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Although the current FDA approved cyanide antidotes (i.e., sodium nitrite, 

sodium thiosulfate, and hydoxocoboalamine) are effective for treating cyanide poisoning, 

each individual antidote has major limitations, including large effective dosage, delayed 

onset of action, or dependence on enzymes generally confined to specific organs. To 

overcome these current limitations, next-generation cyanide antidotes are being 

investigated, including 3-mercaptopyruvate (3-MP). Analytical methods capable of 

detecting 3-MP from plasma are essential for the development of 3-MP as a next-

generation cyanide antidote. Although 3-MP has been analyzed by LC-MS-MS, this 

instrument is not widely available. Therefore, a high performance liquid chromatography 

(HPLC) method with fluorescence detection (FLD) was developed to analyze 3-MP from 

swine plasma such that more labs could potentially perform the method. Sample 

preparation included spiking the plasma with the internal standard (3-mercaptopropionic 

acid) and reacting the 3-MP and IS with monobromobimane to prevent the characteristic 

dimerization of 3-MP. The method produced a limit of detection of 0.5 nM, a large 

dynamic range, and good accuracy and precision. The solid phase mixed-mode anion 



 

 

exchange sample preparation protocol produced excellent selectivity for the method. The 

wide availability and affordability of the instrumentation and the simple of the 

implementation method presented should allow more labs to contribute to further 

investigations of 3-MP as a promising cyanide antidote. 
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CHAPTER 1. INTRODUCTION  

1.1. Overall significance  

Although cyanide is used as an important reagent for many industrial processes, 

such as precious metal mining, synthesis of dyes, pharmaceuticals, and plastics, it is also 

a highly toxic chemical that causes severe health risks which may eventually result in 

death. Currently, there are three next generation cyanide antidotes that are approved by 

the U.S Food and Drug Administration (FDA). However, all of them have major 

limitations. Therefore, next generation cyanide antidotes are being investigated to 

overcome these limitations. 3-Mercaptopyruvate is a next generation sulfur donor 

therapeutic that has shown promise as cyanide antidote.  Although it has been analyzed 

successfully by LC-MS-MS, that instrumentation is only available in a few labs. 

Therefore, there is a critical need to develop more universal, less-costly, and simple 

method to analyze 3-MP from plasma.  

1.2. Project objective  

The objective of this project was to develop and validate an HPLC method to 

analyze 3-mercaptopyruvate from plasma.  
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1.3. Cyanide history and discovery  

1.3.1. Discovery and Identification of cyanide  

Cyanide is commonly known as a toxic chemical that has been used as a poison 

for thousands of years. Since the time of ancient Egypt, plants containing cyanide (e.g., 

cassava, bitter almonds, cherry laurel leaves, and peach pits) have been used as poisons.7 

Romans added cherry laurel leaves (which contain CN) into a tea and used it as a method 

of execution.7-8 The first description of cyanide poisoning, was by Wepfer in 1679, from 

its extraction from bitter almond.9 Even though plants containing cyanide have been used 

for centuries as poisons, cyanide was not identified until 1782, when Swedish pharmacist 

and chemist, Carl Wilhelm Scheele, isolated cyanide from Prussian blue dye.7 In 1815, 

the French chemist, Joseph Louis Guy-Lussac, provided a better understanding of 

cyanides. Gay-Lussac, discovered cyanogen (a colorless, poisonous gas) which smelled 

like almonds and was considerably thermally stable.9  

1.4. Cyanide Sources  

1.4.1. Natural sources  

The primary natural source of cyanide is from cyanogenic plants such as cassava, 

sweet potatoes, limes, peaches, and almonds.10 The amount of HCN produced is different 

from one plant to another. Depending on both the biosynthesis of cyanogenic glycosides 

and on the existence (or absence) of its degrading enzymes.11 The first person to isolate 

HCN from a plant was Scrade in 1802 (from bitter almonds and from the leaves of 

peachs).11 Another natural source of cyanide is its production as a means of self-defense 

by many species such as algae, bacteria, and fungi.3 Lorck was the first to show clearly 

that cyanide production by bacteria is dependent on the inclusion of glycine in the growth 
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medium.12 The metabolic precursor of cyanide is. Relatively 1000 species of 

microorganisms and plants have been shown to produce cyanogenic compounds, also, 

there have been many reported cases of livestock and human cyanide poisoning after 

consumption of cyanogenic vegetation.13-14  

1.4.2. Anthropogenic Sources  

The annual production of cyanide, as HCN, is around 1.4 million tons 

worldwide.15 Anthropogenic sources of cyanide include industrial operations, metal 

extraction, fire/smoke inhalation, chemical synthesis, paint manufacturing, plastic 

processing, pharmaceutical, and pesticides synthesis.15-16 There are three major processes 

used to produce cyanide: 1) Andrussow, 2) Degussa, and 3) Shawinigan.17 In the 

Andrussow process, HCN is produced by the reaction of ammonia and methane in the 

presence of oxygen and a platinum catalyst.18 The Degussa process is similar but does not 

depend on the presence of oxygen.19 In Shawinigan process, HCN is produced by the 

reaction of fluidized coke particles with ammonia and propane.20  

Smoke inhalation is another source of CN¯. Cyanide is produced by combustion 

of nitrogen-containing compounds and inhaled as HCN.21 HCN is produced from such 

common materials as plastic, wool or silk. When the combustion temperature reaches 315 

ᵒC (600 ᵒF), HCN is released, and may be inhaled by the victim.22 Several reports have 

shown that people who enter the hospital due to fire accidents may have been exposed to 

carbon monoxide (CO) as well as cyanide (CN), and it has been recorded that the most 

common source of CN poisoning in humans come from exposure to fires.22 A related 

exposure is smoking, which is one of the most common sources of cyanide exposure for 
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people who do not work in cyanide-related industries.3 The production of HCN from 

cigarettes ranges from 10-400 µg cigarette.16  

Metal extraction, especially gold, also utilizes CN as one of the most common 

methods in the leaching of gold from ore. This process, called cyanidation occurs, 

according to Elsner’s equation (Equation 1.1). 23 Gold is dissolved in gold containing 

ores via a dilute cyanide solution in the presence of lime and oxygen.1 

                           4Au + 8NaCN + O₂ ₂ + 2H O → 4Au[Au(CN)₂ ] + 4NaOH                          

(1.1) 

Cyanide can be removed from solution by a number of processes, such as Merrill-

Crowe Process.1, 5 Aside from gold mining, cyanide is also used in the extraction of 

silver, copper, and zinc.5 Cyanide is also used to synthesize fibers and polymers. For 

example, nitrile fibers are produced using hydrocyanation (Equation 1.2).12  

                                            RCH=CH₂ ₂ ₃+2HCN → RCH(CN) CH                                               

(1.2) 

In addition to fibers and polymers, CN is also used in the synthesis of 

pharmaceuticals, pesticides, dyes, and pigments. Because of the extensive use of cyanide 

in industry, there is an increased risk of occupational cyanide exposure.  
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1.5. Cyanide as a chemical weapon  

1.5.1. Illicit use of cyanide 

Cyanide delivery devices are inexpensive and easy to produce, and cyanide is 

relatively easy to procure, so even small terrorist groups can use cyanide to create mass 

casualties. The first use of cyanide as chemical warfare agent (CWA) was during World 

War I (WWI). In late 1915 and early 1916 the French used cyanide and hydrocyanic acid 

(HCN gas), but they stopped its production later because HCN gas spread quickly in open 

areas, making cyanide ineffective.7 In late 1916, about the same time, French and 

Austrians started using cyanogen chloride and cyanogen bromide because they are less 

volatile than HCN. In humans, both convert to CN, and have the same impact on the 

victims.7, 24 Japanese used cyanide against Chinese before and during World War II. In 

1980s, during the Iran-Iraq War, Iran used cyanide against Syria (city of Hama)25, the 

Kurds (city of Halabja)26 and Iraq.25-27 Cyanide has been used in terrorist attacks or by 

individuals to poison enemies. For example, ancient Egyptians and Romans used cyanide 

from cyanogenic plants, such as cherry laurel, as a poison.28 In 1978, Reverend Jim Jones 

and his 900 or more of his followers drank a grape flavored drink containing cyanide.29 In 

1982, Chicago Tylenol poisonings resulting from Extra-Strength Tylenol capsules which 

had been laced with potassium cyanide caused a total of seven deaths.30 In 1995, in 

Tokyo subway, cyanide gas-producing devices were found in the subway and railway 

station restrooms during Sarin terrorist attacks.31 Also, in 2012, a Chicago lottery winner, 

Urooj Khan died due to cyanide poison.32 In 2013, it was reported that Dr. Robert 

Ferrante was convicted of fatally poisoning his wife with cyanide.33  
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1.6. Cyanide Toxicity 

1.6.1. Mechanism of cyanide toxicity and symptoms 

Cyanide is known to bind and inactivate enzymes, especially those containing 

iron in the ferric state and cobalt. When cyanide binds cytochrome c oxidase, which is 

located in the mitochondrial membrane, it prevents the transfer of electrons to molecular 

oxygen. Therefore, the oxygen in the blood cannot be utilized toward adenosine 

triphosphate (ATP) generation, which halts aerobic metabolism.34 When this occurs, the 

cells first attempt to find another ATP energy source through glycolysis, leading to lactic 

acidosis. This source of energy cannot be sustained, especially in the metabolically active 

heart and brain and ultimately causes cellular necrosis.2, 35 A diagram of the inhibition of 

cytochrome c oxidase in the mitochondrial membrane is shown in Figure 1.1. Cyanide 

can affect many functions, including visual, pulmonary, cardiac, autonomic, vascular 

endocrine, metabolic systems, and the central nervous system. The toxicodynamic effects 

can vary based on factors such as the dose, route and speed of administration, duration of 

exposure, and other physiological characteristics (age, sex, etc.).9  
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It is important to note that death may occur within 5 minutes after exposure to 

high doses of cyanide.9  In short and long-term cyanide exposure cases, it is reported that 

some victims suffer from some chronic health problems like enlargement of the thyroid 

gland, myelin deterioration, nausea, and mental health symptoms such as inability to 

focus.12 

 

Figure 1.1 Diagram of the inhibition of cytochrome c oxidase within the electron 

transport chain in the mitochondrial membrane. (adapted from Ow et al.2) 

 

 

Figure 1.1Commonly observed symptoms of CN exposure and their manifestation. 

(adapted from Jackson et al., 2017.1) 
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1.7. Cyanide Metabolism 

1.7.1. Natural cyanide metabolism pathways 

Cyanide is present in human biological fluids endogenously at very low 

concentrations. When cyanide is absorbed into the blood stream, it’s rapidly distributed 

throughout the body and processed by multiple metabolic pathways.36 The major 

metabolic pathway of cyanide (which detoxifies about 80% of cyanide dose) is 

conversion of CN into thiocyanate (SCN¯) 37 using a sulfur donor and catalyzed by 

rhodanese enzyme this pathway is shown in Figure 1.3. Another enzyme which catalyzes 

conversion of CN into SCN¯ is 3-mercaptopyruvate sulfurtransferase (3-MST), which 

yields pyruvate and SCN¯ by catalyzing the sulfuration of cyanide.4    

 

 

 Figure 1.2 Diagram showing the metabolic pathway of cyanide and major ways of 

release. (adapted from Logue et al., 2010.3) 
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One of the minor metabolic pathways is the production of 2-amino-2-thiazoline-4-

carboxlic acid (ATCA) by the reaction of CN with L-cystine. However, this reaction only 

detoxifies around 0.10-9.19% of the CN.15 There are other metabolic pathways, but their 

detoxification percentages are very small. 

1.8. Current Cyanide Antidotes 

Currently, there are three US FDA approved cyanide antidotes: 

hydroxocobalamin, sodium nitrite, and sodium thiosulfate. These antidotes are classified 

as direct sequestering, indirect sequestering, and sulfur donation, respectively.38-39 

 

1.8.1. Hydroxocobalamin 

Hydroxocobalamin (known as vitamin B12a; Cbl) is a direct sequestering antidote 

that detoxifies cyanide by direct binding. Cbl is a cobalt-containing molecule found in the 

human body.40 The cobalt atom in Cbl strongly binds to the cyanide and produces 

cyanocobalamin (B12) which is easily excreted from the body in the urine.41 Although Cbl 

detoxifies cyanide well, it has major limitations. Cbl is a very large molecule and only 

binds cyanide, so a large molar ratio is needed to sequester all the free CN, leading to 

very large doses which must be administered by IV.42 Mild side effects include a high 

blood pressure, low heart rate, allergic reaction, and red coloration of the skin, tears, 

sweat, and urine.43  
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1. 8.2. Sodium nitrite 

Sodium nitrite indirectly sequesters cyanide from cytochrome c oxidase. Sodium 

nitrite is primarily classified as a methemoglobin generator, it oxidizes ferrous (2+) iron 

to ferric (3+) iron in hemoglobin to produce methemoglobin which has higher affinity for 

CN.4, 44 Methemoglobin works as a temporary binding site for cyanide ion which 

decreases free cyanide in the bloodstream.38 Recently, another alternative mechanism of 

action of sodium nitrite was proposed in which nitrite converts to nitric oxide which 

displaces cyanide bound to cytochrome c oxidase. After displacement, cyanide is 

converted to less harmful compounds.38, 45 Although, sodium nitrite is an effective 

cyanide antidote, it has some drawbacks. Sodium nitrite produces nitric oxide and 

methemoglobin. Nitric oxide can cause hypotension, and methemoglobin reduces 

oxygen-carrying capacity of blood. The latter can cause adverse effects for smoke 

inhalation victims who may have high carboxyhemoglobin concentrations, which also 

reduces blood-oxygen-carrying capacity.4 Additionally, if the production of 

methemoglobin is excessive (>30%), it can pose a health risk by itself, especially for 

children, causing cyanosis, fatigue, coma, and even death.38  

1. 8.3. Sodium thiosulfate 

Sodium thiosulfate is the only currently approved cyanide antidote that works as a 

sulfur donor for the treatment of cyanide poisoning. Sodium thiosulfate eliminates 

cyanide by donating a sulfur atom through sulfurtransferase enzymes as catalysts to 

convert cyanide to SCN¯.46 During the conversion of cyanide to thiocyanate with sodium 

thiosulfate and rhodanese, a sulfur atom is transferred from the donor to the enzyme, 

producing a persulfide intermediate, and a sulfite is released in the transition. After that, 
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the persulfide is transferred from the enzyme to CN converting it to thiocyanate.4 

Although sodium thiosulfate detoxifies cyanide well, it has limitations. Its antidotal 

activity is limited by its short biological half-life, small volume of distribution, and its 

dependence on rhodanese to catalyze the sulfur transfer reaction. Rhodanese is only 

found in the liver and kidneys, leaving the main locations of cyanide toxicity (the heart 

and the brain) less protected. Additionally, sodium thiosulfate has a slow onset of action, 

which causes slow entry into cells and mitochondria.4, 39 Due to its limitations, sodium 

thiosulfate is administered in conjunction with other antidotes.  

 

1.9. Novel cyanide antidotes 

Considering the major limitations of the current cyanide antidotes, multiple 

investigations have been in progress to develop the next generation antidote for the 

treatment of cyanide toxicity.4 Three next-generation cyanide antidotes have been 

extensively studied and hold the most promise as novel CN antidotes: cobinamide (Cbi), 

dimethyltrsulfide (DMTS), and 3-MP.  

 

1.9.1. Cobinamide (Cbi) 

Cbi is the penultimate precursor to hydroxocobalmin and is present in human 

serum and bile, meaning that it is likely absorbed across intestinal epithelial cells.4 Cbi 

lacks the dimethylbenzimidazole ribnucleotide tail of Cbl.4, 47  Cbi has a great affinity 

towards CN binding, and it directly sequesters two CN ions.4 Several studies have 

demonstrated the differences between Cbl and Cbi and the results showed that Cbi was at 

least two to three times more effective than Cbl at detoxifying cyanide.4, 48 Also, Cbi has 

been shown to reverse the effects of cyanide faster than Cbl.4, 8  Although Cbi detoxifies 
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cyanide well, it has some disadvantages as cyanide antidote, such as large molecular 

weight, large volume of administration, and it is costly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Structure of cobinamide.4 The center cobalt atom has a great affinity 

toward CN binding. 
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1.9.2. Dimethyl trisulfide (DMTS) 

DMTS is a sulfur-based molecule found in garlic, onion, broccoli, and similar 

plants.49 DMTS converts cyanide into thiocyanate without the need of rhodanese and its 

high lipophilicity permits its effective penetration of the cell membrane and the blood 

brain barrier, leading to better in-vivo antidotal efficacy than thiosulfate.38, 49  Several 

recent studies show that DMTS is 43 times more effective at detoxifying cyanide in the 

presence of rhodanese compared to sodium thiosulfate.38, 49  Whereas, its relative efficacy 

is even higher in the absence of rhodanese with 79 times greater efficacy than 

thiosulfate.38, 49 Although DMTS detoxifies cyanide well, it has some limitations. DMTS 

is unstable and it is hard to control the DMTS concentration under biological conditions. 

It is also highly lipophilic, which limits its solubility.  

1.9.3. 3-Mercaptopyruvate (3-MP) 

3-MP acts as a sulfur donor to convert cyanide to thiocyanate. This reaction is 

catalyzed by 3-mercaptopyruvate sulfurtransferase.4 3-MST is a more common enzyme 

than rhodanese with the most important areas of high 3-MST concentrations being the 

main locations of cyanide toxicity, the heart and the brain. The conversion of CN to 

SCN¯ with 3-MP and 3-MST happens primarily in blood or tissue areas near blood. The 

mechanism for detoxification of cyanide with 3-MP by 3-MST is shown in Figure 1.5. It 

should be noted that 3-MST is distributed in both the cytosol and mitochondria.4  
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Figure 1.5 Proposed catalytic mechanism for 3-mercaptopyruvate-dependent 

sulfurtransfer. (a) Formation of the enzyme–substrate complex; (b) isomerization of 

the Cys237 covalent disulfide intermediate to the related thiosulfoxide; (c) the 

sulfane S atom is donated to cyanide, yielding the 3-cysteinyl-pyruvate adduct; (d) 

and (e) nucleophilic attack on the latter covalent intermediate releases the pyruvate 

analogue and frees the SseA active site. Adopted from6  
 

 



15 

 

3-MP has shown to be more effective than traditional cyanide antidotes.12 It has 

good stability and it can be controlled under biological conditions. Some studies have 

been performed to develop a method that is able to detect 3-MP from animal plasma. 

However, each of these methods has specific limitations (described in chapter 2). 

Therefore, there is a critical need to develop simple, universal, and low-cost method 

without the need of mass spectral detection.  
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CHAPTER 2. Development of a High Performance Liquid Chromatography 

Method for the Analysis of Next-generation Cyanide Antidote, 3-mercaptopyruvate 

in Plasma.  

2.1. Abstract  

Cyanide is a highly toxic chemical that causes severe health risks which may 

eventually result in death. Although current FDA approved cyanide therapies are 

effective, next generation cyanide antidotes are being investigated to overcome 

limitations associated with these therapies. 3-Mercaptopyruvate (3-MP) is a next 

generation sulfur donor therapeutic that has shown promise as cyanide antidote. 

Analytical methods capable of detecting 3-MP in biological fluids are necessary for the 

development of 3-MP as a promising antidote. Although 3-MP has been analyzed by LC-

MS-MS, this instrument is not widely available. Therefore, a high performance liquid 

chromatography (HPLC) method with fluorescence detection was developed to analyze 

3-MP from swine plasma such that more labs could potentially perform the method. 

Sample preparation included spiking the plasma with an internal standard (3-

mercaptopropionic acid), reaction with monobromobimane to prevent the characteristic 

dimerization of 3-MP, and mixed mode anion exchange solid phase extraction. The 

method produced a limit of detection of 0.5 nM and a dynamic range of 0.1-10 µM. The 

accuracy and precision for the method were good. The validated HPLC-FLD method was 

capable of detecting 3-MP in swine plasma and can be utilized for further investigations 

of 3-MP as promising cyanide antidote. 
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2.2. Introduction  

Cyanide is commonly known as a toxic chemical that causes severe health risks 

which may eventually result in death. Exposure to cyanide is possible through a number 

of routes, including consumption of cyanogenic plants and fruits38 (e.g., cassava roots, 

bitter almonds, cherry laurel leaves, peach pits), inhalation of smoke from cigarettes 

and/or fires,7 industrial operations (e.g., electroplating and plastic processing),15 and from 

use of cyanide as a chemical weapon (e.g. recently in Syria).5, 15 The availability of 

cyanide, and its rapidly acting nature, makes it a threat to humanity.38 Currently, there are 

three cyanide therapeutics that are approved by the U.S. Food and Drug Administration 

(FDA): hydroxocobalamin, sodium nitrite, and sodium thiosulfate.4 

Hydroxocobalamin (known as vitamin B12a; Cbl) is direct sequestering antidote 

that detoxifies cyanide by directly binding. Cyanide has high affinity towards the cobalt 

atom in hydroxocobalamin that allows the formation of cyanocobalamin, which resides in 

the plasma and is excreted in urine.8, 41 Although Cbl detoxifies cyanide well, it has some 

major limitations, including a high recommended dose of 5 g administered over 15 min 

and it is very costly. Because it requires a high dose for optimum therapeutic effect, 

hydroxocobalamin must be administered by IV.4 Other mild side effects include a high 

blood pressure, low heart rate, allergic reaction, and red coloration of the skin, tears, 

sweat, and urine.36  

Sodium nitrite indirectly sequesters cyanide from cytochrome c oxidase. Sodium 

nitrite is primarily classified as a methemoglobin generator, it oxidizes ferrous (2+) iron 

to ferric (3+) iron in hemoglobin to produce methemoglobin which has higher affinity for 
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CN.38 Methemoglobin decreases free cyanide in the bloodstream by serving as a 

temporary binding site for cyanide ion.39 Recently, an alternative mechanism of action of 

sodium nitrite was proposed in which nitrite converts to nitric oxide, which then displaces 

cyanide bound to cytochrome c oxidase. After displacement, cyanide is converted to less 

harmful compounds.38 

The third class of cyanide therapeutic is sulfur donors. The only currently 

approved cyanide antidote that works as a sulfur donor is sodium thiosulfate. It eliminates 

cyanide by donating a sulfur atom utilizing sulfurtransferase enzymes as catalysts to 

convert cyanide to SCN¯.46 During the conversion of cyanide to thiocyanate with sodium 

thiosulfate and rhodanese, a sulfur atom is transferred from the donor to the enzyme, 

producing a persulfide intermediate, and sulfite is released in the transition. After that, the 

persulfide is transferred from the enzyme to CN, converting it to thiocyanate.5, 38 

Although sodium thiosulfate detoxifies cyanide well, it has a few drawbacks. It has a 

short biological half-life, which limits its antidotal activity, a small volume of 

distribution, and it is dependent on rhodanese to catalyze the sulfur transfer reaction, 

which is only found in high concentrations in the liver and kidneys, leaving the heart and 

the brain which are the main locations of cyanide toxicity, less protected. Moreover, the 

slow onset of action of sodium thiosulfate causes slow entry into cells and 

mitochondria.38 Due to its limitations, sodium thiosulfate is administered in conjunction 

with other antidotes.  

Considering the major limitations of the current FDA approval cyanide antidotes, 

several investigations have been in progress to develop the next generation of cyanide 

therapeutics. One promising approach for novel cyanide antidotes is the development of a 



19 

 

sulfur-donating compound that works effectively with or without rhodanese.38 The 

reaction of CN with 3-mercaptopyruvate (3-MP) utilizes 3-MST which is more common 

enzyme that rhodanese and it covers the heart and the brain, which are the main locations 

of cyanide toxicity. 4 The conversion of CN to SCN¯ with 3-MP and 3-MST happens 

primarily in blood or tissue areas near blood. The highest concentrations of 3-MST are 

found in the liver and kidneys with heart, but the brain and lungs also support the 

enzyme.4  

Some studies have been performed to develop a method that is able to analyze 3-

MP from biological samples. However, each of them has specific limitations. Ogasawara 

et al.50 reported an HPLC-fluoresence method for the analysis of 3-MP in mouse tissue. 

The method reported is time consuming and requires high temperatures (3-MP is highly 

unstable in high temperature). Other studies performed HPLC-MS-MS to analyze 3-MP 

from rabbit plasma, and simultaneously determine 3-MP and Cbi by LC tandem MS.5 

However, the availability of the instrumentation needed to apply this method relatively 

limited. Therefore, the objective of this study was to develop a relatively affordable and 

simple analytical method that produces similar analytical parameters to the methods 

available using a more universal and affordable instrument, specifically HPLC. 
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2.3. Experimental  

2.3.1 Reagents and standards  

All solvents were HPLC grade unless otherwise noted. 3-mercaptopyruvate (3-

MP; HSCH2COCOOH), was purchased from Santa Cruz Biotechnology (Dallas, TX, 

USA). Monobromobimane (MBB) was purchased from Echelon Biosciences Inc (Salt 

Lake City, UT, USA). A standard solution of (MBB) (500 µM) was prepared in 

deionized water and stored at 4 °C.  Acetone, formic acid (reagent grade, ≥95%), and 3-

mercaptopropionic acid (3-MPA) were purchased from Sigma–Aldrich (St. Louis, MO, 

USA). Methanol was purchased from Fisher Scientific (Pittsburgh, PA, USA). SPE Mix 

mode coulmn were purchased from Waters corporation (Milford, MA, USA). Swine 

plasma (EDTA anti-coagulated) was purchased from Pel-Freeze Biological (Rogers, AR, 

USA) and stored at -80 °C.  3-MP calibration and QC standards were prepared from 1 

mM stock solution by serial dilution with swine plasma. The internal standard solution 

was prepared from a stock solution of 100 µM 3-MPA and stored at 4 °C.   

2.3.2. Sample preparation 

Spiked or non-spiked swine plasma (100 μL) were added to 1.5 mL micro-

centrifuge, along with the internal standard 3-MPA (100 µL of 50 µM). To precipitate the 

protein from the plasma, 300 µL of acetone was added and the tube was vortexed. The 

samples were cold-centrifuged (Thermo Scientific Legend Micro 21R centrifuge, 

Waltham, MA, USA) at 8°C for 30 min at 13,100 RPM (16,500 x g). Following 

centrifugation, 300 µL of the supernatant was transferred into a 4-mL glass vial and 

evaporated to dryness with air. Samples were then reconstituted with 100 µL of 0.1% 

TFA in deionized water. MBB (100 µL of 500 µM) was added to react with 3-MP and 3-
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MPA to both prohibit the dimerization the reaction shown in Figure 2.1 and to add a 

fluorophore to 3-MP and 3-MPA. The samples were heated on a block heater (VWR 

International, Radnor, PA, USA) at 70 °C for 15 min to produce a 3-MP-bimane (3-

MPB) and 3-MPA-bimane (3-MPAB) complex, the reaction shown in Figure 2.2. Mixed-

mode anion exchange (MAX; 1 cc, 30 mg from waters) solid phase extraction (SPE) 

cartridges were then used to prepare the samples for the HPLC analysis. To condition the 

SPE columns, 1 mL of 100% methanol was added followed by 1 mL of deionized water. 

After 200 µL sample loading, 1 mL of deionized water was added to wash the column, 

followed by 1 mL of 25% methanol in water. Finally, 1 mL of 100% formic acid was 

added to elute 3-MPB from the column. The sample was then evaporated with air to 

dryness and reconstituted with 100 µL of 0.1% TFA in deionized water. The sample was 

filtered with a 0.22 µm tetrafluoropolyethylene membrane syringe filter into a 150 µL 

insert housed in glass vial. 
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Figure 2.2 The reaction of 3-MPA with MBB to form a stable 3-MPAB complex 
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Figure 2.1 The reaction of 3-MP in equilibrium with its dimer and MBB to form a stable 3-

MPB complex 5 
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2.3.3. HPLC analysis 

An Agilent HPLC coupled with a fluorescence detector was used for HPLC 

analysis of 3-MPB. Separation was performed on an Eclipse XDB C18 column, with an 

injection volume of 10 μL. Mobile phases were comprised of 0.1% TFA in water (Mobile 

Phase A) and 0.1% TFA in methanol (Mobile Phase B). A gradient of 10% B was applied 

over 10 minutes and increased to 100% B and held for 4 minutes then reduced to 10% B 

over 2 minutes. The total run-time was 16 minutes with a flow rate of 0.5 mL/min and a 

3-MPB retention time of 8.5 min. 

 

2.3.4. Calibration, quantification and limit of detection 

 

For validation of the analytical method, we generally followed the FDA 

bioanalytical method validation guidelines.51 The limit of detection (LOD) was 

determined by analyzing concentrations of 3-MP below the LLOQ and determining the 

lowest concentration that reproducibly produced a signal-to-noise ratio (S/N) of 3. The 

noise was estimated by evaluating the peak-to-peak noise of the blank over the retention 

time of 3-MP. It should be noted that 3-MP is inherently present in the plasma of 

mammals, making accurate assessment of the LOD difficult.5-6 The lower limit of 

quantification (LLOQ) and upper limit of quantification (ULOQ) were defined using the 

following inclusion criteria: 1) calibrator precision of <15% RSD, and 2) accuracy of 

±100%. The initial calibration curve was prepared starting with concentrations higher 

than the LOD and up to 10 µM to determine the dynamic range, with the range later 

determined 0.1–10 μM. For all experiments, calibration standards and QCs were prepared 
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in swine plasma. QCs (N = 5) were prepared at three different concentrations not 

included in the calibration curve: 0.75 μM (low QC), 2.5 μM (medium QC) and 3.5 μM 

(high QC). The internal standard was prepared daily and added to each sample, 

calibration standards and QCs during sample preparation. QCs were prepared fresh each 

day in quintuplicate during intra-assay (daily) and inter-assay (over three separate days, 

within six calendar days) analyses and were used to calculate intra-assay and inter-assay 

accuracy and precision. 
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2.4.  Results and Discussion  

2.4.1 HPLC-FLD analysis of 3-MP from swine plasma  

3-MP reacts rapidly with itself to produce a dimer under biological conditions, 

which results in poor chromatography. MBB reacts with the thiol group of 3-MP to 

produces 3-MPB (Figure 2.1). Because the free thiol is essential for dimerization. The 3-

MPB is a single species that produces good chromatographic behavior. The sample 

preparation scheme features reaction of 3-MP and 3-MPA with bimane, followed by 

mixed-mode anion exchange, SPE. Figure 2.3 shows representative chromatograms of 

spiked and non-spiked 3-MPB in plasma with 3-MPB eluting around 8.6 min. As shown 

in Figure 2.3, the method produced an excellent selectivity with only a small co-eluting 

peak which is presumably endogenous 3-MP. Figure 2.4 shows a chromatogram 

illustrates the internal standard peak with the 3-MPB peak. The main advantage of the 

method presented here is that it permits more affordable analysis of samples than the LC-

MS-MS techniques of Stutelberg et al,5, 52 and is more simple than the HPLC-FLD 

technique of Ogasawara et al.50 The analysis of an individual sample lasted around 1 hr 

and 20 min, including 1 hr for sample preparation and 16 min for chromatographic 

analysis.  
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Figure 2.3. Representative chromatograms of 3-MP spiked (2 µM) and non-spiked swine 
plasma. The 3-MPB complex retention time is around 8.6 with only a small co-eluting 
peak due to endogenous 3-MP. 

 

 

 

Figure 2.4. Chromatogram shows the analysis of 3-MP spiked after the internal stander 
addition where 3-MPB elute around 8.5 min and internal standard peak elute around 11 
min.   
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Figure 2.5. Chromatogram demonstrates the difference between the LOD analysis 0.5 
nM and the LOQ analysis 100 nM. 
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2.4.1 Limit of detection, linear range, and sensitivity  

 The method produced an LOD of 0.5 nM. The resulting chromatogram is shown 

in Figure 2.5. In the blank, there is a small endogenous level of 3-MP coming from swine 

plasma. Even considering this peak as part of the noise, the LOD was excellent 

comparing to other methods. The LOD for the current method was approximately 2 

orders of magnitude below the LOD from the HPLC-MS-MS methods of Stutelberg et 

al.5 For Ogasawara el al, the minimum detectable level was 2 µM for 3-MP.50 

The dynamic range of the method was 0.1-10 µM with a correlation coefficient 

(R²) = 0.9986. The resulting plot is shown in Figure 2.6. The LLOQ and the ULOQ were 

0.1 and 10 µM, respectively. It should be noted that the method did not produce a good 

dynamic range with lower concentrations. A chromatogram of the LOD signal comparing 

with the LLOQ is shown in Figure 2.5.  
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Figure 2.6. Dynamic range of 0.1-10 µM 3-MP in swine plasma µM concentrations with 
signal ration of 3-MP vs the internal standard. 
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2.4.2 Accuracy and precision 

 Accuracy and precision were determined by quintuplicate analysis of the low, 

medium, and high QCs (0.75, 2.5, and 7.5 µM, respectively) on three different days 

(within 6 calendar days; Table 1). The accuracy and precision for the method were good. 

The intra-assay accuracy ±100% and the precision was <10% RSD. The inter-assay 

accuracy was ±5% and precision was <9% RSD.  

Table 2.1. The accuracy and precision of 3-MP analysis in spiked swine plasma by 

HPLC-FLD. 

Concentration 
(µM) 

Intra-assay a 
Accuracy 
(%ACC) 

Intra-assay a 
Precision 
(%RSD) 

Inter-assay b 
Accuracy 
(%ACC) 

Inter-assay b 
Precision 
(%RSD) 

0.75 ±9.0 9.17 ±15 7.1 
2.5  ±6.2 5.63 ±8.2 8.6 
7.5  ±0.87 9.74 ±5.3 6.7 
     
     

a 
QC method validation (N = 5) for Day 1. 

b 
QC mean from three different days of method validation (N = 15). 
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2.5. Conclusion 

A simple and affordable HPLC-FLD method for the analysis of 3-MP was 

developed with a very low limit of detection, wide dynamic range, and good accuracy 

and precision. While Ogasawara et al50 reported an HPLC fluorescence method for the 

analysis of 3-MP in mouse tissue, it was time-consuming and required high temperatures 

(3-MP is highly unstable at high temperatures). Other reported methods used HPLC-MS-

MS, and although they produced excellent analytical parameters, the instrumentation 

needed to apply this method has limited availability. The availability of the method 

presented here will allow further investigations of 3-MP as a promising cyanide antidote. 
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CHAPTER 3. CONCLUSIONS AND FUTURE WORK 

5.1.  Conclusion 

Due to current limitations of cyanide antidotes, including large effective dos, 

delayed onset of action, or dependence on enzymes generally confined to specific organs, 

there is a need to develop novel cyanide antidotes. 3-MP is promising as a novel cyanide 

antidote, but previously reported analytical methods have limitations, including requiring 

sophisticated instrumentation. Therefore, the HPLC method developed in this study 

should aid in the development of 3-MP as next generation cyanide antidote. The HPLC-

FLD method developed was effective for analyzing 3-MP from plasma. The method 

included simple, low-cost sample preparation, an excellent detection limit, and a large 

dynamic range, while producing good accuracy and precision. Also, the internal standard 

used in this method is inexpensive easy to prepare and store compared with previous 

methods. Also, the instrument used is widely available and affordable, so many labs can 

use this method. The extraction technique, SPE mixed-mode anion exchange, allowed 

excellent selectivity for the method. While the HPLC method had advantages, it still has 

some drawbacks that need to be overcome, including a long HPLC analysis time of 16 

minutes, and a gap between the limit of detection and the dynamic range. Overall, the 

availability of this method will allow further investigations of 3-MP as a promising 

cyanide antidote. 
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5.2      Future work  

The method presented here has significant implications in the development of 3-

MP as next-generation cyanide antidote. Follow-on work should include overcoming the 

drawbacks of the reported method and application of the method for pharmacokinetic 

studies.  
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