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ABSTRACT 

TOPOLOGY OPTIMIZATION OF LIGHTWEIGHT STRUCTURAL COMPOSITES 

INSPIRED BY CUTTLEFISH BONE 

VARUN KUMAR GADIPUDI 

2018 

         Lightweight material structure is a crucial subject in product design. The lightweight 

material has high strength to weight proportion which turns into an immense fascination 

and a territory of investigation for the researchers as its application is wide and expanding 

consistently. Lightweight composite material design is accomplished by choice of the 

cellular structure and its optimization. Cellular structure is utilized as it has wide 

multifunctional properties with lightweight characteristics. 

        Unless it has been topologically optimized, each part in a assembly most likely weighs 

more than it needs to. Additional weight implies abundance materials are being utilized, 

loads on moving parts are higher than would normally be appropriate, energy effectiveness 

is being reduced and increase in costs. Presently, with Topology Optimization innovation, 

products can be design durable, lightweight for any kind of applications. 

        In this thesis, the design and forecast of cellular structure's performance are presented 

for developing lightweight cellular composites strengthened by carbon fibers. A 3D 

cuttlefish bone structure inspired by bio material is presented. With help of topology 

optimization and finite element analysis, analysis was directed on different volume 

percentage to characterize the cellular structure for its strength and stiffness. In addition, 

non-linear analysis was conducted to examine the behavior of the cellular structure with 

an-isotropic properties.
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1. INTRODUCTION 
 

1.1 Topology Optimization: 
 

       The reason for topology optimization as it is today being laid out by Bendsøe and 

Kikuchi (1988) who utilized the homogenization strategy and Bendsøe (1989) who 

presented the SIMP (Solid Isotropic Material with Penalization) technique, which was 

inferred autonomously and widely actualized by Zhou and Rozvany (1991) and Rozvany 

et al. (1992). From that point forward, various augmentations have been made to the 

strategy – both as far as abilities and its scope of appropriateness to mechanical issues. 

      For low volume divisions, vital standards of topology optimization were set up as of 

now, by the Australian inventor Michell (1904), with regards to trusses. These were 

broadened later by Rozvany (1972). Drawing on these applications, the fundamental 

standards of ideal format hypothesis were planned by Prager and Rozvany (1977). 

Topology optimization for higher volume divisions is presently named Generalized Shape 

Optimization by Rozvany and Zhou in 1991 or Variable Topology Shape Optimization by 

Haber et al. in 1996. It includes the concurrent optimization of the topology and state of 

inside limits in permeable and composite continua [1]. 

 

        In general, Topology Optimization is a strategy that optimizes material format inside 

a given outline space, for a given arrangement of loads, boundary conditions and 

imperatives with the objective of augmenting the execution of the framework. It finds the 

ideal conveyance of a predefined measure of material in each space considering all applied 
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loading conditions. Material will be expelled from topology locale with the goal that the 

rest of the elements give the stiffest structure conceivable to determined aggregate mass. 

The topology comes about hence give a conceptional plan that accentuation is proficient 

load ways [2]. 

 

1.1.1 Significance and History: 

         

           The term Topology is the most mainstream in field of science and material science. 

Topology itself is a production of current science [3]. Topology is the scientific model for 

improvements in blended dimensional geometric modeling, resiliences, and demonstrating 

physical conduct. Consequently, topology can fill in as the binding together system for 

speculations, strategies and instruments identified with the portrayal of geometry, varieties 

from ostensible geometry, and conduct [4]. The establishment of topology was laid by 

Leonhard Euler, his 1736 paper on the Seven Bridges of Königsberg is viewed as one of 

the principal useful utilizations of topology [5]. This prompted his "polyhedron equation" 

(for the most part called as Euler Polyhedral formula). A few specialists see this 

examination as the main hypothesis, flagging the introduction of topology [6][7]. 

        Advancement amid last period drove innovation of new optimization procedure called 

Structure Optimization. By this numerous limited components-based calculation have been 

executed in programming bundles connected for customary outline issues. Until 1990s, the 

utilization of structural optimization has been restricted to sizing and shape improvement. 

It has been demonstrated the likelihood of further improvement can be accomplished by 
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modifying the underlying plan idea of course of action of pit dispersion inside a structure 

[8]. 

         In later periods, generally new field in structural mechanics named Topology 

optimization had developed, which can bring about substantially more prominent reserve 

funds than negligible cross-segment or shape enhancements. This new field had quickly 

extended and broadly utilized as a part of numerous manufacturing procedures to make 

items with less material utilization, implies less weight and less cost than normal. Topology 

optimization concerns not just the sizing and the shape or geometry of an structural 

framework yet in addition its topology, i.e. spatial grouping of its joints and components 

or elements. An alluring part of continuum structural topology optimization is that it can 

be connected to the outline of the both materials and structural frameworks or elements [9]. 

 

1.1.2 Topology Optimization in Nature: 
 

     Nature is a best example for topology optimization where everything is perfectly 

organized to survive in its environment. consider a tree which can withstand self-weight 

and heavy winds, human bone where the mass is concentrated according to the stress 

distribution descending from external loads, cuttlefish which can survive the extreme 

pressure at more than 200m depth under water with its light weight bone with pores 

structure with pore size (~100 - 200µm) [10]. 
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Fig 1: Yew wood (Taxus baccata) showing 27 annual growth rings, pale sapwood and 

dark heartwood, and pith (centre dark spot). The dark radial lines are small knots. 
 

 

Fig 2: Human bone Internal Structure. Photo by Paul Crompton. ©University of Wales 

College of Medicine. 
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1.2 Bio Mimetics: 
 

          The study of the formation, structure, or function of biologically produced 

substances and materials (such as enzymes or silk) and biological mechanisms and 

processes (such as protein synthesis or photosynthesis) especially for synthesizing similar 

products by artificial mechanisms which mimic natural ones is Bio Mimetics. Living 

organisms have evolved well-adapted structures and materials over geological time 

through natural selection. Biomimetics has given rise to new technologies inspired 

by biological solutions at macro and nanoscales. Humans have looked at nature for answers 

to problems throughout our existence. 

 

          Millions of years of “trials and errors” in nature have resulted in a vast database of 

optimized solutions to technical problems with the survival of biological organisms. 

Integration of design in nature with artificial materials has greatly benefited humankind as 

indicated by biomimetic paradigms such as shark skin, gecko tape, lotus effect and moth 

eye [11]. 

 

https://en.wikipedia.org/wiki/Evolution
https://en.wikipedia.org/wiki/Adaptation_(biology)
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Biological
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Fig 3: [11] Typical biomimetic Examples. The riblets on shark skin (a) led to trials on an 

aircraft coated with a plastic film with the same microscopic texture (b). The lizard G. 

gecko (c) employs setal structures on foot (background) for attachment and resulted in 

microfabricated mimetic materials with polymide hairs (the inset). Water droplets on a 

wood surface treated with “Lotus Spray” (d) resembling those rolling down the surface of 

lotus leaf (the inset) demonstrate the superhydrophobicity of the surface. Compound eyes 
of Calliphora sp. in (e) show antireflection effects via subwavelength structures on the 

surface of the ommatidium (f). Applying the surface geometric patterning of moth eye to 

glass by sol–gel methods resulted in the handheld glass pane in (g) that has a porous sol–

gel anti-reflection coating in its lower section and no such coating in the section nearer 

the upper edge 

           

Structures that we see in nature has evolved over several years such that it becomes strong 

and adaptive to given environment. Nature inspired architecture is becoming more famous 

and excellent way to sort the sustainable structures. 

Cellular materials offer high strength to-weight proportion, high stiffness, high porousness, 

good impact-absorption, and thermal and acoustic protection [12]. Lightweight cellular 
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composites, made from an interconnected system of solid struts that shape the edges or 

face of cells [12], are a rising class of elite structural materials that may discover potential 

application in high firmness sandwich panels, energy absorbents, catalyst support, 

vibration damping, and insulation [13-19]. 

 

    Cellular composites give favorable position of having a permeable structure design and 

capacity to adjust our own property as a composite. Cellular composites are of critical 

enthusiasm because of their wide applications in lightweight structural parts and thermal 

auxiliary materials and can possibly upset aviation industry and capability [20]. 

 

1.3 Composite materials: 

 

          A composite is made by combining two or more other materials, so they improve 

one another but keep distinct and separate identities in the final product. So a composite 

isn't a compound (where atoms or molecules bind together chemically to make something 

quite different), a mixture (where one material is blended into another), or a solution (where 

something like salt dissolves in water and effectively disappears). The two materials work 

together to give the composite unique properties. 

 

Fig 4(a): Composition of Composite Material 

http://www.explainthatstuff.com/atoms.html
http://www.explainthatstuff.com/water.html
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Based on the form of reinforcement, common composite materials can be classified as 

follows (Fig 4(b)): 

• Fibers as the reinforcement (Fibrous Composites): 

• Random fiber (short fiber) reinforced composites. 

• Continuous fiber (long fiber) reinforced composites. 

• Particles as the reinforcement (Particulate composites). 

• Flat flakes as the reinforcement (Flake composites). 

• Fillers as the reinforcement (Filler composites). 

 

Fig 4(b): Classification of Composites 

Fiber reinforced polymers (FRP) are composite materials with a polymer matrix and a 

glass, carbon, or aramid fiber reinforcement. Common uses for FRPs generally occur in 

the aerospace, automotive and marine industries as low weight, high strength materials. 

The durability is a function of both the matrix and the fiber making them much more 

durable than the fibers on their own [21]. 

Carbon fiber reinforced polymer (CFRP) is a strong and light fiber-strengthened plastic 

which contains carbon filaments. They are regularly utilized wherever high strength to-
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weight proportion and rigidity are required, such as aviation, automotive, structures, sports 

merchandise and an expanding number of other consumer and specialized applications. 

Topological optimization of Carbon fiber strengthened polymer gives greater advancement 

in additive manufacturing. With this, it has turned out to be significantly simpler to make 

parts with the natural shapes coming about because of topological optimization. 

 

1.4 Literature Review: 
 

Numerous specialists took a shot at topology optimization and on microstructure of 

cuttlefish bone. cuttlebone is the sophisticated thing in cuttlefish, made up of a few councils 

of columns and films. It is the natural material having an excellent blend of attractive 

mechanical properties of high compressive strength, high porosity, and high penetrability. 

Stephen P. Harston et al., [22] furnished the topology optimization combined with finite 

element analysis empowers the outline and optimization of manufacturable topologies with 

anisotropic and heterogeneous material properties. A hereditary algorithm chooses 

highlights and material properties from estimated values of anisotropic material 

microstructures where the subsequent topology/material combination is analyzed for 

structural performance with finite element analysis. 

Antonio G. Checa et al., [23] conducted in depth work to classify cuttlefish bone. The 

chambers are consisting of horizontal septa and membranes and vertical pillars with 

thickness 2-3μm and membranes, the septa divided in to a chamber roof and a chamber 

floor. Chamber roof is made up of vertical aragonite needles. Whereas chamber floor 

consists of horizontal aragonite fibers, in addition organic fibers runs parallel to aragonite 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Checa%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=26086668
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fibers(100-200nm). The organic matter present cuttlebone is mixture of chitin and protein 

in form of complexes about 50 percent and 30 percent. The surface of the pillars in contact 

with the chamber floor is sculpted by densely spaced knobs, which tend to be placed at the 

edges. The aragonite needles of the chamber roof are continuous into the tops of the pillars. 

whereas the contact of the pillars with the organic uppermost layer of the chamber floor is 

loose. 

 

Fig 5: General structure of the chambers [23] 

 

Fig 6: cycle for the formation of chambers in Sepia [23]. 
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J. H. G. Rocha et al., [24] examined on cuttlebone permeable structure, initial structure of 

cuttlebone has a pore size of ~80μm in width and ~100μm in height. In his examination, 

he effectively created Scaffolds of unadulterated AB-type carbonated hydroxyapatite from 

aqueous change (HT) of aragonitic cuttlefish bones. 

Joseph Cadman et al., [25] led an examination on cuttlebone portrayal, application and 

improvement of biomimetic materials, his paper gives better comprehend the mechanical 

and biological roles of cuttlebone. The finite element based homogenization technique is 

utilized to check that morphological varieties inside individual cuttlebone tests have 

negligible effect on the viable mechanical properties and further created to describe the 

powerful mechanical bulk modulus and biofluidic porousness that cuttlebone provides. 

A concise method of reasoning for the need to outline a biomimetic material propelled by 

the cuttlebone microstructure is given. The cuttlebone partitioned in to two fundamental 

segments, dorsal shield, and the lamellar framework (fig 7). The dorsal shield is 

exceptionally intense and thick, and the lamellar network of cuttlebone has an outrageous 

porosity (up to 90%), additionally figures out how to withstand high hydrostatic pressure. 

 

Fig 7: lamellar matrix transverse cross section [25]. 
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1.5 Issues and Motivation: 

 

       conventional design methods have been found cumbersome and time consuming. An 

effective approach to design cellular periodic composites reinforced by discontinues 

carbon fibers is to adopt the ideas behind biomimetics, which can encompass the essential 

aspects in materials design, structural engineering, and Industrial models [26-28]. The 

cuttlefish bone pattern is known for its high strength light weight cellular structure. Hence 

cuttlefish bone pattern is modeled with the aid of the journal article, “Cuttlebone: 

Characterization, Application and Development of Biomimetic Materials” [23]. 

This practical approach of referring from nature results us with a good start platform where 

we have a durable and reliable design which we can use an exoskeleton and tailor better 

properties and functionalities for our application. 

 The following characteristics can be achieved by using Composites in cellular structures 

 

• Resource efficiency 

• Sustainability 

• Accessibility  

• Durability  

• Multifunctional properties 

• Light Weight Material Design 

• Design Flexibility 

• High strength to weight ratio 
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1.6 Objectives: 

 

Nature inspired bio materials with topology optimized cellular structures will have 

high specific stiffness and will lead to light weight material. The three-dimensional cellular 

structure will exhibit an overall better isotropic property even with random distribution of 

the discontinuous fibers. The three-dimensional topology models are optimized such that 

optimization should result in lower stress for failure and increase the stiffness and strength. 

From the outcome of this study, we should have three-dimensional topology optimized 

structure similar to cuttlefish bone with high strength to weight ratio, high specific stiffness, 

etc. that can be used in application where near to isotropic properties are needed with 

improved stiffness. 
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2. FUNDAMENTALS OF TOPOLOGY 

OPTIMIZATION 
 

2.1 What Is Topological Optimization?  

 

Topological Optimization is a type of "shape" enhancement, occasionally alluded to as 

"format" streamlining. The objective of topological optimization is to locate the best 

utilization of material for a body that is liable to either a solitary load or different load 

conveyances. The best utilization of material because topological streamlining speaks to 

the "greatest solidness" outline.  

Dissimilar to conventional advancement, topological optimization requires neither 

parameters nor the express meaning of enhancement factors. The goal work (i.e., the 

capacity to be limited) is predefined, just like the state factors (i.e., obliged subordinate 

factors) and the outline factors (i.e., free factors to be streamlined). You require just to 

characterize the auxiliary issue (material properties, display, loads, and so forth.) and the 

level of material to be expelled.  

The goal of Topology optimization is to limit the vitality of auxiliary consistence while 

fulfilling an imperative on the volume (V) of the structure. Limiting the consistence is 

identical to expanding the worldwide auxiliary firmness. This procedure utilizes plan 

factors (I) that are interior pseudo-densities allotted to each limited component. These 

densities are plotted on the PLNSOL, TOPO charge [29]. 
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A topology optimization can be written in the general form of an optimization problem as: 

 

• An objective function F(u(ρ),ρ). This function represents the quantity that is being 

minimized for best performance. The most common objective function is 

compliance, where minimizing compliance leads to maximizing the stiffness of a 

structure. 

• The material distribution as a problem variable. This is described by the density of 

the material at each location ρ(u). Material is either present, indicated by a 1, or 

absent, indicated by a 0. 

• The design space (Ω). This indicates the allowable volume within which the design 

can exist. Assembly and packaging requirements, human and tool accessibility are 

some of the factors that need to be considered in identifying this space. With the 

definition of the design space, regions or components in the model that cannot be 

modified during the optimization are considered as non-design regions. 

• m constraints Gj(u(ρ),ρ)≤0 a characteristic that the solution must satisfy. Examples 

are the maximum amount of material to be distributed (volume constraint) or 

maximum stress values. 

Topology optimization of anisotropic materials, such as fiber reinforced composites with 

partial or full fiber orientation, is moderately intricate when contrasted with that of 

isotropic materials. This is because, for characterizing anisotropic materials, more 
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autonomous elastic constants are required. The objective function is predefined, like the 

state variables and the design variables. only the basic issue and the percentage of material 

to be expelled need to be defined. The objective function is to limit the strain energy of the 

structural compliance while fulfilling a constraint on the volume V of the structure. 

Limiting the compliance is equivalent to maximizing the global structural stiffness. 

2.2 How to Do Topological Optimization 

 

The procedure for topological optimization consists of the following main steps. 

1. Define the problem. 

2. Select the element types. 

3. Specify optimized and non-optimized regions. 

4. Define and control the load cases. 

5. Define and control the optimization process. 

6. Review results. 

Details of the optimization procedure are presented below. 

 

2.2.1 Define the Problem  
 

To characterize the issue, characterize material properties (Young's modulus and Poisson's 

ratio), select the best possible elements types for topological optimization, generate a finite 

element model, and apply load and boundary conditions for a solitary load case 

investigation or for different load cases. 
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2.2.2 Select the Element Types  

 

Topological optimization bolsters 2-D planar, 3-D strong, and shell components. To utilize 

this procedure, your model must contain just the accompanying element types:  

2-D Solids: PLANE2 or PLANE82  

3-D Solids: SOLID92 or SOLID95  

Shells: SHELL93  

The 2-D elements should be utilized for plane stress applications. 

 

2.2.3 Specify Optimized and Non-Optimized Regions  

 

Elements recognized as type1 (TYPE) will be subjected to topological optimization. Utilize 

this to control which regions of your model to optimize or not. For instance, if you need to 

keep material near a hole or a support, you ought to distinguish those elements as type 2 or 

higher. 

You can utilize any suitable ANSYS select and modification command to control the type 

definitions for different elements. 

 

2.2.4 Define and Control Your Load Cases 

 

You can perform topological optimization for a single load case or collectively for several 

load cases. 
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To acquire a single optimization solution from a few free load cases, should utilize load 

case write and solve capabilities. After each load case is characterized, LSWRITE and 

LSSOLVE commands are used to solve the collection of load cases. 

 

2.2.5 Define and Control the Optimization Process 

 

The topological optimization process consists of two parts: defining optimization 

parameters and executing topological optimization. You can run the second part, executing 

topological optimization, in two ways. You can carefully control and execute each 

iteration, or you can automatically perform many iterations. 

           TOPDEF, TOPEXE, and TOPITER are the three ANSYS commands that are 

used to control the Topology Optimization. The TOPDEF command defines the amount 

of material to be removed, the number of load cases to be treated, and a tolerance for 

convergence. TOPEXE executes a single iteration of optimization. TOPITER executes 

several iterations. 

2.2.5.1 Defining Optimization Parameters 

 

You first define your optimization parameters. Here you define the percentage of the 

original volume to be removed, the number of load cases to be treated collectively, and 

termination/convergence accuracy. 

Command(s): 

TOPDEF 

http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-T.htm#TOPDEF
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-T.htm#TOPEXE
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-T.htm#TOPITER
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-T.htm#TOPDEF
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-T.htm#TOPEXE
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-T.htm#TOPITER
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-T.htm#TOPDEF
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2.2.5.2 Executing a Single Iteration 

 

After defining your optimization parameters, you can launch a single iteration. After 

execution, you can check convergence and display and/or list your current topological 

results. You may continue to solve and execute additional iterations until you achieve the 

desired result. If working interactively, choose one iteration in the Topological 

Optimization dialog box (ITER field). 

Command(s): 

TOPEXE 

2.2.5.3 Executing Several Iterations Automatically 

 

After defining your optimization parameters, you can launch several iterations to be 

executed automatically. After all the iterations have run, you can check convergence and 

display and/or list your current topology. You may continue to solve and execute additional 

iterations if you want. The TOPITER command is actually an ANSYS macro and, as such, 

can be copied and customized. 

Command(s): 

TOPITER 

 

 

 

http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-T.htm#TOPEXE
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-T.htm#TOPITER
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-T.htm#TOPITER
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2.2.6 Review the Results 

 

Once your topological optimization solutions are complete, pertinent results are stored on 

the ANSYS results file (Jobname.RST) and are available for additional POST1 processing. 

You can use the following postprocessing options. 

For a nodal listing and/or plot of the pseudo densities, use the TOPO argument of 

the PRNSOL and PLNSOL commands. 

For an element-based listing/plot of pseudo densities, use the TOPO argument of 

the PLESOL or PRESOL commands. 

You can also view the results via ANSYS' tabular capabilities: 

ETABLE,EDENS,TOPO 

PLETAB,EDENS 

PRETAB,EDENS 

ESEL,S,ETAB,EDENS,0.9,1.0 

EPLOT 

To check the most recent (i.e., the last iteration) convergence status and the energy of 

structural compliance, use *GET: 

*GET,TOPCV,TOPO,,CONV ! If TOPCV = 1 (converged) 

*GET,ECOMP,TOPO,,COMP ! ECOMP = Compliance Energy 

*STAT 

 

http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-P.htm#PRNSOL
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-P.htm#PLNSOL
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-P.htm#PLESOL
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-P.htm#PRESOL
http://www.ansys.stuba.sk/html/com_55/chapter3/CS3-G.htm#*GET
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3.METHODS AND MODEL 
 

The below flowchart gives an overview idea about the process that is taken in this 

research work, 
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           Once observations from nature is perceived array of cellular structures are 

referenced and CAD models of the structures are recreated. From the array, CAD model, 

specific building block i.e. unit cell is chosen, and its CAD model is prepared for the 

simulation. 

 3.1 Initial 3D Periodic Block Model for Topology Optimization 
 

Setting up the initial structure before the topology optimization is the initial step for 

optimization. After a closer observation of the microstructures of the cuttlefish bone and 

its condition, an initial 3D periodic block was picked, duplicated, and stacked with other 

blocks, until an entire structure was framed. As a contextual investigation, a discontinuous 

carbon fiber reinforced polymer matrix composite material, polyamide 66 with 30% 

discontinuous carbon fiber, was chosen for the porous structure design. Because of the 

directional fiber reinforcement and nonhomogeneous structure in nature, the cellular 

structure is anisotropic. The material properties are shown in Table 1 below [30]. 

EX 29.9E9 Pa 

EY 5.57E9 Pa 

EZ 5.57E9 Pa 

GXY 7.41E9 Pa 

GYZ 2.16E9 Pa 

GXZ 7.41E9 Pa 

νXY 0.25 

νYZ 0.29 

νXZ 0.25 

ρ 1380 kg/m3 

Table 1: [30] Material Properties 

Initial model of a 3D meshed periodic solid block with pressure and boundary constraints 

is shown in Figure (8,9), in which a 3D 20-hub component of SOLID95 was adopted. For 

the smaller cuttlebone specimen with a macroscopic length of approximately 100 mm, the 
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microstructural lamella spacing is around 100 – 200 μm in height and pillar spacing is 

around 80 – 100 μm in width, which results in a conceivable proportion of height to width 

extending from 1 to 2.5 [23,25,31]. 

In this model, a proportion of height to width and depth (H:W:D) of 1.5:1:1 was taken in 

view of the smaller cuttlefish bone structure information. The top surface was subjected to 

a pressure up to 6 MPa, relating to the most extreme pressure experienced by the cuttlefish 

under water. The side edges and the bottom part near corners were constrained so the 

periodic block must be consistently expanded transversely during a compressive 

deformation as a periodic boundary condition was applied. The elements in the top and 

bottom layers with grey colored were not subjected to topological optimization. The 

elements in the center part (green colored) were subjected to topological optimization. The 

carbon fibers in the top layer might be randomly distributed in the horizontal plane or 

vertically aligned like other elements [32]. 
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Fig 8: Initial 3D solid periodic block (design domain) with pressure on the top and 

periodic boundary constraints surrounded [32]. 
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Fig 9(a): Randomly arranged fibers in top layer. 

 

Fig 9(b): vertically arranged fibers in top layer. 
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3.2 Topology Optimization 
 

        The topology optimization module of ANSYS® was used to optimize the topology of 

the predefined 3D periodic solid block structural composites reinforced with discontinuous 

carbon fibers for various porosities (material volume reduction). The Topology 

optimization can be controlled by customizing regions to be optimized and non-optimized, 

by notifying the bottom layer and top layer (ratio of block height to thickness of layer is 

1:0.08) indicated under type 2 elements, are not considered for optimization and the 

remaining area indicated as type 1 are subjected to topological optimization. 

The topology optimization results for the case of 90% porosity (90% material volume 

reduction) in the middle part of the initial 3D periodic block is output as density contour 

plots, shown in Figure 10 (sectioning from front to back) and Figure 11 (sectioning from 

top to bottom), in which the red color (labeled 1 in the color map) represents the conserved 

material solid, and blue color (labeled 0 in the color map) represents the void (material 

removed). The optimized topology (solid structure) of this 3D periodic block has a pillar 

starting from each bottom corner, growing upwards with the shape changing from a 

rounded shape to a turbine-blade-like shape, and bending symmetrically towards the inside 

[32]. 
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Fig 10: [32] Material density distributions for topology optimized 3D periodic block with 

90% porosity (sectioning front to back) 

 

 

Fig 11: [32] Material density distributions for topology optimized 3D periodic block with 

90% porosity (sectioning top to bottom) 
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The optimized topologies (solid structures) of the 3D periodic block for various porosities 

(material volume reduction) are shown in Figures (12-19). When comparing the optimized 

90% to 80% porosity topologies of the 3D periodic blocks with the smaller cuttlefish bone 

unit-cell structures having similar porosity, the structural topologies appear similar. 

 

 

Fig 12: Optimized 3D periodic block topologies with 90% porosity for the middle part. 
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Fig 13: Optimized 3D periodic block topologies with 87% porosity for the middle part. 

 

 

Fig 14: Optimized 3D periodic block topologies with 85% porosity for the middle part. 
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Fig 15: Optimized 3D periodic block topologies with 82% porosity for the middle part. 

 

 

Fig 16: Optimized 3D periodic block topologies with 80% porosity for the middle part. 
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Fig 17: Optimized 3D periodic block topologies with 70% porosity for the middle part. 

 

 

Fig 18: Optimized 3D periodic block topologies with 60% porosity for the middle part. 
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Fig 19: Optimized 3D periodic block topologies with 50% porosity for the middle part. 

 

 

The objective function (structural compliance) vs. topology optimization iteration number 

for the cases of 90% and 82.5% porosity in the middle part of the model is plotted in Figure 

20. From the optimization iteration process, it can be seen that the objective function, i.e., 

the structural compliance, decreases as iteration number increases, and iterative results are 

stable and converge to a minimum value after a certain number of iterations, indicating that 

the structural rigidity achieved its maximum value. 
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Fig 20: Objective function (compliance) vs. topology optimization iteration number. 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

4. RESULTS & CONCLUSION 
 

4.1 Mechanical property evaluation 
 

        For characterizing the mechanical properties of the topology optimized 3D periodic 

lattice blocks, a compression test was simulated using ANSYS. The testing model’s is 

shown in Figure 21. A vertical displacement constraint was applied on the bottom of the 

model so that it could not be moved vertically. The displacements on the four side faces 

were constrained so that the four side faces could only uniformly expand during a 

compression test as an applied periodic boundary condition, which simulates a 

compression test on a much larger structure consisting of many such 3D periodic lattice 

blocks. The carbon fibers in the top layer were randomly distributed in the horizontal plane 

or vertically aligned, as for other elements. For testing the stiffness (Young’s modulus) 

under the different load conditions, the top surface was subjected to a uniform pressure or 

uniform downwards displacement. The four test models are listed in Table 2. The test data, 

such as the total force applied or the average displacement on the top surface were extracted 

from the test and the Young’s moduli were derived from the test data [32]. 

Model # Load type on top surface Fiber orientation on top layer 

1 Pressure Planar Random 

2 Pressure Vertical 

3 Displacement Planar Random 

4 Displacement Vertical 

Table 2: The conditions setting for four different compression test models. 
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Fig 21: 3D meshed models of the optimized 3D periodic block for compression test. 

The von Mises stress and strain distributions of the four models with 90% porosity in the 

middle part under compression test are shown in Figures 22 and 23. The four models are 

experiencing similar stress and strain distributions. However, the four pillars in the four 

models under the compression tests (uniform pressure or uniform displacement on the top 

surface) are experiencing much higher equivalent (von Mises) stress and strain due to the 

narrowed cross sections. 
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Model 1                      Model 2                      Model 3                      Model 4 

Fig 22: [32] von Mises stress distributions of 90% porosity. 

 

 

Model 1                      Model 2                      Model 3                      Model 4 

Fig 23: [32] von Mises strain distributions of 90% porosity. 
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The vertical stress and strain distributions of the four models with 90% porosity under 

compression test are shown in Figures 24 and 25. Again, the four pillars of each model 

under the compression tests are experiencing much higher, but relatively uniform, vertical 

compressive stress and strain due to the narrowed cross sections, indicating the rationality 

of the topology optimization. 

 

Model 1                      Model 2                      Model 3                      Model 4 

Fig 24: [32] Vertical Stress σy distributions of 90% porosity. 

 

Model 1                      Model 2                      Model 3                      Model 4 

Fig 25: [32] Vertical Strain εy distributions of 90% porosity. 
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The specific Young’s modulus (i.e., the ratio of Young’s modulus to density) and the 

specific square root Young’s modulus (i.e., the ratio of square root of Young’s modulus to 

density) vs. material volume percent occupied for the four models were derived from the 

testing data and are shown in Figures 27 and 28. At a higher material volume percent 

occupied (from 40% to 100% volume occupied), model 2 and model 4, corresponding to 

the fiber direction vertically aligned in the entire model, have higher specific Young’s 

moduli and higher specific square root Young’s moduli than other models. However, at a 

lower material volume percent occupied (higher porosity), the specific Young’s moduli 

and specific square root Young’s moduli for the four models are close, with the values for 

models 3 and 4 (with uniform vertical displacement applied on the top surface of the 

models) being slightly higher than that for models 1 and 2 (with uniform pressure on the 

top surface of the models). The maximum specific square root of Young’s modulus is 

achieved at around 26% material volume occupied, corresponding to 82.5% porosity in the 

middle part of the models, which is similar to the porosity of the cuttlefish bone structures 

[32]. 

 

Fig 26: Young’s modulus vs. material volume percent occupied. 
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Fig 27: Specific Young’s modulus (ratio of Young’s modulus to density) vs. material 

volume percent occupied. 

 

Fig 28: Specific square root of Young’s modulus (ratio of square root of Young’s 

modulus to density) vs. material volume percent occupied. 
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Fig 29: Poisson’s ratio vs. material volume percent occupied. 

The Poisson’s ratio (the ratio of the strain in transverse direction to the strain in vertical 

direction under the vertical compression) vs. material volume percent occupied is shown 

in Figure 29. When material volume percent occupied is around 20%, i.e., 90% of high 

porosity in the middle part of the models, the Poisson’s ratios are around 0.1, implying that, 

under the vertical compression the transverse deformation (expansion) is very small, 

around 10% of the vertical deformation; therefore, the volume would be largely 

compressed. Poisson’s ratio increases as material volume percent occupied increases, the 

maximum value was reached at around 50% volume of material occupied, then decreases 

to the value of bulk material at 100% volume occupied. 
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4.2 Validation 
 

To verify our hypothesis that the, bio materials inspired 3D topology cellular structures 

will have high specific stiffness and will lead to light weight material design, considered 

topology models are evaluated with respect to its density. This will provide us a normalized 

platform where we can compare and infer the topology outcomes. Below tables (3-7) lists 

estimated properties considering the material density. 

Table 3: [27] Summary of the specific Young's modulus for some materials 

Material 
Density  

(g/cm3) 

E  

(GPa) 

E/ 

(106m2s-2) 

E/2  

(103m5kg-1s-2) 

√E/ 

(106m2s-2) 

PLA bulk 1.19 2.865 2.408 2.023 1.422 

CFRPLA* 
bulk 

1.073 4.711 4.39 4.092 2.023 

2D hexagon 

PLA (51.2 
vol%) in-
plane X-

axis** 

0.609 0.505 0.829 1.36 1.167 

2D hexagon 

PLA (52.6 
vol%) in-
plane Y-
axis** 

0.626 0.455 0.727 1.161 1.078 

2D hexagon 
CFRPLA 

(50.8 vol%) 

in-plane X-
axis** 

0.545 0.622 1.141 2.093 1.447 
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2D hexagon 
CFRPLA 

(50.0 vol%) 
in-plane -

axis** 

0.537 0.588 1.096 2.043 1.428 

2D hexagon 

CFRPLA 
(50.8 vol%) 
in-plane Y-

axis** 

0.545 0.622 1.141 2.093 1.447 

2D 
cuttlefish 

bone PLA 
(51.3 vol%) 
in-plane X-

axis *** 

0.61 0.829 1.358 2.224 1.493 

2D 
cuttlefish 
bone PLA 

(51.3 vol%) 

in-plane Y-
axis *** 

0.61 1.47 2.408 3.944 1.988 

2D 
cuttlefish 

bone 
CFRPLA 

(51.3 vol%) 
in-plane X-

axis *** 

0.61 1.926 3.155 5.168 2.275 

2D 
cuttlefish 

bone 
CFRPLA 

(51.3 vol%) 
in-plane Y-

axis *** 

0.61 2.939 4.814 7.886 2.810 

3D 
Octahedron 

PLA (51.9 
vol%) X-
axis *** 

0.617 0.923 1.496 2.424 1.557 
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3D 

Octahedron 
PLA (51.9 
vol%) Y-

axis *** 

0.617 0.853 1.383 2.241 1.497 

3D 
Octahedron 

PLA (51.9 
vol%) Z-axis 

*** 

0.617 0.943 1.529 2.477 1.574 

3D 

Octahedron 
CFRPLA 

(51.9 vol%) 
X-axis *** 

0.556 1.853 3.331 5.988 2.448 

3D 
Octahedron 

CFRPLA 

(51.9 vol%) 
Y-axis *** 

0.556 1.682 3.023 5.433 2.333 

3D 
Octahedron 

CFRPLA 
(51.9 vol%) 
Z-axis *** 

0.556 1.88 3.379 6.073 2.466 

Aluminum 2.7 69 26 9.5 3.077 

Steel 7.9±0.15 200 25±0.5 3.2±0.1 1.790 

Titanium 
alloys 

4.5 
112.5±

7.5 
25±2 5.55±0.35 25.000 

Diamond 
(C) 

3.53 1,220 346 98 9.895 

Note: * Carbon fiber average diameter of 7 µm, average length of 150 µm, and aspect 

ratio of 21.4. 15 vol% CF for CFRPLA; ** Experimental testing data; 
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Table 4: Summary of the specific Young's modulus for 3D Cuttlefish bone structure, 

Nylon 66 with 30% Carbon Fiber Reinforced (Model 1) 

Volume % 
Density  

(g/cm3) 

E  

(GPa) 
E/ (106m2s-2) 

E/2  

(103m5kg-1s-

2) 

√E/ 

(106m2s-2) 

Nylon 66 

with 30% CF 

Bulk 

1.380 25.48093 18.46444 13.38003 3.657872 

19.60 0.27048 1.674607 6.191241 22.88983 4.784332 

21.83 0.3013 2.32463 7.715335 25.60682 5.060318 

24.06 0.33212 3.182912 9.58362 28.85589 5.371768 

26.30 0.36294 3.909314 10.77124 29.67774 5.447728 

28.53 0.39376 4.355405 11.06106 28.09088 5.300083 

37.46 0.51704 6.834038 13.21762 25.56402 5.056087 

46.40 0.64032 9.152851 14.29418 22.3235 4.724775 

55.33 0.7636 11.83863 15.50371 20.30344 4.505934 

 

Table 5: Summary of the specific Young's modulus for 3D Cuttlefish bone structure, 

Nylon 66 with 30% Carbon Fiber Reinforced (Model 2) 

Volume % 
Density  

(g/cm3) 

E  

(GPa) 
E/ (106m2s-2) 

E/2  

(103m5kg-1s-

2) 

√E/ 

(106m2s-2) 

Nylon 66 

with 30% CF 

Bulk 

1.380 29.86563 21.64176 15.68244 3.960106 

19.60 0.27048 1.609556 5.950741 22.00067 4.690487 

21.83 0.3013 2.224562 7.383212 24.50452 4.950204 

24.06 0.33212 3.171936 9.550573 28.75639 5.362499 

26.30 0.36294 3.907653 10.76666 29.66513 5.446571 

28.53 0.39376 4.397043 11.16681 28.35943 5.325358 

37.46 0.51704 7.048747 13.63289 26.36718 5.134898 

46.40 0.64032 9.754629 15.23399 23.79121 4.877624 

55.33 0.7636 12.65284 16.56998 21.69982 4.658307 
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Table 6: Summary of the specific Young's modulus for 3D Cuttlefish bone structure, 

Nylon 66 with 30% Carbon Fiber Reinforced (Model 3) 

Volume % 
Density  

(g/cm3) 

E  

(GPa) 
E/ (106m2s-2) 

E/2  

(103m5kg-1s-

2) 

√E/ 

(106m2s-2) 

Nylon 66 

with 30% CF 

Bulk 

1.380 25.46288 18.45136 13.37055 3.656577 

19.60 0.27048 1.862548 6.886083 25.45875 5.045667 

21.83 0.3013 2.56471 8.512148 28.2514 5.315205 

24.06 0.33212 3.391611 10.21201 30.74794 5.545083 

26.30 0.36294 4.143476 11.41642 31.45539 5.608511 

28.53 0.39376 4.587971 11.65169 29.59085 5.439747 

37.46 0.51704 7.148372 13.82557 26.73984 5.171058 

46.40 0.64032 9.336403 14.58084 22.77118 4.771915 

55.33 0.7636 12.03253 15.75764 20.63598 4.542684 

 

 

Table 7: Summary of the specific Young's modulus for 3D Cuttlefish bone structure, 

Nylon 66 with 30% Carbon Fiber Reinforced (Model 4) 

Volume % 
Density  

(g/cm3) 

E  

(GPa) 
E/ (106m2s-2) 

E/2  

(103m5kg-1s-

2) 

√E/ 

(106m2s-2) 

Nylon 66 

with 30% CF 

Bulk 

1.380 29.9 21.66667 15.70048 3.962384 

19.60 0.27048 1.920692 7.101051 26.25352 5.123819 

21.83 0.3013 2.658387 8.823055 29.28329 5.411404 

24.06 0.33212 3.519777 10.59791 31.90988 5.648883 

26.30 0.36294 4.327127 11.92243 32.84959 5.731457 

28.53 0.39376 4.78928 12.16294 30.88923 5.557808 

37.46 0.51704 7.609187 14.71682 28.46361 5.33513 

46.40 0.64032 10.17709 15.89376 24.8216 4.982128 

55.33 0.7636 13.01461 17.04376 22.32027 4.724434 

 



46 
 

These density related Young’s moduli of the 2D and 3D cuttlefish bone model are higher 

than that of the CFRPLA bulk composites, which is the result of evolution for cuttlefishes 

to take high pressure in the deep sea. The 3D cuttlefish bone model and the 3D octahedron 

model have the potential to be optimized for better performance. 
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4.3 Conclusion 
 

       Design of a lightweight multifunctional lattice structural with composite materials for 

bearing compressive loads or displacements was conducted on a selected 3D periodic 

block, based on biomimicry of a cuttlebone structure. The structural compliance was 

minimized with maximizing structural stiffness by topology optimization of the 3D 

periodic block through computer modeling. Discontinuous carbon fiber reinforced 

composites are a good material candidate to realize fabrication of the designed complex 

topology of the porous structures. The mechanical properties of the topology optimized 

lightweight lattice composite structures were characterized by conducting a compression 

test through computer modeling. The lattice structure with optimal performance were 

identified. 

       Further studies could be made on various types of cuttlebone structures with different 

dimensions of the periodic unit cells under different constraints, or by considering cellular 

structures contained in other deep ocean marine life. 
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