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    ABSTRACT 

LAND USE CHANGE SUSTAINABILITY AND CARBON TURNOVER RATE IN 

THE NORTHERN GREAT PLAINS SOIL 

 DEEPAK R. JOSHI 

 2018 

Sustainable land management involves the management of land, water, 

biodiversity and other resources that meet human requirements while maintaining 

ecosystem services.   In the northern Great Plains (NGP), the combined impacts of land-

use and climate variability have placed many soils at the tipping point of sustainability.  

The objectives of this study were to: 1) calculate land-use changes from 2006 to 2012 and 

from 2012 to 2014 in South Dakota and Nebraska; 2) assess if land use changes had 

impacted on soil sustainability; 3) calculate variation in total carbon budget and turnover 

due to seasonal climate variability, biomass quality and soil properties; and 4) determine 

effect of fire and on the CO2 emissions, soil temperature and soil moisture. For South 

Dakota and Nebraska, 43,200 and 38,400 points, respectively were visually classified 

from high resolution imagery in 2006, 2012, and 2014 into five different categories 

(cropland, grassland, Habitat, NonAg, and Water). From 2006 to 2014, 910,000 million 

hectares were converted from grassland to cropland in South Dakota and 360,000 

hectares were converted from grassland to cropland in Nebraska.  In South Dakota, 

approximately 92% of the land-use changes  occurred on land suitable for crop 

production (Land Capability Class, LCC ≤4), whereas in Nebraska 80% of the land-use 



x 

 

changes  occurred on land considered suitable for cropland (LCC ≤4). In the second 

study, the impact of season on above ground decomposition kinetics were investigated.  

This work showed that the winter season exhibit the lowest rate of litter decomposition, 

followed by spring and summer. The results indicated that the plant biomass C: N ratio 

and temperature explained 52 and 45%, respectively of the measured changes in biomass 

decomposition. Sites producing biomass with a low C: N ratio had higher first order rate 

constants than sites with high C: N ratios. These findings indicate that the winter period 

cannot be ignored when assessing carbon turnover.  In the third study, the impact of 

annual fire on CO2-C emissions was investigated. Total carbon lost, soil temperature and 

moisture contents were higher in fire than control treatment.   
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Chapter 1 

 

Land Use Change Sustainability and producer responses to climatic and price variability  

 

Abstract 

 

Sustainable land management involves the management of land, water, biodiversity and 

other resources that meet human requirements while maintaining ecosystem services.   In 

the northern Great Plains (NGP), the combined impacts of land-use and climate 

variability have placed many soils at the tipping point of sustainability.  The objectives of 

this study were to 1) calculate land-use changes from 2006 to 2012 and from 2012 to 

2014 in South Dakota and Nebraska; 2) assess if land use changes were impacted by 

different land capability classes; and 3) determine the relationship between land uses, 

rancher preferences, and soil sustainability.  South Dakota and Nebraska were selected 

for this study because they are located in climate transition zone having row cropping in 

eastern portion of states and grasslands in the west regions. For South Dakota and 

Nebraska, 43,200 and 38,400 points, respectively, were visually classified from high 

resolution imagery in 2006, 2012 and 2014 into five different categories (cropland, 

grassland, Habitat, NonAg and Water). From 2006 to 2014, 910,000 million hectares 

were converted from grassland to cropland in South Dakota and 360,000 hectares were 

converted from grassland to cropland in Nebraska.   In South Dakota, approximately 92% 

of the land-use changes  occurred on land suitable for crop production (Land Capability 

Class, LCC ≤4), whereas in Nebraska 80% of the land-use changes  occurred on land 

considered suitable for cropland (LCC ≤4). Out of 210,000 ha of grassland to cropland 
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changes in South Central South Dakota, 13.5 % of total conversion occurred on soil with 

a LCC of 6. Different results were observed in the North Nebraska NASS region, which 

is dominated with Sand Hills, where 61.2% of the 90,000 ha of grasslands that were 

converted to croplands had   LCC of 6. Differences between South Dakota and Nebraska 

were attributed to the availability of irrigation.  In both states, the conversion of grassland 

to cropland was concentrated in the eastern regions.  

 

Introduction 

 

     Providing food for 2 billion more people in 2050 can be accomplished by increasing 

the amount of land used to produce annual crops, reducing waste, and increasing the 

productivity on current lands.   Land conversion can occur on land suited for crop 

production and land not suited for crop production.  In the northern Great Plains (NGP), 

the concern is that land conversion will occur on land not suited for crop production and 

that land conversion can result in wildlife habitat fractionation, increased erosion, and 

increased greenhouse gas emissions. 

  The NGP is bordered by the Rocky Mountains to the west and deciduous forest 

to the east.  The NGP contains large portions of the Missouri River reservoirs and 

hundreds of glacial lakes that supply habitats for water fowl.   The soil and climatic 

properties of the region make it a net exporter of grain, livestock, poultry and dairy 

products. According to the USDA, in 2015, Nebraska was ranked 1st in dry edible great 

northern beans, popcorn and red meat production, 2nd in millet production, 3rd in grain 

corn production and livestock receipts, 4th in soybean and 7th in sunflower production in 
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US Agriculture. Similarly in 2014, South Dakota was ranked 4th in wheat production, 7th 

in corn production, 8th in beef calves and calf production.  

       The NGP are semi-arid and the land is used to produce crops and livestock (Rossum 

and Lavin, 2000). In 1980, only 5% area of the South and North Dakota had been seeded 

to  corn or soybeans farming area which then tripled between 1980 and 2011 (USDA 

NASS, 2013). Similarly, Wright and Wimberly (2013) reported more than 530,000 ha of 

grassland have disappeared from 2006 to 2011 in North Dakota, South Dakota, Nebraska, 

Iowa and Minnesota alone. However, Reitsma et. al. (2015) had slightly different values 

and reported that 730,000 ha of grassland was converted to cropland in just South Dakota 

between 2006 and 2012.  

 Associated with the conversion of grassland to cropland, are the losses of habitat 

and biodiversity (Mushet et al., 2014). Between 2008 and 2011, all across the U.S., 23.7 

million acres of grassland, shrub and wetland were changed to agricultural land and 3.2 

million acres of wild life habitat disappeared in North and South Dakotas alone (Faber et 

al., 2012). Grasslands are one of the most threatened and least protected ecosystems. 

Worldwide, the NGP ecoregion in North America is considered one of best remaining 

opportunities for grassland maintenance (Schrag et. al., 2012). Similarly, other common 

side effects of land-use change are increased greenhouse gas emissions (Searchinger, 

2008; Tilman, 2006), reduced water quality (Moss, 2008), and higher soil erosion 

(Montgomery, 2007).   

 Various management practices like the maintenance of soil health  along with soil 

organic carbon, erosion minimization, protection from salt accumulation and 

consideration of several services provided by various resources are main factors 



4 

 

impacting sustainability in South Dakota (Clay et al., 2012, 2014, 2015; Cook et al., 

2015; He et al., 2013, 2015).  Reitsma et al. (2015) failed to link land-use changes in 

south Dakota to one specific driving factor and they reported that change most likely 

resulted from of many factors including recent technological improvements, land 

ownership structure changes, climate variability, various governmental policies, crop 

prices, and aging workforce (Reitsma et al., 2015; Clay et al., 2014; Lee et al., 2014; 

Mamani-Pati et al., 2014). 

 Technology improvements, such as the development of new planting equipment 

and the wide scale adoption of transgenic crops have provided the opportunity to seed 

annual crops in areas that previously were considered unsuitable for crop production 

(Clay et al., 2014). Moreover, complex interaction of various factors like climatic 

variability, soil quality, topography and socio-economic factors may influence individual 

decisions (Rindfuss et al., 2004; Global Land Project, 2005; Turner et al., 2007). In the 

NGP, higher rainfall and temperatures linked to climate change may be especially 

important (Hatfield et al., 2011; Schrag, 2011).  Land conversion to cropland may can be 

not be appropriate with the prospective of sustainability if change occurs in unsuitable 

land (Reitsma et al., 2015).  Rashford (2012), found that between 1978 and 2008, 0.4 

million hectare of cropland increased and most of this converted land had suitable soil 

quality (land capability classes 1-4). Similarly, another study estimated that grassland 

with LCC 1 and 2 have a 30 to 50% greater probability of being converted to cropland 

than grassland with LCC values of 3 and 4 (Rashford et al., 2010). These findings are in 

agreement with Lark et al. (2015) who reported that for land-use conversion between 

2008 and 2012 occurred primarily on land not suited for crop production.   
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  For individual farms and ranchers, the conversion of grassland to croplands has a 

potential to increase family income and produce local jobs.  However, from a social 

perspective the conversion of grasslands to croplands will reduce habit for wildlife, 

reduce water quality and increase emission of greenhouse gasses. Thus, land conversion 

from grasslands to croplands creates the classical dilemma of balancing economic 

development with environmental impacts.  

         In light of tremendous pressure on land and various forces driving land-use change, 

it is essential to examine the dynamics of land changes. The objectives of this study were 

to 1) calculate the rate of land-use changes from 2006 to 2012 and from 2012 to 2014 in 

South Dakota and Nebraska; 2) assess if land-use changes were impacted by different 

land capability classes; and 3) determining the relationship between land uses, and soil 

sustainability.  This region was selected as a model system because it is located in a 

climate transition zone which have a humid continental zone in the east making it suitable 

for crop production, and a semiarid zone in the west, dominated with grasslands or 

irrigation (Elder, 1969; McKnight, 1996).  

Materials and Methods 
 

 This study was conducted in South Dakota and Nebraska. The eastern portion of 

South Dakota is dominated with the glacial drift soils and it considered highly suited for 

annual crop production. This region receives most of its precipitation in the spring and 

fall (Clay et. al., 2014). The most common annual crops in South Dakota include corn 

(Zea mays L.), soybean [(Glycine max (L.) Merr.], and wheat (Triticum aestivum L.).  In 

South Dakota rainfall decreases from east to west and temperatures decrease from South 

to North.  On the western portion of South Dakota, the soils are not glaciated and the 
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dominant land-use is beef production on native grasslands. South Dakota’s western and 

rolling shale plain region has parent materials dominated by marine shale with the 

exception of the sandy and silty tablelands in Southwest South Dakota. These non-

glaciated shale soils have shrink–swell clays and crop production that is often limited by 

low plant available water, steep slopes, and saline-sodic conditions. Farmers in this 

region, use crop rotations that include corn, soybean, wheat, sunflower, canola (Brassica 

napus L.), barley (Hordeum vulgare L.), lentil (Lens culinaris Medik.), flax (Linum 

usitatissimum L.), and pea (Pisum sativum L.).   

 

Fig 1. 1. USDA – NASS reporting regions of South Dakota  

(Source of Data, USDA – NASS) 

 

 Nebraska can be separated into the eastern and western components.  Eastern 

Nebraska has a humid continental climate, whereas the western region has a semiarid 

climate (Elder 1969; McKnight 1969). Eastern Nebraska which has fertile, moist and 

warm soil making it well suited for corn and soybean production. It consists of loess and 
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glaciated till soils. The Nebraska Sand hills, are contained almost entirely within the 

Nebraska North NASS region (Fig 1.2), and it represents one of the most unique and 

homogenous ecoregions in North America (Omernick, 1987; U.S. Environmental 

Protection Agency, 1997). The Sand hills are one of the largest areas of semiarid grass 

stabilized sand dunes in the world (Grassland Foundation, 2005).  

 

 Fig 1. 2. NASS regions in Nebraska 

(Source of Data, USDA – NASS) 

 

Assessing Land Use Change 

 

 South Dakota has 9 NASS regions (USDA- NASS, 2015) that include the 

Northeast (NE), South East (SE), North Central (NC), East Central (EC), Central (C), 

South Central (SC), Northwest (NW), West Central (WC) and South West (SW) (Fig 

1.1). Nebraska has 8 NASS regions that include the Northwest (NW) , North (N), 

Northeast (NE), Central (C), East (E),  South west (SW), South (S), South east (SE) (Fig 

1.2). Stratified random sampling approach was used for sampling within each of 17 

USDA NASS reporting districts of South Dakota and Nebraska. In each NASS region, 
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1600 points were randomly identified. These points were laid over high resolution 

imagery, obtained from United States Department of Agriculture (USDA), Farm Service 

Agency (FSA), National Agricultural Imaging Program (NIAP) (USDA-FSA, 2013). 

NIAP data is collected during the growing season and information from 3 bands (blue, 

green, and red) were used to construct a natural color image.  The NAIP imagery for 

2006 had a 2 m resolution and the 2012 and 2014 imagery had a 1 m resolution. The 

approximate dimensions for each of the 27,200 points was 8 by 8 m.  Based on various 

crop rows, streams, roads, forest and buildings within each sampling point, dominant land 

use was classified into five different categories (Cropland, Grassland, Habitat, Non-Ag 

and Water for 2006, 2012 and 2014 separately.  Each point was assessed 3 times (2006, 

2012, and 2014).  In South Dakota, 43,200 points in total were visually classified (14,400 

points each year). Similarly in Nebraska, 38,400 points were classified (12,800 points 

each year) over same three years. Thus in total 81,600 points were classified for both 

states.  For validation we randomly selected 100 sampling points from 17 different 

counties of South Dakota following reclassification for each three different years. The 

reclassification and field observed classification were identical 100% of time.    

Assessing changes in soil quality  

  

Land Capability class (LCC) and dominant subclass were obtained from the Soil Survey 

Geographic (SSURGO) data set by superimposing the sampling points over SSURGO 

(Soil Survey Staff, 2015). SSURGO is digital soils data produced and distributed by the 

Natural Resources Conservation Service (NRCS). The LCC classifies soil into 8 different 

classes on the basis of their capabilities for use and limitations in each class become 
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progressively greater from class 1 to 8. Class 1 to 4 are considered suitable for cropland if 

appropriate soil management practices are considered. Class 5 has little erosion limitation 

however because of excess water, its use is restricted. LCC 6 to 8 have severe restrictions 

that make them unsuitable for crop cultivation and largely these classes are used for 

pasture, grassland, wild life, and recreation purposes.  LCC subclasses are used to help 

define the limitation.  The most common subclass limitations are erosion hazard (e), 

wetness (w), rooting- zone limitations (s), and climate (c).  

 

Results and Discussion 

 

Land use changes in Nebraska from 2006 to 2012 

 

 

Fig 1. 3. Eastern and western Regions of Nebraska   

(Source of Data, USDA – NASS) 

 

 In Nebraska, 43% of the selected points were in croplands and 45% of the 

selected points were in grasslands in 2006 and 2012.  Based on the selected point data it 
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appears that between 2006 and 2012, 250,000 hectares of grassland were converted to 

cropland at the rate of 41,670 ha year-1. At the grassland to cropland converted sites, 92 

% had Land capability classes that were 4 or less.   For comparison, 67.9 % of the 

grassland sampling sites had LCC values > 5 (Table 1.1).  In Nebraska, the state was 

separated into eastern and western portions (Fig. 1.3).  The eastern portion contained 3 

NASS regions, whereas the western region contained 5 regions.  In eastern Nebraska, 

130,000 ha grassland, an average 21,670 ha year-1 were converted to cropland between 

2006 and 2012.  At these converted sites, 89.8 % had LCC values less than or equal to 4. 

The Grassland to Cropland change category had 10.2 % of sampling site in higher LCC 

classes (6, and 7).   In western Nebraska, 120,000 ha grassland at an annual rate of 20,000 

ha year-1 were estimated to change from the grassland to cropland category. At these 

converted sites, 56.6% occurred on soils with LCC values that were less than or equal to 

4.  Based on these findings, western Nebraska grassland to cropland changed occurred in 

soils with higher LCC classes.    
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C
rop 

C
rop 

W
est 

2.59(0.61) 
55.49(1.90) 

18.29(1.48) 
10.40(1.17) 

0.19(0.17) 
12.92(1.28) 

0.08(0.11) 
2624 

3500 

C
rop 

G
rass 

W
est 

0 
50(49) 

0 
50(49) 

0 
0 

0 
4 

6 

G
rass 

C
rop 

W
est 

0 
17.11(8.47) 

19.74(8.95) 
19.74(8.95) 

1.32(2.56) 
42.11(11.10) 

0 
76 

120 

G
rass 

G
rass 

W
est 

0.06(0.07) 
4.96(0.62) 

5.95(0.68) 
10.60(0.88) 

1.48(0.35) 
70.14(1.31) 

6.07(0.69) 
4659 

9440 

 T
able 1. 1. L

and U
se C

hange in different S
oil T

ype of N
ebraska from

 2006 to 2012 
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Land Use Changes in Nebraska from 2012 to 2014  

 
 Between 2012 and 2014, 110,000 ha, of grassland were converted to cropland.  At 

these sites, 83.8% had LCC values of 4 or less.   

 In eastern Nebraska, 60,000 ha, of grassland were changed to cropland. At these 

sites, 87.8 % occurred on soils with LCC values of 4 or less.  The rate of change between 

2012 and 2014 represents an increase, relative to the 2006 to 2012 that change occurred.    

In western Nebraska, 50,000 ha, at an annual rate of 25,000 ha year-1 of grassland was 

converted to cropland between 2012 and 2014.  At these sites, 76 % of changes occurred 

in soils with LCC values that were less than or equal to 4. These values suggest that land-

use change primarily occurred on land considered suitable for crop production.   
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 7 
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C
rop 

C
rop 

N
E

 
7.27(0.67) 

47.09(47.09) 
24.65(1.12) 

12.52(0.86) 
0.18(0.11) 

8.20(0.17) 
0.04(0.05) 

5695 
7370 

C
rop 

G
rass 

N
E

 
0 

37.5(33.5) 
37.5(33.5) 

12.5(22.92) 
0 

12.5(22.92) 
0 

8 
12 

G
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C
rop 

N
E

 
1.35(2.63) 

25.68(9.95) 
32.43(10.67) 

24.32(9.78) 
0 

16.22(8.40) 
0 

74 
110 

G
rass 

G
rass 

N
E

 
0.37(0.16) 

7.40(0.68) 
10.27(0.79) 

13.51(0.89) 
1.44(0.31) 

61.24(1.27) 
5.07(0.57) 
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C
rop 

C
rop 

E
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11.55(1.14) 
40.52(1.76) 

30.34(1.65) 
14.19(1.25) 

0.13(0.13) 
3.20(0.63) 

0 
2996 

3710 

C
rop 

G
rass 

E
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0 
25(42.44) 

50(49.0) 
25(42.44) 

0 
0 

0 
4 

5 

G
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C
rop 

E
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2.04(3.96) 
30.61(12.90) 

30.61(12.90) 
24.49(12.0
4) 

0 
12.24(9.18) 

0 
49 

60 

G
rass 

G
rass 

E
ast 

1.73(0.79) 
18.40(2.36) 

30.44(2.80) 
26.59(2.69) 

1.16(0.65) 
20.71(2.47) 

0.48(0.42) 
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2.58(0.61) 
55.80(1.90) 

18.81(1.49) 
10.95(1.19) 

0.23(0.18) 
14.10(1.33) 

0.08(0.11) 
2699 

3660 

C
rop 
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rass 

W
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0 
50(49) 

25(42.44) 
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0 
25(42.44) 

0 
4 

7 

G
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C
rop 

W
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0 
16(14.37) 

36(18.82) 
24(16.74) 

0 
24(16.74) 

0 
25 

50 

G
rass 

G
rass 

W
est 

0.06(0.07) 
4.93(0.62) 

5.75(0.67) 
10.58(0.88) 

1.51(0.35) 
70.31(1.31) 

6.10(0.69) 
4641 

9410 
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 2012 to 2014   
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Land Use Changes in South Dakota from 2006 to 2012  

 

Fig 1. 4. Eastern and Western Region of South Dakota State  

(Source of Data, USDA – NASS) 

 

 Between 2006 and 2012, 5.78% (700,000 ha) of total state grassland (12,120,000 

ha), was converted to cropland. 50.9% of this change occurred on soils with a LCC class 

of 2, and 92.6 % occurred in soils with LCC values that were 4 or less (Table 1.3).   

 South Dakota was split into eastern and western portions (Fig. 1.4).  In Eastern 

South Dakota, 480,000 ha of grasslands were converted to cropland between 2006 and 

2012.  In this region, 94.5% occurred in soils with LCC values of 4 or less.  In western 

South Dakota, 220,000 ha of grassland were converted to cropland.  In western South 

Dakota, 86.8% of the sites has LCC values of 4 or less.   
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 4 
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C
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E
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C
rop 

S
D

 
7.82(0.41) 

63.35(0.74) 
14.89(0.54) 

10.16(0.46) 
0.61(0.12) 

2.88(0.26) 
0.23(0.07) 

4270 
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C
rop 

G
rass 

S
D

 
4.76(1.55) 

54.5(3.62) 
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12.17(2.38) 
4.23(1.46) 

5.29(1.63) 
1.59(0.91) 
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rop 

S
D

 
2.6(0.69) 

50.93(2.16) 
24.72(1.86) 

14.31(1.51) 
0.56(0.32) 

6.13(1.03) 
0.74(0.37) 
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700 

G
rass 
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rass 

S
D

 
0.45(0.08) 

16.79(0.44) 
15.11(0.42) 

16.95(0.44) 
1.02(0.12) 

30.24(0.53) 
17.3(0.44) 
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8.94(0.92) 
67.60(1.50) 

11.30(1.02) 
9.35(0.93) 

0.67(0.26) 
2.04(0.45) 

0.08(0.09) 
3734 

4210 
C

rop 
G

rass 
E

ast 
5.96(3.78) 

62.91(7.70) 
9.27(4.63) 

11.26(5.04) 
5.30(3.57) 

3.97(3.12) 
1.32(1.82) 

151 
200 

G
rass 

C
rop 

E
ast 

3.48(1.79) 
59.45(4.80) 

19.40(3.87) 
12.19(3.20) 

0.75(0.84) 
3.98(1.91) 

0.75(0.84) 
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G

rass 
G

rass 
E

ast 
1.38(0.47) 

38.48(1.95) 
14.81(1.42) 

17.82(1.53) 
2.47(0.62) 

15.77(1.46) 
8.20(1.10) 
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0.19(0.37) 
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rop 
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21.05(12.96) 
50(15.90) 

15.79(11.59) 
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70 
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C
rop 
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25.74(7.35) 

40.44(8.25) 
20.59(6.80) 
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0.74(1.44) 
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rass 
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Land Use Changes in South Dakota from 2012 to 2014  

  

            From 2012 to 2014, 1.79% of South Dakota’s grasslands were converted to 

cropland at the rate of 105,000 ha year-1 which was slightly lower (116,700 ha/year) than 

the rate between 2006 and 2012.  At these sites, 91.7% occurred in soils with LCC values 

of 4 or less (Table 1.4).     The conversion of grasslands to croplands was concentrated in 

Eastern South Dakota and 92.5% of changes occurred on soils characterized as LCC 4 or 

less.  Less than 5% of the change occurred on soils characterized as 6 or 7.  

  19.1% of state grassland to cropland changes occurred in western South Dakota.  

Of the converted sites, 85.7% of the grassland to cropland category occurred in soils with 

LCC values of 4 or less.  Less than 15% of the change occurred in soils with LCC classes 

that were 6 or greater.    
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0.94(1.84) 
47.17(9.50) 

22.64(7.97) 
18.87(7.45) 

1.87(2.59) 
7.55(5.03) 

7.55(5.03) 
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C
rop 

S
D

 
2.38(2.31) 

61.90(7.34) 
10.71(4.68) 

16.67(5.64) 
2.38(2.31) 

5.95(3.58) 
0 
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G

rass 
G

rass 
S

D
 

0.56(0.17) 
17.58(0.86) 

15.10(0.81) 
16.78(0.84) 

1.07(0.23) 
29.82(1.03) 

17.01(0.85) 
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66.89(1.42) 
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9.47(0.89) 
0.74(0.26) 

2.17(0.44) 
0.24(0.15) 

4720 
C

rop 
G
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E
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1.23(2.40) 

58.02(10.75) 
14.81(7.74) 

17.28(8.23) 
2.47(3.38) 

6.17(5.24) 
0 

100 
G

rass 
C

rop 
E

ast 
2.72(2.63) 

67.35(7.58) 
7.48(4.25) 

14.97(5.77) 
2.72(2.63) 

4.76(3.44) 
0 

170 
G

rass 
G

rass 
E

ast 
1.66(0.29) 

39.57(1.90) 
14.39(1.37) 

17.26(1.47) 
2.60(0.62) 

15.53(1.41) 
8.08(1.06) 
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32.92(3.62) 
39.72(3.77) 

16.54(2.86) 
0.15(0.30) 

9.43(2.25) 
1.24(0.85) 

1090 
C

rop 
G

rass 
W
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0 

12(12.74) 
48(19.58) 

24(16.74) 
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12(12.74) 
0 

50 
G
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C

rop 
W

est 
0 

23.81(18.22) 
33.33(20.16) 

28.57(19.32) 
0 

14.29(14.97) 
0 

40 
G

rass 
G

rass 
W

est 
0 

6.42(0.68) 
15.47(1) 

16.53(1.03) 
0.30(0.15) 

37.07(1.34) 
21.55(1.14) 

8540 
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Land use change in adjacent grassland dominated NASS region 

 

To compare land use changes in South Dakota and Nebraska, two adjacent NASS regions 

North (N) region of Nebraska and South Central region of South Dakota were compared.   

The Nebraska North NASS region is composed of almost entirely of the Sand Hills.  This 

area is a zone where grass has stabilized the sand dunes.  In this region, the thickness of 

sand layer ranges from a few meters to 122 m (Huntzinger and Ellis, 1993). Sandy soils 

of this region have Low water holding capacity which allows high infiltration rates and 

no or low surface water runoff. Due to deep sandy soils, Sand hills land use is mostly 

limited to rangeland, shrub land and hay production. The South Central NASS region of 

South Dakota is just adjacent NASS region to sand hill. It expands on the west side of 

Missouri river with semi-arid climate and is mostly dominated with grassland.  

In the North NASS region of Nebraska 840,000 ha of land was cropland in both 2006 and 

2012.  Most of this land (77.6%) had a LCC value that was 4 or less (Table.6). In this 

region, 90.2% of grasslands occurred on soils with a LCC greater than 4.  Whereas in 

South central region of South Dakota, most of the croplands (94.75% of 620,000 ha) had 

LCC values that were 4 or less. Grasslands are equally distributed among the different 

LCC categories as 44.9% of total grassland (3140, 000 ha) were found to have LCC 

values that were 4 or less with the remaining having LCC values > 4.  Between 2006 and 

2012, 87,000 ha of land were converted from grasslands to croplands in in North 

Nebraska.  This change primarily (61%) occurred on land with LCC of 6.  In the South 

Dakota region directly north of the Nebraska North region (South Dakota South-central 

(Table 1.5 and 1.6),    210,000 ha of land were converted from grassland to croplands.  
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Out of 210,000 ha of grassland that were converted, only 13.51 % of total conversion 

occurred on land with a LCC value of 6 (Table 1.5).  

Between 2012 and 2014, land-use changes continued in these regions.  In North 

Nebraska, 80,000 ha of grassland were converted to cropland between 2012 and 2014. 

Approximately 1/3 of this change occurred in land with a LCC value of 6.  Lower rates of 

change occurred in the South Dakota’s South Central region where 10,000 ha of land 

were converted.  Differences between the two states are attributed to the availability of 

irrigation.  
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Land use change in adjacent Cropland dominated NASS region 

  

              For the comparison of land use change and soil quality of the region dominated 

with croplands, South East (SE) NASS district of South Dakota and North East (NE) 

NASS region of Nebraska were selected. Both NASS districts are adjacent to each other, 

with cropland as dominated land use. South East South Dakota had 1,710,000 ha of 

cropland in 2006 and 96.83% of this total cropland had n LCC values <4. The 25,000 ha 

of Grassland that were converted to cropland between 2006 and 2012, was primarily 

concentrated on land with LCC values less than 4 (92.3%) (Table.1.7). However, from 

2012 to 2014, the grassland to cropland changes accelerated (50,000 ha). North East 

Nebraska had 2,590,000 ha of cropland in 2006 and most of these croplands were in 

suitable soil, LCC <4 (Table1.8).  From 2006 to 2012 and 2012 to 2014, 160,000 and 

70,000 ha of grassland was converted to cropland in North NASS region of Nebraska. 

Unlike South East South Dakota, this region had higher proportion of changes that 

occurred on soils with higher LCC values. During first six years period 11.29% of total 

conversion occurred on soils with LCC values greater than 4.   
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Land Use Change, Soil and Environmental Sustainability  

  

                The land capability class system was used to assess the risks of different land 

uses and it classifies soil into 8 different classes on the basis of their capabilities for use. 

Classes 1 to 4 are considered suitable for cropland and farming if appropriate soil 

management practices are considered. For these classes, the restrictions and slope 

generally increase with the category number.  Class 5 has little erosion limitation, 

however because of excess water, its use is restricted. LCC 6 to 8 have severe restriction 

that make them unsuitable for crop cultivation and largely these classes are used for 

pasture, grassland, wild life and recreation purposes. For soils with LCC values 6 to 8, 

the restrictions and the slope generally increase with the value.  New expansion of 

cropland and cultivated areas cannot be sustainable if it occurred in marginal land having 

severe limitation of cultivation. As a result, cultivation in such areas can be detrimental to 

the environment by reducing soil health, depletion in organic carbon, and increasing soil 

erosion and salinization.  

 Grasslands, increase plant and animal diversity.  Often these areas produce more 

ecosystem services than cropland (Werling et al., 2014). Ecosystem services include 

methane consumption, pest suppression, pollination and protection of wildlife like 

grassland birds.  However, due to reduced root density in newly expanded cropland, 

grassland to cropland conversion often results in less stable soil structure and reduced soil 

water infiltration. Thus ultimately, the conversion of grasslands to croplands can result in 

increased erosion if suitable management practices are not adopted (Lindstrom et al., 
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1994; Clay et al., 2012). Moreover, with cultivation, soil temperature and microbial 

activity together enhance decomposition of organic matter resulting in soil organic 

carbon losses (Zhang et al., 1988). Similarly, conversion of perennial grasses to annual 

crop reduces the root biomass production and ultimately reduces total carbon input in the 

soil from root biomass (Richter et al 1990).  

 Land use changes may be driven by a desire to stabilize economic returns in an 

environment of high climatic variability. In the northern Great Plains, changing climatic 

condition is impacting agriculture in various ways. Higher temperature, changing 

precipitation pattern, increasing CO2 levels and extreme climatic events like drought, 

directly affect food production and land-use. Higher temperature are providing more 

suitable condition to grow annual crops by lengthening growing season (Schrag, 2011). 

Precipitation variability is projected to increase in Northern Great Plains (Schrag, 2011; 

Clay et al., 2014), while increasing atmospheric CO2 level helps by improve water-use 

efficiency and crop productivity (van der Steen et al., 2015). Similarly, droughts result in 

losses in crop yield, grazing capacity, ground water, and plant composition and 

hydrologic condition of rangeland.   

 As discussed earlier, one of the primary factor influencing land-use change is 

economics. Farm economics is influenced by prices received by farmers, and yield and 

crop production costs (Janssen et al., 2013; Pflueger, 2011; Bourlionet al., 2013). These 

potential returns and cost vary in time and space. For example, during the period of 2006-

2012, Corn prices doubled from 3.04 $/bu to 6.89 $/bu. Although the corn cost of 

production was lowest in 2000 ($395 ha-1) and peaked in 2012 ($ 1,192.5 ha-1) and then 
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decreased to $ 1,002.5 ha-1 in 2015. Similarly, soybean had similar changes in production 

cost and selling prices.  Marketing year average soybeans price received doubled from  

$ 236.24 Mg-1 in 2006 to $529.06 Mg-1 in 2012. However, during the period between 

2012 and 2014, the Soybean price decreased from $529.06 Mg-1 to $371.07 Mg-1 and 

corn prices decreased from $253.14 Mg-1 to $135.94 Mg-1 (US Department of 

Agriculture, NASS, 2015).   

 

Agricultural land market trend in South Dakota and Nebraska 

 

 From 2011 to 2014, the average value of all agricultural land in South Dakota 

increased from $3,350 ha-1 to $6,175 ha-1. The largest gains were observed in highly 

productive eastern South Dakota. For example, in the south east and east central South 

Dakota NASS regions, non-irrigated cropland had value of $15,827.5 ha-1 and  

$17,785ha-1  respectively in 2014. Slightly lower values were observed in the in the 

Northeast where land values increased from $7,295 ha-1 in 2011 to $13,227 ha-1 in 2014. 

Similar increases were observed in the North central and central regions. In Southwest 

South Dakota, land value increases were much lower and from 2011 to 2014 it increased 

from $1,562 ha-1 to $2,050 ha-1.   

 Native rangelands are highly concentrated in the western and central regions of 

South Dakota, whereas managed pastures are scattered without any particular region of 

state. Rangeland and pasture values also tends to cluster in three different groups. East 

central and southeast regions had the highest rangeland values of $7,152 and $6,745 ha-1 

respectively.  When compared with 2011, these values represent a 60.82% and 69.79% 

increase in value. In the second cluster which consist Northeast, North-central and central 
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NASS regions with the per hectare value $4647.5, $4000, $4570 dollars respectively. 

These regions had value increases of 52.75, 68.42, 80.81 % change from 2011 to 2014. 

The regions with lowest range value were located in the western part of state and were $ 

2,967.5 ha-1 in South Central, $ 1,427.5 ha-1 in South West and $ 1,090 ha-1 in North 

West in 2014. The SC, SW, and NE regions had 87.2, 39.6 and 41.1 % increase in 

rangeland value from 2011 to 2014. 

 Like South Dakota, Nebraska regional cropland values were clustered into the 

Northeast, central, and western regions. From 2006 to 2014, the value of dry land 

cropland with irrigation potential in the Northeast increased from $4,102 to 16,075 per 

hectare. Similar increases were observed in the east and south east areas. In the Central 

region, land value increased from $3,625 ha-1 in 2006 to $12,275 ha-1 in 2014. Similar 

gains were observed in the Southern region. Western regions of the state had the lowest 

price per hectare acre and value increases. For example, in the Northwest land value 

increased from $1,137 ha-1 to $ 2,337 ha-1 from 2006 to 2014.   

 

Summary 

  

                In many situations, land-use changes are driven by a desire to create wealth and 

produce jobs.   Along with economic opportunities to local families, recent technological 

improvements, land ownership structure changes, climate variability, various 

governmental policies, and aging workforce are major driving factor for changing 

grassland to cropland. Along with these factors, it may also be driven by a desire to 

stabilize economic returns in an environment of high climatic variability and a goal of 
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increasing the land value. For example, irrigated cropland had a higher value than grazing 

lands. 

   It is possible that increased land use change from 2012 to 2014 may be related to 

actions taken to respond the 2012 drought. For example, ranchers who faced severe 

drought during 2012 to 2014, sold their cattle and bulls and may have plowed their 

grassland in order to produce an economic return. However total changes in land use are 

not random.  

In the northern Great Plains, changing climatic condition is impacting agriculture 

in various ways. Higher temperature, changing precipitation pattern, increasing CO2 

levels and extreme climatic events like drought, directly affect food production and land 

use. Our research shows that South Dakota State had higher amount of grassland to 

cropland changes than Nebraska during both study periods. During first six year period, 

700,000 hectares of grassland was changed to cropland in South Dakota, whereas it was 

only 250,000 ha in Nebraska. From 2012 to 2014, cropland increase by 210,000 ha in 

South Dakota. During this time Nebraska had only 110,000 ha of new cropland. The 

higher conversion rates in South Dakota than Nebraska, are attributed to the type of land 

available for conversion. In Nebraska, between 2006 and 2012 and between 2012 and 

2014, about 25% of the change occurred on soil considered not suitable for cropland 

(LCC < 4) respectively. However, in South Dakota, over 90% of the land that was 

converted was considered suitable for croplands. In the North Nebraska NASS region, 

80,000 ha of grassland were converted to cropland between 2012 and 2014. 

Approximately 1/3 of this change occurred in land with a LCC value of 6.  Lower rates of 

change occurred in the South Dakota’s South Central region where 10,000 ha of land 
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were converted.  Differences between the two states most likely are related to availability 

of an irrigation supply.   

 Different results were observed in South central South Dakota, where, 28.4, 37.8 

and 20.3% of total change occurred in LCC 2, 3, and 4 respectively and only 13.5 % of 

total conversion occurred on lands classified with LCC 6.  

 Between 2012 and 2014, the Nebraska sand hills region (North) had higher 

proportion of grassland that were converted to cropland with higher LCC values than the 

South Dakota South central region. Soil type of the grasslands in Sand hill region of 

Nebraska are in higher LCC values and grassland to cropland conversion in this region 

are occurring in higher LCC values. Again, soil types with higher LCC values are not 

considered suitable for cropland and this conversion may be less sustainable. Thus, 

Nebraska grassland conversions may be unsustainable.  However, in both of the states, 

most of the land use changes occurred in eastern regions of the states in comparison to 

the western regions and land use changes more clustered in the regions with higher land 

values. As higher increase in per hectare value was in the East central and southeast 

regions whereas lowest range value were in the western part of state.  
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Chapter 2 

 

Change in Carbon Turnover rate due to seasonal change 

 

Abstract 

 

Northern Great Plain grassland possesses a large amount of soil and plant carbon. The 

cycling of carbon among the plants, soil, and atmosphere is influenced by many factors 

including seasonal climate variation, soil properties, grass morphology, and tissue 

chemistry.  To understand the complexity of above ground litter decomposition, we 

assessed the influence of biomass quality and soil moisture on annual litter 

decomposition rates.   We hypothesized that net annual carbon turnover is influenced by 

seasonal climate variability and biomass quality.   The study was conducted in 2014 and 

2015 at three sites in central South Dakota – Oacoma, Highmore and White River.  At 

each site, the research was conducted in an areas with high and low plant diversity and 

productivity. The litter bag technique was used to determine the biomass-C turnover 

rates.   Within each study site, shoot and root production was higher in moderately grazed 

high plant diversity area (HP) than the intensively grazed low plant diversity area (LP). 

The percentage of litter that was decomposed was higher in the HP than the LP areas at 

White River and Oacoma. The winter season exhibit the lowest rate of litter 

decomposition, followed by spring and summer. The results indicated that the plant 

biomass C: N ratio and temperature explained 52 and 45%, respectively, of the measured 

changes in biomass decomposition. Sites producing biomass with a low C: N ratio had 
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higher first order rate constants than sites with high C: N ratios. These findings indicate 

that the winter period cannot be ignored when assessing carbon turnover. 

 

Introduction 

 

Accurate predictions of carbon turnover in rangeland systems is dependent on 

accurate measurements of the above and below ground plant part turnover rates.  

Techniques to assess below ground plant parts and feces were previously discussed in 

(Chang et al., 2016) and (Chang et al., 2017) respectively.  Given, that a large percentage 

of the above ground biomass remains in grassland system from one year to the next, 

research was conducted to determine the seasonal changes in surface residue 

decomposition.   

  The amount of plant biomass returned to the soil depends on grazing intensity. 

Plants are the input carbon source in the ecosystem. Carbon budgets are based on the 

amount of accurate measurements of carbon inputs and carbon losses (Chapin III et al., 

2002). Total carbon within a grassland ecosystem depends on carbon input, which is 

produced during photosynthesis. The organic C inputs are decomposed to CO2   by 

earthworms, soil bacteria, fungi, and many insects (Clay et al., 2006). The amount of 

carbon sequestered within the soil is the difference between carbon inputs and 

decomposition and it influences plant available water, resilience, and adaptability.  The 

amount of carbon stored in soil can be increased by increasing productivity and reducing 

the amount of biomass harvested (Brown et al., 2010; Derner and Schuman, 2007; Silver 
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et al., 2010). Moreover, different management practices may alter plant biodiversity and 

composition (Milchunas and Lauenroth, 1993; Milchunas et al., 1988).  

 Management activities like livestock grazing intensity affect the total quantity and 

amount of carbon stored in grassland soil (Derner and Schuman, 2007). Thus higher 

biomass production means higher C inputs into the grassland carbon pool (Jobbágy and 

Jackson, 2000). Moderately grazed systems generally leave approximately 50% of the 

above ground biomass, whereas intensively grazed systems only leave 25% of the above 

ground plant biomass.    The rate that these materials are decomposed influences many 

factors including spring soil temperature, seed germination, evaporation, nutrient cycling, 

and possibly plant composition.  In addition, intensive grazing reduces surface cover 

leading to higher soil temperatures and rapid mineralization which may encourage the 

growth of cool season grasses over warm season grasses.  

Techniques that have been used to assess carbon turnover in grassland systems 

include the direct measurement of CO2 emissions, frequent measurements of surface and 

subsurface non-harvested plant material, and the use litter bags where carbon loss is 

determined by difference (Chang et al., 2016).  This work has shown that the amount of 

carbon retained in the soil is dependent on the amount added, and that decomposition can 

be calculated using first order kinetics.    

Various factors are responsible for biomass-C mineralization in northern Great 

Plains grasslands including soil texture, time, climate and leaf quality (Jenny, 1980).   For 

instance, the plant biomass C: N ratio has been used as index of leaf quality (Kelly et al., 

2000; Murphy et al., 2002; Schimel et al., 1996; Schimel et al., 1997; Throop et al., 2004). 

Plant biomass that has high C: N ratios generally mineralize slower than biomass with low 
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ratios (Swift et al., 1979). Moreover, plant functional composition and morphological 

characteristics influences decomposition (Jobbágy and Jackson, 2000; Knapp et al., 2002; 

Sala et al., 1988). For example, legumes, cool season, and warm season grasses have 

different nutrient requirements, resulting in different C: N ratios (Field et al., 1983; Kemp 

et al., 1994; Wedin and Tilman, 1990). 

Secondly, soil textures influence the litter decomposition rates and plant available 

water. For example, clay provides physical and chemical protection of plant biomass that 

is not provided by sand (Monreal et al., 1981; Oades, 1988). Barnes and Harrison (1982) 

found a relationship between  soil texture and plant species composition. For example, 

the intensity of a drought  can favor one group of species over another  (Lauenroth et al., 

1978). Likewise, management and climate induced changes in soil structures can impact 

the decomposition process (Cotrufo et al., 2013; McGuire and Treseder, 2010; Wieder et 

al., 2013). Greater soil microbial populations have been reported in silt and clay soils 

than sandy soil (Kandeler et al., 1999; Kandeler et al., 2000; Monrozier et al., 2006; Poll 

et al., 2003; Qin et al., 2010) and lead to greater decomposition. Clay texture of soil 

affect infiltration and results in higher water runoff (Wischmeier and Mannering, 1969) 

whereas areas with higher silt and sand content increases water percolation and 

infiltration (Wischmeier and Mannering, 1969). This higher water content may also result 

in greater decomposition.  

Another factor that adds to the complexity to calculating plant biomass carbon 

turnover is seasonal temperature changes. Higher summer temperatures than winter 

temperatures, influence the litter decomposition rate (Franz, 1990; Johansson et al., 1995; 

Kirschbaum, 1995; Trumbore et al., 1996). However, decomposition rates of litter when 
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it is buried by snow is often not reported. Most previous studies have focused on the 

spring and summer seasons, and have ignored the winter season.  The objective of this 

research was to determine the influence of plant composition on seasonal changes in 

biomass mineralization. The hypothesis for this study was that plant biomass 

mineralization rates were indirectly related to the C to N ratio and although slowed 

during the winter. 

 

Materials and methods 

 

Study Sites  

 

Fig 2. 1. Three study sites with South Dakota Map 

Source: Bennett, Joe (2015) 
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This study was conducted in 2014 and 2015 at Oacoma (43°37'23.40"N  and  -

99°28'16.78"W), Highmore (44°41'31.23"N  and   - 99°23'40.09"W) and White River 

(43°36'38.70"N  and -101° 6'1.81"W) (Fig 2.1). These sites were located within the 

mixed northern Great Plains prairie and they had continental climates.   The average 

precipitation, which primarily occurred during the growing season, at Oacoma, 

Highmore, and White River were 540, 590, and 390 mm, respectively (Smart et al., 2005; 

Smart et al., 2007).  

The details about soil types at different study locations are provided below (Table 2. 1) -   
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Experimental and Treatments  

 

At each research site, research was conducted in two areas with different plant 

communities.  One site was characterized as an area with high diversity and productivity 

(HP), whereas the other area had low diversity and productivity (LP). The high diversity 

sites had history of moderate grazing intensity and contained many native plant species 

including Pascopyron smithii (Rydb.[A.Love]), Nassella viridula (Trin.[Barkworth]), 

Hesperostipa comata (Trin. & Rupr. [Barkworth]), Bouteloua gracilis (Willd. Ex Kunth 

[Lag. Ex Griffiths]), and Bouteloua dactyloides (Nutt [J. T Columbus]. The low plant 

diversity sites had a history of intensive grazing and contained cool-season perennials 

(Bromus inermis (Leyss), Poa pratensis (L.), and Agropyron cristatum (L. [Gaertn])) and 

the annual grass Bromus tectorum (L.). Each grazing intensity experiment was replicated 

two times. 

 

Soil and plant Sampling  

 

Soil samples from the 0- to 15- cm depth were collected from each 0.25 m2 plot in 

the spring and fall.   Six cores from each plot were composited in each soil sample. Soil 

samples were analyzed for gravimetric soil water content, following which they were 

dried, ground, and analyzed for total N, total C and inorganic carbon.  
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Above ground biomass was measured at the end of the 2014 and 2015 growing 

seasons.  The entire sample was dried at 60o C for 120 hours and weighed.  A portion of 

the harvested biomass was ground and analyzed for total carbon and nitrogen analysis.   

The above ground biomass was then used in the litter bag experiments where 

decomposition rates were determined.    

Below ground biomass in the surface 15 cm was measured at the end of the 2015 growing 

season. Composite soil samples, consisting of three cores that had a diameter of 7.62 cm 

were collected and stored in a cold room having a 5o C temperature. A hydro pneumatic 

elutriator was used to separate the roots from the soil (Chang et al., 2014; Smucker et al., 

1982b) (Clay et al., 2012). After washing and separating the root biomass from the soil 

particles, the extracted roots were dried at 60 oC and weighed.   During washing, roots 

and other organic materials were separated from the fine soil particles with a submerged 

low kinetic energy primary sieve (#925).  The minimum kinetic energy of water moving 

across the submerged sieve permitted retention of very fine roots on a relatively coarse 

sieve without breaking laterals and root hairs. The primary sieved materials were 

transferred onto a very fine secondary sieve (#437) (Smucker et al., 1982a). The roots 

and other organic materials were hand separated in clean water.   The measured root 

values did not account for exudates, and therefore based on Kuzyakov and Domanski 

(2000) and Kuzyakov and Lorionova (2005, 2006) (Kuzyakov and Domanski, 2000; 

Kuzyakov and Larionova, 2005; Kuzyakov and Larionova, 2006) the root + exudates 

values were calculated using the equation,  

  Roots + exudates = measured roots × 2     
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Above Ground Plant Decomposition  

 

         Insitu above ground decomposition rates were measured in the winter, spring and 

summer. Above ground clipped biomass collected from each plots were dried as 

explained above. These dried biomass sample were kept in 1.5 mm mesh fiberglass bags 

that had the dimensions of 20 by 20 cm. Average weight of biomass in each litter bag was 

15 g of dried biomass. In each HP and LP areas, 72 litter bags were placed on the soil 

surface on November 1, 2014. In total, 432 litter bags were installed at the study sites.  

Out of 72 litter bags in each productive area, twenty four residue bags from each 

productive were collected after three different time intervals- 150 days (after winter 

season), 240 days (after winter + spring together) and 365 days (after winter + spring + 

summer).  

 

Data and Statistical Analysis 

 

            Data were analyzed using the R-statistical program. ANOVA was performed to 

compare soil moisture, total biomass, C: N ratio in different productive areas of each 

location. Mean and p-value was calculated for each parameter. Above ground biomass 

decomposition followed first order exponential function and degradation rate was 

calculated using the equation: 

ln (yt ) = ln(y0 ) –k (t) 

where, yt  was amount of biomass remaining at time t, k was first order rate constant and 

y0 was amount of biomass at time Zero. The half-life biomass was calculated by:  
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y1/2= ln2/k  

Amount of biomass degraded was calculated for three different time periods (winter, 

winter + spring and Winter+ spring + summer) separately at two different productive 

areas of each study sites. To determine spring season decomposition, amount of biomass 

lost during winter and spring together was subtracted with season loss only. Similarly, to 

calculate summer season decomposition the combined lost that occurred during the 

winter and spring   were used to correct for winter and spring deposition. Linear 

regression analyses between biomass C: N Ratio and percent biomass lost due to 

decomposition was use to evaluate the importance of litter quality on decomposition. 

Similarly, linear regression was conducted to determine the influence of soil moisture on 

the percent litter decomposed. In the text, when it is stated that two differences are 

different, it is implied that the differences are significant at the 5% level.   

Results 

 

Total above and Below Ground Biomass Production  

 

Table 2. 2. Above and below ground biomass (0-15 cm depth) Production at different 

productive area of three study sites 

  

 White River Highmore Oacoma 

 

Shoot 
Root+Exudat

es 
R/S 
ratio 

Shoot 
Root+
Exuda

tes 

R/S 
ratio 

Shoot 
Root+Exud

ates 
R/S 
ratio 

  g/m2 
   g/m2   g/m2   

HP 544 354 0.33 667 518 0.39 456 318 0.35 
LP 314 260 0.42 375 362 0.48 237 214 0.45 
 p-

value 
<0.001 0.1024   <0.001 0.03   <0.001 0.02274 
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Highmore had the highest shoot and root production with greater root/shoot ratio than 

other sites (Table 2.2).  These results were attributed to due to higher soil moisture 

contents. At each study site, shoot and root production was higher in the HP than the LP 

area.  The HP area had 544, 668 and 457 g/m2 above ground biomass production at White 

River, Highmore and Oacoma respectively. However, in the LP areas at White River, 

Highmore, and Oacoma, approximately 314, 375 and 237 g/m2, respectively of above 

ground biomass was produced.  Sites with higher above ground biomass had higher root 

biomass. For example, Highmore which had highest shoot biomass production had 259 

and 181 g/m2 of root biomass in the HP and LP area, respectively. Whereas, Oacoma 

which had lowest shoot biomass production had only 159 and 107g/m2 of root production 

at HP and LP area respectively.  

Above Ground Decomposition Rate due to Locations, productive area and season 

Data was analyzed first to see if there is influence of Location, productive area and 

season on decomposition rate and percent loss. White river and Oacoma had significantly 

different in decomposition rate constant than Highmore. However we did not find 

significant different between white river and Oacoma (Table 2.3). Percent litter loss was 

significantly different among all three location. However we did not find any significant 

different in decomposition rate constant and percent litter lost between two productive 

areas. Three different seasons (winter, spring and summer) had significant influence in 
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decomposition rate and percent litter lost. Winter had the lowest followed by spring and 

summer had greater.  

Table 2.3. Decomposition influenced by Location, productive area and season 

Location Productive Area Season  

Location 
Rate 

Constant 
% 

Loss 
Productive 

Area 
Rate 

Constant 
% Loss Season  

Rate 
Constant 

% Loss 

White River  1.77 a 17.64 a HP 1.71 a 17.01 a Winter 0.77 c 10.49 c 
Highmore  1.39 b 13.6 b LP  1.68 a 16.45 a Spring 1.93 b 14.78 b 
Oacoma  1.93 a 18.97 c      Summer  2.40 a 24.93 a 
p-value 0.04 0.02 p-value 0.71 0.62 p-value <0.001 <0.001 

The same letters within column are not significantly different (p=0.05) 

 

Within each location, High productive (HP) and low productive (LP) rate constant and 

percent loss was not significantly different (Table 2.4). At white river and Highmore 

summer percent litter loss was significantly greater during summer than spring and 

winter.  Decomposition rate constant during winter was differ with spring and summer 

but summer rate constant was numerically greater than spring however not significant. 

At Oacoma we found significant difference in percent litter loss among all three seasons. 

Summer had fastest decomposition rate followed by spring and winter had the slowest 

rate of decomposition.  
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Table 2.4. Decomposition within each location due to season and productive area 

  White River   Highmore   Oacoma 

Season % Loss 
Rate 

Constant   
% Loss 

Rate 
Constant   

% Loss 
Rate 
Constant  

Winter 12.06 b 0.86 b  7.36 b 0.57 b  12.05 c 0.86 b 
Spring 15.60 b 2.07 a  11.21 b 1.49 ab  17.53 b 2.22 a 
Summer 25.26 a 2.38 a  22.21 a 2.12 a  27.31 a 2.69 a 
p-value 0.005 0.004  0.02 0.027  0.0012 0.001 
LSD 5.45 0.96  9.56 0.96  4.09 0.56 

         
Productive Area        
HP 17.82 a 1.73 a  13.84 a 1.34 a  19.87 a 2.06 a 
LP 17.46 a 1.81 a  13.35 a 1.45 a  18.05 a 1.79 a 
p-value 0.81 0.49  0.88 0.52  0.25 0.27 
LSD 14.72 1.55   33.91 1.55   9.6 1.56 
The same letters within a column are not significantly different (p = 0.05) 

 

Biomass C: N Ratio vs. litter decomposition  

At Oacoma and Highmore the C: N ratios of the HP and LP biomass were identical 

(Table 2.5). Biomass with lower C: N ratios tended to have higher decomposition rates 

than residue with high ratios (Fig. 2.2).  This relationship suggests that decomposition 

was N limited.  

 Table 2. 5. C: N Ratio of original biomass used for litter bag at three different sites.  The 

two productivity zones were HP (high productivity) and LP (low productivity) 

 White River Highmore Oacoma 

HP 32 57.3 30.6 

LP 43 56.9 31.2 

P-value 0.00185 0.9234 0.7799 
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Fig 2. 2. Relation between C: N ratio in the plant biomass and the decomposition rate (g/ 
(kg ×day). 

The C: N ratio of plant biomass appeared to impact winter decomposition. When 

all sites were considered together, C: N ratio explained 42% of the winter decomposition 

variation (Fig.2.2). Similarly, for spring decomposition, C: N ratio explained 33% of 

decomposition variability (Fig 2.3), and 11% of the summer decomposition variability.  

This decreasing correlation suggest that the C: N ratio of the original biomass became 

less important.  
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 Fig 2. 3. Decomposition rate and biomass C:N ratio during different season  

 

Temperature vs. Decomposition 

 

Highmore had cooler temperatures than the other sites (Table 2.6). Sites with warm 

temperature had greater decomposition. For example, Highmore which had the lower 

temperature during winter, spring and summer had slower biomass decomposition rates. 

Unlike litter C: N ratio, temperature had positive correlation with biomass 

decomposition. Temperature explained 45% of decomposition variability (Fig. 2.4).  

 

  



57 

 

Table 2. 6. The mean seasonal temperature (oC) at the three study sites 

 

 

 

 

 

Fig 2. 4. Relation between temperature and litter decomposition rate at the three study 
sites.  

 

 

 

 White River Highmore Oacoma 
Winter -1.51 -4.77 -2.25 
Spring 13.79 13.10 14.59 

        Summer 18.44 17.54 19.27 
Annual 10.24 8.62 10.54 
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Decomposition Rate vs. Soil Moisture  

 

Fig 2. 5. Relation between Soil moisture and decomposition rate at the three study sites.  

  

 

Plant composition vs. decomposition  

 

                    Highmore had greater percentage of warm season grasses when compared 

with the other sites (Table 2.7). Greater amount of warm season grasses at Highmore site 

may be attributed to higher rainfall. Previous research showed that above ground biomass 

quality is inversely related to precipitation (Murphy et al., 2002). Higher rainfall areas 

have higher litter C:N ratio resulting in slower decomposition rate (Aber and Melillo, 

1982). 
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Table 2. 7. Plant composition at the different study sites.  The HP and LP values refer to 

high productivity and low productivity sites 

 

 

Total Carbon and Nitrogen in soil  

 

Table 2. 8. Amount of carbon and nitrogen in soil of different sites. The HP and LP values 

refer to high productivity and low productivity sites 

 

 White River Highmore Oacoma 

 N% C% C/N N% C% C/N N% C% C/N 
HP 0.16 1.59 9.68 0.22 2.47 11.26 0.28 2.81 9.86 
LP 0.13 1.28 9.42 0.26 2.80 10.63 0.22 2.20 9.86 
p-

value < 0.001 
< 

0.001 0.056 <0.001 0.006 0.015 <0.001 0.0003 0 0.99 
 

Soil at White River contained less total N and C than the other sites s (Table 2.8). At 

White River and Oacoma, the HP area had greater N and C than LP sites.   However, 

different at Highmore, the LP sites had greater N and C than the HP site.    

  White River Highmore Oacoma 
Functional Group HP LP HP LP HP LP 

 % 
Warm-season grasses 13.24 35.56 57.07 35.73 0.57 0.28 

Native Cool-season grasses 59.49 21.04 16.59 2.48 87.05 0.00 
Invasive Cool-season 

grasses 1.33 0.57 16.24 55.00 0.27 65.52 
Native Forb 0.67 6.93 8.05 4.84 1.49 2.56 

Invasive Forb 21.97 0.00 0.00 0.00 10.63 30.19 
Shrub 0.00 0.00 1.54 0.00 0.00 0.00 

Annual grasses 3.29 35.56 0.00 1.70 0.00 1.45 
Sedge 0.00 0.34 0.51 0.26 0.00 0.00 
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Fig 2. 6. Relation between soil C/N and Annual decomposition rate.   
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Correlation between different variables 

 

 

Fig 2. 7. Correlation coefficients (r) between measured values in this experiment.  Values 
greater than 0.25 and less than -0.25 are significant at the 5% level. 
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Discussion  

 

Our findings suggest that management and plant composition influenced productivity and 

the rate that biomass is decomposed.  Plant materials with high C: N ratios tended to 

decompose slower than plant biomass with low C: N ratios.   The HP sites tended to have 

higher productivity values then the LP sites.    For example, the HP areas at White River 

had 544 and 177 g/m2 of above and below ground biomass production, respectively. 

Whereas, the LP area,  yielded  314 and 131 g/m2 of above and below ground production, 

respectively.  Highmore and Oacoma had similar results.  However, other researchers 

have had different (Li et al., 2012).  

We found inverse relation between the plant biomass C/N ratio and turnover rate. Plant 

biomass with low C/N ratios tended to have higher decomposition rates. For example, 

plant biomass from the White River HP area had a C/N ratio of 32 and an  decomposition 

rate of 1.73 g/(kg×day)  whereas plant biomass from the Highmore HP area had a C/N 

ratio of 57.3 and a decomposition rate of 1.29 g/(kg×day)..  

Another factor determent to the total carbon turnover was the plant species composition 

of the litter. For example, the Highmore HP site had a higher percentage of warm season 

grasses than the other sites. Higher proportion of warm season grass could be the reason 

for having higher C/N ratio at Highmore resulting in slower decomposition rate. In the 

other had White River and Oacoma had greater proportion of cool season grass than 

warm season resulting in narrower biomass C/N ratio and faster carbon turnover rate.  
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                                              Chapter 3  

 

The impact of Fire on Carbon Cycling in Range Systems 

 

Abstract 

 

Fire and grazing are natural components of the northern Great Plains grasslands. 

These activities have potential to affect different physical and biological aspects of 

grassland ecosystems thus impacting net carbon budgeting and long term sustainability. 

The primary objectives of the study were to determine effect of fire and control on the 

CO2 emissions and to quantify their impact on soil temperature and soil moisture. 

Research was conducted during 2014 and 2015 at two sites in Brookings country. CO2 

fluxes were measured in two treatments, annual fire and control.  There were two 

replications for each treatment.   The CO2 fluxes were measured with an 8100A 

Automated Soil CO2 Flux System (LI-COR, Lincoln, NE) was used which was connected 
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to four gas chambers. Soil surface temperatures were measured continuously with 

thermocouples. In 2014, CO2 flux was measured every two hours for 90 seconds over 20 

days, whereas in 2015, it was measured over 48 days. Total carbon lost, soil temperature 

and moisture contents were higher in fire than control.  

 

 

 

 

 

 

Introduction 

 

Northern Great Plains grasslands contain high amount of indigenous soil organic 

matter along with higher below ground biomass (root) and microbial population 

providing important carbon dioxide (CO2) sources (Frank et al., 2002). Soils with high 

soil organic matter and extensive root systems, create favorable conditions for soil 

microbes (Conant et al., 2001).  Our hypothesis is that fire impacts soil respiration and 

soil carbon mineralization kinetics. 

Fire is a natural component of the northern Great Plains grasslands.  Following 

the settlement of the Great Plains, fire was prevented from many ecosystems (Komarek, 

1974).  The lack of fire resulted in a buildup of fuels and in many situations changed the 

types of vegetation observed on the land (Parsons et al., 1979). Early spring fires or 

grazing provides a competitive advantage to warm season grasses over cool-season 

grasses by removing the above ground portions of the invasive plants and by converting 
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nutrients contained through decomposition and decay into soil available nutrients (Hover 

and Bragg, 1981; Augustine et al., 2014). 

        Fire can be integrated into all of these systems.  In a patch-burn grazing 

system, a different portion of the field is burned every year.  In this system, cattle 

spend a large percentage of their time in recently burned areas of the pasture.  

Burning releases nutrients and plants growing in these areas are often more 

nutritious.  The productivity and resilience of the grasslands within the region are 

influenced by management practices, such as grazing intensity and fire (Smart et 

al., 2013). Depending on the fire temperature and amount of standing biomass, the 

fire can contribute to the loss of N and C from the system (Hobbs et al., 1991).  

Interactions between management (fire and grazing intensity) and site 

characteristics (soil and climatic variability) have the potential to produce 

landscape position specific impacts on long-term sustainability. For example, in 

areas with high slopes, fire and heavy grazing can reduce surface cover and increase 

the risk of erosion and gully formation (Smart et al., 2015).     

   The impact of a fire on soil organic matter and nutrient cycling depends upon the 

amount of available fuel.  If 100% of the above ground biomass was consumed by 

grazing animals, fire would produce few benefits.   Reducing the amount of fuel reduces 

the temperature and the amount of nutrients that can be recycled (Haile 2011; Mataix-

Solera et al. 2009; Neary et al.1999; Raison 1979). During combustion, the organic 

carbon with the biomass is released and portion of the nutrients contained in the 

vegetation are returned to the soil.  Ojima et al. (1994) reported that the percentage of N 
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and biomass that was lost during combustion were similar.  However, the loss of P was 

negligible.   

Fire can also combust soil organic matter (Richter et al., 2000; Johnson and Curtis, 2001; 

O’Neill et al., 2002, 2003), increase soil temperature (Viereck et al., 1983), and reduce 

soil moisture (Imeson et al., 1992; O’Neill et al., 2002), microbial activity, and microbial 

diversity (Fritze et al., 1994; Waldrop et al., 2003, Hart et al., 2005; Waldrop and Harden 

2008). The impact of fire on soil moisture has been mixed. Due to reduction in 

evapotranspiration and rainfall interception by plants (Moody and Martin 2001) fire can 

increase soil moisture (Klock and Helvey 1976; Moore and Keeley 2000), whereas 

because of hydrophobicity, fire can increase runoff thereby reducing soil moisture may 

(Imeson et al., 1992; Harden et al., 2006). After a fire, the soil surface is darkened from 

the ash and charcoal deposited on the soil surface (Eckmeier et al., 2007; Pereira et al., 

2014). Soil darkening generally increases soil temperature and elevates microbiological 

activities (Certini, 2005; Gomez-Heras et al., 2006). Total Soil CO2 Flux depend on the 

autotrophic soil CO2 flux by plant roots and mycorrhizal fungi and heterotrophic soil CO2 

flux by various soil microorganisms (Ryan et al.,2005; Luo et al., 2006; Raich et al., 2000 

and Subke et al., 2006) .  

Fire can also reduce above ground biomass,   surface litter, and photosynthesis, 

and soil N (Knapp and Seastedt 1986, Seastedt and Knapp 1993, Ojima et al. 1994). Fire 

result in combustion loss of nitrogen (Blair et al. 1998), which over the long term can 

reduce N mineralization. To compensate for reduced N, plants may increase root 

development (Ojima et al. 1994.   
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Therefore, due all these physical and biological factors, fire likely plays an important role 

in net ecosystem carbon budget (Chapin et., 2006).  The primary objectives of the study 

were to determine effect of fire on the CO2 emissions and to quantify the impact of fire on 

soil temperature and soil moisture.  

 

 

Methodology 

 

Study Site 

 

Research was conducted during 2014 and 2015 at two sites in Brookings country. 

The first site, nearest to the city of Brookings (44°20ʼ6.33ʺN, 96°48ʼ28.62ʺW), had well 

drained Barnes clay loam (fine-loamy, mixed, frigid Udic Haploborolls), with a 0 to 2 % 

slope (NRCS, 2010a, 2010b). This site was seeded with big bluestem (Andropogon 

gerardii Vitman) in 2005. Kentucky bluegrass (Poa pratensis L.), big bluestem, and 

smooth bromegrass (Bromus inermis Leyss. subsp. inermis) were the dominant grass 

species and yellow sweet clover [Melilotus officinalis (L.) Lam.] was the predominant 

forb species. This soil contained 40.4 g SOC kg-1.  

The second site, located near the city of Volga (44°23ʼ91.53ʺN, 96°57ʼ29.39ʺW) 

was a well-drained native prairie.  The soil was a Buse Poinsett complex with a 9 to 15% 

slope (NRCS, 2010a, b). The dominant plant species included at little bluestem 

[Schizachyrium scoparium (Michx.)], big bluestem, sideoats grama [Bouteloua 

curtipendula (Michx.) Torr.], smooth bromegrass, and yellow sweetclover. 
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 Field plots were established in 2009 in a Randomized Complete Block design 

containing four replicates at each site. Fire treatments were applied to 6 X 6 m blocks and 

consisted of annual fire (fire every year), fire every two year (fire after two years) fire, 

and fire every three years (fire after every three years). Simulated grazing consisted of 

clipping vegetation to 2 cm height and clipped biomass was removed from the study 

plots. The three simulated grazing treatments were annual simulated grazing (clipping 

every year), simulated grazing every other year (clipping after every two years), and 

simulated grazing every 3rd year (Clipping after every three years). The two year fire and 

simulated grazing treatments were conducted in 2009, 2011, 2013 and 2015 whereas 

three year fire and simulated grazing treatments were initiated in 2009, 2012 and 2015.  

A cosine function was used to determine the diurnal cycles the air temperatures 

and CO2-C emissions using the equation,  

 ����� = 	� 
cos �����
� −  ����                                                                 

[1] 

where T is the interval, yc(t) is the gas concentration at time t,  Ac is amplitude of the 

cosine curve, ϕc is phase angle of the cosine cure, and c is the frequency of  the wave 

cycles (Carr, 1995). The amplitude represents the height of diurnal cycle peak, whereas 

the phase angle, or shift, represents the offset of the peak in the cosine wave.  The peak 

time of diurnal cycle was determined by converting the phase angle to a 24 hour basis.  In 

this experiment, T is 1 (a day in 24 hour period) and c is 1 (a complete cycle).   

 

Sampling  
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CO2 fluxes were measured in two treatments, Annual Fire and control.  There 

were two replications for each treatment.   The CO2 fluxes were measured with an 8100A 

Automated Soil CO2 Flux System (LI-COR, Lincoln, NE) was used which was 

connected to four gas chambers. Soil surface temperatures were measured continuously 

with thermocouples. In 2014, CO2 flux was measured every two hours for 90 seconds 

over 20 days, whereas in 2015, it was measured over 48 days.  

Soil sampling was conducted in 2014 and 2015.  Soil samples were separated into 

three soil depths (0- to 7.5-, 7.5- to 15- and 15- to 30.5- cm).  For Bulk Density, a 3 cm 

diameter bulk density probe was used to collect soils from these depths, and water 

infiltration was measured with a single ring infiltrometer.   

 

Results and Discussions 

 

 

Soil Carbon Dioxide Emission  

 

In 2014, soil CO2 –C emissions, soil temperature and soil moisture followed 

diurnal cycles (Fig 1, 2 & 3). Average daily carbon loss during first seven days was 4.37 

and 5.92 g (m2 × day)-1 from unburned and burned plot respectively (p < 0.1 using T-test). 

Similarly, there was fire induced phase shift in CO2-C emissions. Fire plot had higher 

phase shift (4.20 h) than the grazing (3.89 h) (Table 3.2). This phase shift suggests that 

the fire delayed when the CO2-C was emitted.   

Soil CO2 –C emissions during the 8 to 20 day period in the annual fire treatment 

was numerically lower than first 7 days than the control treatment. For the 8 to 20 day 
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period, CO2 –C losses per day from fire and control were 5.16 and 4.66 g (m2 x day)-1.   

In addition, the amplitude (0.17 g m-2) and phase (4.04 g m-2) shift in annual fire treatment 

were higher than the control treatment (P < 0.1 using T-test). This difference in CO2 –C 

loss per day, may can be attributed to increased microbial activities due to better soil 

moisture (0.33%), and higher soil temperature (17.95 oC) than control. 

For the 21-32 days period, CO2 –C loss per day from fire treatment was 

numerically higher than control treatment, however it was not significantly different. 

During this time interval, soil temperature and moisture contents were similar.  During 

33rd to 48th day, the fire treatment had significantly higher per day CO2 –C loss (8.13 g 

(m2 × day)-1) than the control treatment (6.95 g (m2 × day)-1). Similarly, the amplitude 

was higher in fire treatment than control treatment.  Numerically, the soil temperature 

and moisture contents were higher in fire than control treatment.  
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Fig 3. 1. Gram CO2-C emission from the annual fire and control treatment in 2014 
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Fig 3. 2. Soil temperatures in the annual fire and no fire (control) treatments in 2014 

 

Fig 3. 3. Soil moisture in the annual fire and no fire (control) treatment in 2014.   
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Carbon dioxide emissions 2015 

In 2015, CO2 –C emissions and soil temperature followed diurnal cycles (Fig 3.4 

& 3.5). The per day CO2 –C emissions from both treatments were lower in 2015 than 

2014. Average daily carbon loss during first seven days was 2.70 and 3.31 g(m2 x day)-1 

from control and annually burned plot, respectively (Table 3.3).   During the first 7 days, 

the amplitudes, phase shifts and soil temperatures were similar.  

 The CO2 –C emissions from 8 to 20 days were higher than the first 7 days in the 

annual fire and control treatments. For the 8 to 20 day period, CO2 –C loss per day from 

the annual fire and control treatments were 3.69 and 4.07g (m2 x day)-1, respectively.   

Again, the amplitudes, phase shifts and soil temperatures for the 8- to 20- day period 

were similar in both treatments. 
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Table 3. 2. Influence of the annual fire and control on CO2-C emissions, and the 
amplitude and phase sift of the diurnal cycle in 2015  

 

    1-7 days       8-20 days   

Treatments 
Amp Phase 

shift 
CO2-C 

loss 

 
Amp Phase 

shift 
CO2-C 

loss 

 
g m-2 hour 

g(m2 x 
day)-1  

g m-2 hour 
g(m2 x 
day)-1 

Control 0.04 4.15 2.70  0.08 4.11 4.07 
Fire  0.03 3.95 3.31  0.06 3.93 3.69 

p-value 0.59 0.71 0.046  0.47 0.45 0.11 

   Temp(oC)    Temp(oC) 
 Control   18.85    18.03 

Fire    16.88    17.2 
p-value     0.34       0.55 

 

 

Fig 3. 4. CO2-C emission from soil in 2015 
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Fig 3. 5. Soil Temperature in 2015 
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Thesis Conclusion and Summary 

 

In the northern Great Plains, changing climatic condition is impacting agriculture in 

various ways. Higher temperature, changing precipitation pattern, increasing CO2 levels 

and extreme climatic events like drought, directly affect land use, soil carbon 

sequestration and food production. Activities like land use change are driven by a desire 

to create wealth and produce jobs. Along with economic opportunities to local families, 

recent technological improvements, land ownership structure changes, climate variability, 

various governmental policies, and aging workforce are major driving factor for changing 

grassland to cropland. Along with these factors, it may also be driven by a desire to 

stabilize economic returns in an environment of high climatic variability and a goal of 

increasing the land value. For example, irrigated cropland had a higher value than grazing 

lands. Our research shows that South Dakota State had higher amount of grassland to 

cropland changes than Nebraska during both study periods. During first six year period, 

700,000 hector grassland was changed to cropland in South Dakota, whereas it was only 

250,000 ha in Nebraska. Similarly, 210,000 ha newly expanded cropland was estimated 

during later two-year period in South Dakota. Contrarily Nebraska State had only 

110,000 ha of new cropland. The higher conversion rates in South Dakota than Nebraska, 

are attribute to the type of land available for conversion.    In Nebraska, between 2006 

and 2012 and between 2012 and 2014, 76.1% and 83.8% of the change occurred on soil 

considered suitable for cropland (LCC < 4) respectively. However, in South Dakota, over 
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90% of the land that was converted was considered suitable for croplands. In the North 

Nebraska NASS region, 80,000 ha of grassland were converted to cropland between 2012 

and 2014. Approximately 1/3 of this change occurred in land with a LCC value of 6.  

Lower rates of change occurred in the South Dakota’s South Central region where 10,000 

ha of land were converted.  Differences between the two states most likely are related to 

availability of an irrigation supply.   

From second study we concluded that, the Northern Great Plain grassland possess a large 

amount of soil and plant carbon. The cycling of carbon between the plants, soil, and 

atmosphere is influenced by many factors including seasonal climate variation, soil 

properties, grass morphology, and tissue chemistry.  We found shoot and root production 

was higher in moderately grazed high plant diversity area (HP) than the intensively 

grazed low plant diversity area (LP). The percentage of litter that was decomposed was 

higher in the HP than the LP areas at White River and Oacoma. The winter season exhibit 

the lowest rate of litter decomposition, followed by spring and summer. The results 

indicated that the plant biomass C: N ratio and temperature explained 52 and 45%, 

respectively of the measured changes in biomass decomposition. Sites producing biomass 

with a low C: N ratio had higher first order rate constants than sites with high C: N ratios. 

These findings indicate that the winter period cannot be ignored when assessing carbon 

turnover.  

Lastly, third study compared total carbon flux from fired and grazed grassland plots. 

Activities like fire and grazing which have potential to affect different physical and 

biological aspect of grassland ecosystem impacting net carbon budget and long term 

sustainability. Our study resulted that annual fire treatment had higher above and below 
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ground biomass production than the annual grazing. Moreover total carbon lost, soil 

temperature and moisture contents were higher in fire than grazing. 

 

Future Research 

 

Sustainable land management involves the management of land, soil, water, biodiversity 

and other resource’s that meets human requirements while maintaining ecosystem 

services.   In the northern Great Plains (NGP), the combined impacts of land-use and 

climate variability have placed many soils at the tipping point of sustainability.  Various 

management practices like the maintenance of soil health along with soil organic carbon, 

erosion minimization, protection from salt accumulation and consideration of several 

services provided by various resources are main factors impacting sustainability in South 

Dakota. Our three study investigated sustainability of land use change and soil carbon of 

Northern great plain. The findings from the land use change assessment could be a very 

useful to researcher, extension workers and policy makers for the making policies and 

decisions related to conservation and sustainable agriculture in the future. This study 

could provide information balancing economic development with the environmental 

impacts. Moreover a decision of a land owner during land use change are affected by 

their biological and financial resources available, experience of climate variability in the 

region and different management practices and actions during drought periods . However 

our study have not included farmers and ranchers real life responses to drought severity, 

different grazing management system and prices of agricultural prices which are very 

important to a land owner during decision making process of land use. Thus in coming 
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future, incorporating such real life experiences of farmers though survey could strengthen 

the impact and finding of this kind of studies.   

Moreover, we designed rainout shelters to simulate different seasonal drought to 

investigate their impact on soil carbon sequestration. However, due to excess water run-

off from the surrounding, we failed to simulate target seasonal drought. Thus to study the 

impact of climate variability like drought on the soil heal and carbon, we need to redesign 

and engineer rainout shelters such a way that to meet our target reduction of precipitation.    
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