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ABSTRACT 

EXPRESSION ANALYSES AND IDENTIFICATION OF KEY MOLECULAR 

PARTICIPANTS IN PLANT RESPONSES TO ENVIRONMENTAL CUES 

PRAVEENA KANCHUPATI 

2018 

Plants constantly engage and interact with the environment and respond to the 

changes in conditions like temperature, water, and photoperiod, by regulating expression 

of genes of multiple regulatory and signaling pathways. Insight into these pathways and 

their participants has provided and will provide candidates to improve various 

agronomically important traits in crops through marker-assisted breeding and genetic 

manipulation. With this aim in mind, in the present study, I attempted to identify key 

candidate genes that are involved in the regulation of; i) plant response to low 

temperature stress, ii) plant roots’ response to soil moisture content and iii) flowering 

time.   

I identified and studied the expression of C-repeat binding factors (CBFs)-like 

genes and CONSTANS (CO)-, FVE- and FCA-like genes in alfalfa (Medicago sativa L.), 

a major forage crop in United States and worldwide. C-repeat binding factors (CBFs) are 

key transcription factors involved in plants’ response to low temperatures. The results 

based on the gene expression and its correlation with freezing tolerance in alfalfa 

suggested that two MsCBFl genes might play important role in freezing tolerance in 

alfalfa. Through expression analysis of CO-like, FVE-like and FCA-like genes in 

different tissues, at differential stages, and under circadian control, I identified several 

genes in CO-, FVE- and FCA-like gene families that are potential functional homologues 



 xii 

involved in flowering time control. These candidate genes, once function is confirmed, 

can be used to delay flowering in alfalfa which will lead to higher biomass production 

and higher quality forage due to delayed senescence, a trait associated with flowering. An 

enhancement in biomass production can also pave the way for its use in cellulosic-based 

biofuel production.  

To understand the molecular basis of plant roots’ response to soil moisture 

gradient in major crops, a phenomenon known as hydrotropism, I attempted to identify 

the functional homologue of Arabidopsis MIZ1, one of the key regulators of 

hydrotropism, in maize (Zea mays L.). Through analysis of expression of MIZ1-like 

genes in maize, one gene, ZmMIZ1l-K appeared to be the candidate functioning in 

hydrotropic response. This study is the first attempt at understanding molecular players in 

hydrotropism in a crop plant and could be potentially used to enhance water acquisition 

of crop plants and thus their performance especially under drought conditions. 

My research demonstrated that the candidate gene approach I took can be a first 

step to effectively identify the key players in the regulatory pathways in major crops. 

Through studying these genes, I also provided great insight into the complexity of 

molecular processes in responding to environmental cues in crop plants. Additional 

studies are needed to confirm the gene functionalities and their key roles in these 

processes. The molecular participants can then be used as resources to develop better 

crop varieties that could perform efficiently especially under more severe environmental 

stresses like drought and harsh temperatures. 
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CHAPTER 1: A LITERATURE REVIEW  

 

1.1. Plant-environment interact ions  

Being sessile in nature, plants need to continuously modify and regulate their 

growth and development in accordance to the ever-changing surroundings. Such response 

requires complex and coordinated integration of signals from multiple regulatory 

pathways, that ultimately enables the plants to efficiently compete with others for the 

necessary resources like water, nutrients, light etc. The quick and dynamic regulation at 

the molecular level also allows the plants to respond to seasonal changes in day length, 

temperature, and other environmental stimuli important for growth and reproduction. 

Over the years, there has been an exponential increase in human population, 

industrialization and metropolitanization, that has resulted in a great change in climate 

globally. The availability of fertile land and water is decreasing, the soils of farmland are 

getting depleted of essential nutrients and the air is getting polluted. Thus, the plants are 

now often challenged by more severe environmental stresses like drought, harsh 

temperatures and limited nutrients. Plants have evolved various strategies to deal with 

these set of challenges. Insight into the key molecular participants of the multiple 

regulatory pathways has become indispensable. These studies have provided and will 

provide for powerful tools to improve various agronomically important traits in crops 

through marker-assisted breeding and genetic manipulation and allow plant biologists to 

reach the goal of food security through sustainable agriculture practices. 

1.2. Arabidops is and other p lant species  

Major biological processes in plants are under the direct impact of the 

environment. Photosynthesis, photorespiration, vegetative growth and flowering are but 
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only a few of the processes that are affected and adjusted according to those 

environmental conditions. The revolution in understanding the molecular mechanisms of 

important plant processes began with the use of thale cress, Arabidopsis thaliana (The 

Arabidopsis Genome 2000), and our knowledge advanced rapidly after the sequencing of 

its genome. The small genome size and easy manipulation of the genes in combination of 

a small plant size and a rapid life cycle (30-45 days) have established Arabidopsis as the 

model plant, and substantial progress has been made in understanding the molecular 

regulation of plant processes using the forward and reverse genetics approach. 

Identification of genes and determination of their function in Arabidopsis and then 

extrapolating that information to crop species like rice, soybean or maize is a common 

approach. But, with the sequencing of additional plant genomes (Eckardt 2000; Schmutz 

et al. 2010) and gene function analyses it is becoming more and more clear that, though 

there is some conservation of gene function, the divergence of gene function and 

emergence of novel gene function is also evident. Thus, the need to study and 

functionally characterize the molecular pathways in other plants is equally important and 

essential. In order to develop powerful tools to accommodate for growing population and 

decreasing cultivation land, plant biologists need to understand fine details about the 

molecular architecture of not just the model plants, but more importantly the crop plants. 

1.3. Molecular part icipants regulat ing response to low temperature  

One of the major environmental factors affecting growth, development, and 

biomass production in plants is temperature. Both, increase or decrease in temperature 

results in suboptimal plant growth and can adversely affect its production. Every year, 

decreased overall productivity is reported in many crops due to exposure to chilling or 
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subzero temperatures (Allen and Ort 2001; Thomashow 1999). Cold-induced damage is 

evident at both physiological and molecular levels. Formation of ice crystals in the 

vegetative tissues, shutting down of major metabolic pathways as the plants try to 

survive, are but a few of the adverse effects of low temperature stress. While most plants 

can’t survive sudden freezing or severe freezing temperatures, it is observed that plants 

can show significantly improved tolerance to chilling or subfreezing temperatures if they 

are exposed to low nonfreezing temperatures prior to being subjected to freezing. Such 

adaptation mechanism is termed cold acclimation (Thomashow 1999; Chinnusamy et al. 

2007). Research have now revealed that the plant cells reprogram several processes at the 

biochemical and physiological levels during the exposure to low nonfreezing 

temperatures. The plasma membranes are believed one of the first sensors.  Low-

temperature conditions causes rigidification of the membranes, which triggers 

cytoskeletal rearrangement and induces expression of cold-regulated (COR) genes 

(Viswanathan and Zhu 2002). Accumulation of solutes like proline, sugars, and similar 

cryprotectants is another important consequence of cold acclimation (Thomashow 1999; 

Guy et al. 2008). Many of the COR genes are involved in synthesis of the cryprotectants, 

change membrane fluidity, and damage repairs. Thus, altered gene expression at the 

molecular level plays a critical role for plant survival under low temperature (Cook et al. 

2004; Hannah et al. 2005; Maruyama et al. 2009).  

 Among the genes whose expression is changed in cold acclimation are many 

transcription factors. Some of the cold-induced transcription factors include inducer of 

CBF expression 1, ICE1 (Chinnusamy et al. 2003) and members of the calmodulin 

binding transcription activator family (CAMTA) (Doherty et al. 2009). But the most 
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studied transcription factors are the C-repeat binding factors (CBFs). They are also 

referred to as the dehydration-responsive element binding factors (DREBs). In 

Arabidopsis, three CBFs, namely AtCBF1/DREB1B, AtCBF2/DREB1C and 

AtCBF3/DREB1A have been demonstrated to play important roles in regulating cold 

stress response (Stockinger et al. 1997; Gilmour et al. 1998; Jaglo-Ottosen et al. 1998; 

Liu et al. 1998; Riechmann and Meyerowitz 1998; Medina et al. 1999; Gilmour et al. 

2000; Zhao et al. 2016). The CBF transcription factors recognize the C-repeat (CRT)/ 

dehydration-responsive element (DRE) present in the promoters of the downstream cold-

responsive (COR) genes (Stockinger et al. 1997; Liu et al. 1998; Sakuma et al. 2002; 

Maruyama et al. 2012) and regulate the cold response in Arabidopsis.  

 The CBF genes comprises a gene family in Arabidopsis (Riechmann and 

Meyerowitz 1998). CBF1,2 and 3 transcripts start to accumulate rapidly and reach their 

peak level of expression after about 2h of exposure to low temperature treatment 

(Gilmour et al. 1998; Medina et al. 1999), followed by rapid upregulation of downstream 

COR genes. Among the three homologs, CBF3 in particular has been shown to be the key 

regulator and integrator of multiple biochemical changes involved in the process of cold 

acclimation (Gilmour et al. 2000). Over-expression of CBF3 resulted in increased 

freezing tolerance in the transgenic Arabidopsis plants. These plants could survive at 

temperatures as low as -8 C whereas the WT plants were severely damaged at 

temperatures of -4C. Given their importance in the freezing tolerance, functional 

homologs of Arabidopsis CBF/DREB1 genes have been identified in many plants 

including crop species like barley, wheat, soybean, and rice (Choi et al. 2002; Dubouzet 

et al. 2003; Skinner et al. 2005; Badawi et al. 2007; Kidokoro et al. 2015; Yamasaki and 
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Randall 2016). These studies have established CBFs conserved role across diverse plant 

species in enhancing freezing tolerance. In addition, these studies have also shown an 

expansion of the CBF gene family in different crop plants suggesting the possibility of 

the involvement of the homologues in diverse functions. Soybean genome contains 

thirteen CBF/DREBs genes and GmDREBA1 and GmDREBA2 have been implicated in 

cold response where as GmDREBE1 and GmDREBG1 were shown to be regulated in 

response to heat (Kidokoro et al. 2015). Likewise, MtCBF2 and MtCBF3 where shown to 

be upregulated under cold stress, while Medicago truncatula CBF4 has been shown to 

respond to salinity stress and overexpressing this gene in Medicago has resulted in 

improved salt-tolerance in the transgenic plants (Li et al. 2011).  

 However, few studies were aimed at identification of CBFl genes and 

determination of their role in agronomically important legume plant alfalfa (Medicago 

sativa L.). Alfalfa is a major forage crop with important agronomic and environmental 

traits (Castonguay et al. 2009). In 2013, approximately 18 million acres of alfalfa with a 

production value of $10.7 billion were harvested in United States. It has the ability to fix 

free-nitrogen by being in symbiotic relationship with nitrogen-fixing rhizobial bacteria. It 

is a very important source of protein and fiber for the livestock and is grown worldwide 

under varying and diverse environments. But, unpredictable drops in temperatures in 

early spring and late fall often result in decreased production and overall yield 

(Castonguay et al. 2013; Anower et al. 2016).  

 Conventional breeding methods have been employed with some improvement in 

the freezing tolerance of alfalfa. For example, Apica and Caribou are two varieties that 

were developed by Castonguay et al. (2009) through greenhouse screening of mature 
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alfalfa plants. Traditional breeding methods are extremely time-consuming and slow in 

generating new cultivars (Thomashow 1999; Castonguay et al. 2013). Screening for cold-

tolerant germplasm is another important strategy for breeding or gene identification. 

Anower et al (2016) employed a freezing survival test in addition to electrolyte leakage 

assays and identified two freezing-tolerant alfalfa genotypes.  

Given the fact the CBF3 genes appear to be structurally and functionally 

conserved in other plants, it is reasonable to hypothesize that improved freezing tolerance 

can be achieved through molecular engineering of CBF functional homolog in the crop. 

Our understanding of cold stress response in alfalfa at molecular level is limited 

(Castonguay et al. 2013, Castonguay et al. 2009). The importance of the CBF regulon and 

its contribution to freezing tolerance in alfalfa is still not known. The molecular 

dissection of freezing tolerance will provide foundation of more rapid cultivar 

development through marker-assisted breeding or genetic engineering. 

1.4. Molecular ins ight into plant root response to soil moisture content  

Water is one of the major essential resources and the distribution of water in the 

soil surrounding plant roots is constantly changing and is non-homogeneous. The 

situation is worsened in case of drought, one of the major abiotic stresses affecting plant 

growth and productivity all over the world. Drought stress can severely affect corn 

production, as much as 30-50% drop in yield can be seen in such conditions 

(http://agfax.com/2017/07/18/north-dakota-drought-75-of-state-suffering-wheat-yield-

estimates-11-bu-per-acre-dtn/). Northern plains states, such as South Dakota and North 

Dakota, experienced another severe drought in 2017 after the historic drought in 2012 

http://agfax.com/2017/07/18/north-dakota-drought-75-of-state-suffering-wheat-yield-estimates-11-bu-per-acre-dtn/
http://agfax.com/2017/07/18/north-dakota-drought-75-of-state-suffering-wheat-yield-estimates-11-bu-per-acre-dtn/
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(https://www.agweb.com/article/historic-drought-hammers-dakotas-montana-naa-chris-

bennett/). 

Plants respond to drought through complex physiological and molecular processes 

(Osakabe et al. 2014; Joshi et al. 2016; Kaur and Asthir 2017). Of these processes, 

maintaining good water status is the key for surviving and reproducing. This is achieved 

by reducing water loss by closing stomates, reducing leaf expansion and production (thus 

reducing transpiring area) and accumulating osmotican or compatible solutes such as 

sugars and amino acids. Meanwhile, roots continue to explore water in the soil. Roots are 

less sensitive to drought stress (Sharp et al. 1988), resulting in a higher root/shoot ratio 

under drought. Roots continue to elongate under drought, growing deeper into the soil 

due to gravitropism, allowing them to reach water in deep soil. Meanwhile, roots can 

sense the moisture gradient to development roots toward a wetter area, a process now 

called hydropatterning (Bao et al. 2014) or grow directly toward water source, a process 

called hydrotropism. Different form gravitropism, hydropatterning and hydrtropism 

allows roots to explore water laterally. While gravitropism in roots is extensively studied 

and the molecular process is mostly understood, the sensing and signaling pathways in 

hydropatterning and hydrotropism is largely unknown. Part of this dissertation research is 

focused on identifying candidate genes involved in hydrotropism in roots.    

Hydrotropism has been observed for more than 100 yrs. (Darwin and Darwin 

1880; Loomis and Ewan 1936). Research on hydrotropism has been very limited. The 

most important reason for the limited number of studies in this area is the difficulty in 

separating hydrotropic response from that of gravitropic and thigmotropic responses. The 

pioneering research on hydrotropism was conducted by Jaffe et al. in 1985, where they 

https://www.agweb.com/article/historic-drought-hammers-dakotas-montana-naa-chris-bennett/
https://www.agweb.com/article/historic-drought-hammers-dakotas-montana-naa-chris-bennett/
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studied the pea mutant ageotropum that showed a positive hydrotropic response and no 

gravitropic response (Jaffe et al. 1985). The study highlighted the role of root caps in 

sensing the moisture gradient and clearly showed the presence of two separate sensing 

and signaling pathways in plant roots to differentiate gravity from moisture gradients.  

Through physiological, biochemical, and some genetic analysis, a model of 

hydrotropism has been proposed (Figure 1). After the moisture gradient is sensed by the 

root cap, the signal is transmitted upwards to the elongation zone of the roots to initiate 

bending. MIZ1 operates upstream of MIZ2 to reduce auxin levels and this differential 

accumulation of auxin ultimately results in cell elongation on the dry side resulting in the 

bending of the roots. ABA is hypothesized to enhance the expression of MIZ1 resulting in 

enhanced hydrotropic response of plant roots (Moriwaki et al. 2013). A recent study in 

Arabidopsis showed the root cortex cells may be a major site for sensing the moisture 

gradient (Dietrich et al. 2017), thus the model may need to be modified. Nakajima et al. 

(2017) reported that the mechanism involved in hydrotropism very likely vary depending 

on species.  

The molecular participants of the sensing and signaling pathways regulating 

hydrotropism are mostly unknown. Thus far only two genes, namely MIZ1 and MIZ2, 

have been identified based off the forward genetics approaches, i.e. mutant analysis 

studies, in the model plant Arabidopsis. The very first evidence of a direct link between 

the mechanism of hydrotropism and a molecular component in the associated pathway, 

came from the studies of the Arabidopsis mizu-kussei1 mutants (Kobayashi et al. 2007). 

The mutants’ roots displayed normal gravitropism and growth but lacked hydrotropic 

response. They also displayed wavy growth in roots and reduced sensitivity to light. The 
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modified phenotype of the mutant was linked to a recessive mutation in MIZ1 gene. MIZ1 

encodes for a soluble protein (Yamazaki et al. 2012) with an unknown function and 

contains a DUF617 (domain of unknown function 617) domain and the gene homologues 

are only found in the genome of terrestrial plants. Expression analysis of the gene showed 

extensive transcript accumulation in the columella cells of the root caps. Some expression 

was also observed in the mature regions of the roots and in the hydathodes (water-

excreting epidermal structures) of the leaves (Kobayashi et al. 2007). The overexpression 

lines of MIZ1 (MIZ1OEs) displayed extraordinarily enhanced hydrotropic response and 

outnumbered the viable wild type Arabidopsis plants when grown under hydrostimulated 

conditions (Miyazawa et al. 2012).  

The second gene that was shown to play an essential role in hydrotropism in 

Arabidopsis is MIZ2 (Miyazawa et al. 2009). miz2 mutants have mutation in GNOM that 

encodes for a guanine-nucleotide exchange factor for ADP-ribosylation factor-type G 

proteins. miz2 mutants similar to miz1 mutants, are ahydrotropic. Auxin, MIZ1 and MIZ2 

work together to regulate lateral root development during hydrostimulated conditions. 

Apart from the observation that MIZ1 requires MIZ2 activity for its function (Moriwaki 

et al. 2011) the role of GNOM/MIZ2 in root hydrotropism is still unidentified. Altogether, 

various studies have suggested multiple players that regulate hydrotropism in roots, but a 

clear mechanism is still not understood. 

Up until now, Arabidopsis is the most studied plant system in relation to the 

elucidation of the molecular players of hydrotropism. A recent study identified novel 

QTLs associated with hydrotropism in wheat (Hamada et al. 2012). Though the 

phenomenon of hydrotropism has been studied in some other plant species like pea 
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(Takahashi et al. 1992), soybean (Tsutsumi et al. 2002) and maize (Takahashi and Scott 

1991) the molecular mechanism regulating the phenomenon are yet to be identified. 

Maize (Zea mays L.) is one of the most important grain crop. Cereals including 

maize account for majority of the human calorie consumption across the world (Chandler 

and Brendel 2002), and in the United States it is a leading staple crop in term of 

production along with wheat and soybean. Its high yield and production depends on water 

availability. The water requirement for maize crop is low during the early stages of 

development and reaches the maximum at the reproductive stages and then diminishes 

again. Two weeks before and after pollination are very critical in terms of water 

requirement. Important traits like grain-filling and soft-dough formation are highly 

sensitive to water restriction. Drought at these stages can lead to severe yield loss. Thus, 

efficient water acquisition by roots is essential to reduce the negative impact from 

drought. To achieve that, one of the effective strategies is to enhance plants’ 

hydrotropism. In other words, molecular insight into the hydrotropism mechanism will 

provide for clues and tools required to improve this property of roots and allow for the 

development of varieties that will have better chance at yield or even survival under 

drought stress conditions (Aslam et al. 2015). 

1.5. Molecular regulat ion of flowering t ime  

The life cycle of a higher plant can be divided into two major phases, vegetative 

and reproductive phase. For higher plants including major crops, flowering marks the 

beginning of reproductive phase, followed by seed formation and senescence. Numerous 

environmental and endogenous cues like light, temperature, the circadian clock, age of 

the plants and growth elicitors affect plants’ transition from the vegetative phase to 
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reproductive phase (flowering). Flowering, an important agronomic trait, is under very 

tight and complex regulation. These regulatory networks monitor and coordinate subtle 

changes in the environment with the endogenous signals, and, then direct the plants’ 

response accordingly. This strict monitoring ensures that the process of floral induction 

only occurs under most favorable conditions resulting in maximum reproductive vigor.  

Most of our current understanding of the flowering process has come from 

molecular dissection of floral-induction pathways in the model plant, Arabidopsis 

thaliana. More than 180 genes have been identified as the regulators of these pathways 

(Bäurle and Dean 2006; Fornara et al. 2010). These genes act through six major pathways 

namely, i) photoperiod and ii) vernalization pathways that monitor the seasonal changes 

in day length and temperature; iii) ambient temperature pathway that responds to changes 

in daily temperatures; iv) gibberellin, v) autonomous and vi) age pathways that act 

independent of the environmental stimuli. The integration of signals from all these 

pathways is carried out by a set of genes named the “floral integrator”. FLOWERING 

LOCUS T (FT), SUPRESSOR OF CONSTANS1 (SOC1) and LEAFY (LFY) integrate the 

signals and rapidly promote floral development. These integrators then communicate 

with the downstream “floral meristem identity” genes like APETALA 2 (AP1) to induce 

flowering (Parcy 2004; Simpson and Dean 2002). A model of flowering regulation has 

been proposed and shown in Figure 2 (Fornara et al. 2010). 

 Flowering is a key developmental process in a plant’s life cycle and is directly 

linked to crop production and overall yields. Enhanced understanding of the molecular 

basis of this complex process in crops can be of a huge advantage to the researchers 

trying to develop new varieties that have improved productivity and better yield. Indeed, 
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plant breeders have long been manipulating the flowering regulatory mechanism as one 

of the key strategies to achieve optimal production of vegetative biomass or high yield of 

seed or grains, depending on specific crops. 

 As described earlier, alfalfa is a forage crop that has important agronomic and 

environmental traits. Along with being a legume and assisting in fixing free-nitrogen, the 

deep root system of alfalfa allows it to flourish under mild drought conditions. Alfalfa is 

also gaining ground as a potential candidate for biofuel production due to its high 

cellulosic biomass yield with a low input from nitrogen fertilizer. However, the high cost 

of biomass production in alfalfa for biofuel purpose is prohibitive. One way to reduce the 

price is to enhance biomass production per unit area. Flowering in alfalfa suppresses the 

vegetative growth and initiate senescence. Thus, a strategy to enhance biomass 

production is to delay flowering. A recent study reported that the genetic manipulation of 

a microRNA miR156 in alfalfa resulted in delayed flowering and subsequent increase in 

biomass. Additionally, the authors also observed reduced lignin content and enhanced 

cellulose content in the transgenic alfalfa overexpressing miR156 (Aung et al. 2015b, a). 

Another study in M. truncatula reported the manipulation of onset of flowering to 

enhance biomass and suggested genetically delaying the floral initiation as an easy tool to 

achieve improved biomass quality and quantity (Tadege et al. 2015). These studies 

support the hypothesis that genetic manipulation of flowering genes and associated 

signaling pathways can be used as efficient tools to delay flowering and prolong 

vegetative state and achieve significant increase in biomass. 

 Like Arabidopsis, alfalfa is considered a long day plant and may share similar 

molecular mechanism in flowering time regulation. Among the genes that are often 
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studied in Arabidopsis are CONSTANS (CO) in the photoperiod pathway and FCA and 

FVE genes in the autonomous pathway. CO genes comprises a multiple gene family. co 

mutant plants showed delay flowering in long day conditions and enhanced vegetative 

growth (Koornneef et al. 1991; Putterill et al. 1995) and overexpression of CO promoted 

early flowering (Onouchi et al. 2000). CO promoted flower by activating downstream 

genes that include floral integrator genes like FT and SOC1. fca and fve mutant showed 

significant delay of flowering and enhanced vegetative biomass production (Macknight et 

al. 1997; Morel et al. 2008). FCA and FVE are believed to suppress expression of FLC, 

that acts as a negative regulators of FT (Salathia et al. 2006). 

 Studies in other plants like rice, barley and sugar beet showed that manipulation 

of these gene can result in similar phenotypes as seen in Arabidopsis, suggesting the gene 

functions and pathways are very much conserved in different plant species (Campoli et 

al. 2012; Yano et al. 2000; Il-Sun et al. 2008) 

1.6. Object ives, rat ionale and hypothes is  

Objective 1: To identify the potential functional homolog of AtCBF3, the key 

regulator of cold tolerance in Arabidopsis, and to establish a better understanding of cold 

tolerance mechanisms at the molecular level in alfalfa.  

Rationale: Anower et al reported the screening and identification of alfalfa 

germplasm River side (RS) and Foster ranch (FR), collected from the Grand River 

National Grassland in South Dakota, that had superior freezing tolerance compared to the 

commercial cold-tolerant germplasm Apica (AP). The transcript analyses of some of the 

genes involved in cold tolerance pathway showed distinct cold induction patterns in the 
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cold-tolerant germplasm RS, FR and AP, in contrast to the cold-susceptible germplam 

CUF-101(Anower et al. 2016).  

Hypothesis: The superior performance of RS and FR under cold stress is the result 

of the differential induction of the CBF-regulon in contrast to the cold-susceptible alfalfa 

germplasm. 

 

Objective 2: To identify the functional homologue of AtMIZ1 and to establish a 

better understanding of the hydrotropic responses of maize seedling roots at the 

molecular level. 

Rationale: AtMIZ1 is a key gene involved in hydrotropic response in Arabidopsis 

roots. The overexpression lines of MIZ1 (MIZ1OEs) displayed enhanced hydrotropic 

response and outnumbered the viable wild type Arabidopsis plants when grown under 

hydrostimulated conditions (Miyazawa et al. 2012). 

Hypothesis: Since maize primary roots show positive hydrotropic response, the 

molecular mechanism of hydrotropism in maize roots may be conserved and may involve 

MIZ1-like gene. Identification of MIZ1-like gene will provide valuable insight into the 

hydrotropism response in maize. Manipulating the genes regulating hydrotropism will 

result in better performance of agriculturally important crops like maize, specifically 

under drought conditions.  

 

Objective 3: To understand the conservation and divergence of two key pathways, 

the photoperiod and autonomous pathway in flowering control through identifying and 

studying CO-, FCA- and FVE-like genes in alfalfa. 
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Rationale: CO, FCA, FVE are key regulators of flowering time control in 

Arabidopsis. Delaying flowering by manipulating these genes resulted in enhanced 

vegetative biomass production. These strategies can be used to enhance biomass 

production in alfalfa. 

Hypothesis: Flowering control in alfalfa may be similar to that in Arabidopsis and 

involve CO-, FCA- and FVE-like genes. Identification of these genes in alfalfa will 

provide valuable insight in flowering control in alfalfa.  

In the following chapters, I report the expression analyses and identification of 

potential functional homologs of Arabidopsis key molecular participants, that regulate 

response to low temperatures and moisture gradient and control flowering, in alfalfa and 

maize.  
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Figure 1. A model of the current working hypothesis describing the mechanism 

underlying hydrotropism in Arabidopsis roots. Factors involved in the hydrotropic 

response are shown in relation to the root tissues specified. Red ellipsis includes main 

events that occur during the hydrotropic response, which connects the perception of 

moisture gradients in the root tip (in lower green frame) and the differential growth in the 

elongation zone (in upper blue frame). White arrows indicate the causal relationships 

among the factors. Moisture gradients are perceived in the root-cap region, and the signal 

is transmitted to the elongation zone where it induces bending. MIZ1 and GNOM/MIZ2 

are indispensable for the induction of hydrotropism. MIZ1 functions upstream of MIZ2 

and is hypothesized to reduce auxin level. The HY5-mediated light response and water-

stress-induced biosynthesis of ABA upregulate MIZ1 transcription, which ultimately 

enhances the hydrotropic response 

Teppei Moriwaki et al. Am. J. Bot. 2012;100:25-34 
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Figure 2. A snapshot of flowering time control in Arabidopsis thaliana. This snapshot 

presents a subset of these genes and proteins, each organized according to its spatial 

activity in the leaves or the shoot apical meristem of the plant. Strikingly, several genes 

act more than once and in several tissues during floral induction. Many of these genes 

occur in a network of six major pathways: the photoperiod and vernalization pathways 

control flowering in response to seasonal changes in day length and temperature; the 

ambient temperature pathway responds to daily growth temperatures; and the age, 

autonomous, and gibberellin pathways act more independently of environmental stimuli. 
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2.1. Abstract  

We recently identified alfalfa (Medicago sativa L.) germplasm River side (RS) 

and Foster ranch (FR), naturally adapted to the Grand River National Grassland 

environment in South Dakota, that showed superior freezing tolerance. To understand the 

molecular basis of freezing tolerance in RS and FR, we examined expression of the C-

repeat binding factor-like (CBF-like) genes in alfalfa. Eighteen CBF-like (CBFl) genes 

were identified after examining the genome of Medicago truncatula, a close relative to 

alfalfa. Phylogenetic analysis clustered Medicago CBFs into 4 subgroups. Expression 

profiling of these genes in alfalfa seedlings revealed diverse cold-induction patterns. Four 

of the genes that showed an early induction as CBF3 in Arabidopsis under cold stress 

were selected for detailed expression analyses. These genes varied in expression patterns, 

in different tissues and at different developmental stages, and exhibited different diurnal 

regulation without cold treatment. Two of the genes, MsCBFl-17 and MsCBFl-18, 

showed an early and high induction under cold stress in RS and Apica, a cold-tolerant 

cultivar, when compared to a non-freezing tolerant germplasm; suggesting that these two 

genes are potentially the functional homologs of CBF3. On the other hand, MsCBFl-11 

was the only gene that was induced in all three cold-tolerant germplasm, including FR, 

but the induction was relatively late compared to MsCBFl-17 and MsCBFl-18. Together, 

these findings suggest that the CBFs may play an important role in the regulation of 

freezing tolerance in alfalfa and additional mechanisms exist to explain the superior 

freezing tolerance in RS and FR.     

Keywords: Alfalfa, freezing tolerance, functional homolog. 
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2.2. Introduction  

Temperature is one of the major environmental cues regulating growth and development 

of plants. Chilling or subzero freezing temperature results in cold stress, which is one of 

the major factors limiting the production and the overall yield of plants. Cold-induced 

damage is evident at both the physiological and molecular levels. The formation of ice in 

vegetative tissues and the shutting down of important metabolic machineries are but a 

few of the adverse effects of freezing. However, these effects are greatly reduced when 

plants are exposed to low nonfreezing temperatures prior to being subjected to freezing. 

Such acquired tolerance to subzero temperatures by many temperate plants is termed cold 

acclimation (Guy, 1990; Thomashow, 1999; Chinnusamy et al., 2007). Cold acclimation 

is achieved through biochemical and physiological reprograming at the tissue and cellular 

levels. Cell plasma membranes are the first sensors and responders to low-temperature 

stress. Early responses include the rigidification of cellular membranes, followed by 

cytoskeletal rearrangement, Ca2+ influx, and the induction of the cold-regulated (COR) 

genes (Viswanathan and Zhu, 2002). One of the consequences of cold acclimation is the 

accumulation of compatible solutes like proline, sugars, mannitol, and cryoprotective 

compounds (Thomashow, 1999; Guy et al., 2008) that results in increased tolerance to 

freezing temperatures. Collectively, these responses are the direct result of altered gene 

expression at the molecular level (Cook et al., 2004; Hannah et al., 2005; Maruyama et 

al., 2009). 

The process of cold acclimation involves various transcription factors and molecular 

switches working together in complex networks. Over the last two decades, substantial 

research has gone into identifying the key players regulating plants’ response to chilling 
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or freezing stress. The most studied transcription factors in this regard are the C-repeat 

binding factors (CBFs), also known as dehydration-responsive element binding factors 

(DREBs). In Arabidopsis, three CBFs, namely AtCBF1/DREB1B, AtCBF2/DREB1C, and 

AtCBF3/DREB1A, have been demonstrated to play important roles in regulating cold-

stress response (Stockinger et al., 1997; Gilmour et al., 1998; Jaglo-Ottosen et al., 1998; 

Liu et al., 1998; Medina et al., 1999; Gilmour et al., 2000, 2004; Zhao et al., 2016). They 

are the members of the Apetala 2/ethylene-responsive element-binding protein 

(AP2/EREBP) subfamily DREB A-1 (Riechmann and Meyerowitz, 1998) that has six 

members, including the genes AtCBF4/DREB1D, AtDDF2/DREB1E, and 

AtDDF1/DREB1F. Unlike AtCBF1, AtCBF2, and AtCBF3, the genes AtCBF4, AtDDF1, 

and AtDDF2 are regulated by other abiotic stresses like salinity, dehydration, and the 

stress hormone abscisic aced (ABA) (Haake et al., 2002; Magome et al., 2008). The CBF 

transcription factors recognize the C-repeat or dehydration-responsive element present in 

the promoters of the downstream COR genes (Stockinger et al., 1997; Liu et al., 1998; 

Sakuma et al., 2002; Maruyama et al., 2012). 

When Arabidopsis plants are exposed to low temperature, the transcripts of CBFs 1, 2, 

and 3 start to accumulate rapidly and reach their peak level of expression after about 2 h 

of exposure to low-temperature treatment (Gilmour et al., 1998; Medina et al., 1999), 

followed by changes in the expression of downstream COR genes (Maruyama et al., 

2004). Overexpression of CBFs/DREB1s in Arabidopsis induces the expression of COR 

genes and improves the freezing tolerance (Jaglo-Ottosen et al., 1998; Kasuga et al., 

1999; Gilmour et al., 2004). Among the three homologs, CBF3 in particular has been 

shown to be the key regulator and integrator of multiple biochemical changes involved in 
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the process of cold acclimation (Gilmour et al., 2000). Given their importance in the 

freezing tolerance of plants, functional homologs of Arabidopsis CBF/DREB1 genes have 

been identified in many crop species, such as barley (Hordeum vulgare L.), wheat 

(Triticum aestivum L.), soybean [Glycine max (L.) Merr.], Medicago truncatula Gaertn., 

and rice (Oryza sativa L.) (Choi et al., 2002; Dubouzet et al., 2003; Skinner et al., 2005; 

Badawi et al., 2007; Chen et al., 2010; Jeknić et al., 2013; Ryu et al., 2014; Kidokoro et 

al., 2015; Yamasaki and Randall, 2016), and trees such as poplar (Populus spp.; Benedict 

et al., 2006). Many of these studies have also established their conserved role in the 

regulation of freezing tolerance across diverse plant species. 

Alfalfa (Medicago sativa L.) is a major forage legume with important agronomic and 

environmental traits (Castonguay et al., 2009). It is a very important source of protein and 

fiber for livestock. It is also an agronomically important crop because of its ability to 

establish symbiosis with nitrogen-fixing rhizobial bacteria that decreases the need for 

application of nitrogen fertilizers during crop rotations. Alfalfa is grown worldwide, and 

in terms of production in the United States alone comes in third, only after the staple 

crops wheat and corn (Zea mays L.). However, unpredictable drops in temperature in 

early spring and late fall and inadequate winter hardiness adversely affect its production 

and overall yield in the northern climates (Castonguay et al., 2013; Anower et al., 2016). 

Thus, improvement in freezing tolerance of the alfalfa germplasm would be largely 

beneficial for farmers, as well as the livestock industry. 

Previous studies in alfalfa have identified several cold-acclimation-specific (CAS) genes 

whose induction was correlated with the freezing tolerance of alfalfa germplasm 

(Mohapatra et al., 1989). One such study established a parallel relationship between the 
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changes in the expression levels of CAS15B and the varying freezing tolerance of alfalfa 

germplasm (Monroy et al., 1993). Another study demonstrated that alfalfa ssp. falcata 

harbored homologs of CAS30, a gene with a very high cold responsiveness and an 

expression profile similar to Arabidopsis COR genes (Pennycooke et al., 2008). 

However, few studies were aimed at the identification of the CBFl genes in alfalfa and 

their potential roles in freezing tolerance. 

In an earlier study, we reported the screening and identification of alfalfa germplasm 

River side (RS) and Foster ranch (FR), collected from the Grand River National 

Grassland in South Dakota, that had superior freezing tolerance compared to the 

commercial cold-tolerant germplasm Apica (API) (Anower et al., 2016). Also, transcript 

analyses of some of the genes involved in cold tolerance pathway showed distinct cold 

induction patterns in the RS, FR, and API, in contrast to the cold-susceptible germplasm 

CUF-101 (CUF). These findings, together with the knowledge that CBFs are the key 

regulators of freezing tolerance, lead us to hypothesize that the superior performance of 

RS and FR under cold stress is the result of the differential induction of the CBF regulon, 

in contrast with the cold-susceptible alfalfa germplasm. The objective of this study was to 

identify the potential functional homolog of AtCBF3, the key regulator of cold tolerance 

in Arabidopsis, and to establish a better understanding of cold-tolerance mechanisms at 

the molecular level in alfalfa. 
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2.3. Results  

2.3.1. Identificat ion of CBFl  and CORl  genes in M. truncatula  and 

phylogenetic analys is  

To identify the CBFl genes in M. truncatula, we used the protein sequence of 

Arabidopsis CBF3 as a query to perform Protein Basic Local Alignment Search Tool 

(BLASTP) searches of the Medicago genome database at Phytozome 

(https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org

_Mtruncatula; Goodstein et al., 2012). Eighteen CBFl proteins were identified with a 

default cutoff value of E = 6.6  10−26 and a score of 102.8. The protein sequences of 

these CBFl genes contain an AP2/ERF-type DNA-binding domain, which is a conserved 

domain in CBF/DREB-type transcription factors (Fig. 1a). An alignment of the whole-

protein sequences was also conducted, showing high similarity in other regions among 

the proteins (Supplemental Fig. S1). Apart from the AP2-DNA binding domain and 

Nuclear localization signal (NLS), most of the protein sequences also had the “signature 

sequences” PKK/RPAGRxKFxETRHP and DSAWR (Jaglo et al., 2001). There were a 

few differences observed between the Medicago and Arabidopsis CBFs. Although most 

of the Medicago CBFs had the alanine-rich acidic C-terminal domains, the N-terminal 

and the C-terminal regions did not share extensive sequence identities. 

Phylogenetic analysis of the CBFl proteins from Medicago, along with the 

CBF/DREB-type transcription factors in Arabidopsis and soybean, classified them into 

four subgroups. The majority of the Medicago CBFl proteins were clustered together to 

form an MtCBFl-only group, Subgroup 1. MtCBFl-4 was clustered with soybean 

DREB1As and 1Bs, forming Subgroup 2. MtCBFl-1, -16, -17, and- 18 were clustered 

https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org_Mtruncatula
https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org_Mtruncatula
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with AtDREB1E and -1F and soybean DREB1C and -1D in Subgroup 3. Subgroup 4 

contained four CBF, all from Arabidopsis AtCBF1 through -4. MtCBFl-15 and soybean 

DREB1E-1H formed Subgroup 5 (Fig. 1b). 

A single MtCBFl gene was found on chromosomes 1, 2, and 4, whereas a gene tandem 

was found on chromosomes 5 and 6. In particular, the tandem on chromosome 6 contains 

12 MtCBFl genes presented in Subgroup 1 (Supplemental Fig. S2).  

  Similar procedure was followed to identify the homologs of Arabidopsis COR47 

in M. truncatula. BLASTP search resulted in only one hit, an MtDehydrin-like 

(MtDHNl) protein, and this protein shared ~43% identity with AtCOR47. MtDHNl 

contained a dehydrin-specific domain characterized by the presence of a series of serines, 

followed by a cluster of charged amino acids. The second conserved region was marked 

by the presence of lysine-rich regions in Supplemental Fig. S3. 

2.3.2. Thirteen CBFl genes are induced under cold  stress in alfalfa  

To identify the CBFl genes in alfalfa that show a similar early but transient cold-

induction pattern as AtCBF3, we examined changes in transcript level of all CBFl genes 

after cold treatment in 1-wk-old SD201 seedlings, a yellow-flowered alfalfa. MtCBFl 

gene sequences were used for primer design for gene expression studies. The whole 

seedlings were used in this first study to identify cold-responsive CBF genes in different 

tissues. With the exception of MsCBFl-1, -3, -8, -9, and -16, all other MsCBFl genes 

showed response to cold treatment. Given the change in transcript level with time, at least 

three different patterns of induction can be seen (Fig. 2). Five genes, MsCBFl-2, -4, -11, -

17, and -18, showed peak induction at 2 h after cold treatment, which was followed by a 

decrease in the transcript levels at the 12-h time point. MsCBFl-6, -7, -10, and -12 
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showed a significant increase at 2 h and maintained the higher level at 12 h. MsCBFl-5, -

13, -14, and -15 reached the highest levels at 12 h. MsCBFl-2, -4, -11, -17, and -18 were 

selected for additional analyses, since their induction pattern was similar to CBF3 in 

Arabidopsis. 

2.3.3. Expression of three ear ly cold - induced MsCBFl genes showed 

diurnal pattern  

AtCBF3 expression is regulated by diurnal changes, has its expression peak at 9 h 

after dawn, and reaches its lowest level during the night (Grundy et al., 2015). To analyze 

if there was a similar regulation of CBFl genes in alfalfa, we examined the expression 

patterns of the five early cold-induced genes in young shoots of the 7-wk-old plants 

grown under a 16/8-h light/dark photoperiod. MsCBFl-17 and -18 showed peak 

expression at 3 h after dawn, after which the expression decreased and reached a 

minimum level 3 h later (Fig. 3). MsCBFl-2, however, showed two peaks in expression, 

one in daytime and the other just before dawn. MsCBFl-11 showed a completely different 

expression pattern with no clear peak but reached the highest expression 9 h into daytime 

and remained at the higher level during the night. MsCBFl-4 was detected at very low 

levels, and we were not able to obtain a reliable expression profile for this gene. 

2.3.4. Expression of MsCBFl genes var ied in different t issue types and at 

different developmental stages  

Expression in different par ts of the plant  

MsCBFl-2 and -11 had a very similar expression patterns, showing relatively 

similar expression levels in all three tissue types. MsCBFl-17 and -18 also had very 

similar expression patterns, with both the genes having the highest expression levels in 
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the root and the lowest expression levels in the leaf and stem (Fig. 4). MsCBFl-4 was 

detected at very low levels, and we were not able to obtain a reliable expression profile 

for this gene, so the data are not presented. 

Expression at d ifferent developmental stages  

Expression patterns varied among the genes at different developmental stages. 

MsCBFl-2 showed the highest expression during Week 2 (W2). Its expression was 

significantly lower in the other stages. MsCBFl-11 showed more than 200-fold increases 

in transcripts at W2 and W3 compared with W1. Both MsCBFl-17 and -18 showed greater 

transcript levels during W2 to W4. MsCBFl-17 exhibited the highest expression at W3 

whereas MsCBFl-18 had the highest expression at W2, showing more than sevenfold and 

150-fold increases when compared to their respective W1 (Fig. 5). 

2.3.5. MsCBFl-17 and MsCBFl-18 are upregulated very ear ly in RS and 

API but not in CUF under cold stress  

To address the possible function of the four selected early-cold-inducible genes in 

cold tolerance, we examined the transcript level in three cold-tolerant germplasm, RS, 

FR, and API, in comparison with a cold-susceptible germplasm, CUF, when these plants 

were subjected to low-temperature treatment. MsCBFl-17 and -18 showed an early 

induction by cold treatment in RS and API. No induction of MsCBFl-17 and -18 was 

observed in any germplasm at 24 h. MsCBFl-11 showed no significant change in the 

transcript levels at 2 h but a significant increase in RS, FR, and API (not in CUF) at 24 h. 

Only API showed an increase in transcript levels of MsCBFl-2 at 2 h after cold treatment 

and remained at a higher induction level at 24 h (Fig. 6). 
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2.3.6. MsCAS30  and MsDHNL  genes are upregulated under cold stress in 

all four alfalfa germplasm  

To examine whether MsCBFl-17 and -18 have a role in regulating downstream 

gene expression as AtCBF3 does, we analyzed the expression levels of two dehydrin 

genes, MsCAS30 and MsDHNl, in RS, FR, API, and CUF after cold treatment. MsCAS30 

has been shown to be associated with cold tolerance in alfalfa (Pennycooke et al., 2008). 

COR47 is a known downstream gene regulated by CBF3 in Arabidopsis (Kasuga et al., 

1999; Seki et al., 2001; Fowler and Thomashow, 2002; Maruyama et al., 2004). MsDHNl 

was identified from the M. truncatula database using a sequence alignment analysis with 

AtCOR47. Both MsCAS30 and MsDHNl showed great induction 24 h after cold treatment 

in all the four alfalfa germplasm, including CUF. More importantly, the transcript level of 

MsCAS30 in CUF was similar to the level in API but was higher than in RS and FR. The 

transcript level of MsDHNl was the same for CUF, RS, and API but was lower than in FR 

at 24 h after cold treatment. MsCAS30 and MsDHNl showed no significant change in the 

transcript level at 2 h after cold treatment and showed no significant difference among the 

four germplasm (Fig. 7). 

2.4. Discuss ion 

2.4.1. Alfalfa genome has at least 18 CBF homologs 

The molecular dissection of complex pathways in alfalfa is restricted due to the 

lack of a sequenced genome. In this study, we identified a group of putative CBF genes 

by performing in silico analysis of the M. truncatula genome instead. Medicago 

truncatula is a close relative of alfalfa and shares a high degree of sequence similarity 

(Julier et al., 2003; Choi et al., 2004; Young et al., 2011). For 18 putative CBFs identified 
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in M. truncatula, we were able to amplify the gene sequences in alfalfa using the primers 

designed according to the M. truncatula genome, further supporting the fact that the 

genome sequences of alfalfa and M. truncatula are highly similar. Since most commercial 

varieties of alfalfa are polyploid, instead of diploid as in M. truncatula, alfalfa can 

potentially have >18 CBF members in its genome. 

Phylogenetic analysis of CBFs from Arabidopsis, soybean, and M. truncatula 

suggested that MtCBFs are evolved through multiple events. Genes in Subgroups 4 and 5 

are potentially derived from the same ancestral sequence. Subgroups 4 and 5 are formed 

after the divergence of Arabidopsis and the legume plants, since Subgroup 4 solely 

contains genes from Arabidopsis, whereas Subgroup 5 only contains genes from soybean 

and Medicago. Subgroups 1, 2, and 3 may be derived from another ancestral sequence. 

However, the sequence was duplicated in legumes, possibly after the divergence of 

Arabidopsis and legume plants, forming Subgroups 1 and 2 that exclusively contain 

legume genes and Subgroup 3 that has both Arabidopsis and legume genes. Subgroup 1 

contains only M. truncatula genes, suggesting that it resulted from recent duplication 

events occurring after the divergence of soybean and M. truncatula. This notion is further 

supported by the fact that all 12 homologs in Subgroup 1 are located on the long arm of 

chromosome 6 as tandem loci (Supplemental Fig. S2). Another possible recent 

duplication in M. truncatula is evident by two genes, MtCBFl-17 and -18, in Subgroup 3 

with nearly identical sequences. While it is not clear what drives these recent 

duplications, the consequence of the duplication is a larger CBF gene family in M. 

truncatula than in soybean and Arabidopsis. The size of the CBF gene family in alfalfa is 

unknown. However, since most of the commercial varieties of alfalfa are polyploid, there 
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is a strong possibility of an even larger gene family in alfalfa and presence of alfalfa-

specific CBFl genes in its genome. 

2.4.2. MsCBFl-17 and  MsCBFl-18 are the potential functional homologs of 

AtCBF3  

The biological function of Arabidopsis CBF3 lies in its ability to be induced early 

under cold stress and to regulate multiple genes downstream that are responsible for the 

process of cold acclimation (Gilmour et al., 1998, 2000). According to the global 

transcriptomic analysis from multiple circadian microarray data, approximately one-third 

of transcripts in Arabidopsis oscillate under diurnal light–dark cycles (Harmer et al., 

2000; Covington et al., 2008), CBF3 being one of them. Strikingly, the diurnal regulation 

of the majority of genes is conserved across many crop plants and tree species, like rice, 

maize, and poplar (Khan et al., 2010; Filichkin et al., 2011). These key features were 

used to identify a functional CBF3 homolog in alfalfa. Several lines of evidence point to 

MsCBFl-17 and -18 as potential functional homologs of AtCBF3. First, MsCBFl-17 and -

18 are among the alfalfa CBF genes that showed early but transient cold induction; 

second, both showed diurnal changes in transcript level; third, they were the only ones to 

be induced very early in the cold-tolerant alfalfa germplasm RS and API, but not in the 

cold-susceptible germplasm CUF. 

Interestingly, MsCBFl-17 and -18 are not the homologs showing the highest 

sequence similarity to AtCBF3. Instead, they are included in Subgroup 3 with 

AtDREB1F and -1E. AtDREB1F and -1E, also known as AtDDF1 and -F2, respectively, 

are integral to the gibberellic acid biosynthesis pathway, and overexpression of these 

homologs results in increased salinity-stress tolerance (Magome et al., 2004). The 
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soybean homologs DREB1C and -1D that are in the same subgroup as MsCBFl-17 and -

18, however, have been implicated as cold-inducible genes (Maruyama et al., 2012; 

Yamasaki and Randall, 2016). Other evidence shows that expression of MsCBFl-17 and -

18 are regulated differently from AtCBF3. MsCBFl-17 and -18 had greater expression in 

the roots than in leaves and stems (Fig. 4). Information obtained using the AtGenExpress 

Visualization tool (www.Arabidopsis.org/) indicated that AtCBF3 is expressed at 

relatively higher levels in mature leaves than in stems and roots. In addition, even though 

expression of MsCBFl-17 and -18 was regulated by diurnal cycle, the exact expression 

pattern differs slightly from that of AtCBF3. The transcript level of AtCBF3 peaked at 

ZT9, whereas expression of MsCBFl-17 and -18 peaked at ZT3. The diurnal patterns of 

MsCBFl-17 and -18 were examined in the alfalfa plants grown at a 16/8-h light/dark 

photoperiod in this study, whereas the diurnal pattern of AtCBF3 was examined in the 

plants grown at a 12/12-h light/dark photoperiod. Whether the difference in growth 

photoperiod affects the diurnal pattern of gene expression in alfalfa and Arabidopsis 

needs to be determined. It must be mentioned that MtCBFl-15 showed the highest 

sequence similarity to AtCBF3 and was not examined in detail due to its relatively late 

induction under cold. Further studies may be needed to determine whether it was 

regulated in a similar way to AtCBF3. The fact that the transcript levels of MsCBFl-17 

and -18 were not induced by cold stress in FR, another cold-tolerant germplasm, and that 

the induction level of MsCBFl-2 was not as great as API despite having greater cold 

tolerance than API suggest that MsCBFl-17 and -18 are not the only genes that may 

contribute to the freezing tolerance in alfalfa. 



 40 

2.4.3. Medicago CBFl genes may have diverse functions  

The M. truncatula genome contains 18 CBFl genes, a much larger family than the 

one in Arabidopsis. Thirteen genes in the family showed response to cold treatment, 

although the patterns of induction were different. The results suggested that many of 

these genes may be primarily involved in low-temperature tolerance. The fact that these 

genes are expressed in different tissues, are induced at different times after cold 

treatment, and have varied transcript levels at different developmental stages suggests 

that alfalfa has developed a complex regulatory system in cold response to minimize the 

damage due to stress. Alternatively, different CBF genes may function differently in cold 

response, which has been demonstrated in Arabidopsis. Overexpression of 

AtCBF1/DREB1B in Arabidopsis was been shown to increase the freezing tolerance of 

the plants and to enhance the expression of the COR genes that are involved in the 

process of cold acclimation (Gilmour et al., 1998; Jaglo-Ottosen et al., 1998). 

Interestingly, although AtCBF2/DREB1C has been shown to upregulate under freezing 

stress in a similar manner to AtCBF1 and -3 (Gilmour et al., 2004), a study of cbf2 

transfer DNA-insertion mutant plants elucidated that AtCBF2 negatively regulates the 

activity of AtCBF1 and -3 (Novillo et al., 2004). The mutant plants had a higher freezing 

tolerance compared with wild-type cold-acclimated plants and also demonstrated 

increased drought and salt tolerance. The expression levels of both AtCBF1 and -3 were 

increased in the cbf2 mutant plants. Another study showed that the expression levels of 

only AtCBF3 were increased in the cbf2 mutant plants (Kim et al., 2015). 

A recent study showed the CBF regulon in a very different light. Single, double, 

and triple mutants of all the three genes, AtCBF1, -2, and -3, were developed using 
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Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 

nuclease (CRISPR/Cas9) (Zhao et al., 2016). The cbf2 mutant lines in this study did not 

show any significant increase in either AtCBF1 or -3, and the plants also had lower 

freezing tolerance compared with the wild types, indicating AtCBF2 to be a positive 

regulator of freezing tolerance and not a negative regulator of the other two genes. In the 

characterization of the triple mutants, cbf1, -2, and -3 revealed additional functions of the 

regulon. They were shown to regulate seedling development in addition to be involved in 

salt-stress response. 

Indeed, other MsCBF genes, besides MsCBFl-17 and -18 that are suggested in 

cold tolerance in this study, have also been implicated in regulation of cold stress 

response. For example, a previous study showed that MtCBF2 and MtCBF3/MtDREB1C 

were induced under low-temperature treatments (Pennycooke et al., 2008). Another study 

reported that overexpression of MtCBF3 in transgenic M. truncatula resulted in enhanced 

freezing tolerance, despite stunted growth (Chen et al., 2010). Additionally, the MsCBFl 

homologs belonging to the Medicago-specific cluster (Subgroup 1) were discovered to be 

part of a major freezing quantitative trait locus (Mt-FTQTL6) in M. truncatula (Tayeh et 

al., 2013). In alignment with this discovery, we saw the induction of 10 of the 13 MsCBFl 

homologs, belonging to Subgroup 1, in cold-treated seedlings. Among them, MsCBFl-2 

was induced at a significant level very early during the cold treatment in only one of the 

cold-tolerant germplasm, API, but not in the nonfreezing-tolerant germplasm CUF. 

Interestingly, cold-temperature induction of another member of Subgroup 1, MsCBFl-11, 

was observed in all three cold-tolerant alfalfa germplasm, but it was induced later in the 

treatment. Further studies are needed to address its potential role in freezing tolerance in 
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alfalfa. It is noticeable that the cold-induction patterns of MsCBFl-2 and -11 were 

different in young alfalfa plants (four different germplasm in Fig. 6) from those in 

seedlings of SD-201 (Fig. 2). Although the difference may be due to a variation in 

genotype, it is also possible that early cold induction of MsCBFl-2 and -11 is 

developmentally controlled, since the early and transient induction patterns of MsCBFl-

17 and -18 remained relatively similar, regardless of genotype and developmental stage 

in cold-tolerant alfalfa. 

Transcripts of MsCBF4 were detected and induced by cold stress in young 

seedlings but were expressed at very low levels in young and adult plants, suggesting that 

its expression is developmentally regulated. Interestingly, MtCBF4 was identified as a 

highly upregulated transcription factor in microarray analysis of the root samples of M. 

truncatula seedlings subjected to salinity stress. Transgenic Arabidopsis plants 

overexpressing MtCBF4 were found to be drought- and salt-stress tolerant. Medicago 

truncatula transgenics overexpressing MtCBF4 were also salt-stress tolerant, implicating 

the gene to function under drought- and salinity-stress conditions (Li et al., 2011). Thus, a 

few CBFl genes may have evolved to perform diverse functions in alfalfa, in addition to 

their strong potential role in cold tolerance. 

2.4.4. MsCAS30  and MsDHNl  under cold is independent from MsCBFl-17  

and -18  express ion 

During cold acclimation in Arabidopsis, AtCBF3 acts as a key player and 

regulates expression of a set of downstream genes, including COR genes such as COR47 

(Kasuga et al., 1999; Seki et al., 2001; Fowler and Thomashow, 2002; Maruyama et al., 

2004). COR47 encodes a dehydrin protein that is known to be involved in cold and 
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dehydration stress response. Interestingly, MsCAS30, whose expression is closely 

correlated with freezing tolerance in some alfalfa germplasm, also encodes a putative 

dehydrin, prompting us to address the relationship between MsCAS30 and MsCBFl-17 

and -18 during induction. The induction of MsCBFl-17 and -18 (at 2 h) preceded that of 

MsCAS30 (at 24 h) in RS, FR, and API. In CUF, however, MsCAS30 was highly induced 

at 24 h after cold treatment, despite no induction for MsCBFl-17 or -18 at either 2 or 24 

h, suggesting that MsCAS30 induction may not require an induction of MsCBFl-17 or -

18. Through sequence analysis, we found a dehydrin that showed the highest similarity to 

COR47 in Arabidopsis. However, its high induction under cold was not correlated with 

the induction of MsCBFl-17 and -18. These results suggested that induction of MsCAS30 

and MsDHNl may be regulated by genes or pathways other than MsCBFl-17 and -18. In 

addition, MsCAS30 as a marker for freezing tolerance in alfalfa may have its limitation. 

In summary, our results suggest that the CBFls may play important role in the 

regulation of freezing tolerance in alfalfa. The three cold-tolerant alfalfa germplasm 

showed an induction of different CBFl genes, implicating that the cold-response 

mechanism involving CBF might vary among alfalfa germplasm. The fact that API 

showed induction of more CBFl genes than FR and RS, and that FR and RS performed 

better under freezing tolerance than API, suggests that additional mechanisms exist and 

contribute to superior freezing tolerance in RS and FR. 

2.5. Mater ials and methods 

2.5.1. Plant mater ials  and growth condit ions  

Five alfalfa germplasm examined in this study include SD201, RS, FR, API, and 

CUF. The SD201 cultivar was developed by Dr. Arvid Boe at South Dakota State 
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University. Seed of RS and FR were collected from the Grand River National Grassland 

(45 N, 102 W), SD, and Thunder Butte Creek (45 N, 101 W), North of Faith, SD, 

respectively. Seed of CUF is a gift from the Desert Seed Company (Seeley, CA). Seed of 

API was generously provided by Dr. Yves Castonguay (Agriculture and Agri-Food 

Canada). 

SD201 seeds were scarified with 3M 332U 150 aluminum oxide sandpaper and 

then sterilized in 2.5% bleach solution for 3 min. After three thorough washes with 

distilled water, six seeds were directly planted into each 3.79-L (one-gallon) pots (Stuewe 

and Sons) that were filled with potting mix (Sunshine Mix #3, Sun Gro Horticulture 

Canada). Another batch of seeds were grown in two 3.8-cm  21-cm Ray Leach Cone-

tainers (Stuewe and Sons) each, which were filled with 38 g of potting mix. Plants were 

irrigated at a 3-d interval with a Miracle-Gro (Scotts Miracle-Gro Products) nutrient 

solution (5 g Miracle-Gro 3.79 L−1 [gallon−1] of H2O, N–P–K = 15–30 –15). Two weeks 

after germination, the seedlings were thinned to three plants per pot and one per Cone-

tainer. All plants were grown in a Conviron growth chamber with growth conditions, set 

as 22  2C day and 19  2C night thermoperiod and a 16-h photoperiod. The light 

intensity was set at 200 mol m−2 s−1 (photosynthetic active radiation), and the relative 

humidity level was maintained at 55%. 

To examine gene expression in different germplasm, plants of RS, FR, API, and 

CUF grown in the greenhouse were used. Seeds were scarified, sterilized, thoroughly 

rinsed, and soaked in distilled water overnight at 4C. Seeds were transferred the next day 

to wet filter papers (Whatman No. 1, Whatman International) in a Petri plate and 

incubated at 25C in the dark for 6 d. Seedlings were transplanted into two 3.8-cm  21-
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cm Ray Leach Cone-tainers (Stuewe and Sons) each, which were filled with 38 g of 

potting mix (Sunshine Mix #3, Sun Gro Horticulture Canada). Plants were grown in a 

greenhouse under the conditions described above. On the 10th day after transplanting, the 

seedlings were thinned to one plant per cone (Anower et al., 2016). 

2.5.2. Treatment and sampling  

Cold stress  

For cold-stress treatment of very young seedlings, 7-d-old seedlings of SD201 

grown in Petri dishes were used. The procedure for seed scarification, sterilization, and 

incubation is described above. The seedlings were subjected to cold temperature (4C) by 

placing the plates in a cold room, and samples were harvested at 0, 2, and 12 h after the 

treatment. Seven seedlings were harvested per each replicate at a given time point and 

were immediately frozen in liquid nitrogen and stored at −80C. 

For a comparison of gene expression in different germplasm, 28- to 30-d-old 

plants of RS, FR, API, and CUF grown in Cone-tainers in a greenhouse were subjected to 

cold temperature (2C) in a walk-in cold room under similar light intensity and the same 

photoperiod. Samples were harvested at 0, 2, and 24 h after the treatment. Six young 

shoots were harvested per replicate and stored at −80C (Anower et al., 2016). 

Diurnal samples  

Young shoots from SD201 plants grown in pots at a similar developmental stage 

(late bud stage) were harvested every 3 h starting at dawn. Samples were harvested to 

represent a total of eight time points (T0–T7 or 0–21 h) in a complete day, with five 

samples collected in light and three samples in dark. Three young shoots were harvested 

per replicate. 
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Developmental stages  

Samples representing different stages of development of alfalfa were harvested 

from SD201 plants grown in Cone-tainers every week starting from the seventh day after 

germination. For the first week, the whole seedlings were harvested (W1), and from the 

second week onward (Weeks 2–5), the young shoots from the upper node (W2–W5) were 

harvested. The samples were harvested at the same time of the day, 3 h after lights on, 

every week. 

Different t issues  

Leaves, stems, and roots were collected separately from 28-d-old SD201 plants 

grown in a greenhouse before flowers were visible. The samples were harvested 3 h after 

lights on and were immediately frozen in liquid nitrogen and stored at −80C. 

2.5.3. Identificat ion of CBFl and CORl genes in M. truncatula and 

phylogenetic analys is  

The Arabidopsis CBF3 protein sequence was used to search against the M. 

truncatula genome database version Mt 4.0V1 

(https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org

_Mtruncatula). The default expected threshold value (E) for the Medicago CBF homologs 

that were chosen was set at −1, and the BLOSUM62 comparison matrix was used. The 

retrieved sequences were named according to existing nomenclature as MtCBFl-1 to 

MtCBFl-18. Multiple sequence alignment of the protein sequences was done using 

Clustal Omega (Sievers et al., 2011), and the neighborhood-joining method of MEGA 6 

(Tamura et al., 2013) was used to construct the phylogenetic tree. Similarly, COR47 

https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org_Mtruncatula
https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org_Mtruncatula
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protein sequence from Arabidopsis was used to identify COR-like genes in M. truncatula 

by following the steps described above. 

2.5.4. Primer des ign 

Gene-specific primers (Supplemental Table S1) were designed for MtCBFls and 

other genes using an online primer design tool from Integrated DNA Technologies. The 

efficiency and specificity for each primer pair was determined using alfalfa genomic 

DNA (1 ng) as the template in a 20-L polymerase chain reaction (PCR) containing 2 L 

of 10 PCR buffer, 1 L each of 10 M primers, 1 L of 2 mM deoxynucleotides, and 

0.1 L of Taq polymerase (5 U L−1, BioLabs). All reactions were performed in a 

gradient thermocycler (Eppendorf Mastercycler) with PCR conditions set as: initial 

denature step at 94C for 3 min, followed by 35 cycles of 94C for 20 s, 20 s at annealing 

temperature gradient (R = 3C s−1, G = 2.4C), extension at 72C for 2 min, and a final 

extension at 72C for 10 min. The PCR products were then run on a 1% agarose gel 

stained with ethidium bromide, and images were visualized using a Bio-Rad ChemiDoc 

image analysis system. 

2.5.5. RNA isolat ion and cDNA synthes is  

Total RNA was isolated using Trizol reagent (Invitrogen). The RNA samples 

were quantified using a Nanodrop ND-1000 Spectrophotometer (ThermoFisher 

Scientific), and samples with a 260/280 ratio from 1.9 to 2.1 and a 260/230 ratio from 2.0 

to 2.5 were used for further analysis. RNA quality was also examined by separating RNA 

on a 2% agarose gel stained with ethidium bromide. The samples, which showed three 

sharp major ribosomal RNA bands, were used for complementary DNA (cDNA) 

synthesis. Quantitative Real-Time PCR (qRT-PCR) reactions with the housekeeping gene 
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MsActin were performed directly on RNA samples without reverse transcription, in 

comparison with respective cDNA samples. Only the cDNA samples whose 

corresponding RNA samples showed no amplification or significantly greater cycle 

threshold (CT) values in qRT-PCR analysis were used for the gene expression analysis. 

First-strand cDNA synthesis was performed using the high-capacity cDNA 

Reverse Transcription kit (ThermoFisher Scientific) in a 20-L reaction according to 

manufacturer’s instructions. Synthesized cDNA samples were validated using MsActin 

primers with 30 cycles in a regular PCR reaction. The cDNA samples were diluted 4 

times for use in a real-time qRT-PCR reaction. 

2.5.6. Quantificat ion of transcr ipts  

qRT-PCR was performed using DyNAmo Flash SYBR Green Hot Start qRT-PCR 

Kit (ThermoFisher Scientific) following manufacturer’s instructions in a 20-L reaction 

in an ABI 7900HT High-Throughput Real-Time Thermocycler (Applied Biosystems) 

using standard cycling conditions. Each sample from three biological experiments was 

assayed twice as technical replicates. The thermocycler program was set to: 15 min of 

activation at 95C, followed by 40 cycles of 15 s at 94C, 30 s at annealing temperature, 

30 s of extension at 72C, and a dissociation curve step. The dissociation curve was used 

to determine the primer efficiency and specificity. The normalized relative fold changes 

in the transcripts of MsCBFl or other genes were calculated using the 2−CT or 

comparative CT method based on the difference between the target and reference genes, 

as described by Livak and Schmittgen (2001). 
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2.5.7. Data analys is  

Statistical analysis was performed using STATISTIX 9.0 analytical software 

(STATISTIX, 2011) and the Microsoft Excel 2010 data analysis tools pack. Data were 

subjected to ANOVA using the linear model with completely randomized design to 

determine significant differences among the treatments. Tukey’s honestly significant 

difference all-pair comparison was conducted to ascertain significant differences between 

treatment means (p < 0.05). 
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Figure 1a. Apetala 2 (AP2) domain alignment of 18 Medicago truncatula C-repeat binding 

factor-like (CBF-like) peptides with Arabidopsis CBF3; * represents conserved amino acid 

residues;  represents the identical and similar amino acid residues.  
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Figure 1b. Phylogenetic tree of CBF transcription factors in M. truncatula (circles), 

Arabidopsis (triangles), and soybean (diamonds). The numbers shown next to the 

branches are the bootstrap probabilities from 1000 replications. Arabidopsis sequences 

include: AtDREB1C/CBF1 (At4g25470), AtDREB1B/CBF2 (At4g25490), 

AtDREB1A/CBF3 (At4g25480), AtDREB1D/CBF4 (At5g51990), AtDREB1E 
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Subgroup 4
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(At1g63030) and AtDREB1F (At1g12610). Medicago truncatula sequences include: 

MtCBF1 (Medtr5g010930), MtCBF2 (Medtr6g465690), MtCBF3 (Medtr6g466000), 

MtCBF4 (Medtr1g101600), MtCBF5 (Medtr6g465420), MtCBF6 (Medtr6g465430), 

MtCBF7 (Medtr6g465450), MtCBF8 (Medtr6g465460), MtCBF9 (Medtr6g465510), 

MtCBF10 (Medtr6g465530), MtCBF11 (Medtr6g465850), MtCBF12 (Medtr6g465990), 

MtCBF13 (Medtr6g466020), MtCBF14 (Medtr6g466130), MtCBF15 (2 g085015), 

MtCBF16 (Medtr4g102660), MtCBF17 (Medtr5g010910), and MtCBF18 

(Medtr5g010940). Soybean sequences include: GmDREB1A1 (Glyma09g27180), 

GmDREB1A2 (Glyma16g32330), GmDREB1B1 (Glyma20g29410), GmDREB1B2 

(Glyma10g38440), GmDREB1C1 (Glyma01g42500), GmDREB1D1 (Glyma05g03560), 

GmDREB1D2 (Glyma17g14110), GmDREB1E1 (Glyma12g30740), GmDREB1E2 

(Glyma13g39540), GmDREB1F1 (Glyma12g09130), GmDREB1F2 (Glyma11g19340), 

GmDREB1G1 (Glyma13g21570), and GmDREB1H1 (Glyma12g30710) 
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Figure 2. Cold-responsive expression of the C-repeat binding factor-like (CBF-like) 

genes in alfalfa. One-week-old SD201 seedlings were exposed to cold (4C), and samples 

were collected at 0, 2, and 12 h after the cold treatment. The transcripts were quantified 

by qRT-PCR. The values represent the mean fold change  SE (n = 3) when compared 

with the transcript level at 0 h. Bars with different letters are significantly different (p < 

0.05). 
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Figure 3. Diurnal regulation of four cold-induced genes in alfalfa. Young shoots were 

harvested from SD201 plants of the same age every 3 h after dawn. The shaded area in 

each graph represents sampling points during night. The values represent the mean fold 

change  SE (n = 3) when compared with the transcript level at 0 h. Data points with 

different letters are significantly different (p < 0.05). 

MsCBFl-11

b b b

a ab
a a a

MsCBFl-2

b
b

b b

b

a

a

a

MsCBFl-17
a

b b b b b bb

R
e
la

ti
v
e
 f

o
ld

 c
h

a
n

g
e

MsCBFl-18

b b b b b b
b

a

Time (hour)



 62 

 

Figure 4. Expression analysis of MsCBF-like genes in different tissues; leaf, stem, and 

root tissues were harvested from SD201 plants for gene expression analysis. The values 

represent the mean fold change  SE (n = 3) when compared with the transcript level in 

leaf. Bars with different letters are significantly different (p < 0.05). 
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Figure 5. Expression analysis of the MsCBF-like genes at different developmental stages: 

samples were harvested from SD201 plants every week starting from the seventh day 

after germination. For the first week, the whole seedlings were harvested, and from the 

second week onward (Weeks 2–5), the young shoots from the upper node were harvested. 

The transcripts were quantified by qRT-PCR, and the values represent the mean fold 

change  SE (n = 3) when compared with the transcript level at Week 1. Bars with 

different letters are significantly different (p < 0.05).  
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Figure 6. Cold-responsive expression of C-repeat binding factor-like (CBF-like) genes in 

four different alfalfa germplasm; plants (28–30 d old) of River Side (RS), Foster Ranch 

(FR), Apica (API), and CUF-101 (CUF) grown in Cone-tainers in a greenhouse were 

subjected to cold temperature (2C) treatment, and samples were harvested at 0, 2, and 24 

h after the treatment. The transcripts were quantified by qRT-PCR, and the values 

represent the mean fold change  SE (n = 3) when compared with the transcript levels at 

0 h of respective germplasm. Bars with different letters are significantly different (p < 

0.05). 
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Figure 7. Cold-responsive expression of MsCAS30 and MsDNHl genes in four different 

alfalfa germplasm; plants (28–30 d old) of River Side (RS), Foster Ranch (FR), Apica 

(API), and CUF-101 (CUF) grown in Cone-tainers in a greenhouse were subjected to 

cold temperature (2C) treatment, and samples were harvested at 0, 2, and 24 h after the 

treatment. The transcripts were quantified by qRT-PCR, and the values represent the 

mean fold change  SE (n = 3) when compared with the transcript levels at 0 h of 

respective germplasm. Bars with different letters are significantly different (p < 0.05). 
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Table S1. Gene specific primer sequences used for qPCR analysis and their 

corresponding length, product length and melting temperature (Tm).  

 

 
 

Primers RT-Primer-Sequences Length (bases) Product size (bp) Tm (°C)

MtCBF1_F GTGATAGGGATGCTGTGGATATG 23 153 55

MtCBF1_R GGGAAGGAGGATTAGAACGTAAAG 24 54

MtCBF2_F ATGCCAGAGTTGTTGAGGAATA 22 156 54

MtCBF2_R GATGAGAAGCACTTTATGCTTGAT 24 53

MtCBF3_F GCAACGAGGAGATGCGATTA 20 107 55

MtCBF3_R GTTCCTCTTCCTCACTCCTCTA 22 55

MtCBF4_F GGCTTGGAACATTCCCTACA 20 110 55

MtCBF4_R CTTCCAAGCAGAATCAGCAAAG 22 55

 MtCBF5_F GTGGAGGAATATGGCGTTGAT 21 128 55

MtCBF5_R TCCAGGTAGTGGTAACAGACTT 22 55

 MtCBF6_F TTGTGGAGGAATATGGCACTAAT 23 131 54

MtCBF6_R CAGATCGTCGTAACAGACCTTT 22 55

 MtCBF7_F ATGCCAGAATTGTTGAGGAATATG 24 141 53

MtCBF7_R CCAGATCGTCGTAACAGACTTT 22 55

 MtCBF8_F TGTGTGGAAGAAGAAGAGGAAA 22 175 54

MtCBF8_R GAACCCAACTCATGGTGATAGA 22 54

 MtCBF9_F GTCGTCGTCACAGAAGAACTTA 22 136 54

MtCBF9_R ACGCCATATTCCTCCACATC 20 55

 MtCBF10_F CGGTGGAAGAAGAGGAAGAA 20 81 54

MtCBF10_R ACTCTTGCATATTCAACACTTCC 23 53

 MtCBF11_F TCTACTCACACCCTTCCTCTT 21 101 55

MtCBF11_R TAACCGCACCTCCTTGTTG 19 55

 MtCBF12_F  GGAAGCCTAACAAGAAGACTAAGA 24 109 54

MtCBF12_R TCCTTTGCCTGAGTAGTTGC 20 55

 MtCBF13_F  GCATGGCGGCTCCTTATT 18 133 56

MtCBF13_R TGTTCAACACTTCCTCCTCTTT 22 54

 MtCBF14_F CCATCTAACAACCCTTCCTCTTC 23 97 55

MtCBF14_R TCCCACGAGAGACCTCTAAAT 21 55

 MtCBF15_F CCGGTTTCGAAATCAACTTCAC 22 111 55

MtCBF15_R AGGCTTAGTCACAACACTCAAA 22 54

 MtCBF16_F CGTAGTTGCGGACAGTAAGG 20 98 56

MtCBF16_R ACAGTCCCTGCAAAGGTTTAT 21 54

 MtCBF17_F CCAAAGAAGAGAGCAGGTAGAA 22 108 54

MtCBF17_R AGGAACTCTCATCTCACAAACC 22 54

 MtCBF18_F GACCAAAGAAGAGAGCAGGTAG 22 110 55

MtCBF18_R AGGAACTCTCATCTCACAAACC 22 54

MtActin_F AGGCTCCACTCAATCCTAAAGCCA 24 168 59.8

MtActin_R ACCCTTCGTATATGGGCACTGTGT 24 59.8

MtTubulin_F ATGTTTAGGZGGGTGAGCGAGCAA 24 168 60.1

MtTubulin_R TTCATCAGCAGTGGCATCCTGGTA 24 60

MsCAS30_F ACAGGAACAGGAACAGGAC 20 171 61.8

MsCAS30_R CAGTACATGATCCAGAACCAGG 22 62

MtDHNl_F CTTCACCGATCTGATAGCTCTTC 23 119 62

MtDHNl_R TCAACTTTCTCTACTGCCACTG 22 62

Gene-specific primer pairs for qRT-PCR



 67 

 

 

 

 



 68 

 
 

 



 69 

 
 

 



 70 

 
 

 



 71 

 
 

Figure S1. Full length protein sequence alignment of CBFs from Medicago 

truncatula, Glycine max and Arabidopsis. * represents conserved amino acid residues; • 

represents the identical and similar amino acid residues. The AP2 domain is highlighted 

with a bold black line drawn below the consensus line. Arabidopsis sequences include: 

AtDREB1C/CBF1 (At4g25470), AtDREB1B/CBF2 (At4g25490), AtDREB1A/CBF3 

(At4g25480), AtDREB1D/CBF4 (At5g51990), AtDREB1E (At1g63030) and AtDREB1F 

(At1g12610); Medicago truncatula sequences include: MtCBF1 (Medtr5g010930), 

MtCBF2 (Medtr6g465690), MtCBF3 (Medtr6g466000), MtCBF4 (Medtr1g101600), 

MtCBF5 (Medtr6g465420), MtCBF6 (Medtr6g465430), MtCBF7 (Medtr6g465450), 

MtCBF8 (Medtr6g465460), MtCBF9 (Medtr6g465510), MtCBF10 (Medtr6g465530), 

MtCBF11 (Medtr6g465850), MtCBF12 (Medtr6g465990), MtCBF13 (Medtr6g466020), 

MtCBF14 (Medtr6g466130), MtCBF15 (2g085015), MtCBF16 (Medtr4g102660), 

MtCBF17 (Medtr5g010910) and MtCBF18 (Medtr5g010940); soybean sequences 

include: GmDREB1A1 (Glyma09g27180), GmDREB1A2 (Glyma16g32330), 

GmDREB1B1 (Glyma20g29410), GmDREB1B2 (Glyma10g38440), GmDREB1C1 

(Glyma01g42500), GmDREB1D1 (Glyma05g03560), GmDREB1D2 (Glyma17g14110), 

GmDREB1E1 (Glyma12g30740), GmDREB1E2 (Glyma13g39540), GmDREB1F1 

(Glyma12g09130), GmDREB1F2 (Glyma11g19340), GmDREB1G1 (Glyma13g21570) 

and GmDREB1H2 (Glyma12g30710) 
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Figure S2. Graphical representation of chromosome location of Medicago truncatula 

CBF-like genes. The two groups of tandemly arranged genes, MtCBFl-1, 17, and 18 and 

MtCBFl-2, 3, 5-14 are indicated by a single position on the respective chromosomes. The 

length of the chromosomes is in mega base pairs (Mb). 
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Figure S3. Full length protein sequence alignment of Arabidopsis COR47 to DHNls 

from Medicago truncatula and Glycine max. * represents conserved amino acid 

residues; • represents the identical and similar amino acid residues. The protein sequences 

include: AtCOR47 (At1g01030), MtDNH1 (Medtr3g117290), and GmDHNl 

(Glyma04g01130).  
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3.1. Abstract  

The survival of land plants largely depends on the efficient functioning of the root 

system. Yet, very little is known about how the roots sense and grow towards a moisture 

gradient in soil, a phenomenon known as hydrotropism. A key advance in understanding 

the molecular mechanisms underlying hydrotropism was the cloning of the gene, Mizu-

kussei 1 (MIZ1) from the model plant Arabidopsis. A miz1 mutant plant lacks the 

hydrotropic response and roots show a modified wavy growth. MIZ1 encodes a protein 

that is only found in the terrestrial plants. A recent study showed that overexpression of 

MIZ1 enhances the hydrotropic response of the plants leading to improved water sensing 

and acquisition. We hypothesize that an enhancement of hydrotropism using MIZ1-like 

genes in major crops may result in better performance under drought stress. After 

examining the maize (Zea mays) genome, we identified 15 MIZ1-like (MIZl) genes. 

Expression analyses of these genes in six different tissues/organs of maize seedlings 

reveal diverse expression profiles. Four MIZl genes, however, showed relatively higher 

levels of expression in root-tip or root-basal regions of the seedlings, a pattern very 

similar to that of AtMIZ1. Expression profiles of these four genes were studied in 

response to plant hormones, ABA and IAA, and to moisture gradient. ZmMIZ1l-K alone 

showed differential transcript accumulation in response to hormone treatments and 

appears to regulate the roots’ hydrotropic response to varied moisture gradients. Based on 

these observations, we propose that ZmMIZ1l-K is the potential functional homolog of 

AtMIZ1 and the gene regulates hydrotropic response in maize roots.  

Keywords: MIZ1, maize, hydrotropism, functional homolog 
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3.2. Introduction  

The distribution of water in the soil surrounding plant roots is non-homogeneous 

and constantly changing. The situation is worse in drought, a major abiotic stresses 

affecting plant growth and productivity worldwide 

(https://www.drought.gov/gdm/current-conditions).  Plants continuously employ 

mechanisms to efficiently acquire and use the available water. Hydrotropism is one such 

mechanism, where roots sense differences in moisture gradient, and bend and grow 

towards higher moisture area (Darwin and Darwin 1880; Loomis and Ewan 1936).  

Though root hydrotropism is recognized as an important response to avoid water 

deficit (Bolaños and Edmeades 1993), research on hydrotropism and its regulation at the 

molecular level has been very limited. The most important reason is the difficulty in 

separating hydrotropic response from gravitropic or thigmotropic responses. The first 

breakthrough came from the studies of the pea mutant ageotropum that shows a positive 

hydrotropic response without interference from gravitropic response (Jaffe et al. 1985). 

Other studies used different experimental setups that included clinorotation and 

microgravity in space to distinguish hydrotropism from other trophic responses of roots 

(Takahashi 1997; Cassab et al. 2013). These studies concluded that the sensing and 

signaling pathways in roots to gravity and moisture gradients are different. Recently two 

novel QTL (quantitative trait loci) were identified in wheat (Triticum aestivum L.), a 

monocot, that were associated with hydrotropism (Hamada et al. 2012). These QTL are 

located on different chromosomes than the QTL for gravitropism, which argue that the 

genetic factors controlling the hydrotropic responses of the wheat roots are separate from 

the genetic factors controlling gravitropism. 

https://www.drought.gov/gdm/current-conditions
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Early physiological studies show that the root cap cells are important in sensing a 

moisture gradient (Jaffe et al. 1985). A recent study with Arabidopsis indicated that root 

cortex cells are important for moisture sensing (Haruta et al. 2017). Ca2+ ions and 

hormones, namely auxin, cytokinin and ABA, have been shown to play important role in 

hydrotropic response (Takano et al. 1997; Takahashi et al. 2002; Kaneyasu et al. 2007). 

The molecular participants of the sensing and signaling pathways regulating 

hydrotropism are poorly studied. Thus far only two genes, MIZ1 and MIZ2, have been 

identified based on mutant analysis studies in Arabidopsis.  MIZ1 was identified in 

studies of mizu-kussei1 mutants (Kobayashi et al. 2007). The mutants’ roots displayed 

normal gravitropism and growth but lacked a hydrotropic response. They also displayed 

wavy growth in roots and reduced sensitivity to light. The mutant phenotype mutant was 

linked to a recessive mutation of the MIZ1 gene. MIZ1 encodes for a protein with an 

unknown function and contains a DUF617 (domain of unknown function 617) domain 

and the gene homologues are only found in terrestrial plants (Yamazaki et al. 2012). 

Expression analysis of the gene shows extensive transcript accumulation in the columella 

cells of the root caps. Some expression was also observed in the mature regions of the 

roots and in the hydathodes (water-excreting epidermal structures) of the leaves 

(Kobayashi et al. 2007). MIZ1 protein is localized to the cytoplasmic side of the 

endoplasmic reticulum membrane in cortical cells and lateral root cap cells (Yamazaki et 

al. 2012). The overexpression lines of MIZ1 (MIZ1OEs) display an enhanced hydrotropic 

response (Miyazawa et al. 2012). Overexpression of MIZ1 also results in fewer lateral 

roots. which is associated with a decreased auxin level in roots. The suppression of the 

lateral roots is rescued by the external application of auxin (Moriwaki et al. 2011), 
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suggesting a negative regulation of auxin levels by the MIZ1 gene. This notion is 

supported by the fact that the miz1 roots have increased auxin levels. Furthermore, when 

the overexpression lines are treated with increasing doses of auxin, reduction in the 

hydrotropic curvature of the roots is observed. These results indicate that MIZ1 acts 

upstream of auxin synthesis and regulates the hydrotropic response.  

In contrast, MIZ1 functions downstream of cytokinin signaling to regulate the 

lateral root development. Exogenous application of cytokinin results in the accumulation 

of MIZ1 at the lateral root primordia (Moriwaki et al. 2011). MIZ1 was also shown to 

integrate signals from light and ABA signaling pathways to regulate hydrotropism in 

Arabidopsis (Moriwaki et al. 2012).  

The second gene that was shown to play an essential role in hydrotropism in 

Arabidopsis is MIZ2 (Miyazawa et al. 2009). MIZ2 encodes for a guanine-nucleotide 

exchange factor for ADP-ribosylation factor-type G proteins or GNOM. Unlike other 

GNOM mutants that show altered auxin transport (Geldner et al. 2003; Steinmann et al. 

1999), MIZ2 mutants do not perturb the agravitrophism.  Importantly, miz2 mutants are 

similar to miz1 mutants in that they are ahydrotropic.  

Auxin, MIZ1 and MIZ2 together regulate lateral root development during 

hydrostimulated conditions. Apart from the observation that MIZ1 requires MIZ2 activity 

for its function in lateral root development (Moriwaki et al. 2011), the role of 

GNOM/MIZ2 in root hydrotropism is still undetermined. Various studies have suggested 

that multiple players interact to regulate hydrotropism, but a clear pathway and working 

mechanism is still missing. 
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Arabidopsis is the most studied plant relative to elucidating the molecular players of 

hydrotropism. Hydrotropism has also been examined in wheat (Hamada et al. 2012),  pea 

(Pisum sativum L.) (Takahashi et al. 1992), soybean (Glycine max L.) (Tsutsumi et al. 

2002) and maize (Zea mays L.) (Takahashi and Scott 1991).  These plants may have 

similar molecular mechanisms regulating hydrotropism based on the fact that MIZ1 

homologues are found only in the land plants, not algae (Kobayashi et al. 2007). We 

hypothesize that identification and manipulation of genes that are functionally 

homologous to MIZ1 and MIZ2 will result in better hydrotropic performance of 

agriculturally important crops like maize under drought conditions.  

In the present study, we performed a genome-wide study of the MIZ1-like gene 

family in maize. The objective is to identify the candidates of functional homologue of 

AtMIZ1 through gene expression analysis. This study serves as the foundation for the 

functional characterization of ZmMIZ1-like genes.  

3.3. Results  

3.3.1. Fifteen MIZ1l genes were identified in the maize genome  

To identify putative MIZ1l genes in maize, we performed a BLASTP (basic local 

alignment search tool, protein) search of the maize genome using the peptide sequence of 

Arabidopsis MIZ1, which resulted in 25 hits. Fifteen homologues were identified based 

on the E values (cutoff value of 2.3E-29), score (cutoff value of 115.2) and percentage 

identity (between 42%-61%) with AtMIZ1. Based on chromosome location, redundant 

sequences were discarded. We performed the alignment of just the signature DUF617 

domain (Figure 1a.) as well as the complete sequence (Figure S1). The maize and 

Arabidopsis MIZ1 sequences show greater homology in the DUF617 domain compared 
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to the N-terminal region. We named the maize MIZ1 sequences ZmMIZ1l-A to 

ZmMIZ1l-O in order of the corresponding chromosome locations identified from the 

maize genome browser. 

3.3.2. Phylogenetic analys is and chromosomal locat ion of the MIZ1l  gene 

family in maize  

Based on the sequence similarity to AtMIZ1, the fifteen members of the maize 

MIZ1l gene family were divided into two subgroups, designated subgroups 1 and 2 

according to the clades on the phylogenetic tree. Nine of the maize MIZ1l proteins 

clustered together to form the maize-only subgroup 1 and the rest six clustered with 

AtMIZ1 to form subgroup 2 (Figure 1b.).  

A second phylogenetic tree was constructed based on the protein sequence 

similarity among all the members of maize and Arabidopsis MIZ1 gene family (Figure 

2a.). This tree divided the maize MIZ1 family into four subgroups that had members from 

both maize and Arabidopsis. 

 The ZmMIZ1l genes are distributed randomly. There is only one MIZ1l homolog 

found on chromosomes 1, 6, 7 and 9; whereas the rest of the chromosomes, with the 

exception of chromosome 10, which contains no MIZ1l homolog, harbor more than one 

homolog (Figure 2b.). 

3.3.3. Gene structure is conserved between Arabidops is and maize  

The AtMIZ1 gene has no introns and the DUF617 domain occupies more than 

60% of the coding sequence. Except ZmMIZ1l-C, ZmMIZ1l-G, and ZmMIZ1l-O, the 

maize MIZ1l homologs are very similar, i.e. a larger N-terminal sequence and a very 

small C-terminus sequence that flank the DUF domain. This suggests a significant 
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conservation between monocots and dicots (Figure 1c.). ZmMIZ1l-G and ZmMIZ1l-O 

each contain a single intron in the DUF617 domain and form a small subclade, 

suggesting they are recent duplicates. ZmMIZ1l-C encodes the only protein that lacks the 

N-terminus sequence.  

3.3.4. Four ZmMIZ1l  homologs are highly expressed in roots  

Using GUS (β-glucuronidase) and green fluorescent protein reporters, MIZ1 

expression was detected in the root cap, the mature region of roots and the hydathodes of 

the leaves in Arabidopsis (Kobayashi et al. 2007; Yamazaki et al. 2012). In order to 

identify maize MIZ1l homologs that may function in root hydrotropism we determined 

which MIZ1l is expressed in roots. Six tissues were sampled from maize seedlings and 

examined for MIZ1l transcript levels. Three homologs, ZmMIZ1l-B, ZmMIZ1l-I, and 

ZmMIZ1l-M, showed relatively high transcript accumulation levels in the root tips 

including the root cap cells (Figure 3). One additional homolog, ZmMIZ1l-K, showed 

higher transcript levels in the mature region exclusive of the root tip region. Unlike 

AtMIZ1, none of the ZmMIZ1l homologs showed significant transcript accumulation in 

leaves. ZmMIZ1l-A, ZmMIZ1l-C, ZmMIZ1l-D, ZmMIZ1l-F ZmMIZ1l-H, ZmMIZ1l-N and 

ZmMIZ1l-O were detected in very low levels in all the tissues examined and we were not 

able to obtain a reliable expression profiles for these genes. 

3.3.5. Exogenous applicat ion of auxin and ABA regulates the transcr ipt 

accumulat ion of only one MIZ1l  homolog in maize  

Eight MIZ1l homologs that were expressed at higher levels in roots tissues were 

evaluated for their response to the plant growth factors, auxin and ABA. Both auxin and 

ABA were shown to regulate hydrotropism in roots of Arabidopsis (Miyazawa et al. 
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2012; Takahashi et al. 2002). Only ZmMIZ1l-K responded to the exogenous application 

of IAA (auxin) and ABA (Figure 4). ZmMIZ1l-K transcript levels are significantly 

increased by auxin and decreased by ABA. None of the other homologs show a 

significant response to the growth factors, and ZmMIZ1l-M is shown as an example 

(Figure 4). ABA responsive gene ZmRAB17 and auxin response factor ZmGH3-2 are 

positive controls (Feng et al. 2015; Kizis and Pagès 2002; Zheng et al. 2006) and 

responded as expected.  

3.3.6. ZmMIZ1l-K ,  ZmRAB17  and ZmGH3-2  show higher accumulat ion on 

the wet-half of hydrotropic roots  

We examined the expression levels of the same four ZmMIZ1l genes in the 

hydrotropic roots, together with ZmRAB17 and ZmGH3-2. ZmMIZ1l-K shows 

significantly higher transcript accumulation in the root halves facing higher moisture 

compared to both the halves facing lower moisture and control roots (Figure 5). The 

control roots were also split into halves and no significant difference in transcript levels 

between the two halves. The expression levels of each gene in CK D and CK W samples 

were combined and averaged as a single CK that is compared with the transcript levels in 

HYD W and HYD D samples. ZmRAB17 showed a similar expression pattern as 

ZmMIZ1l-K. In contrast, ZmGH3-2, an auxin response factor, shows significant transcript 

accumulation in both the HYD W and HYD D root halves compared to the control roots. 

ZmMIZ1l-B, ZmMIZ1l-I and ZmMIZ1l-M show no response to hydrotropic treatment.  
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3.4. Discuss ion  

3.4.1. Evolutionary expans ion of MIZ1l  gene family in Zea mays  

It is interesting to note that given the bigger size of the maize genome (2,300 

Mbp) when compared to the dicot Arabidopsis (135 Mbp), maize appears to have only 15 

MIZ1l homologues, while it has been reported that the later has a total of 11 MIZ1l 

homologues that share a varied identity ranging from 34% to 59% with the MIZ1 gene 

(Kobayashi et al. 2007). Other plants like rice (13 MIZ1l), soybean (18 MIZ1l) and 

sorghum (11 MIZ1l) have similar numbers of MIZ1l genes irrespective of their genome 

size and the whole genome duplication events (Table S2.). 

 Phylogenetic analysis of Arabidopsis and maize MIZ1 genes suggests that they 

diverged as a gene family before the divergence of Arabidopsis and maize. Nearly all 

subclades contain MIZ1l genes from both species, indicating that within each subclade 

MIZ1l orthologues evolved from a common ancestor gene (Figure 2a). The analysis 

indicates that the both ZmMIZ1l and AtMIZ1l genes evolved through multiple events 

(Figure 2a). Genes in subclade 4 that includes AtMIZ1 likely evolved from a common 

ancestral gene. The ancestral gene first diverged into AtMIZ1 and a paralogue, which 

further diverge to form ZmMIZ1l-I and other four Arabidopsis paralogues (MIZ1l-A, B, 

D, E and K). AtMIZ1l-A and B, and AtMIZ1l-D and K likely represent two duplication 

events. ZmMIZ1l genes also evolved through multiple duplication events. As indicated in 

subclade 3, AtMIZl-F and I share a common ancestor with ZmMIZ1l-G, O, M, E and J. 

While evidence of gene duplication can be seen in nearly every subclade, ZmMIZ1l genes 

with the highest identities are usually located at different chromosomes (Figure 2b), 

suggesting that the formation of gene family takes more than duplication.  
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 Sequence alignment of the MIZ1l proteins reveals a high degree of conservation 

of the DUF 617 domain among Arabidopsis and maize. Notably, the absence of introns is 

conserved with the exception of ZmMIZ1l-G and ZmMIZ1l-O. The similar placement 

suggests that the intron formed as a single event and paralogues formed subsequently. 

The structural conservation of the MIZ1l gene family in Arabidopsis and maize suggests 

a functional conservation (Figure 1a & 1b). 

3.4.2. Tissue types and growth hormones elic it d if ferential express ion 

levels  of ZmMIZ1l  transcr ipts  

The initial breakthrough in the molecular dissection of the root hydrotropic 

response came from studies of the Arabidopsis mutant miz1. Map-based cloning and 

primary expression profiles of MIZ1 suggested that the gene functions in the early phase 

of hydrotropic response. Transgenic Arabidopsis seedlings carrying the pMIZ1::GUS  or 

pMIZ1::MIZ1-GFP fusion genes show that MIZ1 expresses in columella cells of the root 

cap and in cells of the mature region of the roots. Strikingly, no expression is observed in 

the elongation zone of roots (Kobayashi et al. 2007). Evidence of higher transcript 

accumulation of the MIZ1 gene in roots is based upon information obtained from the EST 

databases (Birnbaum et al. 2003). Gene expression profiles of MIZ1 based upon 

microarray analysis data, available at the AtGenExpress Visualization tool 

(http://jsp.weigelworld.org/expviz/expviz.jsp?experiment=abiostress&normalization=abs

olute&probesetcsv=At2G41660&action=Run), show higher expression levels in the roots 

compared to the aerial parts. The expression profiles also suggest an increase in transcript 

levels in response to abiotic stresses like cold, osmotic and salt, predominantly in the 

http://jsp.weigelworld.org/expviz/expviz.jsp?experiment=abiostress&normalization=absolute&probesetcsv=At2G41660&action=Run
http://jsp.weigelworld.org/expviz/expviz.jsp?experiment=abiostress&normalization=absolute&probesetcsv=At2G41660&action=Run
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roots. Exogenous application of growth hormones like ABA and auxin resulted in up 

regulation and down regulation of MIZ1 gene respectively. 

 Four of the 15 ZmMIZ1l genes show a higher transcript levels in roots relative to 

the aerial parts (Figure 3) suggesting they can be functional orthologues to MIZ1 in 

Arabidopsis. When these four genes were studied for their response to the growth 

hormones ABA and auxin, ZmMIZ1l-K was the only one that showed changes in 

transcript level in response to the treatments (Figure 4). Unlike AtMIZ1, ZmMIZ1l-K has 

increased transcript levels in seedlings treated with IAA but lower in seedlings treated 

with ABA. While the findings suggest differential regulation of the gene in a species-

specific manner, they may also suggest that ZmMIZ1l-K does not play a role in 

hydrotropism. Alternatively, maize roots may employ a different molecular process in 

hydrotropic response that still involves ZmMIZ1l-K. To distinguish these possibilities, it 

is necessary to determine if ZmMIZ1l-K is involved in hydrotropic response. 

3.4.3. ZmMIZ1l-K  expression levels  are changed in hydrotropic response 

of maize roots  

Maize roots, like Arabidopsis, when exposed to differential moisture gradients 

bend towards the higher moisture gradient. The involvement of ZmMIZ1l-K in root 

hydrotropism is supported by the observation that its transcript level was only increased 

in the root halves facing high moisture. Interestingly, the transcript levels of ZmRAB17 

and ZmGH3-2 also increased, indicating that both ABA and IAA may contribute to the 

hydrotropic response (Figure 5). The greater fold increase in transcript levels of ZmGH3-

2 in hydrotropic roots may indicate a greater change in IAA content and a stronger 

impact on the hydrotropic response compared to ABA. This may also explain why 
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ZmMIZ1l-K transcript level is increased in hydrotropic roots despite the fact that ABA 

and IAA have an opposite effect on the transcript levels of this gene.  

The fact that ZmMIZ1l-K transcript level is significantly increased only on the 

moist side suggests an important role in regulating cell elongation. Hydrotropic root 

bending is caused by a differential cell elongation on the sides of a root, with less cell 

elongation on the wet side compared to the dry side, resulting in root bending toward the 

water source. This differential cell elongation is proposed to be a result of differential 

distribution of IAA (Hirasawa et al. 1997; Takahashi et al. 2009; Takahashi and Suge 

1991). Functional analysis showed that AtMIZ1 negatively regulates IAA content in the 

roots. ZmMIZ1l-K may play a similar role as AtMIZ1. We propose a model to explain the 

role of ZmMIZ1l-K in hydrotropism. When a maize root is exposed to a hydrostimulant, 

IAA is differentially distributed to the wet side. The higher concentration of IAA in the 

wet side enhances expression of ZmMIZ1l-K, which in turn suppresses IAA synthesis. 

The consequence of the negative feedback leads to an overall reduction of IAA content in 

the wet side, resulting in a slower elongation compared to the dry side.  

 In summary, we propose that ZmMIZ1l-K is potentially the functional homolog 

of AtMIZ1. ZmMIZ1l-K is subject to ABA and IAA regulation and appears to play a role 

in the fine tuning of IAA level in hydrotropic roots, thus controlling the hydrotropic 

bending of maize roots.   

3.5. Mater ials and methods  

3.5.1. Plant mater ials  and growth condit ions  

Seed of Dekalb hybrid DKC43-10 (Monsanto, St. Louis, MO) was used in this 

study. Among several varieties tested  DKC43-10 forms fewer seminal roots at the early 
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seedling stage. Seeds were placed between two layers of wet paper towels in a glass tray. 

The tray was covered with plastic wrap (The Glad Products Company, Oakland, CA) to 

maintain high humidity. The cling wrap was perforated using a needle to ensure airflow. 

The tray was placed inside a dark growth chamber maintained at 25°C in the dark. The 

tray was placed at an angel of approximately 70° above horizontal to allow excessive 

water to drain and roots to grow strait down.   

3.5.2. Treatment and sampling  

Tissue ana lys is  

When the primary root was about 1.5 cm, six different tissues/organs were 

harvested from each maize seedling . Three regions were harvested from the primary 

roots: root tip (first 2 mm from the tip encompassing the cell division and transition 

zone), root middle (next 5 mm, the elongation zone) and root base (5 mm, the mature 

zone). Preliminary analysis identified that the root elongation zone is about 6-7 mm long 

when the root was about 2 cm. Mesocotyles, young leaves and coleoptiles were also 

harvested. All the samples were immediately frozen in liquid nitrogen and stored at 

−80°C. 

Hormone treatments  

Maize seedlings with the primary root about 1.5 cm long were treated with 50 mL 

10 M solutions of indole-3-acetic acid (IAA, Sigma-Aldrich, St. Louis, MO) or abscisic 

acid (ABA, PhytoTechnology Laboratories, Lenexa, KS). Both IAA and ABA stock 

solutions were prepared in 1N NaOH (ThermoFisher Scientific, Waltham, MA). The 

control seedlings received 50 mL water containing 5 L of 1N NaOH. The solutions were 

added to the seedlings covered in wet paper towels in glass trays and were carefully 
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drained after a few gentle swirls. The process was repeated once. The solutions were kept 

in the tray during the third wash. The tray was titled so that the roots were never 

submerged in the solution to prevent hypoxia stress. After 1 hour of treatment, 6 mm root 

tip sections were harvested. Eight roots tips were harvested per each replicate and were 

immediately frozen in liquid nitrogen and stored at -80°C.  

Hydrotropic treatment  

 Maize seeds were germinated as described previously. The seedlings that had a 

straight primary root of about 1.5 cm were selected and transferred to a wet-pads cassette 

that had slots to hold eight seedlings. The two wet-pads of the cassette secured the kernel 

in place, and the primary roots were flanked by two water-saturated pads without contact. 

The cassettes were then placed in a chamber with near 100% humidity with the roots 

pointing vertically downward. The seedlings were allowed to recover for two hours. After 

the recovery, one of the wet-pads of the cassette was removed so that roots were exposed 

to dry air (65%) in the chamber to initiate hydrotropic response. The dry air in the 

chamber was created and maintained by placing a saturated K2CO3 (ThermoFisher 

Scientific, Waltham, MA) solution in the chamber (Takahashi et al. 2002). For the 

control, the roots were exposed to the water saturated air in the chamber.  

After 1.5 hour of treatment hydrotropic bending becomes visible and 6 mm root 

tips from the control and hydrotropic seedlings were harvested under a safe green light. 

The roots tips were sliced longitudinally with a scalpel into halves and labeled as control-

wet, control-dry, hydrotropic-wet and hydrotropic-dry. The side facing the wet-pads was 

designated as the wet side and the side facing away from the wet-pads was designated as 
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the dry side. Forty-eight half-roots were harvested per replicate and immediately frozen 

in liquid nitrogen and stored at -80°C.  

3.5.3. Identificat ion of MIZ1l homologs in Zea mays and phylogenetic 

analys is  

A BLASTP (basic local alignment search tool, protein) search was conducted 

against the maize genome database Zea mays Ensembl-18 at Joint Genome Institute 

(https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Zmays), using the 

AtMIZ1 protein sequence. The default Expect (E) threshold value for the Zea mays MIZ1 

homologs that were chosen was set at -1, and the BLOSUM62 comparison matrix was 

used. The retrieved sequences were named, ZmMIZ1l-A to ZmMIZ1l-O. Multiple 

sequence alignment of the protein sequences was done using Clustal Omega (Sievers et 

al. 2011), and a phylogenetic tree was constructed using the Neighborhood-joining 

method in MEGA 6 (Tamura et al. 2013). The information on genomic sequences, cDNA 

sequences, exon-intron distribution and chromosome locations of each ZmMIZ1 gene was 

obtained from the genome database at the Joint Genome Institute 

(https://phytozome.jgi.doe.gov/pz/portal.html#). 

 In addition, AtMIZ1 protein homologs from other plants that include Glycine max 

(soybean, GmMIZ1l), Sorghum bicolor (sorghum, SbMIZ1l) and Oryza sativa (rice, 

OsMIZ1l) were retrieved from their respective genome databases at the Joint Genome 

Institute by following the steps described above. The multiple sequence alignment and 

phylogenetic analysis was conducted using Clustal Omega and MEGA 6 respectively.  

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Zmays
https://phytozome.jgi.doe.gov/pz/portal.html


 90 

3.5.4. Primer des ign  

Gene specific primers (Table S1) were designed for ZmMIZ1l and other genes 

using an online primer design tool from Integrated DNA Technologies (Coralville, IA, 

USA). The efficiency and specificity of each primer pair was determined using B73 

maize genomic DNA (1 ng) as the template in a 20 L polymerase chain reaction (PCR) 

containing 2 L of 10X PCR buffer, 1 L each of 10 M primers, 1 L of 2 mM dNTPs 

and 0.1 L of Taq polymerase (5 U/L, BioLabs Inc., Ipswich, MA). All reactions were 

performed in a gradient thermocycler (Eppendorf Mastercycler, Eppendorf, Hauppauge, 

NY) with PCR conditions set as: initial denature step at 94°C for 5 min followed by 35 

cycles of 94°C for 30 s, 30 s at annealing temperature gradient (R= 3°C/s, G=  2.4°C), 

extension at 72°C for 1 min and a final extension at 72°C for 10 min. The PCR products 

were electrophoresed on a 1% agarose gel stained with ethidium bromide, and images 

were visualized using a Bio-Rad ChemiDoc image analysis system (Bio-Rad 

Laboratories Inc., Hercules, CA).  

3.5.5. RNA isolat ion and cDNA synthes is  

Total RNA was isolated using Trizol reagent (Invitrogen, Carlsbad, CA). The 

RNA samples were quantified using Nanodrop ND-1000 Spectrophotometer 

(ThermoFisher Scientific, Waltham, MA), and samples with 260/280 ratio from 1.9 to 2.1 

and 260/230 ratio from 2.0 to 2.5 were used for further analysis. RNA quality was also 

examined by separating RNA on a 1% agarose gel stained with ethidium bromide. The 

samples that showed two sharp major rRNA bands were used for cDNA synthesis. First 

strand cDNA synthesis was performed using the high capacity cDNA Reverse 

Transcription kit (ThermoFisher Scientific, Waltham, MA) in a 20 μL reaction according 
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to manufacturer’s instructions. The cDNA samples were diluted 80 times for use in 

quantitative real-time PCR (qRT-PCR) reaction.  

qRT-PCR reactions with the housekeeping gene ZmUBCP were performed 

directly on RNA samples without reverse transcription, in comparison with respective 

cDNA samples. Only the cDNA samples whose corresponding RNA samples showed no 

amplification or significantly greater cycle threshold (CT) values (≥35 cycles) in qRT-

PCR analysis were used for the gene expression analysis.  

3.5.6. Quantificat ion of transcr ipts  

qRT-PCR was performed using DyNAmo Flash SYBR Green Hot Start qRT-PCR 

Kit (ThermoFisher Scientific, Waltham, MA) following manufacturer’s instructions in a 

20 μL reaction in an ABI 7900HT High-Throughput Real-Time Thermocycler (Applied 

Biosystems, Foster City, CA). Each sample from three biological experiments was 

assayed twice as technical replicates. The thermocycler program was set to: 15-min 

activation at 95°C followed by 40 cycles of 15 s at 94°C, 30 s at annealing temperature 

(Supplemental Table 1), 30 s extension at 72°C, followed by a dissociation curve step. 

The dissociation curve was used to determine the primer efficiency and specificity. The 

normalized relative fold changes in the transcripts of ZmMIZ1l genes were calculated 

using the 2-Ct or comparative Ct method based on the difference between the target and 

reference genes as described by Livak and Schmittgen (2001).  

3.5.7. Data analys is  

Statistical analysis was performed using STATISTIX 9.0 Analytical Software 

(Tallahassee, FL) and Microsoft Excel 2010 data analysis tools pack (Redmond, WA). 

Tissue-specific expression data was subjected to analysis of variance (ANOVA) using the 



 92 

linear model with completely randomized design to determine significant differences 

among the treatments followed by Tukey’s HSD all pair comparison to ascertain 

significant differences (p < 0.05). Expression data obtained from samples treated with 

hormones and hydrotropic conditions was analyzed using Student’s T-test to ascertain 

significant differences between treatment means (p < 0.05). 
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Figure 1a. DUF617 domain alignment of 15 Zea mays MIZ1-like peptides with 

Arabidopsis MIZ1. Asterisks (*) represent conserved amino acid residues; Dots (•) 

represent similar amino acid residues. 
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Figure 1b & c. Phylogenetic relationship of MIZ1-like proteins and gene structure in 

Zea mays.  

b. The neighbor-joining tree includes 15 MIZ1l proteins from maize and MIZ1 protein 

from Arabidopsis. The numbers next to the branches are the bootstrap probabilities from 

1,000 replications.  

c. The gene structure is presented by exons (white boxes), DUF617 domain (shaded 

boxes), UTRs (thick black lines) and introns (thin black lines). The sizes of the structures 

can be estimated using the scale below. 
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Figure 2a. Phylogenetic relationship of MIZ1-like family in Zea mays (triangles) and 

Arabidopsis (squares). The neighbor-joining tree includes 15 MIZ1l proteins from maize 

and 12 MIZ1l protein from Arabidopsis, including AtMIZ1. The numbers shown next to 

the branches are the bootstrap probabilities from 1,000 replications. Arabidopsis 
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sequences include AtMIZ1 (AT2g41660), AtMIZ1l-A (At1g21050), AtMIZ1l-B 

(At1g76610), AtMIZ1l-C (At2g21990), AtMIZ1l-D (At2g22460), AtMIZ1l-E 

(At2g37880), AtMIZ1l-F (At3g25640), AtMIZ1l-G (At4g39610), AtMIZ1l-H 

(At5g06990), AtMIZ1l-I (At5g23100), AtMIZ1l-J (At5g42680) and AtMIZ1l-K 

(At5g65340). Maize sequences include ZmMIZ1l-A (Zm00001d031810), ZmMIZ1l-B 

(Zm00001d002136), ZmMIZ1l-C (Zm00001d005918), ZmMIZ1l-D (Zm00001d040415), 

ZmMIZ1l-E (Zm00001d044087), ZmMIZ1l-F (Zm00001d049489), ZmMIZ1l-G 

(Zm00001d051598), ZmMIZ1l-H (Zm00001d013011), ZmMIZ1l-I (Zm00001d031810), 

ZmMIZ1l-J (Zm00001d039108), ZmMIZ1l-K (Zm00001d020757), ZmMIZ1l-L 

(Zm00001d008272), ZmMIZ1l-M (Zm00001d011463), ZmMIZ1l-N (Zm00001d012555) 

and ZmMIZ1l-O (Zm00001d045946). 
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Figure 2b. Chromosomal locations of maize MIZ1-like genes. The chromosomal 

position of each ZmMIZ1l homolog are placed on the maize physical map. The 

chromosome number is indicated below each chromosome. The arrows connect the genes 

with the close homology. Green arrows indicate that these are in regions of known 

duplications. Red arrows indicate that the genes are not in in duplicated regions. 
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Figure 3. Expression analysis of ZmMIZ1-like genes in different tissues. Six different 

tissues, root tips, root middle, root base, mesocotyl, leaves and coleoptiles were harvested 

from maize seedlings when the roots were approximately 1.5cm long for gene expression 

analysis. The values represent the mean fold change ± SE (n = 3). Bars with different 

letters are significantly different (p < 0.05).  
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Figure 4. Effect of plant hormones IAA and ABA on the transcript accumulation of 

ZmMIZ1-like genes. Maize seedlings were treated with 10 μM solutions of IAA, ABA or 

pure water (control samples) for 1 hour and 6 mm root tips were harvested. On X-axes, 

CK represents the control roots, IAA and ABA represents the root samples treated with 

the hormones. The values on Y-axes represent the mean fold change ± SE (n = 3) relative 

to CK. Bars with asterisks are significantly different from control samples (p < 0.05).  
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Figure 5. Response of ZmMIZ1-like genes to well-watered vs. hydrotropic (selective 

moisture gradient) conditions. Maize seedlings were grown in either well-watered or 

hydrotropic conditions for 1.5 hours and 6 mm root tips were harvested at the end of the 

treatment. On X-axes CK represents the control roots grown in well-watered conditions. 

The roots from hydrotropic conditions were sliced longitudinally; HYD W represents the 

half oriented toward moist conditions and HYD D represents the half exposed to dry 

conditions. The values on Y-axes represent the mean fold change ± SE (n = 3) relative to 

CK. Bars with asterisks are significantly different from the control samples (p < 0.05). 
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Table S1. Gene specific primer sequences used for qPCR analysis and their 

corresponding length, product length and melting temperature (Tm).  

 

Primers RT-Primer Sequences Length (bases) Product size (bp) Tm(°C)

ZmMIZ1l-A_F AAGCCGATGCCATCTCTTATCGAC 24 147 58.6

ZmMIZ1l-A_R GAGCTTGAACATCTTGAACAGCCC 24 58.1

ZmMIZ1l-B_F TGCATGAACCGATCCAAACGATGC 24 123 60

ZmMIZ1l-B_R AGCTATGCTCTCGTGACTGACACT 24 59.3

ZmMIZ1l-C_F CTCCTACGATGAGTGCCAC 19 199 61.4

ZmMIZ1l-C_R GCTGTTTCCACCTTCCTCTG 20 62.5

ZmMIZ1l-D_F CATTTTGATCGCCTCGTT 18 102 59.9

ZmMIZ1l-D_R TCTAATGAAGAAAATTGTGAGC 22 58.8

ZmMIZ1l-E_F CGACGGTGTTGTGGGATTAATGCA 24 112 60.5

ZmMIZ1l-E_R TGCATTAATCCCACAACACCGTCG 24 59.5

ZmMIZ1l-F_F CAATCCCACAACGAGACAAAC 21 164 61.6

ZmMIZ1l-F_R CGCTAGTTATCCCCTGCAC 19 61.8

ZmMIZ1l-G_F GTGTTTCCAAGTGTGTGCCCAAGT 24 101 60

ZmMIZ1l-G_R AGAGGCACAGCCCAATAATCACCT 24 60.1

ZmMIZ1l-H_F CCACGGGGAAGCTAATGAAG 24 127 53.8

ZmMIZ1l-H_R ATCGCCTCCTCCAGCAGACTCA 21 59.8

ZmMIZ1l-I_F CAACGACGGTGATGATGGAGACG 23 134 61.1

ZmMIZ1l-I_R CGGGGTTGATGAGGTGGAATGACA 24 63.5

ZmMIZ1l-J_F TCGCGACTCGGAGGCCTTCTACAT 24 195 63.9

ZmMIZ1l-J_R TGCCTACTAATCCATTTTCACAGC 24 54.4

ZmMIZ1l-K_F TACACACACCCTTGTGCCTTGTTG 24 138 59.5

ZmMIZ1l-K_R CCCGGATTTGATCTCAGCACGATT 24 59

ZmMIZ1l-L_F ATCCAACCGCCGCATGCCAA 20 129 62.8

ZmMIZ1l-L_R TGGAAGGCGATCTCGATGGT 20 58.1

ZmMIZ1l-M_F TTCTGTGGACTGTGGATGTG 20 162 61.8

ZmMIZ1l-M_R CTCATGGTTCCTGGTGTGG 19 62

ZmMIZ1l-N_F CCCCCTGCTCCGATTCACCT 20 196 59.7

ZmMIZ1l-N_R CGCCTCCGCTTGTTG 15 48.3

ZmMIZ1l-O_F ATATGCTGTTCGTTTGCGTGCC 22 104 58.5

ZmMIZ1l-O_R ACTGCATGCACAATGCAGCCAA 22 60.5

ZmUBCP_F CAGGTGGGGTATTCTTGGTG 20 97 55

ZmUBCP_R ATGTTCGGGTGGAAAACCTT 20 54
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Figure S1. Full length protein sequence alignment of MIZ1ls from Zea mays and 

Arabidopsis MIZ1. * represents conserved amino acid residues; • represents the identical 

and similar amino acid residues. Arabidopsis sequences include AtMIZ1 (AT2g41660). 

Maize sequences include ZmMIZ1l-A (Zm00001d031810), ZmMIZ1l-B 

(Zm00001d002136), ZmMIZ1l-C (Zm00001d005918), ZmMIZ1l-D (Zm00001d040415), 

ZmMIZ1l-E (Zm00001d044087), ZmMIZ1l-F (Zm00001d049489), ZmMIZ1l-G 

(Zm00001d051598), ZmMIZ1l-H (Zm00001d013011), ZmMIZ1l-I (Zm00001d031810), 

ZmMIZ1l-J (Zm00001d039108), ZmMIZ1l-K (Zm00001d020757), ZmMIZ1l-L 

(Zm00001d008272), ZmMIZ1l-M (Zm00001d011463), ZmMIZ1l-N (Zm00001d012555) 

and ZmMIZ1l-O (Zm00001d045946). 
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Table S2. List of putative MIZ1-like homologues in soybean (Glycine max), rice (Oryza 

sativa) and sorghum (Sorghum bicolor). The score, E-value and alignment length is with 

respect to Arabidopsis MIZ1 protein sequence, that was used to perform BLASTP 

searchers of the plant genomes. 

 

 

 

 

Locus ID Score E-value Allignment length

Locus ID Score E-value Allignment length

Locus ID Score E-value Allignment length

78-297

125-297

120-297

125-297

122-297

78-297

126-297

130-296

128-297

125-297

128-297

129-296

129-296

129-296

129-297

130-296

125-297

125-297

125-297

129-289

134-296

121-297

130-296

130-297

121-297

129-297

119-297

129-296

127-297

128-296

121-297

SbMIZ1lJ

SbMIZ1lK

Oryza sativa

Sorghum bicolor

Glycine max

125-297

129-297

125-297

128-297

120-297

130-294

130-296

120-297

129-296

129-296

123-279

Sobic.010G251800.1 (Sb10g029010) similar to Putative uncharacterized protein 110.9 6.00E-28

Sobic.001G102100.1 (Sb01g009110) similar to Putative uncharacterized protein OSJNBa0079G12.6 61.6 5.40E-11

OsMIZ1lA

OsMIZ1lB

OsMIZ1lC

OsMIZ1lD

OsMIZ1lE

OsMIZ1lF

OsMIZ1lG

OsMIZ1lH

OsMIZ1lI

Sobic.006G234400.1 (Sb06g030190) similar to OSJNBb0034I13.25 protein 132.9 2.30E-35

Sobic.001G287700.1 (Sb01g028240) similar to Putative uncharacterized protein P0667A10.4 125.6 4.70E-33

SbMIZ1lH

SbMIZ1lI

Sobic.002G229800.2 139 1.40E-37

Sobic.007G158400.1 (Sb07g023190) similar to Putative uncharacterized protein 136 3.90E-37

SbsMIZ1lF

SbMIZ1lG

Sobic.003G329100.1 (Sb03g037520) similar to Putative uncharacterized protein P0702B09.7 177.6 1.20E-52

Sobic.001G041300.1 (Sb01g003810) similar to Putative uncharacterized protein 157.5 8.90E-45

SbMIZ1lD

SbMIZ1lE

Sobic.010G138300.1 (Sb10g013960) similar to Putative uncharacterized protein B1089G05.18 183.7 1.10E-54

Sobic.009G242501.1 (Sb09g029410) similar to Os01g0642600 protein 178.7 8.00E-53

SbMIZ1lB

SbMIZ1lC

LOC_Os03g52290.1 DUF617 domain containing protein, expressed 86.7 9.50E-20

Sobic.004G264500.1 (Sb04g030260) similar to Putative uncharacterized protein 197.2 2.70E-60

OsMIZ1lM

SbMIZ1lA

LOC_Os04g54600.1 DUF617 domain containing protein, expressed 126.7 1.90E-33

LOC_Os05g20030.1 DUF617 domain containing protein, expressed 118.2 1.10E-30

OsMIZ1lK

OsMIZ1lL

LOC_Os08g07500.1 DUF617 domain containing protein, expressed 137.9 2.10E-37

LOC_Os01g16320.1 plant-specific domain TIGR01570 family protein, expressed 129.4 1.20E-33OsMIZ1lJ

LOC_Os08g37150.1 DUF617 domain containing protein, expressed 146.4 3.50E-41

LOC_Os03g59690.1 DUF617 domain containing protein, expressed 144.1 1.00E-39

LOC_Os01g59200.1 DUF617 domain containing protein, expressed 171 3.50E-50

LOC_Os09g28880.1 DUF617 domain containing protein, expressed 146.7 1.80E-41

LOC_Os01g45510.1 DUF617 domain containing protein, expressed 179.1 4.70E-53

LOC_Os06g30030.1 DUF617 domain containing protein, expressed 172.6 1.40E-50

LOC_Os02g47980.1 DUF617 domain containing protein, expressed 192.2 2.60E-58

LOC_Os05g50160.1 DUF617 domain containing protein, expressed 182.6 1.50E-54

Glyma.10G113500.1 (Glyma10g13230) 241.5 4.90E-77

Glyma.02G185400.1 (Glyma02g33055) 231.5 4.60E-73

GmMIZ1lA

GmMIZ1lB

Glyma.01G090700.1 (Glyma01g22800) 198.7 1.50E-60

Glyma.02G131200.1 (Glyma02g14810) 194.9 4.40E-59

Glyma.04G145100.1 195.7 2.00E-59

GmMIZ1lC

GmMIZ1lD

GmMIZ1lE

Glyma.06G209100.1 189.5 4.30E-57

Glyma.17G123500.1 (Glyma17g13250) 190.3 2.30E-57GmMIZ1lF

GmMIZ1lG

Glyma.06G146300.1 (Glyma06g15130) 179.5 1.30E-53

Glyma.05G015000.1 (Glyma05g07760) 185.7 1.10E-55GmMIZ1lH

GmMIZ1lI

Glyma.15G229300.1 (Glyma15g36740) 154.1 9.10E-44

Glyma.04G036800.1 (Glyma04g03920) 153.3 8.10E-44GmMIZ1lJ

GmMIZ1lK

Glyma.05G175200.1 (Glyma05g30890) 128.6 2.40E-34

Glyma.06G036900.1 (Glyma06g04020) 143.7 3.40E-40GmMIZ1lL

GmMIZ1lM

Glyma.08G132500.1 (Glyma08g14090) 122.9 3.30E-32

Glyma.07G138800.1 (Glyma07g16680) 124.4 2.00E-32GmMIZ1lN

GmMIZ1lO

Glyma.11G242700.1 (Glyma11g37870) 118.2 1.50E-30

Glyma.18G014300.1 (Glyma18g01770) 121.7 4.70E-32GmMIZ1lP

GmMIZ1lQ

Glyma.18G189100.1 (Glyma18g41230) 111.7 3.50E-28GmMIZ1lR
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Figure S2. Phylogenetic relationship of MIZ1-like gene family in Zea mays (blue 

circles), Glycine max (green triangles), Oryza sativa (pink rhombuses), Sorghum bicolor 

(yellow triangles) with Arabidopsis MIZ1 (red square). The numbers shown next to the 

branches are the bootstrap probabilities from 1,000 replications. 
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4.1. Abstract  

Alfalfa (Medicago sativa L.), a perennial legume, is mainly cultivated as a forage 

crop in US. Apart from being the third most important crop in US in terms of production, 

only after wheat and corn, alfalfa is emerging as a potential candidate to be used as an 

energy crop for cellulosic biofuel production. Classical breeding is being used to develop 

a variety of germplasm which have the ability to produce significantly large amounts of 

biomass. Though these varieties serve the purpose, they also have the limitation of 

getting adapted to the vast differences in the environmental conditions across the country. 

An alternative approach thus is to enhance biomass production of current commercial 

cultivars. Studies in the model plant Arabidopsis have shown that use of molecular tools 

to manipulate key flowering pathways genes can result in continued vegetative growth 

and subsequent biomass increase, but, most importantly in much less time compared to 

the conventional breeding practices. Thus, we hypothesized that a similar genetic 

manipulation approach in alfalfa will provide us with plants with enhanced biomass 

production. Based on the work in Arabidopsis and other plants, three genes CONSTANS 

(CO); FVE and FCA controlling two independent flowering pathways namely 

photoperiod/light pathway and autonomous pathway respectively play important roles 

flowering time control. In this study, we identified potential homologues of AtCO, AtFCA 

and AtFVE genes from M. truncatula genome (a close relative to alfalfa) and examined 

their expression in different tissues and at different developmental stages and response to 

circadian and photoperiod in alfalfa. Our results showed alfalfa had more than one 

homolog for each gene. Expression analysis showed distinct patterns among the 

homologues. Transcript level of FVE-like 1, 2, and FCA-like 2 in alfalfa appeared to be 



 113 

associated with flowering, suggesting they may be a functional orthologue of AtFVE and 

AtFCA. CO-like genes showed different expression pattern from AtCO, suggesting CO-

like genes may function differently in alfalfa. Our study provides valuable insight into the 

molecular control of flowering time in alfalfa. Ultimately, complementation and 

overexpression studies of these genes in Arabidopsis will allow us to determine their 

function and role in flowering time regulation. This knowledge can then be applied to 

manipulate the flowering genes and delay flowering to enhance biomass production in 

alfalfa. 

Keywords: Alfalfa, CO, FVE, FCA, flowering, biomass 
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4.2. Introduction  

Numerous environmental and endogenous cues like light, temperature, the 

circadian clock, age of the plants and growth elicitors affect plants’ transition from the 

vegetative phase to reproductive phase (flowering). Flowering, an important agronomic 

trait, is under very tight and complex regulation. These regulatory networks monitor and 

coordinate subtle changes in the environment with the endogenous signals, and, then 

direct the plants’ response accordingly. This strict monitoring ensures the success of 

reproductive growth.  

Most of our current understanding of the flowering process has come from 

molecular dissection of floral-induction pathways in the model plant, Arabidopsis 

thaliana. More than 180 genes have been identified as the regulators of these pathways 

(Bäurle and Dean 2006; Fornara et al. 2010). These genes act through six major pathways 

namely, i) photoperiod pathway that senses day length change; ii) vernalization pathway 

that monitors the seasonal changes in temperature; iii) ambient temperature pathway that 

responds to changes in daily temperatures; iv) gibberellin that is a plant hormone, v) age 

that is the length of time a plant required to grow and develop and vi) autonomous 

pathway that act independent of the environmental stimuli and other endogenous cues 

(Figure 1). The integration of signals from all these pathways is carried out by a set of 

genes named the “floral integrators”. FLOWERING LOCUS T (FT), SUPRESSOR OF 

CONSTANS1 (SOC1) and LEAFY (LFY) integrate the signals and rapidly promote floral 

development. These integrators then communicate with the downstream “floral meristem 

identity” genes like APETALA 2 (AP1) to induce flowering (Simpson and Dean 2002; 

Parcy 2004).  
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Flowering is a key developmental process in a plant’s life cycle and is directly 

linked to crop production and overall yields. Enhanced understanding of the molecular 

basis of this complex process in crops can be of a huge advantage to the researchers 

trying to develop new varieties that have improved productivity and better yield. Alfalfa 

(Medicago sativa L.), also known as the “Queen of Forage”,  is a major forage crop with 

important agronomic traits (Castonguay et al. 2009). Alfalfa is an important source of 

protein and fiber for the livestock and is grown worldwide. It ranks third in terms of 

production in the United States trailing behind the staple crops wheat and corn. As a 

legume, alfalfa has the ability to establish symbiotic relationships with nitrogen-fixing 

bacteria reducing the need for the application of nitrogen-rich fertilizers to the soil (Wang 

et al. 2015). In addition, its deep root system allows the plant to flourish under mild 

drought conditions. Alfalfa is also gaining ground as a potential candidate for biofuel 

production due to its high cellulosic biomass yield with a low input from nitrogen 

fertilizer. Scientists have developed special alfalfa germplasm which is woody and has 

high cellulosic biomass yield. However, these special germplasm are less nutritious and 

less palatable to livestock and may be able to perform well in the diverse environmental 

conditions across the country.  

Using current commercial forage alfalfa for cellulosic biomass production is a 

sound alternative. However, the high cost of biomass production in alfalfa for biofuel 

purpose is prohibitive. Therefore, enhancing biomass yield per unit land may reduce the 

price. One strategy is to delay flowering and reduce the yield loss associated with 

senescence in alfalfa. In Arabidopsis, many mutants with delayed flowering showed an 

enhanced production of vegetative tissues (Reeves and Coupland 2001; Macknight et al. 
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1997; Morel et al. 2008; Jung and Müller 2009). A recent study reported that the genetic 

manipulation of a microRNA miR156 in alfalfa resulted in delayed flowering and 

subsequent increase in biomass. Additionally, the authors also observed reduced lignin 

content and enhanced cellulose content in the transgenic alfalfa overexpressing miR156 

(Aung et al. 2015b, a). Another study in M. truncatula reported the manipulation of onset 

of flowering to enhance biomass and suggested genetically delaying the floral initiation 

as an easy tool to achieve improved biomass quality and quantity (Tadege et al. 2015).  

These studies along with the knowledge based on the mutant analysis of key 

flowering genes in Arabidopsis, we hypothesized that genetic manipulation of flowering 

genes can be used as a tool to enhance biomass production in alfalfa. By delaying 

flowering, we can prolong the vegetative state and thus avoid high lignin deposition and 

achieve significant increase in biomass, making alfalfa fit to be used as a cellulosic input 

in the biofuel industries. At the same time, a low-lignin alfalfa would greatly mean a 

better quality of forage. 

Flowering control in alfalfa is not well studied. Alfalfa is generally considered a 

long-day plant while it was less sensitive to the day length as other plants such as 

Arabidopsis. Flowering regulation of the model plant Arabidopsis thaliana is extensively 

studied. The major players in each pathway have been cloned and their roles are well 

defined (Moon et al. 2005; Michaels et al. 2005; Putterill et al. 2004). Null mutation of 

some of the key flowering genes result in a significant delay of flowering and enhanced 

biomass production. These genes include CO (COSTANS) in the photoperiod pathway, 

and FCA and FVE in the autonomous pathway. Many studies have shown that these key 

flowering genes are conserved among long-day flowering plants. Gene CO in Medicago 
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truncatula, a close relative of alfalfa, has been confirmed to have the same function as in 

Arabidopsis (Hecht et al. 2005). 

The objective of the present study was to identify and characterize homologues of 

three key genes, CO, FVE and FCA to establish a better understanding of flowering 

regulatory pathways in alfalfa and to provide insight into potential genes that can be 

manipulated to enhance biomass quantity and quality in alfalfa. 

4.3. Results  

4.3.1. Identificat ion of COL ,  FVEL  and FCAL  genes in Medicago 

truncatula  and phylogenetic analys is  

Arabidopsis CO, FVE and FCA protein sequences were used as query to perform 

BLASTP searches of the genome database of M. truncatula at the Joint Genome Initiative 

[(https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Or

g_Mtruncatula)] for the identification of putative homologues (Goodstein et al. 2012).  

COL  gene family in Medicago  

Ten COL proteins were identified using the cutoff E-value 2.1E-9 and score of 

59.3 with AtCO. According to the existing nomenclature the genes were named 

MtCOL1-MtCOL10. All the MtCOL protein sequences were checked for the presence of 

the signature B-BOX and CCT domains (Robson et al. 2001). Based on the group (I, II or 

III) to which each of the MtCOL homologues belonged, they differed in the number and 

sequence of the B-BOX domains they harbored (Figure S1) similar to their Arabidopsis 

counterparts, thus displaying a high degree of structural and functional conservation 

across the two species. The three homologues that are center to this study, MtCOL-1, -2 

and -7 had two B-BOX domains that each contained both the conserved 

https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org_Mtruncatula)
https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org_Mtruncatula)
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CX2CX8CX7CX2C motif and the critical C and H residues (Figure 2b.). The C-terminal 

tail of all the three proteins showed a high degree of conservation especially within the 

CCT domain with intact NF-YA1/linker/NF-YA2 structure (Strayer et al. 2000). All the 

key residues were also present. Though all the characteristic motifs were accounted for in 

the MtCOLs, there was some degree of divergence observed among the amino acid 

sequences within the Medicago species as well as across species. 

To get a better insight into evolution of the Medicago CONSTANS-like gene 

family, a phylogenetic tree was constructed based on the multiple protein sequence 

alignment that included 16 CO/COL sequences from Arabidopsis and 10 COL sequences 

from Medicago. The analysis showed the clustering of the Medicago COL homologues 

into three distinct groups I, II and III that corresponded to the number of B-BOX domains 

each protein harbored and their sequence similarity (Figure 2a.). Within each group, 

Medicago and Arabidopsis COL proteins grouped together indicating the independent 

expansion of COL gene family in species-specific manner. MtCOL1-3 was shown in 

group I with AtCO, AtCOL1-5. MtCOL-1 and -2 were chosen for this study based on 

their close phylogenetic relationship to AtCO, and MtCOL-7 was also chosen as it was 

mapped as a QTL associated with flowering in Medicago truncatula (Pierre et al. 2011).  

FVE- l ike  gene family in Medicago  

The BLASTP search of the Medicago genome database with AtFVE sequence 

resulted in the identification of seven putative gene sequences encoding FVEL proteins. 

Redundant sequences and multiple hits were eliminated. FVE is the plant homolog of 

mammalian retinoblastoma-associated proteins RbAp46 and RbAp48 (Kenzior and Folk 

1998), and the protein has two signature domains, the chromatin assembly factor 1 
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subunit C (CAF1c) domain and six WD40 repeat domains (Abou-Elwafa et al. 2011; 

Ausin et al. 2004). All the eight sequences were screened for the signature domains. We 

observed lower conservation in the N-terminus in comparison to the C-terminus of 

MtFVELs when compared to AtFVE (Figure 3b.). In contrast to the Arabidopsis FVE 

protein, the majority of the Medicago FVELs did not have the Nuclear Localization 

Signal (NLS) in the N-terminal region. Similar to MtCOLs, there was some degree of 

difference between the Medicago and Arabidopsis FVE sequences in the conserved 

domains as well. 

 When the phylogenetic analysis of the Arabidopsis and Medicago FVE protein 

sequences was performed, it was observed that both MtFVEL-1 and MtFVE-2 clustered 

together with AtFVE (Figure 3a.). MtFVE-1 protein showed the highest relation to the 

Arabidopsis counterpart indicating conservation of the structure of the protein in the 

Medicago species. MtFVEL-1 and -2 were chosen for further expression analyses, 

whereas MtFVEL-3 was included as a negative control. 

FCA- like  gene family in Medicago  

 The FCAL proteins in Medicago were identified by performing BLASTP search 

of the Medicago genome, in a very similar search procedure as the above gene families. 

Four putative FCAL proteins were identified and scanned for conserved protein domains. 

AtFCA have two RNA-Recognition Motifs (RRM) and a WW protein interaction domain 

(Macknight et al. 1997; Bork and Sudol ; Chen and Sudol 1995). All four of the identified 

MtFCAL proteins sequences showed significant homology within the RRM1 and 2 

motifs and the WW protein binding domains (Figure 4b.). It was interesting to observe 
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lower degree of total protein sequence similarity across Medicago and Arabidopsis FCA 

proteins.  

 When the phylogenetic relationship between AtFCA and MtFCALs was studied, 

MtFCAL-1 was the only protein clustering with AtFCA. MtFCAL-2, -3 and -4 all 

together formed a separate cluster (Figure 4a.). Similar to MtCOL and MtFVEL, only 

MtFCAL-1 was studied in further expression analyses while MtFCAL2 was included in 

analysis for comparison purpose. 

4.3.2. Three MsCOL homologues  are regulated by the circadian clock  

For gene expression analysis, the DNA sequences corresponding to each protein 

were retrieved from the Medicago truncatula genome and used for designing gene 

specific primers. These primers were tested in PCR reactions using alfalfa genomic DNA 

in comparison with Medicago truncatula DNA. Every working primer pair was able to 

amplify an amplicon of identical size from both M. truncatula and alfalfa DNA.  

Arabidopsis CO transcript abundance oscillates with a 24h cycle and is regulated 

by the circadian clock (Suarez-Lopez et al. 2001). To analyze if the identified MsCOL 

homologues showed similar oscillations, we studied the expression pattern of three 

MsCOL genes in young shoots of SD201 plants grown under 16h/8h LD conditions and 

then transferred to continuous light (LL). Samples were harvested at an interval of 3 

hours spanning a total of 72 hours. Under LD conditions, MsCOL-1 showed an 

oscillation period of 24h peaking at 12h after dawn followed by downregulation at 18h 

time point (Figure 5). MsCOL-1 expression continued to oscillate under LL conditions 

regularly but peaked at a different times from LD conditions. MsCOL-2 and MsCOL-7 

also showed an expression pattern that continued to oscillate with a 24h period under LL 
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conditions. Under LD conditions MsCOL-2 had peak transcript abundance at 3h after 

dawn, whereas MsCOL-7 displayed a broad peak between 6h and 12h. In sharp contrast 

to MsCOL-1, MsCOL-2 showed a decay of the expression peak on the 2nd day under LL.  

MsCOL-7 maintained robust oscillations without any sharp increases in the expression 

amplitudes under LL conditions. However, none of the genes showed any resemblance to 

the expression peaks pattern of AtCO under LD conditions. 

4.3.3. MsFVEL1 and MsFCAL1 genes showed diurnal changes in their 

transcr ipt accumulat ion  

Numerous genes in the autonomous flowering pathway in Arabidopsis have been 

implicated in the regulation of the circadian clock (Salathia et al. 2006) and in recent 

years, based on the mounting experimental evidence these genes are thought to become 

subjects to the diurnal and circadian regulation themselves (Pruneda-Paz and Kay 2010) 

through feedback regulation. Based on these studies we examined if MsFVEL and 

MsFCAL homologues displayed any response to diurnal changes.  

 MsFVEL1 was expressed at significantly higher levels at dawn and right before 

dawn. The expression levels remained at lower but relatively stable level through most 

part of the day. MsFVEL-2 showed no clear peaks. MsFVEL-3 expression showed 

oscillation but did not show a clear pattern overall (Figure 6). MsFCAL-1 displayed a 

relative lower expression during the first 9 hour in the day, then peaked its expression at 

the 12h time point followed by downregulation after dusk maintaining similar expression 

level through the night. MsFCAL-2 showed relatively stable expression through day and 

night, except for lower expression at 3 h time point after dawn, before the expression 

reaching significantly higher level 3 hours later during the day. 
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4.3.4. MsCOL, MsFVEL and MsFCAL genes are relat ively abundant in the 

leaves of alfalfa  

To gain a better insight into tissue-specific regulation of transcript abundance, the 

expression pattern of the genes was examined in four different tissues and in two 

different alfalfa germplasm SD201 and Alfagraze. Both MsCOL-1 and MsCOL-2 were 

extensively expressed in the leaves of SD201 and Alfagraze but expressed at significantly 

lower levels in roots, an expression pattern very similar to Arabidopsis CO. MsCOL-2 

also showed significantly higher expression in flowers compared to roots. However, there 

was no significant difference in the expression levels of MsCOL-7 in the different tissue 

across the two germplasm examined.  

 The autonomous pathway genes, MsFVEL-1 and -2 also showed relatively higher 

transcript abundance in the aerial parts of SD201 and Alfagraze, when compared to the 

underground part; the roots. MsFCA-2 showed relatively higher transcript abundance 

only in the aerial parts of SD201 and Alfagraze, when compared to the roots. As 

observed in case of MsCOL-7, MsFVEL-3 and MsFCAL-1 did not show any significant 

changes in the expression levels in the different tissues within and across the two alfalfa 

germplasm studied (Figure 7). 

4.3.5. Expression of MsCOL, MsFVEL and MsFCAL genes var ied at 

different developmental stages  

Expression patterns of the eight genes examined in this study varied largely at 

different developmental stages. MsCOL-1 and -2 had the highest expression at W0 stage 

in the upper node samples. W2 developmental stage of the lower node samples had the 

highest transcript accumulation for these genes. In both the upper node and lower node 
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samples these genes were expressed at relatively constant levels after the initial higher 

expression, except for a few stages. MsCOL-1 showed a higher expression at W4 in the 

lower node in Alfagraze. MsCOL-7 showed a higher expression in the upper node at W3 

in SD201. MsCOL-7 showed a gradual increase in transcript level from W1-W5 and 

peaked at W6 in Alfagraze. A similar trend existed in the lower node but peaked at W5. 

MsCOL-7 showed significantly lower expression at W6 and W7 in the lower node of 

SD201.  

Expression of MsFVEL1-3 displayed a gradual increase with developmental 

stages in the upper node of Alfagraze, reaching the highest level at W6-W7. This distinct 

pattern however was not observed in SD201. The expression of these genes in the lower 

nodes of two germplasm seemed to be relatively constant at different developmental 

stages with some fluctuations. An exception is MsFVEL-2, which showed a highest 

expression at W4 followed by a decrease in W5 and W6.  

The transcript level of MsFCAL-1 gradually increased with the developmental 

stages in the upper node of SD201, reaching the highest level at W7. This pattern was not 

observed in Alfagraze, with the expression remaining relatively constant. In the lower 

node, the gene was expressed at relatively lower levels at W6 and W7 in both SD201 and 

Alfagraze. The peak of expression was observed at W3 stage in lower node of SD201 and 

W4 and 5 in Alfagraze.  Expression of MsFCAL-2 were relatively constant in both the 

upper and lower nodes in both germplasm with some exceptions. For example, MsFCAL-

2 expression in the upper node showed a higher expression at W4 and W6 for SD201 and 

Alfagraze, respectively (Figure 8 a, b and c.). 
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4.4. Discuss ion  

Alfalfa is an important forage crop and is more popularly known as the “Queen of 

forage”. The shoots and leaves are a source of high amounts of protein and fiber for the 

animals. However, the forage quality decreases significantly once plants start to flower. 

Thus, it is believed that delaying flowering though genetic engineering or traditional 

breeding could enhance the forage quality as well as the biomass yield. An enhanced 

biomass production is also needed for using alfalfa as a potential cellulosic feedstock for 

biofuel production. For that, it is necessary to identify the players that are important in 

regulating flowering time. The transition from the vegetative to reproductive state in 

plants is under very tight and complex regulation. In Arabidopsis, the model plant, more 

than 180 genes have been identified as the regulators of the six major floral-induction 

pathways, namely the photoperiod, vernalization, gibberellin, autonomous, age and 

ambient temperature pathways; to induce and regulate the “floral integrator genes” 

(Fornara et al. 2010). Functional homologues of several key flowering genes, such as CO, 

FVE and FCA, have been identified in many plant species like soybean (Huang et al. 

2011), sugar beet (Abou-Elwafa et al. 2011) and rice (Yano et al. 2000); implicating the 

functional conservation of the floral pathways across the plant kingdom. In this study, we 

addressed the question of whether selected genes from two major flowering regulatory 

pathways in Arabidopsis (the photoperiod and autonomous pathways) are conserved in 

alfalfa. 

4.4.1. Evolutionary expans ion of key flowering gene families in alfalfa  

Gaining insight into the molecular participants of complex regulatory pathways in 

alfalfa is very restricted due to the lack of a sequenced genome. In this study, the putative 
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functional homologues of Arabidopsis CONSTANS, FVE and FCA were identified by 

performing the in silico analysis of the Medicago truncatula genome instead. M. 

truncatula is a close relative of alfalfa and shares a high degree of sequence similarity 

(Julier et al. 2003; Young et al. 2011). This statement was also supported by the fact that 

we were able to amplify genes from alfalfa using primers designed based on the M. 

truncatula genome. We found that alfalfa has at least ten COL, seven FVEL and four 

FCAL genes. The sequence analysis showed high homology between the Medicago and 

Arabidopsis homologues, especially in the signature domains of the proteins. 

CONSTANS-like  gene family in alfalfa  

  The phylogenetic analysis of the identified putative homologues of CO genes in 

Medicago showed the presence of all the three major subgroups (I, II and III) in the 

legume. Thus, the groups predate the divergence of Arabidopsis and the legumes (Figure 

2a) and the two plant species have retained the characteristic B-BOX domains and CCT 

domains since (Figure 2b). It is interesting that given the greater size of the genome 

compared to Arabidopsis, M. truncatula most likely has only ten homologues of CO, in 

comparison to seventeen in Arabidopsis. Among the ten genes, MtCOL-9 and MtCOL-10 

are nearly identical suggesting they arose from a recent gene duplication. However, given 

the ploidy level and genome size of alfalfa, it most likely has more than ten COL genes.  

It is noted that MtCOL1-3 showed a greater similarity to AtCOL3-5 than AtCO. 

AtCO formed a separate subclade only with AtCOL1 and AtCOL2. The results suggested 

a sequence divergence occurred before forming AtCO and MtCOL1-3. One diverged 

ancestor sequence was only found in Arabidopsis resulting in formation of AtCO, AtCO1 

and 2. The other diverged ancestor sequence were found in both Arabidopsis and M. 
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truncatula, resulting in forming AtCOL3-5 and MtCOL1-3. It can be expected that 

MtCOL1-3 would function similarly to AtCOL3-5.  

FVE-like and  FCA-like  gene family in alfalfa  

As reported earlier (Kim et al. 2013), M. truncatula contains 25 genes that are 

involved in the autonomous pathway and are homologues to 16 genes in Arabidopsis. 

From the in silico analysis we were able to find seven homologues for FVE and four for 

FCA. The phylogenetic analysis of the FVE homologues from Arabidopsis and Medicago 

suggested that MtFVEL genes evolved through multiple events (Figure 3a). MtFVE3-7 

most likely evolved after the divergence of Arabidopsis and the legume. AtFVE and 

MtFVEL genes are potentially derived from the same ancestral gene. However, the 

ancestor gene diverges before the divergence of Arabidopsis and M. truncatula, since 

MtFVEL-3 forms a parallel subclade with AtFVE and MtFVEL-1. The homologues from 

both plant species have retained the signature CAF1c and WD40 domains indicating the 

presence of these domains in the ancestral sequence from which these have evolved 

(Figure 3b). The size of the FVEL gene family in alfalfa is unknown. However, since 

most of the commercial varieties of alfalfa are polyploids there is high possibility of the 

existence of even a larger gene family in alfalfa.  

 The phylogenetic analysis of FCA-Like gene family showed that the FCA protein 

predates the divergence between Arabidopsis and the legume, since MtFCA-1 and 

AtFCA formed a cluster that is distinct from a cluster only containing FCAL from M. 

truncatula. This also made MtFCAL-1 the only possible orthologue of AtFCA (Figure 

4a).  
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4.4.2. Diurnal and circadian changes in the photoper iod elicited conserved 

responses   

Multiple approaches like global transcriptomic analysis and in vivo enhancer 

trapping, determined that the circadian clock controls almost all the biological functions 

in Arabidopsis by regulating the expression of more than one-third of genes (Harmer et 

al. 2000; Covington et al. 2008; Michael and McClung 2003). It was originally thought 

that the autonomous pathway genes contributed to the regulation of circadian clock 

(Salathia et al. 2006), but increasing evidence suggests that the genes themselves may 

also be subjected to diurnal and circadian regulation, including FVE and FCA (Pruneda-

Paz and Kay 2010). Our gene expression analysis revealed that MsFVEL-1 and MsFCAL-

1, the two most closely related counterparts in Arabidopsis based on the phylogenetic 

analysis, showed clear diurnal response while others showed fluctuations of expression 

without a distinct diurnal pattern (Figure 6).  Although FVE and FCA were shown to 

affect the circadian rhythm in Arabidopsis plants (Salathia et al. 2006), these genes have 

not been reported to be under diurnal/circadian control. The first evidence of diurnal 

control of FVE was reported in sugar beet (Abou-Elwafa et al. 2011). Our results of 

circadian regulation of MsFVEL-1 and MsFCAL-1 suggest that they are potential 

orthologues of FVE and FCA. Unlike BvFVE1 that has its peak expression at 12h time 

point under LD conditions, MsFVE-1 reaches its peak expression just before dawn and 

then remains at relatively lower levels throughout the day. 

  Of the one-third of circadian clock controlled genes, photoperiod pathway genes 

are the some of the most extensively studied genes. Robust expression oscillation under 

diurnal and circadian condition is one of the key features of Arabidopsis CONSTANS 
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(Suarez-Lopez et al. 2001). And this key feature has been shown to be conserved across 

many different plant species including legumes like soybean (Huang et al. 2011; Wu et 

al. 2014) and M. truncatula (Wong et al. 2014) and cereals like rice (Yano et al. 2000). 

Two MsCOL genes that showed reliable expression showed different circadian patterns. 

MsCOL-1 did not show significant expression until the plants were under LL, where 

MsCOL-1 expression clearly showed regular cycling, with higher expression in the 

evening. It is interesting to note that a similar expression profile was observed for 

GmCOL9 under both SD and LD conditions in soybean (Huang et al. 2011). MsCOL-2 

appeared to maintain the regular expression pattern only in the first day entering, with the 

highest expression right after dawn.  The difference in expression pattern during 

circadian response raised the question whether MsCOL-1 and -2 function similarly to 

AtCO.   

4.4.3. Transcr ipt abundance of the flowering genes in different t issues is 

conserved within and between species  

To provide further evidence conservation of these genes compared to their 

counterparts in Arabidopsis, we studied expression of the selected genes in different 

tissues. 

 Many of MsCOLs, MsFVELs and MsFCALs homologues showed higher 

expression in the leaf/stem tissues and only slightly in roots, a pattern conserved in 

Medicago and Arabidopsis (Macknight et al. 1997; Ausin et al. 2004; Suarez-Lopez et al. 

2001). This includes MsCOL-1 and MsFVE-1, that showed highest sequence similarity to 

AtCO and AtFVE. MsFCAL-1 is however expressed at similar level in different tissues. 

In addition to the expression studies in different tissues we also performed experiments to 
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understand the transcript abundance of the selected genes at different developmental 

stages. When our results of the transcript abundance of the selected genes at different 

developmental stages were compared to profiles of AtCO, AtFVE and AtFCA obtained 

from the AtGenExpress Visualization tool (http://jsp.weigelworld.org/expviz/expviz.jsp), 

we noticed similarity and some divergence in transcript accumulation. MsCOL-1 and -2 

are expressed at significantly higher levels in the seedlings and relative lower and 

constant level afterward. AtCO is expressed at the highest level in the shoots of 21 days 

old plants, a stage preceding flowering, a pattern that is in sharp contrast to MsCOL-1 and 

-2. MsCOL-7 however showed a peak expression at W6 and W5 in the upper and lower 

node respective in Alfagraze, preceding flowering, suggest MsCO-7 may be associated 

flowering. Its potential role in flowering regulation is also supported by the fact that in a 

study by Pierre et al it was mapped as a QTL associated with flowering in Medicago 

truncatula. MsFVEL-1 showed a gradual increase with time for in the upper node of both 

genotypes. It reached the highest level at W5 in SD201 and W6 for Alfagraze, at timing 

right before flowering. MsFVEL-2 showed a similar pattern in the upper node of 

Alfagraze. Its expression in the lower node is relative constant in the lower node of both 

germplasm. Based on the microarray data the expression of AtFVE reaches peak 

expression late developmental stages similar to MsFVE1-3 based on expression in the 

upper node of two genotypes. These data suggest a role of MsFVEL1-3 in flowering time 

control in alfalfa. AtFCA is expressed at relatively constant level in different tissues and 

at different developmental stages (Macknight et al. 1997). A similar pattern was observed 

in MsFCAL-1. MsFCAL-2 however showed peak expression in the upper node in both 

genotype suggesting a link with flowering in alfalfa. Altogether, the fact that these genes 

http://jsp.weigelworld.org/expviz/expviz.jsp)
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have different profiles when compared to their counterparts in Arabidopsis suggests that 

alfalfa may have developed a different or a more complex regulatory system. 

Alternatively, these genes in alfalfa may play different roles from flowering timing 

regulation. This is supported by the results reported by other labs through functional 

analysis. 

Functional characterization of the members of CONSTANS-like gene family have 

been conducted in soybean and M. truncatula (Wu et al. 2014; Wong et al. 2014) and, 

interestingly, resulted in two very different conclusions. The soybean COLs were able to 

complement the Arabidopsis co mutants, but overexpressing MtCOLs in Arabidopsis 

failed to rescue the mutants. And since alfalfa is closest to M. truncatula there is a 

possibility that the COLs may not play central role in the photoperiod regulation of 

flowering in alfalfa as well.  The findings may not be surprising since alfalfa appears to 

be day length insensitive in flowering, although it is generally considered as a long day 

flowering plant.  

 Research on the autonomous pathway genes is very limited in legumes (Kim et al. 

2013). We only know that the legumes have the homologues of the key genes like FLC, 

FVE and FCA in their genome. This study is the first evidence of structural and 

expression pattern conservation between Arabidopsis and Medicago species. Our 

sequence and gene expression analysis suggest that one of the MsFVE1-3 and MsFCAL-1 

may be a functional orthologue of AtFVE and AtFCA, respectively. Functional analysis 

through molecular genetics such as complementation of Arabidopsis fve and fca mutant 

with alfalfa genes will provide the conclusive answer. 



 131 

 In summary, our study provides insight into the molecular control of flowering 

time in alfalfa. Our results suggested that the CO-like genes in alfalfa may be associated 

with flowering which is correlated with its day-length insensitive nature. MsCOL-7 may 

be a functional orthologue based on its peak expression prior to flowering. Among two 

players in the autonomous pathway, multiple members of MsFVEL or both MsFCAL-1 

and -2 are implicated a role in flowering time control based on their peak expression 

preceding to flowering. A systematic characterization and comparative analysis of 

different members of COL, FVEL and FCAL will provide further insight into the 

complexity of regulation of flowering in alfalfa and identify the candidate genes involved 

in flowering. Ultimately, the functional characterization of the candidate genes will allow 

the determination of key pathways controlling flowering specific to alfalfa. As shown in 

M. truncatula (Tadege et al. 2015), this knowledge can be applied to manipulate the 

flowering genes and delay flowering to enhance biomass production in alfalfa.  

4.5.  Mater ials and methods  

4.5.1 Plant mater ials  and growth condit ions  

Alfalfa germplasms SD201 (SD) and Alfagraze (AG) were examined in this 

study. SD cultivar was developed by Dr. Arvid Boe at South Dakota State University and 

AG seeds were obtained from The National Temperate Forage Legume Genetic Resource 

Unit, Prosser, WA, USA. The plants were grown in Conviron growth chamber with 

growth conditions set at 22±2°C, day and 19±2°C, night thermo period with a 16h 

photoperiod. The light intensity was set at 200 µmol m-2 s-1 (PAR), and the relative 

humidity level was maintained at 55%. 
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The SD and AG seeds were surface sterilized prior to germination. The seeds 

were first scarified with 3M 332U 150 aluminum oxide sandpaper, and then sterilized in 

2.5% bleach solution for 3 minutes followed by 3 thorough washes with distilled water. 

Six seeds were then directly planted into each one-gallon pots (Stuewe and Sons, 

Corvallis, OR) that were filled with potting mix (Sunshine Mix #3, Sun Gro Horticulture 

Canada Ltd., Seba Beach, AB, Canada). Another batch of seeds were grown in 3.8 x 21-

cm Ray Leach Cone-tainers (Stuewe and Sons, Corvallis, OR), two each, which were 

filled with 38 grams of potting mix. Plants were irrigated at a 3-day interval with a 

Miracle-Gro (Scotts Miracle-Gro Products, Inc., Marysville, OH) nutrient solution (5 gm 

Miracle-Gro/gallon of H2O, N:P:K = 15:30:15). Two weeks after germination, the 

seedlings were thinned to three plants per pot and one per each Cone-tainer.  

4.5.2 Treatment and sampling  

Diurnal and circadian samples  

To investigate the diurnal changes in gene expression of FVE and FCA 

homologues in alfalfa, young shoots from SD201 plants grown in pots at similar 

developmental stage (late bud stage) were harvested every 3h starting at dawn. Samples 

were harvested to represent a total of eight time points (T0 –T7 or 0h – 21h) in a complete 

day (24 hrs), with 5 samples collected in light and 3 samples in dark. Three young shoots 

were harvested per replicate for three replicates and immediately frozen in liquid nitrogen 

and stored at -80°C. 

To investigate the expression of alfalfa COL homologues in response to circadian 

changes, young shoots from SD201 plants grown in pots at similar developmental stage 

(late bud stage) were harvested at 3h intervals over 72 h, that spanned 24h of long day 
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(LD) photoperiod conditions followed by 48h of continuous light. Samples were 

harvested to represent a total of twenty-four time points (T0 –T23 or 0h – 69h). Three 

young shoots were harvested per replicate, and three replicates were harvested at each 

time point. 

 

Developmental stages  

Samples representing different stages of development of alfalfa were harvested 

from SD201 and AG plants grown in Cone-tainers, every week starting from the seventh 

day after germination. For the first two weeks the whole seedlings were harvested (W0 

and W1), and from the third week onwards the young shoots from the upper node (UN 

W2 –W7) were harvested. The shoots from the lowest nodes were also harvested from 

third week onwards (LN W2 –W7). The samples were harvested at the same time of the 

day, 15h after lights on, every week. 

Different t issues  

Leaves, stems, flowers and roots were collected separately from mature SD201 

and AG plants grown in pots. Leaves and stems were separated from young shoots of 8-

week-old plants and pooled as two different samples. Flower samples included 3-5 

young, unopened clusters. Each cluster contained from 10 to 20 individual flowers 

depending on the germplasm.  The samples were harvested 15h after lights on. All the 

samples used for gene expression analysis were immediately frozen in liquid nitrogen 

after harvest and stored at -80°C until RNA extraction. 
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4.5.3 Identificat ion of COL ,  FVEL  and FCAL  genes in M. truncatula and 

phylogenetic analys is  

Arabidopsis CO, FVE and FCA protein sequences was used to search against the 

M. truncatula genome database version Mt 4.0V1 at the Joint Genome Initiative 

(https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org

_Mtruncatula). The default Expect (E) threshold value for the Medicago homologs that 

were chosen was set at -1, and the BLOSUM62 comparison matrix was used. The 

retrieved sequences were named according to existing nomenclature as MtCOL-1 to 

MtCOL-10; MtFVEL-1 to MtFVEL-7 and MtFCAL-1 to MtFCAL-4, respectively. 

Multiple sequence alignment of the protein sequences was done using Clustal Omega 

(Sievers et al. 2011), and the Neighborhood-joining method of MEGA 6 (Tamura et al. 

2013) was used to construct the phylogenetic trees.  

4.5.4 Primer des ign 

Gene specific primers (Table S1) were designed for the selected MtCOL, MtFVEL 

and MtFCAL genes using an online primer design tool from Integrated DNA 

Technologies (Coralville, IA, USA). The efficiency and specificity for each primer pair 

was determined using alfalfa genomic DNA (1 ng) as the template in a 20 L PCR 

reaction containing 2 L of 10X PCR buffer, 1 L each of 10 M primers, 1 L of 2 mM 

dNTPs and 0.1 L of Taq polymerase (5 U/L, BioLabs Inc., Ipswich, MA). All 

reactions were performed in a gradient thermocycler (Eppendorf Mastercycler, 

Eppendorf, Hauppauge, NY) with PCR conditions set as; initial denature step at 94°C for 

3 min followed by 35 cycles of 94°C for 20 s, 20 s at annealing temperature gradient (R= 

3°C/s, G=  2.4°C), extension at 72°C for 2 min and a final extension at 72°C for 10 min. 

https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org_Mtruncatula
https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=KEYWORD&method=Org_Mtruncatula
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The PCR products were then run on a 1% agarose gel stained with ethidium bromide, and 

images were visualized using a Bio-Rad ChemiDoc (Bio-Rand Laboratories Inc., 

Hercules, CA) image analysis system.  

4.5.5 RNA isolat ion and cDNA synthes is  

Total RNA was isolated using Trizol reagent (Invitrogen, Carlsbad, CA). The 

RNA samples were quantified using Nanodrop ND-1000 Spectrophotometer 

(ThermoFisher Scientific, Waltham, MA), and samples with 260/280 ratio from 1.9 to 2.1 

and 260/230 ratio from 2.0 to 2.5 were used for further analysis. RNA quality was also 

examined by separating RNA on a 2% agarose gel stained with ethidium bromide. The 

samples, which showed three sharp major rRNA bands, were used for cDNA synthesis. 

First strand cDNA synthesis was performed using the high capacity cDNA Reverse 

Transcription kit (ThermoFisher Scientific, Waltham, MA) in a 20 μL reaction according 

to manufacturer’s instructions. Synthesized cDNA samples were validated using MsActin 

primers with 30 cycles in a regular PCR reaction. The cDNA samples were diluted 4 

times for use in real-time qRT-PCR reaction. qRT-PCR reactions with the house-keeping 

gene MsActin were then performed on cDNA samples in comparison with respective 

RNA samples without reverse transcription. Only the cDNA samples whose 

corresponding RNA samples showed no amplification or significantly greater Ct values 

(three cycles or more) in qRT-PCR analysis were used for the gene expression analysis.  

4.5.6 Expression profiling of M .  sat iva flowering genes  

qRT-PCR was performed using DyNAmo Flash SYBR Green Hot Start qRT-PCR 

Kit (ThermoFisher Scientific, Waltham, MA) following manufacturer’s instructions in a 

20 μL reaction in ABI 7900HT High-Throughput Real-Time Thermocycler (Applied 
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Biosystems, Foster City, CA) using standard cycling conditions. Each sample from three 

biological experiments was assayed twice as technical replicates. The thermocycler 

program was set to: 15-min activation at 95°C followed by 40 cycles of 15 s at 94°C, 30 s 

at annealing temperature, 30 s extension at 72°C, followed by a dissociation curve step. 

The dissociation curve was used to determine the primer efficiency and specificity. The 

normalized relative fold changes in the transcripts of MsCOL or other genes were 

calculated using the 2-Ct or comparative Ct method based on the difference between the 

target and reference genes as described by Livak and Schmittgen (Livak and Schmittgen 

2001).  

4.5.7 Data analys is  

Statistical analysis was performed using IBM SPSS Statistics 24 (Armonk, NY) 

and Microsoft Excel 2016 data analysis tools pack (Redmond, WA). Data were subjected 

to analysis of variance (ANOVA) using the linear model with completely randomized 

design to determine significant differences among the treatments. Tukey’s HSD all pair 

comparison was conducted to ascertain significant differences between treatment means 

(p<0.05). 
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Figure 1. A snapshot of flowering time control in Arabidopsis thaliana. This snapshot 

presents a subset of these genes and proteins, each organized according to its spatial 

activity in the leaves or the shoot apical meristem of the plant. Strikingly, several genes 

act more than once and in several tissues during floral induction. Many of these genes 

occur in a network of six major pathways: the photoperiod and vernalization pathways 

control flowering in response to seasonal changes in day length and temperature; the 

ambient temperature pathway responds to daily growth temperatures; and the age, 

autonomous, and gibberellin pathways act more independently of environmental stimuli. 
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Figure 2a & 2b. Phylogenetic relationship and protein sequence alignment of CO-like 

proteins in Medicago truncatula. 

b. The neighbor-joining (NJ) tree includes 10 COL proteins from Medicago truncatula 

and 16 COL proteins from Arabidopsis. The numbers shown next to the branches are the 

bootstrap probabilities from 1,000 replications.  

c. Whole protein alignment of MtCOL1,2 and 7 with AtCO. * represents conserved 

amino acid residues; • represents the identical and similar amino acid residues. The 

conserved B-BOX and CCT domains are highlighted. Also highlighted are the 

characteristic essential amino acids for the functioning of CO protein. 
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Figure 3a & 3b. Phylogenetic relationship and protein sequence alignment of FVE-

like proteins in Medicago truncatula. 

b. The neighbor-joining (NJ) tree includes 7 FVEL proteins from Medicago truncatula 

and Arabidopsis FVE protein. The numbers shown next to the branches are the bootstrap 

probabilities from 1,000 replications.  

c. Whole protein alignment of MtFVE1,2 and 3 with AtFVE. * represents conserved 

amino acid residues; • represents the identical and similar amino acid residues. The 

conserved NLS, CAF1c and WD40 domains are highlighted. 
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Figure 4a & 4b. Phylogenetic relationship and protein sequence alignment of CO-like 

proteins in Medicago truncatula. 

b. The neighbor-joining (NJ) tree includes 4 FCAL proteins from Medicago truncatula 

and Arabidopsis FCA protein. The numbers shown next to the branches are the bootstrap 

probabilities from 1,000 replications.  

c. Whole protein alignment of MtFCA1 and 2 with AtFCA. * represents conserved amino 

acid residues; • represents the identical and similar amino acid residues. The conserved 

RRM1&2 and WW domains are highlighted.  
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Figure 5. Circadian regulation of COL genes in alfalfa. Young shoots were harvested 

from SD201 plants of the same age every 3 h after dawn. Relative expression levels are 

shown for a 24h period under long-day (LD) conditions, followed by 48h under 

continuous light (LL) conditions. The values represent the mean fold change  SE (n = 3) 

when compared with the transcript level at 0 h. Data points with different letters are 

significantly different (p < 0.05). 
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Figure 6. Diurnal regulation of FVEL and FCAL genes in alfalfa. Young shoots were 

harvested from SD201 plants of the same age every 3 h after dawn. Relative expression 

levels are shown for a 24h period under long-day (LD) conditions. The values represent 

the mean fold change  SE (n = 3) when compared with the transcript level at 0 h. Data 

points with different letters are significantly different (p < 0.05). 
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Figure 7. Expression analysis of MsCOLs, MsFVELs and MsFCALs in different tissues; 

leaf, stem, root and flower. Tissues were harvested from SD201 and Alfagraze plants for 

gene expression analysis. The values represent the mean fold change  SE (n = 3) when 

compared with the transcript level in leaf. Bars with different letters are significantly 

different (p < 0.05). 
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Figure 8a. Expression analysis of the MsCO-like genes at different developmental stages: 

samples were harvested from SD201 and Alfagraze plants every week starting from the 

seventh day after germination. For the first two weeks (Weeks 0&1), the whole seedlings 

were harvested, and from the second week onward (Weeks 2–7), the young shoots from 

the upper node and shoots from the lower nodes were harvested. The transcripts were 

quantified by qRT-PCR, and the values represent the mean fold change  SE (n = 3) 

when compared with the transcript level at Week 0. Bars with different letters are 

significantly different (p < 0.05).  
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Figure 8b. Expression analysis of the MsFVE-like genes at different developmental 

stages: samples were harvested from SD201 and Alfagraze plants every week starting 

from the seventh day after germination. For the first two weeks (Weeks 0&1), the whole 

seedlings were harvested, and from the second week onward (Weeks 2–7), the young 

shoots from the upper node and shoots from the lower nodes were harvested. The 

transcripts were quantified by qRT-PCR, and the values represent the mean fold change  

SE (n = 3) when compared with the transcript level at Week 0. Bars with different letters 

are significantly different (p < 0.05). 
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Figure 8c. Expression analysis of the MsFCA-like genes at different developmental 

stages: samples were harvested from SD201 and Alfagraze plants every week starting 

from the seventh day after germination. For the first two weeks (Weeks 0&1), the whole 

seedlings were harvested, and from the second week onward (Weeks 2–7), the young 

shoots from the upper node and shoots from the lower nodes were harvested. The 

transcripts were quantified by qRT-PCR, and the values represent the mean fold change  

SE (n = 3) when compared with the transcript level at Week 0. Bars with different letters 

are significantly different (p < 0.05). 
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Table S1. Gene specific primer sequences used for qPCR analysis and their 

corresponding length, product length and melting temperature (Tm).  

 

 

 

 

 

 

 

 

 

Primers RT- primer Sequences Length (bases) Product size (bp) Tm(°C)

MtFVE1_F TCTAATGGGGTTGGGTCTCCTAT 23 172 54.7

MtFVE1_R TTTTTCCAGCTCGCTCTATCTTC 23 53.9

MtFVE2_F AAGGCCATGATGAACCAGTCCTCT 24 191 59.9

MtFVE2_R ATCCCTATGCCCTGCATGACGAAA 24 60.3

MtFVE3_F TTTGCTTAGTGGTTCTGATGATG 23 124 51.4

MtFVE3_R AGCCACGTCTTCCACAACACC 21 56.2

MtFCA1_F CCACAATCCCCTTCTCAGTTAGC 22 199 55.8

MtFCA1_R GCGATACAGTCCCACCCCATTG 23 59.9

 MtFCA2_F GGAGCGAACATTACTGCCCTGAT 23 127 58.2

MtFCA2_R TCTTGCTCGTGTTGCTTCTGTGA 23 57.4

MtCO 1_F AAACCGCCACCGAACACGAACAT 23 129 63.1

MtCO 1_R CCGGCACAACTCCAACATCCATC 23 62

MtCO 2_F TTCCTTTAACTATCCATCACATT 23 196 47.2

MtCO 2-R CCCTTGGTTACTACTATTCACAC 23 47.1

MtCO 3_F GGCGCCGACAGTGTACCAGTTAT 23 190 59

MtCO 3_R CAGCCCTAGCCTTCCTTGATTC 22 56

Mt Actin_F AGGCTCCACTCAATCCTAAAGCCA 24 168 59.8

Mt Actin_R ACCCTTCGTATATGGGCACTGTGT 24 59.8
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CHAPTER  5: CONCLUSIONS  AND  FUTURE  DIRECTIONS 

5.1. Conclus ions and Future Direct ions  

The expression analyses and identification of genes involved in plants’ response 

to low temperature and soil moisture content, and regulation of flowering time 

emphasized the need to study these genes in agronomically important crops like maize 

and alfalfa. Extrapolating the knowledge, gained through the studies done in the model 

plant Arabidopsis thaliana, to the crop plants is essential. The present study suggested 

that the key pathways, and their molecular participants, that regulate plants responses to 

various environmental cues are potentially conserved across different plant species, but 

only to a certain degree. There is an indication of divergence and greater complexity in 

the molecular mechanisms in response to the same cues in the crop plants. The 

observations made in this study placed high uncertainty on the candidate genes identified 

in maize and alfalfa and demands additional studies in the future: 

a. Functional characterization of the potential homologues: In this study using 

expression analyses, the potential functional homologues were narrowed down. Now, 

complementation, overexpression and knockdown/knockout studies are needed to 

confirm the function and the role of the homologues in regulating flowering time or in the 

plants’ response to low temperature or soil moisture content.  

b. Systemic understanding of signaling and response at the molecular level: The 

current studies concentrated on a single component of very complex regulatory networks. 

Further studies are required to elucidate the complete signaling and response pathway, 

when plants are exposed to various environmental conditions. Experiments like Yeast 2 

hybrid assays, or ChIP assays could be employed to gain further understanding of the 
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interacting partners and downstream genes and thus the molecular regulation of plants’ 

responses. 

c. Extensive transcriptomic and proteomic studies for new pathway discovery: 

Gaining in-depth knowledge into molecular biology of multiple signaling pathways in 

alfalfa is limited as the genome has not been sequenced yet. So, spatial and temporal 

transcriptomic and proteomic studies using RNA-seq analyses and shot-gun followed by 

MS respectively, can be used to compare the germplasms varying in stress tolerance, or 

RNA-seq analysis can be used to study maize roots from germplasms varying hydrotropic 

response. These open-end approaches allow discovery of novel molecular components or 

pathways in these crop plants.   

d. Molecular breeding: Once the key genes are identified and their functions are 

confirmed, plant biologists will be able to achieve their ultimate goal of developing better 

performing crops, through conventional and molecular breeding, that could provide better 

food security and a dependable source of energy to the ever-growing population in the 

world.  
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