationship varied with 

animal body size, with larger body-size livestock (cattle) being less sensitive to 

forage nutrient status than small ruminants (sheep and goats). In agreement with our 

hypothesis that slope constrains animal movement, livestock preferred gentler slopes. 

Conclusion These findings point to the need for including separate woody 

and herbaceous biomass in understanding herbivory. While the general patterns of 

established ecological relationships between livestock density and environmental 

variables are broadly consistent with expectations, the detailed rankings of variable 
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may not be perfect e.g. soil class effects in the BRT models is not always in strict 

order of increasing/decreasing nutrient status. This may be caused by uncertainties in 

the data on livestock distributions and environmental covariates rather than 

representing actual patterns. Better and finer spatio-temporal scale datasets and 

broadening of herbivore categories to include wildlife could improve the performance 

of our models.  

Key words: Africa, Cattle, Forage resources, Goats, Herbaceous biomass, Herbivory, 

Remote sensing, Sheep, Woody biomass 
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1.0 Introduction  

Large mammal herbivory plays a critical role in shaping and determining the 

structure and function of global vegetation, particularly in tropical savannas (Archibald & 

Hempson, 2016; Charles et al., 2017; Staver et al., 2009). Conversely, the distribution 

and abundance of large herbivores is determined by both ‘bottom-up’ and ‘top-down’ 

mechanisms. These mechanisms and controls apply for both wild and domestic 

herbivores. Bottom-up processes that jointly determine livestock herbivore distribution 

and densities usually relate to resource availability and accessibility (food quantity, 

quality, water, topography and weather; Bailey & Provenza, 2008; Hopcraft et al., 2010), 

while top-down controls involve natural enemies (disease, parasites and predators; 

Grange & Duncan, 2006). To understand the determinants of herbivore abundance and 

distribution within these complex interactions, researchers have simplified them by 

breaking the various factors into biotic factors (forage quality and quantity, animal body 

size and disease) and abiotic factors (water, climate, topography), each of which have 

specific and interacting roles in herbivore distribution and abundance (Fritz & Duncan, 

1994; Hopcraft et al., 2010).  

According to the species energy hypothesis, higher abundance and richness of 

heterotrophs should occur where available food energy is higher, readily and consistently 

available (Hobi et al., 2017). In large mammalian grazing systems, however, herbivore 

distributions are also determined by the interaction of forage nutritional quality and 

herbivore body size, that impacts energy requirements, gut residence time and herbivore 

ability to process low-quality forage (Clauss et al., 2013). Larger herbivores require large 

amounts of biomass, but can cope with relatively low nutrient concentrations, hence they 

tend to occur in wetter ecosystems characterized by high productivity and low quality 
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forage. In these wetter ecosystems herbaceous plants in particular, allocate more energy 

to structural development, resulting in vegetation with high biomass but low nutritional 

quality. Thus in the grazing lands, larger herbivores tend to occupy areas of high plant 

biomass availability and low soil nutrients, while smaller herbivores are more limited by 

forage quality and tend to be more common in areas with low plant productivity, but 

higher soil fertility and plant nutrient status (Fritz & Loison, 2006).   

Human population density (HPD) is also important in determining herbivore 

distribution. Studies show a positive correlation between productivity and human density, 

as humans tend to settle in moderate to high productivity areas (Luck, 2007). This 

scenario creates competition between agricultural activities and herbivores, and studies 

have linked human colonization of terrestrial ecosystems to loss of wild herbivores 

(Burney & Flannery, 2005). On the other hand, humans dictate the distribution of 

domestic herbivores, with wetter ecosystems favored for crop production while drylands 

are left for pastoralism, particularly in Africa. We therefore anticipate a negative 

correlation between livestock and HPD or likely an initial increase in low HPD then a 

decline in higher HPD areas especially in the wetter crop production areas.  

Although various biotic and abiotic factors control spatiotemporal distribution, 

abundance, and density of livestock herbivores, forage resources (quality and quantity) 

remain the principal determinant, especially in Africa where extensive studies on large 

herbivores have shown productivity regulates herbivore populations through bottom-up 

mechanisms of resource limitation (Fritz & Loison, 2006 and citations therein; Hopcraft 

et al., 2010). African dryland and savanna ecosystems support among the richest and 

most diverse communities of wild herbivores (Anderson et al., 2016; Du Toit & 
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Cumming, 1999; Shorrocks & Bates, 2015). However, as in other parts of the world, 

most larger wild herbivores are now confined within protected areas (Shugart, 1998), 

leaving vast landscapes dominated by pastoralist land use systems and livestock. 

Understanding the biotic and abiotic factors that determine livestock distribution and 

abundance is key to best management practices and for better understanding of how 

livestock systems may respond to future environmental changes, including shrub 

encroachment, changing patterns of rainfall and temperature, and habitat 

fragmentation/loss to agriculture.  

Despite many advances in our understanding of the ecology, abundance and 

distribution of herbivores, research is limited by lack of detailed observations at large 

spatial scales (Sagarin et al., 2006). Here we use FAO census data on livetock 

distribution and abundance across Africa to explore the drivers of pastoral practices in the 

rangeland ecosystems in Africa, which comprise over 50% of the land area of sub-

Saharan Africa (SSA) and provide sustainable livelihoods and protein to African 

populations (African Union, 2010). Although sometimes ignored, pastoralism directly 

supports ~300 million people in SSA, and contributes significantly to African economies 

through supply of animal products to domestic, regional and international markets 

(African Union, 2010).  

Previous research has focused on understanding large wild herbivore abundance, 

distribution and density at local level (Ganskopp, 2001; Schoenbaum et al., 2017), with 

few studies using remote sensing data. Our novel approach uses continental scale satellite 

derived forage estimates, coupled with environmental variables, to analyze the large scale 

biogeographical determinants of livestock distribution, abundance and density in SSA. In 
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addition to the biological and physical constraints on large herbivore distributions cited 

earlier, livestock distributions also depend on complex combinations of socio-economic 

and political factors that may limit the ability of pastoralist communities to raise livestock 

in areas where they can optimize on forage quantity and quality. We explored the distinct 

roles played by herbaceous and woody forage availability, anticipating that herbaceous 

production influences grazers, while woody production influences browsers. We 

anticipated positive linear or asymptotic relationships between forage resources (LAIH for 

grazers and LAIW for browsers) and livestock biomass. Additionally, larger livestock 

(cattle) have the ability to process high quantity-low quality food, while smaller 

herbivores are more limited by forage quality and thus tend to dominate areas with low 

plant productivity but higher nutrients. Hence, we hypothesized large herbivores will be 

more common in high forage production areas irrespective of forage quality, while 

smaller livestock including sheep and goats will favor nutrient-rich areas. Water also 

constrains livestock distribution (Bailey & Provenza, 2008; Peden et al., 2007), therefore 

we posit that livestock density will be sensitive to the local availability of water, but 

quickly reach an asymptote as small water bodies can provide drinking water to animals 

foraging over a much larger geographical area. Human management systems regulate 

livestock distribution through agricultural expansion, urbanization and infrastructural 

development. We hypothesized an initial rapid increase of livestock with human 

population density, declining in more densely populated agricultural areas. Terrain 

constrains animal movement and livestock prefer gentle slopes (Bailey, 2005), hence we 

expected an inverse relationship between livestock abundance and slope. 
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To test our hypotheses we used herbaceous (LAIH) and woody leaf area index 

(LAIW) retrievals for all of sub-Saharan Africa at 1 km spatial and 8-day temporal 

resolutions (Kahiu & Hanan, 2017) to compute annual average maxima leaf area index 

(LAImax) as proxies for forage quantity for domestic herbivore grazers and browsers, 

respectively. Our aim was to test whether these remote sensing estimates of separate 

grazing and browsing forage resources and other environmental covariates can be used to 

infer the drivers of herbivore distribution at continental scales. Forage quality and 

accessibility vary with vegetation type and soil nutrients. Broadly speaking, since soil 

nutrients influence forage quality (Archibald & Hempson, 2016), we included soil 

nutrient availability as an index of forage nutritional status.  

Our research objectives were to: i) test the value of newly available partitioned 

woody (LAIW) and herbaceous (LAIH) biomass in understanding livestock distributions 

across sub-Saharan Africa; ii) quantify the emergent sensitivity of livestock distribution 

patterns to patterns of forage and other environmental covariates, and (iii) evaluate the 

scale-dependence of locally established ecological relationships and patterns at 

continental scale.  
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2.0 Materials and Methods  

2.1. Data and preprocessing steps  

2.1.1. Herbivore datasets and sub-Saharan Africa administrative 

boundaries 

Sub-Saharan Africa (SSA) administrative boundaries were accessed through the 

Database of Global Administrative Areas (GADM; http://gadm.org/version2) in ESRI 

shapefile format.  Country livestock estimates were sourced from Global Livestock 

Production and Health Atlas (GLiPHA; Clements et al., 2002; FAO, 2018) downloaded 

from http://kids.fao.org/glipha/# which provides census estimates at sub-national 

administrative district scales. Manual disambiguation was required in cases of spelling 

differences and administrative district name changes. We elected not to use the spatially 

interpolated data of Robinson et al. (2014), instead deciding to use the original census 

data from GLiPHA cross-matched to corresponding administrative districts in the SSA 

administrative boundaries shapefile. This decision to use original census data also 

avoided circularity in modeling livestock distributions that were interpolated, in part, 

based on environmental variables (Robinson et al., 2014). In a few countries where no 

recent livestock data estimates were available through GLiPHA we used national 

estimates available from the Food and Agriculture Organization Corporate Statistical 

Database (FAOSTAT; http://www.fao.org/faostat/en/#data/QA). All livestock numbers 

were converted to Tropical Livestock Units (TLU; i.e. 250 kg of live animal weight) using 

tropical Africa conversion factors for cattle at 0.70 TLU, sheep and goats at 0.10 TLU 

(Jahnke & Jahnke, 1982). The resulting TLU was used to compute TLU density/km2 
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within each administrative block. In total we had 528 administration units across SSA 

(Figure 1). 

 

 
Figure 1: Livestock distribution maps (in tropical livestock units, TLU) in sub-Saharan Africa, (a) 
Cattle, (b) goats and (c) sheep. The data are based on original census data within sub-national 
administrative units, as reported by the Global Livestock Production and Health Atlas (GLiPHA; 
Clements et al., 2002) 

 

To conduct analysis of variance (ANOVA) for the different biomes, we further 

regrouped the administrative zones into biome classes using a summarized version of 

White’s vegetation map of Africa (White, 1983), shown in Table 1. All the variables 

were summarized based on the majority biome class. 
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Table 1: Biome class, mean annual rainfall and mean nutrient status for bio-climatic regions 
across sub-Saharan Africa.  

       

  Biome Class MAP (mm/annum) Nutrient Status 

1 Rift-Sudano Guinea 1180 No Limitations 

2 Sahel 487 No Limitations 

3 Southern Dry 610 No Limitations 

4 Moist Tropical Forest 1874 Severe limitations 

5 East African Bimodal 879 No Limitations 

6 Southern Mesic 1102 Moderate limitations 

7 Sahara  130 No Limitations 

8 The Horn Arid 317 Moderate limitations 

9 Southern Arid 238 Moderate limitations 

10 Madagascar Dry 1330 No Limitations 

11 Madagascar Humid 1887 Severe limitations 

  MAP - Mean Annual Precipitation; mm- millimeters  

2.1.2. Forage resource estimates: MODIS aggregate and partitioned 

woody and herbaceous leaf area index 

We used Collection 5 (C5) MODIS total (aggregate) leaf area index (Myneni et 

al., 2015) and its woody and herbaceous constituents as proxies for forage biomass 

(Figure 2).  

 

Figure 2: Maps of annual average maximum leaf area index in sub-Saharan Africa, (a) 
aggregate LAIAmax from MODIS, (b) partitioned woody LAIWmax, and (c) partitioned 
herbaceous LAIHmax (data from Kahiu & Hanan, 2017). The data were derived as the per pixel 
average of annual LAI maxima for years 2003 to 2015 
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The partitioned LAI products were generated using the dataset described by 

Kahiu and Hanan (2017). In summary, the partitioning of aggregate LAI (LAIA) from the 

MODIS satellite is dependent on an allometric relationship between precipitation and 

seasonal LAI maxima for dominant woody (trees, shrubs and bushes) species in Africa. 

From the aggregate and partitioned LAI product at 8-day and 1km spatial resolution we 

computed the per pixel yearly maximum LAI then averaged over the 2003-2015 study 

epoch (Figure 2). These estimates were used to derive the average regional woody and 

herbaceous LAI estimates for the livestock administrative zones generated in section 2.1 

2.1.3. Topography  

We used the GTOPO30 Global digital elevation model (DEM) at 30 Arc-Second 

(approximately 1km at the Equator) from the US Geological Survey (USGS; 

https://lta.cr.usgs.gov/GTOPO30) to estimate topographic relief and slope for SSA 

(Figure 3a). The derived slope was used to determine the average topography for the 

livestock administrative zones used in this analysis.  

2.1.4. Soil nutrient availability 

Soil nutrient status was estimated using the Food and Agricultural Organization 

(FAO) soil nutrient availability index from the Harmonized World Soil Database v 1.2 

(HWSD; Figure 3b). The dataset comprises four qualitative categories on soil nutrient 

limitations coded 1 to 4, namely: No or slight limitations (1); Moderate limitations (2); 

Severe limitations (3) and Very severe limitations (4). The HWSD meta-data classify 

growth potential for these qualitative classes whereby class 1 is rated 80 -100%, class 2 

has 60 - 80%, class 3 with 40 - 60%, and class 4 has less than 40%. Within each 

administrative zone we extracted the majority nutrient availability index class.  
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Figure 3: Maps of sub-Saharan Africa for (a) topography using slope estimates; (b) soil nutrient 
availability status from the Harmonized World Soil Database v 1.2, where NL, ML, SL and VS 
represent Non-or Slight Limitations; Moderate Limitations; Severe Limitation and Very Severe 
Limitations respectively; and (c) human population density (HPD; humans per km2) based on 
gridded Landscan population estimates for year 2015.  

2.1.5. Water resources 

The availability of surface water for livestock was estimated using the World 

Wildlife Fund (WWF) gridded Global Lakes and Wetlands Database level 3 (GLWD-3) 

at 30-second spatial resolution (Lehner & Döll, 2004; Figure 4b). We computed the 

fraction of each administrative zone covered by water (or wetland). The wetland classes 

comprise of open water to fractional wetland areas.  

 

Figure 4: (a) Water resources map for sub-Saharan Africa derived from World Wildlife Fund 
gridded Global Lakes and Wetlands Database Level 3; and (b) Biome map based on Whites 
vegetation map of Africa (White, 1983), aggregated by region and rainfall, used for summarizing 
livestock numbers within the various regions in Africa  



136 
 

 

2.1.6. Human population density 

We computed the 2015 Human Population Density (HPD) from gridded Landscan 

population dataset developed by US Oak Ridge National Laboratory, available at ~1km 

spatial resolution (Bhaduri et al., 2002; Figure 3c). We eliminated urban area pixels 

where HPD>1000, then extracted the zonal statistics using means for the SSA 

administrative boundaries.  

2.1.7. Biome map for summarizing regional livestock distribution  

To assess livestock distribution across SSA we summarized the numbers and 

TLUs in the major biomes of SSA (Figure 4b). To generate the biome map we used 

White’s vegetation map for Africa (White, 1983) to aggregate the classes based on 

rainfall and geography to provide functionally similar regions for ease in display.  

2.2. Modelling criteria 

To test our hypotheses, we used Boosted Regression Tree (BRT) analysis, which 

are statistical machine learning methods that combine regression and classification for 

better model performance. BRTs are advantageous over traditional statistical methods 

since they combine the strengths of regression trees with boosting, hence can handle 

various types of response and predictor variables (numerical, categorical, census) can fit 

linear and complex nonlinear relationships, are able to handle missing data and outliers 

with no need to transform data or remove outliers, and allow users to quantify and 

visualize interactions between predictors (De'ath, 2007; Elith et al., 2008). To fit the BRT 

models we used the ‘gbm.step’ function in R dismo package (Hijmans et al., 2017) and 

set the parameters as follows: nature of the error structure (family) = ‘poisson’, learning 
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rate = 0.001, tree complexity = 5, bag fraction = 0.5, and retained the default number of 

trees = 50. 

We tested two basic models (Table 2) describing how livestock distribution is 

determined by forage biomass in sub-Saharan Africa with respect to (i) aggregate LAI 

(LAIA), and (ii) partitioned LAI (herbaceous and woody LAI).  

Table 2: Aggregate and partitioned models used for the herbivory analysis using boosted 
regression trees 

Response variable  

(Livestock TLU km-2) 

Explanatory Variables 

Model 1: Aggregate model Model 2: Partitioned model 

Total Livestock Aggregate LAI (LAIA) + 
Human Population Density 
(HPD) + Nutrients + Water 
Coverage + Slope  

Herbaceous LAI (LAIH) + 
Woody LAI (LAIW) + Human 
Population Density (HPD) + 
Nutrients + Water Coverage + 
Slope 

Cattle 

Sheep 

Goats 

 

Using biome classes shown in Table 1 we assessed the variations in livestock 

distribution using multiple linear regression models and analysis of variance (ANOVA) 

using log-transformed predictor and dependent variables to satisfy the assumptions of 

linear regression. The aggregate model was of the form: log(Herbivore +1) 

~log(LAIA+1)+ log(HPD+1) + Biome Types + log(Water Coverage+1) + log(Slope+1) 

while in the partitioned model we substituted the aggregate biomass with the separate 

woody and herbaceous forage biomass: log(herbivore+1) ~ log(LAIW+1) + log(LAIH+1) 

+ log(HPD+1) + Biome Types + log(Water Coverage +1) + log(Slope+1). To compare 

means between the variables we derived ANOVA statistics for the individual aggregate 

and partitioned models. Additionally, we assessed whether inclusion of partitioned forage 

estimates adds value to the understanding of herbivore distribution, by comparing the 

regression results of aggregate and partitioned models.  
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3.0 Results 

3.1. Livestock distribution in sub-Saharan Africa by biome 
type  

Across the entire SSA, total livestock numbers vary by groups. Considering the 

‘raw’ livestock numbers, goats were most numerous, followed by cattle then sheep 

(Figure 5a). After converting to a biomass proxy using tropical livestock units (1 TLU = 

250 kg live weight), the ranking changed with cattle highest and sheep the least (Figure 

5b).  

 
 
Figure 5: Livestock numbers in all of sub-Saharan Africa. In (a) total livestock numbers for 
cattle, goats and sheep and (b) total tropical livestock units (TLU), based on average African 
livestock weights of 175 kg (cattle, TLU=0.7) and 25 kg (goats and sheep, TLU=0.1). 

 

According to biome classifications, East African bimodal region had the highest 

livestock density, while the desert fringes of the Sahara and Namib ("southern arid") and 

the moist tropical forest had the lowest livestock density (Figure 6). In non-desert 

regions, while livestock densities generally decline with increasing rainfall, the patterns 

also reflect local land use systems and livestock-herding practices.   
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Figure 6: Distribution of livestock biomass by biome type in sub-Saharan Africa using the 
tropical livestock units (TLU km-2). The boxplots show (a) total livestock, (b) cattle, (c) sheep 
and (d) goats. Diamond black dots are the means, boxplot lower and upper bounds show 25th 
and 75th percentiles respectively; the inner horizontal line denotes median, and vertical 
whiskers showing the full range of data (excluding outliers exceeding 1.5 interquartile range). 
Biomes are ordered according to total livestock median. 

3.2. Model performance and relative influence of 
environmental covariates on livestock distribution 

To compare the performance of both aggregate and partitioned models, we conducted 

BRT, multiple linear regression and ANOVA. The partitioned model performed better in 

the regression analysis with model explanatory power from the R2 statistic slightly higher 

than the aggregate model (Supplementary Table S1). ANOVA analysis for both models 

show inclusion of the separate woody and herbaceous forage biomass added value to 

understanding herbivore distribution in SSA, with F-values for all the models statistically 

significant at p-value <0.05 (Table 3). However, in the BRT models the explanatory 

power in both the aggregate and partitioned models were similar (Table 4).  
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Table 3: Analysis of variance (ANOVA) results comparing multiple linear regression for aggregate 
and partitioned models for total livestock, cattle, goats and sheep 

 

                

Herbivore Model Res.DF RSS DF Sum.of.Sq F-value p-value 

Total TLU Aggregate 513 327.179 
    

Partitioned 512 322.044 1 5.134 8.163 0.004 

Cattle TLU Aggregate 513 396.704 
    

Partitioned 512 389.635 1 7.070 9.290 0.002 

Sheep TLU Aggregate 513 195.959 
    

Partitioned 512 189.578 1 6.381 17.232 0.000 

Goats TLU Aggregate 513 172.901 
    

Partitioned 512 171.361 1 1.540 4.601 0.032 

TLU-Tropical Livestock Unit 

 

In the aggregate model, water fraction was the most influential independent 

driver for total livestock distributions, while HPD rated second, aggregate biomass third, 

slope fourth and soil nutrient availability the least influential. The importance of water in 

the overall livestock model was driven primarily by cattle distributions (Figure S1-S3), a 

pattern which may reflect cattle heavy dependency on water (Figure 5b). Conversely, 

HPD had the most influence on small ruminant numbers (sheep and goats), as 

summarized in Table 4. In the aggregate models, forage availability indexed by LAIA, 

also appeared to be far more influential in the distribution of small ruminants (sheep and 

goats; Figures S4 and S5) than cattle (Table 4 and Figure S3). Soil nutrient status had a 

generally small role in aggregate models, with the exception of the sheep model at 15%, 

compared to 5% for goats and at <1.5% for total livestock and cattle models (Table 4; 

Figure 8). 
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Table 4: Relative influence of explanatory variables for the aggregate and partitioned model in 
explaining livestock distribution in sub-Saharan Africa derived from boosted regression tree 
models developed with cross-validation on data from 528 observations and a tree complexity 
of 5  

Aggregate Model 

Variable Total Livestock Cattle Goats Sheep 

HPD 12.0 10.5 33.3 32.8 

Aggregate LAI 9.3 6.4 27.7 24.8 

Nutrients 1.1 0.7 4.2 14.6 

Slope 7.1 5.2 15.4 9.5 

Water Fraction 70.4 77.1 19.3 18.3 

SE 0.04 0.04 0.05 0.06 

R-Squared 0.1 0.1 0.2 0.3 
 

Partitioned Model 

HPD 10.8 7.9 28.2 27.9 

Herbaceous LAI 15.3 16.5 25.3 13.0 

Woody LAI 8.2 4.5 21.8 25.3 

Nutrients 0.5 0.3 1.8 5.3 

Slope 3.9 3.0 11.7 6.7 

Water Fraction 61.2 67.7 11.2 21.8 

SE 0.04 0.05 0.06 0.09 

R-Squared 0.1 0.1 0.2 0.3 

SE-Standard Error 

 

In the partitioned model, where we used separate estimates of woody (LAIW; for 

browsers) and herbaceous (LAIH; for grazers) forage availability, we also observed water 

as the main determinant of herbivore distributions in the total livestock and cattle models 

(Table 4), but the more refined indices of forage availability explained more of the 

variability than in the aggregate model. The critical importance of water on livestock 

models was also evident in the total livestock and cattle models influencing >60% 

livestock distribution, while reducing in the smaller ruminants at 23% for sheep and 12% 

for the drought resistant goats. Livestock responded to water presence as long as it is 

available within a certain threshold, above which no observable change was apparent in 
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both aggregate and partitioned models. We argue that water is the first requirement for 

water-dependent domestic animals (i.e. no water, no livestock). Once water is available, 

the other variables become important. Nutrient availability had relatively little influence 

on the fitted BRT models for total livestock and cattle models, although in the small 

livestock (sheep and goats), the percentage level of influence was slightly higher in both 

the aggregate and partitioned models.  

3.3. Livestock relationship with biotic and abiotic factors  

The spatial distribution of cattle, sheep and goats was sensitive to the presence of 

water, with livestock densities low in areas with little or no surface water, increasing 

rapidly to an asymptote above which no further effect was observable in both aggregate 

(Figures S1 to S6) and partitioned (Figures 7 to 10) models. HPD had a sigmoidal 

relationship with livestock distribution, increasing with human population and reaching 

an asymptote in areas HPD >200 confirming our hypothesis that HPD is strongly 

correlated with livestock to a certain threshold. The increase corresponds with rangelands 

where we anticipated high livestock numbers.  

In the aggregate models (Figures S1 to S6), forage biomass indexed using LAIA showed 

high numbers in areas with moderate LAI values but then declining beyond LAIA of 3, in 

contrast to our hypothesis of unimodality. As expected livestock correlated negatively 

with slope, declining with increasing slope, since livestock (and pastoralists in general) 

avoid areas of high elevations and slope.  
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Figure 7:Partitioned boosted regression tree model response of total livestock (cattle, goats and 
sheep, in TLU km-2) to spatial distribution of environmental covariates, including (a) water 
coverage, (b) herbaceous LAI (LAIH), (c) human population density, (d) woody LAI (LAIW), 
(e) slope, and (f) soil nutrient availability status. The relative influence of each variable is 
shown along the x-axis labels (in brackets). 

 

In the partitioned model, the herbaceous biomass (LAIH) which ranks as the 

second most important variable in livestock distribution for the total livestock, and cattle 

models had a strong positive correlation with livestock biomass consistent with our 

hypothesis. On the other hand, the negative relationship between LAIH and the 

predominantly grazing sheep is unexpected as sheep decline with both LAIH and LAIW 

(Figure 8). The negative relationship between LAIH and goats (Figure 9) confirmed our 

hypothesis that goats that are characteristically browsers will favor regions with higher 

woody biomass. The negative relationship between woody biomass (LAIW) and total 

livestock is realistic and in line with our expectation since the largest part of the livestock 
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biomass, were grazers (sheep and cattle, Figure 5) that mainly depend on the herbaceous 

forage biomass.  

 

Figure 8: Partitioned BRT model marginal response of sheep (in TLU km-2) to spatial 
distribution of environmental covariates, including (a) human population density, (b) woody 
leaf area index, (c) water coverage, (d) herbaceous leaf area index, (e) slope, and (f) soil nutrient 
availability. Quoted in brackets within the x-axis labels are relative influence of the explanatory 
variables on sheep.  

 

In goats, which are primarily browsers (Figure 9), we observe somewhat 

comparable patterns to the sheep model (Figure 8), though differences were evident in the 

explanatory power of the variables. In the aggregate model, HPD, total biomass (LAIA) 

and water remained the three most important variables in that order, Figures S5. LAIW 

ranking higher than LAIH is rather confounding and in contrast with our expected 

relationship that woody biomass would have rather a more significant role in distribution 

of the largely browser goats than the herbaceous vegetation.  
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Figure 9: Partitioned BRT model marginal response of goats (predominantly browsers, in TLU 
km-2) to spatial distribution of environmental covariates, including (a) human population 
density, (b) herbaceous leaf area index, (c) woody leaf area index, (d) slope, (e) water coverage, 
and (f) soil nutrient availability. The relative influence of each variable is quoted in brackets 
within the x-axis labels 

3.4. Herbivore distribution contrasting livestock diet types 
and body size categorizations 

In the analysis, we assessed relationships for individual livestock type but also for 

feeding type categories to assess the differences between browsers and grazers and 

animal body sizes. We observed similar patterns for cattle and total livestock in both 

aggregate and partitioned LAI models perhaps due to the large cattle biomass, Figure 5b. 

However, slight differences were evident in the relative influence of the environmental 

variables used, Table 4 

3.4.1 Browsers versus grazers 

Here we compared livestock grazers (cattle and sheep) with browsers (goats). 

Cattle had a negative relationship with woody LAI in contrast to the positive relationship 
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with herbaceous biomass (LAIH), which was also the second most important variable in 

their distribution, Figure 10. This relationship was somewhat different in the sheep model 

(Figure 8), as expected a negative relationship with woody biomass emerged but rather 

unclear pattern with herbaceous biomass estimates. Diverging from our expectations, we 

observed a negative nonlinear relationship with goats (largely browsers) and woody 

biomass. We suppose this relationship perhaps could be due to our partitioned woody and 

herbaceous estimates with forbs and smaller shrubs that goats mainly feed on being 

classified as herbaceous LAI estimates.  

3.4.2 Variations with body biomass 

 

Figure 10: Relationship and relative influence of environmental covariates on larger feeders (cattle) 
in the partitioned model in relation to (a) water coverage, (b) herbaceous leaf area index, (c) human 
population density, (d) woody leaf area index, (e) slope, and (f) soil nutrient availability. The 
relative influence of each variable is quoted in brackets within the x-axis labels. Red lines were 
fitted using loess smoothing 

 



147 
 

 

We compared large (cattle) with smaller (sheep and goats) feeders to assess the 

influence of body biomass on herbivore distribution in SSA. In the large feeders (Figure 

10), water was the most important followed by herbaceous LAI, while in the smaller 

feeders, HPD ranked the most important variable followed by either herbaceous biomass 

in goats or woody biomass in sheep. Nutrients in both feeders were the least important in 

the partitioned models. In general, livestock densities were higher in the more nutrient 

rich systems relative to the nutrient poor systems. The relative influence of soil nutrients 

in small feeders was higher at 5.3% for sheep (Figure 8f) and 2.2% for goats (Figure 9f) 

compared to the large feeders at 0.3% (Figure 10f). These results indicate that smaller 

herbivores favor higher nutrient resources compared to larger animals requiring large 

forage quantities regardless of their nutritional status. While the general patterns of 

livestock density to variations in soil nutrients were broadly consistent with expectations, 

the detailed ranking of soil class effects in the BRT models was not always in strict order 

of increasing/decreasing nutrient status. We conclude that this may be caused by 

uncertainties in the data (both soil and livestock distributions), rather than representing 

actual patterns. 
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4.0 Discussion 

4.1. The value of newly available partitioned woody (LAIW) and herbaceous 
(LAIH) biomass in understanding livestock distributions across SSA  

To understand whether inclusion of separate woody and herbaceous forage 

biomass would improve our understanding of livestock distribution, we tested aggregate 

(LAIA) and partitioned forage biomass (LAIH and LAIW) models. Based on regression 

analysis and ANOVA the partitioned model was superior over the aggregate model 

(Table S1) in explaining livestock distribution in SSA. We therefore conclude that 

inclusion of the separate woody and herbaceous forage biomass adds value to 

understanding herbivore distribution in SSA. However, in the BRT models the 

explanatory power based on R2 statistic were similar (Table 4).  

4.2. The emergent sensitivity of livestock distribution patterns to patterns 
of forage and other environmental covariates 

Different environmental covariates have different influences on livestock 

distribution in SSA. Water was a critical variable for livestock in the total livestock and 

cattle models, influencing over 60% of livestock distribution in both the aggregate and 

partitioned models. However, in individual models of sheep and goats, water rated third 

and fifth at 23% and 12% in that order. On the other hand, HPD ranked highest in the 

smaller livestock with a relative influence of 26% for goats and 27% in sheep. Forage 

biomass was the second most important variable in livestock distribution, with 

herbaceous and woody LAI rating second or third across the individual livestock types 

(cattle, sheep and goats) in the partitioned models. The significant influence of water and 

herbaceous biomass as the two most critical determinants of cattle confirms the fact that 

cattle consumes ~70% of forage and water resources compared to that of goats and sheep 
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at 10% each (King, 1983), hence dominating the wetter ecosystems while goats are more 

drought resistant inhabiting the drier ecosystems (Vrieling et al 2016). In the total 

livestock biomass, we suppose the similarity with the results in cattle model was due to 

the high influence of cattle biomass (Figure 5b).  

In support of our hypothesis, herbaceous production influenced cattle more than 

woody production in the partitioned biomass model. LAIH had a relative influence of 

~15% compared to ~9% woody biomass. To our surprise woody biomass had higher 

influence on sheep (primarily grazers) distribution with LAIW at ~25% compared to LAIH 

at ~13%; a pattern reversed in goats (predominantly browsers) with herbaceous biomass 

influence at ~26% and woody biomass at 22%.  

Most ungulates daily activities are divided into feeding, watering and resting. 

On an average day a cattle spends about one third of its time resting (George et al., 2007), 

pointing to the importance of shade for livestock. Herbivores dominate (or pastoralists 

will guide their animals in) areas where they can find adequate forage, water and shade. 

Conceivably, this can be explained by the initial peak of livestock in areas with LAIW 

between 0.5 and 2, characteristic of open savannas.  

The influence of nutrients in all the partitioned models shows livestock 

favored moderate to nutrient rich forage resources corresponding with moderate to non-

limitation soil nutrient availability status. However, the influence of soil nutrients varied 

among the large (cattle) and smaller feeders (goats and sheep), with relatively little 

influence on large feeders, but higher influence on the distribution of small livestock, 

(Table 4).  
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4.3. The scale-dependence of locally established ecological relationships and 
patterns at continental scale. 

We observed varying relationships between livestock and environmental 

variables. Livestock increased linearly with water reaching an asymptote at ~0.3 water 

coverage. The importance of herbaceous production in livestock distribution was evident 

in the total livestock and cattle models showing a positive relationship reaching an 

asymptote beyond LAIH>2, while woody biomass was inversely correlated with livestock 

biomass, a pattern expected for grazers, but unforeseen for browsers (goats). Consistent 

with our hypothesis, we observed a positive correlation between livestock and HPD, 

confirming earlier results suggesting strong correlations between livestock densities and 

HPD where livestock tends to increase with agricultural intensification (Peden et al., 

2007). Our results point to the important threshold of HPD above which no observable 

difference is evident. We assume this is tied to management where HPD <=250 are 

rangeland areas and moderately productive ecosystems unlike the densely populated 

wetter ecosystems characterized by crop husbandry. In agreement with our hypothesis, 

livestock was inversely related with slope, preferring gentler slopes <=10% for watering 

and grazing George et al. (2007). 

4.4. Challenges and opportunities  

Our research has focused on the main factors that determine distribution and 

abundance of livestock in Africa. However, it does not exhaust the factors that determine 

herbivore distribution. Ideally, our analysis should have included finer scale livestock 

distribution numbers, perhaps even telemetry GPS data and inclusion of larger wild 

herbivores, but such data are rarely available in Africa. Although there is available 

gridded livestock (Robinson et al., 2014) at 1km resolution centered around year 2007 
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and wild herbivore (Hempson et al., 2015) data, we did not include them in our analysis 

since they were modelled using vegetation and other environmental variables which 

would likely introduce circularity in our analysis. We also acknowledge the limitation 

with the soil nutrient availability data which are not good enough to resolve more detail 

than we have shown in our analysis. A better approach would be to have direct estimates 

of forage nutrients but was limited by data availability. 

Other factors influencing herbivore distribution that would have been important to 

consider include: predation which in some instances has been found to be a more 

important factor than forage availability in some wild ecosystems in Africa (Grange & 

Duncan, 2006), while some herbivores choice of foraging sites is determined by fear of 

predation (Preisser et al., 2005; Sinclair et al., 2003); land tenure which is important 

especially among nomadic pastoralists; vegetation seasonality which affects forage 

quality (Mueller & Orloff, 1994); migratory nature of animals and nomadic lifestyle of 

African pastoralists though we believe the large polygons data used in our analysis act as 

a range within which herders/animals travel in search of water and forage resources; open 

water used in the analysis is not sufficient since in rangelands small water bodies and 

installed boreholes avail water for livestock but are difficult to capture with remote 

sensing applied for open water mapping. Elsewhere it has been reported elephants dig 

dried up river beds and edaphic grasslands (Dudley et al., 2001) which provide water for 

other wild species and livestock in some areas; dietary changes especially during 

droughts where pastoralists use twigs to feed livestock observed in some of our previous 

works in Eastern Africa. However, we believe the use of averages in our analysis is able 

to capture some of the variabilities within the data; disease and disease vectors since 
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pastoralists and humans in general avoid tsetse and other disease infested areas, for 

instance tsetse infestation in humid ecosystems in West, Central and East African regions 

limit livestock production (Ford, 1973); fire has both positive and deleterious effects on 

herbivores. They facilitate high nutrient herbaceous regrowth which is an attractant to 

many herbivores especially the smaller body animals that favor high nutritious forage 

(Eby et al., 2014). On the other hand, fires consume most of the senescent or dry biomass 

(Lehsten et al., 2009) which could be forage reserves for herbivores in the dry season. It 

is noteworthy, that we included crop area as a proxy for land use management on 

livestock distribution in our models. However, no significance changes were observed in 

the results, since crop production had the same impact on livestock as HPD, hence 

omitted in our final models.   
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Appendix 1: Multiple linear regression and analysis of variance (ANOVA) 

All the multiple linear regression model results were statistically significant with p-value 

<0.05. The partitioned models were better suited for explaining livestock distribution 

compared to the aggregate models (Table S1). Furthermore, ANOVA analysis for the 

aggregate and partitioned model to determine whether including the refined forage 

resources added value to the models other than using the aggregate biomass, shows the 

addition had a significant contribution to the models, as shown by the statistically 

significant F-value with p-value <0.05 in Table 3, in main text. The means between the 

variables were different as shown by the large high F-values that were higher than the 

critical value in almost all the model variables, Table S1. Given that there were 10 

degrees of freedom (DF) for biome types and 1 DF for other explanatory variables 

against 513 DF for all observations the critical value for biomes was 1.85 and other 

variables at 3.86 derived using: qf(.95,10, 513) and qf(.95,1, 513), respectively, derived 

in R-Programming.  
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Table S3: Multiple linear regression and ANOVA analysis results for the livestock herbivory models. The models were run 
based on the various livestock groupings including total, cattle, sheep and goats. The Overall p-value for the linear regression 
models were statistically significant p-value <0.05. The columns represent: Herbivore -the livestock category; Sum.Sq- error 
sums of squares; DF-Degrees of Freedom; F-statistic and p-value of each model explanatory variable 

  Aggregate Models Partitioned Models 

Herbivore Variable Sum.Sq DF F-value p-value R2 Variable Sum.Sq DF F-value p-value R2 

Total TLU 

LAIA 33.81 1 53.01 0.000 

0.517 

LAIW 37.72 1 59.96 0.000 

0.524 

HPD 127.33 1 199.65 0.000 LAIH 5.08 1 8.07 0.005 

Biomes 41.16 10 6.45 0.000 HPD 123.62 1 196.53 0.000 

Water 2.41 1 3.78 0.052 Biomes 39.53 10 6.28 0.000 

Slope 0.19 1 0.30 0.583 Water 2.34 1 3.72 0.054 

          Slope 0.02 1 0.04 0.848 

Cattle TLU 

LAIA 21.99 1 28.44 0.000 

0.489 

LAIW 29.06 1 38.19 0.000 

0.497 

HPD 111.44 1 144.10 0.000 LAIH 1.13 1 1.48 0.224 

Biomes 76.30 10 9.87 0.000 HPD 106.59 1 140.06 0.000 

Water 4.75 1 6.14 0.014 Biomes 62.05 10 8.15 0.000 

Slope 0.02 1 0.03 0.861 Water 4.25 1 5.58 0.019 

          Slope 0.86 1 1.13 0.288 

Sheep TLU 

LAIA 55.29 1 144.74 0.000 

0.397 

LAIW 58.63 1 158.35 0.000 

0.416 

HPD 22.28 1 58.32 0.000 LAIH 10.01 1 27.02 0.000 

Biomes 20.55 10 5.38 0.000 HPD 20.97 1 56.65 0.000 

Water 1.50 1 3.93 0.048 Biomes 20.26 10 5.47 0.000 

Slope 0.46 1 1.20 0.273 Water 1.44 1 3.88 0.049 
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          Slope 0.00 1 0.01 0.937 

Goats TLU 

LAIA 15.87 1 47.08 0.000 

0.407 

LAIW 14.09 1 42.10 0.000 

0.412 

HPD 57.70 1 171.19 0.000 LAIH 6.25 1 18.67 0.000 

Biomes 10.00 10 2.97 0.001 HPD 57.54 1 171.90 0.000 

Water 0.08 1 0.23 0.635 Biomes 8.68 10 2.59 0.005 

Slope 1.83 1 5.42 0.020 Water 0.15 1 0.44 0.506 

          Slope 1.61 1 4.80 0.029 

HPD- Human Population Density; LAIA-Aggregate Leaf Area Index; LAIH- Herbaceous Leaf Area Index; LAIW-Woody Leaf Area 
Index; TLU-Tropical Livestock Unit 
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Appendix 2: Livestock relationships with environmental variables in the 
aggregate models 

 

Livestock distribution had different relationship with various environmental variables. 

Here we show partial dependency plots for the aggregate models from Figures S1 to S4 

Appendix 2.1: Total Livestock relationship with environmental variables in 
the aggregate model 

 

Figure S3: Predicted livestock patterns in the aggregate model for all the livestock (cattle, goats 
and sheep) using tropical livestock units against (a) water coverage, (b) human population 
density, (c) aggregate leaf area index (LAIA), (d) slope, and (e) soil nutrient availability status. 
The relative influence of each variable is shown along the x-axis labels (in brackets) and red 
lines fitted with loess smoothing.  
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Appendix 2.2: Cattle relationship with environmental variables in the 
aggregate model 

 

Figure S4: Predicted livestock patterns in the aggregate model for cattle using tropical livestock 
units against (a) water coverage, (b) human population density, (c) aggregate leaf area index 
(LAIA), (d) slope, and (e) soil nutrient availability status. The relative influence of each variable 
is shown along the x-axis labels (in brackets) and red lines fitted with loess smoothing 

 

 

 



165 
 

 

Appendix 2.3: Sheep relationship with environmental variables in the 
aggregate model 

 

Figure S5: Predicted livestock patterns in the aggregate model for sheep using tropical livestock 
units against (a) human population density, (b) aggregate leaf area index, (c) water coverage, 
(d) soil nutrient availability and (e) slope. The relative influence of each variable is shown 
along the x-axis labels (in brackets) and red lines fitted with loess smoothing 
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Appendix 2.4: Goats relationship with environmental variables in the 
aggregate model 

 
Figure S6: Predicted livestock patterns in the aggregate model for goats using tropical livestock 
units against (a) human population density, (b) aggregate leaf area index, (c) water coverage, 
(d) soil nutrient availability and (e) slope. The relative influence of each variable is shown 
along the x-axis labels (in brackets) and red lines fitted with loess smoothing 
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CHAPTER 5  

Summary, synthesis and recommendations  

1.0 Summary of research and key results 

The work presented in this dissertation advances our understanding of the 

distribution and phenology of woody and herbaceous leaf area index (LAI) in Africa and 

how these key elements of vegetation structure impact fire activity and livestock 

distribution in tropical savannas. In my research, I incorporated known vegetation 

phenological traits with remote sensing signals to separate aggregate LAI for the two 

contrasting life-forms in savanna ecosystems (‘tree-grass systems’) and further applied 

the separate LAI estimates to understand how woody and herbaceous biomass influences 

fire activity and herbivory in Africa.  

In chapter 2, I attempted to address the challenge often facing ecologists and 

the remote sensing community in representing the contrasting savanna life-forms in 

medium resolution satellite data. With realization that greenness indices and aggregate 

LAI used previously to represent savannas provides little insight into spatio-temporal 

variability in woody and herbaceous vegetation structure, I used the 8-day MODIS leaf 

area index at1km spatial resolution from 2003-2015 to separate woody from herbaceous 

LAI in sub-Saharan Africa (SSA). I developed an allometric relationship describing the 

variation in peak within-canopy woody LAI of dominant tree species across mean 

annual precipitation gradients, coupled with independent estimates of woody canopy 

cover, to constrain the rapidly changing woody LAI. I generated 8-day woody and 

herbaceous LAI estimates for years 2003-2015, which I used for further analysis in 

understanding fire behavior and livestock herbivory in SSA. I have made available the 
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partitioned LAI estimates as 8-day averages of the 2003-2015 epoch for user community 

to test and use them in various applications. LAI phenology is also availed as an 

animation file for the user community to visualize the contrasting woody and herbaceous 

phenology across SSA and assess performance of the partitioning approach. This 

analysis also included interesting plots showing bifurcation between high LAI in forests 

and moderate LAI savannas and the degree of seasonality (evergreen versus deciduous) 

in woody and herbaceous vegetation across Africa.  

In chapter 3, I showed how the use of aggregate biomass to understand 

tropical savanna fires using the intermediate fire-productivity hypothesis (IFP; Pausas & 

Ribeiro, 2013) ignores the separate and distinct roles played by herbaceous and woody 

vegetation on fire ignition and spread in tropical savannas. I proposed the ‘Fuel, Cure 

and Connectivity (FCC)' conceptual model that recognizes the important and separate 

roles of herbaceous vegetation in tropical savanna fires. The model combines other 

important environmental covariates including dry season length necessary for fuel to 

cure, human population density as a proxy for ignition sources and land management. I 

hypothesized that since tropical savanna fires are almost exclusively surface fires, fueled 

by herbaceous biomass, fire activity in SSA will be asymptotically correlated with 

herbaceous production. From this analysis it is apparent that herbaceous fuel-load is the 

predominant control of tropical savanna fires, while the need for fuel to cure rated 

second in fire ignition and spread in SSA. In contrast to the unimodal relationship 

promoted by IFP, an asymptotic relationship between herbaceous fuel-load and fire 

activity is evident, consistent with FCC. The novelty in the FCC model is the inclusion 

of partitioned woody and herbaceous fuel biomass and tree facilitation of herbaceous 
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undergrowth which, to my knowledge, has not been explored in relation to fire activity 

in the African context. The partitioned fuel-load estimates and tree facilitation of 

herbaceous undergrowth forms the basis of the FCC model where, in particular, it is not 

total production that matters in the tropical savanna fires, but herbaceous production, 

since fires in this region are surface fires fueled by the herbaceous biomass. I have 

shown herbaceous vegetation tends to burn more frequently than woody vegetation 

hence concluding that the large fire hotspot found in southern Chad, the Central African 

Republic and South Sudan is related to the particularly low tree cover and associated 

high herbaceous biomass in this region. This contrasts previous work (Giglio et al., 

2013) that suggested these fire hotspots can be explained by the hot Harmattan trade 

winds. Although the FCC model does not include fire weather factors, making this 

observation open to debate, I argue that patterns in herbaceous fuel load are a more 

logical explanation of this fire activity in the hotspots, a phenomenon that is also evident 

in the southern Africa mesic savannas. In this analysis, I have shown that FCC model 

avoids the confounding interpretation of the role of total production, while providing 

opportunities to quantify fuel curability, tree effects on herbaceous fuel growth and 

connectivity, and human management, emphasizing the need to separate woody and 

herbaceous biomass in fire models for better understanding of tropical savanna fires. 

In chapter 4 I explored major correlates of livestock distribution in Africa, 

with key emphasis on the relative influence of woody and herbaceous LAI as proxies of 

forage quantity for browsers and grazers respectively. I tested the value of the 

partitioned LAI estimates (developed in chapter 2), coupled with water, human 

population density, topography, and soil nutrients status in understanding livestock 
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distributions across SSA and evaluated the scale-dependence of locally established 

ecological relationships and patterns of herbivores and these environmental covariates at 

continental scale. I hypothesized that herbaceous production influences grazers, while 

woody production influences browsers and the relationship is positive linear or 

asymptotic in LAIH for grazers and LAIW for browsers. Animal body size plays a role in 

their distribution, hence I hypothesized large herbivores will be more common in high 

forage production areas irrespective of forage quality, while smaller livestock including 

will favor nutrient-rich areas. Water resource availability often constrain pastoral 

activities and livestock distribution thus I anticipated livestock density will be sensitive 

to the local availability of water, but quickly reach an asymptote as small water bodies 

can provide drinking water to animals foraging over a much larger geographical area, 

while human population density will cause an initial rapid increase of livestock then 

decline in more densely populated agricultural areas. Terrain constrains animal 

movement and livestock prefer gentle slopes thus I hypothesized an inverse relationship 

between livestock abundance and slope. Results show inclusion of refined forage 

biomass improves our understanding of domestic livestock distributions. Water 

availability is a critical variable in determining livestock distribution, but once available 

further increase does not matter. Cattle increased with herbaceous LAI more than woody 

LAI in the partitioned model. However, the negative influence of herbaceous LAI on 

sheep that are predominantly grazers and woody LAI on the predominantly browsing 

goats was a confounding result in the analysis. HPD has a positive influence on 

livestock distribution reaching an asymptote in moderate human population areas 

indicating the increase corresponds with rangelands where we anticipated high livestock 
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numbers, levelling out in highlands where HPD and agricultural activities are high. 

Overall, it was apparent that livestock distributions generally favor regions with 

moderate to high soil nutrient availability, a relationship that varies with animal body 

size, with larger body-size livestock (cattle) being less sensitive to forage nutrient status 

than small ruminants (sheep and goats). These findings point to importance of including 

separate woody and herbaceous biomass in understanding herbivory.  
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2.0 Limitations of the research  

The performance of aggregate LAI partitioning is dependent on the quality and 

consistency of the MODIS LAI product. Previous versions of MODIS LAI identified 

relatively larger errors in LAI retrievals (de Bie et al., 1998; Palmer et al., 2015), but 

over the years improvements have been achieved through various collections and 

validation efforts. Here we used MODIS Collection 5 LAI which provides reliable and 

reasonably well characterized dataset for global LAI estimates. Notable problems with 

the LAI were cloud cover in the tropical and coastal forest ecosystems, lowering the 

value of LAI. Although I corrected these problems through removal of low LAI data 

caused by contamination and later smoothing to have realistic LAI seasonality, remnant 

errors were evident in some pixels. This could have introduced errors in the partitioned 

LAI estimates. Since this was a beta product, in the revised partitioning, I hope the 

partitioning estimates will get better with use of MODIS Collection 6 and Visible 

Infrared Imaging Radiometer Suite (VIIRS) LAI datasets. 

Other possible sources of uncertainty and errors in the partitioning analysis were 

the woody cover, precipitation and in situ LAI estimates and errors introduced through 

preprocessing steps, therefore propagating errors in the partitioned LAI. Particularly the 

use of a static woody cover product centered on year 2005 (Bucini et al., 2010) to 

constrain the woody LAI, while appropriate for most slowly-changing systems, is unable 

to capture changes in woody-herbaceous LAI partitioning in landscapes exposed to rapid 

changes/disturbance e.g. deforestation, fire. However in this initial analysis where I 

derive the beta version of the partitioned LAI, I ignored this potential source of error, 

assuming that deforestation is relatively localized. Future versions of this analysis should 
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use improved estimates of woody cover, updated at regular intervals (e.g. at ~5year 

intervals).  

The partitioning allometry was based on a limited and dispersed number of in situ 

LAI measurements, hence requires recalibration with additional data for better 

representation of all vegetation types across Africa. Thus far, validation of partitioned 

LAI estimates based on field based LAI estimates shows an overall agreement of ~50%, 

with root mean square errors of 0.72, 0.37 and 0.80 LAI units for overall partitioned, 

herbaceous and woody LAI, respectively. These statistics indicate the need for 

refinement of the partitioning allometry through inclusion of additional field based LAI 

data for herbaceous and woody LAI and for further validation. Gradual improvements 

will be possible in future reanalysis and operationalization phase of this product as more 

validation and model calibration data become available and following feedback from 

users. 

In the fire and herbivory analysis in chapters 3 and 4 respectively, I acknowledge 

the limitations of the data used. I applied the partitioned LAI in these two analysis which 

coupled with other datasets used may propagate errors and introduce uncertainties in the 

analyses. The current satellite based fire activity products are surrounded by uncertainties 

and tend to underestimate fires (Chuvieco et al., 2016), especially with most moderate 

resolution satellite based burned area and active fire products, that tend to have limited 

ability to detect fire activity in tropical forests while underestimating small fires (Roy et 

al., 2013). However, over the years, there has been a significant improvement in satellite 

fire activity products, for instance MCD64A1 Collection 6 product used here is now 

better compared to previous versions (Giglio et al., 2013). Therefore, I believe the 
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shortcomings with the data used in the fire analysis would not affect the general fire 

activity patterns and the general findings in the analysis.  

Carry over biomass dependent on rains from the previous season is a very 

important variable in understanding fire activity (Bond & Keane, 2017). However, the 

FCC model does not incorporate this variable, but I believe the use of annual average 

maxima is somewhat able to capture this variability. I recognize the limitations in FCC 

model with potential for collinearity between number of dry months (dry season length; 

DSL) and the LAI terms used as proxy for fuel load. However, inclusion of DSL provides 

additional insight on the curability of fuels an important variable worth including. 

While the general patterns of established ecological relationships between livestock 

density and environmental variables are broadly consistent with expectations, I observed 

inconsistencies with variable rankings, which may be due to errors and uncertainties in 

the data on livestock distributions and environmental covariates rather than representing 

actual patterns. The resolution at which I applied the livestock models captures a lot of 

variability which might have affected the results. Landscapes are very heterogeneous 

containing topographic and other variable environmental characteristics that may impact 

herbivory, but which the level of this analysis may not have captured. I believe better 

results would be evident with finer spatio-temporal scale datasets, herbivore movement 

data, forage quality maps or improved soil maps, vegetation maps and water availability 

data. Additionally, the herbivore distribution analysis could be better with inclusion of 

the often lacking and unreliable wildlife herbivore estimates. 
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3.0 Synthesis and recommendations for future research 

My research has contributed to a new quantification and understanding of spatiotemporal 

patterns of woody and herbaceous LAI a challenge often facing ecologists and the remote 

sensing community in representing the contrasting savanna life-forms in medium 

resolution satellite data. As evident in my analysis on fire activity and herbivore 

distribution in SSA, this unprecedented information could be used for future applications 

in utilization and management of savanna resources and broader research themes in 

savanna science. 

Shrub encroachment in savannas has been document not only in Africa but 

globally, in the Americas, Australia and Asia, a phenomenon induced by human activities 

such as grazing, fire suppression, introduction of woody species for economic purposes, 

planned or unplanned introduction of alien species and recently tied to increasing 

atmospheric CO2 and changing precipitation regimes associated with global climate 

change (Settele et al., 2014). Its impacts are beneficial in biogeochemical cycles 

especially carbon sequestration (Hughes et al., 2006) but also threatens the survival of 

savanna biomes and is detrimental to grazing systems (Eldridge et al., 2011; Settele et al., 

2014 and citations therein). Increased canopy cover increases above ground net primary 

productivity thus increasing carbon storage per unit land area, while declining herbaceous 

undergrowth (Hughes et al., 2006; Moleele et al., 2002), which is the main source of 

forage for wild and domestic herbivores. Human induced changes that will increase 

growth such as water, nutrients, fire suppression, reduced herbivory, and impacts 

associated with climate change will continue to cause canopy closure causing changes in 

savanna biomes (Murphy & Bowman, 2012). Therefore estimating and monitoring inter 
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and intra annual LAIW seasonality is essential for understanding the dynamics of 

changing woody cover components in global savannas.  

Bifurcation is also an important topic in savanna ecology with varying views on 

its manifestation theoretically and with empirical observations. In ecological literature 

studies have shown the theoretical basis of bistability (D’Odorico et al., 2006; Hanan et 

al., 2008; Hoffmann et al., 2012), while others have attempted to quantify their 

prevalence in global biomes in empirical analysis (Favier et al., 2012; Hirota et al., 2011; 

Ratajczak & Nippert, 2012; Staver et al., 2011). I derived estimates of woody and 

herbaceous LAI maxima to show its relationship with mean annual precipitation (MAP), 

since LAI maxima for various ecosystems is mainly dependent on precipitation and the 

relative contribution of woody and herbaceous vegetation. Woody LAI, initially increases 

with MAP, then a conspicuous bifurcation evident between high LAI forests and 

moderate LAI savannas, consistent with theories of bistability in the forest-savanna 

transition zones (D’Odorico et al., 2006; Hanan et al., 2008; Hoffmann et al., 2012), and 

empirical analyses based on MODIS tree-cover product (Favier et al., 2012; Hirota et al., 

2011; Ratajczak & Nippert, 2012; Staver et al., 2011). However Hanan et al. (2014) 

questioned whether the bistability apparent in the MODIS tree-cover data between 

medium LAI savanna in drier regions, and between savanna and forest in wetter regions, 

might be an artifact of the classification and regression trees approach used to predict tree 

cover from MODIS. In the partitioning of MODIS LAI, I have shown evidence of 

bifurcation in the MODIS aggregate LAI maxima, further reinforced in the partitioned 

woody LAI. I hope this will invoke an interesting discussion within the savanna ecology 

and the remote sensing community on bistability driven by fire and positive feedbacks in 
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savanna-forest transition zones. Furthermore LAIW, provides data necesary for assessing 

the bistability of woody cover which is essential for future predictions on impacts of 

global change on terrestrial biomes. 

From the partitioning analysis, I derived a product showing the degree of 

evergreen versus deciduousness in SSA ecosystems, something that I believe has not 

been available before or at the scale of this analysis. My product shows seasonally stable 

evergreen ecosystems, with the woody LAI seasonality further highlighting the 

distinctions between evergreen and deciduous woody ecosystems in the moist tropical 

forest and savannas, and woody seasonality in weakly deciduous shrublands in drought-

seasonal regions of SSA. On the other hand, herbaceous LAI across most of SSA is 

highly seasonal, regardless of whether the dominant species are annuals or perennials. 

With changing precipitation regimes and human induced modifications the seasonality 

product is important to monitor and quantify how these alterations may or will affect 

vegetation seasonality, thus biogeochemical cycles and resource provision in the 

continent.  

In the fire analysis, derived estimates of partitioned LAI, were used to explore the 

distinct and separate roles woody and herbaceous biomass in fire activity in the tropical 

ecosystems of Africa, also applicable in other tree-grass ecosystems across the globe. The 

current paradigm contends that climate change will result in increased fire risk in various 

global ecosystems (Jolly et al., 2015; Moriondo et al., 2006; Scholze et al., 2006; Settele 

et al., 2014), necessitating a better understanding of fire activity, behavior and regimes 

across the globe. Herbaceous biomass fuels fire in tropical savannas while woody 

biomass has indirect effects through facilitation of herbaceous undergrowth in drier 
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environments while suppressing fire in wetter biomes by suppressing herbaceous 

undergrowth and connectivity. Furthermore, fire activity is dependent on land cover type 

with some more prone to fire than others (Barros & Pereira, 2014). As demonstrated in 

my analysis it is imperative to refine and disentangle fuel load types in fire analysis and 

modeling.  

Savannas are a source of forage and fuelwood supply in many parts of Africa, 

where rangelands cover over 60% of the continent. Tropical savannas are some of the 

most densely populated ecosystems, and in SSA woody biomass the main source of 

fuelwood (Arnold et al., 2006; Bailis et al., 2005; Delmas et al., 1991; Levine, 1991), 

thus quantifying and monitoring the composition of herbaceous and woody biomass in 

Africa is vital. As an indicator of available forage resource in SSA, the partitioned LAI 

product will go a long way in addressing impacts of climate change (Settele et al., 2014) 

and some of the challenges faced by pastoralists in this part of the world. For instance, 

within the frame work of index-based livestock insurance (Vrieling et al., 2016) in 

Kenya, Ethiopia and Uganda (later expanding to other parts of Africa), NDVI which is 

just an estimate of vegetation vigor (Tucker, 1979), is used to monitor forage anomalies 

to be used as the basis for insurance payouts. The application of the partitioned LAI 

product would be a better proxy for estimating forage resources. Furthermore, the 

invasion of alien species in some grazing ecosystems that remain evergreen year-round 

could be misleading when using NDVI to assess vegetation anomalies as they will 

indicate normal seasonality despite failed rains affecting herbaceous undergrowth which 

is the main forage resource. Therefore, estimates of seasonal and annual variations in 

woody and herbaceous LAI and quantification of probable changes associated with 
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climate change will aid in understanding and predict how societies will be affected in 

Africa. 

Savannas are rich biodiversity conservation hotspots globally (Darkoh, 2003; 

Shorrocks & Bates, 2015; White et al., 2000). In Africa alone most of the protected areas 

dominate savanna/rangeland biomes. The composition of flora and fauna in these biomes 

is dependent on the structure and composition of woody and herbaceous layers. For 

instance the big cats and various large herbivore species prefer inhabiting the open 

savannas. Therefore, Shifts from savanna to forest or savanna to grassland or desert have 

far reaching implications for biodiversity conservation, more so when the changes impact 

survival of various flora and fauna. To manage savanna biomes for successful 

biodiversity conservation efforts there is need to monitor the status and trends of woody 

and herbaceous vegetation. Using seasonal and interannual estimates of woody and 

herbaceous LAI has the potential to provide information on the savanna structure and 

general composition for informed biodiversity conservation efforts.  

Arguably the importance of representing separate savanna constituents in RS has 

many benefits to ecologists, scientific community and environmental managers. 

However, while there are still many challenges the research presented in this dissertation 

has significant potential to improve our understanding of current anthropogenic changes 

and probable impacts of climate variability and change. I believe future improvements in 

understanding vegetation variability among and within biomes is an important step as I 

have shown here using remote sensing data to understand spatio-temporal variations of 

woody and herbaceous biomass in Africa and how these constituents can be applied in 

various applications including fire, herbivory, and climate change modelling.  
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