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ABSTRACT 

MEASURING THE INFLUENCE OF BEDDING ON SOIL NITROGEN LOSSES 

AND CORN CROP NITROGEN CHARACTERISTICS FOR FALL APPLIED SOLID 

BEEF CATTLE MANURE IN EASTERN SOUTH DAKOTA 

MUKESH MEHATA 

2018 

Nitrogen (N) is a major component of chlorophyll which plays a key role in the 

photosynthesis process in crops. The N is one of the highest demanded nutrients by all 

plants for their growth and reproduction. Manure or inorganic fertilizer is often applied to 

fulfill the crops’ N demand. However, the applied N sources have the potential of N 

losses in different forms from the soil volume in many ways such as ammonia (NH3) 

volatilization, aerial nitrous oxide (N2O) loss, nitrate (NO3
--N) leaching, and runoff 

and/or erosion. Soil fertility, crop yield, water quality, and air quality can be reduced by 

excessive N losses from the soil volume. The goal of this study was to understand the 

effect of fall-applied solid beef manure with bedding on nitrogen movement and 

transformations during corn production. The objectives of the research were to measure 

the N losses (NH3, N2O, and soil water NO3
--N concentration) from the soil for fall-

applied N and corn production, then compare the impact of applied N form (solid beef 

cattle manure with bedding (MB), solid beef cattle manure only (MO), urea only (UO) 

and no-fertilizer (NF)), in Brookings County, SD. The methods for collecting samples for 

soil N losses were semi-static open chambers for NH3 flux, static chambers for N2O flux, 

and suction lysimeters for soil water. The applied N were 130 and 184 kg ha-1 in Year 1 

and Year 2, respectively. The studied showed the average (±SE) soil NO3
--N for UO (105 

± 9 kg ha-1) was significantly higher than the remaining treatments; soil NO3
--N was 72 
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and 65 kg ha-1 for manure treatments MB and MO, respectively. The average (±SE) total 

soil NO3
--N for Year 1 (83 ± 6 kg ha-1) was significantly higher than Year 2 (67 ± 5 kg 

ha-1). However, the average total soil NO3
--N at Pre-plant stage was significantly higher 

than V6 and Postharvest stages in both years. The study results did not show any 

significant difference in total soil NO3
--N due to interaction of Treatment and Growth 

Stage. Furthermore, the average NH3 flux, and N2O flux were significantly affected by 

treatments. The highest N2O flux was produced by the UO (79.0 ± 24.9 µg m-2 h-1) plots, 

whereas the flux released from MB was 49.0 ± 15.1 µg m-2 h-1 and for MO it was 33.3 ± 

10.3 µg m-2 h-1. The N2O flux obtained from UO was significantly higher than NF, while 

MB and MO-produced N2O fluxes were not significantly different than neither UO nor 

NF. The highest NH3 flux occurred from the MB treatment, which was 3.4 ± 0.9 g ha-1 h-

1, however this flux was only significantly different than NF. The NH3 fluxes from UO 

and MO were not significantly different than MB and NF. The average (±SE) N2O and 

NH3 fluxes for control (NF) were 25 (±8) µg m-2 h-1 and 1.4 (±0.4) g ha-1 h-1, 

respectively. The average soil water NO3
--N concentration was not significantly different 

among the treatments (P < 0.05). The average soil water NO3
--N concentration was 

significantly greater in Year 1 (12.5 ± 2.0 mg L-1) compared to Year 2 (6.5 ± 2.0 mg L-1). 

Crop N characteristics such as leaf-N and grain-N tended to be different (P < 0.1) among 

treatments, with a higher N concentration in UO-treated plots. The corn yield was not 

significantly affected by treatment in Year 1 (the only year measured). The study aids the 

understanding of soil N losses via various paths and the effect of fall-applied solid 

manure with or without bedding on soil N losses and N transformations. Overall, the data 

obtained from our study will be used in model application purposes, which will help to 
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further understand the factors and processes affecting nutrient transformations and losses 

during corn production with beef cattle manure.   
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 INTRODUCTION 

 Background 

Nitrogen (N) is a critical nutrient in the respiration, metabolism, growth, and 

reproduction systems for plants (Dinnes et al., 2002; Follett and Hatfield, 2001; Ohyama, 

2010). Also, N is a major component of chlorophyll, which helps to convert light energy 

into chemical energy in the photosynthesis process (Havlin et al., 2005). About 78% (by 

volume) of the atmosphere is N, but it is in inert gas form and not directly available for 

the plants (Follett and Hatfield, 2001; Havlin et al., 2005; Ohyama, 2010). Nitrogen is 

found in various forms in soil, such as organic matter, soil organisms and 

microorganisms, ammonium-N, nitrite-N, and nitrate-N (Bremner, 1965a; Cameron et al., 

2013; Lamb et al., 2014). However, the proportion of N in soil is only about 0.1 to 0.6% 

in the top 15 cm of soil, depending on the soil type (Bremner, 1965b; Cameron et al., 

2013). Hence, additional N input is required to fullfill crop N requirements. Between 

1950 and 2000, world grain production increased three times from 631 to 1840 million 

tons due to a significant contribution of N fertilizer (Mosier and Syers, 2004). As the 

world population continues to increase, crop production must also increase, but there is 

limited arable land to fulfill the demand (Mosier and Syers, 2004). Increasing crop 

production in the limited arable land is only possible if N fertilizers are used efficiently 

while minimizing negative impacts in the surrounding environment (Cassman et al., 

2002; Mosier and Syers, 2004; van Grinsven et al., 2015). 

Soil and plants gain N from various sources like biological and atmospheric 

fixation, direct addition of manure and commercial fertilizers, crop residue, and animal 
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tissues (Hoos et al., 2000; Lamb et al., 2014; Petrovic, 1990; Vitousek et al., 1997). The 

rate of N uptake depends on crop types, soil properties, and weather factors (Ohyama, 

2010; Provin and Hossner, 2001). However, not all the forms of N are usable for plants. 

Mainly two inorganic forms of N in soil, nitrate-N (NO3
--N) and ammonium-N (NH4

+-

N), can be used by plants via the roots. Organic matter N may covert to usable forms of N 

through mineralization (Havlin et al., 2005; Robertson and Groffman, 2007). Soil 

microorganisms play an important role to break down or transform the organic matter N 

to NO3
--N and NH4

+-N form of N (Hart et al., 1994; Schimel and Bennett, 2004). 

Soil N is a very important nutrient for crop production, however, nitrogen can be 

potentially lost from the soil when manure and N fertilizers sources are over-applied or 

mismanaged (Dinnes et al., 2002; Hatfield and Cambardella, 2001). Soil N can be lost via 

various processes such as volatilization, denitrification, leaching, runoff, and erosion 

(Lamb et al., 2014; Loecke et al., 2004; Miller et al., 2009; Paramasivam et al., 2009). 

Human activities in the agricultural sector are often responsible for potential soil N losses 

which may pollute air or water quality (EPA, 2006). Globally, in 2005, about 60% of 

N2O emission was from agriculture due to anthropogenic activities (IPCC, 2007). Nitrous 

oxide loss to the atmosphere contrbutes to global warming as well as depletion of the 

ozone layer (Bouwman et al., 2001; EPA, 2013). Similarly, 20 to 50% of total 

agricultural ammonia (NH3) loss is from land applied organic fertilizers (Sintermann et 

al., 2012; Sommer and Hutchings, 2001). Ammonia is an important environmental 

pollutant which has had a wide variety of impacts such as soil acidification, acid rainfall, 

eutrophication of ecosystem (International Fertilizer Industry Association, 2001). Also, 

when ammonia is released from the soil surface to atmosphere, it reacts with atmospheric 
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gases such as sulfur dioxide or nitrogen oxides (in the presence of water) to form 

particulate matter less than 2.5 micrometers that is very harmful for human and animal 

health, and the environment (Bittman et al., 2014; Hodan and Barnard, 2004). Nitrate-N 

loss via leaching can vary from 5 to 50% of applied N depending on crop type, soil 

properties, N rate, and climatic condition (Sainju, 2017). The loss of NO3
--N from 

agricultural soil is a major contributor for building a dead zone or hypoxia condition in 

the Gulf of Mexico (Daigh et al., 2015; Goolsby and Battaglin, 2000; Goolsby et al., 

2001). The United States Environmental Protection Agency (US-EPA) has set the 

maximum level of NO3
--N concentration to not exceed 10 mg NO3

--N L-1 in drinking 

water (US-EPA, 2002). Therefore, in agriculture, appropriate management practices are 

required to improve N use efficiency for crops and reduce N losses to the environment. 

Various management practices mitigate soil N losses and increase N use 

efficiency in the soil (Piccini et al., 2016; Shaviv and Mikkelsen, 1993; Tilman et al., 

2002). Soil N losses can be minimized by implementing different strategies such as 

appropriate N application at appropriate time, reducing tillage, crop rotation, using soil 

tests and plant monitoring, and improving N application technique (Ahmed et al., 2013; 

Dinnes et al., 2002; Jokela and Randall, 1989; Mallarino and Wittry, 2010; Smith et al., 

2007; van Grinsven et al., 2015). Also, integration of these management strategies and 

plant breeding with higher N use efficiency may contribute to sustainable agriculture 

systems which may protect and improve soil, water, and air quality (Baligar et al., 2001). 

Appropriate rates of feedlot manure with bedding application practice may increase soil 

organic matter, nutrient contents, and improve soil quality and soil productivity (Amiri 

and Fallahi, 2009; DeLuca and DeLuca, 1997).  
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Bedding is generally used on animal farms for animal comfort, to reduce animal 

injury, and aid in manure handling (Bey et al., 2002; Smith and Hogan, 2006). Manure 

types, bedding types, and application rate of organic amendments can influence N and 

phosphorus (P) uptake, and soil physical properties such as water flow and water holding 

capacity compared to inorganic fertlizer (Airaksinen et al., 2001; Miller et al., 2010; 

Miller et al., 2014; Miller et al., 2009). Miller et al. (2010) found that soil inorganic N, 

soil P, and soil mineralizable N were significantly affected by manure, but the effects 

changed with year or bedding or rate of application or their interactions. However, 

bedding with rich carbon content manure can immobilize N temporarily in the soil, 

delaying the release of plant-usable forms of N (Crohn, 2004). Later, when microbes 

decompose carbon, they utilize carbon to generate energy to grow and reproduce and 

those microbes help N mineralization in the soil (Crohn, 2004). This research will 

explore the influence of bedded and bedded solid manure on soil nitrate, N losses, crop 

characteristics (leaf-N and grain-N), and yield.   

 Objectives 

The overall goal of this research was to measure the influence of bedding on soil 

N losses and corn crop N characteristics (leaf-N, grain-N and yield) for fall-applied solid 

beef cattle manure in Eastern South Dakota. The specific objectives were: 

(1) To determine the impact of fall-applied bedded and non-bedded solid beef cattle 

manure, and urea fertilizer on total soil nitrate-N, soil water nitrate-N concentration, crop 

N and yield. 
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(2) To assess the influence of solid beef cattle manure with bedding application on 

soil fluxes of ammonia (NH3) and nitrous oxide (N2O) following manure application and 

during the growing season. 
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 LITERATURE REVIEW 

 The role of manure and urea in the nitrogen cycle 

Nitrogen (N) in soil transforms into various forms through biological and physical 

processes (Bierman and Rosen, 2005; Follett and Hatfield, 2001; Lamb et al., 2014). The 

soil-N cycle shows how the various forms of N move in or out of the soil system (Figure 

2.1; Lamb et al., 2014). Nitrogen compounds can be classified into two groups: reactive 

N and nonreactive N (Follett, 2008). Both groups exist in nature in equilibrium through 

the balanced process of the N cycle. Nonreactive N includes inert N2 gas and organic N, 

whereas reactive N includes all inorganic N forms (Follett et al., 2010; Galloway et al., 

2008). Most N in the soil is tied up in organic matter which resists being consumed by 

plants. However, soil microorganisms present in the soil break down the organic forms of 

N into the plant usable forms (nitrate (NO3
-)) and ammonium (NH4

+)) (Havlin et al., 

2005; Johnson et al., 2005). Plants uptake the available forms of N from soil via their 

roots system; however, N uptake depends on plant age and type, environment, and other 

factors (Havlin et al., 2005).  
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Figure 2.1 The nitrogen cycle (Lamb et al., 2014) 

 

The main N inputs to the soil for plant growth are symbiotic or non-symbiotic 

fixation, atmospheric fixation, application of animal manure and commercial fertilizer, 

plant residue, and soil organic matter (Bierman and Rosen, 2005; Follett and Hatfield, 

2001; Lamb et al., 2014). Manure applied to the soil contains both reactive N (NH4
+) and 

nonreactive N (organic N) (Ketterings et al., 2005). Organic N cannot be used by crops 

until it converts into inorganic N forms (NH4
+ or NO3

-). The soil microbes present in the 

soil convert organic forms of N into the inorganic N by the mineralization process 

(Follett, 2008; Havlin et al., 2005; Shober, 2015).  

A common form of commercial fertilizer is urea. Urea is hydrolyzed by the 

enzymatic action of urease, a common enzyme found in soil systems (Mobley and 

Hausinger, 1989) to ammonia (NH3), which dissociates in water to exist in equilibrium 

with NH4
+. The NH4

+ is a usable N form for crops. Higher soil pH (>7) favors NH3, 



8 

 

which can be lost to the atmosphere via volatilization (Follett et al., 2010; Follett and 

Hatfield, 2001; Havlin et al., 2005).  

Many human-driven activities such as burning fossil fuels (including burning 

forests and burning grasslands) and application of N-based fertilizer have a significant 

impact on the N cycle because these activities can highly increase N in an ecosystem 

(Bernhard, 2010; Vitousek et al., 1997). Over application or mismanagement of both 

manure and/or urea in the soil can result in N loss as gaseous or nitrate forms to the 

environment (Dinnes et al., 2002; Hatfield and Cambardella, 2001). Also, the deposition 

of reactive N by burning fossil fuels and biomass, application of N, and natural sources of 

nitrogen oxide (lightening and biogenic soil emissions) may fertilize both terrestrial and 

marine ecosystems that enhance the carbon storage (carbon sequestration) (Galloway et 

al., 1994; Maaroufi et al., 2015). The losses of N from the soil volume by volatilization, 

nitrification or denitrification, leaching, or runoff/erosion may create a problem for the 

ecosystem. The loss mechanisms are described below (Section 2.1.1 to 2.1.5), and the 

impacts of these losses are described in Section 2.2. 

 Ammonia loss through volatilization 

In the soil solution, total ammoniacal nitrogen (TAN) compounds NH3 and NH4
+ 

exist in equilibrium dependent on pH. The NH4
+ is stable in solution, but NH3 ions are 

subject to loss as a gas to the atmosphere (Equation. 2.1) (Follett, 1995; Follett, 2008).  

                          NH4
+ + OH-  ⇌ NH3 + H2O

                                          (2.1)     

Soil pH and TAN concentration are important factors which control the 

magnitude of NH3 loss to the atmosphere (Follett, 1995). The rate of NH3 volatilization 
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increases with high soil pH (>7) and high soil temperatures because both factors increase 

the relative amount of NH3 concentration in the soil solution (Follett, 1995; Jones et al., 

2007; Stevenson and Cole, 1999).  

In neutral or acidic soil, NH3 loss is low for NH4
+-containing fertilizer (e.g., 

ammonium nitrate, ammonium sulfate, ammonium phosphate, etc.) compared to NH4
+ 

-

forming fertilizer (e.g. anhydrous ammonia, aqua ammonia, urea, etc which can form 

ammonium ion (NH4
+) after reacting with water) because soil solution pH is not 

increased while adding NH4
+ fertilizer (Havlin et al., 2005). However, NH4

+ -forming 

fertilizers (urea or urea-containing fertilizer) increase soil solution pH during the 

hydrolysis reaction (Havlin et al., 2005). The amount of NH3 loss is also affected by 

cation excahnage capacity (CEC) (loss is higher in soil of low CEC), soil moisture, soil 

organic matter, environmental conditions (temperature, wind speed, and precipitation), 

and management practices (types of N sources, timing and mode of N application, tillage 

practices) (Al-Kanani and MacKenzie, 1992; Bouwman et al., 1997; Jones et al., 2013; 

Jones et al., 2007; Ribaudo et al., 2011; Stevenson and Cole, 1999).  

 Nitrous oxide loss 

Farmlands are considered a major source of N2O (Rotz et al., 2012). Nitrification 

and denitrification are both microbial transformation processes and are responsible for 

N2O release from the soil (Andreae and Schimel, 1990; Bremner, 1997; Maag and 

Vinther, 1996; Rotz et al., 2012). Nitrification is the conversion of ammonium (NH4
+) 

into nitrate (NO3
-) by microbial oxidation and is an aerobic process. Nitric oxide (NO) 

and N2O are intermediates in this process (Rotz et al., 2012). Denitrification occurs in 

soil under anaerobic condition, where the microbial reduction produces NO2, NO, and 
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N2O as intermediates while converting NO3
- to N2 (Havlin et al., 2005; Mosier and 

Klemedtsson, 1994; Rotz et al., 2012). The general reaction of denitrification process 

(Equation. 2.2) occurring in soil (upward arrows indicate possible N loss as a gaseous 

form) (Follett, 1995; Havlin et al., 2005) is: 

      NO3
-    NO2 (nitrogen oxide)  NO (nitric oxide)  N2O ↑ N2 ↑ (2.2) 

 These nitrification and denitrification microbial processes are influenced by 

oxygen concentration, inorganic N concentration, carbon availability (organic matter), 

soil properties (soil moisture, soil bulk density, soil pH, soil types, cation exchange 

capacity), N sources, and climatic factors (air temperature, rainfall, wind, humidity) 

(Beauchamp, 1997; Dustan, 2002; Havlin et al., 2005; Jarecki et al., 2008; Mathieu et al., 

2006; Rotz et al., 2012). 

Thapa et al. (2015) observed cumulative N2O emission and soil inorganic N 

intensity is linearly correlated. However, Adviento-Borbe et al. (2010) argued that flux 

N2O-N should not be interrelated with current N inputs or soil nitrate concentrations, but 

instead suggested that N2O variation may be due to long-term effects of animal manure 

addition and legume rotations on soil structure, labile carbon or microbial communities. 

Venterea et al. (2010) conducted research to compare N2O emission and soil 

chemical properties for anhydrous ammonia and urea application under corn-corn or 

corn-soybean rotation in southeastern Minnesota. They found N2O emission was higher 

for anhydrous ammonia fertilizer compared to urea in corn-corn and corn-soybean 

systems compared to urea. Also, they observed that annual N2O emissions increased 

while shifting cropping system from corn-soybean to corn-corn. Similarly, Engel et al. 
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(2010) observed average N2O loss was 2.0, 2.7, and 5.8 g N kg-1 of applied 100 kg N ha-1 

urea-N through broadcast, band, and nest placements, respectively. Likewise, N 

application timing affects the N2O emission from soil. Hao et al. (2001) measured the 

influence of N fertilizer (ammonium nitrate with 0, 50, 100 or 200 kg N ha-1) application 

timing and straw/tillage practices on soil N2O emission under irrigation between 1996 

and 1997. They found N2O emission was higher for fall application of N fertilizer 

(ammonium nitrate) than spring application. They explained that higher N2O was 

produced from fall application fertilizer because before planting, fall-applied N had a 

long time for denitrification, and freeze-thaw events in the early spring caused greater 

N2O fluxes. Also, Hernandez-Ramirez et al. (2009) observed in their study that N2O 

emission was strongly influenced by manure application time; but, their result showed 

N2O emission in spring injected liquid swine manure was 1.8- and 3.4-fold higher than 

emissions following fall injection. Lower N2O fluxes from fall-applied pig slurry manure 

were associated with cold weather and wet soils (Rochette et al., 2001) 

  Nitrate leaching 

Nitrate-N (NO3
--N) is a major chemical form of N in soil that is taken up by crops 

(Schuchman, 2010). In soil, negatively charged clay mineral surfaces can repel NO3
- 

forms of N because of similar charged ions (Follett, 1995). As a result, NO3
- ions are 

highly mobile in soil and tend to leach through the pores of soil particles under the 

rooting zone when water movement and NO3
- content are high in soil (Follett, 1995; 

Grant et al., 2002; Havlin et al., 2005; Provin and Hossner, 2001). The risk of NO3
--N 

loss by leaching is a major route in humid climates and under irrigated cropping system 

(Havlin et al., 2005). However, NO3
--N leaching below the rooting zone can also occur in 
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semiarid conditions under cultivated systems (Campbell et al., 1984). Several factors may 

affect the maginitude of NO3
--N loss via leaching such as: a) rate, time, source, and 

methods of N fertilization; b) soil profile characteristic which affects percolation; c) 

amount  and time of rainfall and/or irrigation; and d) cropping intensity and crop N 

uptake (Havlin et al., 2005; Haynes et al., 1986; Janzen et al., 2003; Provin and Hossner, 

2001; Schuchman, 2010; Williams et al., 2012).  

Nitrate leaching from farmland is a major concern for the environment which is 

highly influenced by the application of manure and/or fertilizer practice. Basso and 

Ritchie (2005) conducted 6-years of field study in Michigan to quantify effects on NO3
--

N leaching due to the application of animal manure, compost, and inorganic fertilizer in a 

maize-alfalfa rotation. They observed a higher amount of NO3
--N leaching for dairy 

manure, followed by compost (50% Oak leaves + 50% dairy manure on dry weight), and 

urea treatment to supply 120 kg of total N ha-1 in the fine-loamy soil. Additional studies 

showed liquid manure application produced higher NO3
--N leaching than inorganic 

fertilizer (Ball-Coelho et al., 2004; Elmi et al., 2005). 

 Bedding in manure also influences NO3
--N leaching. Land application of a 

broiler litter (manure and bedding) treatment showed lower NO3
--N concentration at 1-m 

depth than commercial fertilizer (ammonium nitrate), but average concentrations for both 

treatments were less than 10 mg NO3
--N L-1 (Wood et al., 1996). Similarly, Karimi et al. 

(2017) showed lower NO3
--N leaching through straw bedded solid pig manure than liquid 

pig manure, as the straw may immobilize the N in the solid pig manure. Likewise, 

bedding influences soil properties such as total carbon (C) (Wood et al., 1996), C: N 
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ratio, water-filled pore space, and water-soluble total N, NH4
+-N, and NO3

--N (Miller et 

al., 2014).  

Sometimes, the use of one management practice to minimize one form of loss 

may raise the likelihood of other losses. For example, application of slurry for reducing 

ammonia loss can increase NO3
--N leaching in agricultural soil (Powell et al., 2011).  

 Surface runoff and soil erosion 

Soil N loss through soil erosion and surface runoff may reduce soil nutrients, 

impair surface water quality (Lamb et al., 2014), and affect economy and environment 

(Pimentel et al., 1995; Udawatta et al., 2006). The N loss by soil erosion depends upon 

the slope of the land, soil texture, amount of soil loss, N content of the soil, conservation 

practices, and climatic condition. Nitrogen loss by surface runoff varies due to cover 

crops, source of applied N and timing, rainfall intensity, soil crusting, infiltration capacity 

of the soil, and soil temperature (Czapar et al., 2008; Knisel, 1980; Pimentel et al., 1995; 

Ross et al., 2008; Williams et al., 2012). Studies also show that the concentration of NO3
-

-N in surface runoff is higher in soil under conventional tillage compare to soil under no-

tillage (Follett et al., 2010; McDowell and McGregor, 1984). 

Soil erosion by water includes the process of detachment, transport, and 

deposition of soil particles (Czapar et al., 2008; Foster et al., 1985). During soil erosion, 

NH4
+ binds to the surface soil particles and other sediments while NO3

-
 is water soluble 

and thus moves along with water until it reaches surface water bodies.  
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 Crop nutrient uptake and nutrient removal 

Crop nutrient uptake and nutrient removal are also considered as N loss from the 

soil volume. Crop nutrient uptake refers to the total amount of nutrients taken by crops 

throughout the growing season that are contained in different parts of plants like grain, 

leaves, stalks, and roots, whereas nutrient removal means nutrient removed from the field 

after harvesting the field crops (Heard and Hay, 2006; Roberts et al., 2015). The amount 

of nutrient removal from the field crop is less than total nutrient uptake by crops because 

nutrient contained in the residue (i.e., leaves, stalk, stubble) is returned to the soil 

(Roberts et al., 2015).  

The crop nutrient uptake and nutrient removal rates rely on crop types, crop yield, 

and soil fertility; however, nutrient uptake by crop varies with soil and climatic 

conditions (CFI, 2001). For example, low soil moisture, low soil temperature, deposition 

of excessive lime near the root zone, high soil moisture, nutrient imbalance may limit the 

crop nutrient uptake (CFI, 2001). Also, removal amount of N with crop yields change as 

a function of the crop (Robertson, 1997). Binford (2010) found that corn grain yield is the 

most significant factor in nutrient removal by corn, and the mean N removal 

concentration was 0.88 kg per hectoliter of grain. Similarly, Canadian Fertilizer Institute 

(CFI, 2001) presented the average N removed from soil is 175 kg N ha-1
, when removing 

11.2 tonnes-ha-1 corn silage. However, when the yield goal is 0.63 kg m-2
 (100 

bushels/acre), corn grain N uptakes average about 172 kg N ha-1 throughout the growing 

season, and grain harvest from field removes between 98 and 120 kg N ha-1 (CFI, 2001).  
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 Impact of manure (with or without bedding) and inorganic fertilizer 

Manure can supply similar plant nutrients as commercial fertilizers while also 

increasing the organic matter and improving soil quality (Gelderman et al., 2004; Khaleel 

et al., 1981). Bedding is a complicating factor for determining nutrient availability when 

it is mixed with manures, because of its absorbency, water holding capacity, nutrient 

content, and structural integrity properties (Zehnder et al., 2000). These properties of 

bedding can change the manure properties and soil properties after field application 

(Miller et al., 2014). In addition, Miller et al. (2017) found bedding significantly affected 

the soil salinity parameters. Wood-chip bedding can lower soil pH, soluble cations and 

anions, and electrical conductivity (EC) (Miller et al., 2017). This section describes 

manure and inorganic fertilizer application effect on N losses and impact of N losses. 

 Ammonia volatilization 

Ammonia emission is one of the main causes of low N uptake by crops from 

animal manure (Paramasivam et al., 2009) or fertilizer applied fields (Bouwman et al., 

2002). In many countries, agriculture contributes 20 to 80% of NH3 emission, wherein 

livestock manure and N fertilizers are the major contributing sources (Aneja et al., 2008; 

Jantalia et al., 2012; Misselbrook et al., 2000). Hristov et al. (2011) showed that an 

average 25 to 50% of N excreted daily from cattle is lost to the atmosphere by 

volatilization of ammonia (NH3). Ammonia emission can increase significantly if surface-

applied manure or urea is delayed for incorporation into the soil (Ribaudo et al., 2011). It 

is estimated that immediate incorporation of surface applied solid manure may reduce 

NH3 emission by at least 90% (Webb et al., 2010). Paramasivam et al. (2009) conducted 
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a laboratory study to quantify NH3 emission on the application of different animal 

manures in fine sand and loamy sand. Their results indicated that solid swine manure 

produced a greater NH3 emission compared to poultry manure while applying the same 

amount of manure (rates for both manure 0, 2.24, 5.6, 11.2, and 22.4 Mg of manure ha-1) 

and NH3 loss due to volatilization increased with increasing manure application rate. 

Cumulative NH3 volatilization loss over 19 days was 4 to 27% and 14 to 32% of total N 

for poultry litter manure and swine manure, respectively (Paramasivam et al., 2009). 

Greater NH3 loss in swine manure treatment was probably due to the higher total N 

content in swine manure compared to poultry manure. Jantalia et al. (2012) evaluated 

NH3 loss from four urea-based N fertilizers. They observed that following irrigation of 16 

to 19 mm of water 1-day after fertilization, the NH3 loss was between 0.1 and 4.0% of 

total N from surface-applied N-fertilizers (urea, SuperU, urea-ammonium nitrate, and 

polymer-coated urea). 

Due to human activities in agriculture, NH3 emission into the atmosphere has 

been increasing. The U.S. Environmental Protection Agency (EPA) has projected that 50 

to 85% of total US human-made ammonia volatilization comes from animal agriculture 

in the United States (Battye et al., 1994; Gay and Knowlton, 2005). Ammonia loss into 

the environment has had a wide variety of impacts such as soil acidification, acid rainfall, 

eutrophication of terrestrial and aquatic ecosystem, and respiratory and cardiovascular 

problems in humans (Bouwman et al., 2002; Bouwman et al., 1997; Gay and Knowlton, 

2005; Krupa, 2003). All these facts indicate that NH3 loss to the atmosphere produces not 

only an environment impact but also a risk to human health.  
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 Nitrous oxide flux 

Nitrous oxide is a potent greenhouse gas occurring in agricultural production 

which has about 310 times the global warming potential than that of a CO2 molecule 

(Dusenbury et al., 2008; EPA, 2013; IPCC, 2014; Rotz et al., 2012) and can destroy 

stratospheric ozone (Crutzen, 1972, 1974; Schlesinger, 2009). In 2009, U.S. N2O 

emissions were 4 million metric tons carbon dioxide equivalent, where agriculture 

accounted for 73% of total N2O emission (EIA, 2011). Similarly, the United States EPA 

Greenhouse Gas Emission Inventory Report in 2016 stated that the 78.9% of total U.S. 

N2O emission was contributed by agricultural soil management activities (example: 

manure and fertilizer application) and cropping practices in 2014. Nitrous oxide emission 

varied from year to year, and the overall N2O emissions increased by 5.9 percent between 

1990 and 2014 (EPA, 2016). Both reports showed that the agriculture sector is the largest 

source of N2O emission in the United States. Globally, about 50% of N2O flux emits 

from agricultural soil, caused by human influence mostly due to application of N 

fertilizer (Grace et al., 2011).   

 Nitrate leaching 

Nitrate leaching from agricultural fields impacts crop yield and the environment. 

Leachate NO3
--N represents a loss of crop-available nitrogen (Dinnes et al., 2002; Provin 

and Hossner, 2001). Nitrate-N discharges from the agricultural field can contaminate 

groundwater and surface waterbodies (lakes and rivers) (Dinnes et al., 2002; Gentry et 

al., 2007; Randall and Mulla, 2001). The hypoxia condition created in the Gulf of Mexico 

is an example of excess N discharge into receiving rivers and lakes (Dinnes et al., 2002; 

Mitsch et al., 2001; Rabalais et al., 2001). Also, an excess of NO3
--N in the waterbodies 
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(>10 mg L-1) can significantly affect fresh water and marine animals (Camargo et al., 

2005; US-EPA, 2002). Nitrate concentrations in drinking water exceeding 10 mg L-1 may 

pose a risk to pregnant women and human babies (DNR, 2014; US-EPA, 2002).  

 Crop nitrogen and yield  

Management practices like manure or fertilizer application timing, rate, types, 

application methods, and crop rotation can influence the soil available mineral N. The 

soil available mineral N is directly linked with crop yield. Ultimately, crop yield varies 

with soil management practices, soil condition, soil N availability, and weather condition. 

Ahmed et al. (2013) did a field study in central Iowa that determined the effect of liquid 

swine manure application on soil nutrients, pH, organic matter, and yield. They found the 

residual soil NO3
- significantly higher for spring injection of swine manure than fall 

injection, and corn yield was also significantly higher for spring injection plots. The 

reduction of yield in fall may be due to excessive leaching of nutrients via soil volume 

between manure application and corn growing period (Ahmed et al., 2013). Based on 

short and medium-term aspects, application of commercial inorganic fertilizers is more 

attractive than manure application due to their convenience, ease of application and 

handling, and reliable high yield (Hepperly et al., 2009). 

 Overview of conservation practices that affect manure and/or urea in the 

nitrogen cycle 

The Midwest is an agriculture dominated landscape, which has a massive impact 

on environmental quality. Therefore, agricultural producers are often encouraged to adopt 

conservation practices that help to reduce the impact on the environment caused by 
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agriculture (Prokopy et al., 2014). Conservation practices are implemented to conserve 

the soil from erosion (wind or water), improve water quality and increase the profits to 

the producers (Hoag and Osmond., 2012). Currently, several conservation practices are 

applied by producers in the United States to conserve nutrients in the soil and protect the 

environment. One of the conservation strategies is application and timing of manure or 

fertilizer during crop production period because appropriate application of manure and/or 

fertilizers may improve crop yield and reduce environmental effects. Also, agricultural 

sustainability will be improved if manure and/or fertilizer are managed carefully. Nutrient 

management is a major concern while applying manure and/or fertilizer in soil. 

Therefore, the 4R concept (right source, right rate, right time, and right place) is an 

approach for nutrient management in the soil that can help to increase nutrient use 

efficiency, enhance the agricultural productivity, profitability, sustainability, and protect 

the environment (Bruulsema et al., 2009; Bruulsema et al., 2008; Johnston and 

Bruulsema, 2014).   

Right source means selecting the appropriate nutrient source which matches crop 

requirement and soil properties (Johnston and Bruulsema, 2014). Selection of proper 

fertilizer helps to ensure that appropriate nutrients are applied to crops to meet specific 

objectives and avoid unnecessary fertilization (Bryla, 2011). Selecting manure is quite 

challenging because different manures contain different amounts of nutrients (macro and 

micronutrients, and others) and organic matter depending on animal species, manure 

handling and management, bedding system, diets, and temperature (E. Gilley and M. 

Risse, 2000; Hernandez and Schmitt, 2012). Unlike commercial fertilizer, nutrients 
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cannot be custom-blended. Also, estimating the availability of N in manure is more 

challenging than P or K estimation (Hernandez and Schmitt, 2012). 

Estimating the right application rate of manure or fertilizer relies on knowledge of 

the previous crop, nutrients present in the soil, crop yield goal, nutrients present in 

manure or fertilizer, and nutrient availability (Franzen, 2010; Gerwig and Gelderman, 

2005; Hernandez and Schmitt, 2012). Under application of N may decrease crop 

production, whereas over application can affect the environment (Johnston and 

Bruulsema, 2014). The appropriate application rate of N may fulfill crop N requirements 

and may also minimize N losses to atmosphere and water bodies (Bryla, 2011; Powers 

and Van Horn, 2001). However, N availability of crops and soil N losses vary with 

application methods, types of N sources, soil properties, and climatic factors. 

Similarly, right timing for N application plays a crucial role in crop growth and to 

mitigate the possible N losses. Application of nutrient at the right time allows for 

adequate supply during crop demand (Bruulsema et al., 2008; Bryla, 2011; Johnston and 

Bruulsema, 2014). Also, N use efficiency may increase, and nitrate leaching reduces by 

applying a major part of the N in season, at or near the time when nitrogen demand is 

high (Charles et al., 2013). A study in Minnesota showed that application of fertilizer in 

spring increased N use efficiency by 20% compared to fall application and reduced 

nitrate loss by an average of 36% (Randall et al., 1992; Randall et al., 1997). Manure has 

some unique behaviors that are affected by the timing of application. Fall broadcasted, or 

injected manure allows more time to mineralize organic matters before crop uptake 

compared to spring application, however, more time available for potential soil N losses 

for fall application (Hernandez and Schmitt, 2012). The Maurer et al. (2017) study in 
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Iowa estimated the cumulative flux for fall injected swine manure was 3.48 k g ha-1 N2O, 

whereas flux was 1.4 k g ha-1 N2O for spring reapplication in a corn field. 

Placement of fertilizer can influence nutrient uptake and crop yield (Reiman et al., 

2008). Appropriate placement of fertilizer can help nutrient uptake, especially in soil 

which has a capacity of nutrient fixation (Johnston and Bruulsema, 2014). Soil inorganic 

distributions were altered by shallow and deep manure injections (Reiman et al., 2008). 

Some of the other conservation practices are conservation tillage, growing cover 

crops, crop rotation, nitrification inhibitors, a slow-release fertilizer and amendment of 

organic matter. Conservation tillage or reduce tillage maintains the crop residues in the 

soil surface, increase infiltration, increase in soil organic carbon, enhance the soil quality, 

and improve soil resilience (Islam and Reeder, 2014; Uri, 2000). Also, conservation 

tillage as an effective practice in reducing N losses associated with soil erosion and 

surface runoff. Crop rotation practice may vary residual N available in soil (Sainju et al., 

2017). Crop rotation practices may reduce the NO3
- leaching from the agricultural lands 

(Zhu and Fox, 2003). The amount of reduction can be less, depending on the climatic 

condition and the rotation of crops (Randall et al., 1997). The rotation of legume and non-

legume crops also shows a significant decrease in NO3
--N loss (Randall et al., 1997). 

Cover crops are usually planted to reduce soil erosion, improve soil fertility and soil 

health (Sullivan and Andrews, 2012), improve water holding capacity and thus increases 

the effectiveness of N fertilizer applied in the field (U.S. Department of Agriculture, 

2016), and reduce nutrient loss by leaching or in runoff (Baumhardt et al., 2015). 

Nitrification inhibitors include chemicals added to the soils to stabilize fertilizer 

applied as NH3 or in the NH4
+ form by limiting the activity of the Nitroso-monas bacteria 
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that convert NH4
+ to NO2

-
 (Dinnes et al., 2002). The nitrification inhibitors are used to 

slow the conversion process of applied NH3 fertilizer, hold nitrogen in the field and 

reduce nitrogen losses before peak N demand for the crops. Use of nitrification inhibitors 

for N fertilizers rely on soil type and weather condition (Dinnes et al., 2002). Similarly, 

application of slow release fertilizer practice involves using less water-soluble materials 

to coat N fertilizers, which slows the entrance of water and slows down the dissolved N 

movement out of the coated area (Follett, 2008). Sulfur-coated urea is often used in 

agriculture fields as a slow-N release product (Follett, 2008).  

 Summary 

Manure management is more challenging than inorganic fertilizer management 

due to variable nutrient concentration, bedding, and physical and chemical properties. 

Nitrogen availability from manure is a slow and gradual process which is affected by the 

type of manure, bedding materials, soil properties, weather condition, and management 

practices. Many conducted studies regarding nutrient availability, greenhouse gas 

emission, ammonia emission or nitrate leaching from the land application are focused on 

slurry or liquid manure application, though a significant amount of manure applied in the 

field is in solid form. Similarly, field studies related to solid cattle manure with and 

without bedding for N losses from cropland is limited. Thus, this study focused on fall-

applied solid cattle manure with and without bedding on the corn-corn crop rotation field 

to understand the dynamics of N losses over fall and corn growing season, and to 

quantify the effect on the total soil nitrate, crop N, and yield.  
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 SOIL NITRATE, SOIL WATER NITRATE CONCENTRATION, CROP 

NITROGEN, AND YIELD FOR FALL APPLIED SOLID MANURE (WITH AND 

WITHOUT BEDDING) AND INORGANIC FERTILIZER FOR CORN PRODUCTION 

NEAR BROOKINGS, SOUTH DAKOTA  

 

ABSTRACT: Nitrogen (N) is one of the major nutrients needed by all plants for 

their growth and reproduction. However, the excess losses of N from the soil not only 

decrease soil fertility and plant yield but can also impair water quality and air quality. 

The goal of this work was to understand the effect of fall-applied solid manure with 

bedding on nitrogen movement and transformations during corn production. The 

objectives of the research were to measure the soil nitrate (NO3
--N), soil water nitrate 

(NO3
--N) concentration, leaf and grain N, and yield from fall-applied N to a corn field, 

and compare the impact of different forms of applied N (solid beef cattle manure with 

bedding (MB), solid beef cattle manure only (MO), urea only (UO) and no-fertilizer 

(NF)), in Brookings County, SD over a two-year period. The application rate of plant-

available N for manure and urea treatments were 130 kg ha-1 in Year 1 and 184 kg ha-1 in 

Year 2. The mean soil NO3
--N was significantly higher for UO (105.3 kg ha-1) compared 

to the other three treatments, whereas MB, MO, and NF were not significantly different 

with each other (71.7, 65.1, and 64.9 kg ha-1). The Year, Growth Stage, and Year*Growth 

Stage interaction effects on total soil NO3
--N were significant (P < 0.05). The total soil 

NO3
--N at pre-planting stage for Year 2 was 18% greater than Year 1, whereas, at V6, it 

was decreased by 39% compared to Year 1. For soil water NO3
--N concentration, Year 1 

concentration (12.5 mg L-1) was significantly greater than Year 2 concentration (6.5 mg 

L-1). The average soil water NO3
--N concentration between corn planting and vegetative 
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leaves six stage (V6) were not significantly influenced by any treatments. Leaf-N and 

grain-N concentrations tended to be different (P < 0.1) among treatments. The average 

leaf-N concentration for UO, MO, MB, and NF were 2.3, 2.1, 2.1, and 2.0%, 

respectively. Average grain-N concentrations were 1.4, 1.3, 1.2, and 1.2% for UO, MB, 

MO, and NF, respectively. The result showed that neither manure or urea treatments 

significantly affected yield compared to control from Year 1 data (Year 2 data was not 

available).  

 Introduction 

Applying the correct amount of N at the correct time makes economic and 

environmental sense (Fageria and Baligar, 2005). Crops require a significant amount of N 

compared to other nutrients for growth and reproduction during the growth period. 

Manure (solid or liquid) can be applied to the soil to supply similar plant nutrients (N, P, 

K, and others) as commercial fertilizers, and application of manure can add organic 

matter in the soil and improve soil quality (Khaleel et al., 1981; Paul and Beauchamp, 

1993; Van Faassen and Van Dijk, 1987). The majority of N in solid manure is in organic 

form, so, the release of plant usable N depends on mineralization. Thus, the application 

rate and timing of manure application should be determined based on N-releasing 

capacity (Qian and Schoenau, 2002). The estimated rate of manure based on its N-release 

capacity may supply necessary quantity of N to the crops and may reduce the possibility 

of an excess amount of N loss via leaching under the root zone (Qian and Schoenau, 

2002). Nitrogen release capacity from manure may vary with rate and timing of manure 

application, and without addressing these factors may result in insufficient N to crops or 
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harmful losses to the environment (Smith and Chambers, 1993; Sutton, 1994). Nitrogen 

loss via leaching from agricultural land can pollute the groundwater and surface water 

and may create a problem for aquatic ecosystem due to toxic algal blooms and lack of 

oxygen (Carpenter et al., 1998; Dinnes et al., 2002). Thus, proper manure management 

practices play a vital role in enhancing crop production and for decreasing environmental 

impacts (Fageria and Baligar, 2005; Jokela, 1992). Other loss mechanisms are runoff and 

volatilization (Bierman and Rosen, 2005; Lamb et al., 2014b; Paramasivam et al., 2009; 

Provin and Hossner, 2001). 

Loecke et al. (2004) conducted a study about the effect of fresh and composted 

solid swine manure and time of manure application (fall or spring) on nutrient status and 

yield in a corn-field. They found no significant difference in corn yield due to the form of 

solid manure and time of application in 2000, whereas in 2001, corn yield for fall 

application (composted manure) was higher than spring application (fresh manure). Also, 

their result showed the average N supply efficiency was highest for fall-applied 

composted manure (34.7%) compared to fall-applied fresh manure (24.3%), and spring 

applied composted manure (25%) while applying the same amount of manure (340 kg 

total N ha-1). However, application of manure in the fall can be a high risk for NO3
--N 

leaching, mainly in sandy soils (Van Es et al., 2006). Another study reported the time of 

manure application had little or no effect on yield response (Jokela, 1992). Ndayegamiye 

and Cote (1989) found that soil organic carbon, microbial activities, and potentially 

mineralized-N were positively correlated with the application rate of farmyard manure or 

pig slurry.   
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Many studies have been conducted to show or compare the effect of solid and 

liquid manure (mainly poultry and swine manure) on soil NO3
--N or soil water NO3

--N 

leaching and corn yield. However, limited studies have quantified the effect of solid beef 

cattle manure with or without bedding on soil nitrate concentration, soil water nitrate 

concentration, and yield in the corn-field in Northern Great Plain area. This study focuses 

on how solid beef feedlot manure with bedding (corn Stover) can influence total soil 

nitrate, leachate nitrate concentration, leaf-N, grain-N, and corn yield compared to only 

solid beef manure or urea application. The objectives of the research were to measure the 

soil NO3
--N, soil water NO3

--N concentration, leaf and grain N, and yield from fall-

applied N to a corn field, and compare the impact of different forms of applied N (solid 

beef cattle manure with bedding (MB), solid beef cattle manure only (MO), urea only 

(UO) and no-fertilizer (NF)), in Brookings County, SD over a two year period. 

 Materials and methods 

  Sites description 

The research site (South Dakota Felt Farm) was located near Brookings County 

(44º 22’ 07.5” N and 96º 47’ 35.7” W, and 516 m above mean sea level) and was 

established in the fall of 2015. The research site area was 0.11 ha (150 ft x 81 ft) with an 

average slope less than 1%. The soil was categorized as a silty clay loam soil and 

classified as a Udic Haploborolls (Schaefer, 2005). The 2015 crop was soybeans. The 

corn planting date was May 2 in 2016. In 2017, corn was first planted on May 6 and 

replanted on June 2 following a lack of sufficient seed emergence, attributed to weather 
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and field conditions. Daily precipitation values for the research site were obtained from 

the South Dakota Climate and Weather Station. 

 Treatment and experimental setup 

The treatment design was a randomized complete block design with plots as the 

experiment unit (3.3 m x 9.1 m). The four treatments, solid beef cattle manure with 

bedding (MB), beef cattle manure without bedding (MO), urea (UO), and no 

fertilizer/control (NF), in each Block (4 Blocks) were assigned randomly. Prior to laying 

out the plots in 2015, we collected soil samples (0-60 cm) randomly in the research field, 

and the average total soil NO3
--N was 112 kg ha-1. In 2016, prior to N application the 

average total soil NO3
--N was 58 kg ha-1.    

Based on the soil test, manure tests, and yield goal, nitrogen-based application 

rates for manure with or without bedding and urea fertilizer were determined using the 

South Dakota Fertilizer Recommendations Guide EC-750 (SDSU, 2005) (Table 3.1). The 

corn yield goal was 1.13 kg m-2 (180 bushels acre-1). Manure with and without bedding 

and urea were applied on November 3 in 2015, and November 16 in 2016. After manual 

application of manure and urea on the plots, the N-source was incorporated within 24 h 

through two passes with a disk plow.   
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Table 3.1 Application rate and physical characteristics of manure and urea 

fertilizers for experiment site at South Dakota Felt Farm, Brookings, South Dakota 

Variable Year 
Treatment[z] 

MB MO UO 

Application 

Rate (kg ha-1) 
2015 32505 33850 283 

  2016 37661 29590 400 

Moisture 

content (%) 
2015 74.2 72.3 - 

  2016 69.1 53.0 - 

Total N (g kg-1) 2015 8.5 8.2 460 

  2016 8.5 11.5 460 

Ammonium-N 

(g kg-1) 
2015 1.85 1.77 

- 

  2016 1.62 1.16 - 

Dry matter (%) 2015 25.8 27.7 - 

  2016 31.0 47.0 - 

[z] MB = solid beef cattle manure with bedding; MO = solid beef cattle manure only, UO = urea only 

 

  Sample collection and analysis 

The soil sampling frequency was related to the N management and crop growth 

stages: before manure application, before planting, six leaves vegetative stage (V6), and 

postharvest stage from each plot. Each sampling day, a total of 32 composite soil samples 

were collected at 0-15 cm (0-6 in.) and 15-60 cm (6-24 in.) depths in each plot using a 

probe auger. The shallow soil samples (0-15 cm) were analyzed for NH4
+-N, electrical 

conductivity (EC), organic matter (OM), phosphorus (P) concentration, total N, total C, 

and pH. The NO3
--N for 0-15 and 15-60 cm depths were measured in each sample and 
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added together to get total soil NO3
--N. All the samples were analyzed by AgLabExpress, 

Sioux Falls. The pH, EC, and OM were analyzed using North Central Extension Research 

Activities guidelines (NCERA-13, 2015). Soil nitrate was analyzed using Lachat Nitrate 

method with Bray extraction. Similarly, Olsen P, ammonium, and Total N and C in the 

soil samples were analyzed using Lachat Phosphorus, Lachat Ammonia, and Dumas 

method, respectively. 

Soil surface (0-5 cm) samples were collected from each plot using the AMS bulk 

density soil sampling mini kit (with 5 cm * 5 cm stainless steel ring) for determining the 

bulk density of soil. Soil bulk density was determined using Aridlands Ecology Lab 

Protocol (modified 2009.01.19, S. Castle). In this protocol, the collected soil samples 

were oven dried at 105ºC for 48 hours and weighed. The bulk density was calculated by 

dividing the dried weight of the soil by volume of the ring. 

One suction lysimeter (127 cm in length and 2.2 cm diameter; Irrometer 

Company, Inc., CA, USA) was installed in each plot at 120-cm soil depth in the north end 

of each plot (Figure 1). Soil water samples were collected on days 17, 23, 31, 35, 44, and 

50 after planting in Year 1, and on days 16, 24, 33, 39, 48, and 53 after day of planting in 

Year 2. The number of soil water sampling days depended on rainfall events and soil 

water availability. During sample collection, a hand pump applied a vacuum pressure 

between -60 to -70 kPa and the vacuum was maintained for 4 hours. Soil water collected 

in the lysimeters was extracted using a polypropylene syringe, collected into a 

polypropylene vial, and transferred to the laboratory for analyses. In the laboratory, NO3
--

N concentration in collected water sample was determined using and Automated 

Timberline TL2800 Ammonia Analyzer (Timberline Instruments, Boulder, CO). 
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Leaf samples were collected from each plot at the six leaves (V6), tasseling (VT), 

and physiological maturity (R6) stages for leaf nutrient analysis (total N percentage). The 

six most recently unfurled leaves below the whorl at the V6 stage, and six leaves below 

the corn ear at VT and R6 stages were collected from six plants in each plot and 

composited. Plant samples were dried in paper bags at 65-70ºC in forced-air dryer. They 

were then ground to pass an 18-mess (1 mm opening) stainless steel screen with Wiley 

mill. The samples were then stored in paper envelopes. They were dried overnight at 65-

70ºC just prior to analysis. Total nitrogen (in %) was measured using the micro-Kjeldahl 

procedure by the South Dakota State University Soil Testing and Plant Analysis Lab, 

Brookings. In the micro-Kjeldahl method, a 0.4 ± 0.01 g sample was weighed, digested 

and then distilled. Then, the N% was calculated using Equation 3.1: 

% N =
(ml of acid−blank)∗(normality of acid)∗0.014∗100

weight of sample
                                (3.1) 

Yield and corn-grain samples were collected during the Year 1 (2016) harvest. 

The N concentration in the corn grain was analyzed using inductively coupled plasma 

(ICP) analysis by the South Dakota State University Soil Testing and Plant Analysis Lab, 

Brookings. Yield and grain samples were not collected during the 2017 harvest. 

 Statistical analysis 

The experimental design was a randomized complete block design and was 

analyzed as a mixed-effect model. The data for soil NO3
--N water concentration, leaf-N 

concentration, and total soil NO3
--N were repeated measurements on the plots 

(experimental units). Treatment (MB, MO, UO, and NF) and Growth Stage (stages 

differed for the various dependent variables) were considered fixed factors for total soil 
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NO3
--N and leaf-N concentration data, but Time was considered as a random factor for 

soil water NO3
--N data. The Year (Year 1 and Year 2) was considerd a fixed effect and 

Block (replication) considered as a random factor for all variables. All the data analyses 

(soil NO3
--N water concentration, leaf-N concentration, total soil NO3

--N, grain-N, and 

yield) were performed in SAS using the PROC GLIMMIX procedure (SAS-Institute, 

2012). The mixed model approach included the effects of N source or Treatment, Growth 

Stage/Time, Block, Year, and their interactions between these variables. Significant 

differences were considered at P < 0.05. The normality of the residuals was reviewed 

using Q-Q plots and if residuals appeared not normal, different distribution options (e.g., 

lognormal, exponential, Poisson) available in PROC GLIMMIX were tested. Different 

covariance structures were used to assess the repeated measure data, including covariance 

component (VC), compound symmetry (CS), auto-regression (AR (1)), unstructured 

(UN), and Toeplitz (TOEP). The covariance structure selected for each variable was 

based on the smallest Akaike information criterion (AIC) value. 

Normal distribution and AR(1) were used for soil water NO3
--N concentration and 

leaf-N, whereas normal distribution and VC were selected for grain-N and yield data. 

However, lognormal distribution and UN covariance structure were selected for total soil 

NO3
--N dataset. The least square means (lsmean) from lognormal distributions were back 

transformed for reporting purposes. For post hoc test, Tukey’s Honest Significant 

Difference (HSD) was used. A correlation analysis was done using yield and leaf-N 

concentration data from each plot (16 plots) at VT stage (number of samples, N = 16), 

and the annual average total soil nitrate for Year 1 only using PROC CORR. 
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  Results and discussions 

 Total soil nitrate 

Table 3.2 presents the average soil NO3
--N levels among Blocks for the 

Treatments, Years and Growth Stages.  

Table 3.2 Mean (±SE[y]) of total soil nitrate for four Treatments with Year by 

Growth Stage 

Year 
Growth 

Stage 

Treatment[z] 

Mean 
MB MO UO NF 

Year 1 Pre-plant 153.3±19.5 155.1±19.8 304.1±38.7 151.9±19.4 181.2±14.5 

 V6 67.3±16.6 50.2±12.4 109.7±27.1 57.5±14.2 66.5±8.8 

 Post-Harvest 57.3±7.5 44.5±5.9 63.7±8.4 34.8±4.6 48.5±4.0 

Year 2 Pre-plant 182.7±23.3 172.2±21.9 422.3±53.8 159.7±20.3 213.6±17.1 

 V6 39.2±9.7 38.7±9.7 43.4±10.7 44.7±11.1 40.6±5.3 

 Post-Harvest 34.3±4.5 35.2 ± 4.6 37.5±4.9 38.8±4.8 35.7±2.9 

Overall mean  71.7±6.3b 65.1±5.7 b 105.3±9.2a    64.9±5.7b 

[y] Mean (±SE) = Estimate mean (±Standard Error) obtained from Year * Treatment Least Squared mean 

table; Superscript of different letters within treatments indicate significantly different (P < 0.05).  

[z] MB = solid beef cattle manure with bedding; MO = solid beef cattle manure only, UO = urea only; NF = 

no-fertilizer. 

 

The mean total soil NO3
--N for the UO plots was significantly higher than manure 

and no fertilizer plots (P < 0.05, Figure 3.1). The lower soil NO3
--N in the manure-treated 

plots may be related to slow mineralization of manure organic matter, particularly in cold 

weather, and low inorganic N in manure compared to urea. Carbon and organic matter 

can reduce N mineralization in manure plots. Qian and Schoenau (2002) found that N 

mineralization decreases significantly with increase C/N ratio in cattle manure. 

 

a
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Figure 3.1 Mean total soil nitrate and standard error (vertical lines) for four 

treatments over corn growing season. (MB, MO, UO, and NF are solid beef cattle 

manure with bedding, solid beef cattle manure only, urea only, and no-fertilizer 

treatments, respectively, whereas different letters above the bars indicate significant 

differences (P < 0.05)) 

 

The interaction between Year and Growth Stage was also a significant effect on 

total soil nitrate (P < 0.05, Figure 3.2). The total soil NO3
--N in Year 2 at the pre-plant 

stage was about 18% greater than Year 1. However, total soil NO3
--N was significantly 

lower at the V6 stage by 39% and at the post-harvest stage by 26% in Year 2 compared to 

Year 1 (Table 3.2 and Figure 3.2). The significant difference of total soil NO3
--N between 

the two years at the various corn stages might be due to the replanting of the crop in Year 

2 (1 month after the first plant); and some excess quantity of NO3
--N could be lost via 
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leaching, volatilization or denitrification compared to the shorter period prior to V6 in 

Year 1. 

 

Figure 3.2 Mean total soil nitrate with standard error (vertical lines) for Year by 

Growth Stage. (Different letters above the bars indicate significant differences (P < 

0.05)) 

 

 Soil water nitrate concentration 

Soil water samples from each plot were collected between corn planting and the 

V6 stage in both corn growing seasons (Year 1 and Year 2) to determine leachate NO3
--N 

concentration. Treatments were not significantly different (P > 0.05; Table 3.3), which 

indicates that short-term leachate NO3
--N concentrations from the soil profile (1.2 m 

depth) were not significantly affected by manures or fertilizer application. In several 

instances and on average for the MO and UO treatments, the mean concentration of soil 

water NO3
--N for MO and UO were about 13.8 and 10.3 mg L-1, respectively. The U.S. 
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Environmental Protection Agency standard (>10 mg NO3
--N L-1) for drinking water is 10 

mg L-1 (EPA, 2002). 

Table 3.3 Mean (±SE[y]) of soil water leachate nitrate (NO3
--N) concentration for 

four Treatments for Year 1 and Year 2 

Year 
Treatment[z] 

Mean  
MB MO UO NF 

Year 1 9.0 ± 3.2 16.6 ± 3.2 12.1 ± 3.2 12.4 ± 3.2 12.53 ± 3.2a 

Year 2 3.7 ± 3.4 9.1 ± 3.3 8.5 ± 3.4 4.5 ± 3.3 6.45 ± 3.4b 

Mean 6.35 ± 3.3a 12.85 ± 3.3a 10.3 ± 3.3a 8.45 ± 3.3a 9.49 ± 3.3 

[y] Mean (±SE) = Estimate mean (±Standard Error) obtained from Year * Treatment Least Squared mean 

table; Superscripts of same letters within Treatments indicates not significant difference (P < 0.05). 

[z] MB = solid beef cattle manure with bedding; MO = solid beef cattle manure only; UO = urea only; NF = 

no-fertilizer 

 

The average soil water NO3
--N concentration was significantly greater in Year 1 

compared to Year 2. The possible reasons for the significant difference between two 

years are variations in total soil NO3
--N and rainfall. The total soil NO3

--N in Year 2 was 

initially higher, but lower at the V6 stage compared to Year 1 (Figure 3.2). A potentially 

lower soil NO3
--N level in Year 2 during the soil water NO3

--N sample collection was 

possible with re-planting in Year 2 and the month delay in the calendar year, relative to 

Year 1. However, rainfall was also another factor that may have influenced soil water 

NO3
--N concentration. The rainfall in Year 1 between planting and V6 stage was about 

148 mm, which was greater than the 108 mm of rainfall in Year 2 during the same period 

of corn growth. Allaire-Leung et al. (2001) found that nitrate leaching measured at 1-m 

depth by ion-exchange resign bags was positively correlated to soil NO3
--N. Nitrate 

leaching from soil also depends on soil type, N application rate, types of N sources, cover 
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crops cropping intensity and crop N uptake (Aronsson and Bergström, 2001; Havlin et 

al., 2005; Wyland et al., 1996), and these factors influence translation of these research 

results to other fields and crop systems. 

 Leaf nitrogen concentration 

The average leaf-N concentration was significantly affected by the Year, Growth 

Stage (V6, VT, and R6), and the interaction between Year and Growth Stage (P < 0.05, 

Table 3.4 and Figure 3.3). The mean leaf-N tended to be different between treatments (P 

< 0.1). 

Table 3.4 Mean (SE[y] = 0.14) leaf N% for four Treatments for Year 1 and Year 2 

Year Growth Stage 

Treatment[z] 

Mean 

MB MO UO NF 

Year 1 V6 2.93 2.99 3.13 2.77 2.96±0.08 

 VT 2.79 2.72 2.90 2.84 2.81±0.08 

  R6 1.50 1.45 1.45 1.26 1.42±0.08 

Mean (Year 1)  2.41±0.09 2.39±0.09 2.50±0.09 2.29±0.09 2.39±0.05a 

Year 2 V6 2.85 2.73 3.10 2.64 2.83±0.08 

 VT 1.70 1.69 2.06 1.56 1.75±0.08 

  R6 1.06 1.08 1.03 1.04 1.05±0.08 

Mean (Year 2)  1.87±0.09 1.83±0.09 2.06±0.09 1.75±0.09 1.88±0.05b 

Overall mean 2.14±0.07 2.11±0.07 2.28±0.07 2.02±0.07  

[a] Mean (±SE) = Estimate mean (±Standard Error) obtained from Year * Growth Stage * Treatment Least 

Squared mean table. Superscripts of different letters within years indicates significant difference (P < 0.05). 

[z]MB= solid beef cattle manure with bedding; MO= solid beef cattle manure only; UO =urea only; NF 

=no-fertilizer.  
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Figure 3.3 Mean leaf-N concentraton with standard error (vertical lines) for Year 1 

 and Year 2 based on Growth Stage. (V6, VT, and R6 are six-leaves stage, taseling 

stage, and maturity stage of corn, respectively; different letters above the bars 

indicate significant differences (P < 0.05)) 

 

The mean leaf-N concentration for UO was higher compared to remaining 

treatments (Table 3.4). The variation in leaf-N concentration may be related to 

differences in soil NO3
--N between treatments. Furthermore, the result showed the leaf-N 

concentration at V6 stage was higher in both years of study and was decreasing over 

growth stage (Figure 3.3). The average leaf-N was 2.4% for the Year 1, whereas for Year 

2, it was 1.9%. The significant variation in leaf N concentration among two years may be 

due to a variety of corn,  rainfall, soil moisture, and soil available N late corn planting in 

the Year 2. 
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 Grain nitrogen and corn yield 

Grain N and yield were only collected and analyzed in Year 1. 

The mean grain-N tended to be different among treatments (P < 0.1). In Year 1, 

the mean grain-N for UO was 1.36%, whereas concentration of grain-N for MB, MO, and 

NF were 1.33, 1.22, and 1.19%, respectively (Table 3.5).  

The average corn yield was not statistically different between treatments. The 

average yield from UO, MB, MO, and NF treatments were about 1.25, 1.20, 1.08, and 

1.08 kg m-2 (Table 3.6), respectively.  

Table 3.5 Mean (±SE)[y] grain-N and corn yield for four Treatments for Year 1 

Variable 

Treatment[z] 

Mean 

MB MO NF UO 

Grain N (%) 1.33 ± 0.05 1.22 ± 0.05 1.19 ± 0.05 1.36 ± 0.05 1.28  

Yield (kg m-2) 1.20 ± 0.08 1.08 ± 0.08 1.08 ± 0.08 1.25 ± 0.08 1.15  

[y] Mean (±SE) = Estimate mean (±Standard Error) obtained from Treatment Least Squared mean table.  

[z]MB= solid beef cattle manure with bedding; MO = solid beef cattle manure only; UO =urea only; NF 

=no-fertilizer.  

 

The Year 1 correlation results showed that leaf-N at VT stage and yield were 

significantly related (r = 0.70, and P < 0.05). Kovács and Vyn (2017) found ear-leaf N 

concentration at mid-silking stage and corn yield significantly correlated. Similarly, Voss 

et al. (1970) showed corn yield was positively related with leaf-N concentration. The 

yield and grain-N also varied significantly with the amount of total NO3
--N present in the 

soil. For Year 1 (data, n=16 for grain-N and yield), grain-N and yield were positively 

correlated with average total soil NO3
--N (r = 0.71 and r = 0.68).  
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 Conclusions  

The total soil NO3
--N was significantly affected by fall-applied manure and 

fertilizer treatments for the two-year experiment between the Fall of 2015 and Fall of 

2017 in silty clay loam soil in corn production near Brookings, SD. Our experiment 

showed the average of total soil NO3
--N for the UO treatment was significantly greater 

than manure treatments or no fertilizer over the two corn production years compared to 

manure treatments, however, they received the same amount of plant-available N based 

on crop yield. The result also showed the Year and Growth Stage interaction significantly 

affected total soil NO3
--N. The significant effect of Year*Growth Stage interaction on 

total soil NO3
--N could be associated with replanting because replanting delayed about 1-

month compared to Year 1. During that 1-month period, soil could lose N via leaching, 

volatilization, and denitrification. During this period, the manure and urea treatments did 

not significantly differ in effects on soil water NO3
--N concentration, even compared to 

no-fertilizer. In contrast, soil water NO3
--N was significantly higher in Year 1 (12.5 mg 

L-1) compared to Year 2 (6.5 mg L-1). A significant change in soil water NO3
--N between 

two years could be due to rainfall or significant change in total soil NO3
--N. The leaf-N 

and grain-N tended to be different among the manure and urea treatments, with the UO 

treatment producing the highest N concentration, and NF resulting in the lowest 

concentration. We found the corn yield was not significantly different among any 

treatments (manure, urea or no fertilizer) in Year 1 (Year 2 measurements were not 

collected). Overall, we observed that the total soil NO3
-- N was greatly influenced by urea 

compared to solid beef cattle manure with and without bedding, but the effect on yield 

was non-existent in Year 1, and leaf-N and soil water NO3-N in Year 1 and Year 2.  
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 AMMONIA AND NITROUS OXIDE FLUXES FOR FALL APPLIED 

SOLID MANURE (WITH AND WITHOUT BEDDING) AND INORGANIC 

FERTILIZER FOR CORN PRODUCTION NEAR BROOKINGS, SOUTH DAKOTA 

 

ABSTRACT: Land applied manure or fertilizer can contribute to soil N losses in 

the form of ammonia (NH3) and nitrous oxide (N2O) gases. Both gases are responsible 

for air quality deterioration. The goal of this work was to understand the effect of fall-

applied solid manure with bedding on nitrogen movement and transformations during 

corn production. This study focused on comparing the effects of fall-applied solid beef 

cattle manure with and without bedding (MB and MO), urea (UO) and no-fertilizer (NF) 

on NH3 and N2O fluxes from silty clay loam soil under a corn-corn cropping system, near 

Brookings, SD. The methods for collecting samples for soil N fluxes were semi-static 

open chambers for NH3 and static chambers for N2O. The results showed the average 

NH3 flux for MB (3.4 ± 0.9 g ha-1 h-1) was significantly higher compared to NF, whereas 

MO and UO were not significantly different than MB and NF treatments. The aerial N2O 

flux released from UO (79.0 ± 24.9 µg m-2 h-1) was significantly greater than NF, though 

the N2O fluxes from manure treatments were not significantly different compared to UO 

and NF. The NH3 and N2O fluxes for NF were 1.4 ± 0.4 g ha-1 h-1 and 24.6 ± 7.7 µg m-2 

h-1. Understanding soil N loss paths and related factors will help to identify appropriate 

management practices and nutrient management plans to mitigate excessive N losses to 

the environment.   
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 Introduction 

Nitrogen (N) is one of the most essential nutrients for corn grain production 

(Havlin et al., 2005a; Provin and Hossner, 2001; Robertson, 1997). However, N loss may 

create environmental problems resulting in the decrease of soil, water, and air quality 

(Cameron et al., 2013; Mosier et al., 2004). The risk of N loss from agricultural land to 

the atmosphere increases with excess use of N sources and their mismanagement (Dinnes 

et al., 2002; Provin and Hossner, 2001) and gaseous losses are mainly NH3 and N2O, 

which produce air quality issues (Paramasivam et al., 2009; Rotz et al., 2014; Wu et al., 

2008). Nitrous oxide has a global warming potential which tends to be about 310 times 

higher than that of a carbon dioxide (CO2) molecule and contributes to depletion of the 

ozone layer (Chapuis-Lardy et al., 2007; IPCC, 2014; Robertson et al., 2000; Schlesinger, 

2009). Ammonia release and deposition into the atmosphere can lead to acidification and 

eutrophication (Huijsmans et al., 2003; Nielsen et al., 2003). Also, emission of NH3 to the 

atmosphere plays a role in the formation of airborne fine particulate matter by reacting 

with sulfur dioxide and oxides of nitrogen (Behera and Sharma, 2010; Bittman et al., 

2014; Gong et al., 2013). The fine particulate matter can responsible for adverse health 

effects (Dabek-Zlotorzynska et al., 2011; Pope III and Dockery, 2006; Pope III et al., 

2009). The result of soil N loss reduces crop N uptake (Bouwman et al., 2002; 

Paramasivam et al., 2009), and therfore impacts crop production and economics 

(Cassman et al., 2002; Fageria and Baligar, 2005). 

The release of NH3 and N2O gases from agriculture into the atmosphere has been 

increasing due to human activities. EPA (2016) indicated that agricultural activities such 

as manure and fertilizer application, cropping practices are significant sources which are 
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responsible for about 79% of total US N2O emissions. Emission of N2O varied from year 

to year, however, between 1990 and 2014, overall N2O emissions increased by 5.9 

percent (EPA, 2016). Ammonia volatilization is one of the primary loss mechanisms of N 

from agricultural production systems (Bouwman et al., 2002; Smil, 1999). Emission of 

NH3 from agriculture contributes 20 to 80% of applied manure TAN, while animal 

manure and N fertilizer are the major contributors (Aneja et al., 2008; Misselbrook et al., 

2000). However, Jantalia et al. (2012) found the range of NH3-N loss was between 0.1 

and 4% of total N from surface-applied N fertilizers. 

Many factors influence the N2O and NH3 flux and emission from land-applied 

manure and fertilizers. Manure and fertilizer types, their characteristics, application rate, 

methods, and timing and some other management practices like reduced tillage, crop 

rotations, and cover crops, soil properties, climatic condition are the primary controlling 

factors for soil surface emission (Cai et al., 2016; Engel et al., 2010; Meisinger and 

Jokela, 2000; Miola et al., 2014; Paramasivam et al., 2009). Also, bedding materials and 

their types can affect manure characteristics which may impact surface emissions (Miller 

et al., 2012; Misselbrook and Powell, 2005). Miller et al. (2012) researched loss of N by 

denitrification due to long-term application of composted (with straw bedding) versus 

fresh feedlot beef cattle manure. The studied showed a significantly lower cumulative 

denitrification flux for composted manure (with straw bedding) (0.7-1.4 kg N2O-N ha-1) 

compared to fresh feedlot manure (3.2-5.1 kg N2O-N ha-1). Paramasivam et al. (2009) 

found cumulative NH3 volatilization loss over 19 days from poultry litter manure and 

swine manure were 4 to 27% and 14 to 32% of applied total N, respectively.   
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Several studies have compared the effects of slurry or liquid manure application 

of different manure types (swine, dairy, poultry, feedlot) on N2O and NH3 emission from 

the soil surface (Agnew et al., 2010; Amon et al., 2006; Beauchamp et al., 1982; Dustan, 

2002; Gordon et al., 2001; Jarecki et al., 2008; Meisinger and Jokela, 2000; Miola et al., 

2014; Rochette et al., 2001). However, limited field studies have been conducted to 

measure N2O and NH3 soil surface flux with solid beef cattle manure (with and without 

bedding) applied. Understanding the influence of bedding on N losses in gaseous form 

from surface-applied solid manure can help refine management and nitrogen loss factors.  

The research aimed to measure the influence of fall-applied solid beef manure, 

with or without bedding, and urea application on NH3 and N2O fluxes during corn 

production and compare these fluxes no manure/fertilizer N application.  

 Materials and methods 

 Site description 

The research site was established in the fall of 2015 at the South Dakota State 

University Felt Research Farm near Brookings (44º 22’ 07.5” N and 96º 47’ 35.7” W, 

and 516 m above mean sea level). The area covered by the research field was about 0.11 

ha (150 ft x 81 ft) with an average slope less than 1%. The soil was silty clay loam soil 

and classified as a Udic Haploborolls (Schaefer, 2005). The 2015 crop was soybeans. The 

corn was planted on May 2 in 2016. In 2017, the corn was first planted on May 6, and 

replanted on June 2 following a lack of sufficient seed emergence, attributed to weather 

and field conditions.  
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 Treatment and experimental setup 

The treatments (plots) were randomly assigned within blocks (Figure 4.1) and 

plots were considered the experiment unit (3.3 m x 9.1 m). The four treatments in each 

Block were: solid beef cattle manure with bedding (MB); solid beef cattle manure 

without bedding (MO); urea (UO); and no-fertilizer/control (NF). There were four 

replicates of each treatment. Manures with and without bedding and urea were applied on 

November 3 in 2015 and November 16 in 2016. Nitrogen application rates were 

determined prior to application based on soil and manure analyses and yield goal, using 

the South Dakota Fertilizer Recommendations Guide EC-750 (SDSU, 2005). The corn 

yield goal was 1.13 kg m-2 (180 bushels/acre).  
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              Sampling method 

                  Ammonia trap sampling points 

   Gas sampling points  

   Nitrate leachate sample points 

Treatments 

                 Solid beef cattle manure with bedding plots 

  Solid beef cattle manure plots 

  Urea applied plots 

  Control plots (No-fertilizer) 

 

Figure 4.1 Layout of the experimental site at the South Dakota State University Felt 

Farm (Brookings County). 

 

The application rates of beef feedlot manure with bedding were 3.25 kg m-2 and 

3.77 kg m-2 in the Fall of 2015 (Year 1) and 2016 (Year 2), respectively. The application 

rates for solid beef manure (no bedding) were 3.39 kg m-2 in Year 1 and 2.96 kg m-2 in 

Year 2. Urea was applied at rates of 28.3 and 40.0 g m-2 in Year 1 and Year 2, 

respectively. Manure and urea were applied manually to the plots and incorporated within 

24 h through two passes with a disk plow. Manure was from a beef feedlot and the 

bedding (where applicable) was corn Stover. The manure characteristics are described in 

detail in Chapter 3; however, it is worthwhile to note the ammonium-N concentrations 
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were 1.85 and 1.70 g kg-1 for MB and MO, respectively, in Year 1; and 1.62 and 1.16 g 

kg-1 for MB and MO, respectively, in Year 2.  

 Sample collection and analysis 

Composite samples of ammonia (NH3) gas release were collected in three 

locations of each plot using semi-static chambers and with acidified foam strips as 

described by Jantalia et al. (2012). In Year 1, the samples were taken on days -4, 3, 7, and 

13 d from the day of N application in the fall, and -6, 10, and 30 d from the day of 

planting in 2016. In Year 2, the sampling days were -7, 1, 6, and 15 d from the day of N 

application in 2016, and -35, 7, and 42 d from the day of replanting in Year 2. On the day 

of measurement, the foam strips and acid solution were collected, stored in a medium 

sized plastic freezer bag, and new traps (acidified strips) were inserted. The collected 

ammonia sample traps were transferred to the laboratory and kept in the freezer. In the 

laboratory, the thawed samples traps were extracted with 250 mL of 2 M KCL solution. 

Forty ml of this solution were then sealed and frozen at –18 °C in polypropylene vials 

before analysis. Samples were analyzed using an Automated Timberline TL2800 

Ammonia Analyzer (Timberline Instruments, Boulder, CO).  

Ammonia concentration was obtained in g N ha-1 by multiplying NH3 

concentration (µg mL-1) and the total volume of solution (250 mL), then dividing by the 

surface area of the soil covered by the respective chamber (79 cm2). The ammonia flux (g 

N ha-1 h-1) for each plot was determined by dividing ammonia concentration by elapsed 

time from installation to the removal of the NH3 traps.  

For nitrous oxide gas (N2O) sampling, three polyvinyl chloride (PVC) collars 

(25.4 cm internal diameter by 15 cm height) extending 5 cm above the soil surface were 
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installed on each treatment plot (n=48). Gas samples were collected on days -4, 7, and 13 

in the Fall of Year 1, and -7, 1, 6, and 15 in the Fall of Year 2 from the day of 

manure/urea application. Also, gas samples were collected on days 7 and subsequent 

monthly intervals following corn planting to August in both experimental years, 

preferably after a rainfall event. In Year 1, pre-planting N2O samples were collected on 

days -8 from the day of corn planting, whereas, in Year 2, it was collected on days -38 

and -17 from replanting. On each sampling day, the vented PVC chamber caps (5872 

cm3) were placed on the collar, and gas samples were withdrawn from each chamber after 

0, 30 and 60-minutes following the static chamber method, described by Parkin and 

Venterea (2010). During each withdrawal, 10 ml gas samples were drawn using a 30-ml 

syringe and transferred to 12 ml pre-evacuated glass vials sealed with butyl rubber septa. 

Also, one sample of ambient air was collected during the sampling time for each Block to 

measure the concentration of nitrous oxide in the atmosphere. All the samples (0, 30 and 

60 min) including ambient air sampling were collected between 9:30 am to 4:00 pm. 

These collected gas samples were analyzed for N2O concentrations using a Gas 

Chromatograph (Shimadzu 14B with a CombiPal AOC-5000 auto-sampler, a flame 

ionization detector [FID] and an electron capture detector [ECD], Shimadzu Corporation, 

Japan).  

Ancillary parameters including air and soil temperature (Acurite Digital Meat 

Thermometer, 00641W, AcuRiteNSF) and soil moisture (HH2 Moisture Meter, Theta 

probe type ML2x, Delta-T Devices Cambridge, England) were collected around each 

chamber on each gas sampling day. 
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Based on review of the 0 min and ambient concentration samples, the average 

ambient concentration measurement was used in place of the 0-min samples for each 

sampling day. The N2O flux (µL N2O L-1 h-1) were determined from N2O concentrations 

relative to elapsed time. Flux calculations were not performed if: (a) the time 30-min 

(T30) and/or time 60-min (T60) concentration(s) were less than (1- error)*ambient 

concentration; (b) the quadratic curve through the 3 data points was concave down and 

T60*(1+error) was less than T30*(1-error); or (c) the quadratic curve through the 3 data 

points was concave up and a linear slope fit through the 3 points was not significantly 

different than zero. If the quadratic curve through the 3 points was concave down, the 

first order coefficient of the quadratic equation fit through the 3 data points was 

considered the flux. If the quadraric curve through the 3 points was concave up, but the 

linear slope through the 3 points was significantly different than zero, the slope was 

considered the flux. The allowable error (proportional to concentration) was 20%. 

Evaluated N2O fluxes were then converted into µg N2O -N m-2 h-1 using the Ideal Gas 

Law equation. The resulted fluxes were corrected using soil properties (bulk density, clay 

fraction, pH, moisture content, and soil temperature) using method derived from Venterea 

(2013). 

 Weather data 

Daily precipitation and maximum and minimum mean air temperatures from the 

end of October 2015 to October 2017, for the research site, were obtained from the South 

Dakota Climate and Weather Station. 
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 Statistical analysis 

The statistical analysis was performed as a randomized complete block design 

with N2O and NH3 fluxes as repeated measures using the PROC GLIMMIX procedure of 

SAS (SAS-Institute, 2012). All measurements were repeated measures based on the date 

of sampling since multiple measurements came from the same experimental units. 

Treatments (MB, MO, UO, and NF) and Year (Year 1 and Year 2) were considered fixed 

factors, whereas, sampling days (Time) and Block were assumed random factors for 

replication purposes. The mixed model approach also included the effects of Treatment, 

Year, Time, Block and interactions between them. Differences were considered 

significant at P < 0.05.  

The residuals of the N2O and NH3 flux data models were not normal. A lognormal 

distribution improved the Q-Q plots and was used for mixed model analysis. Various 

covariance structures, such as covariance component (VC), compound symmetry (CS), 

auto-regression (AR(1)), unstructured (UN), and Toeplitz (TOEP) were then evaluated, 

and the VC covariance structure selected based on the smallest Akaike information 

criterion (AIC) value. The obtained least square means (lsmean) from lognormal 

distribution were back transformed for presentation. For post hoc test, Tukey’s Honest 

Significant Difference (HSD) was used. 

 Results and discussions 

 Weather condition 

Maximum and minimum air temperatures were 19 and 7ºC in Year 1 and 15 and -

1ºC in Year 2, respectively, on the day of manure/fertilizer application. Afterwards, air 
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temperature declined from November to January and then began to increase. Air 

temperatures in late April were higher than they were in November (Figure 4.2 and 4.3). 

In Year 1, there was not any rainfall for 12 days after N application; however, rainfall 

occurred 3 days after N application in Year 2.  

 

 

Figure 4.2 Minimum and maximum daily air temperature with daily precipitation 

from Oct. 2015 to Oct. 2016 (Year 1). The first arrow indicates the N application 

day, whereas second arrow represents the day of planting.  
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Figure 4.3 Minimum and maximum daily air temperature with daily precipitation 

from Oct. 2016 to Oct. 2017 (Year 2). The first arrow indicates the N application 

day, whereas second arrow represents the day of planting.  

 

 Ammonia flux 

The average soil NH3 fluxes before N applications were 0.69 and 3.3 g ha-1 h-1 for 

Year 1 and Year 2, respectively. Table 4.1 shows the average NH3 fluxes for sampling 

days after N application for Year 1 and Year 2. We observed NH3 fluxes increased the 

first sampling day after N application in the fall for Year 1 and Year 2, however, the 

fluxes were decreased after the first sampling day from manure plots in both years during 

fall sampling days (Table 4.1). Also, we noticed that NH3 fluxes from MB were higher 

during the first sampling day in both years. 
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Table 4.1 Average ammonia fluxes (g ha-1 h-1) after nitrgoen application for the four 

Treatments based on sampling day (Time) for Year 1 and Year 2. 

Year Sampling day 
Treatment[z] 

Mean 
MB MO UO NF 

Year 1 11/6/2015 10.41 1.84 2.09 0.64 3.75 

 11/10/2015 8.74 1.76 1.7 1.23 3.36 

 11/16/2015 5.23 1.32 1.83 1.16 2.39 

 4/26/2016 1.44 1.36 1.57 1.49 1.47 

 5/12/2016 1.39 1.36 1.26 1.21 1.31 

 6/1/2016 1.62 1.46 1.36 1.59 1.51 

 Mean ±SE[y] 3.87±1.28 1.49±0.49 1.63±0.54 1.17±0.39 1.79±0.47 

Year 2 11/17/2016 14.59 6.12 4.74 5.17 7.66 

 11/22/2016 5.87 3.58 9.84 1.7 5.25 

 12/1/2016 2.98 0.65 4.06 0.64 2.08 

 4/28/2017 1.49 1.22 1.14 1.45 1.33 

 5/16/2017 1.69 1.67 1.60 1.57 1.63 

 6/9/2017 1.37 1.35 1.40 1.38 1.38 

 7/14/2017 2.13 2.14 1.94 1.98 2.05 

 Mean ±SE[y] 3.11±1.03 1.99±0.66 3.03±1.01 1.79±0.59 2.36±0.63 

[y]Mean ± SE = Estimated mean ± Standard Error obtained from Year * Treatment Least Squared means 

table;  

[z] MB = solid beef cattle manure with bedding; MO = solid beef cattle manure only, UO = urea only; NF = 

no-fertilizer. 

 

The analysis showed a significant effect of treatment on NH3 flux (P < 0.05). 

However, the Year and interaction between Year and Treatment were not significanlty 

factors for NH3 flux from the soil surface. The average NH3 flux from MB was only 

significantly different than NF, whereas MO and UO were not significantly different 

from either MB or NF (Figure 4.4). The highest mean (±SE) NH3 flux was 3.4 ± 0.9 g ha-

1 h-1, obtained from MB, whereas the lowest mean (±SE) NH3 was 1.4 ± 0.4 g ha-1 h-1 
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from NF. Adviento-Borbe et al. (2010) reported the NH3 fluxes were below 1.07 g ha-1 h-

1 (107 µg m-2 h-1) from liquid dairy manure and fertilizer N treated plots under corn-corn 

and corn-alfalfa rotation. Furthermore, they observed the highest soil NH3 fluxes 

immediately after manure application, and fluxes were lower thereafter. They stated that 

decreasing NH3 flux might be due to decreased total ammoniacal N (TAN= NH3+ NH4
+) 

at the soil surface, infiltration of slurry into soil profile, and a drop in pH due to NH3 

volatilization. The pattern of NH3 fluxes in our study were similar with them after N 

application, however the NH3 fluxes were slightly larger in value. Application timing, 

methods, N sources, bedding material also affect reported soil NH3 flux data compared to 

our study.  

 

Figure 4.4 Average soil ammonia flux with standard error (vertical lines) from solid 

beef cattle manure with bedding (MB), solid beef cattle manure only (MO), urea 

only, and no-fertilizer (NF) treatments for two corn growing seasons (2015/16 and 

2016/17). The letters above the bars denote the Least Squared-Means differences at 

P < 0.05.   
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The higher NH3 fluxes from MB treatment could be due to higher ammonium-N 

(NH4
+-N) in the manure with bedding compared to the manure only (MO). Huijsmans et 

al. (2003) observed that soil NH3 flux increased with an increase TAN in manure. The 

highest NH3 flux is often related to the highest manure TAN (Adviento-Borbe et al., 

2010; Huijsmans et al., 2003; Miola et al., 2014). 

 Nitrous oxide flux 

The N2O flux samples were collected through the monitoring period after N 

application and corn planting period, excluding winter and early spring. We wanted to 

observe the effect of fall-applied solid manure with and without bedding and urea 

fertilizer on N2O flux. The Table 4.2 showed the average nitrous oxide fluxes in each 

sampling day (Time) for Year 1 and Year 2. 
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Table 4.2 Average nitrous oxide fluxes (µg N2O-N m-2 h-1) after nitrgoen application 

for the four Treatments based on sampling day (Time) for Year 1 and Year 2. 

Year Sampling day 
Treatment[z] 

Mean 

MB MO UO NF 

Year 1 11/10/2015 123.40 96.94 105.79 76.81 100.74 

 11/16/2015 85.97 26.02 76.61 54.36 60.74 

 4/24/2016 580.54 65.53 268.69 103.76 254.63 

 5/9/2016 139.27 36.07 42.73 51.48 67.39 

 6/1/2016 110.28 5.04 82.21 46.12 60.91 

 7/7/2016 101.85 96.58 106.83 90.14 98.85 

  8/2/2016 -2.75 7.03 -1.50 0.90 0.92 

 Mean ±SE[y] 85.37±39.45 33.81±15.31 79.47±36.72 42.72±19.55 53.71±18.23 

Year 2 11/17/2016 40.16 39.64 10.01 1.44 22.81 

 11/22/2016 45.84 14.04 18.86 8.89 21.90 

 12/1/2016 49.36 111.22 54.18 1.29 54.01 

 4/25/2017 57.69 11.49 284.07 8.86 90.53 

 5/16/2017 335.32 196.84 416.38 289.39 309.48 

 6/9/2017 35.17 35.45 109.77 51.64 58.01 

 7/10/2017 69.94 79.46 296.09 62.02 126.87 

  8/10/2017 15.65 11.55 54.88 54.26 34.08 

  Mean ±SE[y] 30.62±13.04 35.82±15.83 87.57±38.85 15.44±6.96 33.52±10.71 

[y]Mean ± SE = Estimated mean ± Standard Error obtained from Year * Treatment Least Squared means 

table. 

[z] MB = solid beef cattle manure with bedding; MO = solid beef cattle manure only, UO = urea only; NF = 

no-fertilizer. 

 

 The analysis showed average N2O fluxes were significantly affected by 

treatments (P < 0.05). However, only flux from UO was significantly different compared 

to NF (Figure 4.5). The average (± SE) N2O flux from UO was 79.6 (±24.9) µg N2O-N 

m-2 h-1, whereas from NF, it was 24.6 (±7.7) µg N2O-N m-2 h-1. The N2O fluxes from 

manure treated plots were not significantly different than UO and NF (Figure 4.5). The 
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average flux (±SE) from manure treatments MB and MO were 49.0 (±15.1) and 33.3 

(±10.3) µg N2O-N m-2 h-1, respectively. Year and interaction of Year with Treatment did 

not show any significant effects on N2O fluxes. The average (±SE) N2O fluxes were 

53.71 (±18.23) µg N2O-N m-2 h-1 for Year 1 and 33.52 (±10.71) µg N2O-N m-2 h-1 for 

Year 2. 

 

Figure 4.5 Average soil nitrous oxide flux with standard error (vertical lines) from 

solid beef cattle manure with bedding (MB), solid beef cattle manure only (MO), 

urea only, and no-fertilizer (NF) treatments for two corn growing seasons (2015/16 

and 2016/17). The letters above the bars denote the least square means differences at 

P < 0.05.   

Miller et al. (2014) conducted a study to compare long-term land application of 

stockpiled feedlot beef manure with bedding (barley straw and woodchips) on C/N ratio, 

denitrification, and carbon dioxide emission in southern Alberta, starting in 1998. They 

annually applied stockpiled feedlot manure with bedding at the rate of 77 Mg (dry 

weight) ha-1 yr-1 for 13 to 14 years to a clay loam soil. The measurement for 

0

20

40

60

80

100

120

MB

MO

UO

NF

N
it

ro
u

s
o

xi
d

e 
fl

u
x 

(u
g

m
-2

h
-1

)

no-fertilizerurea only

Treatment

solid beef cattle
manure with 
bedding

solid beef cattle
manure only

ab 

ab 

a 

b 



57 

 

denitrification fluxes were taken in 2011 and 2012 (every 2 weeks between May and 

August). They found mean N2O fluxes for manure with straw bedding were between 3.7 

and 4491.7 µg N2O-N m-2 h-1 (0.9 and 1078 g N2O-N ha-1d-1), from 3.3 to 1358.3 µg 

N2O-N m-2 h-1 (0.8 to 326 g N2O-N ha-1 d-1) for manure with woodchips bedding, and 2.5 

and 1041.7 µg N2O-N m-2 h-1 (0.6 to 250 g N2O-N ha-1 d-1) for control. However, they 

observed that total N, daily denitrification flux, and daily carbon dioxide flux were not 

affected by bedding materials. Akiyama and Tsuruta (2003) measured N2O flux for 

poultry manure (PM), swine manure (SM), and urea applied to soil using an automated 

flux monitoring system. They found the total fluxes were 21, 7, and 5 µg N2O-N m-2 h-1 

(184, 61.3, and 44.8 mg N2O-N m-2 y-1) from PM, SM, and urea, respectively.  

 Engel et al. (2010) studied the effect of urea placements (broadcast, band, and 

nest) on N2O emission from a silt loam soil. The rate of urea application was 200 kg N 

ha-1. They found maximum N2O flux for broadcast surface, broadcast incorporated, band, 

nest, and control were 61.7, 55, 103.3, 117.1, and 12.9 µg N2O-N m-2 h-1 (14.8, 13.2, 

24.1, 28.1, and 3.1 g N2O-N ha-1 d-1), respectively. The maximum mean N2O flux (79.6 

(±24.9) µg N2O-N m-2 h-1) in our study was very low compared to the maximum fluxes 

reported by Miller et al. (2014), it might be because of lower rate of solid beef manure 

application (about half application rate), different bedding material used (corn Stover vs 

barley straw and woodchips), different gas measurement technique (Static Chamber 

derived by Parkin and Venterea, 2010 vs gas measured by using Chang et al. (1998) 

method), and weather condition. However, our study showed higher N2O fluxes than the 

fluxes reported by Akiyama and Tsuruta (2003), and this difference is likely related to 

soil properties (Silty clay loam vs Andisol (Volcanic ash soil)), types and rate of N 
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sources, sampling method, and different climatic condition. In contrast, the N2O flux 

obtained for broadcast incorporated N placement by Engel et al. (2010) study, was 

similar to N2O fluxes from urea treated plots from our study.  

 Conclusions  

A two-year field study was conducted to investigate NH3 and N2O fluxes from 

silty clay loam field after application of manure with and without bedding and urea in 

fall. Our study showed that soil N2O, NH3 fluxes, and soil water nitrate were not 

significantly different between solid beef cattle manure (with and without bedding) and 

urea. The N2O flux from UO was significantly higher than flux from NF, and NH3 flux 

from MB was significantly greater than flux from NF. The N2O fluxes from manure 

treated plots were not significantly different with UO and NF. Similarly, NH3 fluxes from 

MO and UO were not significantly different than either MB or NF. We observed the NH3 

flux for MB was higher after application of N during the first week of sampling and 

decreased thereafter. The variation in soil fluxes compared to previous studies could be 

due to sources of N, manure characteristics (total N, total C, bedding, ammoniacal N), 

total soil NO3
--N, available soil ammonium-N, method used for samples collection and 

flux calculation, soil types, and weather condition. Understanding soil fluxes and 

affecting factors will help us to minimize the possible N losses as gases forms from soil 

volume and will help to reduce environmental impact by those soil fluxes.   
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 DISCUSSION AND CONCLUSIONS 

 Summary 

The study was conducted for comparison of bedded versus non-bedded solid beef 

cattle manure, as well as urea and no-fertilizer effects on soil NO3
--N, crop characteristic, 

crop yield, and soil N losses on the silty clay loam soil type in the Northern Great Plains 

region. The total soil NO3
--N, NH3 flux, and N2O flux were significantly affected by 

treatments, whereas soil water NO3
--N concentration was not significantly different 

among the fall-applied manures and fertilizer treatments and control. Total soil NO3
--N 

was significantly higher for UO treatment compared to others three treatments, whereas 

the total soil NO3
--N concentrations were not significantly different for MB, MO, and 

NF. The average NH3 flux was significantly greater for MB compared to NF, however, 

the NH3 fluxes from MO and UO were not significantly different than MB and NF. Soil 

N2O flux for UO was significantly higher than NF, while this fluxes from manure treated 

plots (MB and MO) were not significantly different from either UO or NF. The study did 

not show any notable change in soil water NO3
--N concentration among the treatments 

from observation between corn emergence stage and V6 stage, although the lowest soil 

water NO3
--N concentration was found in MB treated plots. However, the soil water NO3

-

-N concentration significantly changed between Year 1 and Year 2. Furthermore, corn 

leaf-N and grain-N tended to be affected by treatments, however, corn yield was not 

affected by either treatment in Year 1. 

Our study was based on plot-scale sampling, coupled with manual N (manure and 

urea) application, which was not entirely indicative of full-scale conditions. However, the 

benefits of tighter control of treatment conditions of our study provide a more accurate 
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dataset for comparative analyses and model application. Our study helped to document 

the effects of solid beef cattle manure with and without bedding on various path of soil N 

losses and corn N characteristics. The secondary use of our study data is for modeling 

purposes, such as in the Integrated Farm System Model (derived by C.A. Rotz). 

Modeling helps to further understand factors and processes affecting nutrient 

transformations and release during corn production with beef cattle manure fertilizer. The 

ultimate selection of management practices by producers is based on many factors 

including environmental losses, climate and soil factors, and economic conditions. 

 Lesson learned from this research and future work  

The results from this research enhances the understanding of N loss mechanism 

and transformation processes in silty clay loam soil. Furthermore, the research helps us 

understand how the nitrogen source, or treatment characteristics, influence N losses. To 

understand the soil N losses, crop characteristics (leaf-N and grain-N), and yield, it is 

important to understand the total soil N and the transformation processes and factors 

affecting them. The study revealed that urea associated plots obtained the highest total 

soil NO3
--N concentration, leaf-N, grain-N, and yield. However, only total soil NO3

--N 

for urea plots were significantly different than remaining treatments (P < 0.05). Soil 

water nitrate concentrations were not significantly different between any treatments. Soil 

water nitrate for Year 1 was significantly higher than Year 2. Our study depicted that soil 

water nitrate concentration depends on rainfall and available soil nitrate.  
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The study reinforced that NH3 fluxes are higher after N application and similar for 

all N treatments during the corn growing period. However, the amount of NH3 flux was 

dependent on the rate of N, weather and soil conditions.  

The N2O fluxes in fall were lower than in spring. There was no significant 

difference between manure and urea treatments. However, urea treated plots showed 

significantly higher N2O flux than no-fertilizer. The N2O flux appeared to vary based on 

plant-available N. The flux correction method accounted for the potential effects of soil 

temperature and soil moisture. 

From the two-year study, we captured the manure and fertilizer effects on total 

soil NO3
--N, N losses, leaf-N, grain-N, and yield under corn production. These 

information helps us to select the management practice that release less soil N, however 

each management practices have their own additional pros and cons.  

In the future, the study can be improved for greenhouse gas measurement by 

using automated gas measurement techniques. Manual static gas chamber methods can 

alter soil and microclimatic conditions and provide low temporal frequency data (Yao et 

al., 2009). Bias can be reduced by frequently changing the position of chambers and/or 

opening the chambers automatically during rainfall events (Yao et al., 2009). Automated 

measurement techniques can take automatic continuous or near-continuous measurements 

which may improve flux estimation and capture diurnal variations (Flessa et al., 2002; 

Yao et al., 2009). The static chamber method used in our research provided a means of 

comparing flux based on nitrogen application treatment. In the future, use of automated 

chamber techniques will further the quantification of diurnal and annual cumulative soil 

fluxes for manure management practices in the Northern Great Plains.    
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