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ABSTRACT 

QUANTIFYING THE SHORT-TERM IMPACTS OF COVER CROPS AND 

GRAZING ON SOIL HEALTH UNDER AN INTEGRATED CROP-LIVESTOCK 

SYSTEM IN SOUTH DAKOTA 

VISHAL SETH 

2018 

Cover crops and grazing under Integrated Crop-Livestock System (ICLS) can 

impact the rhizosphere nutrient cycling and may have potential to increase the long-term 

sustainability and economic profitability of agricultural production system. In South 

Dakota, crop production practices and livestock husbandry are both common which 

provide the opportunity for ICLS to be successful in this region. However, little is known 

about the impacts of the cover crops and grazing under ICLS on soil properties in this 

region. The present study was conducted at South Dakota State University Research 

Farm (44°20'34.8"N, 96°48'14.8"W), Brookings, SD, to quantify the impacts of cover 

crops and grazing on soil bulk density (BD), soil penetration resistance (SPR), soil water 

retention (SWR), pore size distribution (PSD), total nitrogen (TN), carbon and nitrogen 

fractions (labile, stable, and inert), microbial biomass carbon/nitrogen, urease and beta-

glucosidase enzyme activity. Study treatments included grass leaf and broad leaf 

dominated cover crop mixtures, both with and without grazing, and the cover crop 

control field with no cover crop or grazing. The experimental site was established on June 

2016 by planting of cover crops and soil samples were collected three times i.e., pre-

grazing, post-grazing and summer phase at 0- to 5-cm for bulk density, SPR, SWR and 

PSD; 5- to 15-cm for soil microbial and enzymatic properties.  
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The results showed that one year of cover crops did not significantly impact the 

soil bulk density, SPR, carbon and nitrogen fraction (labile, stable, and inert), microbial 

biomass carbon (MBC), microbial biomass nitrogen (MBN) or urease activity. However, 

beta-glucosidase enzyme activity significantly increased under broad leaf dominated 

cover crop mixtures as compared to grass leaf dominated cover crops and no cover crop 

(control) treatments at the 5- to 15-cm depth. Additionally, cold water extractable 

nitrogen (CWN) significantly increased under grass leaf dominated cover crops for the 0- 

to 5-cm depth. Broadleaf and grass leaf dominated cover crop mixtures had higher 

microbial and enzymatic activities as compared to the no cover crop (control) treatment, 

but, the differences were non-significant. Grazing treatment significantly impacted soil 

BD and SWR, PSD, carbon and nitrogen fraction (labile, stable, and inert), MBC, MBN, 

and urease but beta-glucosidase enzyme activity showed no significant differences at 

either depth. Sampling time significantly impacted the ρb, SWR, PSD, CWC, HWC, 

SMC, MBC, MBN, urease enzyme, and β-glucosidase enzyme activities. 

The present study concluded that one year of cover crops significantly impacted 

the selected soil properties i.e., CWN increased under grass leaf dominated cover crops 

and soil beta-glucosidase enzyme activity increased under broad leaf dominated cover 

crop mixtures as compare to grass leaf dominated cover crops and cover crop control 

treatments at 5- to 15-cm depth. One episode of grazing only significantly impacted only 

soil BD. Sampling time significantly impacted soil BD, SWR, PSD, CWC, HWC, CWN, 

HWN, OMN, SMN, MBC, MBN, urease and beta-glucosidase enzyme activity. Since 

most soil properties showed no significant differences by cover crop and grazing 

treatments during this short-term study, because they require longer timeframe to respond 
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under different management practices, further long-term research may be required to 

detect impacts of cover crops and grazing management practices under ICLS on soil 

health. 



 
 

CHAPTER 1 

INTRODUCTION 

Conversion of grassland to cropland deteriorates soil health, water quality, human 

and wildlife. The conversion rate of grassland to cropland in South Dakota is around 5% 

per year during 2006 to 2012, and a total of 4.6 million acres of grassland has been 

converted into croplands (Reitsma et al., 2015). The Northern Great Plains (NGP) region 

of the USA accounts for 18% of all US arable land and 57% conversion of grassland to 

cropland occurred during 1997 to 2007 (Wright and Wimberly, 2013). In South Dakota, 

the corn (Zea mays L) and soybean (Glycine max) land utilization have been doubled 

from 2.5 million acres in 1995 to 5 million acres in 2015 resulting in the conversion of 

grasslands to cropland (Johnston, 2014; Wright and Wimberly, 2013). Intensive 

application of fertilizers, manure herbicides and pesticide have been used to increase crop 

yields, resulting in environmental problems (Peyraud et al., 2014) such as water 

pollution, soil contamination with pesticides, heavy metal contamination and depletion of 

soil fertility (Franzluebbers and Stuedemann, 2013). Therefore, alternative management 

systems are needed that can improve soil and environmental quality. 

 Integrated crop-livestock systems (ICLS), the practice of managing crops and 

animals on a single farm, is considered as one of the several alternatives that can alleviate 

some of above problems (Hilimire, 2011). The ICLS can improve the nutrient use 

efficiency and soil health, and enhances the economic benefits (Russelle et al., 2007). 

Cover crops and crop residues under the ICLS systems provide livestock forage, and in-

return, livestock deposit manure and provide nutrients for the plant growth. Potential 

benefits of ICLS system include reducing fertilizer cost for the subsequent cash crop, 
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reduced cost of supplemental hay, recycling of soil nutrients to enhance soil fertility 

(Soussana and Lemaire, 2014), improving livestock health, reducing cost of feeding to 

livestock. However, if ICLS is managed inappropriatly, it can result in negative impacts 

such as soil compaction when grazing is allowed under moist soils (Sanderson et al., 

2013). Soil compaction can reduce the air movement into the soil pores leading to poor 

crop producitivty (Hamza and Anderson, 2005)  

Cover crops under ICLS are the key factor in impacting the soil properties. 

Incorporating cover crops into existing cropping systems provides economic and 

environmental benefits (Thornton, 2010). For example, cover crops planted after 

harvesting of the main crop can reduce N loss (Huntington and Huntington, 1985). Cover 

crops help in reducing the soil erosion when planted in fallow season, using cover crop 

like hairy vetch leads to addition of N into the soils and help in building soil organic 

matter. There are numerous cover crops species that can provide excellent source of 

forage for livestock grazing and directly helps in overall profitability (Franzluebbers, 

2007; Sulc and Tracy, 2007b). Cover crops increase crop diversity and enhance more 

photosynthesis assimilations which lead to increase carbon sequestration (Lehman et al., 

2015).  

Grazing is another key factor in an ICLS which has positive and negative impacts 

depending upon soil types, crops used for grazing, environmental conditions, and the way 

it is managed in the system. Grazing can increase soil fertility because of the animal 

excrement and urine input on the soil surface, therefore, more available nutrients can be 

supplied to crops for their growth and production (Russelle et al., 2007). However, if 

grazing is managed inappropriately, it could cause soil compaction problem at surface 
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depth which can negatively affect the soil physical and hydrological properties (Liebig et 

al., 2011). The synergistic effect may be found between crops and livestock under the 

ICLS as the livestock supply nitrogen and other nutrients for crop growth while, crop 

residue and the cover crop supply livestock forage. However, grazing impacts on soil 

properties are not consistent across environments due to the complex interactions of 

climate, grazing time, grazing intensity, soil moisture content, soil structure and soil 

condition (Savadogo et al., 2007). 

The objectives of this study were to (i) quantify the impacts of broad leaf and 

grass leaf dominated cover crop blends on soil health parameters in South Dakota, and 

(ii) evaluate and understand the impacts of grazing on soil health parameters in eastern 

South Dakota.  
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CHAPTER 2 

LITERATURE REVIEW 

Integrating crop production with animal husbandry is known as an Integrated 

Crop-Livestock System (ICLS). The ICLS has been practiced for eight to ten thousand 

years (Halstead, 1996; Smith, 1995). However, this system is not being practiced 

intensively in the USA (Russelle et al., 2007). The integration of crop and livestock 

systems occurs at two scales: (i) within the farm, where spatial and temporal integration 

are performed in the same field, and (ii) among the farms, or it is also known as regional 

level integrations where both spatial and temporal work on a contract basis (Bonaudo et 

al., 2014; Russelle et al., 2007; Sulc and Franzluebbers, 2014).The ICLS includes crops, 

cover crops, forage crops, and livestock grazing, all of these impacting the soil properties. 

This literature review focuses on the response of soils to cover crops and livestock 

grazing under ICLSs. 

2.1.  Integrated Crop-Livestock System (ICLS)  

Conversion from grassland to cropland in the Northern Great Plains of the USA 

has been degrading soils and environmental quality (Higgins et al., 2002). Agricultural 

production practices during the last few decades in North America is dominated by 

energy intensive operations (Sulc and Franzluebbers, 2014). The current intensification of 

cropping system practices including intensive application of chemical fertilizers, 

herbicides, pesticides and tillage deteriorate water quality, soil health, air quality, wildlife 

and human habitat (Reganold et al., 2011), and create negative impacts on the 

agroecosystem (Tilman, 1999; Tilman et al., 2001). Therefore, there is a strong need for 
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sustainable intensification. Integrated crop-livestock system is an alternative management 

approach that can enhance environment quality and farm profitability (Thornton, 2010). 

2.1.1.      Soil Problems with Specified Crop Production System  

                During the last two decades, intensive application of synthetic fertilizers and 

pesticides led to deterioration of water quality, soil quality, wildlife and human habitat 

(Pretty, 1995). This has resulted in a reduction of soil organic matter (Tiessen et al., 

1982), deterioration in soil physical properties and enhanced soil erosion (Sulc and Tracy, 

2007b) (Karlen et al., 1994). Continuous monocropping decreases soil pH, enzymatic 

activity and soil organic matter content (Xiong et al., 2015). Continuous corn 

monocropping had negative impact on soil quality and crop yield (Lal, 1997). Intensive 

cropping practices lead to significantly lower microbial biomass carbon and nitrogen as 

compared to diversified system (Moore et al., 2000). A study conducted in a dryland 

region of the Northern Great Plains (NGP) reported that conventional practices increased 

the CO2 losses, thus decreasing the carbon sequestration in the soils as compared to 

diversified systems (Halvorson et al., 2002). Intensified crop production systems require 

more soil disturbance and hence reduces the soil microbial communities, resulting in poor 

soil health (Islam and Weil, 2000). 

2.1.2.        Encountering Concurrent Challenges Through ICLS 

Integration of crop production with animal husbandry has neutral to positive 

impacts on soil health. Expanding ICLS use in the US can be economical and 

environmentally beneficial compared to current agricultural production practices (Sulc 

and Tracy, 2007a). Livestock manure is directly added in the soil, enhancing the nutrient 

cycling, and is the primary source of nutrients for crop production (Lemaire et al., 2014). 
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Cover crops and grasses used in ICLS can diversify the cropping system, benefiting soil 

microorganisms (Blanco-Canqui et al., 2015), while reducing winter feed costs for 

livestock (Lawrence et al., 1999). Therefore, synergistic integration of crop production 

with livestock husbandry system promotes multiple and temporal use of marginally-

productive lands leading to an improvement in soil quality, water quality, and wildlife 

habitat and can be beneficial in maintaining the soil health by providing a variety of 

ecosystem services (Sulc and Franzluebbers, 2014). However, if the ICLS is not 

managed properly, it can deteriorate soil quality, water quality and several ecosystem 

services provided by the cover crops. For example, winter grazing of cover crops and 

crop residues can result in soil compaction which could reduce yields in the subsequent 

cropping system (Clark et al., 2004; Liebig et al., 2011; Sulc and Franzluebbers, 2014).  

2.2.   Role of Cover Crop Under Integrated Crop-Livestock System on Soils  

  According to SSSA (2008), the term cover crops is defined as a “close-growing 

crop that provides soil protection, seeding protection, and soil improvement between 

periods of normal crop production, or between trees in orchards and vines in vineyards”. 

Cover crops can improve soil C, microbial properties, nutrient retention, reduce soil 

erosion and enhance crop yield (Blanco-Canqui and Lal, 2009). Many studies concur that 

incorporating cover crops into existing cropping systems has positive impacts on soil 

properties, and these cover crops can be considered as the back bone of the annual 

cropping system for sustainable production (Blanco-Canqui et al., 2015). Although cover 

crops can benefit multiple soil parameters, a better understanding of cover crops is 

required to optimize its potential (Blanco-Canqui and Lal, 2009). Several studies report 

that continuous monoculture cropping reduces soil organic carbon (Guo and Gifford, 
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2002), and incorporation of cover crops into an existing cropping system will help to 

improve the soil physical, chemical, and biological properties and enhance economic 

benefits (Blanco-Canqui et al., 2015). The impacts of cover crops on soil health 

parameters are listed below as:  

2.2.1. Soil Bulk Density 

Soil bulk density is an important parameter impacting crop growth (Baibay et al., 

2017). It depends on many factors such as soil texture, soil structure, soil moisture, 

organic carbon, and crop residue (Luo et al., 2017). Some evidences indicate that cover 

crops help in alleviating compaction problems via development of roots (Rorick and 

Kladivko, 2017), and roots help create the macropores that may decrease soil compaction 

and soil bulk density (Patrick et al., 1957; Steele et al., 2012). A study reported that 

contrary to the cereal rye, brassica cover crops were more effective than rye in alleviating 

the effects of soil compaction (Chen, 2009). Therefore, selection of crop species is 

important and using cover crop or mixtures of cover crop under ICLS diversifies the 

cropping system, reduces soil compaction, helps building soil health, and enhances 

economic returns (Sentürklü et al., 2016).  

2.2.2. Soil Water Retention  

Diversified crop rotation system has the potential to improve soil organic matter 

content, nutrient cycling, and soil water retention as compared to those under less 

diversified cropping system (Davinic et al., 2013). A study conducted in Midwest Corn 

Belt reported that cover crops did not impact total organic C and soil water retention 

(Beehler et al., 2017). Similar results were observed in a study conducted to evaluate the 
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impacts of cereal rye cover crops on soil physical properties in southeastern Indiana 

under no-till corn and soybean rotation (Rorick and Kladivko, 2017). However, a study 

was conducted to evaluate the soil water improvements with the long-term use of a winter 

rye cover crop in central Iowa, reported that cover crop treatments have significantly 

higher soil water storage at 0-30 cm depth when compared to no cover crop treatments 

(Basche et al., 2016). Researchers reported that continuous living cover significantly 

increases the total porosity (Basche and DeLonge, 2017; Carof et al., 2007; Głąb and 

Kulig, 2008). A study conducted at University of Arkansas Delta Branch Experiment 

Station to evaluate the effect of winter cover crops on selected soil properties (rye + 

vetch) reported that soil water retention and porosity have measurable changes due to 

winter cover crops (Keisling et al., 1994). A study was conducted to evaluate the soil 

hydrological properties impacted by prairie restoration, native prairie, grass and row-crop 

management on Mexico silt loam soils showed that native prairie had significantly higher 

water retention at saturation while restored prairie had the highest water retention at − 33 

kPa, − 100 kPa and − 1500 kPa (Chandrasoma et al., 2016).    

2.2.3. Soil Organic Carbon 

The SOC is affected by soil type, cropping system, environmental conditions and 

management practices (Letey, 1958). A study was conducted to evaluate the impacts of 

winter cover crops on SOC under leguminous and non-leguminous cover crops and 

showed that winter cover crops may increase the SOC levels and help in reducing the 

depletion rate. This study also observed that winter cover crop (shepherd's-purse) helps 

building more SOC than Austrian winter pea (Lathyrus hirsutus L.), hairy vetch (Vicia 

villosa Roth), and canola (Brassica napus L.) (Kuo et al., 1997). An experiment was 
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conducted to demonstrate the long-term effect of cover crops on SOC in Norfolk sandy 

loam (fine-loamy, siliceous, thermic, Typic Kandiudults) reported that concentration of 

SOC and nitrogen were greater with rye, hairy vetch, crimson clover than with the control 

without cover crop (Sainju et al., 2002). Cover crops helps in building the SOC and a 

study was conducted to examine the long term impacts of cover crop on SOC and 

nitrogen content  on a loam soil (Typic Xerofluvent) in Central Italy with four cover crop 

treatments (C – no cover crop; NL – non-legume CC; LNL – low nitrogen supply legume 

CC, and HNL – high nitrogen supply legume CC) reported that NL, LNL and HNL cover 

crops increased SOC content by 0.17, 0.41 and 0.43 Mg C ha−1 year−1 (Mazzoncini et al., 

2011). In several studies it has been reported that incorporation of cover crops or the 

blend of cover crops may increase the biomass production and soil organic matter which 

is one of the important parameter of soil health (Havlin et al., 1990). Soil organic carbon 

is important soil health indicator and plays important role in improving soil health 

(Franzluebbers and Stuedemann, 2008).   

2.2.4. Soil Carbon Fractions 

 Commonly three types of carbon and nitrogen fractions are available in the soil, 

namely labile, stable and recalcitrant. The hot water, cold water and hydrogen chloride is 

used for the extraction, respectively (Ghani et al., 2003). Hot water extractable carbon is 

very sensitive parameter to land management practices and affected by the season and 

soil variability (Ghani et al., 2003). The impact of land use change is more on hot water 

extractable carbon (HWC) than the SOC. Climatic conditions affect the HWC, as dry 

summer and mild winter showed drop in the HWC and summer soil showed higher HWC 

than winter season (Ghani et al., 2003).   
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2.2.5. Microbial Biomass Carbon/Nitrogen (MBC/N) 

Soil microbial biomass C and N is considered as an early indicator of changes in 

nutrient cycling and SOM dynamics because soil microbial biomass carbon and nitrogen 

pools have been shown more sensitive to agriculture management than soil bulk carbon 

and nitrogen pool (Joergensen et al., 1995). A review paper documented that adding one 

or more crops in monoculture increased soil C by 36% and soil microbial biomass carbon 

by 20% while increasing the total nitrogen by 5.3% and MBN by 26% (Carter, 1986; 

Motta et al., 2007). A study findings indicated that the plant diversity was increased from 

one species to 16 species resulting increase of TC by 13% and MBC by 31% (McDaniel 

et al., 2014). A study was conducted to compare the differences between rye-cotton and 

continuous corn rotation showed that soil MBC was higher in rye-cotton as compared to 

continuous corn (Omeke et al., 2016). In several studies it has been reported that 

incorporation of cover crops or the blend of cover crops may increase the biomass 

production (Havlin et al., 1990). 

2.2.6. Soil Urease Enzyme Activity 

Soil urease enzyme plays a major role in releasing inorganic N in the N cycle 

(Dick, 1994). Microbial activity and microbial extracellular enzyme activity are much 

sensitive to climatic conditions (Ren et al., 2017). The microbial enzymes are considered 

to be an important agent and rate-limiting step in SOC decomposition (Bardgett et al., 

2008). Enzymes help in catalyzing biochemical reactions and they play a key role in the 

nutrient cycling. Soil enzymes are believed to be considered primarily as microbial origin 

and also found to be originated from plants and animals (Dick, 1994). Continuous 

grassland showed higher enzyme activity as compared to cultivated field due to reduction 
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in soil disturbance (Gupta et al., 1988).  In a study, enzyme activities were compared 

between winter fallow and cereal and legume, and found that cereal crop have 

significantly higher enzyme activities than winter fallow but not significant differences 

were observed (Bandick and Dick, 1999). Cover crop have wide range of effects on soil 

urease enzyme activities. A study was conducted to investigate the effect of cover crop 

on soil urease on a Marvyn sandy loam soil found that cover crop had no significant 

impact on urease enzyme (Hamido and Kpomblekou-A, 2009). Plants roots impact the 

soil rhizosphere and imposes changes in soil microbial communities. Increasing the 

proportion of hairy vetch in comparison to oats resulted in higher urease activity 

(Mukumbareza et al., 2016). Diversification of cropping system impact the soil urease 

activities, and urease activity was reported highest in soils under 4-year oat-meadow 

rotations and lowest under continuous corn (Klose and Tabatabai, 2000). Activities of 

soil urease enzyme was found to be greater in surface layer than lower depths (Bandick 

and Dick, 1999). The urease enzyme is very sensitive to sampling depths which is 

reflected by both plant and microorganisms (McCarty et al., 1998). Wide C: N ratio 

depress the soil urease enzyme which is primarily being synthesized by microorganisms 

and plants residues can be a source of soil urease enzyme (Martens et al., 1992).    

2.2.7. Soil Beta-glucosidase Enzyme Activity 

           A study was conducted to evaluate the effect of oats and grazing vetch cover crops 

on soil enzymatic avtivities reported that cover crops resulted in higher MBC and β-

glucosidase enzyme activities than the weedy fallow (Mukumbareza et al., 2015). 

Bandick and Dick (1999) reported an increase in soil β -glucosidase activity in more 

intensive cropping system as compared to less intensive cropping system. Acosta-
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Martinez et al. (2007b) reported increase in soil β-glucosidase activity with a decrease in 

the fallow periods, and an increased level of soil β-glucosidase activity was observed 

under pasture as compared to agricultural rotations at 0- to 5-cm. Beta-glucosidase 

activity plays an important role in plant decomposition and SOC cycling. Microbial 

degradation of cellulose to glucose and carbon cycle is affected by a rate-limiting enzyme 

soil β-glucosidase.  

2.3.     Grazing under ICLS 

In the US, a little less than 1/3 of all land is considered as grazing land (Follett 

and Kimble, 2000). About 58.7 Mha of grassland pasture and range are in federal 

ownership, around 30 Mha are in public ownership, and 150.6Mha are in private holdings 

(Sobecki et al., 2001), with much of this land being degraded or poorly managed (Follett 

and Kimble, 2000). However, grazing can have small to large impacts on ecosystems 

depending on several factors (Milchunas, 2006). Grazing lands contain up to 30% of the 

world’s soil organic carbon (SOC) (Eswaran et al., 2001) and 5% of the world’s SOC is 

in the soils of US grazing lands (Waltman and Bliss, 1997) (Lubowski et al., 2006). 

Overgrazing or poor grazing management can cause a loss of carbon and decreased soil 

productivity (Lecain et al., 2000). Grazing every alternate year may reduce the soil loss 

due to water erosion (Sulc and Tracy, 2007b). The acreage of these crops has increased at 

a significant rate (i.e. in 2.5 million acres in 1995 to 5 million in 2015) in South Dakota 

(Johnston, 2014; Wright and Wimberly, 2013). Based on the available literature, grazing 

lands play an important role in improving soils. Furthermore, grazing impacts on some 

selective soil properties under ICLS are describes below:  

2.3.1. Soil Bulk Density  
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Heavy grazing leads to soil compaction due to trampling, resulting in higher bulk 

densities and reduced soil pore space which restricts water and oxygen movement in soils 

(Zhao et al., 2011). Livestock grazing winter residues, weeds or cover crops did not 

significantly increase soil bulk density (Fernandez-Rivera et al., 2002). Livestock 

trampling leads to soil compaction and increases bulk density at shallow depths, but the 

damage is not severe and can be rectified with appropriate measures (Laycock and 

Conrad, 1967). Infiltration and compaction impact from grazing can be minimized by 

grazing when soils are dry (Maughan et al., 2009). A study conducted to compare soil 

surface bulk density between 1) sites not grazed by cattle > 26 years; 2) sites not grazed 

for 6 years, 3) sites grazed for 15 years with different residual dry matter of >1100 kg/ha, 

670-900 kg/ha and <450 kg/ha in California on coarse sandy loam soils reported that bulk 

density was not significantly different between not grazed > 26 years and sites not grazed 

for 6 years (Tate et al., 2004). An experiment conducted in the Missouri Coteau reported 

that different levels of grazing pressure affected the bulk density and porosity of clay 

loam soils (Engels, 2009). A 4-year grazing trial studied the response of soil bulk density 

of sandy soils in Sahelian rangelands to two stocking rates (62·5 and 125 kg live weight 

ha-1 ) and four sheep:goat ratios (0:6, 2:4, 4:2 and 6:0 animals per pasture), and multiple 

surface and subsurface soil depths (0–2, 2–6, 6–14 and 14–30 cm), and reveals that soil 

compaction due to grazing was observed only at the soil surface and soil bulk density was 

not affected by the grazing (Hiernaux et al., 1999). Many studies, however, reported a 

significant increase in bulk density with grazing especially in fine textured soils and in 

surface layers (Abdel-Magid et al., 1987; Hamza and Anderson, 2005; Hunt et al., 1995; 

Orr, 1960).  
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2.3.2. Soil Water Retention 

A study conducted in semiarid rangelands of southeast Idaho reported that in 

addition to a variety of other factors, management decisions (grazing and rest) can have 

substantial influence on soil-water content and it can vary substantially as a result of 

animal impact and the duration of grazing (Weber and Gokhale, 2011). A study was 

conducted by Kumar et al. (2008) to evaluate the effect of grazing on soil hydraulic 

properties under rotationally grazed (RG) pasture, continuously grazed (CG) pasture, 

grass buffers (GB), and agroforestry buffers (AgB) treatments. Soil water content at high 

soil water potentials (0 and –0.4 kPa) was greater in the buffer treatments relative to the 

other treatments for the 0 to 10 cm soil depth (Kumar et al., 2008).   

2.3.3. Soil Organic Carbon 

Grazing affected soil organic carbon and nitrogen in contrast to un-grazed 

grassland (An and Li, 2015). Grazing appears to exert a negative effect on soil carbon 

and nitrogen in desert grassland (An and Li, 2015). In Israel, disturbance of the soil 

organic carbon pool was smaller for wheat stubble grazing as compared to soils under 

stubble retention grazing (Stavi et al., 2015). SOC was higher under rotational grazed 

system as compared to heavy continuous grazing system and excessive grazing that 

removed crop biomass and litter that exposed soil caused degradation (Jacobo et al., 

2006). In Florida sandy soils, grazing reduced the SOC in the first year while an opposite 

trend was reported in subsequent years (George et al., 2013). A 5-year grazing trial on a 

native pasture in south-eastern Australia showed that removing grazing pressure may lead 

to lower SOC in native pastures over time and grazing management practices are required 

to increase SOC (Orgill et al., 2016). A study was conducted to evaluate the impact of 
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grazing on microbial biomass and soil carbon in subtropical grassland under grazed and 

un-grazed plots reported that grazing effects on SOC depend on root system biomass and 

optimizing grazing management to enhance SOC (Wilson et al.). In Wyoming, 40-years 

of grazing exclusion resulted in no significant differences in SOC and microbial biomass 

between grazed and un-grazed treatments. However, Milchunas and Lauenroth (1993) did 

a detailed review of the literature of grazed and un-grazed sites around the world and 

reported both a decrease (40%) and increase (60%) in soil carbon as a result of grazing 

exclusion.   

2.3.4. Soil Carbon Fractions 

An experiment was conducted to evaluate the impacts of grazing and cultivation 

on hot water extractable carbon at 52 different sites and under four sampling times i.e., 

spring, summer, autumn and winter for 2 years in the Waikato region of the North Island, 

New Zealand (38 S and 175 E) with two grazing treatments i.e., intensively (dairy) and 

less intensive (sheep/beef). This study showed that in both years of the monitoring 

period, the amounts of HWC in sheep/beef soils were consistently higher than in dairy 

soils in all seasons and observed that hot water carbon is more sensitive to grazing as 

compared to SOC (Ghani et al., 2003). A study conducted to evaluate the sensitivity of 

water extractable soil organic carbon fractions to land use in three soil types reported that 

water extractable carbon is highly and positively correlated with SOC and mean weight 

diameter (Ćirić et al., 2016). 

2.3.5. Soil Microbial Biomass Carbon and Nitrogen (MBC and MBN) 

Yang et al. (2016) reported that MBC and MBN content decreased significantly 

under grazing compared to no grazing. In China, four-decades of grazing and cultivation 
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in a semi-arid grassland decreased MBC by 20% under grazing and cultivation and 

reduced fungi by 40% to 71% as compared to grassland (He et al., 2017). A study was 

conducted to evaluate the impact of grazing exclusion on soil respiration in a Meadow 

grassland and reported that exclusion significantly increased soil moisture and 

aboveground biomass but decreased soil temperature, microbial biomass carbon (Chen et 

al., 2016). Researches have shown that soil MBC decreased with increasing in the 

grazing intensity (Acosta-Martínez et al., 2010). A study was conducted to evaluate the 

impacts of grazing on soil microbial biomass in Inner Mongolia with different stocking 

rates (ungrazed, UG; lightly grazed, LG; moderately grazed, MG; heavily grazed, HG) 

and found that LG increases the soil microbial biomass carbon and SOC (Liu et al., 

2012). The effects of grazing on soil properties is very complex and need to sufficiently 

be understood.  

2.3.6. Soil Urease Enzyme  

           Grazing intensities significantly influence the MBC. In Australia, grazing pressure 

had no effect on MBC, SOC and enzymes, but a significant reduction was reported in soil 

microbial biomass carbon levels (approximately 24% and 51%) after heavy grazing 

(Holt, 1997). A study conducted to quantify the impacts of seasonal changes on urease 

enzyme reported that enzymes activities were higher under grassland sites regardless of 

grazing intensities (Dormaar et al., 1984). A study conducted in Northern China to 

evaluate the changes in soil properties under different grazing pressures (i.e., light 

grazing, 0.45 sheep unit/ha, moderate grazing, 0.75 sheep unit/ha, heavy grazing, 1.50 

sheep unit/ha with no grazing treatments) reported that as the grazing intensities 

increased, the urease activity decreases significantly, and the urease activity under light 
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grazing was reported the highest (Jiao et al., 2016). In a study conducted in semi-arid 

grasslands of China to evaluate the impacts of long term grazing on soil urease activity 

under grazing and un-grazing treatments reported that urease activity under the grazing 

treatment was higher as compared to un-grazing treatment (He et al., 2017). Grazing 

activities induce changes in soil enzymatic activities (Mukumbareza et al., 2016).  

2.3.7. Soil Beta-glucosidase Enzyme 

Soil beta-glucosidase enzyme is strongly correlated with soil pH (Eivazi and 

Tabatabai, 1990). Studies have shown that beta-glucosidase activity decreases with the 

increase in soil depth (Acosta-Martinez et al., 2007a). A study conducted by Acosta-

Martínez et al. (2003) to evaluate the enzymatic activities in semiarid agricultural soils 

reported that the enzyme activities were higher in loam and sandy clay loam as compared 

to sandy soils. A study showed that soil beta-glucosidase is positively correlated with 

cumulative N mineralization in soils (Acosta-Martinez et al., 2007a). Plant species 

especially roots play an important role in triggering the enzymatic activities in soils, and 

soil beta-glucosidase activity reaches its peak at the booting stages (Hai-Ming et al., 

2014).  

2.4. Research Gaps  

Previous studies have evaluated the impacts of cover crops and grazing on soil physical, 

chemical and biological properties under various environmental conditions. However, 

there are some research gaps among these studies. Impacts of cover crops and grazing on 

soil properties were evaluated broadly across the world. However, quantifying the 

impacts of cover crops and grazing on soil bio-chemical properties, especially on soil 

enzymatic activities were very few under the Northern Great Plains (NGP) region of 
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USA. Little information is known about the interaction of cover crops and grazing 

activities on soil microbial properties in NGP. Additionally, the role of cover crops for 

enhancing the economic or environmental benefits need to be studied rigorously in NGP. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1. Study Site 

The present study was conducted at the research farm of South Dakota State 

University, located in Brookings, South Dakota (44°20'34.8"N, 96°48'14.8"W). Soil type 

in the study area was Brookings (fine-silty, mixed, superactive, frigid Pachic Hapludolls) 

and Kranzburg (fine-silty, mixed, superactive, frigid, Calcic Hapludolls). The experiment 

was initiated in 2016 to explore the short-term impacts of cover crops and grazing under 

ICLS on soil health. The plots were established in nearly flat areas with a slope less than 

1%. The average annual rainfall was 617.5 mm and the average temperature ranges from 

-9.94°C in January to 20.1°C in July.   

3.2. Experimental Design and Treatments 

Before establishing the experiment, the study site was countiniously cropped with 

alfalfa (Medicago sativa L.) from 1995 to 1999. Oats were planted in 2016 and killed in 

June, and cover crops were planted in July 2016. Texture of the soil was silty clay loam. 

Initial values of soil bulk density, soil organic carbon (SOC), and pH were 1.35 Mg m-3, 

13.5 g kg-1, and 6.7 respectively. 

There were 20 plots and each plot size was of 60 feet (width) × 90 feet (length). A 

total of 8 plots were grazed. The experimental design was a Randomized Complete Block 

Design with 4 replications. Two cover crops blends included a grass leaf dominated cover 

crop and a broad leaf dominated cover crop. The broad leaf dominated cover crops 

included radish (15%, 1.2 lb/acre), turnip (10%, 0.3 lb/acre), kale (10%, 0.4 lb/acre), pea 

(10%, 6 lb/acre), lentil (15%, 3 lb/acre), cowpea (15%, 6.75 lb/acre ), g. millet (10%, 2 
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lb/acre) and oats (15%, 10.5 lb/acre). The grass leaf dominated blend included radish 

(5%, 5 lb/acre), pea 5%, 3 lb/acre), sorghum (25%, 5 lb/acre) and oats (25%,17.5 lb/ 

acre). These cover crops treatments are generally used to reduce the impacts of soil 

compaction that may be created by cattle grazing at the upper depths. All treatments were 

managed with conservation tillage. The rotation includes cover crops (planted in May 

2016)-corn (2017)- Oats (2017) – Cover crops ( after killing Oats in May 2017). Grazing 

was applied in November for 1 week. The Aberdeen Angus cattle breed (common for 

beef production found in South Dakota) was used for the grazing of cover crops. A total 

of six rows of corn per plot were planted in May 2017.  

3.3. Data Measurements 

3.3.1. Soil Sampling  

Soil samples were collected three times: pre-grazing, post-grazing, and summer in 

2016-2017. Baseline soil samples were collected in fall 2016 after the harvest of oats 

from 0- to 5-, 5- to 15-, 15- to 30-, 30- to 45- and 45- to 60-cm depths of every replicated 

plots using a hydraulic probe unit. Pre-grazing soil samples were collected on September 

2016. These samples were collected to analyze the basic soil properties. Intact soil cores 

samples were collected in September 2016 before grazing from 0- to 5-cm depths of 

every replicated plot using 5cm (diameter) × 5cm (height) core for analyzing the bulk 

density (ρb) and measuring soil water retention using pressure plate apparatus. During the 

same time, soil samples were collected using hand soil auger unit to analyze electrical 

conductivity (EC), pH, SOC concentration, total nitrogen (TN), and soil carbon and 

nitrogen fractions. Soil samples were put in the ziplock bags and transported to the 

laboratory in cool and dry place. Moreover, during the same time, the soil samples were 
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collected to analyze the soil microbial (soil microbial biomass carbon and nitrogen) and 

enzymatic activity like urease and Beta-glucosidase. For this, soil samples were put in the 

ziplock bags and placed in the mini cooler containing dry ice and then transported to the 

lab and stored at 4°C. Soil samples were air dried, ground, and sieved to pass through a 

2mm sieve. In addition, soils were ground to <0.25mm in size for analyzing the soil 

carbon fractions.  

Post-grazing soil samples were collected using hand auger on November 17, 

2016, one day after cattle had been removed from 0- to 5- and 5- to 15-cm soil depths of 

every replicated plots using hand soil probe unit to analyze soil microbial activities (soil 

beta-glucosidase activity, soil urease activity, soil microbial biomass carbon and soil 

microbial biomass nitrogen), soil carbon and soil nitrogen fractions like soil labile 

fractions, soil stable fractions and soil recalcitrant fractions.  

Summer phase soil samples were collected on July 5, 2017 before the planting of 

maize crops at 0- to 5-cm depths from each replicated plots using a 5cm diameter and 

5cm height core for analyzing the soil bulk density, soil water retention and pore size 

distribution by using pressure plate appratus. Furthermore, soil samples were collected 

for measuring soil microbial (soil microbial biomass carbon and nitrogen) and soil 

enzymatic activities (soil urease enzyme and soil beta-glucosidase) at 0- to 5-  and 5- to 

15-cm depths using hand auger unit. Four replication of samples were collected from 

each plot and mixed together to make a composite sample that represent the plot. The 

composite were sealed in a plastic zip-locks bags and shipped in the cold boxes to the 

labouratory for immediate analysis.   

3.3.2. LabAnalysis 
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3.3.2.1. Soil Bulk Density (ρb) 

Intact soil core samples were collected two times, first at pre-grazing in 

September, 2016 and second at summer phase on July 5, 2017 before the planting of 

maize at 0- to 5-cm depths from each treatments. These samples were used for analyzing 

the soil bulk density using core method Grossman and Reinsch (2002). The soils samples were 

dried in the oven at 105°C for 24 to 48 hours. The ρb was calculated by dividing the oven-dry 

soil weight with the volume of the core.  

3.3.2.2. Soil Water Retention (SWR) and Pore-Size Distribution (PSD) 

At same time soil intact core samples were used to measure the soil bulk density 

and soil water retention. SWR was measured using intact soil core samples and these 

samples were saturated for 24 to 48 hours depending upon the soil types. SWR was 

measured at 0, −0.4, −1.0, −2.5, −5.0, −10.0, −30.0 kPa matric potential using pressure 

plate and tension table apparatus. Gravimetric water content was converted to volumetric 

water content by multiplying with soil bulk density and dividing with the density of water 

and used for calculating soil water content (g g-1). Capillary rise equation was used to 

from SWR data’s for all pore size classes (micropores, fine mesopores, coarse mesopores 

and macropores) as explained by (Jury et al., 1991). The sizes of each pore varies for 

example micro-pores (<10 μm equivalent cylindrical diameter; ecd), fine-mesopore (10- 

to 60- μm ecd), coarse measopore (60- to 1000-μm ecd), macro-pores (>1000 μm ecd).  

3.3.2.3. Soil Organic Carbon (SOC) Total Nitrogen (TN) 

Dry combustion method was used to determine the soil organic carbon using CN 

elemental analyzer. CN analyzer gives the percentage of total carbon and total nitrogen. 

Soils were reacted with hydrochloric acid was used to determine the soil inorganic carbon 
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(Schumacher, 2002). The SOC was calculated by subtracting the soil inorganic carbon 

from total soil carbon.  

3.3.2.4. Soil Carbon and Nitrogen Fractions 

The water extractable organic carbon (WEOC) and acid hydrolysis was carried 

out by schematic procedure described by Ghani et al. (2003) and Silveira et al. (2008). 

The extraction was done with distilled water in a soil-to-solution ratio of 1:10. A 3 g of 

soil was poured with 30 ml of water and put for shaking on vortex and rotatory shaker for 

10 sec. and 30 min. at 40 rpm respectively. After extraction, the suspension was 

centrifuged at 3000 rpm for 25 min. at 4°C.  The filtrate obtained is cold water 

extractable organic carbon (CWEC). A further 30 ml of water is added to the remaining 

residue and put on a vortex shaker for 10 sec. The suspension was left in hot-water bath 

at 80°C for 12-15 h. After extraction, the suspension was again put on vortex shaker for 

10 secs and then, centrifuged at 3000 rpm for 25 min. at 25°C. The filtrate obtained is hot 

water extractable organic carbon (HWEC). After CWEC and HWEC, the same soil 

sample was air-dried and at first used for carrying out acid hydrolysis with 1M HCl and 

then, with 6M HCl at 105°C for 6 h in a soil-to-solution ratio of 1:30. Both hydrolysis 

was centrifuged separately at 3000 rpm for 25 min. and the supernatant’s obtained are 

termed as 1M and 6M acid extractable carbon fractions. In this process all the extracts 

were considered as organic carbon and organic nitrogen because the pH of the soil 

solution was less than 6. Cold water, hot water and acid extractions of carbon and 

nitrogen were determined for the 0- to 5-  and 5- to 15-cm depths using the TOC-L 

analyzer (Shimadzu Corporation, model-TNM-L-ROHS).  

3.3.2.5.  Microbial Biomass Carbon (MBC) and Nitrogen (MBN) 
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 Chloroform fumigation and direct extraction method were used to determine the 

MBC and MBN (Beck et al., 1997; Kaiser and Heinemeyer, 1993). We divided each 

sample into 3 subsamples; one for non-fumigated; one for gravimetric soil moisture 

content and one for fumigated samples. 10g oven dry equivalent wait was used for both 

fumigated and non-fumigated samples. The non-fumigated samples were placed in a 

centrifuge tube with 40 ml of 0.5 M K2SO4. Samples were shacked for an hour, it was 

filtered through pre-leached with with 0.5 M K2SO4 Whatman No. 1 filter paper, and then 

soil extract was kept at 4ºC until further analysis. The fumigated samples were fumigated 

in vacuumed desiccators with 50 ml of beaker containing 20 ml of chloroform. After 

chloroform boils the samples were kept in dark for 24 hours. After releasing the vacuum 

and excess chloroform, the soil sample was extracted with 40 ml of K2SO4 and shook it 

for one hour and then filtered it through Whatman No 1 filter paper. The difference 

between C in the fumigated and non-fumigated samples is the chloroform - labile C pool 

(EC), and is proportional to microbial biomass C (C):  

C = EC/kEC 

where kEC is soil specific, but is often estimated as 0.45 (Beck et al., 1997). 

Determination of the microbial biomass C and N. 

Total weight of extractable C in the fumigated (CF) and unfumigated (CUF) soil samples: 

CF, CUF (µg g-1 soil) = organic C * [(WT - DW) + EV] / DW 

Total weight of extractable N in the fumigated (NF) and unfumigated (NUF) soil 

samples: NF, NUF (µg g-1 soil) = total N * [(WT - DW) + EV] / DW 

Where WT is the soil fresh weight, DW is the soil dry weight, EV is extractant volume. 

Microbial biomass C in the soil (MBC): MBC (µg g-1 soil) = (CF - CUF) / KEC 
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Where KEC = 0.35 and represents the efficiency of extraction of microbial biomass C. 

Values for KEC range from 0.25 to 0.45 (Joergensen and Mueller, 1996; Wu et al., 1990). 

Microbial biomass N in the soil (MBN): 

MBN (µg g-1 soil) = (NF - NUF) / KEN 

where KEN = 0.5 and represents the efficiency of extraction of microbial biomass N. 

Values for KEN range from 0.18 to 0.54 (Joergensen and Mueller, 1996). 

3.3.2.6. Soil Urease Enzyme  

 Colorimetric determination of ammonium was used to determine the urease 

enzyme activity described by (Kandeler and Gerber, 1988). In 50 ml beaker, 5g soil was 

placed in three flasks, and in first two flask 2.5 mL of urea solution was added. Then 20 

mL borate buffer was added in all the flasks. All the flask was incubated for 2 hours at 

37˚C. After the incubation process in incubator, 2.5 mL of urea solution was added in the 

third flask. 30 mL of 2M Potassium Chloride, KCl was added which act as an extractor in 

all flask and shook it for 30 minutes. After the filtration the color reaction was done by 

adding 1mL of filtrate with 9mL of water and 5mL of sodium salicylate (C7H5NaO3)- 

sodium hydroxide (NaOH) solution as well as 2mL of Oxidation agent - sodium 

dichloroisocyanurate (C3Cl2N3NaO3) was mixed in all the flasks. Spectrophotometer was 

used to determine the absorbance of the soil samples at 660 nm wavelength and a 

standard curve was prepared with standards of 0, 1, 1.5, 2, and 2.5 µg N mL-1 of 

ammonium chloride (NH4Cl). The calculation of urease activities was done using 

following equations:  

Urease Activity (µg NH4-N g-1 soil 2h-1) = (NCS – NCC) × DF× V× T/DW 
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where, NCS is the NH4-N concentration of the sample average (µg NH4-N mL-1), NCC is 

the NH4-N content of the control (µg NH4-N mL-1), DF is dilution factor (10), V is the 

volume of urea solution used (2.5 mL), T is incubation time (2 h), and DW is the dry 

weight of the soil taken (5 g). 

3.3.2.7. Soil Beta-glucosidase Enzyme  

 Determination of beta-glucosidase enzyme activity was done described by (Eivazi 

and Tabatabai, 1988). Standard stock solution p-nitrophenol 0, 100, 200, 300, 400, or 500 

nmol was used to develop calibration curve. 1g of soil was taken separately in three 50 

mL Erlenmeyer flasks in which one was used as a control and toluene was added (0.2 

mL), mixed properly, and let them settle for 15 minutes in the fume hood. After taking 

out from hood add 4mL of modified universal buffer (MUB) pH 6.0 and 1 mL of p-

nitrophenyl-β-D-glucoside (PNG) solution, mixed well, and incubated it for 1 hour at 

37˚C. After incubation add, 0.5M Calcium Chloride (CaCl2) (1mL), 0.1M Tris 

(hydroxyethyl) Aminomethane (THAM) buffer (pH 12) (4mL), then mixed thoroughly, 

and filter the suspension through Whatman filter paper (No. 2V). Spectrophotometer was 

used to determine the yellow color intensity at 405 nm wavelength and the amount of p-

nitrophenol released by reference to a calibration curve was calculated. Determination of 

amount of p-nitrophenol released from the soil was calculated by using references to 

calibration curve by the following equations: 

Beta-glucosidase activity (µmol p-nitrophenol g-1 soil h-1) = (NCS-NCC) *V*T/DW 

where, NCS is p-nitrophenol content of sample average (µg NH4-N mL-1), NCC is p- 

nitrophenol content of control (µg NH4-N mL-1), V is volume of pNG solution used (1 

mL), T is incubation time (1 h), and DW is dry weight of soil taken (1 g). 
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3.3.3. Soil Penetration Resistance (SPR) Measurement 

Eijkelkamp-type hand penetrometer was used to measure the soil penetration 

resistance for 0- to 5- cm depth for all treatments including cover crop (broadleaf 

dominated cover crop and grass leaf dominated cover crop), grazing (yes and no) and 

time (summer phase) (Herrick and Jones, 2002).  From each treatment a total of four SPR 

was taken at 0- to 5-cm depth and the average value was used to represent the SPR. To 

avoid the impact of soil moisture content it was measured four times using portable soil 

moisture meter for each treatment and at 0- to 5-cm depth and results were standardize 

using following equation developed by (Busscher and Bauer, 2003): 

 𝑆𝑃𝑅𝑐 = SPR0 × 𝑒
𝑥−0.1

0.132  

3.4. Statistical Analysis   

The selected soil properties were statistically compared using pairwise differences 

method (adjusted by Tukey) by a mixed model in which the cover crop, grazing, time, 

cover crop × grazing, cover crop × time, grazing × time, and crop × grazing × time were 

considered as fixed effects and the replication as random effects. The models were 

conducted using GLIMMIX procedure in SAS 9.4 (SAS, 2013). Transformation of data 

was completed when necessary. The transformations were determined using the Box-Cox 

method (Box and Cox, 1981; Box and Cox, 1964) and SAS TRANSREG procedure. 

Significance level was determined at α = 0.05 for all statistical analysis.  
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CHAPTER 4 

RESULTS 

 

4.1. Soil Bulk Density (ρb) and Soil Penetration Resistance (SPR) 

 Data of soil bulk density at 0- to 5-cm depth under different cover crops and 

grazing treatments, collected at different time intervals are presented in Table 1. The time 

(T) had a significant impact on soil ρb at the 0- to 5-cm depth. The mean ρb value under 

post-grazing was significantly lower than that for the pre-grazing. Grazing significantly 

impact the soil ρb where an increase of 1.53% in ρb was observed under the grazing 

compared with that under un-grazing treatment. The cover crop treatments did not 

significantly impact the ρb. However, the mean ρb value under the G-CC was higher than 

that for the B-CC and CT.  The lowest ρb was observed under the CT (1.29 Mg m-3) and 

the highest was under the G-CC (1.32 Mg m-3). The interaction effects among cover crop 

(R), grazing (G) and time (T) on ρb were not significant.  

 Data of SPR at 0- to 5-cm depth under different cover crop and grazing 

treatments, collected at different times are provided in table 1. Cover crop treatment (R) 

did not significantly impact the SPR. The highest value of SPR was observed under grass 

leaf dominated cover crop (1.66MPa) and lowest under broad leaf dominated cover crop 

treatment (1.60MPa). 

4.2. Soil Water Retention (SWR) 

 Data on soil water retention measured at the 0- to 5-cm depth under different 

cover crop and grazing treatments, collected at different times are provided in table 3. 
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The time (T) had a significant impact on SWR at all pressures. The mean SWR values of 

summer soils significantly increased by 55% at 0 kPa, 54% at -0.4 kPa, 55% at -1.0 kPa, 

54% at -2.5 kPa, 54% at -5.0 kPa, 58% at -10.0 kPa and 55% at -30.0 kPa as compared to 

pre-grazing soil samples. Cattle grazing (G) and cover crop treatments (R) did not 

significantly impact the SWR at all pressures. The cover crop control treatment had the 

lowest water retention capacity among three cover crops at the 0- to 5-cm depth. The B-

CC and G-CC followed almost similar trend (i.e., soil water retention pattern was same) 

for all pressures. The effects of cover crops (R) × time (T), grazing (G) × time (T), and 

cover crop (R) × grazing (G) × time (T) on SWR were not significant.  

4.3. Pore-Size Distribution (PSD) 

 Data on soil pore-size distribution (PSD) for the 0- to 5-cm depth under different 

cover crop and grazing treatments, collected at different times are provided in table 2. 

The time (T) had a significant impact on soil PSD at the 0- to 5-cm depth for coarse 

mesopores and micropores, however, no significant differences were observed for 

macropores and fine mesopores. Cattle grazing (G), and cover crop treatments (R) did not 

significantly impact soil PSD for all pore sizes. The effects of cover crops (R) × time (T), 

grazing (G) × time (T), and cover crop (R) × grazing (G) × time (T) on PSD were not 

significant. 

4.4. Cold Water Carbon Fraction (CWC) and Hot Water Carbon Fraction 

(HWC)  

 Data on soil cold water carbon and hot water carbon fractions measured at the 0- 

to 5- and 5- to 15-cm depths under different cover crop and grazing treatments, collected 
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at different times are provided in table 4. The time (T) had a significant impact on soil 

CWC at the 0- to 5- and 5- to 15-cm depths. The mean soil CWC under the post grazing 

increased by 62% and 41% at the 0- to 5- and 5- to 15-cm depths, respectively, compared 

with the pregrazing. Cattle grazing (G) and cover crop treatments (R) did not 

significantly impact the CWC for both depths. Under the cover crop treatment, the 

highest value of soil CWC was observed under control (22.51 μg C g−1 soil). No 

significant impact of R×T, G×T and R×G×T on CWC were observed.  

 The time (T) had a significant impact on soil HWC for the 0- to 5- and 5- to 15-

cm depths. The HWC under the post grazing numerically increased by 52.47% and 

37.79% at 0- to 5- and 5- to 15-cm depth respectively compared to the pregrazing. Cattle 

grazing (G) and cover crop treatments (R) did not significantly impact HWC for either of 

the depths. However, after short-term cattle grazing the mean values of soil HWC was 

found to be numerically decreased at both depths. In general, the soil HWC decreased 

with increase in depth. Under the cover crop treatment, the highest value of soil HWC 

was observed under G-CC (97.48 μg C g−1 soil) and the lowest under the cover crop 

control (86.79 μg C g−1 soil) at the 0- to 5-cm depth. No significant impact of R×T, G×T 

and R×G×T on HWC were observed.  

4.5. 1M HCl Carbon (OMC) and 6M HCl Carbon (SMC) Fractions 

 Data on soil 1M HCl carbon and 6M HCl carbon fractions measured at 0- to 5- 

and 5- to 15-cm depths under different cover crop and grazing treatments, collected at 

different times are provided in table 5. The time (T) did not significantly impact the soil 

OMC at the 0- to 5- and 5- to 15-cm depths. Cattle grazing (G) and cover crop treatments 

(R) did not significantly impact the OMC for both depths. Under the cover crop 
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treatments, the highest value of soil OMC was observed under the G-CC (439.5μg C g−1 

soil) and the lowest under the cover crop control (358.3μg C g−1 soil) at the 0- to 5-cm 

depth. No significant impact of R×T, G×T and R×G×T on OMC were observed. 

 The time (T) significantly influenced the soil SMC fraction for the 0- to 5-cm 

depth.  The mean soil SMC under the post grazing significantly decreased by 29% at the 

0- to 5-cm depth as compared to pre-grazed, but no significant differences were observed 

at the 5- to 15-cm depth. Cattle grazing (G) and cover crop treatments (R) did not 

significantly impact the SMC for both depths. Under the cover crops treatment, the 

highest mean value of soil SMC was registered under the G-CC (93.79 μg C g−1 soil) and 

the lowest under the B-CC (90.94 μg C g−1 soil) at the 0- to 5-cm depth. No significant 

impact of R×T, G×T and R×G×T on SMC were observed at both depths.  

4.6. Cold Water Nitrogen (CWN) and Hot Water Nitrogen (HWN) Fractions  

 Data on soil cold water nitrogen and hot water nitrogen fractions measured at 0- 

to 5- and 5- to 15-cm depths under different cover crop and grazing treatments, collected 

at different times are provided in Table 6. The time (T) had a significant impact on soil 

CWN fraction for the 0- to 5- and 5- to 15-cm depths. The mean soil CWN under the pre-

grazing was found to be significantly increased by 21% at the 0- to 5-cm depth and 28% 

at the 5- to 15-cm depth as compared to pre-grazing. Cattle grazing (G) did not 

significantly impact CWN for both depths. Cover crop had a significant impact on soil 

CWN at 0- to 5-cm depth. Under cover crops treatment the highest value of soil CWN 

was observed under G-CC (5.56 μg N g−1 soil) and lowest under B-CC (4.89 μg N g−1 

soil) at 0- to 5-cm depth. No significant impact of R×T, G×T and R×G×T on CWN were 

observed at both depths.  
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 The time (T) had a significant impact on soil HWN fraction at 0- to 5- and 5- 15-

cm depth. The mean soil HWN was found to be significantly increased by 33% at 0- to 5- 

cm and 37% at 5- to 15-cm depth as compared to pre-grazed. Cattle grazing (G), and 

cover crop treatments (R) did not significantly impact the HWN for both depths. Under 

cover crops treatment the highest value of soil HWN fractions was observed under G-CC 

(14.96 μg N g−1 soil) and lowest under CT (13.50 μg N g−1 soil) at 0- to 5-cm depth. No 

significant impact of R×T, G×T and R×G×T on HWN were observed at both depths.  

4.7. 1M HCl Nitrogen (OMN) and 6M HCl Nitrogen (SMN) Fractions 

 Data on soil 1M HCl nitrogen and 6M HCl nitrogen fractions measured at the 0- 

to 5- and 5- to 15-cm depths under different cover crop and grazing treatments, collected 

at different times are provided in table 7. The time (T) had a significant impact on soil 

OMN at 0- to 5- and 5- to 15-cm depth. The mean soil OMN was found to be 

significantly decreased by 31% at 0- to 5-cm and 36% at 5- to 15-cm depths as compared 

to pre-grazing. Cattle grazing (G), and cover crop treatments (R) did not significantly 

impact OMN for both depths. Under cover crop treatments the highest value of soil OMN 

was observed under G-CC (57.95 μg N g−1 soil) and lowest under CT (45.53 μg N g−1 

soil) at 0- to 5-cm depth. No significant impact of R×T, G×T and R×G×T on OMN were 

observed at both depths.  

 The time (T) had a significant impact on soil SMN at 0- to 5- and 5- to 15-cm 

depth. The soil SMN was found to be significantly decreases at 0- to 5- and 5- to 15-cm 

depths as compared to pre-grazing. Cattle grazing (G), and cover crop treatments (R) did 

not significantly impact SMN for both depths. Under cover crop treatments the highest 

value of soil SMN was observed under CT (9.05 μg N g−1 soil) and lowest under G-CC 
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(8.81 μg N g−1 soil) at 0- to 5-cm depth. No significant impact of R×T, G×T and R×G×T 

on SMN were observed at both depths.  

4.8. Microbial Biomass Carbon (MBC) and Microbial Biomass Nitrogen (MBN) 

 Data on soil microbial biomass carbon and microbial biomass nitrogen measured 

at the 0- to 5- and 5- to 15-cm depths under different cover crop and grazing treatments, 

collected at different times are provided in Table 8. The time (T) had a significant impact 

on soil MBC at the 0- to 5- and 5- to 15-cm depths. The mean soil MBC value under the 

summer (217.4 µg C g-1 dry soil) was significantly higher than that for the pre-grazing 

(118.3 µg C g-1 dry soil) and the post-grazing (103.9 µg C g-1 dry soil) at the 0- to 5-cm 

depth. The mean soil MBC of the summer (130.8) was significantly higher than that for 

the post grazing (75.28), which was significantly higher than the pre-grazing (42.63) at 

the 5- to 15-cm depth. Cattle grazing did not significantly impact the soil MBC at both 

depths, but the mean values of soil MBC decreased after the grazing at both depths. The 

cover crops treatments did not significantly impact the MBC at both depths. The highest 

mean value of soil MBC was observed in the grass leaf cover crops (158.9 µg C g-1 dry 

soil) and the lowest in broad leaf dominated cover crops (134.8 µg C g -1 dry soil) at 0- to 

5- cm depth. No significant impact of R×T, G×T and R×G×T on MBC were observed at 

both depths.  

Time (T) had a significant impact on soil MBN at the 0- to 5- and 5- to 15-cm depths. 

The mean soil MBN under the post-grazing and summer decreased by 46% and 44% than 

that for the pre-grazing at the 0- to 5-cm and trend was same for 5- to 15-cm depth, 

respectively. However, no significant differences among the post-grazing and the summer 

were observed on MBN for both the depths. Cattle grazing, and the cover crops did not 
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significantly impact the soil MBN at both depths. The highest mean value of soil MBN 

under the cover crop treatments (R) were observed in grass leaf cover crops (31.87 µg N 

g-1 dry soil) and the lowest in broad leaf cover crops (29.15 µg N g-1 dry soil). However, 

no significant impact of R×T, G×T and R×G×T on MBN were observed at both depths.  

4.9.  Soil Urease and β-glucosidase Enzyme Activities 

 Soil urease enzyme activity measured at the 0- to 5- and 5- to 15-cm depths under 

different cover crop and grazing treatments, collected at different time interval are 

provided in table 9. Time (T) had a significant impact on the urease enzyme activity at 

the 0- to 5- and 5- to 15-cm depths. The mean soil urease enzyme activity under the 

summer was significantly higher than that for the post-grazing (123%), which was 

significantly higher than the pre-grazing (195%) at the 0- to 5-cm depth. The mean urease 

enzyme activity under the summer was significantly higher than the post- and pre-grazing 

at the 5- to 15-cm depth. Grazing did not show any significant impact on the soil urease 

enzyme activity at the 0- to 5- and the 5- to15-cm depths. However, there was a decrease 

in the mean values of soil urease enzyme activity under the grazing was observed, 

compared with the un-grazing. Cover crop treatments (R) did not significantly impact the 

mean value of soil urease enzyme activity at the 0- to 5- (P=0.31) and 5- to 15-cm 

(P=0.30) depths. The highest soil urease enzyme activity was observed under the grass 

leaf cover crops (205.3 µg NH4-N g-1 soil 2h-1) and the lowest in cover crop control 

(152.3 µg NH4-N g-1 soil 2h-1). No significant effects of the R×T, G×T, and R×G×T on 

the soil urease enzyme activity were observed at both depths.  

The data of soil β-glucosidase enzyme activity measured at 0- to 5- and 5- to 15-cm 

depths at three times (i.e., pre-grazed, post-grazed, and post-grazed summer phase) as to 
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evaluate the influence of cover crop under the grazing and ungrazing treatments in ICLS 

(Table 9). The time (T) had a significant impact on the soil β-glucosidase enzyme activity 

at the 0- to 5- and 5- to 15-cm depths. The mean value of soil β-glucosidase enzyme 

activities under the summer phase was significantly lower than under the post-grazing 

and was significantly lower than the pre-grazing at the 0- to 5-cm depth. At the 5- to 15-

cm depth, the mean β-glucosidase enzyme activity under the summer was significantly 

lower than that under the post-grazing and the pre-grazing. Cattle grazing did not 

significantly impact the soil β-glucosidase enzyme activity at both depths. Cover crop 

treatments (R) did not significantly impact the mean soil β-glucosidase enzyme activity at 

the 0- to 5-cm depth, but significantly influenced this enzyme activity at the 5- to15-cm 

depth (the mean under the B-CC was significantly higher than that for the CT). The 

highest soil β-glucosidase enzyme activity was observed in grass leaf cover crop (54.01 

µmol pNP g -1 dry soil h-1) and the lowest in control treatment (46.77 µmol pNP g-1 dry 

soil h-1) at the 0- to 5-cm depth. No significant impact of R×T, G×T and R×G×T on the 

β-glucosidase enzyme observed at both depths. 
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CHAPTER 5  

DISCUSSION 

5.1. Impact of Cover Crops on Soil Properties  

The findings from this study showed that cover crops did not significantly impact 

soil BD, SPR, soil water retention, soil urease enzyme, MBC, MBN, and all carbon and 

nitrogen fractions (labile, stable and recalcitrant), but significantly impacted the soil β-

glucosidase activity at the 5- to 15-cm depth and CWN at 0- to 5-cm depth (Table 1-9). 

The mean β-glucosidase in the B-CC was significantly higher than that for the CT (no 

cover crops) (Table 9). This is in accord with the previous studies that showed that soil β-

glucosidase activity increased by including winter cover crops as compared to no cover 

crops in the South Dakota, USA (Abbasi et al., 2002; Hai-Ming et al., 2014). This is 

likely due to avability of plant residues which are consumed by the soil microorganism 

leading to decomposition of organic matter through the seceretion of enzymes mediated 

by both plants and soil microorganisms.  

Cover crops had no significant impact on soil bulk density and soil penetration 

resistance (Table 1). This is in accord with a previous study conducted at Lincoln 

University's Freeman farm during 2011 and 2012 to assess the effects of cover crop 

management on soil physical and biological properties reported a non significant 

decrease of 3.5% in soil bulk density observed under cover crop plots as compared with 

no-cover crop plots (Haruna and Nkongolo, 2015). Similar to our findings, a previous 

study conducted at typical midwestern Indiana reported that bulk density showed no 

significant changes between cover crop treatments (Rorick and Kladivko, 2017). Similar 

to our findings, a study in California reported that there was no difference in bulk density, 
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soil moisture, soil resistance due to cover crops (Karlen et al., 1997). No significant 

differences in this study is likely due to the reason that various blends of cover crops help 

in elevating the problem of soil compaction created by grazing due to differences in root 

growth pattern which break the soil and helps in movement of soil air and water.   

Cover crops did not significantly impact soil water retention at the 0- to 5-cm 

depth (Table 2). The cover crop control treatment had the lowest water retention capacity 

and the B-CC and G-CC have almost similar trend for all pressures in this study, and no 

significant differences were observed under different cover crops. Similar trend was 

reported by Beehler et al. (2017) in the Midwest Corn Belt where cover crop effects on 

both total organic C and soil water retention levels were not statistically significant. 

Control treatment was found to have lowest water retention capacity. In this study, soil 

water retention of broadleaf dominated cover crop and grass leaf dominated cover crop 

shows no significant differences and hence in short term period the type of cover crop 

had no significant impact on soil water retention, but the retention capacity was higher as 

compare to cover crop control treatment. Similar to our results, a previous study reported 

that a diversified crop rotation system increased the multiple use of land and may have 

the potential to improve soil organic matter content, nutrient cycling, and soil water 

retention capacity as compared to less diversified cropping system (Davinic et al., 2013). 

The reason behind no significant differences may be because this was short-term study 

and it is apparent that a long-term experiment would be required to detect changes in soil 

physical properties because of the soil management practices.  

Cover crops had no significant impact on soil MBC and MBN (Table 8). This 

differs from McDaniel et al. (2014) who found that cover crop rotation increases the soil 
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microbial biomass C by 20.7%. In contrast to our study findings, Jonasson et al. (1996) 

reported that diversifying the monoculture by adding one or more crops increased the soil 

C by 3.6% and MBC by 20% while increasing N by 5.3% and MBN by 26.1%. No 

significant differences in this study is likely because of the short-term impact of cover 

crops on soil microbial biomass was evaluated under which the nature and biochemistry 

of plant materials are important, a long-term study needed to be conducted to quantify the 

impact of cover crops.  

 Cover crops significantly impact the cold-water nitrogen at 0- to 5-cm depth and 

rest soil C and N fractions were not significantly impacted by cover crops at both the 

depths (Table 4 -7). A similar study found that the hot water extractable carbon showed 

higher biodegradability rate than the cold water carbon extraction (Gregorich et al., 

2003). The grass leaf cover crop showed significantly higher cold water nitrogen 

fractions and it is likely because the grass leaf cover crop helps in reducing the nitrogen 

losses through leaching. Significant increase in grass leaf dominated cover crop is likely 

due to the properties of grass to decrease the nitrogen leaching loss in soils from surface 

to subsurface horizon due to nature of their roots. No significant differences in this study 

is likely due to effect of several environmental and land management practices, long term 

study is needed to monitor the changes in different fractions of carbon and nitrogen, 

availability differences in temperature, water content and the nature of plant residues may 

be other reason associated with it.  

 Cover crops had no significant impact on soil urease enzyme activity for both soil 

depths (Table 9). The urease activity increased under cover crop treatment as compared 

with the control cover crop treatments but was not significant. This is in contrast with a 
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previous study counducted in southwestern part of USA by Hamido and Kpomblekou-A 

(2009) who reported that incorporation of cover crops such as black oat (Avena strigosa), 

crimson clover (Trifolium incarnatum L.), or crimson clover–black oat mixed into 

rotations may increase enzyme activities in soils. A similar trend was reported in a study 

conducted in South China that reported that incorporation of winter cover crops into 

rotations may increase enzyme activities and microbial community in soil and therefore 

improve soil quality (Hai-Ming et al., 2014). Non significant differences in this study are 

likely due to impact of land management practices i.e., nature of plant residues and 

climatic conditions etc for a short-term period. Furthermore, incorporation of plant 

rasidues (cover crops) into the soils which helps in promoting soil nutrient cycling, and 

temperature and moisture plays a critical role to activate the enzimatic processes.  

Cover crops had no significant impact on soil beta-glucosidase enzyme activity 

for both the soil depths (Table 9). Beta-glucosidase enzyme activity increases under 

cover crop treatmenst as compared to that under no cover crop treatments but the 

differences were non-significant. This is in accord with previous study conducted in 

Southern China to evaluate the winter cover crop residues impact on soil enzymes which 

showed that beta-glucosidase activities reached peak at booting stage of crop and found 

that incorporation of winter cover crops into the exesting cropping system may increase 

the enzymes activities in soil (Hai-Ming et al., 2014). This is in accord with previous 

study conducted to compare a fallow-winter wheat (Triticum aestivumL.) rotation to 

several cover crop-winter wheat rotations under rainfed and irrigated conditions in the 

semiarid US High Plains reported that cover crop had no significant impact on soil beta-

glucosidase enzyme activity (Calderon et al., 2016). Non significant differences are likely 
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due to short-term cover crop study treatments, however, changes can be observed under 

different mixtures of cover crop and it is apperent that long term study is required to 

detect the changes.  

5.2. Impact of Grazing on Soil Properties   

The findings from this study demonstrated that cattle grazing did not significantly 

impact soil water retentation, soil urease enzyme, soil betaglucosidase enzyme, MBC, 

MBN, carbon and nitrogen fractions (labile, stable and recalcitrant) (Table 2 – 9) except 

soil bulk density (Table 1). 

Soil bulk density was found to be significantly increased by 1.58% after the 

grazing. This is in accord with a previous study that reported grazing significantly 

impacted soil bulk density, high values of soil bulk density values generally found at the 

0- to 10-cm soil depth when heavy grazing is applied (Pulido et al., 2016). Similarly, 

livestock trampling led to soil compaction and increased soil bulk density at shallow 

depths and however the damage is not severe and can be rectified with appropriate 

measures (Hamza and Anderson, 2005). This is in contrast with previous results reported 

under livestock grazing winter residues, weeds or cover crops did not significantly 

increases soil bulk density and these measures helps in elevating the problem (Fernandez-

Rivera et al., 2002). The significant differences in the study is likely due to changes in 

land management practices and prevailing weather conditions, most importantly soil 

moisture content. This part of South Dakota comes under arid region receives little 

autumn rainfal and in this study the grazing was applied during November when the soil 

was dry which helps to reduce soil compaction problems. A similar finding was reported 
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where infilteration and compaction is minimized when the soils are dry (Maughan et al., 

2009).  

Grazing did not significantly impact the soil water retention for all the soil water 

pressures at the 0- to 5-cm depth (Table 2). This is in contrast with previous study 

conducted to eveluate the long-term overgrazing-induced changes in topsoil water-

retaining capacity in a typical steppe reported that water retention capacity of the 

grassland soil decreased significantly (by 23.5%) after long-term over-grazing and long-

term-grazed soil had significantly lower water-retaining capacity compared with 

ungrazed soil (Li et al., 2017). A study conducted at southeast Idaho reported that in 

addition to a variety of other factors, management decisions (grazing and rest) can have 

substantial influence upon soil-water content and that soil-water content can vary 

substantially as a result of animal impact and the duration of grazing (Weber and 

Gokhale, 2011). This is in contrast with a previous study showed that grazing intensity 

influenced changes in available water holding capacity at 0- to 5-cm depth (Mapfumo et 

al., 2000). The non significant differences is likely due to external meteorological factors, 

temperature most strongly governed grassland soil water evaporation. Long term grazing 

needs to be conducted to know its impact on soil water retention. Soil texture (fraction of 

sand, silt and clay) is an important parameter which influences soil water retention 

(Zhuang et al., 2001). Grazing intensities affect SWR more than that of season of grazing 

(Naeth et al., 1991).  

Grazing did no affect soil MBC and MBN (Table 8). This is in accord with a 

previous finding in Mongolia by Liu et al. (2012). This is in accord with a previous study 

conducted to acesses the effects of grazing and nitrogen fertiliser on the soil microbial 
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biomass under permanent pasture reported that values for microbial C under cutting and 

grazing were not significantly different (Bristow and Jarvis, 1991). This contrasts with a 

previous four decades long-term grazing impact on soil MBC study conducted in China 

that reported significant decreases in MBC under grazing treatment (He et al., 2017). 

Aditionally, previous study in Brazil reported that high grazing intensity during the 

pasture cycle may cause a decrease in soil MBC and have a negative effect on the 

microbial biomass during the succeeding crop in a ICLS (Silva et al., 2015). In contrast 

with our study result findings, a previous study reported the high rate of microbal activity 

at surface layer is due to availibility of plant residues, low chemical degradibility of N, 

increase in soil temperature and water vapour movement (Schimel and Parton, 1986). The 

reason behind no significant differences may be due to short-term study and the grazing 

time, grazing intensities and nature of grazing materials plays an important role. It is 

apparent that long term experiment would be required to detect changes in soil microbial 

properties as a result of the soil management practices under ICLS. 

This study demonstrated that grazing did not significantly impacted all types of 

carbon and nitrogen fractions i.e., labile, stable and recalcitrant, for both depths (Table 4-

7). Similar to our findings, Gregorich et al. (2003) reported the changes in soil CWC is 

associated with land use and management practices. Contrary to our findings, Ghani et al. 

(2003) reported that under a two year experiment consist of different grazing intensities 

on allphanic soils in New Zealand showed that intensively grazing reduces the soil stable 

carbon under dairy grazed system as compare to sheep grazing i.e., less grazing 

intensities. To describe the reason behind the no significant changes in our findings, Belić 

et al. (2011) reported that the differences between the cold and hot water soil carbon are 
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due to changes in land use and management practices and importantly hot water is more 

sensitive (indicative) to SOC as compared to CWC. Higher clay content and absorption 

capacity of the soil like vertisols prevent leaching of SOC hence enhancing the soil 

extractable carbon content in the soils. This is likely due to negative correlation of 

grazing with SOC/MBC in initial years of study (He et al., 2017).   

 Grazing had no significant impact on soil urease enzyme (Table 9). This agrees 

with a previous study conducted to understand the seasonal changes in urease activities in 

mixed prairie and fescue grassland Ah horizons reported that enzymatic activities are 

highest in samples from the grassland site regardless of grazing intensity (Dormaar et al., 

1984). In contrast to our findings, Acosta-Martínez et al. (2007), conducted a stuty in 

Texas, reported that urease activity was higher in grazed plots as compare to ungrazed 

plots. No significant differences is likely due to nature of plant residues and its 

degredation in soils and other possiable reason may be due to short-term period of 

grazing treatment and grazing intensity thus it is apperent that long term study is needed 

to monitor the changes in urease activity (Reddy et al., 1987). Urease activity is strongly 

related with vegetation, quality of organic materials and fluctuation in nutrient levels 

(Palma and Conti, 1990; Speir et al., 1984; Stott and Hagedorn, 1980). Maximum 

catalytic activity of soil urease enzyme occures at 65 degree celcius (Blakeley and 

Zerner, 1984) and it is inactive above 70 degree celsius (Frankenberger and Tabatabai, 

1982). The optimum pH for urease lies between 6.0 to 7.0 (Boyd and Mortland, 1985; Lai 

and Tabatabai, 1992). Urease activity increased under vegetation as compared to 

vegetation free sites (Reddy et al., 1987).  
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Grazing had no significant impact on soil beta-glucosidase enzyme activity (Table 

9). In contrast to our findings, George et al. (2013) reported that grazing treatment had 

47% higher beta-glucosidase activity as compared to that under the ungrazed treatment. 

A study conducted to evaluate the correlations of soil enzyme activity and carbon and 

nitrogen mineralization reported that soil β-glucosidase activity in the integrated crop–

livestock system was significantly lower than the other systems and reducing sugar C was 

negatively correlated with β-glucosidase activity and positively with exoglucanase 

activity (Tian et al., 2010). No significant differences in soil enzymes in this study is 

primarily due to climatic conditions like deposition of snow on soils which can alter soil 

microbial properties and nature of grazing materials, time and intensity of grazing are 

important factors. 

5.3. Soil Properties Changes With Sampling Time 

The finding from this study showed that sampling time significantly impacted the 

soil BD, soil water retentation, soil urease enzyme, MBC, MBN, and on all carbon and 

nitrogen fractions (labile, stable and recalcitrant) except for pore size distribution 

(macropores and fine mesopores) and soil acid fractions. The result from this study 

reveals that time significantly decreased soil BD. This is in accord with a previous study 

conducted in Pana, Illinois, from 2002 to 2005 by the Tracy and Zhang found the winter 

grazing is more prone to soil compaction issues, as time of grazing is important factor 

which impact the soil compaction (Tracy and Zhang, 2008). In Brookings, South Dakota 

the soils were dry on September, 2016 (first sampling time), and little bit moist as 

compare to first sampling time, collected on November 21st 2016 (Second sampling 

time), and wet in July 1st 2017 due to snow melting (3rd samplign time). Summer soil (3rd 
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sampling time) showed decreased in soil BD, the reason behind this was high soil 

moisture content condition due to snow melting. After the grazing the above ground 

biomss was removed and below ground biomass reduced due to cattle grazing. Snow 

melts and increase in soil moisture content cause reduction in soil BD at a significant 

level. This is in accord with a previous findings which showed that high moisture 

containing soil is more prone to compaction issue (Bell et al., 2011). Similar to our 

findings, a two-year study in Florida in 2013 on an Ultisol, Dothan sandy loam soil 

involving two grazing treatments (i.e. grazed and ungrazed) by (George et al., 2013) 

concluded that grazing significantly impacted soil BD only at 0- to 5- cm depth, few 

differences were detected at depths lower than 5 cm (George et al., 2013). Contrary to our 

results, a study in Argentina reported that cattle grazing will not cause the soil 

compaction if the grazing component under ICLS is managed properly (Fernández et al., 

2015). 

Sampling time significantly impacted the soil carbon fractions (labile, stable and 

recalcitrant) except OMC at both the soil depths. The mean values of soil CWC increases 

by 62% and 41% at 0- to 5- cm and 5- to 15- cm depth, respectively, as compaed to the 

pregrazed and this is  likely due to the changes associated with land use and management 

practices, soil moisture and temperature also impact the processes. The differences 

between the cold and hot water soil carbon fractions are likely due to several factors 

associated with change in land use and management practices and soil rhizosphere 

microbial community also play important role (Chantigny, 2003; Ćirić et al., 2016; 

Gregorich et al., 2003). Similar trend was reported under HWC which was found to be 

numerically increases by 52.47% and 37.8% at 0- to 5-  and 5- to 15-cm depths, 
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respectively, as compaed to the pregrazed. Higher clay content and absorption capacity of 

the soil like vertisols prevent leaching of SOC hence enhancing the soil extractable 

carbon content in the soils (Belić et al., 2011). As the depth increases the value of HWC 

decreases, similar trend was reported in a study where decrease in the soil cold water 

carbon as we move to lower depths into the soils Hamkalo and Bedernichek (2014).  

Sampling time significantly impacted the soil MBC and MBN (Table 8). The 

MBC significantly increases as the time increases and MBN decreases because nitrogen 

is used by the soil microorganism as a source of energy. The summer soil sample had 

significantly higher MBC as compared to pre-grazing which may be due to the increase 

in soil temperature and the activation of metabolic processes of soil microorganism. This 

is in accord with a previous study conducted in western China reported that snow 

removal increases the soil MBC (Tan et al., 2014). Similar to our findings, a study 

conducted to evaluate the warming effects on microbial community found that warming 

significantly enhanced the microbial metabolic activity (Schindlbacher et al., 2011).   

This study revealed that time significantly impacted soil urease enzyme activity 

for both the soil depths (Table 9). Differences are likely due to changes in climatic 

conditions. In Brookings, South Dakota, the soils collected on the first sampling were dry 

soils with high temperature. The second soil samples were collected under high soil 

moisture and low temperature as compared to the first sampling and the third sample was 

collected under wet soil conditions with high temperature. The urease activity was higher 

under summer soil sample due to high soil moisture content and soil temperature which 

are low under first sampling. This is in accord with a previous study reported that urease 

activity is highly influenced by moisture and temperature fluxes and urease activity found 
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to be highly variable parameters when the spatial varibility and chemical parameters are 

tested (Bonmati et al., 1991). Similar to our findings, researcher reported that urease 

activity was higher in surface depth as compare to subsurface(McGarity and Myers, 

1967; Myers and McGarity, 1968).  

Time significantly impacted the soil beta-glucosidase activity for both depths 

(Table 9). It is considered as a predictor of soil organic matter decomposition and plays a 

key role in providing energy for microorganisms. The soil beta-glucosidase enzyme 

activity during summer was significantly (P<.0001) lower than that of pre-grazing and 

post-grazing at the 0- to 5-cm depth. Potential reason behind this may be due to soil 

moisture and temperature fluxes which affect the rate of decomposition. Stott et al. 

(2010) observed the factors that affect the expected rage of β-glucosidase were inherent 

soil organic matter, soil texture, and climate. BG activity plays an important role in plant 

decomposition and SOC cycling and reported that soil and climate type has more impacts 

on β-glucosidase enzyme activity. Microbial degradation of cellulose to glucose and 

carbon cycle is affected by a rate-limiting enzyme soil β-glucosidase.  
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CHAPTER 6 

CONCLUSIONS 

 Soil bulk density, SPR, SWR, PSD, carbon and nitrogen fractions (labile, stable 

and recalcitrant), MBC/MBN, urease and beta-glucosidase activities were quantified to 

determine the short-term impacts of cover crops and grazing in an ICLS on soil 

properties. The present study site was located at 44°20'34.8"N, 96°48'14.8"W, near 

Brookings, South Dakota, USA. The experiment was designed as a randomized complete 

block design with four replications. Cover crop blends (grass leaf and broad leaf 

dominated cover crops), grazing, and control treatments were used in 2016.  

 The main findings of this study are as follows: 

Cover crop treatments did not significantly impact the soil ρb. However, grazing 

significantly increased the soil ρb. Time significantly decreased the soil ρb. No significant 

interactions of grazing by cover crops on ρb were observed. Cover crop treatments did not 

significantly impact the SPR. Cover crop and grazing treatments did not significantly 

impact the SWR. However, the time (T) had a significant impact on SWR for all 

pressures and no significant interactions were observed on SWR. The cover crop and 

grazing treatments had no significant impact on soil PSD. The time (T) had a significant 

impact on soil PSD at the 0- to 5-cm depth for coarse mesopores and micropores, 

however, no significant differences were observed for macropores and fine meso pores. 

No significant interaction was observed on PSD. The cover crop treatments significantly 

impacted the CWN at 0- to 5-cm depth, however, significant differences were observed 

on the rest all forms of soil carbon and nitrogen fractions. Grazing did not affect the soil 

carbon and nitrogen fractions. The sampling time (T) had a significant impact on soil 
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CWC and HWC at the 0- to 5- and 5- to 15-cm depths and SMC for only 0- to 5-cm 

depth. No significant interactions were observed on soil C and N fractions. The cover 

crop and grazing treatments had no affect on soil MBC. The time (T) had a significant 

impact on soil MBC at the 0- to 5- and 5- to 15-cm depths. The cover crop treatments had 

no impact on soil MBN. Grazing did not significantly impact the soil MBN. The time (T) 

had a significant impact on soil MBN at the 0- to 5- and 5- to 15-cm depths. No 

significant interaction was observed on soil MBC and MBN. The cover crop and grazing 

treatments had no significant impact on soil urease activity. The time (T) had a 

significant impact on the urease enzyme activity at the 0- to 5- cm and 5- to 15- cm 

depths. No significant interactions were observed on soil urease activity for both depths. 

Cover crop significantly impacted soil β-glucosidase activity only for 5- to 15-cm depths 

but no significant differences were observed at 0- to 5-cm depth. Grazing did not 

significantly impact the soil β-glucosidase activity. The time (T) had a significant impact 

on the soil β-glucosidase enzyme activity at the 0- to 5- and 5- to 15-cm depths. No 

significant interactions were observed on soil β-glucosidase activity. 

I conclude from above results that the cover crop treatments did not significantly 

impact all soil properties that were studied. Grazing significantly impacted ρb but not 

others. Time significantly impacted the ρb, SWR, PSD, CWC, HWC, SMC, MBC, MBN, 

urease enzyme, and β-glucosidase enzyme activities. Since, under time the weather 

conditions (i.e., temperature, precipitation and snow cover) directly influence and alter 

the soil habitat. Since some of the soil properties responded negatively to grazing and 

cover crop treatments under ICLS during this short-term period, it is apperant that long-
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term experiments are needed to detect changes in soil properties because of the soil 

management practices under ICLS.  
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TABLES AND FIGURES 

 

Table 1. Mean soil bulk density (ρb) and soil penetration resistance (SPR) at the 0- to 5-

cm depth under different cover crop, grazing, and time treatments in ICLS. 

Treatments† ρb SPR 

 Mg m-3 MPa 

Cover Crops (R)  

    B-CC 1.30a†† 1.60a 

    G-CC 1.32a 1.66a 

    CT 1.29a 1.65a 

Grazing (G)   

    Yes 1.32a - 

    No 1.30b - 

Time (T)   

    Pre 1.35a - 

    Summer 1.28b
  - 

  P>F 

R 0.88 0.66 

G 0.64 - 

R×G 0.44 - 

T 0.008 - 

R×T 0.80 - 

G×T 0.84 - 

R×G×T 0.51   
†
B-CC, Broadleaf dominated cover crops; G-CC, Grassleaf dominated cover crops; CT, Control; Pre, Pre-

grazing, soil samples were taken before grazing on Sep 2016; Post, post-grazing, soil samples were 

collected after grazing on Nov 21st, 2016; Summer, Summer phase, soil samples were collected next year in 

summer on June 2017.  
††

Means within the same column followed by different small letters are significantly different at P<0.05 for 

the cover crop, grazing, and time. 
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Table 2. Mean soil water retention (m3 m-3) at the 0- to 5-cm depth under different cover 

crop, grazing, and time treatments in ICLS. 

Treatments† 

Soil Water Pressure (-kPa)  

0.01 0.4 1 2.5 5 10 30 

0-5 cm 

Soil Water Content (m3 m-3) 

Cover crops (R)  
     

    B-CC 0.434a†† 0.432a 0.431a 0.431a 0.429a 0.418a 0.400a 

    G-CC 0.433a 0.432a 0.431a 0.430a 0.429a 0.419a 0.416a 

    CT 0.410a 0.408a 0.407a 0.406a 0.405a 0.397a 0.393a 

Grazing (G)        

    Yes 0.442a 0.441a 0.440a 0.439a 0.438a 0.427a 0.408a 

    No 0.420a 0.418a 0.417a 0.416a 0.415a 0.407a 0.402a 

Time (T)        

   Pre 0.336b 0.335b 0.334b 0.334b 0.333b 0.321b 0.317b 

  Summer 0.521a 0.519a 0.518a 0.517a 0.516a 0.508a 0.492a 
 Analysis of Variance (P>F) 

R 0.88 0.88 0.88 0.88 0.89 0.90 0.79 

G 0.50 0.50 0.49 0.49 0.48 0.53 0.97 

R×G 0.10 0.10 0.10 0.09 0.09 0.08 0.35 

T <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

R×T 0.29 0.29 0.29 0.29 0.30 0.31 0.26 

G×T 0.57 0.58 0.58 0.59 0.59 0.65 0.38 

R×G×T 0.44 0.44 0.44 0.44 0.44 0.49 0.89 
†
B-CC, Broadleaf dominated cover crops; G-CC, Grassleaf dominated cover crops; CT, Control; Pre, Pre-

grazing, soil samples were taken before grazing on Sep 2016; Post, post-grazing, soil samples were 

collected after grazing on Nov 21st, 2016; Summer, Summer phase, soil samples were collected next year in 

summer on June 2017.  
††

Means within the same column followed by different small letters are significantly different at P<0.05 for 

the cover crop, grazing, and time. 
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Table 3. Mean soil pore size distribution (m3 m-3) at the 0- to 5-cm depth under different 

cover crop, grazing, and time treatments in ICLS. 

  Pore Size Distribution 

Treatments† 

Macropores Coarse mesopores Fine mesopores Micro pores 

(> 1000 μm) (60-1000 μm) (10-60 μm) (< 10 μm) 

------------------------------- (m3 m-3) ----------------------------------- 

---------------------------------- 0-5-cm --------------------------------- 

Cover crops (R)   
  

    B-CC  0.001a†† 0.003a 0.029a 0.400a 

    G-CC 0.001a 0.003a 0.013a 0.416a 

    CT 0.001a 0.002a 0.013a 0.392a 

Grazing (G)     

    Yes 0.001a 0.002a 0.029a 0.408a 

    No 0.001a 0.003a 0.012a 0.402a 

Time (T)     

   Pre 0.001a 0.001b 0.016a 0.317b 

   Summer 0.001a 0.004a 0.023a 0.492a 
 Analysis of Variance (P>F) 

R 0.38 0.37 0.48 0.79 

G 0.31 0.35 0.22 0.97 

R×G 0.89 0.41 0.26 0.35 

T 0.92 0.0005 0.49 <0.0001 

R×T 0.07 0.42 0.60 0.26 

G×T 0.31 0.26 0.35 0.38 

R×G×T 0.87 0.81 0.25 0.89 
†
B-CC, Broadleaf dominated cover crops; G-CC, Grassleaf dominated cover crops; CT, Control; Pre, Pre-

grazing, soil samples were taken before grazing on Sep 2016; Post, post-grazing, soil samples were 

collected after grazing on Nov 21st, 2016; Summer, Summer phase, soil samples were collected next year in 

summer on June 2017.  
††

Means within the same column followed by different small letters are significantly different at P<0.05 for 

the cover crop, grazing, and time. 

 

 

 

 

 

 

 

 

 



 
 

66 

 
 

Table 4. Mean soil cold water carbon (CWC) and hot water carbon (HWC) fraction at the 

0- to 5- and 5- to 15-cm depth under different cover crop, grazing, and time treatments in 

ICLS. 

Treatments† 
CWC HWC 

0-5-cm 5-15-cm 0-5-cm 5-15-cm 

 μg C g−1 soil 

Cover crops (R)     

    B-CC 21.29a†† 21.47a 90.74a
  69.78a 

    G-CC 20.74a 21.26a 97.48a 66.18a 

    CT 22.51a 20.27a 86.79a 69.25a 

Grazing (G)     

    Yes 20.56a 21.31a 88.06a 65.94a 

    No 21.81a 21.04a 95.70a 69.77a 

Time (T)     

   Pre 16.62b 17.55b 73.39b 57.39a 

   Post 26.00a 24.74a 111.9a 79.08b 
 Analysis of Variance (P>F) 

R 0.66 0.74 0.06 0.06 

G 0.42 0.92 0.09 0.09 

R×G 0.81 0.34 0.83 0.83 

T <0.0001 <0.0001 <0.0001 <0.0001 

R×T 0.60 0.63 0.64 0.64 

G×T 0.98 0.45 0.14 0.14 

R×G×T 0.79 0.64 0.62 0.62 

 
†
B-CC, Broadleaf dominated cover crops; G-CC, Grassleaf dominated cover crops; CT, Control; Pre, Pre-

grazing, soil samples were taken before grazing on Sep 2016; Post, post-grazing, soil samples were 

collected after grazing on Nov 21st, 2016; Summer, Summer phase, soil samples were collected next year in 

summer on June 2017.  
††

Means within the same column followed by different small letters are significantly different at P<0.05 for 

the cover crop, grazing, and time. 

 

 

 

 

 

 

 

 

 

 



 
 

67 

 
 

Table 5. Mean soil acid hydrolysis carbon fraction measured using the 1M HCl (OMC) 

and 6M HCl (SMC) methods at the 0- to 5- and 5- to 15-cm depth different cover crop, 

grazing, and time treatments in ICLS. 

 

Treatments† 

OMC SMC 

0-5-cm 
5-15-

cm 
0-5-cm 5-15-cm 

 μg C g−1 soil 

Cover crops (R)     

    B-CC 370.6a†† 321.5a 90.94a 79.90a 

    G-CC 439.5a 343.0a 93.79a 92.07a 

    CT 358.3a 221.4a 91.86a 63.04a 

Grazing (G)     

    Yes 403.0a 339.8a 90.93a 84.19a 

    No 390.8a 290.3a 93.15a 79.53a 

Time (T)     

   Pre 421.3a 319.2a 108.3a 75.57a 

   Post 370.1a 301.0a 76.15b 87.22a 
 Analysis of Variance (P>F) 

R 0.26 0.13 0.95 0.95 

G 0.93 0.71 0.79 0.79 

R×G 0.96 0.21 0.93 0.93 

T 0.14 0.58 0.007 0.08 

R×T 0.63 0.42 0.61 0.61 

G×T 0.17 0.35 0.29 0.29 

R×G×T 0.20 0.41 0.78 0.78 
†
B-CC, Broadleaf dominated cover crops; G-CC, Grassleaf dominated cover crops; CT, Control; Pre, Pre-

grazing, soil samples were taken before grazing on Sep 2016; Post, post-grazing, soil samples were 

collected after grazing on Nov 21st, 2016; Summer, Summer phase, soil samples were collected next year in 

summer on June 2017.  
††

Means within the same column followed by different small letters are significantly different at P<0.05 for 

the cover crop, grazing, and time. 
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Table 6. Mean soil cold water nitrogen (CWN) and hot water nitrogen (HWN) fraction 

measured at the 0- to 5-cm cm and 5- to 15-cm depth under different cover crop, grazing, 

and time treatments in ICLS. 

 

 

Treatments† 
CWN HWN 

0-5-cm 5-15-cm 0-5-cm 5-15-cm 

 --------------- μg C g−1 soil ---------------- 

Cover crops (R)     

    B-CC 4.89b†† 4.34a 13.83a† 10.05a 

    G-CC 5.56a 4.38a 14.96a 9.59a 

    CT 5.47ba 4.45a 13.50a 9.83a 

Grazing (G)     

    Yes 5.20a 4.32a 13.48a 9.46a 

    No 5.33a 4.41a 14.70a 10.06a 

Time (T)     

   Pre 4.77b 3.84b 12.00b 8.33b 

   Post 5.78a 4.92a 16.43a 11.31a 
     

 Analysis of Variance (P>F) 

R 0.06 0.97 0.06 0.58 

G 0.83 0.81 0.18 0.18 

R×G 0.19 0.55 0.35 0.78 

T 0.0008 0.0004 <0.0001 <0.0001 

R×T 0.09 0.52 0.11 0.48 

G×T 0.85 0.98 0.65 0.90 

R×G×T 0.14 0.92 0.25 0.60 
†
B-CC, Broadleaf dominated cover crops; G-CC, Grassleaf dominated cover crops; CT, Control; Pre, Pre-

grazing, soil samples were taken before grazing on Sep 2016; Post, post-grazing, soil samples were 

collected after grazing on Nov 21st, 2016; Summer, Summer phase, soil samples were collected next year in 

summer on June 2017.  
††

Means within the same column followed by different small letters are significantly different at P<0.05 for 

the cover crop, grazing, and time.  
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Table 7. Mean soil acid hydrolysis nitrogen fraction measured using the 1M HCl (OMN) 

and 6M HCl (SMN) methods at the 0- to 5- and 5- to 15-cm depth under different cover 

crop, grazing, and time treatments in ICLS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

†
B-CC, Broadleaf dominated cover crops; G-CC, Grassleaf dominated cover crops; CT, Control; Pre, Pre-

grazing, soil samples were taken before grazing on Sep 2016; Post, post-grazing, soil samples were 

collected after grazing on Nov 21st, 2016; Summer, Summer phase, soil samples were collected next year in 

summer on June 2017.  
††

Means within the same column followed by different small letters are significantly different at P<0.05 for 

the cover crop, grazing, and time. 

 

 

 

 

 

 

 

 

 

 

 

Treatments† 
OMN SMN 

0-5-cm 5-15-cm 0-5-cm 5-15-cm 
 μg N g−1 soil 

Cover crops (R)    

    B-CC 46.99a†† 41.87a 8.94a†† 6.25a 

    G-CC 57.95a 40.35a 8.81a 7.16a 

    CT 45.53a 27.19a 9.05a 6.53a 

Grazing (G)     

    Yes 48.99a 40.47a 7.95a 6.05a 

    No 52.47a 36.90a 9.55a 7.09a 

Time (T)     

   Pre 60.22a 46.96a 15.94a 11.39a 

   Post 41.94b 29.70b 1.88b 1.95b 
     

 Analysis of Variance (P>F) 

R 0.35 0.35 0.93 0.87 

G 0.47 0.47 0.29 0.55 

R×G 0.63 0.63 0.82 0.88 

T 0.024 0.024 <0.0001 <0.0001 

R×T 0.59 0.59 0.88 0.93 

G×T 0.24 0.23 0.38 0.67 

R×G×T 0.09 0.09 0.94 0.85 
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Table 8. Mean soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen 

(MBN) at the 0- to 5- and 5- to 15-cm depth under different cover crop, grazing, and time 

treatments in ICLS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

†
B-CC, Broadleaf dominated cover crops; G-CC, Grassleaf dominated cover crops; CT, Control; Pre, Pre-

grazing, soil samples were taken before grazing on Sep 2016; Post, post-grazing, soil samples were 

collected after grazing on Nov 21st, 2016; Summer, Summer phase, soil samples were collected next year in 

summer on June 2017.  
††

Means within the same column followed by different small letters are significantly different at P<0.05 for 

the cover crop, grazing, and time. 

 

 

 

 

 

 

 

 

 

Treatments† 

MBC MBN 

0-5-cm 
5-15-

cm 
0-5-cm 

5-15-

cm 
 µg C g-1 dry soil µg N g-1 dry soil 

Rotation (R)     

    B-CC 134.8a †† 85.84a 29.15a†† 18.41a 

    G-CC 158.9a 89.57a 31.87a 13.56a 

    CT 145.2a 63.76a 30.50a 13.24a 

Grazing (G)     

    Yes 146.2a 81.79a 29.50a 16.28a 

    No 146.8a 83.67a 31.18a 14.88a 

Time (T)     

   Pre 103.9b 42.63c 43.21a 19.80a 

   Post 118.3b 75.28b 23.94b 13.78b 

   Summer 217.4a 130.8a 24.38b 12.72b 
 Analysis of Variance (P>F) 

R 0.40 0.14 0.84 0.08 

G 0.94 0.33 0.67 0.79 

R×G 0.35 0.29 0.28 0.91 

T <0.0001 <0.0001 0.0006 0.008 

R×T 0.37 0.65 0.53 0.32 

G×T 0.37 0.88 0.86 0.36 

R×G×T 0.85 0.54 0.65 0.65 
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Table 9. Mean soil urease and β-glucosidase activity at the 0- to 5- and 5- to 15-cm depth 

under different cover crop, grazing, and time treatments in ICLS. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†
B-CC, Broadleaf dominated cover crops; G-CC, Grassleaf dominated cover crops; CT, Control; Pre, Pre-

grazing, soil samples were taken before grazing on Sep 2016; Post, post-grazing, soil samples were 

collected after grazing on Nov 21st, 2016; Summer, Summer phase, soil samples were collected next year in 

summer on June 2017.  
††

Means within the same column followed by different small letters are significantly different at P<0.05 for 

the cover crop, grazing, and time. 

 

 

 

 

 

 

 

 

Treatments† 
Urease β-glucosidase 

0-5-cm 5-15-cm 0-5-cm 5-15 cm 
 µg NH4-N g-1 soil 2h-1 µmol pNP g-1 dry soil h-1 

Cover crops (R)    

    B-CC 205.3a†† 176.8a 47.31a 36.51a 

    G-CC 209.6a 157.6a 54.01a 33.30ab 

    CT 189.9a 152.3a 46.77a 30.40b 

Grazing (G)  
  

    Yes 197.4a 162.7a 50.04a 34.87a 

    No 208.3a 165.2a 49.77a 33.43a 

Time (T)   
  

   Pre 116.0c 103.8b 67.76a 45.81a 

   Post 153.6b 115.7b 59.30b 45.32a 

   Summer 342.2a 273.0a 22.59c 10.88b 
 Analysis of Variance (P>F) 

R 0.31 0.30 0.09 0.11 

G 0.18 0.62 0.68 0.97 

R×G 0.06 0.81 0.31 0.07 

T <0.0001 <0.0001 <0.0001 <0.0001 

R×T 0.92 0.49 0.64 0.39 

G×T 0.37 0.09 0.87 0.15 

R×G×T 0.47 0.74 0.99 0.35 
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APPENDIX 1 

 

Fig. A1. Experimental design consisting randomized complete block design (RCBD) 

under no-till with different cover crop and grazing treatments with four 

replications.  
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Fig. A2. ICLS plots showing broadleaf dominated cover crop (right) and grass leaf 

dominated cover crop (left) at Brookings site.  

 

 

 

 

 

 



 
 

74 

 
 

  

Fig. A3. Soil core samples (left) preparation for the analysis of soil water retention 

(right). 

 

 

Fig. A4. Grinding of soil samples for the analysis of soil organic carbon and total 

nitrogen 
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Fig. A5. ICLS plots showing control cover crop treatment at Brookings site.  
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Fig. A6. Measurement of soil moisture with soil moisture meter (left) and penetration 

resistance using hand penetrometer (right).  
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Fig. A7. Soil sample collection at various depths using hand auger at Brookings 

site.  
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Fig. A8. Filtered soil urease enzyme extract (left) and color reaction (right)  
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Fig. A9. Enzymes samples in microplate (1), Soil extract (2), color reaction (3) and 

spectrophotometer (4)  
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Fig. A10. Desiccator in fume hood for fumigation (1), soil cores samples (2), pressure 

plate apparatus for soil water retention measurement (3,4) 
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Fig. A11.  Cattle grazing at Brookings site.  
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Fig. A12. Soil core sampler (left) and collection of soil core samples (right). 
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Fig. A13. Centrifuge machine used for carbon fraction. 
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